
Using Linguistic Knowledge in Statistical Machine Translation

by

Rabih M. Zbib

Submitted to the Department of Civil and Environmental Engineering
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in the field of Information Technology

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

ARCHNES
MASSACHUSETTS WNSTUE

OF TECHNOLOGY

SEP 2 9 2010

LIBRARIES

September 2010

@ Massachusetts Institute of Technology 2010. All rights reserved.

A uthor ............... ... ..... -
Department of Civil and Environmental Engineering

September 15, 2010

C ertified by .......... ... . .... ..............
James R. Glass

Principal Research Scientist of the Computer Science and Artificial Intelligence
Laboratory

Certified by................................

Thesis Supervisor

Steven R. Lerman
Professor of Civil and Environmental Engineering

Thesis Supervisor

A ccepted by ...................................
Daniele Veneziano

Chairman, Departmental Committee for Graduate Students





Using Linguistic Knowledge in Statistical Machine Translation

by

Rabih M. Zbib

Submitted to the Department of Civil and Environmental Engineering
on September 15, 2010, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

in the field of Information Technology

Abstract

In this thesis, we present methods for using linguistically motivated information to
enhance the performance of statistical machine translation (SMT). One of the advan-
tages of the statistical approach to machine translation is that it is largely language-
agnostic. Machine learning models are used to automatically learn translation pat-
terns from data. SMT can, however, be improved by using linguistic knowledge to
address specific areas of the translation process, where translations would be hard to
learn fully automatically.

We present methods that use linguistic knowledge at various levels to improve sta-
tistical machine translation, focusing on Arabic-English translation as a case study.
In the first part, morphological information is used to preprocess the Arabic text for
Arabic-to-English and English-to-Arabic translation, which reduces the gap in the
complexity of the morphology between Arabic and English. The second method ad-
dresses the issue of long-distance reordering in translation to account for the difference
in the syntax of the two languages. In the third part, we show how additional local
context information on the source side is incorporated, which helps reduce lexical
ambiguity. Two methods are proposed for using binary decision trees to control the
amount of context information introduced. These methods are successfully applied
to the use of diacritized Arabic source in Arabic-to-English translation. The final
method combines the outputs of an SMT system and a Rule-based MT (RBMT)
system, taking advantage of the flexibility of the statistical approach and the rich
linguistic knowledge embedded in the rule-based MT system.
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Chapter 1

Introduction

The idea of automatically translating from one human language to another using com-

puters was proposed surprisingly early in the history of development of computers,

as initial attempts at implementing a machine translation (MT) system were made

in the 1950s. But it is a problem that has proved considerably harder than it was

first believed to be. The quest to develop cheap, reliable, and fluent machine transla-

tion continues today, with an ever increasing level of research effort and commercial

investment.

The advent of the Internet has been behind the surge of interest in machine

translation on both the demand and the supply sides. The proliferation of digital

information, and the continued rise of the number of people coming online in all cor-

ners of the globe has created a higher need for cheap translation between more and

more languages. The availability of digital information in different languages, on the

other hand, coupled with the availability of cheaper and more powerful computing

hardware has enabled the development of statistical methods for machine translation.

Statistical machine translation (SMT) is a general approach that uses machine learn-

ing techniques to automatically learn translations from data. Parallel corpora (i.e.,

text data in one language along with its translation) are used to train statistical trans-



lation models, which learn probabilistic translations between linguistic entities (e.g.,

words or phrases). The translation of unseen data is typically formulated as a search

problem, where the probabilistic model is used to search for the best translation of

the complete input sentence.

Despite its divergence from traditional linguistic theories, SMT (and more gener-

ally, the statistical approach to natural language processing), has many advantages.

Translation patterns are learned directly from training data, and they can be gener-

alized to translate new sentences. This approach is also less labor intensive than the

alternative of explicitly encoding the knowledge required to handle all possible cases

through deterministic rules. Models that are developed can usually be applied di-

rectly to new language pairs, as long as training data is available for those languages.

These advantages, combined with the enabling factors mentioned above, have made

SMT the preferred approach to research and development of machine translation over

the past two decades. During this time, large advances have been made in the de-

velopment of SMT models and tools for many language pairs, and the quality of the

translation output has continuously improved. SMT systems that produce reliable

and fluent translations exist today for some language pairs, especially in specific data

domains.

But when the differences between the two languages are considerable, some of the

translation patterns could be difficult, if not impossible to learn. Typically, larger

amounts of data are required in order to learn these translation patterns, due to their

higher complexity. A completely language-agnostic approach, therefore, would not

be the optimal way in which to make use of the available parallel data. Language-

specific methods can be integrated within the SMT approach to enhance system

performance. This thesis proposes several methods that use linguistic information

at different abstraction levels to address specific aspects of the translation problem.

The work in this thesis uses Arabic-English translation, in both directions, as a case



study into how this language-specific information can be used. The methods and

ideas contained in this thesis are, however, applicable to other languages.

Interest in Arabic translation has risen dramatically over the past decade, driven

by the rise in the general interest in the Arabic language for security, political and

cultural reasons. Almost all the research has been in the Arabic-to-English direction,

reflecting the interest of funding sources. This thesis partly deals with English-to-

Arabic MT. This direction presents technical challenges that do not exist in the other

direction, due to the difference in the properties of the two languages (keep in mind

that translation is a highly asymmetric problem).

We next briefly discuss the difficulties involved in the translation problem, then

give a high-level description of the different approaches to machine translation.

1.1 Why is Machine Translation Difficult?

Human language is a deceptively complex system that makes use of a finite set of

primitive constructs to produce an infinite number of sentences, that express all the

different aspects of human activity. This fertility of language is achieved not only

through recursive construction, but also through the adaptation of words to express

different meanings. The resulting lexical ambiguity is a challenge to the translation

task, since the proper translation of a word depends on the meaning corresponding to

the specific usage. The syntactic properties of languages also differ considerably, and

the difference is usually manifested as differences in the word order of the sentences.

These differences have to be handled during the translation process. A sentence

in serialized form can correspond to more than one unique syntactic structure. This

phenomenon of syntactic ambiguity is quite common in natural language. The correct

resolution of syntactic structure is crucial to the proper interpretation of a sentence,

and is, therefore important for proper translation. Languages also differ in their

morphology. They have, for instance, different pronoun, verb tense, and noun case



interlingua

source / ) Xjtarget
words words

Figure 1-1: The MT Pyramid. Higher points on the pyramid edges correspond to
more abstract levels of intermediary representation.

systems. The determination of which set of values of these properties in one language

corresponds to which set in the other language in a specific context is a difficult task.

All of these challenges assume that proper translation can be performed through word-

to-word translation and reordering (an assumption made by early SMT models). But

idiomatic and metaphoric use of language is very common. Also, syntactic structures

are not always preserved across translation. This implies that literal translation will

not give an appropriate result. The consideration of context is crucial for producing

correct and fluent translation. These factors and others make machine translation a

challenging problem.

1.2 Different Approaches to Machine Translation

The different approaches that have been proposed for machine translation can be

broadly categorized into three classes, depending on the level of abstraction of the

knowledge representation used in the translation process. Those categories are usually



depicted through the machine translation triangle, shown in figure 1-1. The two sides

of the pyramid correspond respectively to the analysis of the source language and the

generation of the translation in the target language. At the bottom of the triangle

are direct translation methods, where translation is performed from string of words

to string of words, with very little analysis of the source. The second category of

approaches is transfer based, where the source sentence is analyzed and transformed

into a rich representation (e.g., syntactic-semantic tree). The structure is then trans-

formed into an equivalent structure in the target language, and that, in turn, is

used to generate the target sentence. At the top of the pyramid is interlingua-based

translation, where the idea is that the source sentence is analyzed into a universal

representation, from which the translation sentence is generated. This would reduce

the number of translation systems needed to translate between n languages from

n(n - 1) to n.

Another dimension along which MT methods differ is deterministic versus prob-

abilistic. This, in principle, is independent of the level of abstraction used, although

in practice, direct translation methods tend to be statistical, while methods that use

higher abstraction levels tend to be deterministic. Source side analysis using statisti-

cal models is a recent trend that will likely continue as statistical models for analysis

(e.g., parsing) and translation continue to be developed. We now briefly discuss the

properties of each of these approaches.

The interlingua approach to machine translation has not found wide success,

mainly due to the difficulty of specifying a universal representation of language that

is comprehensive enough for the translation problem in a large domain. (Knight,

1997) illustrates the difficulties with this endeavor nicely through an example. He

suggests that the reader consider what is involved in translating a seemingly sim-

ple sentence like "John saw the Grand Canyon flying to New York" into Japanese

through such a process. The meaning of the sentence has to be computed first, using



some precise representation. Then that representation would be used to generate

the Japanese translation, using additional grammatical and lexical knowledge. Upon

careful inspection, it becomes clear that resolving the ambiguity of the sentence re-

quires knowledge of facts about the world, like "Canyons don't fly". The best that

syntactic analysis can do is to produce all the different syntactic structures that could

be underlying this sentence. Translation, though, requires that the correct analysis

be determined. And even then, a certain level of semantic understating is needed.

But a rigid semantic representation will fail to accommodate the understanding of

the concept of "people flying" in the metaphoric sense, while rejecting "canyons fly".

Then, trying to clearly specify the reasons why a canyon cannot fly, even though a

plane, another inanimate object, can, is not an easy task. Neither reducing the rea-

soning to a few logical principles, nor specifying a value for the attribute CANFLY

to every object is feasible. This approach seemly requires the solution to the artifi-

cial intelligence problem in the strict sense as a prerequisite to solving the machine

translation problem.

Using deterministic transfer rules, which was the dominant approach until rela-

tively recently, and continues to be used in many commercial applications, does not

require such an ambitious solution. Only the knowledge that is needed to perform

the translation has to be directly encoded in the source analysis and transfer rules

between the two languages. But this approach in turn suffers from drawbacks. Spec-

ifying explicit rules of analysis and transfer that take into account all the cases that

might arise, and dealing with all the subtleties mentioned in the previous section is

also a daunting task. Another difficulty with the rule-based approach to machine

translation is that even if one succeeds in the task of specifying correct and complete

rules for translating from one given language to another, a different set of rules would

have to be specified for a new language pair. This approach suffers from scalability

issues both in terms of translating data from a large domain, and generalizing to new



languages.

Statistical machine translation uses statistical models to learn translations auto-

matically, usually directly between words, or using syntactic knowledge on the source

and/or target sides. Parameters of the statistical model are learned from parallel

data using machine learning techniques. The SMT paradigm has many advantages,

which has made it the subject of the majority of the research in the field of machine

translation over the past couple of decades. The most obvious advantage is that

models and techniques are independent of a specific language. Software resources

are also, to a large extent, portable across languages. The other advantage is that

the models can learn to automatically translate between a large number of linguistic

patterns, as long as these patterns occur in the training data. No explicit encoding

of the knowledge is needed to handle the different cases. Another, more subtle ad-

vantage, is that SMT systems avoid making hard decisions at any of the intermediate

stages of the translation process. Decisions are deferred to the end of the process,

and only probability scores are carried through. This prevents intermediate mistakes

from dooming the final translation result. Chapter 2 contains a review of the history

and current research in SMT.

1.3 The GALE Project

All the work in this thesis, except for the parts on English-to-Arabic in chapters 3

and 4, was conducted as part of DARPA's GALE (Global Autonomous Language

Exploitation) program (Olive, 2005).

GALE is a 5-year program whose goal is to develop technologies to eliminate the

need for linguists and analysts in the translation and analysis of large amounts of infor-

mation in foreign languages. The technologies developed under GALE include robust

automatic recognition of continuous speech, including both read speech and spon-

taneous speech. Most relevant to this thesis, the DARPA program aims to develop



machine translation technology to translate automatically transcribed speech, as well

as text into English. Relevant text genres include news broadcast, newswire, and the

less structured weblog data. Finally, GALE includes the development of information

distillation technology to provide automatic question answering functionality based

on information extracted from raw text, both original and automatically translated.

The GALE program mainly focuses on two languages: Arabic and Mandarin

Chinese.

1.4 Contributions of this Thesis

This thesis offers the following specific contributions:

* A method for using morphological information for English-to-Arabic SMT.

" A method for using syntactic information for English-to-Arabic SMT.

* A model for integrating explicit contextual information into the SMT frame-

work.

" Two methods for successfully using diacritized Arabic source.

" A method for the combination of an SMT system and a rule-based MT system.

" Suggestions on research directions for other methods of combining an SMT and

a rule-based MT systems.

1.5 Summary of Each Chapter

The rest of this thesis is organized into 6 chapters. The content of each of the

remaining chapters is summarized next.

* Chapter 2: Background



Chapter 2 starts with a review of the major advances in statistical machine

translation over the past two decades. It then presents a brief description of different

aspects of the Arabic language with the purpose of providing the reader with a basic

insight into the language, which would facilitate understanding the work in the rest

of the thesis.

* Chapter 3: Morphological Preprocessing for SMT

This chapter discusses the effect on machine translation of the difference of the

morphology of the source and target languages. It presents experiments on using

morphology-based splitting of the Arabic source for Arabic-to-English MT, comparing

the use of a rule-based and a statistical morphological analyzer on MT performance.

The second part of chapter 3 describes how the morphological splitting can be used

in the less explored direction of English-to-Arabic SMT. It discusses why recombining

the segmented Arabic output of the MT system is not a trivial task, and suggests

methods to perform this combination.

* Chapter 4: Syntax-based Reordering for SMT

Chapter 4 presents another preprocessing method, which in this case is targeted

at dealing with the difference in the syntax of Arabic and English. Reordering rules

defined on the English source for English-to-Arabic SMT are suggested, and experi-

mental results showing the advantage of using these rules are presented.

* Chapter 5: Source Context using Binary Decision Trees

Chapter 5 tackles the problem of lexical ambiguity, and its effect on machine

translation. It shows how additional context information can be used with beneficial

results, by controlling the amount of context information through the use of binary

decision trees.

9 Chapter 6: System Combination of Statistical MT and Rule-based

MT



This chapter discusses in more detail the respective advantages of the rule based

and statistical approaches to machine translation. It then introduces a new method

for combining the output of two systems from the two different paradigms, taking

advantage of the benefits of each.

* Chapter 7: Conclusion and Future Work

This chapter concludes the thesis, and suggests some ideas for future research.

Figure 1-2 shows the structure of the thesis, with the type of linguistic information

used in each chapter.
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Chapter 2

Background

This chapter reviews the major advances in statistical machine translation through

the past two decades. Over that period, SMT has become the preferred approach

for research and development of machine translation systems. New models and tech-

niques continue to be proposed with an ever increasing pace. The first section of this

chapter reviews some of the landmark advances in that area. We then discuss the

problem of automatic evaluation of machine translation quality, and describe a few

of the most popular evaluation methods. The last part of the chapter contains an

overview of different aspects of the Arabic language: the orthography, morphology

and syntax of Arabic, with the aim of providing the non-Arabic reader with enough

linguistic background to discern the work in this thesis.

2.1 Previous Work on Statistical Machine Translation

This section briefly reviews the general development of statistical machine transla-

tion over the past two decades. The most significant developments in the field are

mentioned here, while the previous work that is more relevant to the material in each

chapter is reviewed in that chapter.

The prevalent paradigm to machine translation until the 1990's was through deter-



ministic transfer rules. In the past two decades, the research on statistical methods

for machine translation has advanced in strides, and statistical methods have also

started to be adopted in commercial MT systems.

Statistical machine translation has become the prevalent approach to MT over

the last two decades, especially among the reseach community. This growth has been

driven by the advantages of the statistical approach mentioned in chapters 1 and 6.

Two additional factors have contibuted significantly to this development. The first

is the dramatic increase in the computational power and storage capacity and the

decrease in cost of hardware, which permitted for increasingly computation-intensive

methods to be developed using larger amounts of data. The second factor is the advent

of the Internet, and of digital content in general, which has made multi-language data

resources available to be used in developing SMT systems, and on the other hand has

increased the demand for fast, cheap and reliable translation. The scaling of data

corpora is key for the success of the complex translation models. Multi-word models

like phrase-based MT and syntax-based models require large amounts of training

data to overcome issues of sparsity, which result in unreliable parameter estimates

and consequently, unreliable translation results. With enough training data, and

for limited domains, the quality of some SMT systems is quite reliable, especially for

language pairs that have been extensively researched and developed. But the problem

of machine translation, in its general formulation, is still far from solved. (Church and

Hovy, 1993) suggests that "crummy" machine translation output can still be useful

with the right user expectations, and in the right application context.

The remainder of this section is a brief review of the development of statistical

machine translation. (Lopez, 2008) is a recent comprehensive survey of the field.

(Dorr et al., 1999) is an older survey. In book form, both (Manning and Schiitze,

1999) and (Jurafsky and Martin, 2000) touch on the subject of machine translation.

The recently published (Koehn, 2010) is the first book dedicated to SMT.



2.1.1 The Noisy Channel Model

An important property of any specific SMT method is its modeling unit. Early SMT

models were based on modeling word-to-word translations. The noisy channel model,

first proposed in (Brown et al., 1990), was the basis for a sequence of increasingly

complex word translation models known as the IBM models (Brown et al., 1993),

which have had a large influence on the development of the field. The noisy channel

model assumes that the source (foreign or French) sentence f is a distorted version of

the target (or English sentence) e. The translation process consists in the recovery

of the most probable target sentence given the source sentence. In principle, a source

sentence f can be translated into any target sentence, an assumption that is shared

by all SMT methods. One translation is chosen over another because it has a higher

probability score, and the most probable target sentence under the model is chosen

as the translation output. Bayes rule is used to rewrite the probability maximization

criterion:

argmaxPr(elf)
e

argmax Pr(f le) Pr(e) (2.1)
e Pr(f)

argmax Pr(f le) Pr(e)
e

The term Pr(f) can be eliminated from the maximization term since it does not

affect the choice of e. This formulation would be familiar to readers with knowledge of

speech recognition. The term Pr(fle) is called the translation model, and Pr(e) is the

a priori language model probability. It might seem more obvious and straightforward

to directly search for the most probable target sentence, but the advantage of the

decomposition of equation 2.1 is that the estimation of Pr(elf) requires that every

possible target sentence be assigned a non-zero probability, while most of the strings

'Consistent with the general practice in the literature, we use f for "foreign", the source language,
and e for "English", the target language. This notation was used in the original IBM papers on word-
based SMT (Brown et al., 1993)



composed of the vocabulary of the target language are non-grammatical. Estimating

Pr(fle) instead requires that only the probability of grammatical target sentences

be estimated. Also, the explicit incorporation of the language model term allows

non-grammatical sentences to be penalized during the search.

2.1.2 Language model

The language model has to capture information about the allowable sequences of

words in the target language, as well as the frequency of occurrence of these sequences.

This information guides the search process during decoding to favor more common

sentences. The language model has to strike a balance between the expressiveness

of the model and its flexibility. A model that defines grammaticality too tightly can

prove to be limited and brittle. The most common type of language models define

the probability of a given word in terms of its preceding words in the sentence. Thus,

the probability of a sentence e = e...., eK is:

K

Pr(e) =Pr(ejlei, ... , ej_1)
i=1

An n-gram language model limits the history of a certain word to its preceding

n - 1 words, by making the following independence assumption:

Pr(eilei, ... , ei_1) = Pr(eils,,.. ei_1)

This assumption reduces problems of data sparsity, since the probabilities are es-

timated from counts of word string occurrences in a data corpus. n-gram models are

widely used in Speech Recognition, Natural Language Generation, and other Natural

Language Processing applications. Despite their simplicity, n-gram language models

have proved to be surprisingly effective (Manning and Schiitze, 1999; Jelinek, 1997;

Rosenfeld, 2000). Until recently, language models that use syntactic and other com-

plex information usually provide little advantage for the complexity they introduce



(Filimonov and Harper, 2009). Techniques have been proposed to smooth the prob-

ability estimates of sparse language models, and to estimate probabilities of unseen

n-grams (Chen et al., 1998; Katz, 1987).

The explicit use of a language model as a separate factor in equation 2.1 has

another advantage. The language model is estimated using a monolingual corpus,

which can be obtained cheaply, as opposed to the bilingual corpus needed to train a

translation model. The language model can be trained using very large amounts of

data, without being restrained by the relatively smaller size of the bilingual corpora

typically available.

2.1.3 Word Alignment Models

We describe the IBM word alignment models (Brown et al., 1993) in some detail next.

Although these models were proposed some 15 years ago, they still form the basis for

some SMT models of the current state-of-the-art. These consist of five models for

word-to-word alignment, called IBM Models 1-5, each with an increasing complexity

over the preceding model. They are all estimated from training data that consists of

bilingual sentence pairs. The estimation procedure assumes that an alignment exists

between the words of the two sentences, but that the alignment is unknown. Any

word in the source sentence f can in principle be aligned to any word in the target

sentence e. If the alignments were known, the word translation probabilities can be

estimated accordingly:

Pr(f le) = Pr(f, ale) (2.2)
aEA

where A is the set of alignments. If the translation probabilities were known, on the

other hand, probabilistic (or partial) word alignments could be determined. The Ex-

pectation Maximization or EM algorithm (Dempster et al., 1977) is used to estimate

both the alignments and translation probabilities iteratively.



The five models are of increasing complexity, as they account for more translation

phenomena, such as many-to-one translation and reordering. The generative story2

of Model 5 is:

1. Each target word ei picks the number of source words that it will generate, #4.

This is called the fertility of ei. The target sentence is extended with a special

null word, allowing source words to be translated to the empty string.

2. Each of the #4 copies of the target word ei is translated into a source word.

3. The source words are reordered according to a distortion model that depends

on the lexical value and position of the target word.

This account means that the IBM alignment models are asymmetric. They allow

many-to-one alignments from the source to the target, but not in the other direc-

tion. Symmetrization methods will be described in the section on phrase-based SMT.

Also, word-based models translate word for word, without taking into account the

surrounding source words, which often results in a word salad, that is, incoherent

word sequences. They do not consider the fact that certain word sequences consti-

tute phrases that should be translated together. Phrase-based SMT (section 2.1.4)

addresses this issue as well. Finally, despite the inclusion of a distortion model that

theoretically permits arbitrary reordering, in practice reordering is often limited to

a distance of a few words to keep the models tractable, meaning that these models

cannot handle long distance reorderings that the difference in the syntax of the two

languages necessitates. Hierarchical and syntax-based MT attempt to address this

problem by allowing word chunks to be moved jointly.

GIZA++ (Och and Ney, 2003) is a widely used implementation of the IBM model

4.
2A generative story is a hypothetical account of how certain data is generated. It forms the basis

for determining the mathematical models that model that data.



Word alignment models besides the IBM models have been proposed, including

HMM-based word alignment (Och and Ney, 2000; Lopez and Resnik, 2005; DeNero

and Klein, 2007).

2.1.4 Phrase-based SMT

Phrase-based machine translation aims to improve over word-based MT by using

a chunk of words, or a phrase, as the modeling unit, instead of a single word. This

allows word sequences that occur together frequently to be translated jointly, avoiding

word-for-word translations, which might be inadequate or wrong.

Alignment templates (Och et al., 1999) constituted a transitional step from word-

based alignment models. These templates are generalized phrase pairs, consisting of

word classes with internal alignments. (Och, 1999) suggests how word classes on the

source and target side can be estimated from monolingual and bilingual data.

