
PROSODIC FONT
the Space between the Spoken and the Written

Submitted to the Program in Media Arts and Scences, School ofArchitecture and Planning in Partial
Fulfillment of the Requirements for the Degree of Master of Media Arts and Sciences at the

Massachusetts Institute of Technology.

tara michelle graber rosenberger
I.S. Rensselaer Polytechnic Institute 1995

B.A. University of Waterloo 1993

August 1998

Author --

Progam in 1edia Arts and Science/
August 7, 1998

Certified by-
Ronald L. AMacNeil

Principal Research Associate
MIf' AMedia Lahoratory

Accepted by r Apr 4 Fr 6z
VWephen . 'enton "P'

MASSACHUSETTS IdbT4Itfep rtmental Committee on Graduate Students
OF TECHNOLOGY P gram in AMedia Arts and Sciences

la sachusetts Institute of Technology

NOV 3 01998

LIBRARIES

//the SCALAR
public static float SCALAR = BEGINSCALAR; //the number that PERCENTAGES DRAW FROM,

/and scales spacing between letters and everything
//(to allow for overlaps and other interesting things...)

/PERCENTAGES
static float HEIGHT = 01.00f;
static float FULLNESS = 0.80f;
static float WEIGHT = 0.050f;

//scales Vertical statistics
//scales Horizontal statistics
//STEM width, or rather, black weighting of letters

/NERTICAL PERCENTAGES...from top down (except CENTERHEIGHT).
static float BODYHEIGHT = 0.0f;
static float ASCHEIGHT = 0.05f; Ireturns difference from base line
static float CROSSHEIGHT = 0.32f; Idon't change this proportion between CH and XH
static float XHEIGHT = 0.37f; Idifference from base line to x-height
static float CENTERHEIGHT = 0.50f; Ia bit more than half of x height
static float BASELINE = 0.70f;
static float DESCDEPTH = 0.85f;
static float BODYDEPTH = 1.00f;

/HORIZONTAL STATICS...not cumulative
/public static float STEM = WEIGHT;
public static float THIN = 0.20f;
public static float MEDIUM = 0.30f;
public static float FAT = 0.40f;

I/letters like i and I
I/letters like t, f, j, maybe s and r

i/letters like a, b, c, d, e, g, h, n, o, p...
I/letters like m, w, maybe q

LetterGrid){;}

LetterGrid(float multiplier)
this.SCALAR = multiplier;
System.out.println("Lettergrid initialized..."

public float heighto{ return HEIGHT*SCALAR; }
public float fullnesso{ return FULLNESS*SCALAR;
public float weight({ return WEIGHT*SCALAR; }

public void scalar(int num){ this.SCALAR = (float) num; }
public void incScalar(float inc){
if ((this.SCALAR + inc) < 0) return;
else this.SCALAR += inc;

public void reinitScalaro{ SCALAR = BEGINSCALAR; I
public float multipliero{ return SCALAR; I/kept for back purposes only.
public float scalaro{ return SCALAR; }

/y parameter placements scaled from height percentage of SCALE
public float body-heighto{ return BODY_HElGHT*height(; }
public float ascheight({ return ASCHEIGHT*height(; }
public float cross height({ return CROSSHEIGHT*height(; }
public float x-heighto{ return XHEIGHT*height(; }
public float centerheighto{ return CENTERHElGHT*height(; }
public float basejline({ return BASELINE*height(; }
public float descdepth({ return DESCDEPTH*height(; }
public float body deptho{ return BODYDEPTH*height(; }

//width parameter functions scaled from fullness percentage of SCALE
public float stemo{ return weighto; }
public float thino{ return THIN*fullnesso; I

128

PROSODIC FONT
the Space between the Spoken and the Written

tara michelle graber rosenberger

ABSTRACT

The advent of automated speech recognition opens up new possibilities for design of
new typographic forms. Graphic designers have long been designing text to evoke the

sound of a voice saying the words. Some have even used sound to animate word units

within a computational environment. Yet, there is opportunity to use the expressiveness
of a voice, found within the speech signal itself, in the design of basic typographic forms.

These typographic forms would inherently assume a temporal, dynamic form.

Prosody in this thesis represents the melody and rhythm people use in natural speech.
Even unintentionally, prosody expresses the emotional state of the speaker, her attitude
towards whom she's talking with and what she's talking about, resolves linguistic
ambiguity, and points towards any new focus of linguistic information.

Prosodic Font is an experiment in designing a font that takes its temporal form from

continuous and discrete phonetic and phonological speech parameters. Each g/bph - the

visual form of an alphabetic letter - is comprised of one or more font primitives called

strokes. These strokes are placed within a grid space using two of four possible basic

constraints: independence or dependence, and simultaneity or consecutiveness. Over time and in
systematic accordance with parameters from a piece of speech, these stroke primitives
transform shape, size, proportions, orientation, weighting and shade/tint.

Prosodic Font uses a combination of machine and human recognition techniques to

create text descriptions of prosodic parameters from a sound corpus developed expressly
for this thesis. The sound corpus is excerpted from two speakers - one male and one

female - who are telling stories about four different emotional experiences. Because

affective extremes produce prosodic extremes, the corpus involves great prosodic variety

and voice range.

According to preliminary user testing results, people are able to identify systems of

graphic transforms as representative of systems of prosodic variation. I found that

rhythmic variation and variations in vocal stress are extremely important in peoples'

ability to match Prosodic Font files to speech audio files.

Thesis Supervisor: Ronald L. MacNeil
Principal Research Associate

MIT Media Laboratory

This work was performed at the MIT Media Laboratory. Support for this work was provided by the National
Endowment for the Arts, the Digital Life and News in the Future corporate sponsor consortiums. The views

expressed herein do not necessarily reflect the views of the supporting sponsors.

Masters Thesis Committee

Thesis Advisor
Ronald L. MlacNeil

Principal Research Associate
MIT Media Laboratory

Thesis Reader Qz
Stephanie S eff(

Principal Research Scientist
Laboratory for Computer Science, MIT

Thesis Reader
Maribeth Back

Creative Documents Initiative
Sound Designer

Xerox Corporation @ PARC

CONTENTS

Abstract 2

Masters Thesis Committee 3

Contents 4

Acknowledgements 6

Introduction 7

Motivation 12

1. Why do this at the Media Laboratory? 13

Background 14

2. Prosody and Affect 14

2.1 Feature Set 16
2.1.1 Song 16
2.1.2 Rhythm 22

2.2 Techniques in Feature Identification 24
2.2.1 Intonation 24
2.2.2 Pitch Range 26
2.2.3 Duration Patterns 27

2.3 Models of Prosody 28
2.3.1 Auto-Segmental Metrical School of Phonology 28
2.3.2 Phonetic Models of Prosody 29

2.4 Discourse and Affective Function 31
2.4.1 The Emotional Speaker 32
2.4.2 Syntax, Information Structure, and Mutual Belief 33

3. Typography 34

3.1 Typographic Style 36
3.1.1 Perception of Glyph Balance and Proportion 37

Prosodic Font Design 41

4. Typographic Design System 41

4.1 Four Stroke System 41

4.2 Expanded Stroke System: Consecutiveness/Simultaneity and Dependence/Independence 43

5. Prosodic Features 48

5.1 Speech Corpus Development 48

5.2 Labeling Prosody in Speech 49
5.2.1 Tilt Phonological-Phonetic System 49

5.2.2 Linguistic Labeling 51
5.2.3 Phonemic Realization 52
5.2.4 Voice Quality 53

6. Mapping Relationships 53
6.1 System Design 54
6.2 Parameter Match Appropriateness 54

Results 58

7. User Test 60

RELATED Work 62

Future work 64

Appendix A: Tilt File Example 66

Appendix B: Word File Example 68

Appendix C: Font File 71

Appendix D: Questionnaire 72

Appendix E: Prosodic Font Code 73

Bibliography 131

ACKNOWLEDGEMENTS

Many people share in the credit of everything good that comes of Prosodic Font. All
mistakes are, of course, my own responsibility.

Certain colleagues at the Media Lab were collaborators and innovators in the course of
my study. To these people who took the time to develop an ongoing intellectual,
aesthetic conversation with me, I thank Janet Cahn, Kevin Brooks, Dave Small, Stefan
Agamanalis, Brygg Ullmer, Peter Cho, Pushpinder Singh, Maggie Orth, Arjan Schutte,
Phillip Tiongson, Nick Montfort, Tom Slowe, and Max VanKleek, my amazing and
talented UROP. Thanks to Bill Keyes, Fernanda Viegas, and Tim McNerney, for the
camaraderie during our short-lived internship in IG. Special thanks to Kevin Brooks,
Maggie Orth, Nick Montfort, Laurie Hiyakumoto, Janet Cahn, Bill Keyes, and Richie
Rivetz for contributions made to this Prosodic Font work.

Many thanks are due to Ron MacNeil, a designer and my advisor for two years at the
Media Lab, for not only allowing me to think and plan in abstract, wild terms, but for
encouraging me to widen the purview of any stake I resolutely planted. Ron gave me
freedom to learn and research.

Stephanie Shattuck-Hufnagel and Samuel J. Keyser placed me on my feet initially in the
vast and overwhelming field of prosody, rhythm and intonation. Stephanie Seneff was
instrumental in helping me focus the work and understand arcane technicalities involved
in speech recognition. Maribeth Back directed me towards a body of literature that dealt
with mapping relationships between sound and image, as well as inspired me with ideas
of Prosodic Font instruments. Suguru Ishizaki's own design work and feedback at

nascent points in Prosodic Font work focused and motivated me.

Glorianna Davenport and Justine Cassell welcomed me into their respective research

groups at various points and gave me the benefits of their creative and scientific
perspectives. John Maeda taught me the conceptual and technical tools in his new
course, Typography, that enabled me to write Prosodic Font.

My love and appreciation to Mom and Dad, for continuously putting my life into
perspective during the most difficult and busiest of times. Your gifts to me are more than

I can ever realize.

And to Samarjit, who transformed my thesis experience and my life, my love.

INTRODUCTION

When most words are written, they become, of course, a part of the visual world. Like most of the
elements of the visual world, they become static things and lose, as such, the dnamism which i so
characteristic of the auditory world in general, and of the ipoken word in particular. They lose much of
the personal element.. They lose those emotional overtones and emphases... Thus, in general, words, by
becoming visible, join a world of relative indifference to the viewer - a word from which the magic 'ower'
of the word has been abstracted.

Marshall McLuhan in The Gutenberg Galaxj (1962), quoting J.C. Carothers, writing in
Psychiaty, November 1959.

Compared to the rchness of speech, writing is a meager system. A speaker uses stress, pitch, rate, pauses,
voice qualities, and a host of other sound patterns not even vaguely defined to communicate a message as
well as attitudes and feelings about what he is saying. Writing can barejy achieve such a repertoire.

Gibson and Levin, from the Pspchology of Reading (1975).

This thesis is about writing. Or rather, what writing might become when one is writing
by speaking. What does the introduction of software that can translate speech into
written symbols do to the nature of writing, of reading? Does the message itself, the
written object, change in appearance from what we now know, and from what it appears
to be at first glance? Does it encode just the words that we write now by hand? Or does
it also encode the emotional overtones, the lyric melody, the subtle rhythms of our
speech into the written symbology? What, then, does typography become?

1 Prosodic Font i a
------- ---- --i AloihiII I Algorithmic u

Speech |i Description 1
Recognizer + t

w- + Speaker Model
Prosody i Description -
Recognizer | + 1

L---- ______---- --- Speaker's Font
' Preferences I l)

Figure 1: A system overview of aprosodicfont system. A ipeech recognizer paired with prosody' recognizer
fieds descrptions of the voice signal and words uttered into a Prosodic Font. A Prosodic Font is an abstract
description of letterjrms with algoithmsfor motion. It uses a descrntive vocal model of the particular
ipeaker, developed over time. A ipeaker might also make certain aesthetic decisions, such as basicfbnt
shapes and colors, about prosodic font appearance through a graphic user interface.

Prosodic typography uses the active recognition of speech and prosody - the song and
rhythm of ordinary talk - in the design of a font. Further, the temporal and dynamic

characteristics of speech are to some extent transferred to font representation, lending

written representations some of talk's transitory, dynamic qualities. A prosodic font is

designed for motion, not static print. Prosodic typography is the electronic intervention

between speech and text. It represents the contextual, individual aspects of speech that

printed typography does not capture.

Prosodic Font is a project that explores what becomes possible when speech recognition

merges with dynamic forms of typography. Already, writing is no longer a kinesthetic

exercise, but a vocal one. Next, speech recognition will recognize not just the word itself

but how the word was said, and how long it lasted, and how quickly the next word

followed. Even vocal events like inhaling and exhaling, sounds which are particularly

explosive, and speech errors like words left only half-begun can have visual correlates.

These prosodic characteristics can be mapped onto the structural architecture of a

letterform, called a glyph. In this dynamic context, word presentation adopts some of the

temporal quality of speech, adopting a temporal word by word presentation rather than

having them appear as beads on a visual string.

Text has long been considered one of the least rich mediums of communication, face to

face conversation the richest because it involves speech, facial expression, gesture and

temporal forms (Daft and Lengel, 1987). Non-rich forms of communication admit

greater ambiguity into the cycle of interpretation between people; hence, richer forms of

communication are the preferred modes of interaction in highly volatile business

communications, as well as intimate personal relationships, where subtle innuendoes are

read deeply by participants. By introducing prosodic expression indications into textual

written form, text as a medium may develop greater communicative richness. A prosodic

font would be situated in the continuum of rich mediums between telephony (voice

alone) and textual communication as we currently understand it.

Speech is a medium of emotional communication as well as a medium of semantic

communication. After the face, vocal inflection is the second-most modality expressive

of emotion we possess (Picard, 1997). Research into emotion and speech has found that

people can recognize affect with 60% reliability when context and meaning are obscured

(Scherer, 1981). Humans can distinguish arousal in the voice (angry versus sad) but

frequently confuse valence (angry versus enthusiastic). Scherer believes this confusion

would be mitigated with contextual features (1981). Because the voice is a vehicle of

emotional expression with measurable - and often continuous - vocal characteristics, a

prosodic font can use these continuous vocal measurements in the design of temporal

typographic forms. Writing a Prosodic Font with one's voice assures that the current

emotional state one has will be invested into the font representation. Each mark, each

letter would be signed by the author's current emotional tone of voice.

The concept of voice has been used to symbolize the externalization of one's internal

state. To have voice within feminist and psychoanalytic literature is to have power, agency

and character. This metaphor of voice derives from our experience of producing sound,

an act of making what is internal - the air in our lungs - an external, public object. Voice

is an act of expression that moves what is internal, private and undifferentiated into an

external, public and particular environment. Unlike a static font, a prosodic font does not

forget the instant of emergence from the body. The prosodic font captures the

emergence and unfolding of sound from the body, recording also the physical part of

communication that has not had a place within textual communication.

S

S H

Fgure 2: Frame selectionsfrom a Prosodic Font performance of ipeaker saying angrily, I'm not working
for my own education here."

MOTIVATION

The motivation for creating a prosodic font comes from a number of current disciplinary

trends: the too narrowly focused research in speech recognition, design for

computational environments, and a growing need for richer and transformational

communication mediums in the increasingly casual Internet traffic.

Some designers today have embraced computer technology and code as the very medium

they work with, like paints and canvas. Computers allow the exploration of forms and

mediums that have heretofore not existed. I consider prosodic font work to contribute to

this exploratory design. I ask, "How can the letters of the English alphabet be

represented, differentiated and animated? When the exchange of text occurs through a

computer interface rather than a non-electronic paper interface, how can the nature of

font representation change? What additional information can a font convey when the

font represents a speaking voice rather than a hand-manipulated pen?"

Trends in speech recognition and synthesis have been narrowly focused upon

recognizing semantic word units only. The influence of prosody upon the interpretation

of semantics and speaker intention has been neglected. Furthermore, research in prosody
recognition proceeds largely outside of and separate from speech recognition research

efforts. Commercially available speech recognition packages do not even consider that
third party developers might be interested in something aside from semantic content.

IBM's Via Voice and DragonSpeak's Naturaly Speaking do not include external code

libraries to permit third party developers to further process the raw speech signals.

Speech recognition is largely a black-boxed procedure. Although this state of affairs is a

testament to the difficulty of prosody recognition and interpretation, this may also be

attributed to the fact that there are few compelling applications that use prosody and

vocal expression in conjunction with semantic speech recognition. Prosodic Font can

begin to demonstrate the commercial viability of corporate prosody and speech

recognition, widening the scope of what qualifies currently as speech recognition.

Prosodic Font contributes to the field of speech generation by developing discrete

textual descriptions of emotionally charged segments of speech. This work points to

prosodic features of interest, and how one might describe them in text.

Prosodic Font could also be useful to researchers in prosody and speech as a tool to help

recognize and identify prosodic and voice quality variation. Currently researchers learn

how to read prosodic variation from sequences of numbers and spectrograms of speech

data. Prosodic Font could be visual, temporal tool to help researchers identify the

success or failure of the algorithms they develop to extract prosody and affective features

from speech.

Prosodic fonts are becoming a social need. Writing has seldom been used as a

communication medium in environments in which people are spatially co-located,
sometimes even in neighboring offices. The influence of electronic mail has made writing

a tool of everyday management, conversation, and even romantic courting. Yet, writing

email is done differently than writing on paper has been done (Ferrara, Brunner, and

Whittemore, 1991). The email register (i.e. "tone of voice") is decidedly more informal,

even shorthand-ish, than writing that is used in other written contexts. This informal

register, added to the lack of richness and the level of spontaneity that the email medium

allows, has led to many terrible misunderstandings between people where the writer's

intent has been judged to be much different than that which the writer intended. In face-

to-face conversation, prosody is central among human communication tools for

conveying psychological-emotional state, intentions, and the point of information focus.

When writing provides little context for the hapless reader, such as in email, there is a

need for speaker's intention and emotional state cues to be provided along with the

semantics of the message.

In the world of portable technology, there is a need for seamless translation between

mediums such as voice and text, depending upon the sender's and recipient's current

social needs. A prosodic font provides such an interface that does not compromise an

audio message to the extent that semantic speech recognition would. Further, a prosodic

font's design potential for emerging through time might be easily adapted to very small

displays. For example, imagine you are ensconced within a formal situation that should

not be interrupted, such as an important business meeting. You receive notice through

one of your portables that someone important to you has sent you a message. You want

to hear it, but you don't want to risk interrupting the meeting, nor do you want others

around you to hear your message. You select "visual" output. The message plays in a

prosodic font, reflecting the sender's tone of voice, rhythm, loudness, and forcefulness in

the systematic movement of the syllables over time. You can see in the words how the

sender expresses emotion vocally, and you understand more deeply what she meant to

convey to you by seeing how the words change relative to each other. In this way,
translation from audio to text may occur without losing speech information. The written

message is individual, contextual and expressive.

1. WHY DO THIS AT THE MEDIA LABORATORY?

Arriving at the concept of prosodic typography is a product of having been at the Media

Laboratory and stepping into the midst of many streams of research that flow within the

same channel here. The on-going work in prosody, affect, and design of textual

information, in addition to the unique convergence of creativity, science and technology

has made it possible to dream about prosodic type.

This work builds upon work completed in the Visual Language Workshop (VLW).

Researchers and students designed computer interfaces to textual information that

involve many notions of time. It is VLW students, particularly Yin Yin Wong, who

transferred the idea of Rapid Serial Visual Presentation (RSVP) to message design. The

Aesthetics and Computation Group (ACG), chasing Professor John Maeda's vision of

how computer technology transforms design, is an intoxicating trajectory with no clear

ending. Janet Cahn's work in emotive, intonational speech generation - and Janet Cahn

herself - have provided me with direction into an amorphous and distributed body of

prosody and emotion literature. And, lastly, the spirit of curiosity and art that envelopes

even the most scientific of inquiries here has allowed me to learn the technical skills I

needed to accomplish this work.

BACKGROUND

Prosodic Font draws upon work done in phonetic and phonological linguistics research.

In particular, I use the work of auto-segmental metrical phonologists who believe that

intonation and prosody are not linguistic systems per se, but that the stream of prosody

can be understood in linear segments. The Prosody and Affect section thus draws a

distinction between linguistic and paralinguistic speech features, how we might locate

paralinguistic features perceptually and computationally, and communication.

Typographic History describes the historical features of typographic space and perceptual

issues of font design. I discuss the migration of some of these historical graphic features

to temporal design, and introduce new features.

2. PROSODY AND AFFECT

The current task of speech recognition is only to decode the orthographic representation

of phonetic sound units. Prosodic Font requires the linguistic function of language only

insofar as obtaining the orthographic representation. Prosodic Font's focus continues

beyond to that of prosody - the paralinguistic features of speech that convey a

multiplicity of emotional, informational and situated meanings.

Prosody is a paralinguistic category that can describe the song - or intonation, rhythm, and

vocal timbre (or voice quality) found in all spoken utterances of all languages. Prosody

functions above the linguistic function of language, meaning, prosodic meaning does not

bear a one-to-one relationship to semantic meaning. It is a non-arbitrary use of vocal

features to convey the way we feel about what we are saying, as well as how we are

feeling when we say anything. A number of primitive features interact within any spoken

utterance to create a uniquely phrased and emphasized utterance. A spoken utterance,
then, conveys two simultaneous channels of communication - the linguistic and

paralinguistic. Written language represents the linguistic channel. Prosodic Font goes

further to represent the paralinguistic channel on top of the visual linguistic

representations.

Dr. Robert Ladd describes the coordination of the paralinguistic and linguistic:

"The central difference between paralinguistic and linguistic messages resides in the quantal or categorical

structure of linguistic signalling and the scalar or gradient nature of paralanguage. In linguistic signalling,

physical continua are partitioned into categories, so that close similarity of phonetic form is generally of no

relevance for meaning: that is /th/ and /f/ are different phonemes in English, despite their close phonetic

similarity, and pairs of words like thin and fin are not only clearly distinct but also semantically unrelated.

In paralinguistic signalling, by contrast, semantic continua are matched by phonetic ones. If raising the

voice can be used to signal anger or surprise, raising the voice a lot can signal violent anger or great

surprise. Paralinguistic signals that are phonetically similar generally mean similar things.... The difference

between language and paralanguage is a matter of the way the sound-meaning relation is structured" (1996,
p. 36).

Defining prosody is a difficult and contentious task since there is no common agreement.

Further, each discipline places different vocal features into the prosodic feature set.

Computational linguists and speech communication researchers identify intonation and

prominence as the major prosodic feature set items, while poets and poetry critics

associate prosody with rate of speaking and metrical rhythm. Experimental psychologists
have studied vocal prosody for how it can inform research on emotion. Some findings go

so far as to integrate prosodic parameters of voice quality, range, and speaking duration

differences along axes of emotion; however, there are fundamental disagreements about

how emotional space is defined. Some anthropologists have looked at how vocal timbre

changes across context, building upon the work of linguistic anthropologist John

Gumperz in contextualized vocal prosody (1982). Yet this work is not complete nor

systematized.

Not only is the definition and what constitutes the prosodic feature in question, but the

basic function of prosody within and across languages is in dispute. Prosody may have

universal import to humans, irrespective of which language is spoken. The universality of

prosody is often borne out in psychological tests in which subjects identify the primary

emotion in a voice speaking a language unknown to them (Scherer 1981). Intonational
phonology's primary goal is to discover the universal functions of prosody. On the other

hand, linguists often subjugate prosody to the status of a linguistic amplifier, believing

that prosody is used by speakers to foreground certain linguistic items introduced into

the conversation, amongst other things.

The field of prosody varies across three dimensions:

Affective versus Syntactic Ontology: those who hold that intonation and patterns of

prominence developed as an extension of grammar and discourse structure versus those

that believe prosody has non-linguistic roots in affect and emotion that develop in

conventionally understood ways, dependent upon sociological and linguistic factors.

Phonetic versus Phonological Goals: those who use low-level descriptions of the voice signal

versus those who characterize the signals in universal terms that enable comparison and

generation of phonological rules across individual speakers' production. (Another way of

describing this difference is low to mid-level descriptions versus high-level descriptions.)

Linear versus Layered Descrptions: those who believe that prosody is constructed of a linear

sequence of events versus those who believe that prosody consists of layers of signals of

greater or lesser range which interact to produce a composite effect.

My approach to Prosodic Font involves a combination of approaches. Prosodic Font

uses low- to mid-level signal characterizations of voice in order to represent individual

differences between speakers. However, these events are understood as linear sequences

of meaningful events in order to capture the emotional intention of the song and rhythm

apart from the pronunciation requirements of particular words. This serves to smooth

the low-level signals and foreground higher level changes and trends. For example,
Prosodic Font does not represent the spectral differences between an /a/ phoneme and

an /i/ phoneme, but it would represent a general increase in volume and fall in pitch.

Prosodic Font does not require that speech be labeled as an instance of any categorical

emotion or syntactical construction. Although vocal characteristics of some basic

emotions have been identified, correctly identifying affect in a voice signal is fraught with

the potential of mis-identification. To avoid this, I built Prosodic Font with an implicit

understanding that prosody functions primarily as an instrument of emotional

communication, but the best way to represent affect is to use interpretations of low- to

mid-level voice signals.

Prosodic Font is interested in more speech data than is currently described in most

syntactical, linguistic research. Casual speech is not often used as an object of analysis. As

such, speech errors such as false starts and mispronunciations, non-linguistic

exclamations and the like are not described as significant events in syntactic research;

whereas, Prosodic Font would find these meaningful, expressive vocal events. Certainly,
if Prosodic Font were ever generated from text, syntax and discourse structure would be

central as it is in speech generation. But in terms of speaking Prosodic Font, syntax

emerges as a by-product of a speaker using proper grammatical forms. Syntax, per se,
does not affect the visuals.

Prosodic Font assumes that people intuitively understand intonation as a relative system

of contrasts and similarities, and that people will still understood the semantic intention

of prosody if the parameters that comprise its system are mapped onto a completely

alternative medium. This assumes that there is nothing essential or hard-wired about

people's use and understanding of sound, except that it is an extremely flexible

instrument particularly well-suited to a system as elastic and diverse as prosody. Hence, if
there were a correspondingly flexible medium, such as computational fonts, there could

be many mapping relationships established between the parameters sets that would be

expressively meaningful to readers. This assumes a competency on the part of readers,
that they can and will be able to read and understand the prosodic relationships conveyed

via fonts. It also assumes a competency on the part of the font designers, speech and

prosody recognition systems, that they will select signals to map and mapping

relationships that implicitly have semantic, expressive, and affective meanings to people.

First, I define the prosodic feature set, in terms of song and rhythm. Secondly, I describe

the perceptual and computational techniques for finding these features within

spontaneous speech. Next, I describe methods of describing prosodic features according

to relevant theories within the phonetic and phonological fields, and specify which ones

are most productive in a Prosodic Font context. And finally, I review provocative

functions of prosody; and argue that prosody must be understood first as a situated,
emotional expression that interacts closely with linguistic structure.

2.1 FEATURE SET

2.1.1 Song
Song designates those prosodic features that are centrally involved in the production and

perception of tone and pitch. These features are the intonational contour, pitch accents

and final phrasal tones, as well as pitch range.

2.1.1.1 Intonation

Intonation is the psychological perception of the change in pitch during a spoken

utterance. It can also be called the tune of an utterance. Intonation is the perception of

the physical signal, fundamentalfrequeng (FO). FO is a measurable signal produced of voiced

speech, a glottal vibration such as evident in the phone /v/ as opposed to the unvoiced

phone /f/. The excitation for voiced speech sounds is produced through periodic

vibration at the glottis, which in turn produces a pulse train spaced at regular intervals.
This is the source of the perceived pitch.

Intonational Curve
=3

E
C S He w on't b e going will he

Time

Figure 3: The intonation, or tune, of the utterance 'He won't be going will
he " is represented here as a continuousy curved line.

Intonation occurs in units called intonationalphrases. The intonational phrase can be

distinguished by the presence of an ending tone that signals its closure and by a duration of

silence that follows the utterance. The duration of the silence and the height or depth of

the ending tone that follows an intonational phrase may be indicative of the intended

strength of the ending (Ladd, 1996) or a speaker's intention of continuing (Pierrehumbert
and Hirschberg, 1990). The ending tone, or bounday tone, forms a tonal tail on the utterance

that is high, equal, or low relative to the utterance.

Boundary Tone

a)

E
0 He won't be going will he
C

Time

Figure 4: The ending tone, or boundary tone, of the intonationalphrase
falls approximatejy within the circled region.

Intonation in particular, relative to other prosodic features, can convey very fine shades

of meaning. Intonation researcher Dwight Bolinger defines intonation as, "all uses of

fundamental pitch that reflect inner states..." (1989, p. 3). There is evidence that speakers

intone with a high degree of precision. Subtle intonational changes can radically affect

the hearer's interpretation of the words, as well as provide a window onto the speaker's

affective state. Three examples illustrate this difference.

1 2

You might have told me. You might have told me.

Figure 5: The intonation of 'You might have told me" can imply indignation left to
doubt ight. Example after Bolinger (1989).