Phrase-based models (Zens et al., 2002; Marcu and Wong, 2002; Koehn et al.,

2003) translate between phrases consisting of words instead of word classes. Recall

that word-based alignments are asymmetric. Many-to-one alignments are only pos-

sible from the source to the target. But many-to-many alignments are needed to

extract phrase pairs. Alignments are symmetrized by, for instance, running a word-

based alignment procedure such as GIZA++ in both directions, and combining them

by intersection, union or other heuristics. Internal alignments between words in the

phrase pair are usually ignored. The phrases used in these models are not linguisti-

cally based (i.e., syntactic constituents). The phrase probabilities are estimated from

phrase counts:

N( fk, j

Pr(fkleik) =N(k) (2.3)

The decoding consists in splitting the source sentence into phrases, translating

each phrase, and then reordering the phrases. A beam-search based decoder is used



to prune the search space, making the search sub-optimal, yet tractable. Ordering

models that are a function of the lexical values of the phrase pairs are sometimes used.

Phrase pairs successfully model local reordering within the phrase, but they are inad-

equate at modeling long-distance reordering, since performing arbitrary reorderings

without a recursive mechanism is computationally prohibitive.

The increase in the size of available training data is a key factor in making phrase-

based models usable, since large amounts of data are required for the reliable estima-

tion of phrase pair probabilities. The widely used Pharaoh decoder (Koehn, 2004a)

and the more recent open source toolkit MOSES (Koehn et al., 2007) are based on

the phrase-based model in (Koehn et al., 2003).

2.1.4.1 Maximum Entropy Model

Log-linear models correspond to the maximum entropy solution for parameter esti-

mation (Berger et al., 1996). They have been used widely in NLP applications. (Och

and Ney, 2002) model the forward translation probability directly as a log-linear

combination of weighted model components, corresponding to observed features as

such:

= argmax { Amhm(e, f) (2.4)

where hm(e, f) is the value of feature m, a function of both the source and target

sentences; Am is the weight for feature m. The weights (A\,... , Am) are estimated by

optimizing an objective function (typically a translation metric) using a tuning data

set.

The advantage of the log-linear model over the earlier noisy channel model is that

multiple model components can be added, rather than restricting the model to the

translation model and language model components. Log-linear models are considered

discriminative in that they directly model the target translation conditioned on the



observed feature values. Features typically used in phrase-based systems include:

* Phrase probabilities, in both directions; that is Pr(fklk) and Pr(kalfk).

" An n-gram target language model.

" Lexical probabilities; that is probabilities of translation of single word pairs,

also in both directions. These probabilities work as a smoothing for the phrase

pair probabilities, which are estimated from sparser counts. Chapter 5 describes

the lexical smoothing feature in more detail.

" A hypothesis length penalty that allows for the length of the hypotheses to be

controlled.

(Och et al., 2004) reports on the use of a wide variety of features, some of which were

found to be useful, and others were not.

2.1.4.2 Parameter Tuning

The values of the feature components are estimated from (possibly different) data

corpora. They are combined through a weighted interpolation, as equation 2.4 shows.

The weights determine the relative effect of each feature on the overall score. As

mentioned above, these are determined by optimizing some objective function over an

unseen data set. This process is called parameter tuning. The optimization function

is typically a (combination of) translation metric(s), that is optimized iteratively by

searching through the weight space (Och, 2003). A non-gradient descent method,

such as Powell's method (Brent, 1973) is used when the objective function is not

differentiable. A smoothed objective function can be used instead, which can be

optimized using gradient descent methods.

2.1.5 Hierarchical SMT

As (Lopez, 2008) notes, the models described so far correspond to finite-state trans-

ducers, and can be equivalently described as regular languages (Sipser, 2005). Natural



language, however, is better modeled as a context-free grammar (CFG). Modeling ar-

bitrary reorderings using regular finite-state transducers is an awkward and expensive

operation. CFGs by contrast are suitable to model the recursive structure of natu-

ral language syntax. Synchronous context-free grammars (SCFG) (Aho and Ullman,

1969) are an extension of CFGs to bilingual rules of the form

X -+ (* , a,~)

where -y is a sequence of terminals (i.e., lexical items) and non-terminals in the source

language, a is the corresponding sequence of terminals and non-terminals in the

target language, and - is a one-to-one alignment between the non-terminals of 7

and a. SCFGs are suitable for modeling translations between structures (as opposed

to strings). The aligned non-terminals in the two right-hand sides of the bilingual

rule are considered corresponding translations, and they can be recursively expanded

through the application of further rules. The reordering of word chunks can be easily

modeled through the reordering of aligned non-terminals in the parallel rule.

Bracketing grammars (Wu, 1996; Wu, 1997) are an early attempt at efficiently

modeling translation reorderings on top of word alignments. They use a single non-

terminal and a simple grammar of three rules to represent binary bracketing reorder-

ings:

X -- X X[/X2| X

X - X1X/X X (2.5)

X -+e/f

Hierarchical phrase-based MT (Chiang, 2005; Chiang, 2007) combines the advan-

tages of both SCFGs and phrase-based MT. It allows up to two non-terminal variables

on the right-hand side of the rule, providing a more powerful reordering mechanism

than binary bracketing grammars. The similarity with phrase-based translation is



that the rules can also contain non-terminals. Hierarchical rules can be looked at as

generalizations of phrase pairs where the phrases are recursively substituted instead

of being concatenated. The rules are extracted from phrase pairs by substituting a

non-terminal variable in place of a phrase pair that occurs within it. This grammar is

thus not syntactically constrained, in that the substituted phrases do not correspond

to linguistic constituents. Rule probabilities are estimated from joint and marginal

counts of the source and target sequences, similar to how phrase translations are

estimated.

The decoding consists in parsing the source sentence and generating the source side

simultaneously. The parsing can be done in O(n 3 ) time using dynamic programming,

and N-best translations can be generated efficiently (Klein and Manning, 2001; Huang

and Chiang, 2005).

A log-linear model with many features, similar to section 2.1.4.1 is usually used

with Hierarchical SMT.

2.1.5.1 The Hierdec Decoder

The baseline systems described in section 3.4 and in chapters 5 and 6 are based on the

Hierdec decoder (Shen et al., 2008), a hierarchical decoder similar to (Chiang, 2005;

Chiang, 2007). In addition to the n-gram language model, Hierdec uses a dependency

tree on the target side that is extracted from target parses.

An N-best list of translations is usually produced using a 3-gram language model

for efficient decoding, and is then rescored with a 5-gram language model and other

features.

(Shen et al., 2009) explores the use of additional features within the Hierdec

framework. Those include part-of-speech tags on the target side and terminal length

distributions.



2.1.6 Syntax-based Statistical Machine Translation

A wide range of approaches can be categorized under the label of syntax-based SMT.

They share the common factor of incorporating knowledge based on natural language

syntax into the translation process. The syntactic information is typically derived

from statistical parsers (Collins, 1997; Collins, 1999; Charniak, 2000), which implies

that the successful use of syntax in MT depends on the availability of reliable parsing.

Sometimes reliable parses are available for only one of the two languages, forming the

motivation for using syntax on one side only. This side is usually the English side,

since the most mature and reliable statistical parsers are for English.

One approach is to use syntactic information at the source side, as a separate

step, where the source sentence is reordered according to a set of rules defined on the

parse tree. (Collins et al., 2005; NieJen and Ney, 2004; Wang et al., 2007; Xia and

McCord, 2004) are examples of such an approach. The work in chapter 4 falls under

this category. Others, such as (Huang et al., 2006), integrate the parse information

more tightly by using a tree-to-string model, where the parse tree of the input is

converted into a tree in the target language. The system in (Huang et al., 2006) is

implemented on English-to-Chinese translation.

The more common approach is to use syntax on the target side, which is driven by

the emphasis of many research programs on the translation into English, combined

with the availability of reliable English parsers. (Yamada and Knight, 2001) general-

ize the noisy-channel framework to model tree-to-string probabilities. The trees are

subjected to reordering, insertion and translation operations. A variant of the EM

algorithm is used to train the model.

(Och et al., 2004) incorporate syntactic information by using syntax-based fea-

tures of the target language in the re-ranking of the N-best translation list. (Gildea,

2003) proposes a more general model for tree transformation, such as node cloning

and deletion. Gildea tests the models on Korean-to-English translation. (Lin, 2004)



presents another string-to-tree model which maps from source strings to target de-

pendency trees. (Marcu et al., 2006) augment the target side of the phrase pairs of

phrase-based SMT. They define multiple variants of this class of models.

Most research on syntax-based MT recognizes the inadequacy of modeling full

tree-to-tree isomorphism for machine translation. (Gildea, 2003) notes that syntactic

divergences between translation pairs are quite common, either because of genuine

differences in the syntax of the two languages, or because the translations used in

training are not as parallel as they can be. Tree-to-tree models, therefore, usually

concentrate on modeling non-isomorphic mappings. (Eisner, 2003) uses a variant of

the EM algorithm to derive the best syntactic mapping between two trees. (Cowan

et al., 2006) learns mappings from the source parse tree to a tree-like structure,

called Aligned Extended Projection, inspired by the Tree Adjoining Grammar (TAG)

mechanism.

Finally, we note that, despite the general recognition of the importance of syntactic

structure for the translation process, fully incorporating syntactic information into

the SMT framework has not yet delivered convincingly significant improvements.

Syntax-based SMT remains a highly active field of research.

2.2 Translation Evaluation

Translation evaluation is complicated by the fact that there is no single correct answer

for the translation task. A sentence can be translated in many valid, yet different

ways. Variations in choice of words, word order and style can occur between different

valid translations of the same sentence.

The most reliable method for evaluating translation adequacy and fluency is

through human evaluation. But human evaluation is a slow and expensive process.

And even human evaluation is prone to inconsistent subjectivity, especially when

ranking the quality of multiple translations. The judgments of more than one human



evaluator are usually averaged for this reason. To compare the results of more than

two systems, human judges have to either perform 2-way comparisons between the

different translations, or assign a numerical score to each translation, which adds

more subjectivity to the process.

A quick, cheap and consistent method is needed to judge the effects of incremen-

tal improvements made to MT systems during day-to-day development. A precise

automated evaluation method would require linguistic understanding, a problem that

is, arguably, at least as difficult as machine translation. Methods for automatic eval-

uation usually rely on a measure of superficial similarity between the translation

output and one or more translation references. Correlation studies between auto-

matic evaluation methods (usually called translation metrics), and human judgments

on translation quality are used to evaluate the reliability of these methods.

Three automatic translation metrics used to report results in this thesis are de-

scribed next: BLEU, TER and METEOR.

2.2.1 BLEU

The BLEU score (Papineni et al., 2002) is one of the first automatic evaluation

metrics to show a high level of correlation with human judgments, and it remains

one of the most widely used. The metric is based on n-gram precision, that is,

the fraction of the n-grams in the MT output hypothesis that are also found in the

reference. Multiple reference translations can be used to compute BLEU. Evaluating

translation hypotheses against multiple references provides a more robust assessment

of the translation quality.

Using the precision measure directly is problematic, because it rewards superflu-

ously generated n-grams. In the following example from (Papineni et al., 2002), the

unigram precision is 7/7:

Example 1.

Hypothesis: the the the the the the the.



Reference 1: The cat is on the mat.

Reference 2: There is a cat on the mat.

The BLEU score deals with this issue by using a modified precision score, where

the count of matching n-grams is capped at the maximum number of occurrences of

that unigram in the same reference. In the previous example, the modified unigram

precision is 2/7.

The use of precision alone means that artificially short hypotheses will get a higher

score. Usually, this problem would be handled by the use of recall, that is, the fraction

of the reference n-grams that are produced in the MT hypothesis. However, since more

than one reference translation are used to compute the score, a bad hypothesis that

recalls n-grams from different references can get a high recall score, as the following

example, also from (Papineni et al., 2002), shows:

Example 2.

Hypothesis 1: I always invariably perpetually do.

Hypothesis 2: I always do.

Reference 1: I always do.

Reference 2: I invariably do.

Reference 3: I perpetually do.

The first hypothesis recalls more n-grams from the references than the second,

even though it is a worse translation.

The BLEU score deals with the problem of short sentences by including a brevity

penalty:

1 If c> r
BP = (2.6)

e(l-r/c) If c < r

where c is the total length of the translation corpus and r is the total length of the

reference corpus.



The BLEU score is computed as the geometric mean of modified n-gram precision

counts, up to an n-gram order of N.

N

BLEU = BC x ( wn log p" (2.7)
n=1

Typically, a value of N = 4 and uniform weight w, = are used, resulting in the

following equation for the computation of the score:

BLEU = BP x (P1P2P3p4) 1 4  (2.8)

A higher BLEU score indicates a better translation result.

2.2.2 METEOR

METEOR (Banerjee and Lavie, 2005) is another metric for evaluating machine trans-

lation systems, also based on word matching. METEOR considers unigram precision

and recall. It uses recall directly, unlike BLEU. METEOR does not use higher-order

n-grams, but measures translation grammaticality instead by penalizing hypotheses

based on how many chunks in the hypothesis would have to be reordered to match

the reference(s). Matches between morphological variants of a word (e.g. computer

vs. computers) and between word synonyms are also allowed.

A higher METEOR score generally indicates a better translation result.

2.2.3 Translation Edit Rate (TER)

Another translation evaluation metric is Translated Edit Rate (TER) (Snover et al.,

2006). TER measures the number of edits needed to transform the translation hy-

pothesis into the reference translations. The number of edits is normalized by the

number of hypothesis words. TER can also use multiple translations, by considering

the number of edits with the closest references, and normalizing with the average

number of word references. TER is thus defined as:



TER = # of edits to closest reference
average # of reference words

The edits that TER considers are insertion, deletion and substitution of individual

words, as well as shifts of contiguous words. TER has also been shown to correlate

well with human judgment.

TER is a edit distance measure, so a lower TER score signifies a better translation

2.2.4 Human Translation Edit Rate (HTER)

The GALE project uses a translation distance metric similar to TER called HTER

(Human-targeted Translation Edit Rate) (Snover et al., 2006) as the official metric

of evaluation. To measure the HTER of the output of a translation system, human

annotators perform the minimal edits required to correct the output. The edit dis-

tance between the original output and the corrected output is measured. Determining

HTER is an expensive exercise, which in the GALE project is only performed during

the official evaluation at the end of each phase.

2.2.5 A Note on Translation Scores

The possibility of translating a given text in many valid ways means that a correct

translation would still be expected to differ from the reference translations used to

score it. This means that there is a floor to the TER score (or ceiling in the case

of BLEU) below which even correct translations are unlikely to be. This should be

taken into consideration when the quality of an MT system is assessed based on the

absolute values of the MT scores.

2.2.6 True Casing

The Arabic-to-English and English-to-Arabic systems in this thesis are trained with

lower-case English. The English output of Arabic-to-English is therefore in lower case,

and the MT scores for the Arabic-to-English results is presented for the lower case



TER BLEU
Testl.newswire Lower 39.54 52.77

Mixed 41.78 50.58
Test2.newswire Lower 41.31 50.64

Mixed 43.52 48.65

Tune.newswire Lower 39.29 54.22
Mixed 41.52 52.03

Table 2.1: Difference in scores between lower case English and mixed case English

output. The output can be converted to true case using a statistical n-gram based

caser. Table 2.1 shows the effect of casing on the scores of a typical Arabic-to-English

experiment. The scores usually deteriorate by around two points. The reporting of

the lower case scores does not affect the evaluation of the effect of experiments, since

that effect is judged relative to a baseline, rather than in absolute terms.

2.3 The Arabic Language

The work in this thesis concentrates on Arabic-to-English and English-to-Arabic ma-

chine translation, as a case study into how linguistically motivated techniques can

be used to improve the largely language-independent statistical machine translation

approach. This section presents a brief introduction to the properties of the Arabic

language, with the goal of presenting enough information to allow the non-Arabic

speaking reader to get an insight into how the specific linguistic characteristics of

Arabic are exploited.

2.3.1 The Arabic Language Family

Typologically, Arabic is a Semitic Language sharing a common origin and high level

grammatical features with Hebrew, Aramaic and some of the languages of Ethiopia,

among others. It is the official language of 26 countries, and is spoken by 250 million

people, making it the 5th most popular language in the world.



The state of spoken Arabic today is better described as a family of languages/dialects

rather than a single language, where different varieties have emerged over a vast ge-

ographic area, influenced by language substrata and contact with surrounding lan-

guages. The spoken varieties have considerable differences among each other, and

some of them are not mutually intelligible. They form a dialect continuum, but

can be classified into four main groups: North African, Egyptian, Levantine and

Gulf/Iraqi.

2.3.2 Modern Standard Arabic

None of the spoken dialects of Arabic has a standardized written form. Instead, the

Arabic speaking world uses a written variety of the language called Modern Standard

Arabic (g iB, AlfuSHA). Based on the Classical Arabic of the Qur'an, this literary

form of Arabic is shared throughout the Arabic speaking region, with little local

variation. It is almost always used for writing, to the exclusion of the spoken dialects,

and is also spoken in formal situations, such as religious ceremonies, political speeches

or news broadcast. It is not, however, spoken natively, in daily life in any region of the

Arabic speaking world. It is formally taught to children in school. This, together with

the fact that the differences between Modern Standard Arabic (MSA) and the spoken

dialects can be considerable, creates an interesting case of Diglossia ((Ferguson, 1959)

reproduced in (Belnap and Haeri, 1997)), a sociolinguistic phenomenon where the

literary standard differs considerably from the vernacular varieties. Far from being

a purely linguistic phenomenon, the diglossic situation of Arabic is one that is laden

with social, political and religious issues (Haeri, 2000).



The differences between MSA and the various dialects are large enough to render

the translation of dialect input using MT systems trained on MSA data non-usable.

The vast majority of linguistic data resources are in MSA; and this thesis, like almost

all other research on Arabic MT, focuses on translation to and from MSA. Chapter

7 briefly discusses some of the issues with data gathering and translation of Arabic

dialects. The remainder of this section will describe the orthography, morphology

and syntax of MSA.

2.3.3 Arabic Orthography and Encoding

The Arabic script is an alphabet consisting of 28 basic letters and a few additional

variants. It is written from right to left. Letter shapes change depending on whether

they are connected to the adjacent letters. Arabic has three vowel (a, u, i). Both

vowel and consonant duration are phonemic. Short vowels and consonant doubling

are written using small marks, called diacritics, placed above or below the preceding

consonant 3 . Diacritics are usually omitted from Arabic text, except in special cases,

such as religious texts, children's books and language learning material. This creates

an ambiguity of the pronunciation, as well as lexical ambiguity since two different

words can have the same non-diacritized spelling. Readers of Arabic rely on context

and on their knowledge of the lexicon to resolve this ambiguity. Chapter 5 discusses

the implications of the resulting lexical ambiguity on SMT, and proposes methods

for using diacritized source for translation. When diacritics are supplied, Arabic

orthography is mostly phonemic.

Several encoding systems for representing Arabic in digital form exist. Those in-

clude Apple's MacArabic, and Microsoft's Windows-1256. Modern applications tend

to use the Arabic Unicode system, usually encoded using UTF-8. It is worth not-

ing that software applications usually distinguish between representation for storage,
3Such writing systems are referred to as Abjads (See Daniels, Peter T., et al. eds. The World's

Writing Systems Oxford. (1996), p. 4 .)



where the isolated form of the characters is stored, and rendering, where a different

shape of the character might be used, depending on whether it is connected or not.

Several systems for transliterating Arabic in the Roman alphabet also exist. The

advantage of transliteration is that no special resources are needed, and it avoids

problems of display. The Buckwalter Arabic Transliteration is commonly used in

NLP. It is a one-to-one representation of Arabic characters that uses only ASCII. Its

advantage is that it can be used by machines and also easily learned by humans. It

can be also converted to and from proper Arabic encodings, provided that the source

is monolingual. Table 2.2 lists the Buckwalter transliteration of the alphabet, and

the International Phonetic Alphabet (IPA) corresponding to each chatacter. The

examples in this thesis are written using the Buckwalter system.

2.3.4 Arabic Morphology

Morphology is the branch of linguistics that studies and describes the structure of

morphemes, or meaning-carrying units, like words and other particles. Two types

of morphology are usually distinguished: derivational morphology and inflectional

morphology. Derivational morphology is the process of deriving a new word by com-

bining different morphemes. The addition of the -er affix in English, for instance,

produces a noun from a verb stem (e.g., teach+er-+teacher, write+er -+writer). The

second type of morphology is inflectional, where the form of the word is changed to

indicate its grammatical features, without changing the meaning of the word or its

part of speech. An example would be the formation of the past verb in English (e.g.,

teach-+taught, write-+wrote).

Morphology is relevant to machine translation, since words are the basic unit of

input to the translation process. But languages differ surprisingly widely in what

they consider a word to be. Analytic (or isolating) languages, like Chinese and other

East Asian languages, typically use independent words to represent each morpheme.

Function morphemes such as tense, gender or number are either unmarked or repre-



Arabic Buckwalter IPA Arabic Buckwalter IPA
? D &
a: T t

? 3 Z z

& ?E

? gy
}? . f f
A a: 3 q q

_ b b 4 k k

S p h/'t J 1 1
t t m m
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H h w w
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* 0 N un
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Table 2.2: The Buckwalter Transliteration

sented as separate words. The other end of the scale are what is called polysynthetic

languages, which can pack in a single word the equivalent of a long English sentence.

Many Native North American languages are polysynthetic. In the middle of this scale

are synthetic languages, such as Arabic, which combine derivational or inflectional

morphemes in different ways and to varying degrees. Given the potentially large

difference in the morphology of the translation language pair, it is very important

System.



Pattern Word Translation
C1aC2aCa kataba he wrote
CiaC2C2aC3a kattaba he dictated
taC1 AC 2aC3 a takAtaba he corresponded
< inC1 aC2aC3 a <inkataba it was written
C1 iC2 AC 3  kitAb book
C1 uC 2uC3  kutub books
C1AC 2 iC3  kAtib writer
C1uC2 C2 AC3  kuttAb writers
maC1 C2 wC3  maktwb written
maC1 C2 wC3  maktwb letter
C1AC 2 iC3  kAtib writer
maC1 C2aC3  maktab office/desk
maC1 C2aC3ap maktabap library/bookstore

Table 2.3: Examples of words derived from the root k - t - b and their corresponding
patterns.

to consider what is the best modeling unit for the translation process. Chapter 3

discusses this issue in more detail. We next describe Arabic morphology briefly.

The derivational morphology of Arabic, like that of other Semitic languages, is

based on a root+pattern structure. Arabic words, except for loan words, are derived

from an abstract 3-consonant root (2-consonant and 4-consonant roots also exit, al-

though they are rare), by filling specific spots of a template (or pattern) of consonants

and vowels with the consonants of the root. The root is usually associated with a

semantic notion that relates all the words derived from it. The patterns can also have

an associated semantic category, although that is less regular than in the case of the

root. The classical example of the Arabic root is k - t - b, which designates the notion

of writing. The template C1AC 2iC3 is a nominal template that usually designates an

actor. Substituting the root consonants in the slots C1, C2, C3 yields the word kAtib

'writer'. Substituting the root t - j - r yields tAjir 'merchant'. Table 2.3 shows

more examples of words derived from the root k - t - b.

A fair amount of work has been done on the morphological analysis and generation



Singular Dual Plural

Perfect
1st Person katabtu katabnA
2nd Person katabta/katabti katabtumA katabtum/katabtun-a
3rd Person kataba/katabat katabA katabw/katabna

Imperfect
1st Person >aktubu naktubu
2nd Person taktubu/taktubyn taktubAn taktubwn/taktubna
3rd Person yaktubu yaktubAn yaktubwn/yaktubna

Table 2.4: Conjugation of verb ktb 'to write'. The common verb stem for each of the
two conjugations is highlighted.

of Arabic root+pattern morphology, mostly using finite state techniques (Kosken-

niemi, 1983; Kiraz, 2001; Beesley, 2001). Work on the analysis of concatenative

morphology of Arabic, which is more relevant to this thesis, is described in chapter

3.

Arabic has a rich inflectional morphology, where open class words are marked for

many grammatical features. Nouns and adjectives are inflected for number (singular,

dual, plural), gender (masculine, feminine), case (nominative, accusative, genitive).

Verbs are inflected for aspect (perfect, imperfect, imperative), voice (active, passive),

mood (indicative, subjunctive, jussive). The subject features (person, number, gen-

der) are also marked on the verb. Inflectional morphology is mostly concatenative.

The conjugation of verbs in the perfect tense, for instance, is done with a suffix and

the imperfect tense is conjugated with a suffix+prefix, as table 2.4 shows. A notable

exception is the formation of irregular plurals (also called broken plurals), which is

template based. Table 2.3 shows a few examples of irregular plurals.

In addition, meaning-bearing particles, called clitics in the linguistic literature, are

also concatenated to verbs and nouns. Clitics that attach to verbs include conjunction,

the future tense prefix, and object pronouns. Clitics that attach to nouns include

conjunctions, some prepositions, the definite article and possessive pronouns. The



order in which these clitics attach to the verb or noun stem depends on their category:

[CONJ+ [PART+ [Al+ STEM +PRON]]]

The following examples show a verb and a noun with attached clitics.

(2.9) wsnqAblhA

w+ s+ nqAbl +hA

and+ will+ we-meet +her

'And we will meet her'

(2.10) wbydk

w+ b+ yd +k

and+ with+ hand +your

'And with your hand'

Chapter 3 describes how these affixed clitics can be detached, and the resulting benefit

to SMT.

2.3.5 Arabic Syntax

The syntax of Arabic differs from that of English in many respects. A comprehensive

exposition of Arabic syntax is obviously outside the scope of this thesis. This section

will describe a few relevant syntactic properties.

The neutral word order of the Arabic sentence is Verb Subject Object (VSO):

(2.11) (a) rkl Aiwid Alkrp
kicked-3SM the-boy the-ball

'the boy kicked the ball'

SVO order can also be used with a topicalized subject:



(2.12) (a) Alwid rkl
the-boy kicked-3SM

Alkrp
the-ball

'the boy kicked the ball'

Recall from section 2.3.4 that the personal object pronoun is a suffix that is attached

to the verb, which results in the order VOpraaS (the subscript is to indicate that this

sentence is only valid when the object is a pronoun):

(2.13) (a) rklhA Alwld
kicked-3SM-it the-boy

'the boy kicked it'

Subject-verb agreement is an interesting pattern. In the VSO order, the verb agrees

with the subject in gender and person, while in the SVO order it agrees in gender,

number and person:

(2.14) (a) rklt
kicked-3SF

AlbnAt Alkrp
the-girls the-ball

'the girls kicked the ball'

(b) AlbnAt rkln Alkrp
the-girls kicked-3PF the-ball

'the girls kicked the ball'

Arabic is a zero copula language, meaning that the verb to be is not overtly expressed:

(2.15) (a) Alkrp mstdyrp
the-ball round

'the ball is round'

Adjectives follow the nouns they modify, and they agree with them in number, gender

and definiteness:

(2.16) (a) Alkrp almstdyrp
the-ball the-round-fem

'the round ball'



Contrasting example (2.15 a) with example (2.16 a) shows the importance of the def-

inite article in distinguishing a sentence from a noun phrase.

The genitive construction, called idafa, is also interesting. A noun is place before

another noun to modify it:

(2.17) (a) krp Aiwid
ball the-boy

'the boy's ball'

(b) krp Alqdm
ball the-foot
'football'

idafa can be constructed hierarchically. The whole phrase is made definite by adding

the definite article to the last term:

(2.18) (a) krp wid AljyrAn
ball boy the-neighbors

'the ball of the neighbor's boy'

(b) krAt wid AljyrAn
balls boy the-neighbors
'the balls of the neighbor's boy'



Chapter 3

Morphological Preprocessing for SMT

Statistical machine translation methods aim at learning translation patterns that

explicitly take into account the differences in morphology and sentence structure

between the two languages. This task is even more challenging when either of the

languages has a rich morphology, where the morphemes and grammatical features are

exhibited as a change in the surface form of the word. It has been shown that reduc-

tion of the sparsity of the vocabulary through morphological preprocessing can lead

to improvements in machine translation quality. This chapter presents experiments

on the morphological splitting of Arabic for Arabic-to-English translation, providing

further evidence for the usefulness of morphological preprocessing techniques on the

source side, and comparing different morphological analyzers in terms of their effect

on MT performance. The second part of the chapter shows that the same -technique

of morphological splitting is also beneficial when performed on the target side in the

case of English-to-Arabic MT. It also suggests methods for recombining the output of

the MT system, which is segmented due to the use of segmented Arabic for training.

Section 3.5 on English-to-Arabic translation is based on work published in (Badr

et al., 2008).



3.1 Introduction

One of the advantages of the statistical approach to machine translation is that

statistical translation models learn translation patterns directly from training data,

and generalize them to handle new data, without explicitly encoding the knowledge

required for the different cases. This allows the SMT approach to be language-

independent to a large extent. Differences in morphology and sentence structure

between the two languages are learned automatically. On the other hand, such trans-

lation patterns can be hard to learn completely automatically when the differences in

the linguistic characteristics of the two languages are considerable. Another strong

point of SMT is its robustness when it comes to the representation of the input, where

the only requirement is that the input is consistently represented during training and

decoding. Any transformation can be performed on the source language, as a pre-

processing step, as long as it is done consistently on the training and test data. Such

preprocessing modifications are usually applied on the raw source to make it more

suitable for the translation process. This robustness in terms of input representation

has been exploited by applying one or more preprocessing steps on the source side

to bring it closer to the target language in terms of sentence structure and/or token

representation. Such steps include stemming, tokenization, part-of-speech (POS) tag-

ging, and syntactic reordering. They are usually based on specific characteristics of

the language pair. When done correctly, the source side preprocessing makes the task

of automatically learning translation patterns simpler, which reflects on the quality

of the translation output.

The Arabic language is characterized by its complex morphology, compared to

English. As section 2.3.4 explained, Arabic verbs and nouns are inflected for gender

and number. Morphemes for prepositions, conjunctions, personal and possessive pro-

nouns are also attached to the Arabic words. An Arabic word can thus correspond

to an English phrase consisting of multiple words. This means that the number of



words in an Arabic sentence is smaller than the number of English words in the

corresponding translation. For example, in the parallel corpus used in the section

on Arabic-to-English below, the average number of Arabic words per sentence is 23,

compared to 32 words on the English side. This discrepancy, sometimes referred to

as a morphological gap, has two effects on machine translation: First, the number

of out-of-vocabulary (OOV) words for Arabic is higher for a given amount of data,

since an Arabic word might occur in one inflection (or with one set of affixes) but not

another in the data. If the original Arabic source is used directly as MT input, the

system will have to learn how to translate an Arabic word separately for all its inflec-

tions. If a certain inflected form of a word is not seen in the training data, the system

will fail to translate that word all together. The second effect of the morphological

gap is that aligning the Arabic and English sides is harder since more one-to-many

alignments need to be learned, due to the difference in the number of words between

the two sides of the parallel sentence.

In this chapter, we focus on one preprocessing technique that has been used to

bridge the morphological gap between Arabic and English, namely morphological seg-

mentation. Affixed morphemes are separated from the stem of the word, based on a

morphological analysis that determines the morphemes contained in each word. As

will be further explained later, morphological analysis cannot be performed simply

based on pattern matching. The morphological analyzer has to draw on morphologi-

cal, lexical and contextual knowledge to determine the morphemes that constitute a

word in context, or in other words whether a given string of characters constitutes an

affixational morpheme, or part of the word stem itself. The effect of segmentation on

MT is studied in this chapter for both translation directions: Arabic-to-English and

English-to-Arabic. Morphological segmentation of the Arabic source for Arabic-to-

English MT has been successfully applied before. This work presents a comparison

of the use of a rule-based and a statistical morphological analyzer in terms of ma-



chine translation performance. The rule-based analyzer used is from Sakhr Software,

and the statistical analyzer is MADA (Habash and Rainbow, 2005). The section

on Arabic-to-English also presents a new morphological splitting scheme called verb

canonicalization, where the subject pronoun morpheme is split from the verb, and

shows additional gains from its use on data from the web domain. The second part

of the chapter shows how morphological analysis can also be used when translating

into a morphologically complex language. It shows that producing segmented Arabic

for English-to-Arabic translation is better than non-segmented Arabic, and suggests

different schemes for recombining the segmented output into normal Arabic. The

reasons for why this is not a trivial task are also explained.

3.2 Related Work

Most of the previous work on morphological preprocessing of Arabic for SMT has

been for Arabic-to-English translation. In one of the earlier works in this area, (Lee

et al., 2003) present a morphological segmenter for Arabic based on a trigram language

model. (Lee, 2004) uses that segmenter for Arabic-to-English MT, deleting or merging

some of the segmented morphemes to make the Arabic align better with the English

target.

The only work previously published on English-to-Arabic SMT is (Sarikaya and

Deng, 2007). It uses shallow segmentation, and does not make use of contextual

information. The emphasis of that work is on using Joint Morphological-Lexical

Language Models to re-rank the output. (Habash and Sadat, 2006) and (Sadat and

Habash, 2006) use the morphological analyzer MADA, which will be described in

further detail later, to segment the Arabic source. They propose various segmentation

schemes and study their effect on MT. Both (Lee, 2004) and (Sarikaya and Deng,

2007) show that the improvement obtained from the morphological segmentation

decreases with the increase in the size of the training corpus. The same trend is



observed in this work, as will be discussed later. The reduction in the gain is due

to the fact that, as the size of the training corpus increases, the model becomes less

sparse, and the segmentation thus becomes less important.

There has also been work published on translating between English and other mor-

phologically complex languages. Morphological analysis on the source side has been

shown to improve results in other language pairs. (Nieen and Ney, 2004) do mor-

phological and syntactic restructuring on German for German-to-English translation.

They, for example, attach German verbs to their prefixes, transform the structure of

German question sentences to be similar to English, and augment ambiguous German

words with their POS. (de Gispert et al., 2006) show that POS tagging, stemming and

lemmatization on the source side improve Spanish-to-English translation. (Hakkani-

Tiir et al., 2000) also preprocess Turkish, an agglutinative language, by splitting

complex words based on morphological disambiguation. (Goldwater and McClosky,

2005) perform morphological analysis on the source for Czech-to-English SMT. They

replace Czech words with lemmas and abstract morphemes to reduce the source word

sparsity. (Popovid and Ney, 2004) also separate affix morphemes from source words

in Spanish, Catalan and Serbian.

Factored Translation Models (Koehn and Hoang, 2007) is one approach to model

morphology explicitly. It is an extension of phrase-based statistical machine trans-

lation that allows the integration of additional morphological and lexical features,

such as POS, word class, gender, number, etc., at the word level on both the source

and the target sides. These features are integrated as additional models at either

the source or the target side. A generation model is required on the target side, to

generate the surface form from the word factors. The authors claim that the tighter

integration is better than either using preprocessing and post-processing, or directly

using the word surface form in the translation. The paper shows improvements for

translations from English to German and Czech. (Avramidis and Koehn, 2008) enrich



the English side by adding a feature to the Factored Translation Model framework

that models noun case agreement and verb person conjugation, thus emulating lan-

guages with more complex morphology. The paper shows that these features result

in more grammatically correct output for English-to-German and English-to-Czech

translation.

We next describe in some detail the two morphological analyzers used in this work.

3.2.1 The Sakhr Morphological Analyzer

We briefly describe the Sakhr morphological analyzer, used in section 3.4. The Sakhr

morphological analyzer consists of a large base of linguistic knowledge, and a set

of rules to decide on a morphological analysis of Arabic words in context. It uses

an Arabic lexicon that contains valid stems along with their part of speech (POS),

root and pattern, applicable prefixes and suffixes, morphological features (e.g. gen-

der, number, person), syntactic features (e.g. transitivity, agreement), and semantic

features (e.g. senses, taxonomies). For each Arabic token, the analyzer generates a

list of valid analyses. The correct analysis is determined according to context, using

additional information from databases of proper names, idioms, adverbs, and word

collocations, as well as rules that use all information contained in the lexicon. The

Analyzer uses other resources: a statistical POS tagger and Named-Entity recognizer

as well as a database of common spelling mistakes and an Arabic language model for

text verification and name detection. The output of the morphological analyzer is

also used in subsequent steps of the Sakhr MT process.

3.2.2 The MADA Morphological Analyzer

This section briefly describes the Morphological Analysis and Disambiguation for Ara-

bic (MADA) tool (Habash and Rambow, 2005), used in sections 3.4 and 3.5. MADA is

itself based on the output of the Buckwalter Arabic Morphological Analyzer (BAMA)

(Buckwalter, 2004), which is a deterministic morphological analyzer that produces a



set of morphological analyses of Arabic text using a database of stems, prefixes and

suffixes. BAMA produces all possible analyses of a given Arabic word, where each

analysis consists of the morphemes that constitute the word, and associated gram-

matical features (e.g. tense, case, number, gender). MADA is a disambiguation tool

that uses Support Vector Machines (SVM) based classifiers trained on the Penn Ara-

bic Treebank (Maamouri et al., 2004). The classifiers are based on 10 morphological

features such as POS, gender, number, person, etc. There output is used to decide on

the best analysis of the Arabic input from the list of analyses produced by BAMA.

The output of the combined classifier can be used for POS tagging as well as Arabic

Tokenization.

3.3 Morphological Segmentation of Arabic

As explained in section 2.3.4, Arabic morphemes can be combined in two ways. Cer-

tain morphemes are concatenated to the word stem, i.e., they are attached to the

word as a suffix or a prefix, with no change or limited change to the form of the

stem. A limited change in the orthography of the stem is sometimes needed to

reflect certain morpho-phonological rules that the morpheme combination triggers.

Other morphemes are combined with the stem non-linearly, where rather than con-

catenating the morpheme, the stem is rewritten, usually according to a template.

Non-linear morphemes include the subject pronoun and the tense in verbs, as well

as root+template combinations that produce new words (derivational morphology).

The concatenative morphemes, on the other hand, can be further subdivided into two

categories: morphemes that represent inflectional features, such as gender, number

and person, and "detachable" morphemes, usually called clitics in the linguistic lit-

erature. These are independent meaning-carrying particles that are attached to the

main word in the Arabic orthography. These clitics are attachable to the stem of the

word in a particular order, which is shown here:



[CONJUNTION+ [PARTICLE/PREP+ [DEF-ARTICLE+ STEM +PRONOUNJ]

Following is a list of the detachable clitics:

1. Conjunction: w+

2. Prepositions: b+, f+, k+

3. Future particle (modifies verbs): s+

4. Definite article: Al+

5. Possessive pronouns (modify nouns): + (t)y, +k, +h, +hA, +nA, +kmA, +hmA,

+nA, +km, +kn, +hm, +hn

6. Object pronouns (modify verbs): +(t)y, +k, +h, +hA, +nA, +kmA, +hmA,

+nA, +km, +kn, +hm, +hn

The splitting of the morphemes is based on the morphological analysis (or morpho-

logical disambiguation), which determines the morphemes that constitute a given

Arabic word from the surface form of that word. Given the morphological analy-

sis, the separation of the morphemes becomes a deterministic, but still non-trivial

task. Separating non-linear morphemes requires a lookup in a stem dictionary. Sep-

arating concatenated affixes also requires some processing. The separated stem has

to be normalized to account for the effect of morpho-phonological rules mentioned

above. Example (3.1) shows the splitting of affixational morphemes from a verbal

complex. Example (3.2) shows the splitting of morphemes from a noun. Note that

the standalone stem is syArp, 'car', but the last character, which is a feminine marker,

becomes +t, when it is followed by a suffix. It has to be normalized back to +p when

the morpheme is split.

(3.1) wsnsAEdhm

w-+ s+ nsAEd +hm



and+ will+ we-help +them

'And we will help them'

(3.2) wbsyArtnA

w+ b+ syArp +nA

and+ with+ car +our

'And with our car'

Given the number of different Arabic morpheme categories, there are many choices

as to which morphemes to separate, and whether/how the separated morphemes are

combined together. Each of these choices is called a morphological splitting scheme.

(Habash and Sadat, 2006) and (Sadat and Habash, 2006) proposed many schemes

for the segmentation of the Arabic source for Arabic-to-English translation, with

varying degrees of splitting aggressiveness. Those range from simple tokenization of

punctuations, to the separation of root and pattern morphemes. They found that

separating the affixed clitics listed above results in the most gain, especially with

larger amounts of training data, where the problem of vocabulary sparsity and out-

of-vocabulary is less severe. It is important to separate the notion of a splitting

scheme from the methods and tool for this separation. The same splitting scheme

can be implemented using different morphological analyzers.

The following section presents a comparison of two morphological analyzers, the

Sakhr rule-based analyzer and the MADA statistical analyzer, in terms of their ef-

fect on MT performance. It also presents an experiment in separating non-linear

subject pronoun morphemes. In section 3.5, we investigate the use of affix segmenta-

tion of Arabic for English-to-Arabic translation, and propose different recombination

schemes.



3.4 Morphological Preprocessing for Arabic-to-English SMT

The preprocessing scheme used in this section consists of splitting the affixes listed on

page 60, then combining all the split prefixes into one, and the split suffixes into one,

so that each word consists of at most three parts: prefix+ stem +suffix. The same

scheme is implemented using both the Sakhr and MADA morphological analyzers.

This section also presents a new preprocessing scheme called verb canonicalization.

We mentioned above that the Arabic verb is inflected for the gender, number and

person of its subject pronoun. These features modify the verb in a non-linear way,

rather than being affixed as the object pronouns are. The modification of the verb is

according to a pattern that depends on the subject pronoun as well as the triliteral

root of the verb and its tense. Verb canonicalization separates the subject pronoun by

writing the verb stem in a canonical form, defined in this case to be the 3rd masculine

singular form of the verb, while keeping the verb tense. An artificial token is also

inserted before the stem to represent the subject pronoun. The motivation here is

the usual one of bringing the form of the structure of the Arabic verbal complex

even closer to English, where the subject pronoun is a separate token, and the verbal

person inflection is minimal (is). The Sakhr tagger is used to perform this splitting.

Table 3.1 shows two example phrases, and their resulting form under the different

splitting schemes. The examples show that the resulting canonical form of the verb

can look significantly different from the inflected verb. The canonical form can be

easily recovered, though, using the lexical information that the morphological analyzer

depends on.

3.4.1 Experimental Setup

Before presenting the experimental results for Arabic-to-English with morphological

splitting, we describe the experimental setup and data used. We test on two data

genres: newswire and web log data. For the newswire genre we use a test set consisting



Orig. Text <ltqynA bmhndsyhm
Affix Splitting <ltqynA b+ mhndsyn +hm
Verb Canon. <ltqY +SUBJ_1P b+ mhndsyn +hm
Translation We met their engineers
Orig. Text nzwr mhndsy $rkthm
Affix Splitting nzwr mhndsy $rkp +hm
Verb Canon. yzwr +SUBJ_1P mhndswn $rkt +hm
Translation We visit the engineers of their company

Table 3.1: Examples of Morphological Splitting.

Newswire OOV Web OOV

Simple Tokenization 0.29% 1.41%
MADA Affix Splitting 0.12% 0.45%
Sakhr Affix Splitting 0.12% 0.43%
Sakhr Canonicalization 0.11% 0.34%

Table 3.2: OOV rate of the different segmentation schemes.

of 3223 sentences, and a tuning set of 2963 sentences. For the web data, the test set

consists of 4589 sentences, and the tuning set of 4524 sentences. These data sets were

constructed from the following collections: NIST MT04-08 evaluation sets, the GALE

Phase 1 (P1) , Phase 2 (P2) and Phase 3 (P3) evaluation sets, and the GALE P2, P3

and P4 development sets. The average length of a sentence is 35 words for newswire

and 29 words for web.

The training data consists of around 150 million words of Arabic-English parallel

data, aligned using GIZA++ (Och and Ney, 2003), and 7 billion words for the English

Gigaword corpus to train the language model. The Hierdec decoder described in

section 2.1.5.1 is used.

The baseline in this section uses a simple tokenization scheme where punctuation

marks are separated, and certain characters are normalized (final 'y' to 'Y' and all

forms of alif-hamza to alif at the beginning of the words).



3.4.2 Experimental Results

We start by observing the effect of the different splitting schemes on the out-of-

vocabulary (OOV) rate, in table 3.2. The OOV rate is calculated as the percentage

of words in the test set that do not occur at all in the training corpus. Note first

that the OOV rate for the web data is higher than the rate for newswire for all

segmentation schemes, which is due to the higher variability for the web domain.

Note also that, as expected, the segmentation of affixes reduces OOV for both genres,

with very close rates resulting from the use of MADA or the Sakhr morphological

analyzer. Verb canonicalization reduces the OOV further, especially for web data.

Table 3.3 contains the translation results for the newswire genre, and table 3.4

contains the results for the web data. In the results tables,BL-Pr is the BLEU preci-

sion score, MET is the METEOR score, and Len is the length of the output relative to

the reference.The differences in scores of each experiment relative to the baseline are

shown immediately below the scores for that experiment. Affix splitting with MADA

gives a gain of about 1.5 BLEU points on newswire and 1.9 BLEU points on web.

When using the Sakhr morphological analyzer to split the affixes, the gain increases

to 1.7 and 2.1 points on newswire and web respectively. Verb canonicalization shows

no gain on the newswire set, and a small gain on the web set. Note that this is

consistent with the OOV rates where canonicalization reduced the OOV rate on the

web data.

3.5 Morphological Preprocessing for English-to-Arabic SMT

3.5.1 Segmentation of Arabic Text

Almost all research in the area of Arabic statistical machine translation has con-

centrated on the Arabic-to-English direction. As we have seen in the first part of

this chapter, the characteristic challenge for that direction is the reduction of the

vocabulary sparsity on the source side, which could be mitigated through source-side



TER BLEU BL-Pr MET Len
le ic le

Test.ara.text.nw.v2
Simple Tokenization 39.52 49.70 50.32 68.60 98.78
MADA Affix Splitting 38.16 51.19 51.67 69.20 99.08

-1.36 +1.49 +1.35 +0.60 +0.30
Sakhr Affix Splitting 37.95 51.38 51.96 69.30 98.89

-1.57 +1.68 +1.64 +0.70 +0.11
Sakhr Verb Canonicalization 38.12 51.35 51.87 69.35 99.00

-1.40 +1.65 4-1.55 +0.75 +0.22
Tune.ara.text.nw.v2

Simple Tokenization 37.25 54.37 54.37 70.19 100.04
MADA Affix Splitting 35.99 55.69 55.69 70.80 100.08

-1.26 +1.32 +1.32 +0.61 +0.04
Sakhr Affix Splitting 35.24 56.93 56.93 71.30 100.06

-2.01 +2.56 +2.56 +1.11 +0.02
Sakhr Verb Canonicalization 35.21 56.97 56.97 71.31 100.01

-2.04 +2.60 +2.60 +1.12 -0.03

Table 3.3: Arabic to English MT results for Arabic morphological segmentation,
measured on newswire test data.