High 1 2 3

C

oH e I I o
0

Low H e I I o

Figure 6: The common greeting 'Hello " can convey ipeaker mood and intentions in a very short linguistic
sound-unit. The examples might be interpreted as such: [1] cheeg; [2] a reponse to an initial sexual

attraction; and [3] expressing indifference, or no desire to continue the social meeting.

High 1 2 3 4

Q)

0)
m mmmmmhhmmm

mmmmhmm

Low m m m h m m

Figure 7: Intonation is independent enoughfrom linguistic structure to imply distinct affective meanings even

when accompanied by a non-linguistic sound-unit "nmmhmm " Non-linguistic sound-units are often used as

a backchannel comment from hearer to ipeaker, to give feedback while the other holds the conversational
floor. Affective-semantic meanings might range from intepretations of [1] vgorous agreement; 2] confusion;

3] final comprehension; [4] boredom and disdain.

An intonational phrase does not imply any degree of well-formedness. For example, if a

person stops suddenly during an utterance - even half-way through a word - and begins

again on a different subject, or coughs or burps, the presence of silence should be

sufficient reason to mark the end of an intonational phrase. Therefore, an intonational

phrase is not beholden to any syntactical-grammatical notion of completeness or well-

formedness. And, in fact as we shall see later, vocal disturbances and so-called speech

"errors" can be revealing of the speaker's affective state. Hence, Prosodic Font should

seek to convey these non-linguistic vocal sounds as well as the linguistic.

2.1.1.2 Pitch Accent

During the course of any utterance, a speaker speaks certain syllables with greater

prominence than others. There are two kinds of prominence within English, lexical

prominence and prosodic prominence. Lexicalprominence is the preferred placement of

accentuation within any given word item, as in the citation form of /LEX-i-cal/. Lexical

prominence is often called syllabic stress, or just stress. Prosodic Font addresses lexical

stress as an element of rhythm.

Prosodicprominence is created through intonational contours; hence, it is an accent

conveyed as an aspect of the utterance's tune. It is also called intonational accent, pitch accent,

or just accent. Accent is placed upon syllables that are often, but not exclusively, found

within the class of lexically prominent syllables.

A pitch accent is achieved through distinctive changes in the FO contour. These changes

can be classified as either High or Low. A number of prosodic features often coincide

with an accent, such as increased duration, increased loudness, and vowel fullness (i.e.

not reduced phonetic form).

Intonational Pitch Accents

V 0_

2 He won't be going will he

] Pitch Accent Segment Time
X Pitch Target

Figure 8: This utterance contains three high pitch accents. Notice the
diference in the relative height, or prominence, given the accents. Prominence
levels are hypothesized to indicate the relative salience of a word within an
utterance.

Bolinger defines accent as "...intonation at the service of emphasis.... [I]t makes certain

syllables stand out in varying degrees above others, revealing to our hearer how

important the words containing them are to us, and revealing also, by the buildup of

accents, how important the whole message is" (1989, p. 3). Ladd defines accent as an

independent linguistic element, treating fundamental frequency as "the manifestation of

an overarching structure in which elements of a tune are associated with elements of a

text in ways that reflect the prominence relations in the text. A high FO peak is no longer

seen as a phonetic property of a prominent syllable, but as an element of the

phonological structure of the utterance, on a par with the prominent syllable itself'

(1996, p. 55). An accent selects out a particular word over other words, revealing the

speaker's communication intention through the relative selection, as well as the relative

forcefulness of the accent. Any word, irrespective of syntactical class, can bear an accent,
depending on the speaker's intention.

Pitch accents can be produced and perceived through very subtle changes in intonation.

Humans can perceive tonal changes as small as .3Hz to .5Hz, and rates of linear rising or

falling slopes near 0 (Grandour, 1978). However, Bruce found evidence that it is pitch

target level, and not amount of pitch displacement, that is perceptually most important

(1977). This would insinuate that there are specific tonal sequences that have innate

heightened meaning for humans. Rises and falls could be understood as smooth

transitions from one "highly specified" peak accent to another. Ladd writes that for the

same utterance, speakers control pitch accent targets with low standard deviation.

Therefore, exact pitch levels achieved may be perceptually meaningful to hearers (Ladd,
1996). However, work on pitch target levels is descriptive: researchers can only observe

pitch levels produced rather than have subjects predict which pitch they intend to

produce. Describing a propensity towards a particular pitch differential is not an

intentional target, but an observed effect.

The debate about pitch target levels is very important for a system such as Prosodic

Font. If pitch target levels themselves are more meaningful than the difference between

specified tonal points - and the slopes of change between them, then prosody is

inherently a vocal, auditory system. As such, prosody could not be mapped onto another

medium, such as a visual spatial medium, and convey the auditory system of meaning. In

contrast, phonology believes that prosody can be extracted from any particular pitch as a

system of pitch contrasts. It is doubtful that pitch target levels are the sole, or even

central, point of prosodic meaning. Therefore, Prosodic Font might use prosodic

variation systematically within a visual spatial medium to convey prosodic meaning.

Accentual prominence can be used to pull out a single word for purposes of contrast and

comparison (eg. "emphatic" accent), or to focus attention over an entire phrase. The

difference can be understood from the following joke. A Reporter and a notorious Bank

Robber have the following exchange as described in Ladd (1996):

Reporter "Why do you rob BANKS?" 1

Bank Robber. "Because THAT's where the real MONey is."

The reporter wanted the robber to interpret the accent on banks as a phrasal accent, or

broad accent. This would require the Bank Robber to speak of the philosophical origins

of his thieving behavior. The Robber chose instead to interpret the accent on "banks" as

an emphatic rather than broad accent, which instead means something like "why banks and

not clothing stores?" There is little evidence as of yet that the differences in these accents

are evident physically, or whether they are a product of some shared discourse plan. My

point in discussing this example is to show how delicate a task is the representation of

prosody in spontaneous speech, since such vast interpretive differences are possible and

common. Any prosodic coding schema must attend to the details of accentual

prominence. And any application using prosody would be wise to keep the

communication within context.

2.1.1.3 Pitch Range

The normal speech pitch range for both male and female speakers falls between 70Hz

and 450Hz, approximately. Pitch range varies dramatically across men and women

speakers, due to physiological differences. Yet, men lower and women often heighten the

normal range in which they speak in a manner that is not accounted for by mere

physiological differences in order to accentuate their gender identity (Olsen, 1975; Sachs,
1975). In addition to physiological and cultural-gender differences, some people have and

use a much wider range than others. Kagan et al. correlated wider variation in pitch with

extroverted as opposed to introverted personalities (1994). Lastly, emotion-or more

broadly-affect, lifts or depresses a person's entire speech range. Therefore, the range

evident in one person during one intonational phrase may not be the range of an

intonational phrase that follows; likewise, differences in pitch range across people is vast.

I Capitalization in all examples is meant to indicate intonational prominence, a function of tune target point achievement. It is

in not meant to indicate that accented syllables are louder than non-accented syllables.

H

H

H
M

C

M M

c

L

L

L

Normal Increased span Raised level and increased span

Figure 9: A schematic of an individual's vocal range normay, during periods of

greater intonational emphasis (along the affective dimension of strength), and
duing a heightened emotional experience such asfear or excitement. Figure is
after Ladd (1996).

Grandour and Harshman conducted studies on tone and range perception and found

that for English speakers, average pitch and extreme endpoints were the most salient

perceptual features; while for speakers of tone languages (e.g. Thai and Yoruba) direction

and slope proved most salient. For all subjects, the pitch perceptual space is curved, such

that a very high tone and a very low tone are more similar than two different medium

level tones (Grandour 1978). Whatever curvature exists within tonal perceptual space

would need to mapped onto visual space as well. In this way, high and low tones are

both more unusual than medium tones, and need to be non-linearly moreprominent than

medium tones.

Pitch range does appear to be perceived in a large-scale segmented manner. Speakers use

high and low ranges to different semantic effect. In Ohala's ethology-inspired "universal

frequency code," high pitches convey smallness and attitudes of defenselessness while

low tones convey dominance and power (1983). Other semantic codes suggest that the

cry performed from birth begins a long association of vocal tension and heightened

arousal with rising pitch, and that calm and relaxation becomes associated with lower

pitches.

As an accompaniment to discourse structure, pitch range expands and contracts, raises

and depresses. When speakers begin a new topic, their pitch range expands; conversely,
when speakers are drawing to the end of an intonational phrase, their pitch range

compresses. There are two representational methods of accounting for this: the

declination model which accounts for the lowering in a continuous linear fashion (Collier

and t'Hart, 1981, as represented within Ladd, 1996) or a categorical, step-wise manner

that also demonstrates the tendency for pitch accent targets to diminish proportionally

across speakers (Bruce, 1977; Pierrehumbert, 1980).

Declination or Categorical

C:

He won't be going will he

Time
Declination theory
DownStep theory

Figure 10: Compaison of models ofpitch range, a continuous linear pitch
range depression called "declination" versus categorial, step-wise depression of
pitch range during the course of an utterance. Declination isfalling into
diifavor as an account ofpitch depression during any utterance.

The Prosodic Font does not use any inherent notion of declination since no theory can

aid with identification. More productively, I use target accent, duration, and syllable

offsets that I introduce in the following Rhythm section to account for the pitch range

instability.

2.1.2 Rhythm
Rhythm is the product of interaction between a number of low-level prosodic features,
including: loudness of particular phonemes as well as syllables; duration of phonemes,
syllables and silence; and the temporal offset between the high or low of a pitch target

accent and the onset of the syllable's vowel.

Research into spoken rhythm has been handicapped by too close an attention to word

citation form, ignoring the study of rhythmic structure within natural language. As such,
the tools for prosodic rhythmic description are similar to those from formally structured

music (Lerdahl and Jackendoff, 1983) in which a strict metrical division is observed.

However, spoken rhythm has no strict notion of metrical divisions that can be

understood in clock-time. And even musical performance involves stretching and

compressing of the specified rhythm. Although the theoy of rhythm has been well

documented in circles from poetry to linguistics, the performance of rhythm has not.

Bruce and Liberman conducted informal experiments into rhythmic performance in 1984

(as reported in Beckman, 1986). They had subjects read phrases as rhythmically as

possible and found that the stressed syllables were much longer than their unstressed

varieties. They also found that the interfoot intervals "were no more isochronous than in

'normal' readings" (Beckman, 1986, p. 93). Prosodic Font requires a higher level

understanding of rhythmic performance in order to represent the rhythmic intention

rather than side-effects of phonetic pronunciation requirements. How to develop

abstractions of metrical unit from the performance of spoken rhythm is the question.

This might involve methods of normalizing the differences in time required to produce

certain phonemes as opposed to others, applying rhythmic changes non-linearly such that

very fast speech is not as visually fast, or allowing "hearers" to control the speed of visual

playback.

2.1.2.1 Stress

Stress is a sub-category of prominence, and is the rhythmic counterpart to intonational

prominence, the pitch accent. Stress is created through effects of duration, loudness (the

perception of the physical property of amplitude), and the full or reduced perception of

vowel quality. Duration and loudness are independent variables. Duration is the amount

of time from the onset of the syllable to the onset of silence, or the onset of another

syllable. Loudness, although a perceptual quality, is treated here as the direct measurement

of speech amplitude. Often the placement of stress accords with a word's citation form,
but can shift due to, at least, aroused emotions (Bolinger, 1972) and sentence placement

(Beckman, 1986).

Citation Form Lexical Stress

w S S W

p e r m it p e r m it
noun verb

F~ure 11: s = strong, w = weak. This method of demonstrating citation

form stress patterns shows the difference between one of the very few
rlythmicaljy differentiated word pairs in English.

Linguist Mary Beckman specifies three forms of lexical stress patterns in English:

primary accent (full stress), secondary accent (an 'unstressed' full vowel), and tertiary

accent (a reduced vowel) (1986). Primary accent is the combined syllabic effect of the

prosodic features duration and loudness. Secondary and tertiary stressed forms are

differentiated only on the basis of vowel quality, full or reduced. Full vowel form is based

upon the phonetic understanding of the citation form of the word. Reduced vowel form

is a result of the vowel in citation form changing toward a more central, neutral vowel.

High Tongue Front Back Round Lips

"bit" U "moon"

e 0 -

"mitt" U "foot"

"chaotic" e2 o2 "rowing"

"bed" E 0 "jaw"

a 0 "father"
Low Tongue Open Lips

Figure 12: Thisfiatures the International Phonetic Alphabet Table of English Vowel Space. Next

to the phonemes are the English words that, in ipoken/brm, use the phoneme. In reduced form, a
citationbrm phoneme effectivey becomes another phoneme. After Moriarty's Table of Vowel

Sounds (1975).

Pitch Target Accent and Vowel Offset

vowel accnt
(D target

E
millisecond
diifference

/u//m

/bM

b o o m

time

Figure /3: A single onomatopoeia, "boom" illustrates the temporal dela between the onset of the

accented syllable's vowel and the target pitch achieved in the accent. The offset between the vowel

and target pitch may be reversed (not shown), when the vowel onset occurs well after the pitch

target is achieved. Furthermore, the offset between vowel onset andpitch accent is still interesting
when the pitch accent is low (not shown) as opposed to the high accent shown.

A Prosodic Font must have an understanding of at which point in the syllable the pitch

target was achieved, and not just that a pitch target was achieved during a particular

syllable. Imagine that a good friend is telling you a story she is very excited about. She

gets to the part when she imitates a large explosion, "BOOM!" she says with a wild wave

of her hand. Her intonation of the word starts from the bottom of her vocal range and

flies to the top and back down again. Ladd points out that a unique feature in the

description of a pitch accent is the rhythmic offset of the onset of the vowel from the

pitch target achieved (1996). This temporal delay is used to dramatic effect.

2.2 TECHNIQUES IN FEATURE IDENTIFICATION

2.2.1 Intonation
Intonation is only present during voiced events. Voiced phonemes are created by

vibrating the glottal folds while air is moving out through them. Unvoiced phonemes are

created without glottal vibration. The difference between a voiced and an unvoiced

phoneme, respectively, is the one of the differences evident between the minimal pair,

/f/ and /v/. Unvoiced consonants and whispers have no tune and no intonational

contour.

The intonation of an utterance is created through tracking the undamentalfrequeng signal

of the voice. Fundamental frequency is a product of voiced sounds, of vibrating the

glottal folds during vocalization. Fundamental frequency trackers approach unvoiced

phonemes differently, including leaving an empty duration, or using straight line

interpolation between the preceding and succeeding voiced phonemes. Since a Prosodic

Font is not interested in the intrinsic nature of various phonemes, linear or non-linear

interpolation between voiced phonemic events is a proper approach to creating a
continuous intonational contour.