TER BLEU BL-Pr MET Len
lc lc lc

Test.ara.text.web.v2
Simple Tokenization 57.43 25.77 27.26 53.18 94.66
MADA Affix Splitting 54.75 27.65 29.20 54.81 94.82

-2.68 +1.88 +1.94 +1.63 +0.16
Sakhr Affix Splitting 54.48 27.91 29.40 55.04 95.06

-2.95 4-2.14 +2.14 +1.86 +0.40
Sakhr Verb Canonicalization 54.39 28.01 54.87

-3.04 +2.24 +1.69
Tune.ara.text.web.v2

Simple Tokenization 55.00 29.23 30.48 55.40 95.99
MADA Affix Splitting 52.50 31.42 32.77 56.79 95.97

-2.50 +2.19 +2.29 +1.39 -0.02
Sakhr Affix Splitting 51.77 31.92 33.30 57.37 95.94

-3.23 +2.69 +2.82 +1.97 -0.05
Sakhr Verb Canonicalization 51.80 31.96 57.22

-3.20 +2.73 +1.82

Table 3.4: Arabic to English MT results for Arabic morphological segmentation,
measured on web test data.



morphological splitting. The challenge for the English-to-Arabic direction is a com-

plementary one. In this direction, the MT system is required to output words with

complex inflections. The vocabulary sparsity on the target side, which is due to the

morphological complexity of Arabic, has a similarly negative effect. Splitting the

Arabic target affixes instead of using the raw Arabic can help reduce the vocabulary

sparsity in this case as well. The target side of the training data and the Arabic lan-

guage model would have to be split. The decoder will then output segmented Arabic.

A final step in the translation process is, therefore, to recombine into surface form.

But this proves to be a non-trivial task for a number of reasons. Before discussing

these reasons and describing methods for recombining segmented Arabic, we should

mention that the two affix splitting schemes used in the section are:

Si: Declitization, by splitting off the concatenative morphemes listed on page 60.

S2: Same as S1, except that the split morphemes are glued into one prefix and

one suffix, such that any given word is split into at most three parts: prefix+ stem

+suffix. This is similar to the splitting scheme in section (3.4).

An example shows how a compounded prepositional phrase is segmented according

to both schemes:

(3.3) wlAwlAdh

S1: w+ 1+ AwlAd + h

S2: wl+ AwlAd +h

'And for his children'

The morphological analyzer MADA is used to perform the segmentation in this sec-

tion's experiments.

3.5.2 Recombination of Segmented Arabic

As previously mentioned, the segmented output of the decoder has to be recombined

to produce a correct form of Arabic as the output of the MT system. But this is not



a trivial step, for the following reasons:

1. Morpho-phonological Rules: When morphemes combine, they sometimes un-

dergo phonological modification as a result, which can be reflected in the or-

thography. For example, the feminine marker 'p' at the end of a word changes

to 't' when a suffix is attached to the word. So syArp +/-y recombines to syArty

('my car'). The morphological splitter MADA restores the proper form of the

stem upon splitting. It is important for the segmented stem to be represented

in their proper form for a couple of reasons:

(a) If the proper form of the stem is not restored upon splitting, the data will

contain an unnecessarily large vocabulary size. If syArty is split to syArt

+y, then the data would contain two forms of the stem: syArp and syArt,

which makes the training data unnecessarily sparser.

(b) The decoder will produce stems in their normal form next to split mor-

phemes, and the post-processing should be able to recombine those prop-

erly. So even if syArt +y is not normalized, the decoder might still produce

syArp +y, which the post-processor should be able to combine into the

proper form syArty.

2. Letter Ambiguity: Data sources are inconsistent in spelling. For example, the

character 'y' is often misspelled as 'Y' (Alf mqSwrp), at the end of the word.

Final 'Y' is normalized to 'y' to make the data more consistent. The recombi-

nation procedure needs to be able to decide whether a final 'y' was originally

a 'Y'. For example, mdy + h recombines to mdAh 'its extent', since the final 'y'

is actually a 'Y' that in turn in transformed into a 'A' when attached. On the

other hand, fy i h recombines to fyh 'in it'.



3. Word ambiguity: In some cases, a morpheme tuple (prefix(es)+stem +suffix)

can be recombined into two different valid forms. One example is the optional

insertion of 'n' (called nwn AlwqAyp, 'protective n' in classical grammar), be-

tween the stem and the first person object pronoun. So the segmented word lkn

+y 'but I am' can recombine to either iknny or lkny, both valid forms.

Given the above reasons, a simple concatenation of the split morphemes would not

produce correct Arabic text. A number of recombination schemes are proposed to

deal with these issues:

Recombination Scheme R

In this scheme, recombination rules are defined manually. To resolve word ambiguity,

the grammatical form that appears most frequently in the training data is picked.

To resolve letter ambiguity, we use a unigram language model trained on data where

character normalization has not been performed, and choose the most frequent form.

Recombination Scheme T

This scheme uses a table derived from the training set that maps the segmented form

of the word to its original form. If a segmented word has more than one original form,

one of them is picked at random. The table is useful in recombining words that are

split erroneously. Take for example, qrDay, which is a proper noun. It gets incorrectly

segmented to qrDAn +P:1S, which makes its correct recombination without the table

impossible.

Recombination Scheme T+R

Attempts to recombine a segmented word using scheme T, and defaults to scheme R

if it fails.



Scheme Training Set Tuning Set
Baseline 43.6% 36.8%
R 4.04% 4.65%
T N/A 22.1%
T+R N/A 1.9%

Table 3.5: Recombination Results. Percentage of sentences with mis-combined words.

3.5.3 Experimental Setup

Segmentation experiments from two data domains were run: Arabic news text, and

ISWL - spoken dialog from the travel domain.

For the news domain, data from LDC corpora was used. 2000 sentences were

randomly selected for testing, and another 2000 were selected for tuning. The largest

training size corpus used was 3 million words, but subsets of 1.6 million and 600K

words were also used to measure the effect of training corpus size on the gain obtained

from morphological segmentation. 20 million words from the LDC Arabic Gigaword,

in addition to 3 million words from the training data were used for language modeling.

Experimentation with different language model orders showed that the best results

are obtained from using a 4-gram language model for the baseline system, and a 6-

gram language model for segmented Arabic. The English source of the parallel data

is downcased, and the punctuations are separated. The resulting average number

of words per sentence on the English side is 33; for non-segmented Arabic it is 25

words, and for segmented Arabic 36 words. The average number of Arabic words per

sentence becomes closer to that of English after segmentation.

For the spoken domain, the IWSLT 2007 Arabic-English corpus was used (Fordyce,

2007). The corpus consists of 200,000 words for training, 500 sentences for tuning and

500 sentences for testing. The Arabic side of the parallel data was used for language

modeling, using a trigram for the baseline and a 4-gram for segmented Arabic. A

lower order language model was used here because of the smaller size of the data.



The average sentence length is 9 words for English, 8 for Arabic and 10 for segmented

Arabic.

GIZA++ (Och and Ney, 2003) was used for alignments, and decoding was done us-

ing MOSES . Tuning was done using minimum error training (Och, 2003) to optimize

weights for the phrase translation model, distortion model, language model and word

penalty for BLEU. The Arabic references of the tuning set were not segmented for the

baseline experiments. Two tuning schemes were used for the segmented Arabic ex-

periments: T1 used segmented Arabic for the reference, and T2 used non-segmented

Arabic.

Factored Models Comparable English-to-Arabic experiments using factored trans-

lation models (Koehn and Hoang, 2007) were also performed, to provide a comparison

with the preprocessing approach suggested here. These experiments used the MOSES

system as well. The factors used on the English side are the POS tag and the sur-

face word. On the Arabic side, we use the surface word, the stem and the POS tag,

which is concatenated to the segmented affixes. For example, for the word wlAwlAdh

('and for his kids'), the factored words are AwlAd and w -I-+N+P:8MS. A different

language model is used for each of the two factor models: a trigram for surface words

and a 7-gram for the POS+affix factor. We also use a generation model to gener-

ate the surface form form the stem and POS+affix, a translation table from POS to

POS+affix and from the English surface word to the Arabic stem. If the Arabic word

cannot be generated from the stem and POS+affix, we back off to translating it from

the English surface word.

3.5.4 Results

This section presents and discusses results for the translation of English to morpho-

logically segmented Arabic with recombination. It presents and discusses results for

recombination accuracy and machine translation.



It is worth noting that the test sets used in these experiments have only one ref-

erence available. This negatively affects the BLEU scores, in which the outputs of

these experiments are measured, since the BLEU score is a function of n-gram preci-

sion measured against reference(s). Standard tests set for more common translation

directions, such as Arabic-to-English or Chinese-to-English typically provide multi-

ple references (usually 4). The scores presented in this chapter should be evaluated

taking this limitation in consideration.

3.5.4.1 Morphological Recombination Results

The method described in section 3.5.2 was run on the Arabic reference of the training

and test data. The results for recombination are presented in table 3.5. The results

indicate the percentage of sentences in the corresponding data set that contain at

least one recombination error.

In table 3.5, the baseline row corresponds to the naive approach of gluing the

prefixes and suffixes to the stem without any preprocessing of the stem. In this case,

34.6% of the training sentences and 36.8% of the tuning sentences contain at least one

recombination error. When combination scheme R, with manually defined rules, is

used, the percentage of sentences containing at least one error drops to 4.04% on the

training set and 4.65% on the tuning set. This shows the importance of preprocessing

the stem according to the ortho-phonological rules, and suggests that the application

of these re-write rules for combining Arabic morphemes is relatively frequent.

As mentioned before, scheme T uses a table that maps specific morpheme tuples

to their recombined forms. The table is derived from the training data. When the

segmented tuning data set is recombined using this scheme, the number of sentences

with recombination errors is 22.1%. Using the mapping table, therefore, provides

less coverage than using the predefined rules. When both schemes are used together,

by using the mapping table first, and backing off to using the rewrite rules if the

segmented form is not found in the table, the number of sentences with recombination



Table 3.6: BLEU scores for news

Table 3.7: BLEU scores

data with one reference.

for IWSLT data with 1 reference.

errors drops to 1.9%. The conclusion to be drawn is that the mapping table is

more reliable than the rules, since it covers certain special cases that the rules might

transform erroneously. However, the rules provide better coverage, and using them

as a backoff for unseen forms results in a significant drop in the sentence error rate.

The scheme T+R is used in the translation experiments.

3.5.4.2 Translation Results

This section presents translation results for English-to-Arabic translation on the data

sets from the two domains mentioned above: Arabic news text, and ISWLT - spoken

dialog from the travel domain.

The translation scores for the news data are shown in table 3.6. The scores are

presented in the BLEU metric. Segmentation schemes S1 and S2 are defined in

Large Medium Small
Training Size 3M 1.6M 0.6M
Baseline 26.44 20.51 17.93
S1+T1 tuning 26.46 21.94 20.59

+0.02 +1.43 +2.66
S1+T2 tuning 26.81 21.93 20.87

+0.37 +1.42 +2.9
S2+T1 tuning 26.86 21.99 20.44

+0.42 +1.48 +2.51
S2+T2 tuning 27.02 22.21 20.98

+0.58 +1.70 +3.05
Factored Models + tuning 27.30 21.55 19.80

+0.86 +1.04 +1.87

No Tuning T1 T2

Baseline 26.39 24.67 -

S1 29.07 29.82 -

42.68 +5.15 -
S2 29.11 30.10 28.94

+2.72 +5.43 -



section 3.5.1. Two different tuning schemes are used: T1 tunes using segmented

Arabic for the reference of the tuning set, and T2 uses non-segmented Arabic.

The first thing to note is that the range of scores is lower than that of comparable

Arabic-to-English systems. This is partly due to the use of one reference translation

for the computation of the BLEU scores, compared to the multiple references typically

available in Arabic-to-English test sets. Another factor is that translating to Arabic

is a more difficult task than translating in the opposite direction.

To quantify the effect of the training data size on the performance of the different

experiments, three corpora with varying sizes are used to train the corresponding

systems: a large corpus with 3M words, a medium size corpus with a subset of 1.6M

million words, and a small corpus with a subset of 0.6M words. For the same system

configuration, lower training data size results in lower BLEU scores, as expected.

More interestingly, the gain obtained from morphological segmentation is larger when

the size of the training corpus is smaller. This observation is consistent with previous

work that uses morphological segmentation (e.g. (Habash and Sadat, 2006)). The

reason is that, as the size of the training corpus increases, the out-of-vocabulary rate

of the non-segmented corpus decreases, and the corresponding translation models

become less sparse, hence reducing the benefit obtained from the segmented data.

Segmentation scheme S2 performs slightly better than S1 in general, and T2 is

better than T1 for the news experiments.

Concerning the scores for the IWSLT data (table 3.7), the first thing to note is

that they are in the same range as those for the news data (table 3.6), despite the

significantly smaller size of the training corpus (3M vs. 200K words for the language

model). The reason is that the IWSLT sentences are shorter and have a simpler

structure. The gain obtained from segmenting Arabic for the IWSLT data is also

larger in relative terms than the gain on the news data, because of the small size of

the training data.



3.6 Summary

This chapter provided further evidence of the benefit of morphological segmentation

to SMT. It compared the performance of a rule-based and a statistical morphologi-

cal analyzer, and their effect on the quality of machine translation. It also showed

that morphological segmentation on the target side, in the case of English-to-Arabic

SMT, results in improvements of MT quality as well, and presented several meth-

ods for recombining the segmented Arabic output. The next chapter builds on this

with another preprocessing technique for SMT: phrase reordering based on syntactic

structure.



Chapter 4

Syntax-based Reordering for SMT

The previous chapter described experiments that use morphological preprocessing for

Arabic-to-English and English-to-Arabic SMT. This chapter presents another prepro-

cessing technique, using a different type of linguistic information, namely reordering

the source language to better match the phrase structure of the target language. We

apply syntactic reordering of the English source for English-to-Arabic translation.

The chapter first introduces reordering rules, and motivates them linguistically. It

also studies the effect of combining reordering with the morphological segmentation

presented in the previous chapter. Results are reported on the newswire domain, UN

text data and the spoken travel domains.

This chapter is based on work originally described in (Badr et al., 2009).

4.1 Introduction

One important aspect in which languages differ is their sentence structure, which

corresponds to rules of the language grammar that allow constituents to be combined

in specific ways. Syntax-based SMT attempts to model these differences directly

by using tree-to-tree models. For string-based models though, these differences are

manifested as differences in the word order of the corresponding serialized sentences.



Local structural relationships (i.e. with respect to the tree structure of the sentence)

can thus appear as long distance relationships in the serialized sentence. For this

reason, string models, such as phrase-based SMT systems, have an inherently limited

capability in dealing with such long distance linguistic phenomena, since they rely

on word alignments that are mostly local. Automatically learned reordering models

(called distortion models) that can be conditioned on lexical items from both the

source and target are usually used with string-based SMT models, such as phrase-

based SMT, providing limited reordering capability to string-based SMT models.

But the reorderings in this case are still applied to the sentence string, rather than a

representation of the deep structure of the sentence.

One approach that attempts to deal with long distance reordering, while still using

string-based models is to reorder the source side to better match the word order of

the target language using predefined rules. This is done as a preprocessing step before

both training and decoding. The reordering rules are applied to the parse trees of

the source sentences, thus indirectly incorporating information on the structure of

the source language into the translation process. Despite the added complexity of

parsing the data, this technique has been shown to improve on phrase-based SMT,

especially when good parses of the source side exist.

This method has been applied to German-to-English and Chinese-to-English SMT

(Collins et al., 2005; Wang et al., 2007). The current chapter describes the application

of a similar approach to English-to-Arabic SMT. A set of syntactic reordering rules

are applied on the English side to better align it to the Arabic target. The reordering

rules exploit systematic differences in the sentence structures of English and Arabic.

They specifically address two syntactic constructs. The first is the Subject-Verb

order in independent sentences, where the preferred order in written Arabic is Verb-

Subject. The second is the structure of the noun phrase, where many differences

between the two languages exit, among them the order of the adjectives, compound



nouns, possessive constructs, as well as the way in which definiteness is marked.

These transformations are applied to the parse trees of the English source. It has

been observed previously, for instance in (Habash, 2007), that the improvement in

translation quality that can be obtained from syntactic reordering depends heavily on

the quality of the sentence parses. Since the source language in this work is English,

the parses are more reliable, and therefore, the reorderings that are applying based on

the parse are more correct. The reason English parsers perform better than parsers of

other languages, is that they have been in development for longer, and state-of-the-art

advancements in statistical parsing techniques are usually applied to English first.

This chapter also investigates the effects of using the morphological segmentation

technique presented in section 3.5 in combination with the syntactic reordering rules.

In the rest of the chapter, relevant previous work is presented. A description of the

linguistic motivation for this work is then provided. The translation system and data

used are presented, together with experimental results on three domains: news text,

UN data, and spoken dialog from the travel domain.

4.2 Related Work

This section describes previous work on syntactic preprocessing for SMT. (Habash,

2007) uses syntactic reordering rules for Arabic-to-English SMT. In that work, the

rules are automatically learned using word alignments. After the sentence pairs are

aligned, the Arabic side is parsed to extract the reordering rules based on how the

constituents in the parse tree are reordered on the English side. No significant im-

provement is observed with reordering when compared to the baseline, which uses a

non-lexicalized distance reordering model. This is attributed in the paper to the poor

quality of the Arabic parses.

Syntax-based reordering as a preprocessing step has been applied to language

pairs other than Arabic-English. Most relevant to the approach presented here are



(Collins et al., 2005) and (Wang et al., 2007). Both parse the source side sentences,

and then reorder the sentence based on predefined, linguistically motivated rules.

Both suggest that reordering as a preprocessing step results in better alignments,

and reduces reliance on the distortion model. Significant gains are reported for both

German-to-English and Chinese-to-English translation. (Popovid and Ney, 2006) use

similar methods to reorder German by looking at POS tags of the German source

for German-to-English and German-to-Spanish translation. They show significant

improvements on test set sentences that do get reordered as well as those that don't,

which is attributed to the improvement of the extracted phrases. (Xia and McCord,

2004) also use reordering rules to improve the translation, but with a notable differ-

ence: the reordering rules are automatically learned from the alignment of parse trees

for both the source and target sentences. They report a 10% relative gain for English-

to-French translations. Although the use of target side parses in their approach is

optional, it is needed if full advantage is to be taken from it. This presents a bigger

issue when no reliable parses are available for the target language, as is the case with

Arabic. More generally, the use of automatically-learned rules has the advantage of

being readily applicable to different language pairs, since there is no need to define

language-specific rules for each source language or language pair. The use of determin-

istic, predefined rules, however, has the advantage of being linguistically motivated,

since structural differences between the two languages are addressed explicitly. More-

over, the implementation of predefined transfer rules based on source-side parses is

relatively easy and cheap to implement in different language pairs.

As mentioned in the previous chapter, different approaches have been proposed for

translating from English to more morphologically complex languages. These include

Factored Translation Models (Koehn and Hoang, 2007), and enriching source side

with morphological features (Avramidis and Koehn, 2008). Although these methods

are well equipped for handling languages that differ in their morphology, they still use



the same distortion models as phrase-based MT to handle structural-based reordering.

(Koehn and Knight, 2003) uses syntactic features to re-rank the n-best output in

German-to-English translation.

4.3 Reordering Rules

Section 3.5 showed that there is an advantage to using morphologically segmented

Arabic for English-to-Arabic translation. Some of the experiments in this section use

segmented Arabic, and the effect of the interaction between morphological segmenta-

tion and syntactic reordering is studied. For the experiments that use segmentation,

the same segmentation and recombination procedures described in section 3.5 are

used.

This section presents the syntax-based rules used to reorder the English side to

better match the syntax of the Arabic target. These rules are applied to the English

parse tree at the sentence level or the noun phrase level. The reader is also reminded

of the relevant syntactic properties of Arabic which motivate these rules. A more

comprehensive description of Arabic syntax can be found in section 2.3.5.

Verb Phrase Rules

The structure of the main sentence in Arabic is Verb-Subject-Object (VSO). The

order Subject-Verb-Object is also possible, but less frequent. In the SVO order, the

verb agrees with the subject in gender and number, but in the VSO order, the verb

only agrees in gender with the subject, as the following examples show:

(4.1) (a) Aki Alwid AltfAHp
ate-3SM the-boy the-apple

'the boy ate the apple'

(b) Alwid Akl AltfAHp
the-boy ate-3SM the-apple

'the boy ate the apple'



(c) Aki AlAwlAd AltfAHAt
ate-3SM the-boys the-apples
'the boys ate the apples'

(d) AlAwlAd AkiwA AitfAHAt
the-boys ate-3PM the-apples
'the boys ate the apples'

When the direct object of the verb is a personal pronoun, the pronoun is attached

to the verb, as described in section 2.3.5. So when the subject follows the verb, it

follows the object pronoun as well, resulting in a VOS word order. This order will

be referred to as VOpronS to indicate that the object has to be a personal pronoun in

this case. For example:

(4.2) (a) Ak1 +hA AlAwlAd
ate-3SM it the-boys
'the boys ate it'

In a dependent clause, the order must be SVO, as illustrated by the ungrammaticality'

of example (4.3b).

(4.3) (a) qAl An Alwid Aki AltfAHp
said-3SM that the-boy ate the-apple
'he said that the boy ate the apple'

(b) *qAl An Aki Alwid AltfAHp
said-3SM that ate the-boy the-apple
'he said that the boy ate the apple'

As discussed in more detail later, this syntactic difference between dependent and

independent clauses has to be taken into account when the syntactic reordering rules

are applied. Another pertinent syntactic property is that the negation particle has to

always precede the verb:

1An asterisk in front of the sentence or phrase indicates that it is ungrammatical



(4.4) (a) im yAkl Alwid AltfAHp
not eat-3SM the-boy the-apple
'the boy did not eat the apple'

Based on these syntactic properties of the Arabic sentence, we define a reordering

rule that transfers the English parse tree from SVO order to VSO. Verb phrases are

reordered if they have an explicit subject noun phrase and their main verb is not in the

participle form, since otherwise the Arabic subject occurs before the verb participle.

A check is also made to make sure that the verb is not in a relative clause (example

4.3 b). The following example of a mapped sentence illustrates all these cases:

(4.5) original: the health minister stated that 11 police officers were wounded in

clashes with the demonstrators

reordered: stated the health minister that 11 police officers were wounded in

clashes with the demonstrators

The main clause verb stated is reordered, while the relative clause were wounded is

not.

If the verb is negated, then the negation particle is moved together with the verb.

(4.6) original: click here if associated images do not appear in your mail

reordered: click here if do not appear associated images in your mail

Finally, if the object of the sentence is a pronoun, then it is moved with the verb to

reflect the VOp nS structure mentioned above. For example:

(4.7) original: the authorities gave us all the necessary help

reordered: gave us the authorities all the necessary help

The reordering has to be applied to the parse tree rather than the sentence string

because the subject might consist of a complex noun phrase as the following example

shows:



(4.8) original: one of the Saudi business institutions, which imports "cream"

products from Denmark, set out after the blessed boycott to change the cream

label

reordered: set out one of the Saudi business institutions, which imports

"cream" products from Denmark, after the blessed boycott to change the

cream label

The parse tree, when the parse is correct, provides the boundaries of the NP con-

stituent that forms the subject, thus making the reordering process simple. In princi-

ple it is in these situations, when the constituents are quite long, that the reordering

should help the translation the most, since those long-distance reorderings would

likely not be handled correctly by the lexicalized distortion models of phrase-based

SMT.

Noun Phrase Rules

The structure of noun phrases in Arabic also differs from that of English in a number

of ways. The adjective follows the noun it modifies rather than preceding in. When

the modified noun is definite, the adjective is also marked with the definite pronoun:

(4.9) AlbAb Alkbyr
the-door the-big
'the big door'

Arabic uses a special construct called idafa to express the possessives, compound

nouns and the equivalent of the of-relationship in English. Idafa compounds two or

more nouns. So the English constructs NjsN2 and N2ofN1 both correspond to the

Arabic N1 N2. As example (4.10 a) shows, this construct can be chained recursively.