Capturing the intonational contour from FO is a process of smoothing the FO curve to
remove small perturbations, and using interpolation to fill in the gaps of silence during
unvoiced events. Intonation must be understood as an abstraction from the phonemic
effects of pronunciation. Even at the most sophisticated technological level in tracking
fundamental frequency, the computational results must still be checked by hand.
Fundamental frequency by its very nature yields a discontinuous signal because it only
tracks voiced phonetic events. Hence, every instance of an unvoiced phoneme (eg. /t/,
/p/, /q/, /th/, /f/, et cetera) will result in a gap in the FO contour (see figure 14 below).

Fgure 14: This figure was generated by the powerl signalprocessing and analysis package from
Entropics, Waves+. The three tiers of the figure allow cross-analysis of the [1] amplitude, [2] orthography,

and the [3]Jfundamentalfrequency tracking results. Note how there is nofundamentalfrequeng during the
phoneme It! events. Figurefrom Beckman and Ayer (1993).

Plosive phonemes are created by stopping the emission of air completely with the tongue
or lips and then releasing it explosively. Plosive phonemes such as /p/ and /t/ often
cause a high-pitched, scattering effect on the fundamental frequency. This scattering is
characteristic of the phonemic pronunciation, and is not considered part of the

intonational tune (see figure 14 above).

Differences in voice quality can greatly affect the success of FO tracking. The glottal

phoneme found in English speech - the difference between "she eats" as opposed to

"sheets" - can occur as a vocal characteristic. Called creaky voice, vocalfr, pulse register, et

cetera in the literature, it causes peculiarities that show up clearly in the signal as irregular

periodicity and amplitude variations (Kiesling et al., 1995). If a speaker uses creaky voice
over an extended part of an utterance, a.k.a. Dorothy Parker voice, automatic tracing of
intonational tune breaks down, as seen in figure 15 below (Beckman and Ayers, 1994). I
avoid spoken samples that are dominated by a creaky or breathy voice that cause
computational tracking to break down. Portrayal of voice quality is an important issue to
identity and recognition of an individual, although the current implementation of
Prosodic Font did not incorporate a visual interpretation.

Fgure 15: The analysis of this phrase shows the kind of uneven, and 'Spattered" FO results the tracker
yields dring creaky voice events. Fgure from Beckman and Ayer (1993).

2.2.2 Pitch Range
How does one represent pitch range computationally? Does pitch range start from the
bottom of a speaker's range and go higher, or does it start from the middle and deviate
to higher or lower pitches? In trying to model pitch range computationally, Anderson,
Pierrehumbert, and Liberman first conceived a reference line from which all High and Low
accents are scaled (1984). No physical evidence has been found to confirm this, and in
fact, there is more evidence that the pitch range should be understood as emanating from
the bottom of the speaker's range. Bruce explains that the lowest levels of fundamental
frequency can be considered the base, and how pitch range can be scaled relative to this
base:

F0-level 1 is considered to be the base level and is the true representative of the LOW pitch level [i.e. L

tone]. The FO movements can roughly be described as positive deviations...from this base level...In certain
contexts the LOW pitch level will also be specified as FO-level 2 (and occasionally as FO-level 3). The

HIGH pitch level [i.e. H tone] can be specified as FO-level 2, 3, or 4, depending on the context. This

means the FO-level 2 can represent both a HIGH and a LOW pitch level, which may seem paradoxical. But

the pitch levels HIGH and LOW are to be conceived of as relative and contextually specified for each case

as a particular FO-level (1977, p. 137).

Intonational contour targets and the continuum between them must be considered in a

relative manner. An individual's use of pitch in a temporally proximal (i.e. seconds and

minutes), close (i.e. hours and days), and temporally longitudinal (i.e. months to years)

fashion needs to be studied to understand the behavioral deviation that affective changes

and interactional patterns create. Currently, intonation and pitch range are more an art

form than a science. Developing a description of a speaker's use of their voice over time

would supply more appropriate graphic initialization and switching parameters for a

Prosodic Font. This speaker model might also identify clear affective signals within the

speaker's voice and change the global representation of the Prosodic Font accordingly.

A speaker model would also help in converting vocal sound to proportions within the

available graphical space. Understanding the limits of vocal parameters is important to

making the font visible and well-placed within a display system. Prosodic Font is unable

to predict a speaker's pitch range prior to the speaker talking, or even across different

emotions. Hence, it is possible that during intense mood swings, the font would be too

large or too small to be visible. A speaker model would initialize all Prosodic Font

parameters such that unreadable visualizations would not occur.

Using an individual's Speaker Model, a look-up table of phonetic duration distributions

across speakers, and speech/prosody recognizers, a Prosodic Font could identify the

routine from the excited or depressed phonetic sounds. Speech would be normalized

against standardized averages. Routine events such as declination, different phonetic

duration, amplitudes and energy levels would be regularized; the affective and discursive

functions of prosodic variation would be foreground visuals. Prosodic Font would

encode only the novel aspects of speech, the pure paralinguistic song and rhythm.

2.2.3 Duration Patterns
Rhythm in speech is focused upon duration patterns. Finding duration patterns implicitly

involves knowing the onset and offset of any given physical feature. Determining the

onset and offset of speech is difficult due to uncontrollable recording conditions and the

continuity of the breath involved in producing sound. Exhalation of breath begins prior

to the vibration of the glottal folds, and often trails off at the end of a phrase. The point

at which breath becomes an identifiable phoneme is unclear. The intrinsic formation of a

phoneme allows for easier or more difficult on- or off-set detection. For example, a non-

glottalized vowel onset, /u/, will be more difficult to detect than the onset of a

consonantal plosive, /p/.

These problems are not solvable by technology, but rather through re-definition of the

problem. A Prosodic Font could represent breath as a visual object, transitioning from

this representation of breath to a recognizable phoneme much like a spoken utterance

does. Not only would this permit more latitude in the recognition process - not requiring

all words to conform to existing dictionary databases of word forms - but it would add a

great deal to the expression of a written message. Knowing when and how someone

releases the rest of their breath after an utterance is a sure clue to the tension with which

they said the words.

2.3 MODELS OF PROSODY

I present viable models of prosodic descriptions for Prosodic Font. I argue for a

productive combination of the auto-segmental metrical school of phonology (Bruce,
1977; Pierrehumbert, 1980; Beckman, 1986; Ladd, 1996) and the more phonetic TILT

model (Taylor, 1998). Phonological systems use the physical signals to arrive at abstract

descriptions that enable comparisons between individuals and languages whereas

phonetic systems stay closer to descriptions of physical signals. I admire the simple,
independent feature exaggeration (i.e. visual scaling of paralinguistically salient features,
or time scaling by feature importance) that a phonological approach would enable, yet

am interested in the individualistic characterization that a phonetic approach enables.

A Prosodic Font requires two things from a model of prosody: [1] a speaker dependent

representation, or stated differently, low-level dependence upon the physical signal to

maintain differences between contextualized, individualized utterances, and [2] a theory

to enable transforming the continuous signal into discrete, larger features of interest.

2.3.1 Auto-Segmental Metrical School of Phonology
Categorization above the low-level signal allows intonational phonologists to do work on

the similarity of meaning and function across speakers, as well as understand which

portions of continuous signals hold conventionalized linguistic and structural meanings.

They categorize continuous prosodic variables into segmented events. Phonologists

believe segmentation is cognitively sound because prosody is perceived similarly to

segmental phonetics. For example, the sound-unit /dog/ means the word-unit dog, and

the sound-unit /bog/ means the word-unit bog, but there is no semantic meaning halfway

between the phonetic sound-units /dog/ and /bog.

Phrase Lexical Stress

W S

S W

w S

S W
S W

S W S W W S S W W S

The baby sitter arrived early tonight.

Figure 16: Based upon my own linguistic competence of titationform, I constructed the metrical tree-
structure above. Each syllable is understood as either weak or strong.

Metrical Accent and Duration

| |0 0 | | S | | || 0 | | S

Figure 17: The linguistic deserption ofphrasal beat and metrical duration is a direct musical
analogy. The dots represent the beat, a duration-less concept. The bars represent the duration of
time that occurs between each beat. After Lerdahl and Jackendoff (1983).

Pierrehumbert's work on characterizing the fundamental frequency in a linear, relative

manner is still the phonological state-of-the-art (1980). She specifies a set of two simple

intonational pitch accents, H* (a pitch accent that first rises and then may fall) and L* (a

pitch accent that falls and then may rise), that account for the variation in intonational

contours with a simple dichotomy. Four additional complex accents, H*+L, H+L*,
L*+H, L+H* attempt to compensate for the temporal variability in the placement of the

accent in relation to the onset of the syllabic vowel. Taylor asks whether finer

distinctions need to be made within H* class of intonational accents since over 69% of

all accents found in spontaneous speech are H* (Taylor, 1998). Taylor states that there is

a need for a model that allows a more refined understanding of H* pitch accents.

2.3.2 Phonetic Models of Prosody
On the continuous, speaker dependent side are the researchers who attempt to describe

the physical signals themselves in succinct manners. Fujisaki's model is a layered model

of the FO contour, attempting to account for declination as an underlying phrasal

phenomenon on top of which are seated the local affects of pitch accents. It is not clear

how one derives the underlying phrasal representation and pitch accent model from

spontaneous speech (1983). The Rise Fall Connection (RFC) and the more generalized

TILT model fit Euclidean curves to intonational FO changes. The RFC and TILT models

also represent the duration and change in amplitude for each pitch accent event (Taylor,

1993; Taylor, 1998).

The TILT model is a refinement of the earlier RFC model; as such, I will focus upon it

alone. TILT is a phonetic model of intonation that classifies continuous signals as two

types of events, a TILT event (a numerical description of the closest Euclidean shape of

the pitch accent curve), or a Connection event (the period in between pitch accents).

TILT is speaker dependent, and classes intonational events into two categories while

maintaining fidelity of the change in FO, duration and amplitude.

2.3.2.1 The TILT Model

TILT is an abstract, continuous description of H* pitch accents, amplitude, duration and

alignment with the accented syllable, as seen in figure 18 below.

TILT Model of Event and Segment Stream

Pitch Accent Event

Intonational
Contour

Syllabic Onsets S S S S S S S S S
Target Pitch Accents A A A A A

Offset betweenLIL
syllabic onset and
target pitch accent

Figure 18: The Tilt model is based upon a stream ofphonological events that are themselves styized interpretations of

the actual FO curve.

TILT generates a single number that represents the rise and fall of a pitch accent. The

continuous change in amplitude and the duration of the event are represented similarly.

The TILT value is complemented by a fourth variable called sylabic position, the "distance

between the peak of the event (i.e. the boundary between the rise and fall) and the start

of the nucleus of the syllable that the event is associated with (the accented syllable)"

(Taylor, 1998, p.1 6). This alignment essentially serves the same function as

Pierrehumbert's complex accents, by showing if the intonational accent comes late or

early within the duration of the accented syllable.

Optimal TILT Event Values

Rise Fall

+1.0 +0.5 0.0 -0.5 -1.0

Figure 19: An intonational event is described with a single real number, representing the

combined effects of the rise andfall of a pitch accent. The curve represented is more exacting than

Pierrehumbert's H*,yet is one level of abstraction above the raw fundamentalfrequency curve.

After Taylor (1998).

2.4 DISCOURSE AND AFFECTIVE FUNCTION

"...intonation...[is]...a nonarbitrary, sound-symbolic system with intimate ties to facial expression and bodily

gesture, and conveying, underneath it all, emotions and attitudes. ...even when [intonation] interacts with

such highly conventionalized areas as morphology and syntax, intonation manages to do what it does by

continuing to be what it is, primarily a symptom of how we feel about what we say, or how we feel when

we say." (Bolinger, 1989, p. 1).

Prosodic variation is found within all languages. In a few languages, such as Cantonese or

Yoruba, prosodic intonation takes on a highly formalized function, using distinct tone

structures on the same morphemic item to indicate a different word item. Interestingly,
non-linguistic prosody is nevertheless still present within tone languages, interacting with

structured tones through the same physical signals. For Prosodic Font work, I am most

interested in the paralinguistic use of prosodic variation; that is, all uses of prosody not

associated with tones that function linguistically.

Dwight Bolinger, in his 1972 article, Accent ispredictable (ifyou're a mind reader), argued

against the 1968 Chomsky-Halle Nuclear Stress Rule that accounted for prosodic accent

with syntactic structures, suggesting instead that although intonational accent marks

information focus, neither syntax nor morphology can completely account for it. This

argument has raged since, and many papers have been published continuing to account

for prosody in terms of syntax and information structure. In a conversation with me,
metrical phonologist Samuel J. Keyser expressed his belief that prosody and intonation

are not linguistic features of language like the phonetic and morphemic systems. Prosody

is "something else," he said.

Why is it important to know the origins and use of prosody? Prosody may be an innate

function of song that we share with our avian sisters and brothers, that gains an

understood, communicative function as we learn to participate within a certain language,

community, and contexts. Hence, by understanding the origins and contextualized uses

of prosody, we are better equipped to identify a feature set that is used in our context-

specific language as well as in the universal communication of affect.

2.4.1 The Emotional Speaker
Prosody demonstrates a continuity of meaning (unlike the segmental phonetic system), and a

complexity and subtlety. The question of whether prosody is emotional is really one of

kind and degree. Prior to the effects of culture, language, different social display rule

requirements, gender, and physiology, human beings are fundamentally emotional

creatures. The plaintive rising cry of the newborn has the same fundamental shape as the

most commonly used prosodic accent in the world, the rise-fall contour. By the time the

baby becomes an adult, she will have developed a vast repertoire numbering in the

thousands of subtle intonational tunes that communicate the way she feels about what

she's saying-or the way she's feeling when she's talking (Bolinger, 1989). Adults have not

eliminated emotion from their prosodic expression, but tamed and conventionalized it,

to a degree. Normal, everyday spoken prosody is an emotional expression.

Psychologists and anthropologists have studied children's acquirement of diverse

intonational contours. Usually they have relied only upon their ear to make intonational

distinctions. The use of intonation by a Mandarin Chinese newborn was studied over a

two year period (Clumeck, 1977). "M," the infant, first used the nise-fall contour to

indicate heightened interest, excitement, arousal; learning at one year the held-down and

low-rise contours that consistently develop later in children (perhaps as a result of the

"mother's" use of a soothing low tone to calm?). It was not until two years had passed

that "M" used a tone structure specific to the Mandarin Chinese tone language.

Affective use of prosody precedes the acquisition of linguistic tone. In a study testing the

intentionality of prosodic accent, children five years old or less were able to produce

utterances with natural-sounding accentual patterns, but had greater difficulty than

children six years or older in interpreting utterances spoken by others with the same

patterns (Cutler and Swinney, 1987). Children naturally and easily put accents on what is

most interesting and exciting; their subjective reaction involves no necessary intention.