(4.10) (a) bAb Albyt
door the-house

'the door of the house'



(b) mftAh bAb Albyt
key door the-house
'The key to the door of the house'

Example (4.10 a) also shows that the idafa construct is made definite by adding

the definite article Al- to the last noun in the NP. Adjectives follow the idafa noun

phrase regardless of which noun in the chain they modify. Thus, example (4.10 a)

is ambiguous in that the adjective kbyr (big) can modify any of the preceding three

nouns. The same is true of relative clauses that modify a noun:

(4.11) mftAH bAb Albyt Alkbyr
key door the-house the-big

'the big key to the house door'

'the key to the house's big door'

'the key to the door of the big house'

The differences in the structure of the noun phrase between the two languages are

handled by the reordering rules as follows: The order of all nouns, adjectives and

adverbs in the noun phrase is inverted. This addresses the difference in noun/adjective

order, as well as the idafa construct. The following example shows the reordering of

a noun phrase:

(4.12) original: the blank computer screen

reordered: the screen computer blank

Prepositional Phrase Rule

This rule is motivated by the correspondence between the of-construct in English and

the idafa construct in Arabic. All prepositional phrases of the form Niof N2 ... ofN"

are transformed to N1N2... N. If the prepositional phrase is definite, all definite

articles are removed, and a definite article is added to No, the last noun in the chain.

For example,



(4.13) original: the general chief of staff of the armed forces

reordered: general chief staff the armed forces

All adjectives in the top noun phrase are also moved to the end of the construct:

(4.14) original: the real value of the Egyptian pound

reordered: value the pound Egyptian real

"the" Rule Since the definite article is added to adjectives that modify a definite

noun, the definite article is replicated in front of the adjectives as well. This rule is

applied after the Noun Phrase rule described above. For example:

(4.15) original: the blank computer screen

reordered: the blank the computer the screen

The transformation rules NP, PP and "the" are applied in that order, since they

interact, although they do not conflict. The VP rule is independent of them. The

following example shows the application of several rules to the same phrase:

(4.16) original: the real value of the Egyptian pound

reordered: value the pound the Egyptian the real

4.4 Experimental Setup

This section described the experimental setup and data used in the syntactic reorder-

ing experiments.

Similar to (Wang et al., 2007), the English side of the corpora is parsed and re-

ordered using the predefined rules. As noted before, the reordering of English can be

done more reliably than other source languages, such as Arabic, Chinese and German,

since the state-of-the-art statistical English parsers are noticeably better than parsers

in other languages. The English source is tokenized and tagged using the Stanford



Log-linear Part-of-Speech Tagger (Toutanova et al., 2003). The data is then split into

smaller sentences, and tagged using Ratnaparkhi's Maximum Entropy Tagger (Ratna-

parkhi, 1996). The sentences are parsed using the Collins Parser (Collins, 1997), and

then person, location and organization names are tagged using the Stanford Named

Entity Recognizer (Finkel et al., 2005). On the Arabic side, the data is normalized

by changing the final 'Y' to 'y', and changing the various forms of Alif hamza to Alif,

since these characters are written inconsistently in some Arabic sources. The data is

then segmented using MADA, in the same way described in section 3.5.

The English source is aligned to the segmented Arabic target using the standard

MOSES configuration of GIZA++ (Och and Ney, 2000; Och and Ney, 2003), which

uses IBM Model 4 (Brown et al., 1993). Decoding is done using MOSES (Koehn et

al., 2007), the same decoder used in section 3.5. A maximum phrase length of 15 is

used to account for the increase in length of the segmented Arabic. The setup also

uses a bidirectional reordering model conditioned on both the source and target sides,

with a distortion limit of 6. The parameter tuning uses minimum error rate training

(Och, 2003) to optimize the weights for the distortion model, language model, phrase

translation model and word penalty over the BLEU metric (Papineni et al., 2002). For

the segmented Arabic experiments, tuning with both segmented and non-segmented

data as a reference is done. The recombination of segmented Arabic is done according

to the procedure in 3.5.

4.4.1 Data

Experiments were done on data in three domains: newswire text, UN data and spoken

dialog from the travel domain. It is important to note that the sentences in the travel

domain are much shorter than in the news domain, which simplifies the alignment

as well as reordering during decoding. Also, since the travel domain contains spoken

Arabic, it is more biased towards the Subject-Verb-Object sentence order than the

Verb-Subject-Object order, which is more common in the news domain. Since most of



the data used was originally intended for Arabic-to-English translation, the test and

tuning sets have only one reference, and therefore, the BLEU scores reported here are

also lower than scores typically reported in the literature on Arabic-to-English MT.

The news training data consists of several LDC corpora 2 . A test set is constructed

randomly by picking 2000 sentences from the training data, and the tuning set consists

of another 2000 randomly picked sentences. The final training set consists of 3 million

words (counted on the English side). The system was also tested on the NIST MT

05 test set, while the NIST MT 03 and 04 test sets were used for tuning. The first

English reference of the NIST test sets are used as English source, and the Arabic

source is used as reference. For the language model, we use 35 million words from the

LDC Arabic Gigaword corpus, plus the 3 million words consisting of the Arabic side

of the parallel data. Experimentation with different language model orders showed

that the optimal model orders are 4-grams for the baseline system and 6-grams for

the segmented Arabic. The average sentence length is 33 for English, 25 for non-

segmented Arabic and 36 for segmented Arabic.

To study the effect of the amount of training data on syntactic reordering, the UN

English-Arabic parallel data is used (LDC003TO5). Experiments were run with two

training data sizes: 30 million words and 3 million words. For these configurations,

1500 and 500 sentences chosen randomly are used for test and tuning respectively.

For the spoken dialog domain, the BTEC 2007 Arabic-English corpus is used. The

training set consists of 200K words, the test set has 500 sentences, and the tuning

set has 500 sentences. The language model consists of the Arabic side of the training

data. Because of the significantly smaller data size, a trigram LM is used for the

baseline, and a 4-gram LM is used for segmented Arabic. In this case, the average

sentence length is 9 for English, 8 for Arabic, and 10 for segmented Arabic.
2 LDC2003E05 LDC2003EO9 LDC2003T18 LDC2004EO7 LDC2004EO8 LDC2004E11

LDC2004E72 LDC2004T18 LDC2004T17 LDC2005E46 LDC2005TO5 LDC2007T24



Table 4.1: BLEU scores for syntactic reordering of newswire data.

4.5 Experimental Results

This section describes and discusses results for the English-to-Arabic MT experiments

using syntactic reordering. All results are shown in terms of the BLEU score.

The translation scores for the news domain are shown in table 4.1. The notation

used in the table is as follows:

" S: Segmented Arabic

" NoS: Non-segmented Arabic

* RandT: Scores of the test set of sentences chosen randomly

" MT 05: Scores of the NIST MT 05 test set

The first column in the results table indicates which combination of reordering rules

are used in each configuration. The first thing to note is that the gain obtained from

the reordering of segmented and non-segmented Arabic is comparable for most of the

reordering schemes. Note also that the gains achieved from reordering on NIST MT

test set are smaller than those obtained on the random test set. This is likely due

Scheme RandT MT 05
S NoS S NoS

Baseline 21.6 21.3 23.88 23.44
VP 21.9 21.5 23.98 23.58

+0.30 +0.20 +0.10 +0.14
NP 21.9 21.8 - -

+0.30 +0.50 - -

NP+PP 21.8 21.5 23.72 23.68
+0.20 +0.20 -0.16 +0.24

NP+PP+VP 22.2 21.8 23.74 23.16
+0.60 +0.50 -0.14 -0.28

NP+PP+VP+The 21.3 21.0
-0.30 +0.30 - -



to the fact that the sentences in the NIST test set are longer, which adversely affects

the parsing quality. The average English sentence length is 33 words in the NIST test

set, while the random test set has an average of sentence length of 29 words. The

reordering scheme NP+PP-VP, which applies the 3 reordering rules, shows the most

gain on the random test set. The replication of the definite article (the rule) before

the adjectives in addiction causes a degradation instead, possibly because it increases

the sentence length notably, and thus deteriorates the alignment quality.

To get a better insight into the effect of sentence length on the quality of the

reordering, the NIST test sets were divided into two subsets depending on the length

of the source sentence, and the subsets were scored separately. Short sentences were

defined as having less than 40 words on the English side, while long sentences have

40 or more words. Out of the 1055 sentences in the NIST test set, 719 (or 68%) are

short and 336 (or 32%) are long. The length-dependent scores are shown in table 4.2.

The results show a consistent, although varying gain from all the reordering rules for

the shorter sentences. This provides further evidence of the importance of the parsing

quality for reordering to be beneficial. We also report, in table 4.3, on the N-best

oracle scores for combining the baseline system with the reordering systems, as well

as the percentage of the oracle sentences (i.e. the sentences in the N-best list that

has the highest score) that are produced by the respective reordering systems. Since

the BLEU score is computed for the whole document jointly, the computation of the

oracle score cannot be done in the usual way. Instead, it is computed by starting

with the candidate translations from the reordered system, and iterating over all

the sentences one by one, replacing each sentence with its corresponding translation

from the baseline system and computing the BLEU score for the entire set. If the

substitution improves the score, then the sentence in question is replaced with the

baseline system translation. Otherwise, the reordered system translation is kept, and

the next sentence is considered.



Table 4.2: BLEU
length.

scores for syntactic reordering of newswire data based on sentence

Scheme Score % Oracle reord
VP 25.76 (+4.16) 59%
NP+PP 26.07 (+4.47) 58%
NP+PP+VP 26.17 (+-4.57) 53%

Table 4.3: Oracle BLEU scores for combining baseline system
systems.

with other reordering

Table 4.4 shows the results of reordering on the UN test data for different training

sizes. It is important to note that although gains from VP reordering stay constant

when scaled to larger training sets, gains from NP+PP reordering diminish. This is

due to the fact that NP reordering tends to be more localized than VP reorderings.

Therefore, with more training data the lexicalized reordering model of the baseline

phrase-based system becomes more effective in reordering noun phrases.

Finally, results for the BTEC corpus are reported in table 4.5 for different seg-

mentation and reordering scheme combinations. The first thing to point out is that

all the sentences in the BTEC corpus are shorter, simpler and can be more easily

aligned than the sentences of the previous test sets. Hence, the gain introduced by

reordering is not enough to offset the errors introduced by the parsing. It is also

worth mentioning that the preferred sentence order for spoken Arabic is Subject-

Verb-Object, rather than the Verb-Subject-Object sentence order typical of written

Arabic text. This contributes to the explanation of the lack of gain when the verb

Scheme S NoS
Short Long Short Long

Baseline 22.57 25.22 22.40 24.33
VP 22.95 25.05 22.95 24.02

+0.38 -0.17 +0.55 -0.31
NP+PP 22.71 24.76 23.16 24.07

+ 0.14 -0.46 +0.76 -0.26
NP+PP+VP 22.84 24.62 22.53 24.56

+0.27 -0.60 +0.13 +0.23



Scheme 30M 3M
Baseline 32.17 28.42
VP 32.46 28.60

+0.29 +0.18
NP+PP 31.73 28.80

-0.44 +0.38

Table 4.4: Oracle BLEU scores for combining baseline system with other reordering
systems.

Table 4.5: BLEU scores for syntactic reordering of the Spoken Language Domain.

phrase is reordered. Noun phrase reordering produces a significant gain with non-

segmented Arabic. Replicating the definite article the in the noun phrase does not

create alignment problems as it does with the newswire data, since the sentences in

this case are considerably shorter. A gain of 0.74 BLEU points is thus seen from the

application of that rule. That gain does not translate to the non-segmented Arabic,

since in that case the definite article Al remains attached to its head word.

4.6 Summary

This chapter presented linguistically motivated rules to reorder the English source,

making it more similar in structure to Arabic. It showed that these rules produce

significant gain in some configurations. The chapter also studied the effect of the

interaction between morphological segmentation of Arabic and syntactic reordering

Scheme S NoS
Baseline 29.06 25.40
VP 26.92 23.49

-2.14 -1.91
NP 27.94 26.83

-1.12 +1.43
NP+PP 28.59 26.42

-0.47 -1.02
the 29.80 25.10

+0.74 -0.30



on translation results, as well as the effect of the size of the training data on those

results.

The effect of sentence length, which is correlated with the quality of the parsing

was also described, providing further evidence that this technique depends heavily on

the parse quality. This is especially true because the reordering step is applied as a

separate preprocessing step. Future work, where for example a "soft reordering", that

is a set of probabilistic partial reorderings, is applied to the source sentence could be

one possible way to mitigate against the sensitivity to parsing errors.



Chapter 5

Source Context using Binary Decision

Trees

State-of-the-art statistical machine translation models, such as phrase-based or hi-

erarchical SMT, incorporate source language context, by using multi-word modeling

units (i.e., phrase pair, hierarchical rule). It has been shown, though, that MT

systems built on such models can benefit further from the explicit incorporation of

lexical, syntactic, or other kinds of context-informed word features (Vickrey et al.,

2005; Gimpel and Smith, 2008; Brunning et al., 2009; Devlin, 2009). The addition of

context information usually comes at the expense of increasing the size of the model-

ing space, which in turn results in a sparser translation model when estimated from

the same data corpus. The increase in data sparsity usually has a detrimental effect

on translation quality. The challenge is then to balance the advantage of explicitly

incorporating more context into the translation model with the shortcomings of the

increase in data sparsity.

This chapter presents a method for using context-informed word attributes on the

source side, while controlling the amount of context information using binary decision

trees. The decision trees decide which context information is likely to help machine



translation, based on which information provides the most reduction in the entropy

of the translation probability distribution. We present two explicit methods for using

the decision tree mechanism proposed. The first method clusters attribute-dependent

source words and uses the clusters in training and decoding. The second method

uses decision trees to compute an interpolated context-dependent lexical smoothing

feature that is used as an additional component of the log-linear model of the decoder.

We present experiments that use part-of-speech (POS) tags and diacritics as context

information in Arabic-to-English SMT, and show significant gains against a baseline

consisting of a state-of-the-art SMT system.

The work in this chapter was published in (Zbib et al., 2010).

5.1 Introduction

Translation, when performed by humans, requires an interpretation of the meaning of

the source before it is generated in the target language. This interpretation is highly

dependent on the source context, among other things. Context in this case has to be

understood in the broad sense. It includes local word context (surrounding words and

their properties), as well as discourse context (information across different parts of the

text), and extra-textual information, such as the translator's acquaintance with the

function of the text, its social or professional context, and how it relates to a larger

field of knowledge or expertise. All of these factors have a bearing on the decisions

that are made in the translation process.

Lexical ambiguity, where the same word can have more than one (sometimes

unrelated) meanings is a common phenomenon in natural language. The different

meanings usually translate differently in another language. The Arabic translations

of the two meanings of the classical example of the English word bank are mSrf for the

financial institution and Dfp for the river bank. The determination of which meaning,

and hence which translation is to be used depends on the context in which the source



word occurs. But even when lexical ambiguity is not explicit, the translation has to

take in more than one word on the source side to produce an appropriately correct and

fluent translation. Word-for-word translation becomes worse the larger the difference

in the morphology and syntax of the two languages are.

As more data and computational resources have become available, statistical ma-

chine translation has made advances in dealing with using context in the translation.

State of the art SMT models use translation units that are bigger than single words.

Phrase-based SMT models translate multi-word phrases that are extracted from the

training data, and hierarchical SMT models use rules extracted from phrase pairs.

The size of the translation units cannot be increased arbitrarily though, since that

would negatively affect the ability of the model to generalize to unseen data, as the

bigger translation units of the test data are less likely to be seen in the training

data. Another effect is that the probability estimates that the models use to rank

and choose hypotheses become less reliable because of the decrease in the number of

samples of each translation unit observed in the training data. Also context for words

at the edge of phrases is not taken into account except through the language model

and other feature scores.

The use of additional explicit context information can benefit MT, if it can be

done in a controlled way. A mechanism for deciding which context information is po-

tentially useful for translation can use that information, but disregard useless context

information, thus avoiding the unnecessary increase in the number of model parame-

ters. This chapter proposes the use of decision trees to achieve this goal. The methods

proposed can use arbitrary context-dependent or context-informed source word at-

tributes such as POS tags, word context or diacritics. Two specific methods for using

decision trees are presented: clustering of source words, and context-dependent lexical

smoothing.



5.1.1 Arabic Diacritics as Context-dependent Attribute

As we noted in section 2.3.3, Arabic orthography represents short vowels and conso-

nant doubling with small marks placed above or below the preceding letter, called

diacritics. Those are usually omitted in regular Arabic text, including corpora used

in Arabic MT systems, which further exacerbates the lexical ambiguity problem. The

following examples shows how the name EmAn is erroneously translated as Amman

instead of Oman. Diacritizing the name as EumaAn would disambiguate it from the

form that corresponds to the other name, EamaAn.

(5.1) Source: Im t$hd EmAn ywmA kh*A mn* vlAvyn EAmA.

MT Output: Amman did not witness such a day for 30 years .

Ref : Oman did not witness such a day for 30 years.

The second example shows how the word twgl is translated by the MT system as

the noun incursion, corresponding to the diacritization tawag-ul, while the right

translation is the verb made an incursion, which corresponds to the diacritization

tawag -ala.

(5.2) Source: wmydAnyA twgl jy$ AlAHtlAl fY jnwb qTAE gzp bEd vlAvp

AsAbyE mn AlgArAt Aljwyp Alty Asfrt En Ast$hAd vlAvp wxmsyn flsTynyA

MT Output: On the ground , the occupation army incursion in the south

of the Gaza Strip after three weeks of the air raids that resulted in the

martyrdom of 55 Palestinians

Ref: On the ground , the occupation army made an incursion in the south

of the Gaza Strip after three weeks of air raids that resulted in the martyrdom

of 55 Palestinians

Arabic text can be diacritized automatically with a high degree of precision, which

would decrease the lexical ambiguity in the source. Using fully diacritized Arabic



source, however, has not been found to improved SMT (Diab et al., 2007). This

is likely due to the increase in the size of the vocabulary, which makes the trans-

lation models sparser and less reliable. It might also be due to the errors in the

output of the diacritizer. The disambiguation information contributed by the diacrit-

ics does not seem to offset the negative effect of the increase in the vocabulary size

and that of diacritization errors. The work in this chapter shows how automatically

diacritized Arabic source can be used beneficially in MT, by using the diacritized form

of the source words as a context-dependent attribute in the two ways described above:

namely by clustering the diacritized source or by computing a lexical smoothing fea-

ture from the diacritized source. Section 5.2.3 reviews the literature on automatic

diacritization in some detail.

In the rest of this chapter, section 5.2 reviews previous work relevant to this

chapter in several areas. Section 5.3 presents the procedure for growing the decision

trees for the source words, and the two methods for using the decision trees in MT.

Section 5.4 describes the experimental setup used in this chapter, and section 5.5

presents the experimental results of the various parts of this work. The chapter

concludes in section 5.6, where thoughts and preliminary results on clustering rule

probability counts to deal with the issue of rule sparsity are presented.

5.2 Related work

5.2.1 Lexical Smoothing

The use of lexical translation probabilities has been shown to improve the perfor-

mance of machine translation systems, even those using much more sophisticated

models. (Och et al., 2004) for instance found that including IBM Model 1 (Brown et

al., 1993) word probabilities in their log-linear model works better than most other

higher-level syntactic features at improving the baseline. (Gimpel and Smith, 2008)



proposed the incorporation of source-side lexical features into phrase-based SMT by

conditioning the phrase probabilities on those features. They used word context, syn-

tactic features or positional features. The features were added as components into

the log-linear decoder model, each with a tunable weight. (Devlin, 2009) used context

lexical features in a hierarchical SMT system, interpolating lexical counts based on

multiple contexts. It also used target-side lexical features.

(Sarikaya and Deng, 2007) used Part-of-Speech tags on the target side to model

word context. They augmented the target words with POS tags of the word itself and

its surrounding words, and used the augmented words in decoding and for language

model rescoring. They reported gains on Iraqi-Arabic-to-English translation.

The use of Word Sense Disambiguation (WSD) has been proposed as a way to

enhance machine translation also by disambiguating the source words. (Cabezas and

Resnick, 2005; Carpuat and Wu, 2007; Chan et al., 2007) Using WSD, however, re-

quires that the training data be labeled with senses, which might not be available

for most languages. Also, WSD is traditionally formulated as a classification prob-

lem, and therefore does not naturally lend itself to be integrated into the generative

framework of machine translation.

5.2.2 Decision Trees

Decision trees have been used extensively in various areas of machine learning, typ-

ically as a way to cluster patterns in order to improve classification (Duda et al.,

2000). They have, for instance, been long used successfully in speech recognition to

cluster context-dependent phoneme model states (Young et al., 1994).

Decision trees have also been used in machine translation, although to a lesser

extent. In this respect, the work in this chapter is most similar to (Brunning et

al., 2009), where the authors extended word alignment models for IBM Model 1

and Hidden Markov Model (HMM) alignments. They used decision trees to cluster

the context-dependent source words. Contexts belonging to the same cluster were



grouped together during Expectation Maximization (EM) training, thus providing

a more robust probability estimate. While (Brunning et al., 2009) used the source

context clusters for word alignments, the current work uses the attribute-dependent

source words directly in decoding. The proposed approach can be readily used with

any alignment model. This method can also be used to improve alignment quality.

The attribute-augmented source words can be clustered using decision trees, then

used to obtain alignments. The alignments can then be used to decode attribute-

dependent or attribute-independent source sentences. Improvements were obtained

when this method was used with GIZA++ alignments.

(Stroppa et al., 2007) presented a generalization of phrase-based SMT (Koehn et

al., 2003) that also takes into account source-side context information. They condi-

tioned the target phrase probability on the source phrase as well as source phrase

context, such as bordering words, or part-of-speech of bordering words. They built a

decision tree for each source phrase extracted from the training data. The branching

of the tree nodes was based on the different context features, branching on the most

class-discriminative features first. Each node is associated with the set of aligned tar-

get phrases and corresponding context-conditioned probabilities. The decision tree

thus smoothes the phrase probabilities based on the different features, allowing the

model to back off to less context, or no context at all depending on the presence

of that context-dependent source phrase in the training data. The model, however,

did not provide for a back-off mechanism if the phrase pair was not found in the ex-

tracted phrase table. The method presented in this chapter differs in various aspects.

Context-dependent information is used at the source word level, rather than the

phrase level, thus making it readily applicable to any translation model and not just

phrase-based translation. Also, by incorporating context at the word level, decoding

can be done directly with attribute-augmented source data (see section 5.3.1).



5.2.3 Arabic Diacritics

Since an important part of the experiments described in this chapter use diacritized

Arabic source, this section presents previous work on automatically restoring diacritics

and using them in machine translation.

Automatic diacritization of Arabic has been done with high accuracy, using various

generative and discriminative modeling techniques. For example, (Ananthakrishnan

et al., 2005) uses a generative model that incorporates word level n-grams, sub-word

level n-grams and part-of-speech information to perform diacritization. (Nelken and

Shieber, 2005) models the generative process of dropping diacritics using weighted

transducers, then uses Viterbi decoding to find the most likely generator. (Zitouni

et al., 2006) presents a method based on maximum entropy classifiers, using features

like character n-grams, word n-grams, POS and morphological segmentation. (Habash

and Rambow, 2007) determines various morpho-syntactic features of the word using

SVM classifiers, then chooses the corresponding diacritization.

The experiments in this chapter use the automatic diacritizer by Sakhr Software.

In addition to stem diacritization, the Sakhr automatic diacritizer assigns mood end-

ing diacritics at the end of verbs and case endings for nouns and adjectives. The verb

moods are the indicative, subjunctive, and jussive. For the nouns and adjectives,

the cases are nominative, accusative, and genitive, which could be applied with or

without nunation, depending on the definiteness of the noun. Nunation is the addi-

tion of a final n to a noun or adjective to indicate that it is not definite. The case

ending diacritics are determined using rules that depend on adjacency relations with

function words like prepositions, articles, demonstrative articles, pronouns, relative

pronouns, etc. They also determine case endings for different syntactic structures like

noun-noun, noun-adjective, and verb-subject-object relations, with the help of agree-

ment conditions and a selection restriction database. Expressions (e.g., proper nouns,

idioms, adverbs, and collocations) are saved in their fully diacritized form whenever



possible, to enhance diacritization accuracy. The accuracy of the diacritizer mea-

sured on a validation set of around 2000 sentences of newswire data is 97% for stem

diacritization, and 91% for full diacritization.