Hence, the prosodic accents that adults often place on "new" rather than "given" lexical

items can be traced back to an emotional, not grammatical, interest.

Some neurological studies point to the affective, not grammatical, function of intonation.

When patients with right-hemisphere damage, the brain location theorized to be the

center of emotion responses, were asked to form questions and statements, and happy

and sad speech, they produced monotone speech in all cases (B. Shapiro and Danly,

1985). Similarly, right-hemisphere damaged patients had difficulty differentiating between

sentences with different locations of pitch accent (Weintraub et al., 1981). Question and

statement intonational contours, as well as pitch accent placement, often associated with

speaker intention and grammatical function, may have an emotional derivation.

If prosodic intonation and accent derive from an emotional core common in all normal

humans, why don't we all speak in exactly the same manner? Picard points out that

"...cultural, gender, personality, and dialect/speech group differences in addition to

context, physiological changes, cognitive interpretation of the environment, social display

rules of context, and a person's history, values, attachment level and general emotional

maturity" factor into the expression of emotion (1997, p. 37). Language varieties

themselves allow different ways, kinds and amounts of emotional expression (see

(Bolinger, 1989; Beckman, 1986; Ladd, 1996) for reviews of available cross-lingual

prosodic studies).

Gender identification causes exaggerated prosodic effects that are not justified by the

physiological difference between the average man and woman. Bolinger summarizes the

results of research on the speech differences of men and women, "female speakers

probably tend, more than men do, to (1) use a wider range including falsetto, (2) use

inconclusive-i.e. rising terminal-endings, (3) favor reverse accents, and (4) increase the

number of accents, hence profiles, in a given stretch of speech. Men tend to do the

opposite, to which we can add (1) that they are more apt to drop into the lower register

change, namely creak" (1989, p. 24).

Hearers use a speaker's prosody to understand their emotional disposition and intention

in saying what they said. In the domain of ritual exchanges and adjacency pairs, such as

greetings, farewells, introductions, et cetera, the emotional exchange value becomes

particularly evident. Picard postulates that (1) the fact that you make the greeting, and (2)

how the greeting is said, is more important than what is said (1997). I might hypothesize

further that these redundant Adjacency Pairs may have survived culturally because of the

evolutionary necessity of having a rapid method of conveying emotional state.

2.4.1.1 Are We Identifying Emotional Categories or Dimensions?

The feature sets for prosody and vocal emotion are largely identical. Picard identifies the

physical signals that convey emotion vocally as "...frequency and timing, with secondary

effects in its loudness and enunciation. The effects of emotion therefore tend to show up

in features such as average pitch, pitch range, pitch changes, intensity contour, speaking

rate, voice quality, and articulation" (1997, p. 180). Because the feature sets are identical,
prosody and affect are at least intimately related, if not dependent; and many have

suggested that prosody is primarily an instrument of affect (e.g., Bolinger, 1989).

It remains a mystery whether people recognize emotions categorically or in dimensional

vector space. Scherer's experimental results using a speech corpus in which meaning is

obscured demonstrates the entanglement of this issue. He found that humans can on

average recognize vocal affect with about 60% reliability: people can distinguish arousal

(angry versus sad) but frequently confuse valence (angry versus enthusiastic) (1981).

Prosodic Font does not seek to label speech as any particular type of emotion due to the

inability in all but the simplest cases to infer emotional categories based upon vocal

characteristics. Rather, Prosodic Font represents the system of vocal changes in graphical

form, allowing the readers to infer emotional type and intensity.

2.4.2 Syntax, Information Structure, and Mutual Belief
Prosody serves many syntactical and discourse functions within speech. Much attention

has been focused on the syntactical and discursive functions of prosodic variation. This

set of research aims to uncover a discrete set of rules governing the universal use of song

and rhythm. However, these functions may rely more heavily upon specific linguistic and

cultural systems (Ladd, 1996; Bolinger, 1989). This section reviews the many conventions

that have been proposed.

Identifying the structure of talk and writing has been a focus of natural language

generation and understanding efforts. Discourse theorists always appoint a central role

for prosody in the segmentation of spoken discourse, yet the models differ substantially.

Polanyi's Linguistic Discourse Model uses semantic criteria, secondarily guided by

prosodic and syntactic criteria, to segment natural language (1995). In Grosz and Sidner's

discourse model of attentional and intentional state (1986), prosodic accents mark the

attentional status of discourse entities (Cahn, 1995; Grosz and Hirschberg, 1992;

Nakatani, 1995), the intended syntactical focus of attention. In computational parsing of

lengthy speech segments, emphasis detection - finding sections of increased energy and

pitch rise that are negatively correlated with pausal durations - is believed to indicate

structure (Arons, 1994; Hawley, 1993) or hierarchical topic structure (Grosz and

Hirschberg, 1992; Stifleman, 1995).

Intonational accents appear to mark certain higher-level discourse functions within the

temporal flow of syntactical structure. Much research has attempted to correlate accent

type with particular discourse functions. Prosodic accent has been hypothesized to mark,
amongst other things, emphasis (Halliday, 1967), contrast (Ladd, 1980), given and new

information status (Brown, 1983; Terken, 1984), contrast of given entities (Terken and

Hirschberg, 1994; Prevost and Steedman, 1996), and information structure (Cahn, 1995;

Nakatani, 1996).

In Artificial Intelligence, researchers theorize that prosody factors into the model of the

speaker. Accent is hypothesized to mark the speaker's model of uncertainty (Ward and

Hirschberg, 1985) and mutual belief developed between the speaker and hearer through

discourse (Pierrehumbert and Hirschberg, 1990). Researchers have suggested that entire

intonational tunes denote particular discourse and speech acts (Pierrehumbert and

Hirschberg, 1990; Wright and Taylor, 1997; Black, 1997).

Using a phonological and discourse interpretation of prosody in conjunction with

speaker specific phonetics, Prosodic Font can communicate the syntactical, informational

functions of prosody. Word pairs that are given contrastive prosody could index into a

contrastive visual form. Likewise, words, when they are first introduced into the

discourse, can be given slightly longer temporal delays and more visual prominence to

assure that the reader sees them. However, this kind of automatic informational prosodic

processing may prove unnecessary since speakers naturally perform these accents and

rhythmic expansions, and Prosodic Font will mirror any evident vocal emphasis.

3. TYPOGRAPHY

Typography is an ancient craft and an old profession as well as a constant technological frontier. It is also

in some sense a trust. The lexicon of the tribe and the letters of the alphabet -- which are the

chromosomes and genes of literate culture -- are in the typographer's care... Yet, like poetry and painting,

storytelling and weaving, typography itself has not improved. There is not greater proof that typography is

more art than engineering. Like all the arts, it is basically immune to progress, though it is not immune to

change.

Robert Bringhurst, The Elements of Tjpographic Style. (1992, p. 196).

Typography is the design of graphic forms characters that comprise a language's words.

A letter is an abstract concept, such as the letters from a to z. When a letter assumes

visual form it is called a gjyph, the graphic that represents the letter. A set of glyphs that

represent the alphabet is called afont. A font usually has a unifying visual style that

distinguishes it from glyphs belonging to other fonts.

In the age of electronic production, a glyph has become as abstract a concept as a letter.

Glyphs are defined algorithmically, using lines and curves that often change non-linearly

as they scale to preserve their perceptual style when laser or off-set printed. And even

more recently, fonts are being designed solely for use in electronic media, never requiring

the glyph to assume a tangible form on paper or stone. These glyphs are drawn in light,
ephemeral and fleeting.

In this exodus from tangible lead type to mathematical description, much has been

inherited from previous ages. Stylistic genres, perceptual glyph design hints, and font

measurement systems used in the design of tangible lead type are often accepted without

question in current font designs. Yet the medium has changed so radically that heuristics

that formerly defined typography - differences between abstract letters and tangible

letterforms - are not sufficient. Beauty, style, form and measurement of font design

requires re-evaluation in light of this new computational, temporal medium.

Following the lead of Professor Maeda, I ask what it means to design a font for a

medium that exists in a state of computation and temporality. As such, I am not solely

interested in judging Prosodic Font on aesthetic criteria reserved for static font forms.

Rather, I see Prosodic Font as beginning to ask the questions that designers of future

fonts - abstractly defined glyphs with algorithms of motion, transformation and

interaction - will ask.

The Bauhaus school of design in the 1920s and early 1930s worked with principles of

objectivity and function. Bauhaus designers valued communication of the message by

using the simplest of elements. Programmers and mathematicians today call the method

of achieving this kind of goal "elegant." Bauhaus designers simplified typographic design

from the previous decorative letterforms of the Victorian era and the complex organic

movement of Art Nouveau design. They used sans serif forms, pared down to the

necessary lines needed to differentiate one letter from another (see figure 20 below). The

letterforms were often rendered in a two-dimensions with a single flat hue.

abcefghijop 123 AO abcefghijop
Figure 20: The Futura typeface was designed by Paul Renner in 1924-26 and issued by the Bauerfoundry in

1927, Frankfurt. The proportions are graceful and ipare. Futura served as the aesthetic modelfor the Prosodic

Font I designed and animated. Illustration isfrom Bnnghurst (1992, p. 241).

I believe that again a simplification of form based upon communication necessity is

required to migrate typographic forms from static paper representations to

computationally animated forms. This simplification may appear too spare and even ugly

to people looking at the static glyph form because it does not adhere to aesthetic

concepts of letter design we have inherited. However, a letterform that can internally

transform its shape, weighting, width, height, curvature, color, et cetera through time is

not going to have the same design technique as fonts designed for paper.

The following are possible criteria for judging the visual worthiness of a Prosodic Font:

the beauty of a glyphs shape transformation over time; elegance of motion across a single

glyph, syllable, and word; the unique interaction between particular glyphs during

transformations and motion; a glyph's manner of entrance onto and exit from the visual

media; the sensitivity and responsiveness of the font to heterogeneous vocal parameters,
and the sensitivity of a font to the display in which it is situated. The reader's ability to

feel the emotional thrust of the speaker through the Prosodic Font is not to be forgotten

either.

To know history is to understand the present, said Winston Churchill. I review the

typographical history we have inherited: stylistic differences, clues to creating a

perceptually elegant font, and systems of measurement to ensure balance and harmony.

3.1 TYPOGRAPHIC STYLE

In the figure below, the first two typefaces represent the broadest divisions in

typographic design, the orientation of the letter weighting. The first is a Renaissance

styled letter in which the weight leans back at an angle from the horizon; while the

second, a rationalist-humanist letterform, distributes the weight equally around a perfect

vertical from the horizon. The last letterform, an example of sans serif Helvetica, has

little evidence of pen production. It reflects the evenness and potential perfection of

machine production standards in its geometric simplicity.

so so so
Figure 21: The typefaces used above, Palatino, Garamond and Helvetica can represent the three

broadest movements in typeface design. The orientation of the letter lajs at an angle from the horizon in

Renaissance design principles. Following, the humanist rationalist movement formed letters with the weight

of the letter distributed around aperfect vertical from the horizon. Lastjy, what might be considered a sub

division of the humanist rationalist movement because of its pefect vertical orientation, sans serif letteforms
lost the beginnings andings ngs nostalgic of the broad-nibbedpen. Sans serif simplicity is made possible by

the photographi' and later, computeried, methods of typographic production.

0 0
Figure 22: Tjpical examples of a broad-ni bbed pen letterform design in textura, fraktur, bastarda, and
rotunda. Unlike more modern sans serif forms, pen designed fonts appear to be constructed as an

architecture of simpler strokes, drawn in time. Illustration is fom Bringhurst (1992, p. 250).

On a computer, shapely lines such as pen would produce require far more parameters
than the geometric simplicity of the sans serif moderns. Furthermore, the fine portions
of the strokes often do not show to best advantage on the rough resolution of a

computer monitor. Likely, if these pen-based strokes were animated, they would be more
difficult to read than simple geometric lines. Although there has been must research on
reading perception (Vygotsky, 1975; Gibson and Levin, 1975), there has been no
research on perception of glyphs that change shape over time.

3.1.1 Perception of Glyph Balance and Proportion
Wisdom for forming static glyphs includes hints to aid with optical perception.
Proportions of letterforms from x height to the base line in height and width have been
5:4 . Rounded letters such as 'o', 'p', 'e' and 'c' exceed the x height line and fall equally

below the base line to appear as large as the other letters. Letters with a horizontal cross

such as 'H', 'e' or 'x' situate the cross slightly above a centered height to appear properly.

What rules of optical proportion will govern glyphs that change their form and
proportion over time? At this point in Prosodic Font development, this question may
only be asked, but not answered.

A sophisticated grid system for proportioning the vertical space of a font is well
understood (see figure 23 below).

body-hedcpt ds.dpt rt aci*

Figure 23: T his is a typical typographic grid. Vertical dimensions are highly speaified through a number

of common ipecifications. X height, ascender and descender heights, added or subtractedfrom the base

line, are the most frequently used proportions used in letteform design. There are no common

speifi cations for horizontalproportions in letteforms. Figure taken from Knuth (1986, p. 1).

Horizontal proportions have not really developed, except as proportions related to the
distance between the X height and Base Line of a glyph, usually 5:4, height to width.

Changing any one of the grid proportions changes the way a font looks drastically. Prior
to computers, a font was available in only a few standard sizes, the font proportions
themselves were permanent and non-adjustable. In 1978, Professor Don Knuth began
work on the METAFONT in conjunction with typographers Charles Bigelow and Kris

Holmes. Matthew Carter, Zapf and Richard Southall also contributed. METAFONT is a

program to render any font style, shape, and proportion by specifying brush shape,

proportion and angle parameters (Knuth, 1986). This electronic work began to raise the

question of the primary identity of a letterform: is it an equation representative of the

lines, curves and thickness? Or is it an arrangement of primitive marks, each uniquely
rendered?

Most recently, Adobe made a set of Multiple Master fonts which proportions designers

can adjust, moving the point instance of the font through a graphic space of fifteen

dimensions. A Multiple Master font can move from sans serif to serif instances with

interpolations between any instance (Adobe Systems, 1998).

The attention to detail possible in these parameterized fonts is brilliant. Yet, neither

METAFONT nor Multiple Master fonts have taken the design world by storm. Why? No

one yet knows how to use the immense design freedom implicit in these fonts. Fonts

with continuous shape parameters have applications that remain mysterious. Controlling

by hand the sixty plus continuous parameters in METAFONT can become tedious.

There is a need for applications that automate state changes of font parameters. Since

speech also represents continuous, sinuous change, we might map the signal

characteristics of one onto the shape parameters of the other. The design work in

mapping speech to font is primarily deciding which speech signal interpretations should

be mapped to which graphic parameters, in addition to assigning initialization values,
boundary values, and motion interpolations.

..m..

ms
.:umnve BONN

-nmu mu mu uRuss a nmone
m m... ss-un r-monge

Ruee was agon n

II 1

*/ e /ma
**

Figure 24: The diffirence between gljphjrms drawn through means of equations of

lines and curves, and gljph forms constructed through the association of smaller

graphic primitives with each other. Illustration takenfrom Drucker (1995, p.
283).

Now with a speech application in hand, it seems that METAFONT and Multiple Master

glyph forms do not lend themselves adequately to speech representation. The

METAFONT and Multiple Master glyphs are designed as a series of lines and curves and

thickness, similar historical glyph lead carvings. Because they are not complex

architectures of independent elements, it is extremely difficult to map speech parameters

onto noticeably independent graphic parameters. They do not allow enough independent

degrees of freedom. For example, one cannot change the vertical stem of a glyph (such

as in the glyph t) independently of its cross bar, because the two are dependent upon a

single weight value. Nor can one continuously change the curvature of line in non-

circular shape elements, such as the glyph I or i.

Although these typographic systems allow degrees of freedom never heretofore

encountered, they do not re-define the nature of glyph design in light of how its

architecture might transform. Defining glyphs to function in a temporal, transformational

capacity might require a simplification and independence of shape parameters. Prosodic

Font chose to represent letterforms as arrangements of very simple marks; each mark has

tremendous transformational capacity by itself and in relationship to the entire glyph.

Designing for computational forms that
0Oo ~ ~flf involve temporality has added a

O O 0 0 0complexity never before encountered in

0 0 0 0 0 0 0 0 design. Ishizaki provides a taxonomy of
form using basic units of phrase of some

0 0 0 0 0 0 0 0 0 formal dimension, like a specific instance
of color (1996). Each phrase has a

0 0 O O 0 0 0 0 particular temporal duration. Phrases

0 0 0 0 0 0 0 0 combine together to make temporal
forms. Ishizaki uses this theory in a multi-

0 0 0 0 0 0 0 0 0 agent design solution. Wong defined
Temporal Typography using Rapid

0 0 0 0 0 0 00 0 Visual Serial Presentation (RSVP) to

Q 0 O 00 0 00 0 remove the necessity of eye movement
during the reading event (1995). Rather,

0 0 0 0 0 0 0 0 0 words are presented in rapid succession.
In both Ishizaki's and Wong's design

0 0 0 O O O O O 0 0 work, choice of typeface is included

0 0O 0 O O Ol 0 within possible formal dimensions of
temporal design. They stop before

0 0 0 0 0 0 0 0 dissecting the visual form of the glyph
itself and animating its separate parts.

A Prosodic Font picks up at the point

00 0 0 0 0 0 0 they left off to begin to describe a
design method for treating a glyph as an

O O O O 0 0 0 architectural structure, with each part

Figure 25: A Multiple Master Font can change
letterform proportions continuously (Drucker, 1995, p
284).

free to transform and move. Furthermore, Prosodic Font provides a compelling method

of automating the animation of these low level graphic elements by mapping the

temporal- spatial form of speech to the spatial-temporal form of typography.

PROSODIC FONT DESIGN

Creating Prosodic Font required pursuing two separate research vectors, namely, prosody

and font design, and then merging these two streams together in a way that the meaning

in prosody can be visualized through a temporal font design. I describe in the following

section the necessary work done in prosody and in typographic design to prepare them to

be merged together. Lastly, I discuss mapping relationships drawn between prosody and

typography.

4. TYPOGRAPHIC DESIGN SYSTEM

My design goal is twofold: [1] to create a font which clearly differentiates one glyph from

another, and [2] to create glyphs that are architectural composites of smaller shapes to

enable independent movement and transformation. I worked in an iterative fashion to

design a system that would meet these two criteria. I describe two major iterations of my

work below and the system I have accepted.

I call the shapes that serve as architectural units within a single glyph, strokes. One or

more strokes together can form a glyph. Note that this notion of glyph construction

parallels the manner in which glyphs were drawn by pen with hand. For example, one

downward stroke and one rounded stroke form the letter 'b'.

4.1 FOUR STROKE SYSTEM

The letters in the Roman alphabet fall clearly within visual similarity groups. Those that

are constructed as combinations of vertical strokes and circles, those formed of circles

left open for some interval (e.g. like a horseshoe) and a vertical line, those constructed of

slanted lines, the class of letters that combines elements from the other three, and the

letter 's'. There are also those letters which represent combinations of these two systems.

Circles and vertical lines o I a b d q

Open circles, or horseshoes u h n m c

Slanted lines kxyvwz

Combination letters t f r g e i j
Letter: S

The first system I designed had four stroke elements: a line stroke, a circle stroke, an

open circle stroke, and an s. One or a number of these strokes were placed within a grid

space to form every letter of the alphabet. The grid space was drawn from the vertical

constraints used historically and horizontally constrained by left, ceiiter and right, paralleling

text justification. Each of these strokes were given similar constraints: [1] whether they

were to be measured on a horizontal or vertical measure, [2] a top and bottom constraint

on that measure, and [3] a rotation value. In this way, changing the grid proportions

would change the proportions of each of the glyphs in a way that would still render the

letter legible. Yet, each stroke's weighting (line thickness), curvature, rotation, even hue

or transparency could be separately controlled.

CIr-

Figure 26: Eary sketch of the four stroke system. Kerning between glphs was automatically

built into the system through the left, center and ri*ght abignment practice. This approach proved

inelegant.

There were four problems with this approach. Using the text alignment scheme for

horizontal stroke alignment proved to be messy. To draw a glyph, each stroke would

have to be tested for its alignment, the array searched for how the other strokes were

aligned, and then an arrangement constructed between them. A maximum of four glyphs

also proved to be a problem. This did not allow enough detail to create the mixed

characters such as t, f, g, nor the unfilled dot in I or j. Each stroke also requires

additional specification unique to itself. For example, the open circle stroke, in order to

form either a U or a C, needs to specify the degrees to be left open. A u is only a 180

degree curve while the C is perhaps 280 degrees. I also had difficulty transforming the

rotation of the strokes and keeping them within the grid space. Note that I wrote

Prosodic Font in a beta version of Java 1.2 to benefit from the vastly improved drawing

model - an improvement upon PostScript - created through a partnership with Adobe

(Sun, 1998). I believe that given more stable software, making Prosodic Font with four

individualized strokes would work.

I went back to study the alphabet and emerged with a more elegant system.

4.2 ExPANDED STROKE SYSTEM: CONSECUTIVENESS/SIMULTANEITY AND

DEPENDENCE/INDEPENDENCE

Two principles of stroke positioning enable the construction of any letterform glyph:
consecutiveness or simultaneity, and dependence or independence.

The first principle of consecutiveness or simultaneity can be understood in the difference

between the X and V glyphs. The X uses two slanted line strokes simultaneously while the V
uses them consecutively. In historical typographic practice, the x glyph is not actually

constructed of two crossing lines, but rather four lines that don't meet precisely. This

preserves a visual balance. Since Prosodic Font is inherently a font of motion and

transformation, there is more of a need to maintain simplicity of construction rather than

static visual harmony.

Some glyphs use exactly the same primitive strokes, but in a different consecutive order.

The difference between b and d is based solely upon the consecutive order of the circle

and line strokes. Consecutive relationships always move from left to right, similar to the

linear order of reading. In the b, first the line stroke and then the circle stroke; vice-versa

for the d. If four strokes are related through a consecutive relationship, they are drawn

side-by-side, overlapping by the value of the current glyph weighting (or thickness). The

consecutive rule can create a W as well as an X.

The second principle is one of dependeng. Allowing strokes to have dependent strokes

allows the introduction of details such as the curve on the f, t, and r; dots on the i and j;
and even serif decorations (although I did not consider them necessary at this point in

Prosodic Font development). Dependent strokes use the same graphic characteristics as

their parent stroke. In this way, a dependent stroke has the same weighting and motion

as its parent stroke, making the parent and dependent strokes appear visually
homogenous. Independent strokes can change in any transformation respect,
independent of all other strokes even within the same glyph. Motion latencies between

independent strokes are thus possible to introduce.

I introduced three new strokes into the system. These strokes are often dependent upon

other strokes for parameters: [1] a dot for the line stroke; [2] a curved tail that connects
at a North or South point to the line stroke, facing in a left or right direction; and [3] a

cross bar (less weighted than a line stroke) that connects to either a line or an open circle

stroke (see figure 27 below).

3Fiur 27 h w /gyphs above

demonstrate the two potential glyph variations

by merely attaching different dependent glyphs.

To the original four strokes I added slanted line strokes in order to have the ends of

these lines lay square with the top and bottom constraints, unlike a rotated line would. I

required one punctuation mark - the apostrophe - for the numerous contracted forms of

words I encountered in the speech corpus.

The final Prosodic Glyph specification actually turned out to be much more flexible as a

creative design system than I would have suspected. Numerous unique yet differentiable

glyphs per letter are possible by using this system even with its current spare

implementation (see figure 28 showing possible glyph variations for two letters). Note

that proportions of each glyph are continuously adjustable erstwhile maintaining glyph

distinction. Changes in weighting, transforms and color can be made on a per-stroke

basis (see figures 29 and 30).

Figure 28: Above glyphs are possible variations upon the letter possible with the Prosodic Font

Object Oriented glyph-building syvstem.

Tests on the time and effort involved in reading transforming and moving glyphs need to

be performed. Even though the proportions of each stroke - both horizontally and
vertically - may be adjusted separately, this may render the glyphs more unreadable even

as it increases expressiveness. Perception tests can begin to chart the outward limits of

glyph expressiveness. Limits and contextual appropriateness measures would then allow

readability to be massively compromised only for the purposes of extreme

expressiveness. For example, it is important that a Prosodic Font sign screaming,
"FIRE!"~ remain readable during events when prosodic variation and voice quality is
extreme.

rcase gyph b kltteform can change pr6

45

portions continuousl.Figure 29: The lowe

44

t.

Figure 30: The lowercase glyph 'w' can change proportions, size and weight continuously. Shape also varies
at the extreme ends of the continuum.

iz7

mn o pqr

Figure 31: A single static instance of the Prosodic Font abstract letterform glyphs.

5. PROSODIc FEATURES

Although automatic prosody recognizers are currently in research and development, no

off-the-shelf commercial system exists, nor has any system been developed to work in

conjunction with a speech recognizer. This state of affairs is due to the fact that most

theories about prosody's function within communication are neither sufficiently widely

accepted nor a full account of the phenomenon. Further, there were no existing speech

corpus predicated on expressive and emotional conversational data that were not taped

from phone lines - a notoriously unclean medium from which to record.

My approach to developing a theory on prosody's function, parameters, range and

description thereof is bottom up. I developed my own speech corpus, labeled this speech

both by hand and automatically (with the partnership of researchers at University of

Edinburgh), and developed my own theory of how to use these parameters. I describe

this process below.

5.1 SPEECH CORPUs DEVELOPMENT

Emotional speech, such as anger, sadness, satisfaction, and excitement, engender very

different physiological - thus changing phonetic qualities - and prosodic responses

(Kappas, Hess and Scherer, 1991). A speech corpus that would define a first Prosodic

Font should exhibit great differences in prosody. Therefore, my methodology in creating

the speech was to interview native English speaking friends of mine, asking them to tell

me a story about four emotional experiences they had experienced. The friendship we

shared enabled greater emotional disclosure and expressiveness. I prompted them with

an initial description of the tone of emotional experience I was looking for. For example,

"Tell me a story about when you were really angry, furious or livid about something that

happened to you, or perhaps to another person...".

From two hours of original recording, I chose two speakers from the original seven, one

male and one female, from whom to develop an emotional corpus with speaker

consistency. These two displayed the most interesting speech variation across all four

emotions. One is an amateur story-teller with a well-honed sense of rhythm and cadence;

the other seemed to actually experience the emotion talked about in a fresh way, allowing

emotion to dominate the vocal expression. From their stories, I created a speech corpus

one minute and forty seconds long (see figure 32). The most difficult emotion for these

people to recreate was excitement; the easiest, anger.

Excited Angry Sad Satisfied

Male Speaker:

She places 4sec. Not working for my own 3sec. Painful 9sec. Sunset 28sec.

Convincing him and her 10sec.

Female Speaker:

<none> Demo 11sec. Upset 7sec. Couch 19sec.

Should Have 3sec.

Figure 32: I selected short portions of ipeech which demonstrated emotional characteristics ipecific to anger,

excitement, sadness, and satisfaction. The emotion of excitement seems dependent upon prmary experience. It was

difficultfpr all ipeakers to recreate vocally.

I would like to clarify that the speech corpus I developed is not necessarily an

"emotional" speech corpus. The people I spoke with were re-telling emotional

experiences they had had; they were not experiencing them for the first time. Some

people, perhaps those extroverts who had a greater flair for the dramatic, involved

themselves in the stories they told me to a greater emotional extent. Secondly, the stories

were often very long, involving multiple digressions and asides which had different

emotional coloring independently of the larger story. I picked the corpus selections from

the "heart" of the story that would appear to the careful listener to exhibit the particular

emotional vocal characteristics.

5.2 LABELING PROSODY IN SPEECH

There is an inherent difficulty in a Prosodic Font in the difference between phonetic and

phonology. Broadly speaking, phonology seeks to understand the universal meaning of

speech sounds, whereas phonetics seek to understand the mapping of speech sounds to

overt expression. A Prosodic Font needs phonology and linguistic meaning in order to

present chunk sizes large enough to be meaningful, such as a word. Yet there is reason to

preserve some of the exactitude of phonetics in order to preserve varying voice ranges,

unusual forceful phonetic noises, and temporal meter. In large, Prosodic Font is in search

of a marriage of phonetics and phonology.

To capture both of these needs, I used a combination of automatically processed Tilt

parameters which capture FO phonology, and hand-labeled speech events and boundaries

which includes syllables, silence, and breaths in this corpus, vocal color markings, and

certain phonetic markings by phonetic letter. I describe each of these units.

5.2.1 Tilt Phonological-Phonetic System
The Tilt system is an outgrowth from Taylor's earlier Rise-Fall-Connection System (RFC)

(1995). In the RFC model, FO curves are smoothed and then fitted to three types of

events: Accents, Connections or Silences. An Accent is (usually) any deviation from a straight

linear interpolation between two points. It contains two halves of unequal proportions,
the rise portion and the fall portion, either of which may be of zero duration. Taylor

combined these two parameters into one numerical descriptor called the til parameter,

itself an abstract description of the Euclidean shape of an FO accent event. Tilt is

calculated by comparing the relative sizes of the amplitudes (A) and durations (D) of the

rises and falls for an event (see equation below) (Taylor, 1998). Tilt events are joined into

an fundamental frequency curve by Connection events, and straight line FO

interpolations between Accents and Silences.

|Aise I- A/all I Dise - Dfali

tilt = -------------------------------------

2(|Arise| + | AjallI 2(Dn-se + Djall)

To synthesize an FO contour from tilt parameters, first the rise and fall parameters of

both amplitude (A) and duration (D) must be calculated, and then the FO curve for each

rise and fall portion can be reconstructed. Since a Tilt accent is but an abstraction of a

Euclidean curve, each point along the curve needs to be scaled from the absolute FO

value from which the accent moves.