There has been work done on using diacritics in Automatic Speech Recognition

(Vergyri and Kirchhoff, 2004). However, the only previous work on using diacritiza-

tion for MT is (Diab et al., 2007), which uses the diacritization system described in

(Habash and Rambow, 2007). It investigates the effect of using full diacritization as

well as partial diacritization on MT results. The authors find that using full diacritics

deteriorates MT performance. They use partial diacritization schemes, such as dia-

critizing only passive verbs, keeping the case endings diacritics, or only gemination

diacritics. They also find no gain in most configurations. The authors argue that the

deterioration in performance is caused by the increase in the size of the vocabulary,

which in turn makes the translation model sparser, and is also caused by the errors

of the diacritizer.

5.3 Procedure for Growing the Decision Trees

This section describes the procedure for growing the decision trees using the context-

informed source word attributes. Details about how they are actually used in trans-

lation are described in the following subsections.

Let s be a source word, and let S be the set of attribute-dependent forms of s.

So if the attribute used is the source word diacritics, then the elements of S are the

diacritized forms of s; and if the attribute used is the POS tag, then the elements of

S are the pairs (s,posi), where posi are all the POS tags that source word s is tagged

with in the training data. If si c S is an attribute-qualified source word, and tj is a

target word aligned to si, then the forward lexical probability is defined as:
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p (tyIsi) Pr [si is aligned to tj I s]
counts,)(

count (sj)

where count(si, tj) is the count of alignment links between si and tj.

h(S) = -count(si) count(sit 3 ) Inp(tylsi c S)
count(S)(5.4)

-Z count(stj)lnp(tysi E S)

is the weighted entropy of p(tysi E S), the lexical probability of the attribute-qualified

source words in S. The entropy is weighted by the number of samples in the training

data of the source words in S.

A separate binary decision tree is grown for each source word. The procedure

starts with assigning S, the set of all the attribute-qualified forms of the source word

s. At each node n, the list is split into two subsets (S*, Si), each assigned to a child

node of n, such that:

(S*, S ) argmax {h(S) - (h(S 1 ) + h(S 2 ))}

(S1 ,S2 ) (5.5)

S1US2 = S

In other words, the two-way partitioning of the list that maximizes the reduction

in entropy is chosen. This step is repeated recursively.

The weighting of the entropy by the source word counts gives more importance to

the context-dependent source words with a higher number of samples in the training

data, since the lexical translation probability estimates for these words can be trusted

more than those with lower counts. The rationale behind the splitting criterion used

here is that, at each node, the split that reduces the entropy of the lexical transla-

tion probability distribution the most is also the split that best separates the list of

attribute-dependent forms of the source words in terms of the target words to which
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it translates. For a source word that has multiple meanings, depending on its context,

the decision tree will tend to implicitly separate those meanings using information

from the lexical translation probabilities.

Global optimization of decision trees is an NP-complete problem (Hyafil and

Rivest, 1976). Local optimization criterion, such as this one, are commonly used

to grow the tree.

5.3.1 Decision Trees for Source Word Clustering

The first method for using the decision trees is to cluster attribute-dependent source

words. A decision tree is grown for each source word as described above, but a node is

only split if the reduction in entropy is larger than some predefined entropy threshold

Oh. When the tree cannot be expanded anymore, its leaf nodes will contain a multi-set

partitioning of the list of attribute-dependent forms of the corresponding source word.

Each of the clusters can be seen as an equivalence class, where all the forms in that

class are mapped to the same form (e.g., an arbitrarily chosen member of the cluster).

Assuming that the source word tokens occur in the data in their attribute-dependent

form, the mappings are used to map these tokens in the parallel training data before

they are aligned, and also to map the training data consistently.

The experiments reported on here use diacritics as an attribute type. The various

diacritized forms of a source word are thus used to train the decision trees. The

resulting clusters are used to map the data into a subset of the vocabulary, which is

used in training and decoding. Section 5.5.1 presents the results of these experiments.

Diacritics are obviously specific to Arabic; but this method can be used with other

attribute types and other languages, by first appending the source words to their

context (e.g., attach to each source word its part-of-speech tag or word context), and

then training decision trees and mapping the source side of the data.

Augmenting the source words to explicitly include source word attributes (dia-

critics or otherwise) can make the source text less ambiguous, if the attributes do
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sj n -{s ijona,sij n i,sajona,sajon u,saja na)

{sijona,sijn i}

{sajona,sajonu} {sajana}

Figure 5-1: Decision tree to cluster diacritized forms of word sjn.

in fact contain disambiguating information, which would, in principle, help machine

translation performance. The flip side is, as mentioned before, that the resulting in-

crease in the size of the vocabulary increases the translation model sparsity, which in

general has a negative effect on translation. The decision-tree based clustering proce-

dure will only keep the attribute-dependent forms of the source words that decrease

the uncertainty in the translation probabilities, and would, therefore, be helpful for

translation. The sparsity side effect is mitigated by the use of count-weighted entropy

in the node splitting criterion, which will tend to keep the attribute-dependent forms

of a given source word that occur a sufficient number of times in the training data.

An example for the clustering of the diacritized forms of the word sjn is shown

in figure 5-1. The root contains the various diacritized forms (sijona 'prison AC-
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CUSATIVE', sijoni 'prison DATIVE', sajona 'imprisonment ACCUSATIVE.', sajoni

'imprisonment ACCUSATIVE.', sajana 'he imprisoned'). The leaf nodes contain the

attribute-dependent clusters.

5.3.2 Decision Trees for Lexical Smoothing

As mentioned in section 5.2.1, lexical smoothing, which is computed from word-to-

word translation probabilities, is a useful feature, even in SMT systems that use

sophisticated translation models like phrase-based or hierarchical SMT. This is likely

due to the robustness of context-free word-to-word translation probabilities of more

complicated models, such as extracted phrases or hierarchical rules, which are esti-

mated from much larger sample spaces.

(Devlin, 2009) showed a benefit from incorporating word context into lexical

smoothing by interpolating the context-free and context-dependent lexical counts.

The interpolation step in this case was critical, because otherwise, the context-

dependent lexical probabilities suffer from the same kind of sparsity problems that

phrase pair probabilities or hierarchical rule probabilities have. This section presents

another method for incorporating source-word information into the lexical smoothing

feature, while avoiding the disadvantage of the increased sparsity that results from

the addition of the diacritics. Decision trees similar to the ones described in the first

method are used to construct a hierarchy of attribute-dependent lexical probability

scores, and interpolate these models to compute a new lexical smoothing score.

The lexical smoothing feature is usually computed as:

f(U)= H 1- H (1-(tgIsi))) (5.6)
tjET(U) \ siE{S(U)uNULL}

where U is the modeling unit specific to the translation model used. For a phrase-

based system, U is the phrase pair, and for a hierarchical system U is the translation

rule. S (U) is the set of terminals on the source side of U, and T (U) is the set of
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terminals on its target. The NULL term in the equation above is added to accounts

for unaligned target words, which we found in our experiments to be beneficial. One

way of interpreting equation 5.6 is that f(U) is the probability that for each target

word tj on the target side of U, ty is aligned to at least one word si on the source

side. The feature value is typically used as a component in the log-linear model with

a tunable weight.

The method proposed here generalizes the lexical smoothing feature to incorpo-

rate the source word attributes. A tree is grown for each source word as described

at the beginning of this section, but using an entropy of Oh = 0. In other words, the

tree is grown all the way until each leaf node contains one attribute-dependent form

of the source word. By the end of the tree-growing procedure, each node in the tree

will contain a cluster of attribute-dependent forms of the source word and a corre-

sponding lexical probability distribution. The lexical translation probability models

at the root node are those of regular attribute-independent lexical probabilities. The

models at the leaf nodes are the most fine grained, since they are conditioned on only

one attribute value. But the deeper the tree level of a node, the fewer alignment link

events are available to estimate the word translation probability distribution, and the

less reliable these estimates are. So instead of using the leaf node probability esti-

mates to compute the lexical smoothing feature, we perform a recursive interpolation

step, where the probability distribution p, at each node n is interpolated with the

probability of its parent node as follows:

p n is root,
pn =

wap. + (1 - wn)m otherwise, (5.7)

where m is the parent of n

A fraction of the parent probability mass is thus given to the probability of the

child node. If the probability estimate of an attribute-dependent form of a source
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word with a certain target word t is not reliable, or if the probability estimate is 0

(because the source word in this context is not align with t), then the model gracefully

backs off by using the probability estimates from other attribute-dependent lexical

translation probability models of the source word.

The interpolation weight is a logistic regression function of the source word count

at a node n:

1
m = (5.8)

- 1 + e-a -a log (count (S,))

The weight varies depending on the count of the attribute-qualified source word in

each node, thus reflecting the confidence in the estimates of each node's distribution.

The two global parameters of the function, a bias az and a scale 3 are tuned to

maximize the likelihood of a set of alignment counts from a heldout data set of 179K

sentences. The tuning is done using Powell's method (Brent, 1973).

During decoding, the probability distribution at the leaves is used to compute the

feature value f(R) for each hierarchical rule R. In this method, training and decoding

are done using the regular, attribute-independent source. During decoding, the source

word attributes are only used to index the interpolated probability distribution needed

to compute f (R).

Figure 5-2 shows the decision tree for the same sample example word as figure

5-1, except that the tree in this case is grown until each leaf node contains only one

diacritized form of the word.

5.4 Experimental Setup

As with most other parts of this thesis, the experiments in this chapter use the string-

to-dependency-tree hierarchical translation system based on the model described in

(Shen et al., 2008). GIZA++ (Och and Ney, 2003) is used for word alignments. The

decoder model parameters are tuned using Powell's method (Brent, 1973) to maximize
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sj nf->{sijona,sij ni,sajona,sajon u,saja nal

{sijona} {sijoni} {sajana}

{sajona} {sajonu}

Figure 5-2: Decision tree for the diacritized forms of word sjn.

the IBM BLEU score (Papineni et al., 2002). (Rosti et al., 2010) contains a detailed

description of the MT system setup.

27 million words from the Sakhr Arabic-English Parallel Corpus (SSUSAC27) are

used to train the alignments. The language model uses 7B words consisting of the

English Gigaword' and of additional data collected from the web.

Tuning and testing are done on two separate data sets consisting of documents

from the following collections: the newswire portion of NIST MT04, MT05, MT06,

and MT08 evaluation sets, the GALE Phase 1 (P1) and Phase 2 (P2) evaluation

lhttp://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC2003TO5
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sets, and the GALE P2 and P3 development sets. The tuning set contains 1994

sentences and the test set contains 3149 sentences. The average length of sentences is

36 words. Most of the documents in the two data sets have 4 reference translations,

but some have only one. The average number of reference translations per sentence

is 3.94 for the tuning set and 3.67 for the test set. The baseline for all experiments in

this chapter uses morphologically split Arabic source, using the Sakhr morphological

analyzer, and the splitting procedure described in 3.4

The next section reports on measurements of the likelihood of test data, and

describes the translation experiments in detail.

5.5 Experimental Results

In order to assess whether the decision trees do in fact result in decreasing the uncer-

tainty in the lexical probability on unseen data, we compute the likelihood of the test

data with respect to the lexical probabilities with and without decision tree splitting.

We align the test set with its reference, and then obtain the link count 1_count(si, ty)

for each alignment link i = (si,ti) E I, where I is the set of alignment links. The

log-likelihood is normalized by the number of links in I:

lcount(si, ti) log p (ti I si) (5.9)
iEI

where p (ti I si) is the smoothed probability for the word pair (ti, si) in equation

(5.7). If the same instance of source word si is aligned to two target words tj and

ty, then these two links are counted separately. If a source in the test set is out-of-

vocabulary, or if a word pair (ti, si) is aligned in the test alignment but not in the

training alignments (and thus has no probability estimate), then it is ignored in the
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Likelihood %
Baseline -1.29
Decision Trees with Diacritics -1.25 +2.98%
Decision Trees with POS -1.24 +3.41%

Table 5.1: Normalized likelihood of the test set alignments without decision trees,
and then with decision trees using diacritics and part-of-speech respectively.

calculation of the log-likelihood. The likelihood should be normalized to make the

likelihoods of different test sets comparable.

Table 5.1 shows the likelihood of the baseline case, where one lexical translation

probability distribution is used per source word, and compares it with the likelihoods

calculated using the lexical distributions in the leaf nodes of the decision trees, for both

diacritics and POS as attribute types. The table shows an increase in the likelihood

of 2.98% and 3.41% corresponding to diacritics and part-of-speech respectively.

5.5.1 Results for Source Word Clustering using Decision Trees

The decision tree clustering experiment as described in section 5.3.1 depends on a

global parameter, namely the entropy reduction threshold Oh. This parameter was

tuned manually. Figure 5-3 shows the BLEU scores of the tuning set as a function of

the threshold value with diacritics being used as an attribute type. The most gain is

obtained for an entropy value of 50.

The fully diacritized data has an average of 1.78 diacritized form per word. The

occurrence-weighted average is 6.28, indicating that words with more diacritized forms

tend to occur more frequently. After clustering using a threshold value of Oh = 50, the

average number of diacritized forms becomes 1.11, and the occurrence-weighted aver-

age becomes 3.69. The clustering procedure thus seems to eliminate most diacritized

forms, which likely do not contain helpful disambiguating information.

Table 5.2 lists the detailed results of the translation experiments that cluster
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Figure 5-3: BLEU scores of the word clustering experiments as a function of the
entropy threshold.

diacritics. The first experiment shows that using full diacritization results in a small

gain on the BLEU score, and no gain on TER, which is somewhat consistent with

the results obtained by (Diab et al., 2007). The next experiment shows the results of

clustering the diacritized source words using decision trees for the entropy threshold

value of 50. The TER loss of the full diacritics experiments becomes a gain, and

the BLEU gain increases. This confirms the hypothesis presented earlier in this

chapter that using the fully diacritized source increases the model sparsity, which

undoes most of the benefit obtained from the disambiguating information that the

diacritics contain. Using the decision trees to cluster the diacritized source data, on

the other hand, prunes diacritized forms that do not decrease the entropy of the lexical

translation probability distributions. It thus finds a sweet-spot between the negative

effect of increasing the vocabulary size and the positive effect of the disambiguating

information.

Recall from section 5.2.3 that grammatical case endings for nouns and adjectives
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TER BLEU BL-Pr MET Len
ic le ic

Test.ara.text.nw
Baseline 40.14 52.05 52.35 68.53 99.43
Full Diacritics 40.31 52.39 52.52 68.25 99.75

+0.17 +0.34 +0.17 -0.28 +0.32
Clustered Diacs (Oh 50) 39.75 52.60 52.94 68.60 99.36

-0.39 -0.55 +0.59 +0.07 -0.07
Lattice Decoding 39.97 52.39 52.74 68.60 99.34

-0.17 +0.34 +0.39 +0.07 -0.09
Tune. ara. text. nw

Baseline 39.29 54.22 54.22 69.33 100.03
Full Diacritics 39.49 54.29 54.29 69.03 100.01

+0.20 0.07 10.07 -0.30 -0.02
Clustered Diacs (Oh 50) 38.76 54.94 54.94 69.41 100.04

-0.53 -0.72 0.72 0.08 0.01
Lattice Decoding 38.83 54.71 54.73 69.62 99.97

-0.46 +0.49 +0.51 0.29 -0.06

Table 5.2: Results of experiments using decision trees to cluster source word diacritics.

are marked using diacritics, and that the Sakhr diacritizer has the capability of out-

putting these case endings. In the experiments of this chapter, using diacritics with

case endings gave consistently better scores than using diacritics with no case end-

ings, despite the fact that they result in a higher vocabulary size. This suggests that

diacritics not only help in lexical disambiguation, but they might also be indirectly

helping in phrase reordering, since the diacritics on the final letter indicate the word's

grammatical function.

5.2 also shows the results of an experiment that uses lattice decoding (Dyer et

al., 2008). We first concatenate the hierarchical rule sets of the baseline and the fully

diacritized data, then we construct a lattice from the input sentence by combining

the diacritized and non-diacritized versions of the sentence, where each token is rep-

resented by two coinciding arcs. This allows the decoder to choose a path that mixes

diacritized and non-diacritized words, using translation rules from the corresponding
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TER BLEU BL-Pr MET Len
lc ic Ic

Test.ara.text.nw
Baseline 40.14 52.05 52.35 68.53 99.43
No Rule Probabilities 41.57 50.25 50.50 67.08 99.51

+1.43 -1.80 -1.85 -1.45 +0.08
No Lexical Smoothing 42.89 48.53 49.05 66.09 98.95

+2.75 -3.52 -3.30 -2.44 -0.48
Tune.ara.text .nw

Baseline 39.29 54.22 54.22 69.33 100.03
No Rule Probabilities 40.57 52.24 52.24 68.03 100.00

+1.28 -1.98 -1.98 -1.30 -0.03
No Lexical Smoothing 41.97 50.28 50.55 66.73 99.47

+2.68 -3.94 -3.67 -2.60 -0.56

Table 5.3: Effect of removing rule probabilities vs. removing lexical smoothing.

subsets of the rule base. A gain of 0.34 BLEU points results from this experiment.

5.5.2 Results for Lexical Smoothing using Decision Trees

This section presents results for using the decision trees to compute a context-dependent

lexical smoothing feature.

We start by providing experimental evidence of the importance of the lexical

smoothing feature. The effect of lexical smoothing is compared to that of the hi-

erarchical rule probabilities by running two experiments. In the first one, the rule

probabilities are removed, and in the second, the regular, context-independent lexical

smoothing attribute is removed. It is important to keep in mind that in the first ex-

periment, the hypotheses are still generated from the same hierarchical rule set. It is

just that their probabilities are effectively not used in the ranking of the hypotheses.

Table 5.3 shows that removing the rule probabilities results in a degradation of 1.8

BLEU points on the test set, while removing the lexical smoothing feature results

in a degradation of around 3.5 points. Despite its being estimated from context-

independent word-to-word translation probabilities, the lexical smoothing feature is
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TER BLEU BL-Pr MET Len
ic ic ic

Test. ara. text. nw
Baseline 40.14 52.05 52.35 68.53 99.43
Lexical Smooth. (diacs, no interp.) 39.98 52.09 52.56 68.29 99.11

-0.16 +0.04 0.21 -0.24 -0.32
Lexical Smooth. (diacs) 39.75 52.55 53.13 68.25 98.90

-0.39 0.50 0.78 -0.28 -0.53
Lexical Smooth. (POS) 40.05 52.40 52.60 68.48 99.63

-0.09 +0.35 0.25 -0.05 +0.20
Lexical Smooth (diac, POS) 40.20 52.38 52.64 68.14 99.51

+0.06 4-0.33 0.29 -0.39 140.08
Lexical Smooth (diac, POS, 39.64 52.46 53.16 68.16 98.69

POS-1,POS+1)
-0.50 -0.41 +0.81 -0.37 -0.74

Tune.ara.text.nw
Baseline 39.29 54.22 54.22 69.33 100.03
Lexical Smooth. (diacs, no interp.) 39.10 54.48 54.58 69.13 99.82

-0.19 +0.26 +0.36 -0.20 -0.21
Lexical Smooth. (diacs) 38.55 54.84 55.05 69.22 99.62

-0.74 +0.62 +0.83 -0.11 -0.41
Lexical Smooth. (POS) 38.80 54.65 54.65 69.37 100.03

-0.49 +0.43 +0.43 -0.04 +0.00
Lexical Smooth (diac, POS) 38.75 54.74 54.76 69.12 99.96

-0.54 +0.52 +0.54 -0.21 -0.07
Lexical Smooth (diac, POS, 38.34 55.07 55.32 69.22 99.55

POS-1POS+1)
-0.95 0.85 1.10 -0.11 -0.48

Table 5. Results of experiments using the attribute-dependent lexical smoothing
feature.

more useful in ranking the translation hypotheses than the sparser hierarchical rule

probabilities.

Table 5.4 shows the results of using the decision trees to interpolate context-

dependent lexical probability models. The first result is that of a control experiment,

where the diacritics-dependent lexical translation probabilities obtained from the de-

cision trees were used, but without performing the probability interpolation step of

equation 5.7. The gains mostly disappear, especially on BLEU, showing the impor-
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tance of the interpolation step for the proper estimation of the lexical smoothing

feature. When the interpolation step is performed, the results show a gain of 0.5

BLEU points and 0.39 TER points. Using part-of-speech as an attribute gives a

smaller gain. Both of these gains are statistically significant with a confidence inter-

val of 95%, using the random sampling with replacement test proposed in (Koehn,

2004b).

Although the discussion in section 5.3.2 was presented in terms of using one at-

tribute type in the decision trees, extending this method to use more than one at-

tribute type is straight-forward. Table 5.4 shows the results for using diacritics and

part-of-speech tags at the same time, with no additional gains. This is likely due

to the largely redundant information contained in the diacritics and POS tags. The

addition of the POS tags of the previous and next words does not give an additional

gain either.

5.6 Conclusion and Future Work

This chapter explored the incorporation of explicit context-informed word attributes

into SMT, while controlling the amount of the increase in the number of model param-

eter, such as the size of the vocabulary by using binary decision trees. We reported

on experiments on Arabic-to-English translation using diacritized Arabic and part-

of-speech as word attributes, and showed that the use of these attributes increases

the likelihood of source-target word pairs of unseen data. Two specific methods were

proposed for using the results of the decision tree training process in machine trans-

lation, and showed that they both result in improvement in the translation quality.

This also constitutes the first successful attempt at using diacritized Arabic source in

MT.

Possible future directions include the use of multi-word tree, instead of growing

a separate tree for each source word, thus providing more robust estimates of the
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ic ic ic

Test.ara.text.nw
Baseline 40.14 52.05 52.35 68.53 99.43
Rule Count Clustering 39.91 52.36 52.78 68.35 99.21

-0.23 +0.31 +0.43 -0.18 -0.22
Tune.ara.text.nw

Baseline 39.29 54.22 54.22 69.33 100.03
Rule Count Clustering 38.92 54.47 54.57 69.27 99.81

-0.37 +0.25 +0.35 -0.06 -0.22

Table 5.5: Results on clustering target side counts of hierarchical rules based on POS.

translation probabilities on which to grow the decision trees. Also, although the

experiments presented in this paper use local word attributes, nothing in principle

prevents these methods from being used with long-distance structural attributes,

sentence context, or even discourse-level features.

The results in this chapter show the importance of dealing with the issue of sparsity

in the estimation of the probability models. Oracle experiments on the system used

here show that the same set of extracted rules can produce an output that is better

by many points. This suggests that, besides developing new translation models, the

pursuit of a line of research aimed at obtaining better probability model estimates on

top of the existing translation models will be fruitful.

Section 5.5.2 hinted at the fact that the hierarchical rule probabilities are not as

useful a feature for scoring the hypotheses as one would expect them to be. Recall

that the hierarchical phrase-based grammar consists of rules of the form:

X - a,

where -y is a sequence of terminals and non-terminals in the source language, a is

the corresponding sequence in the target language, and - is a one-to-one alignment

between the non-terminals of -y and a. The rule probabilities are estimated from the
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joint and marginal counts of the sequences on the source and target sides, which is a

much larger space than that of the word-to-word translation probabilities. Most rules

are observed only a handful of times in the training data, and many are only seen

once. Smoothing the rule probabilities in some way can provide more robust estimates

for those probabilities, which would reflect on the MT output quality. Decision trees

could be used for this purpose, given that an appropriate criterion for node splitting

is used. Simple count clustering can also be used. Results of some preliminary

experiments on using clustered rule counts on the target side are shown in table 5.5.

The rule counts are clustered by replacing the terminals on the target side of the

rules with their POS tags, providing a clustered joint count ci(s, t) and a clustered

marginal target count c(t). The clustered probability estimate is then interpolated

with the probability estimate of the fully lexicalized rules:

-=f[1-wp~s,t)+wpi(s,t)
cIWI(s'0t)c,(S't)

c(t) ci(t)

A value of w = 0.25 (resulting from manual tuning) gives a gain of 0.3 BLEU

points as the table shows. Further work in this direction, where more sophisticated

clustering criteria are used, and were the parameters are tuned discriminatively are

likely to produce significantly larger gains.
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Chapter 6

System Combination of Statistical

MT and Rule-based MT

This chapter presents methods on the integration of Statistical Machine Translation

(SMT) and Rule-based Machine Translation (RBMT) at the system level. System

level integration means that two or more systems are combined in some configuration

to produce an output that surpasses in quality the outputs of the individual systems,

while treating these individual systems as black boxes. This chapter focuses on the

combination of SMT and RBMT systems, which have different, yet complementary

advantages.

The first part of the chapter presents "noun-phrase based combination", a method

that uses the RBMT system translation with SMT translations of input noun phrases,

to build a word lattice that is then rescored using a number of features. In the second

part, preliminary results on extending serial combination are presented. In serial

combination, the output of the RBMT system is processed through a statistical post-

editing module, which can learn to correct some systematic errors and also makes

the output more fluent through a target language model. The preliminary results

show how the output of a serial combination system can be rescored using a regular
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SMT model, and presents ideas on further development of such an extension. The

work in this chapter uses BBN's hierarchical decoder and Sakhr's rule-based Arabic-

to-English MT system. The methods presented can however be used with other MT

systems and other language pairs.

6.1 Introduction

The statistical approach to MT has some attractive qualities that have made it the

preferred approach in MT research over the past two decades. Statistical translation

models learn translation patterns directly from data, and generalize them to translate

new data, without the need for explicitly encoding the knowledge required to handle

the different cases in translation rules. They are also better at handling translations of

idiomatic expressions. SMT systems avoid making hard decisions at any intermediate

stage during the translation process. They defer such decisions to the end of the

process, thus preventing intermediate mistakes from dooming the final result. The

SMT approach is largely language-independent; the models that are developed can, in

general, be applied to any language pair. Most parts of the system implementations

can also be readily used for new languages.

Rule-based Machine Translation systems have other advantages. Some of these

systems, especially industrial ones, have matured over decades of development. They

contain a wealth of linguistic knowledge at different levels, that is used to perform de-

tailed source-side analysis as part of the translation process, and they exploit specific

properties of the two languages for that purpose.

An output analysis in (Thurmair, 2005) comparing the output of a RBMT system

(Linguatec's Personal Translator) and an SMT system (Vogel et al., 2000) for German-

to-English translation concludes with observations that are consistent with the above

characterization of each of the two MT approaches. We next summarize some these

observations.
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RBMT systems, using a structural analysis of the input (e.g. parse tree) are able to

handle long distance reordering better than SMT systems, which translate and reorder

input chunks that do not constitute syntactic categories (syntax-based SMT being

an exception). For example, (Thurmair, 2005) found that the SMT system often had

trouble correctly reordering the German relative clause. RBMT systems, however, are

more vulnerable to failure of the input analysis, especially for ungrammatical input.

SMT systems are more robust in that they will always produce an output.

SMT systems, in general, have trouble handling the morphology on the source or

the target side, especially with morphologically rich languages. Errors in morphology

can have severe consequences on the sentence meaning, beyond mere aesthetics. They

can change the grammatical function of words, or the interpretation of the sentence

through the wrong verb tense. Some SMT approaches, such as factored translation

models (Koehn and Hoang, 2007), attempt to solve this issue by explicitly handling

morphology on the generation side.

Another observation is that SMT systems are usually better in terms of lexical

selection. They avoid early hard decisions on word meaning and word translation.

They can also translate idiomatic expressions and common phrases better, when

literal translation for such expressions is not adequate, since they learn these trans-

lations from the aligned data. RBMT systems need such translations to be explicitly

specified in a dictionary. SMT systems could still suffer from making the wrong lexi-

cal choice due to lexical ambiguity. Chapter 5 presents methods on how to enhance

lexical disambiguation that are specific to Arabic, but can be generalized to other

source languages. Also, SMT systems produce a more fluent output, because of the

use of a target language model to constraint the output such that it shares statistical

properties with the large LM training corpus.

RBMT and SMT systems have, therefore, complementary characteristics, and a

hybrid approach could take advantage of the strengths of both. It could leverage the
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language specific information of RBMT systems to help SMT use such information,

which it might not be able to learn automatically. At the same time, it can take

advantage of the flexibility of the SMT approach, avoiding hard decisions at any

intermediate stage of the translation process.

This chapter proposes a system combination architecture, called "Noun-Phrase

based Combination" that attempts to take advantage of the respective strengths of

the two approaches. Briefly, the input sentence is first translated via the RBMT

system. Noun phrases of the input sentence are then translated using the SMT system.

Finally a lattice consisting of the RBMT output, aligned with arcs corresponding

to the SMT noun phrase translation is constructed, and re-scored using multiple

features including an English language model to select the highest scoring path. Noun

phrases are selected to be translated through the SMT system because they, more than

other syntactic constituents, tend to contain expressions that cannot be appropriately

translated word-for-word. If these expressions are common enough to occur multiple

times in the training data, the SMT system can learn proper translations for them.

The use of the RBMT translation as the skeleton for the lattice allows the high-

level structure of the final output to follow that of the RBMT output, which tends

to handle long distance constituent reordering better. Subsequent sections describe

noun-phrase based combination in more detail, and present results of this method

using the RBMT Sakhr system and the SMT Hierdec system.

The later part of this chapter presents preliminary results on extending another

method of system combination between RBMT and SMT systems: serial combination.

It then presents some ideas on how this method can be further developed.

6.2 Related Work

The benefit of integrating the rule-based and statistical approaches has long been

recognized, and multiple approaches have been proposed for this integration at dif-
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ferent levels. (Thurmair, 2009) is a recent comprehensive survey of these approaches.

The author classifies the integration methods into 3 categories. The first category

is system combination, which the author calls coupling. In this case, the outputs of

two or more systems are combined together to produce an output that is better than

either of the individual outputs, without introducing changes in any of the systems

being combined. A statistical model for combining the outputs is usually used. The

advantage of these approaches is that the individual systems are treated as black

boxes, which provides a certain flexibility in terms of the types of systems that can

be combined.

One of the system combination approaches is serial combination (Simard et al.,

2007a; Simard et al., 2007b), where the output of the RBMT system is processed

through a statistical post-processing module. Section 6.4 elaborates further on serial

combination. (Rosti et al., 2007) and (Rosti et al., 2008) suggest a method for

combining systems at the word level, by creating a word lattice from the aligned

outputs of the individual systems, and rescoring the lattice with a language model

and other features. The final output is thus constructed from chunks of the outputs of

the combined systems. This combination method is general, in the sense that it can be

used to combine MT systems of arbitrary types, including rule-based and statistical.

(Chen et al., 2009) presents a method that uses the MOSES decoder (Koehn et al.,

2007) to extract phrases from the aligned outputs of the combined systems. (Eisele et

al., 2008) supplant a MOSES-based SMT system with phrase tables from a number

of RBMT systems.

The second category of approaches that Thurmair identifies is "architecture ex-

tension". In this category of methods, the translation system essentially falls into one

of the two paradigms, rule-based or statistical, but is modified to include resources or

models from the second paradigm. Preprocessing methods, such as the morphological

and syntactic preprocessing of chapter 4 fall under this category.
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The third category of approaches is what Thurmair calls "genuine hybrid archi-

tectures", where system components from both paradigms are combined to form a

novel system. One example is the multi-language European MT system called METIS

(Vandeghinste et al., 2006), which uses rule-based tools, such as lemmatizers, taggers,

chunkers, and transfer rules, for source analysis, but a language model for target sen-

tence generation. Another example is context-based MT (Carbonell et al., 2006),

which uses a bilingual dictionary to translate words in a n-gram window of source

words, generating a lattice of n-gram translations, which is then scored to generate a

final translation.

6.3 Noun-Phrase Based System Combination

As described above, noun-phrase based system combination builds a word lattice from

the rule-based translation of the input sentence and SMT translations of noun-phrases

in that sentence. It then extends and rescores that lattice.

In the sense used here, a word lattice is an acyclic directed graph with one source

node and one sink node. Each are is labeled with one or more words as well as a

vector of scores corresponding to a set of features. If needed, e-arcs can be added

to tie multiple source nodes or multiple sink nodes together. A word lattice is a

compact representation of MT output hypotheses, where each path through the lattice

corresponds to a hypothesis. New translation outputs can be produced from word

chunks that belong to different hypotheses, by searching the lattice using feature

scores. Efficient search algorithms can be used to extract the top N scored hypotheses.

Figure 6-1 depicts the noun-phrase system combination process as a flowchart.

Step 1 correspond to the RBMT translation. Step 2 translates the noun phrases

through the SMT system. The system combination is done in step 3. A detailed

description each of these steps follows.
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Figure 6-1: Flow Chart of the Noun Phrase Based System Combination Process.

6.3.1 Lattice Construction Procedure

We start with the following definition, which will be useful for the description of the

combination method:

Definition 1. A base noun phrase is a noun phrase that contains no other noun

phrase within it.

The first step in the lattice construction procedure is to translate the test data

through the rule-based system. Noun phrases are then extracted from the Arabic

source and each given a unique id. They are each translated through the SMT

System, as separate segments. For nested noun phrases, the nested phrase and the

containing phrase are translated separately. In an SMT system, the translation of a

given sentence chunk is influenced by its surrounding context. Translating the nested

phrases separately from their containing phrases will result in translations that are

more varied. This allows the lattice that is built based on these translations to be

richer, with more varied translation branches.

123

..... ....... .. ... .. ....

Source Test Data



It is worth noting that the spans of the noun phrases in the source sentence can

be easily mapped to the corresponding spans in the rule-based translations, since

the rule-based translation process is deterministic. This makes the mapping of the

indices of input spans to the indices of output spans a straight-forward task, unlike

in statistical translation.

After the translation step, the output of the rule-based system and the output

of the SMT system are combined by building a word lattice for each input sentence.

Each arc in the lattice is labeled with a string in the target language (output of either

of the two MT systems), and a set of feature values that will be used to select the

best path through the lattice. Specifically, the lattice of a given input sentence is

built as follows:

1. A base chain of arcs that partitions the RBMT translation of the sentence into

consecutive base-noun-phrase and non-noun-phrase spans, such that no single

noun-phrase arc contains a nested noun-phrase. Each arc is labeled with the

RBMT output corresponding to its span.

2. For each non-base noun phrase in the input segment, an arc that spans that

noun phrase is added to the lattice, such that the edges of the are coincide with

the start and end nodes in the base chain constructed in step 1. The arcs are

labeled with the corresponding output of the RBMT system.

3. For each noun-phrase in the lattice (both base and non-base), a set of parallel

arcs is added, each labeled with a one of the N-best translations of the SMT

system.

4. In addition, each are is also labeled with a set of word-level and arc-level fea-

tures.

The addition of the arcs in step 2 might seem redundant. But having a single are in
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the lattice for each noun phrase allows separate feature values to be assigned to those

noun phrases.

Section 6.3.1.1 enumerates the types of features used. Each feature is assigned a

global weight. If xi =[X . . Xin] is the feature vector for arc i, and w =[w1 ... w,] is

the feature weight vector, then the total score for arc i is the dot product:

w~i

The score of a path in the lattice is the sum of the scores of its arcs.

The weights of the features are tuned to maximize the BLEU score. The objective

function is optimized using Powell's method (Brent, 1973), since it is not directly

differentiable. A list of N-best translations are extracted from the lattices by searching

for the N-top scoring paths in the lattice using the A* algorithm (Hart et al., 1968).

A 3-gram language model is used to score the lattice paths and extract an N-

best list of hypotheses. The N-best list is then re-ranked with a 5-gram language

model to select the top candidate translation. The complete combination process is

summarized in figure 6-1.

Figure 6-2 shows the lattice construction process through an example. In the

figure, the base chain is constructed from the rule-based translation, namely the

string abcd. In this sentence, b is a base noun phrase and bcd is a non-base noun

phrase. As mentioned above, the rule-based translation for noun phrase bcd is added

as one arc, in order to assign arc-level features to it. The SMT translations for the

two noun phrases are then added. For the noun phrase c, the translations ci, c2 , .. ci

are added in parallel, between nodes 2 and 3. For noun phrase bcd, the translation

bcd1, bcd2,... , bcdi are added between nodes 1 and 4.

6.3.1.1 Lattice Features

The following features are used to calculate the arc scores:
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Figure 6-2: Lattice Construction. The horizontal links constitute the base chain.
Additional arcs are labeled with alternative translations for the noun phrases be and
bed.

1. SLM: The language model score. A 3-gram language model was used in the

experiments presented in the chapter.

2. SMTARC: Feature whose value is 0 if the arc translation is from the RBMT

system, and 1 if it is from the SMT system.

3. WVNUM: the number of words on the arc.

4. A_NUM: a constant. This feature contributes to a path-level feature whose

value is the number of arcs in the path.

5. IS_NP: A feature with value 1 if the arc corresponds to a noun-phrase span,

and 0 otherwise.

6. INNONBASENP: Feature with value 1 if the arc corresponds to a non-base
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noun phrase, and 0 otherwise.

The use of non-lexical features such as the number of arcs, the number of words

or the system that produces the arc translation, each with a tunable weight allows

the system to incorporate a preference for the properties that each of these features

represents.

All feature values can be calculated and added to the lattice arcs in a straight-

forward manner when the lattice is being built, with the exception of the language

model score (feature SLM). Assigning the language model scores properly requires

the additional step of expanding the lattice. The procedure, first proposed in (Odell,

1995) is briefly described again here.

If a language model of order n is used, then the history of n - 1 previous words is

needed to calculate the language model score for a given arc string (that is the target

language word or words that the arc is labeled with). But, in general, a lattice are will

have more than one arc that are incoming into its source node (call them preceding

arcs). So if an are has i preceding arcs, the first word of its string will have i word

histories. And each of those can have another j preceding arcs, and word histories,

and so on. The word history of the arc string, therefore, depends on the preceding

arcs in a given path through the lattice.

To simplify the computation of the path scores, the lattice is expanded so that

each arc has a unique n-gram history. This is done by replicating an arc with i

preceding arcs i times. Each are replica is assigned the same arc string and feature

vector as the original arc, but is linked to one of the incoming arcs. Since the arc

string can consist of only one word, the expansion step has to be propagated back,

possibly as many as to n - 1 times. This will guarantee that each arc will have a

unique n-gram word history. The language model score at each new arc can now

be computed using that unique word history. Figure 6-3 illustrates lattice expansion

through an example. Although the experiments described in this chapter used a 3-
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Figure 6-3: Lattice Expansion. Node 3 in (a) is expanded into nodes 0', 1', and 2' in
(b), to make the three paths disjoint; then the language model score of each can be
calculated separately.
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gram language model, the illustrated example is shown with a bigram for simplicity.

In the example, arc b has three preceding arcs, so it is replicated 3 time, so that each

replica has one preceding arc. The three partial paths are thus made disjoint, and

the scores for bigrams a1b, a2b and a3 b can be computed separately.

6.3.1.2 N-best Reranking

A 3-gram language model is used to expand and score the lattice. Then a list of the

top 300 scored translations is extracted and re-ranked using a 5-gram language model

in addition to the values of the features above. The process is broken up into 2 steps

because 5-gram model is quite expensive, especially in terms of space, because of the

longer history of each arc. The re-ranking still takes advantage of the stronger 5-gram

model to choose among candidate hypotheses, even though the search results might

be sub-optimal.

Using a lower-order n-gram language model during search, then using a stronger,

higher order language model to re-rank is a common practice. For instance, the

standard Hierdec translation procedure uses a 3-gram language model during decoding

to procure an N-best list of candidate translation hypotheses, and those are in turn

re-ranked using 5-gram language model scores.

6.3.2 Experimental Setup

The Arabic-to-English Sakhr rule-based translation system is used to translate the

test data, providing the skeleton for the lattice. The first two components of the

system are a morphological analyzer that generates a list of features for each word

in context, including a part-of-speech tag, and a unique sense, and an automatic

diacritizer, which uses the output of the morphological analyzer as well as other rules

to assign a stem and case ending diacritization to each word. The outputs of these

components are used in 4 and 5 respectively. The MT system proper uses the output

of the morphological tagger and the diacritizer, together with Arabic grammar rules to
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produce a rich parse of the source sentence. Transfer rules, and an Arabic-to-English

lexicon are then used to transform the Arabic parse tree to English. A generation

step is then applied to the output sentence in order to make it more grammatical.

This step applies agreement rules among other things. The last step is to make the

output more fluent by applying surface transform rules, and a database of English

expressions.

The noun phrases are translated using the Hierdec (Shen et al., 2008) string-to-

dependency tree hierarchical decoder. 200 million words of Arabic-English parallel

data are aligned using GIZA++ (Och and Ney, 2003). The weights of the decoder

are tuned using minimum error rate training (Och, 2003). The system is tuned to

maximize the BLEU score. 7 billion words of English data are used to train the

language model. The decoding uses a 3-gram language model and the N-best output

of the decoder is re-ranked using a 5-gram language model trained on the same amount

of data. The 3-gram language model is used to rescore the combined lattice.

Experiments were run on two data genres: newswire and web newsgroups. For the

newswire experiments, 2040 segments selected from the NIST02 to NIST05 test sets

are used for testing. For tuning, 2075 segments from the NIST02 to NIST05 tuning

sets are used.

For the web data, two data sets are used: ng_ ylq4 Tune contains 2079 segments

and ng_ylq4 Test contains 2128 segments, all selected from the GALE year 1

quarter 4 LDC web parallel data. The web data has therefore one reference, which

partly explains the lower scores in the results table in the next section.

6.3.3 Experimental Results

6.3.3.1 Examples

We first present a few examples, comparing the outputs of the different systems.

(6.1) Source: mwskw 32-01 (Afb)- dEA wzyr xArjyp rwsyA Aygwr AyfAnwf
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TER BLEU MET
NIST MT02 05 Tune

Hierdec 38.73 55.42 72.02
Sakhr RBMT 51.74 37.13 56.83

+13.01 -18.29 -15.19
NP Comb 1-best 44.20 45.79 69.32

+5.47 -9.63 -2.70
NP Comb 50-best 43.45 46.80 68.87

+4.72 -8.62 -3.15
NIST MT02_05_Test

Hierdec 38.95 55.48 71.44
Sakhr RBMT 51.42 36.86 56.83

+12.47 -18.62 -14.61
NP Comb 1-best 44.20 46.07 69.25

+5.25 -9.41 -2.19
NP Comb 50-best 43.48 46.92 68.97

+4.53 -8.56 -2.47

Table 6.1: Results of noun-phrase based combination for Arabic newswire data.

Alywm AlAvnyn AlY AETA' rwsyA wAlAtHAd AlAwrwby dwrA ADAfyA fy

Emlyp AlbHv En Hl lAzmp Al$rq AlAwsT.

RBMT: Moscow 32 - 01 (AFP) - Russia Foreign Minister Igor Ivanov called

today Monday for the giving of Russia and The European Union an additional

role in the search operation about a solution to the Middle East crisis .

SMT: Moscow 32-01, Russia and the European Union (AFP) - Russia's

Foreign Minister Igor Ivanov called on Monday to give additional role in the

process of searching for a solution to the Middle East crisis.

NP-Syscomb: Moscow 32 - 01 (AFP) - Russian Foreign Minister Igor Ivanov

called today Monday for giving Russia and the European Union an additional

role in search about a solution to the Middle East crisis.

Reference: Moscow 10-23 (FP) - Russian Foreign Minister Igor Ivanov called

for Russia and the European Union to be given an additional role in the
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TER BLEU MET

ng ylq4 Tune
Hierdec 60.41 19.76 47.06
Sakhr RBMT 69.02 15.69 45.11

+8.61 -4.07 -1.95
NP Comb 1-best 62.93 18.98 48.07

+2.52 -0.78 +1.01
NP Comb 50-best 62.64 18.84 47.92

+2.23 -0.92 +0.86
ngylq4_Test

Hierdec 61.72 17.03 44.15
Sakhr RBMT 67.96 15.65 44.65

+6.24 -1.38 +0.5
NP Comb 1-best 63.39 17.48 46.10

+1.67 +0.45 +1.95
NP Comb 50-best 63.37 17.19 45.84

+1.65 +0.16 +1.69

Table 6.2: Results of noun-phrase based combination for Arabic web data.

process to find a solution for the Middle East crisis.

(6.2) Source: AyfAnwf: rwsyA "Trf m$Ark kAml" fy Emlyp AlslAm fy Al$rq

AlAwsT

RBMT: Ivanov: Russia "a complete participant end" in the Middle East

peace process

SMT: Ivanov: Russia "full participant" in the peace process in the Middle

East

NP-Syscomb: Ivanov: Russia "a full participant" in the Middle East peace

process

Reference: Ivanov: Russia "fully active partner" in the Middle East peace

process

Note that for example 6.1, the RBMT system produces a correct high-level sentence

structure, while the SMT system mis-places the phrase "Russia and the European
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Union". But the RBMT system translates "process to find a solution" as "search

operation about a solution", which is the literal translation of the Arabic expression,

but is not an adequate translation. The noun-phrase combination output maintains

the correct ordering of the sentence, but gives a more adequate and fluent output.

Example 6.2 shows how the noun-phrase combination provides a better translation of

the phrase "fully active partner", as "a full participant", compared to the rule-based

translation "a complete participant end".

6.3.3.2 Results

This section presents and explains results from the noun-phrase based system com-

bination experiments. For each genre, the results are compared against the Hierdec

SMT system using the same data and setup described in section 6.3.2 above.

The first thing to note is that the scores for the rule-based system are considerably

lower than those for the SMT system. This is a typical phenomenon since SMT

systems trained on large amounts of data are constrained with a target language

model, and therefore produce more fluent output that is favored by the automatic

evaluation metrics. For newswire (table 6.1), the rule based system scores are around

18 BLEU points less than the SMT baseline, and 12-13 TER points higher. For the

web data, the gap is smaller: around 6 TER points and 1.38 BLEU points on the test

set.

The web data scores are significantly worse in absolute value for all the systems

compared to the newswire data. One reason is that, as mentioned in the previous

section, the web data sets are scored with one reference hypothesis only. The second

reason is that web data is more difficult to translate than newswire data. It is less

well-structured and contains more variation. Web data typically has a larger out-of-

vocabulary rate (i.e. percentage of source words in test data that are not found in the

training corpus) than newswire data. The out-of-vocabulary rate for the newswire

set is 0.31% compared to 0.90% for the web data set used in this section.
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The noun-phrase combination systems improve on the scores of the rule-base out-

put significantly. Using the 1-best from the output of the noun-phrase SMT trans-

lations, the noun-phrase output for newswire is 7 TER points and 9 BLEU points

better for NISTMT02_05_ Test (see table 6.1). Similar improvements are observed

for NISTMT02_05 Tune. But the scores remain significantly lower than those of

the SMT baseline. The use of the 50-best hypotheses from the translation of the

noun-phrases in the combination provides an additional point gain.