To calculate Amplitude and Duration for the Rising portion of the Accent:

Arise = Aevenl(1 +tilt)/2

Drise = Devent(1+tilt)/2

To calculate Amplitude and Duration for the Falling portion of the Accent:

Ajall = Aevent(1 - tilt)/2

Dal = Devent(i - tilt)/2

To calculate a specific FO point in time using either Rise or Fall Amplitude and Duration:

For Rise: f() = FOabs + A - 2*A*(t/ D) 2 0 < I < D/ 2

For Falk: J(t) = F0abs + 2*A * (1 t/ D) 2 D/2 < t < D

The Tilt parameters appear in text form like the following excerpt from a file from my

speech corpus (see figure 33). From left to right the numbers are: exact ending time in

the speech file, a color specification used for viewing this file in Entropic's xwaves
software, event type, and the absolute FO that begins the event. If the event type is an
Accent, additional parameters are amplitude and duration of the event, and the tilt value.

1.04000 26 sil; tilt: 165.604
1.12000 26 a; tilt: 202.401 12.578 0.080 -0.040 0.000
1.14000 26 c; tilt: 204.529
1.29000 26 sil; tilt: 204.529
1.47000 26 afb; tilt: 139.784 14.477 0.180 -0.024 0.000
1.51000 26 c; tilt: 140.710
1.92000 26 sil; tilt: 138.476

Figure 33: An excerpt from a typical Tilt text file developedfrom an audio speechfile. Using the
textual ouputfrom the Tilt system, one can re-create a st)IliZed version of the FO curve found in the
audio speech file.

I had success reconstructing an F0 curve using the Tilt parameters. It serves the purpose
of permitting the reconstruction of a stylized F0 track, while eliminating the F0
anomalies associated with many phonetic events. Prosodic Font is then free to define
average font size, starting positions, weighting, etc. based upon FO averages.

I found that the Silence event type in the Tilt file is useless as a phonological indicator.
With few exceptions, the silences are the product of an unvoiced phoneme, or an
utterance spoken with a breathy quality. When I used parameters from all Tilt event
types, the words would disappear at strange intervals during a phrase. The presence of
words is more dependent upon measures of amplitude, not F. FO serves as an indicator
of emphasis, motion, emotion, and focus, but not presence. If the Tilt system were to be
of more help in corresponding to actual phonological linguistic events, it would have to
couple with, at the very least, a measure of amplitude during the syllable's vowel sound.
A speech recognizer could be coupled with the Tilt system, and the recognizer
alignments could control duration of words and syllables.

5.2.2 Linguistic Labeling
I acted as the speech recognizer for
the emotional corpus. The basic
linguistic unit is a speech event. A

speech event can be either a syllable,iff ifiiffi a silence, an inhalation or exhalation.
I did not encounter any coughing,
sighing or the like within the small
excerpts I chose for the Emotionaliffi f ff fi Corpus. If I had, they would also be
a speech event type. Each speech
event has an ending time and a peak
amplitude. Syllables, in addition, have

gaturesfrom Bembo peface show how desne pointers to a TILT accent event, if

ee tgeterfor visual they fall within the accent's duration.
elegance. Illustrationfrom Bringhurst (1992, p. 51). In this way, a syllable can represent

parameters reserved for accented information.

The orthography of a Prosodic Font is a difficult compromise between phonetics and

English orthography, and phonetics and syllabification. To handle words in which a

number of letters are pronounced as a single phoneme, I invented the notion of pbonetic
ligature. The most common phonetic ligature is the 'ng' in any gerund verb form, such as

"painting". Prosodic Font treats the letters joined by phonetic ligatures as a single letter

and applies visual effects accordingly.

sas 6 fflffi fflfr
is afbhi1fJflfij fr ~

A m oeo xfebFfffiflfff fffiffl
& fhfi fl ff tfhfflfffl

Figure 35: The first two lines are ligatures for an italicfont cut by Christofpl van Dgek, 1650s. The second

two lines are 1igaturesfrom Adobe Caslon roman and italic bj Carol Twomby, after William Caslon, 1750s.

Illustrationftom Bringhurst (1992, p. 51).

Syllabification is even more difficult because people often eliminate entire syllables from

their pronunciation of a word, especially when it is in an unaccented position. For

example, in the Sunset audio file I encountered the word "ev-en-ing," pronounced "eve-

ning". I chose to privilege the phonetic pronunciation of syllabic divisions. This rule did

not extend to words in which certain letters were not pronounced. I never eliminated

letters in order to preserve legibility. However, eliminating certain letters or using

colloquial orthography should be experimented with since the color of more casual

conversation would be more evident if letters could be eliminated if not spoken. In the

best (or perhaps worst) of worlds, this would render written language as a Mark Twain

novel renders colloquial conversation.

5.2.3 Phonemic Realization
A single word is seldom pronounced in exactly the same way during conversation. This

often has to do with different phonemes substituting for like sounding phonemes,

phonemes added in for reasons of emphasis, elongated phonemes, unusually forceful

phonemes that involve some hold and release of air, and many more reasons.

In addition to word pronunciation varying across repeat mentions, pronunciation of

words are often foreign to their very orthographic realization. For example, the word

"actually" is often pronounced as "akshly." Which form of the word should a Prosodic

Font serve? The danger in adhering to phonemic realization is that written language may

become difficult to read, or even unreadable. Written language would become

fragmented across speaker dialects. Yet, the excitement in adhering more closely to

phonemic rather than orthographic realization is that written language would gain a

color, individualism and novelistic appeal that it only currently realizes in places such as a

Mark Twain novel. In a commercial release of Prosodic Font, a switch which would

allow greater to lessor phonemic representation would be essential. Having control over

the degree of phonemic to orthographic Prosodic Font representation would allow the

font to be used in contexts that vary in formality.

In Prosodic Font, the orthography of the syllable speech event contains phonetic

markings that apply to the succeeding letter. For example, if a person says "Argh!" with

an initial glottalization and a forceful /g/ plosive phone, I would represent it as

"&Ar#g-h" (the underscore represents a phonetic ligature). In this way particular letters

within Prosodic Font can demonstrate greater force of pronunciation. The class of

phonetic sounds marked include: glottals, lengthened phones, flaps, rigorous unvoiced

and voiced plosives.

Although these phonetic marks are discrete rather than continuous variables, they should

include a notion of forcefulness. This would allow any and every letter to experience an

amount of phonetic influence. Continuous levels of phonetic forcefulness are possible if

the speech is normalized against phonetic tables of pronunciation forms, given the

position of the phoneme within the phonetic stream.

5.2.4 Voice Quality
Voice quality events color entire syllables, even entire segments. They are features of

vocal personality and are affected strongly by emotional state. Although this is not used

visually within Prosodic Font, I labeled voice quality events at the syllabic level of

granularity. At this point, only creaky and breathy voice qualities are used; however, there

is much room in this category for development. I suspect that the vocal quality aspect

would be a wonderful rendering style applied to the prosodic glyphs. Breathy vocal

quality would have a degree of blur to the font edges; creaky voice would have lines

running through the font like an old cinematic film. This idea also provides a mechanism

for personalizing a font, making your prosodic font distinctive in the face of other

prosodic fonts.

6. MAPPING RELATIONSHIPS

Creating systematic matches between spoken prosody and an object-oriented glyph

system involves a combination of science, art, and trial-and-error practices. I created a

system of mappings; however, this current work is intended to act as a prototype for later

extension, refinement and expansion.

I find the basic mapping relationships I created visually effective, as I will explain below;

however, the possibilities for expansion and abstraction appear infinite. In a commercial

Prosodic Font system, I would expect that the consumer would choose mappings based

partly upon their own expressive preferences, a detailed speaker model of their voice

range and expressiveness and color developed automatically, and partly upon the

prosodic font's algorithmic design flexibility and complexity.

6.1 SYSTEM DESIGN

The Prosodic Font uses computationally generated and manually provided textual
descriptions of parameters that would appear in a real-time Prosodic Font system. In this
way, it sidesteps the lack of existing real-time prosody recognition. The schematic figure
below shows the current implementation architecture of Prosodic Font.

Rules of
English glyph
design and
interpretation

Audio file
excerpt from
natural speech

text file description

I Letter shape I
I descriptions I

-

1 Letter Grid parameters I
and initializations I -

text file descriptions

I TILT FO description I
I and phonological I
I accent labels

-

Vocal Event representation, I
including orthography, I
syllabification, phonetic I
and ligature marks I

-- - - - - - - -

Amplitude at
syllable's vowel peak

Figure 36: Schematic of the current implemented Prosodic Font system. The Letterform design system
transfers itsfont to the Prosodic Font Performance interface. The performance interface loads the text
files that describe one of the corpus audiofiles and plays the soundfile in a Prosodic Font.

6.2 PARAMETER MATCH APPROPRIATENESS

Spoken and visual characteristics have an internal logic that governs their suitability to
match with one parameter or another. Some parameters, such as amplitude, are always
present in the spoken signal, whereas others are less omnipresent, such as fundamental
frequency (FO). There is no FO signal in a whisper, an unvoiced phoneme, and even in a
breathy voice. Hence, given the need for permanence in certain visual characteristics,
such as font scaling, one must map those omnipresent speech parameters to font
parameters that require omnipresence, such as scalar. If a font has no scale, no one could
read it. There are many mapping potentials between parameters that have the same
inherent continual permanence or discrete staccato.

In the figure below, I list the mapping relationships used in Prosodic Font.

Font Unit Speech

Syllable Scalar Amplitude

Weight FO range

Height FO range

Width FO range

Translation (xy) FO range

Glyph Shake (rotation) emphatic plosive

Diminished visualpersistence Flap

Scalar Glottal

Repetition Lengthened phone

Figure 37: Visual effects can be applied to each letterform and syllable independently. Visual effects are
cumulative, and as such, somewhat unpredictable. The phonetic speech labels, such as "emphatic plosive"
'flap" '"glottal" and "lengthenedphone" were all identified and labeled by hand. As such, they are discrete
labels. Continuous measurement of these and more phonetic qualities would be possible through a Speaker
Model and normalization against a standard distribution ofphonemic realizations.

The visual effect desired in mapping these characteristics is the following: [1] louder
speech is larger visually than softer speech, [2] speech in the lower F0 range is wider than
higher F0, [3] speech in the lower FO ranges has a greater weighting than higher F0, [4]
speech in the higher FO ranges is taller than lower F0. The gestalt achieved is an elastic
squash and stretch animation effect. When FO is higher, the glyphs become skinnier,
taller and lighter in weight; when FO is lower, the glyphs become wider, shorter and
heavier (see figure 38 below). Prosodic Font cross-references the presence of amplitude
(eg. some vocal event) during an FO silence, nor does it allow any font parameters to slip
to zero unless a silent event is of a certain minimum duration. This gives the font a visual
continuity across phrases, smoothing out the abrupt scalar effect of introducing a very
short-lived zero into the font parameters.

Figure 38: The derence between these two screen captures at drent points during the same vocalization is that
the intonation changedfrom very high to vey low. The first "own" was captured at the height of a High pitch
accent, and the second "own" was captured after the pitchfell.

Prosodic Font displays the visual speech data word by word, using timing constraints of
the speech file. The word by word presentation style is modeled after the RSVP
presentation style developed as a creative tool by designers in the VLW (Wong, 1995).
Timing of syllables is accurate to the hundredths of a second from the speech data. We
know that the timing of any syllable is dependent upon the physical motion necessary to
form the phonemes. These phonetic dependencies do not appear to make a large
difference in the relative changes of timing between words. Nevertheless, duration
dependencies upon phonetics could be removed with additional speech processing and
normalization. It may be necessary to further distort the duration scale of the Prosodic
Font to account for the minimal duration needed for visual processing.

Figure 39: As a timing counterproceeds through the speech data, the syllable currenty considered active is
highlighted. All visual manipulations that occur are associated with the vocal tranformations that occur
during the vocalization of that particular syllable. Interesting visual effects may occur byfreezing each
syllable at the moment activij transfers to the next syllable. Prosodic Font words would then appear as
collages in process.

Even though a word is presented as a totality, many visual state changes occur at the
syllable level. The syllable is the only measure of temporal duration, making a word the
product of the number of syllables within it. Prosodic Font has an internal timer that
moves the program state through the linear list of words, which are, in turn, linear lists of
syllables. Within a word, the active syllable's hue is tinted, while the inactive syllables are
shaded (see figure 39 above). This serves to perceptually enlarge and highlight the
temporal activity that moves through the body of a word. Potentially, visual effects
would only be applied to the active syllable, making a word a collage constantly in
process.

The model of making speech events visible yields an opportunity to render artistically
events such as inhalations and exhalations. People do not just inhale air, sometimes they

gulp, sometimes they minimize the influx of air with tense muscles. Similarly, exhalation

can be quick and forceful or it can be a gentle (or exasperated!) sigh. These non-linguistic

vocal events are revealing of emotional state and should not be eliminated from

representation within a prosodic font. Prosodic Font does not have data on breath

forcefulness, amount of displaced air, et cetera; hence these vocal events only have a

duration. Prosodic Font simply represents an inhalation as a circle that grows from the

center of the screen outwards; an exhalation is a large circle that shrinks.

RESULTS

0k wow

wows i

paa !d wow

Figure 40: Frame capture selectionsfrom the excited voice file, "Wow she placed wow that's amazing"

The visual impression of the Prosodic Font actually varies considerably across sound
files. For example, the recorded speech concerns an evening of great satisfaction, and the
voice is breathy, low, soft and slow. The Prosodic Font produced undulates through the
words like the ocean mentioned in the speech. In this satisfied speech, exhalations and
inhalations rise up often and gently in between intonational phrases. In contrast, the
excerpt from angry speech has extremely large changes in scale and shape, and does not
fall into a flowing rhythm. Syllables punctuate the screen boldly, and the scale changes
from very small to very large within a single syllable. Overall, the effect is engaging, and
has even aroused some empathetic laughter identifying with the speaker. The fonts
appear to have a life of their own.

While watching people take the user test, I had the opportunity to make some qualitative
observations about the perception of Prosodic Fonts. I share these without qualification.