For web data, noun-phrase system combination provides a small gain of 0.45 BLEU

points and 1.95 METEOR points compared to the SMT baseline, as table 6.3 shows.

The fact that noun-phrase based combination results in a gain for the web data is

partly due to the smaller gap between the RBMT and SMT scores for web data. It is

also likely that the web data translations benefits more from noun-phrase combination

because it contains more phrases and expressions that are not translatable word-for-

word, and are therefore harder to translate using a rule-based system. The use of the

50-best hypotheses from the noun-phrase translations provides no additional gain.

6.3.3.3 Word-level System Combination

Word-level system combination (Rosti et al., 2007; Rosti et al., 2008), mentioned in

section 6.2 above, is a general method for combining the outputs of multiple trans-

lation systems of any kind. A word lattice is built from the outputs of the different

systems by incrementally aligning the output words. A language model score and

other feature scores are then used to expand and rescore the lattice. For systems that

produce multiple translation hypotheses, an N-best list, rather than the top hypoth-

esis is typically added to the lattice. This combination method is most useful when

the systems being combined produces output that is varied enough for the lattice

to contain hypotheses that are better than those produced by any of the individual

systems.

Experiments were run combining the noun-phrase based system with the two
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I TER BLEU MET

Hierdec
Sakhr RBMT+Hierdec

Sakhr RBMT+Hierdec+NP-Comb I

Sakhr RBMT+NP-Comb

Hierdec+NP-Comb

Hierdec
Sakhr RBMT+Hierdec

Sakhr RBMT+Hierdec+NP-Comb

Sakhr RBMT+NP-Comb

Hierdec+NP-Comb

ng_ylq4_Tune
60.41 19.76 47.06
62.72 20.17 50.53

+-2.31 -0.41 +3.47
61.28 21.28 51.26

+0.87 +1.52 +4.20
64.06 19.25 50.56

+3.65 -0.51 +3.50
61.14 21.26 51.20
+0.73 +1.50 +4.14

ng_ylq4_Test
61.72 17.03
63.40 18.30

+1.68 +1.27
61.87 19.25

+0.15 +2.22
63.96 18.11

+2.24 +1.08
61.95 18.86

+0.23 +1.83

44.15
48.34
+4.19
49.23
+5.08
49.24
+5.09
49.19
-5.04

6.3: Effect of noun-phrase system on word-level combination for Arabic web

baseline systems (SMT and RBMT) using the word-level combination described in

section 6.3.2. The experiments were run on web data, using different combinations

of the three systems. The 10-best hypotheses for the two statistical systems (Hierdec

baseline and noun-phrase based) were used.

The results of the word-level combination experiments are presented in table 6.3.

The improvements in results are all relative to the Hierdec SMT baseline. First,

when the SMT and RBMT baselines are combined, a gain of 1.27 BLEU points

and 4.19 METEOR points are observed, as shown in the second row of table 6.3.

No improvement in the TER score is obtained though. The addition of the noun-

phrase based system to the combination increases the gain to 2.22 BLEU points and

5 METEOR points. The combination of the noun-phrase based system with either of
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the two baseline systems provides a smaller gain than the gain obtained by combining

the 3 systems.

The additional gain obtained from adding the noun-phrase based system to the

word-level combination of the SMT and RBMT systems indicates that the noun-

phrase based system produces an output that is different enough from either of the

two other systems to be beneficial in the combination.

6.4 Enhanced Serial System Combination

Word-based system combination and Noun-phrase based system combination can

both be characterized as parallel combination methods, since in both methods hy-

potheses from the different systems are combined in a lattice, from which a new

hypothesis is produced. Rule-based MT and SMT systems can also be combined in

a serial fashion. The source side of the training data is first translated through the

rule-based system, producing output in the target language. But this output typically

has different characteristics from the natural target language data. For instance, it

will have a different n-gram distribution, and it will be characterized by translation

patterns produced by the rule-based system. Call this "new language" target'. A sta-

tistical system can be trained using the rule-based translations as a source, and the

original target (i.e. from target' to target). To decode, the test data is first translated

through the rule based system, and the output is then translated through the SMT

system. Figure 6-4 depicts the flowchart of the serial combination process.

As mentioned at the beginning of this chapter, RBMT systems usually have high-

quality handcrafted translation rules which encode a large amount of morphological

and syntactic information. They are more likely to produce a correct sentence struc-

ture, and to handle long-distance movement correctly. But RBMT systems tend

to produce translations that are literal, and lacking in fluency. Serial combination

attempts to take advantage of the strengths of both RBMT and SMT systems by:
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I E l 01RB TI-- M '
Arabic 14 1 RBMT -- English 1 - SMT --- English

S_ I System _ System -_

Figure 6-4: Flow Chart of the Serial System Combination Process

" Using the rule-based system to translate the source sentences to the target

language, thus producing an overall sentence structure.

* Then using a statistical MT system to transform the output of the RBMT

system, while remaining in the same language. The corrections in this case will

tend to be local.

The second stage can be seen as a statistical post-editing step, where the SMT com-

ponent can learn to correct systematic patterns in the output of the RBMT system.

Also, the SMT component is constrained by a language model in the target language,

which yields more fluent translations in the final output.

This method was first introduced in (Simard et al., 2007a) and (Simard et al.,

2007b) for English-to-French and French-to-English translation. The SMT component

in that work is trained on the output of the RBMT system and manually post-edited

versions of that output.

6.4.1 Arabic-to-English Serial Combination

The serial combination method was also implemented for Arabic-to-English transla-

tion, using the Sakhr rule-based MT system, and the Hierdec system for statistical

post-processing. Table 6.4 presents results for the serial combination of the Sakhr

rule-based system and Hierdec. The system was trained on 30 million words from the

Sakhr Arabic-English Parallel Corpus (SSUSAC27). The Hierdec system uses the 7
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Test 1.ara.text.nw
Hierdec 37.81 55.51 55.79 70.22
Serial Comb. 38.17 54.85 55.00 69.64

+ 0.36 -0.66 -0.79 -0.58
Test2.ara.text.nw

Hierdec 39.16 53.60 54.34 68.96
Serial Comb. 39.67 52.32 52.74 68.10

+4-0.51 -1.28 -1.60 -0.86

Tune.ara.text.nw
Hierdec 37.19 57.16 57.19 70.64
Serial Comb. 38.21 55.63 55.67 69.68

+1.02 -1.53 -1.52 -0.96

Table 6.4: MT scores of serial combination system

billion word English language model mentioned is section 6.3.2. The same tuning and

test sets described in section 5.4 are used. The table shows that the scores for the

serial combination system improve tremendously over those of the rule-base system,

and come to within around 1 point of the Arabic-to-English Hierdec baseline trained

on the same corpus.

These results show that serial combination can produce an end-to-end system with

comparable quality to a purely statistical system. In the rest of this section, some

thoughts on how to enhance this combination method are presented, together with

preliminary results that show promise for that direction.

6.4.2 Enhanced Serial Combination

The statistical component of the serial combination system learns translations be-

tween the intermediary form of the English (i.e., the output of the rule-based system)

and the English references. Once the original Arabic source is translated through

the rule-based system, that source is not taken into account anymore. The rule-base

translations can contain errors that are not recoverable by the statistical component.
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For instance, if the rule-based system deletes content words, because it does not know

how to translate them, those deleted words will be impossible to recover, except in

cases where the deletions are systematic enough for the statistical system to learn

rules that recover them in specific contexts. Word deletion is only one example of

irrecoverable RBMT errors. The incorporation of the original source into the serial

combination component's statistical model should result in better translations, since

both the original source and intermediate translation would be available to the serial

combination component. The remainder of this chapter presents some some thoughts

on how serial combination can be improved, and some preliminary results in this

direction.

Recall that the fundamental equation for the noisy channel model of SMT for

Arabic-to-English is:

Pr(ela) = Pr(e). Pr(ale) (6.3)
Pr(a)

where a is the Arabic source sentence and e is the English target sentence. The

translation task is then formulated as a search problem:

8 = argmaxPr(ela) = argmaxPr(e). Pr(ale) (6.4)
e e

The rule-based translation of the source sentence (denoted here by e,) can be

incorporated into equation 6.4, and therefore into equation 6.6 as follows:

= argmaxPr(e la) = argmaxPr(e). E Pr(a, eIe) (6.5)
e e e

The term E Pr(a, ere) can be approximated by max Pr(a, e,|e), if we assume

that the other values are much smaller:

= argmaxPr(ela) = argmaxPr(e). Pr(a, eIe) (6.6)
e e
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Applying Bayes rule to Pr(a, ere), we get:

e = argmaxPr(ela) = arginaxPr(e). Pr(ele). Pr(aer, e) (6.7)
e e

Equation 6.7 contains the terms Pr(e), the English language model and Pr(erje),

the serial combination translation model. It also contains the term Pr(aler, e), which

could be interpreted as a two-source translation model. In other words, a generative

process corresponding to this model can be defined where the English target language

string e generate the intermediate English sentence er (this part of the process cor-

responds to Pr(erle)), then once the sentence er is generated, the Arabic string a is

generated through another probabilistic process from the two sentences e and er. The

estimation of the parameters of the model Pr(aler, e) can be done by generalizing the

Expectation Maximization (EM) algorithm usually used to estimate the translation

probabilities and alignments of word pairs. With such an alignment model, one can

generalize the phrase extraction procedure of phrase-based systems and the corre-

sponding hierarchical rules to extract rules that translate from the two sources to the

target language.

The generalization of the alignment procedure in this way would be the preferred

approach in terms of modeling generality and flexibility. It would, however, be quite

an involved undertaking, especially in terms of implementation. One simplifying

assumption that can be made is:

Pr(aer, e) = Pr(ale) (6.8)

In other words, the assumption is that the knowledge of the intermediate sentence

e, does not affect the probability of generating the source sentence from the target

sentence e. This is not an entirely baseless assumption, since a deterministic mapping

exists between a and er, namely the rule-base translation. Under the independence
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assumption, equation 6.7 can be rewritten as:

8 argmaxPr(eler, a) = argmaxPr(e). Pr(e, Ie). Pr(ale) (6.9)
e e

The tree terms of this equation are the English Language model, the alignment

probabilities between the intermediate source and the English target, and the align-

ment probabilities between the Arabic source and the English target. Each of these

two alignment sets can be obtained using a regular word alignment procedure (i.e.,

GIZA++ (Och and Ney, 2003)). Instead of requiring a new model, and a correspond-

ing new training algorithm, the integration of the two standard models, together with

other features, can be done during decoding. Equation 6.9 can be seen as defining the

optimization criterion for the decoding of a two-source sentence (a, er) . The multi-

source decoding can be done in various ways, depending on the translation method.

For phrase-based SMT, two phrase tables can be extracted from the two alignment

sets. A generalization of hierarchical decoding can also be defined in this way. The

two phrase tables can be used to extract two rule sets: R1 : a -+ e and R 2 : er -+ e.

Recall that each of these rule sets is a synchronous CFG, and that the hierarchical

decoding procedure consists essentially of a parse of the source sentence, and a si-

multaneous generation of the target hypotheses with corresponding scores. Usually a

chart-style bottom-up parse is used, scanning input spans of increasing length. The

parsing procedure can be generalized to use two sources, and the two corresponding

rule sets, by first aligning the two input string a and er, so that for each span a(i, j), a

corresponding span er(i', j') can be obtained. Applicable rules from both R1 and R 2

can then be used in the production of the translation hypotheses. Tunable weights

can be used to combine the scores from the two rule sets.

We next present a preliminary experiment which integrates the two models in

a more superficial way. This work is presented as a preliminary assessment of the

potential benefit that could be obtained from a deeper integration along the lines
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Figure 6-5: Flow Chart of the Enhanced System Combination Process.

described above. In this preliminary experiment, scores from the Hierdec model (i.e.

a -+ e translations) are used in the rescoring of the list of N-best hypotheses from the

serial combination system (er -+ e translations). Figure 6-5 shows this integration

procedure. First, the serial combination system is used to obtain a list of N-best

hypotheses. Then the Arabic-to-English Hierdec decoder is run in a constrained

mode, which attempts to force the decoder to obtain a predefined list of hypotheses.

In this case, the constrained output is the N-best list from the serial combination

system. A byproduct of the constrained decoding step is to assign scores to the

different hypotheses based on the Arabic-to-English Hierdec model. These scores can

then be used as additional features in the log-linear model used for rescoring the

N-best list. Other rescoring features include a 5-gram language model. It is worth

noting that constrained decoding is not always capable of reproducing the required

output. Sometimes the system's rule set cannot produce a derivation of that output.

In this experiment, only 20% of the serial combination hypotheses were reproduced
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TER BLEU BL-Pr MET
ic ic ic

Test 1.ara.text.nw
Hierdec 37.81 55.51 55.79 70.22
Serial Comb. 38.17 54.85 55.00 69.64

+0.36 -0.66 -0.79 -0.58
Rescored Serial Comb1. 38.12 55.07 55.13 69.88

-0.31 -0.44 -0.66 -0.34
Rescored Serial Comb2. 37.86 55.38 55.44 70.04

+0.05 -0.13 -0.35 -0.18
Test2.ara.text.nw

Hierdec 39.16 53.60 54.34 68.96
Serial Comb. 39.67 52.32 52.74 68.10

40.51 -1.28 -1.60 -0.86
Rescored Serial Comb1. 39.53 52.56 52.90 68.28

+0.37 -1.04 -1.44 -0.68
Rescored Serial Comb2. 39.50 52.77 53.07 68.32

+0.34 -0.83 -1.27 -0.64
Tune.ara.text.nw

Hierdec 37.19 57.16 57.19 70.64
Serial Comb. 38.21 55.63 55.67 69.68

+1.02 -1.53 -1.52 -0.96
Rescored Serial Comb1. 38.05 55.94 55.99 69.93

+0.86 -1.22 -1.20 -0.71
Rescored Serial Comb2. 37.75 56.09 56.13 70.14

+0.56 -1.07 -1.06 -0.50

Table 6.5: Results of serial combination rescoring using Hierdec scores.

during constrained decoding.

Table 6.5 shows the results of rescoring the serial system of table 6.4. The row

labeled Rescored Serial Comb1. refers to experiments that use Pr(sourceItarget),

the backward translation probability from the Hierdec constrained decoding as a

rescoring feature. Compared to the results of the serial combination system, rescoring

shows a small improvement of 0.2 to 0.3 BLEU points. In the experiments labeled

Rescored Serial Comb2. additional features are used in rescoring. These consist of

Pr(targetsource), the forward translation probability, as well as the lexical smoothing
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Test 1.ara.text.nw
Hierdec 37.81 55.51 55.79 70.22
Serial Comb. 38.17 54.85 55.00 69.64

+0.36 -0.66 -0.79 -0.58
Rescored Hierdec 37.60 55.81 56.09 70.43

-0.21 +0.30 +0.30 +0.21
Test2.ara.text.nw

Hierdec 39.16 53.60 54.34 68.96
Serial Comb. 39.67 52.32 52.74 68.10

+0.51 -1.28 -1.60 -0.86
Rescored Hierdec 38.77 53.72 54.51 68.94

-0.39 +0.12 +0.17 -0.02

Tune.ara.text.nw
Hierdec 37.19 57.16 57.19 70.64
Serial Comb. 38.21 55.63 55.67 69.68

+1.02 -1.53 -1.52 -0.96
Rescored Hierdec 37.06 57.51 57.59 70.71

-0.13 +0.35 +0.40 +0.07

Table 6.6: Results of Hierdec rescoring using serial combination.

score from the Hierdec system, and a binary feature on whether the hypothesis has

been reproduced by the constrained decoding. The addition of these features shows

an additional gain of another 0.2 to 0.3 points.

This particular setup does not require that the rescored system be necessarily the

serial combination system, and the constrained decoding system be Hierdec. In fact,

a symmetric experiment can be performed where the N-best hypotheses from the

Hierdec system are rescored using features from a constrained decoding of the serial

combination system. Table 6.6 shows the results of the symmetric experiment, using

the same features as in the previous experiment. A small gain of up to 0.3 BLEU

points is shown relative to the Hierdec baseline.

The gains obtained from these experiments are rather modest. But these gains

were obtained through re-ranking, using translation scores for only 20% of the hy-
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potheses. These preliminary results indicate that further work in the direction of a

deeper integration along the lines described earlier in this section have the potential

of producing more improvements.

6.5 Summary

This chapter presented some work on combining rule-based and statistical MT sys-

tems. The first method presented leveraged the advantages of rule-based and statisti-

cal systems respectively, namely a good sentence structure and non-literal translations

learned from the training data. The method proposed produced significant gains over

the scores of the rule-based baseline, and out-performed the statistical MT baseline

for the web data genre. In the second part of the chapter preliminary results were

presented on enhancing the serial combination method, together with some thoughts

on how this research direction can be further developed.

145



Chapter 7

Conclusion and Future Work

In this thesis, we have presented several methods that integrate linguistic informa-

tion into a statistical machine translation framework. We have shown through ex-

perimental results that statistical machine translation, characterized by robustness

and language-independence, can be further enhanced by applying language specific

techniques that make use of the linguistic information. Such techniques can help the

statistical model by explicitly addressing aspects of the translation - some of which

are a function of the specific language-pair in question - that might be difficult for

the statistical models to learn automatically.

The methods presented in the thesis incorporate information at different levels

of linguistic abstractions; namely, at the morphological, syntactic, lexical and sys-

tem levels. The thesis concentrates on translation between Arabic and English, and

forms a case study into how specific properties of the languages in question can be

leveraged. Some of techniques presented can be applied directly to other language

pairs. For others, the details would differ for different languages, but the ideas are

still applicable. An example of the first case is the noun-phrase integration method of

chapter 6, which can be applied regardless of the language in question if a rule-based

system that can produce the appropriate information is available. Syntax reorder-

146



ing (chapter 4) can be in principle be applied to any language pair; but the specific

reordering rules will depend on the syntax of the two languages and how they differ.

We have presented experiments on both Arabic-to-English and English-to-Arabic,

and shown improvements relative to strong baselines, using relatively large data cor-

pora, and state of the art SMT models such as phrase-based and hierarchical SMT.

The morphological Analysis of Arabic for English-to-Arabic MT in chapter 3, and

the syntactic reordering of English in chapter 4 are the first work that concentrates

directly on issues specific to English-to-Arabic MT. This direction represents technical

challenges that are not present in the opposite direction. The complex morphology of

Arabic requires that morphological generation on the Arabic side be handled explic-

itly, if the problem of sparcity be dealt with. In addition, agreement conditions for

gender, number and person in Arabic are stronger than English. This is true for verb

conjugation as well as noun-adjective agreement. Producing proper agreement in the

Arabic output might also require special modeling, beyond the constraints provided

by the language model, since some of the agreement conditions can be long-distance.

The importance of MT into Arabic will only grow as the need for translating resources

of knowledge from other language for the Arabic world will become more important.

This thesis also presented the first work that used diacritized Arabic for translation

from Arabic, by using decision trees to control the increase in the sparsity of the

models that result from adding diacritics, while using the information contained in

the diacritics that is useful in decreasing the translation probability entropy.

Future Work

The problem of machine translation is far from being solved, and much research and

development still needs to be done until machines are able to translate as reliably

and fluently as humans do. The demand for faster and cheaper translation between

more languages will only increase with the increase in the need to share information
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between different parts of the globe.

Future work, building on the results in this thesis, can be developed in multi-

ple directions. Clustering as a general approach for dealing with issues of sparsity

is promising. The use of decision trees, or other clustering mechanisms, to provide

robust estimates for the parameters of various models is likely to result in improve-

ments. In particular, the robust estimation of rule probabilities has the potential of

resulting in quite significant gains, as we mentioned in the previous chapter. Oracle

experiments suggest that, besides the development of new statistical models, the ro-

bust estimation of parameters for models that are currently in use is a fruitful line of

research.

The shift into the statistical paradigm that has occurred over the past couple of

decades has allowed the field to make dramatic advances, which will likely only in-

crease with the increase in the availability of computational and linguistic resources.

But as the improvements from current approaches reach their limit, the focus will

likely turn more to utilizing explicit linguistic insight, in combination with statisti-

cal methods. So far, most of the work on integrating the statistical and rule-based

approaches has been relatively shallow. A tighter integration of the two approaches

is likely to produce results that exceed the state-of-the-art in either. One example of

such integration is to estimate appropriate probability models over the various lin-

guistic resources available to the rule-based system, such as lexicons, parsing rules,

or transfer rules.

The interest in Arabic MT will likely remain high in the foreseeable future, due

to political and social conditions in the Arabic world. Many issues that are specific

to Arabic translation remain to be addressed. We discuss some of them next with

examples.

Translation from Arabic can benefit significantly from better source analysis, es-

pecially if the syntactic structure of the Arabic source is taken into consideration.
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(Shen et al., 2009) experimented with using syntactic features on the source side,

without success. The authors hypothesize that this is likely due to the bad quality of

existing Arabic parsers. Reliable parsers will therefore be essential for the success of

such efforts.

Specific cases in which Arabic MT might benefit from Arabic syntax analysis in-

clude the effect of the Arabic sentence order, combined with subject-verb morphology,

on translation. Arabic is a prodrop language, allowing a null subject. So, in principle,

a noun phrase after a verb can be either a subject or an object with a null subject in

between. Consider In the following example:

(7.1) Source: w yHAwl rwbyr mrAwgp AlstTAt bAlwSwl fj>p <lY AlmkAn

MT: He tries to Robert maneuvering the authorities to suddenly reach the

place

Reference: Robert tries to elude the authorities by quickly gaining access to

the place

An additional subject pronoun has been inserted, likely due to the alignment of the

verb "yHAwl" to "he tries" in other occurrences of the two words in the training

corpus. The system does not take into consideration the existence of an explicit

subject "rwbyr" 'Robert' in the source.

Analysis of the grammatical role of each of the constituents could be used to in-

form the translation. Another example of errors is Null Complementizers (that is

the equivalent of subordinate conjunction that is not phonetically explicit), a com-

mon phenomenon in Arabic. In these errors, these are not supplied in the output

translation, as the following example shows:

(7.2) Source: mhmp lyst shlp tntZr Eml Alhy}p Altnsyqyp lAEAdp

MT: The task is not easy waiting for the work of the coordinating body
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Reference: It is not an easy mission which awaits the work of the

Coordination Commission

The next example shows an interrogative sentence, where the system fails to produce

the fronted auxiliary verb in the English translation. This is another case where

source-side syntactic analysis can benefit translation quality.

(7.3) Source: ImA*A A$Ad Alkvyrwn bmwqf AlsEwdyp?

MT: Why many praised the position of Saudi Arabia?

Reference: Why did many praise the position of Saudi Arabia?

Arabic names, especially names of persons, are often regular words (mostly adjectives

and nouns). Name detection could be used to avoid translating the literal meaning

of names, as is the case in the following example.

(7.4) Source: wmn byn Al$hdA' rA}d fnwnp

MT: Among the martyrs a major,

Reference: Among the martyrs Ra'id Fannunah

Another area of interest is the translation of Arabic dialects. This area has started

gaining increased attention lately, since it presents a number of challenges. The

absence of a standardized orthography of the dialects means that users often improvise

spellings for words, resulting in a lot of inconsistencies. Another challenge, also partly

due to the absence of standardization, is the wide variation within the dialects. The

fact that most written resources in Arabic are in Modern Standard Arabic means

that the amount of data available in the dialects is quite limited. Corpora on the

order of tens of millions of words, such as those used for translating of MT will be

very difficult - if at all possible - to collect. This forms an incentive for developing

methods that can compensate for the lack in volume by relying more on linguistic

knowledge. A relatively large overlap between MSA and the dialects exists, especially
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in the written form, due to the fact that short vowels are not specified in either case.

An interesting research direction would then be the adaptation of the existing MSA

models to the dialects.
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