59

Just as in speech generation, it is difficult to know what is normal. Recognizing a font as

belonging within the domain of normality allows one to recognize when a font is angry

or excited. There needs to be some background visual retention of a speaker model,
lending each prosodic font utterance some visual context from which to be judged. This

is not dissimilar to vocal prosody. Often we need time to acquaint ourselves with

someone's manner of speaking before understanding how they use intonational gestures.

By establishing some visual markings - such as a visual "reference line" - to give any

particular Prosodic Font a vocal context would aid in the interpretation of the speaker's

emotional state. This visual reference line could be as simple as a graphical box the size

of a speaker's normal vocal amplitude, and rendered in a style indicative of the speaker's

normal voice quality. Prosodic Font would play on top of this graphical box.

Graphically, it appears that the voice emanates from the alignment parameter given the

Prosodic Font. For example, the examples made for the user tests were left aligned on

the screen; hence, it appeared that the voice was speaking from the point of left

alignment. This is important because any graphic effects created for vocal events such as

breaths or coughs must also emanate from that point of speaker identification; otherwise

it appears as if there are two speakers on screen, one breathing and one speaking.

Prosodic Font requires some method that enables individualized playback speed control.

During some Prosodic Font files, there are points at which the spoken rhythm used is

too fast or slow, or too precipitously sudden, for the Prosodic Font to convey in a

manner that could be read. This is often the case during unaccented phrases,
unimportant to the main point of the sentence, which the speaker just brushes over.

There may be a need for a rhythm equalizer to ease sudden rhythmic transitions, and

some persistence of image during very fast segments to give the eye slightly more time to

read.

7. USER TEST

I designed a user test for Prosodic Font to see if people, exposed minimally to a file from

the Prosodic Font corpus, could choose an audio file that most closely resembled the

intonation, rhythm and emphasis evident in the Prosodic Font.

Testing begins by first showing the subjects a twenty-nine second Prosodic Font file to

acquaint them with the RSVP reading style. This file is representative of a speaker

reminiscing about a satisfying evening spent eating dinner, overlooking the ocean. The

font is small and pulsates in rhythm with the ebb and flow of the voice. By exposing

them first to this file, subjects can associate the smallness of the type with a calm

emotion. Since the first test file subjects see is a three second angry Prosodic Font file,

they are given the chance to understand the range of visual contrast within Prosodic

Font. The first tests I designed did not incorporate any such introduction and often the

subjects expressed confusion at the lack of context they were given in the three and four

second Prosodic Font files.

After the training file, subjects see the three second angry file. They are instructed to

watch this file, then listen to three audio files, and to choose one audio file that most

closely resembled the expression evident within the Prosodic Font. I placed no limit on

the number of times subjects might replay the audio or Prosodic Font files due to short

term memory constraints on temporally based material. They were also to circle the

emotion that most closely describes the emotion expressed within the Prosodic Font file.

They then repeated this process for the second Prosodic Font example.

Training Example: "This evening had the touch of someone's hand which was

wonderful, the... the... sight of this huge beautiful red sun setting over the

Pacific ocean, and this constant wonderful sound of the surf coming in, just

washing up constantly. And it never shuts off, it doesn't crash, it's just there." 29

seconds.

Example One: "Oh wow she placed wow that's amazing." 3 seconds.

Example Two: "I'm not working for my own education here." 4 seconds.

The study showed that people can correctly match Prosodic Font systematic graphical

variation with speech audio that demonstrates similar variation. In example one, seven of

eleven subjects chose the correct audio file. All but one correctly identified the

predominate emotion in the Prosodic Font as excitement. Higher success was achieved

in the second example. Nine out of eleven subjects chose the correct audio file, and

identified anger as the predominate emotion. I attribute the lower score in the first

example to the propensity of the Prosodic Font file to demonstrate uneven rhythm

during playback due to the demands made on the computer's processing power. Often

the Prosodic Font would slow down after repeated playing due to Java 1.2 vagaries.

Correspondingly, three of the eleven subjects in example one chose the bored audio file

which demonstrates a slower, more lethargic rhythm. Rhythmic correspondence of the

Prosodic Font to vocal prosody is a key, if not primary, feature in peoples' perception of

sound to image relationship.

Observations made during the user study also showed that people have a difficult time

performing this exercise. Most people watched the Prosodic Font file two or three times

consecutively, listened to each of the audio files, listened to each audio file again and

watched the Prosodic Font file each time. After this procedure they would make a

decision. Although the need to listen to the files repeatedly is probably an effect of

temporal memory constraints, it is also likely that this exercise tests a skill that is not

cultivated in current culture. Listening closely to musical structure and how different

instruments interact within a short musical piece is not a common intellectual exercise.

Few people have experience in listening for musical relationships and how to make

judgments about them.

RELATED WORK

Wong used the psychological study of Rapid Serial Visual Perception (RSVP) to design

temporal typographic solutions (1995). Her work differs from my proposal by

demonstrating a greater attention to the propositional, semantic representation of

language rather than the way in which a text was said (this might be attributed to the fact

that she used texts that were originally generated as text rather than speech).

Small studied different visual techniques of differentiating one voice from another in

conversation using RSVP techniques (1996). He found that most people find prosodic

representation within RSVP harder to read than a steady, rhythmic presentation of

words. Small's results cannot be extrapolated to natural language prosody due to his

experimental use of a poem structured in iambic pentameter rhyming meter.

Ishizaki articulated a descriptive theory of temporal form-how the interaction of visual

elements over time may be conceptualized- and demonstrated this theory with a multi-

agent system that designs continuous visual solutions (1996). Ishizaki and his students at

Carnegie Mellon University designed temporal typography with the stated intent of

representing affective vocal prosody (1997). They used existing fonts and frame-based

animation techniques. However, they did not formalize their observations and visual

studies into a systematic theory, nor did they begin from the point of computational and

algorithmic typographic design.

Sparacino designed a program called Media Creatures using real-time fundamental

frequency and energy trackers to animate words (1996). However, she focused upon the

behavioral performance of single words as actors rather than words within a continuous

message, and has not moved from signals alone to any formal representation of prosody.

Cho's bachelor's thesis (1996) and subsequent typographic work such as Letter Dance;

Type Me, Tjpe Me Not (the winning entry to I.D. Magazine's 1998 design contest);

Typeractive, a 3D block design font; and Fore-font, a particle-based 3D font, has focused

upon creating electronic glyph forms that support motion - even sinuous motion -

transformation and texture. Cho's innovative and lovely typographic work has been an

inspiration to my own Object-Oriented font design. I would hope that artists such as

Cho would be intrigued to create fonts for a prosodic font system.

For the San Francisco Exploratorium museum, artist Paul Demarinus created an exhibit

that demonstrated how communicative the paralinguistic expression of prosody alone

can be. Two people stand on facing sides of a screen and speak to each other as if in

conversation. An electronic abstract display driven by their vocal expression is generated

between them. In this way, only the paralinguistic functions of language is

communicated, the linguistic functions removed. This is also an example of temporal

vocal parameters driving a visual spatial display.

In traditional graphic design, Warren Lehrer designed an autobiography of Boston-based

story-teller Brother Blue that uses varieties of fonts, sizes and types to create a spatial

understanding of his vocal dynamics and changes. The typography is surprisingly

effective at allowing a reader to hear a distinctive, unique voice and character while

reading the autobiography. This work was no small inspiration to me in thinking about

Prosodic Font.

FUTURE WORK

Since Prosodic Font work has just begun, there is little but future work. Below I mention

a number of directions I see as productive for Prosodic Font development.

Higher level abstractions of amplitude, duration and FO signals need to be created while

maintaining the speaker dependency of the voice signal. Removing the physical

pronunciation effects upon phone duration and vowel spectra from the signal would

yield a more phonological understanding of speaker intent. Amplitude should be

measured only during phonetic vowel events. Experiments with using just the highest

amplitude achieved, the average amplitude across the vowel event, and the slope of

amplitude should be experimented with. People may perceive the underlying rhythmic

structure of an utterance, cognitively subtracting the known effects of pronunciation.

Normalizing each phoneme against a phonetic distribution table that corrects for stressed

and unstressed position would regularize the Prosodic Font rhythm. Combining phonetic

normalization with a specific Speaker Model of their voice characteristics over time

would refine this method, making the Prosodic Font highly expressive of an individual's

use of prosody.

Currently, only a few levels of visual effects have been applied using the speech

parameters. Greater visual development at all levels of font design is necessary: localizing

single phone changes to the glyph representation of the phone, localizing syllabic

continuous parameter changes to that particular syllable rather than the entire word, and

adding greater persistence to intonationally accented words.

Speech recognition programs should consider recognizing the complete paralinguistic to

linguistic vocal continuity of a speaker's utterances - not just discrete linguistic events.

This would broaden the conception of speech recognition to include affective sounds

such as sighs, breaths, laughs - sounds that are usually ignored. Accomplishing this

would require that speech recognition move away from a strict adherence to dictionary

orthographic forms. A combination of phonetic and orthographic linguistic forms would

be used during speech recognition, inherently opening up opportunities for dialect

representations of speech.

Automating the Prosodic Font speech parameter collection is obviously one of the

largest future work agenda items. Replacing the manually generated portions of prosodic

font with a speech recognizer, and integrating a real-time FO tracker that classified

accents (such as TILT does) and amplitude detectors, is a first priority. Currently,
additional phonemes, such asflap or glottal, are labeled as discrete events because there is

no good way of determining a phonetic pronunciation continuum. Creating an automatic

phonetic classifier that identifies full and reduced vowel forms, plus unusually energetic

consonantal sounds, on a continuous measurement scale would add a great deal of small

detail and interest to each Prosodic Font glyph.

There is a need to develop a system that can both create and use a speaker model of

prosodic variation. This model would allow any prosodic font message sent by the

speaker to have a visual context created for the message, enabling readers to see what the

speaker's voice "looks" like normally. This would also enable a prosody recognizer to

detect affective changes in the voice and change color schemes, font styles, and

background.

Although Prosodic Font as described within this thesis uses only the RSVP method of

word presentation, there are infinite graphic design potentials for a temporally based

font. Experimenting with different levels of visual persistence within RSVP, movement

of the word emanation point on the screen, spatially linear layout and three dimension

presentations would begin to address the variety of design potentials. Designing with a

time-based medium adds an entirely new repertoire to the field of design. Designing with

a computational, unpredictable medium adds even greater potential.

Measures of vocal quality need to be compiled and normalized for real-time look-up

purposes. These normalized measures of voice quality could be used in two ways for

Prosodic Font: [1] to develop an individual speaker's font design as differentiated from

other speakers', and [2] to differentiate affective vocal changes within the same speaker's

font design over time. I envision vocal quality measures to map well to font rasterization

techniques and texture mapping, as well as color. For example, a breathy voice would

blur the edges of the prosodic font to a greater or lessor degree, whereas a creaky voice

would be illustrated through striations through the font texture.

Interfaces for creating Prosodic Font messages entirely by hand and for choosing certain

design preferences in an automated Prosodic Font system are necessary. Graphic

interface design work can be done on how to allow a user to design a Prosodic Font

message using a standard GUI approach. The user would type a message and then add

prosodic contours and accents to the orthographic message that would automatically

transform it into a Prosodic Font message. Automatic speech and prosody generation

techniques could provide a backbone for a prosodic interpretation of the typed message;

the user could add expression to this automated intonational curve. Prosodic Font GUI

could include emotional templates that users could apply to certain messages, sentences,
phrases and words.

APPENDIXA: TILT FILE EXAMPLE

File: K-S-sunset29s. tilt

End Time; SPSS color; Event Number; Event Type; tilt: Start FO;

If a type of Accent
Amplitude; Duration;

(a, m, 1, fb, afb) then also:
Tilt Value; 0.0;

A separator
nfields 1

0.11000
0.16000
0.30000
0.50000
0.84000
1.01000
1.22000
1.26000
2.28000
2.52000
2.69000
2.79000
2.82000
3.40000
3 .46000
3.63000
3.75000
3.80000
3.82000
5.20000
5.45000
6.19000
6.53000
7.13000
7.28000
7.71000
7.93000
8.66000
9.16000
9.90001

10.08001
10.14001
10.28001
10.36001
10.45001
10.60001
10.80001
10.82001
10.97001
11.93001
12.23001
12.62001
12.77001
12.83001
14.70001
15.03001
15.70001
15.72001
15.87001
15.89001

1;
2;
3;
4;
5;
6;
7;
8;
9;
10;
11;
12;
13;
14;
15;
16;
17;
18;
19;
20;
21;
22;
23;
24;
25;
26;
27;
28;
29;
30;
31;
32;
33;
34;
35;
36;
37;
38;
39;
40;
41;
42;
43;
44;
45;
46;
47;
48;
49;
50;

sil;
C;

a;
sil;
C;

sil;
a;
C;

sil;
C;

sil;
afb;
C;

sil;
C;

sil;
a;
fb;
C;

sil;
C;

sil;
C;

sil;
a;
sil;
C;

sil;
a;
sil;
a;
C;

sil;
C;

sil;
C;

sil;
C;

fb;
sil;
C;

sil;
a;
C;

sil;
C;

sil;
C;

a;
C;

tilt:
tilt:
tilt:
tilt:
tilt:
tilt:
tilt:
tilt:
tilt:
tilt:
tilt:
tilt:
tilt:
tilt:
tilt:
tilt:
tilt:
tilt:
tilt:
tilt:
tilt:
tilt:
tilt:
tilt:
tilt:
tilt:
tilt:
tilt:
tilt:
tilt:
tilt:
tilt:
tilt:
tilt:
tilt:
tilt:
tilt:
tilt:
tilt:
tilt:
tilt:
tilt:
tilt:
tilt:
tilt:
tilt:
tilt:
tilt:
tilt:
tilt:

0.000
134.422
134.976
154.145
132.968
120.036
106.109
100.664
100.428
113.378
106.170
94.184
88.011
86.932
95.878
95.878
89.449
88.847
87.095
87.095

117.768
113.146
115.036

98.111
133.516
142.330
109.835
108.021
150.066
96.924

137.238
128.182
122.957
87.913
88.047

111.156
104.403
104.143
104.161
105.247
101.124
97.620

114.543
95.027
93.767

126.307
110.208
128.546
128.860
129.373

19.169 0.140 1.000

5.506 0.210 -0.899

6.177 0.100 -0.900

2.529 0.120 -0.119
0.000 0.050 -0.500

0.000

0.000

0.000

0.000
0.000

8.814 0.150 0.933 0.000

58.234 0.500 -0.816 0.000

9.433 0.180 -0.869 0.000

1.325 0.150 0.643 0.000

0.000 0.150 -0.500 0.000

4.058 0.150 0.163 0.000

20.870 0.360 0.065

0.000 0.160 -0.500

0.000 0.040 -0.500

2.336 0.075 -1.000
1.777 0.135 -0.092

0.000

0.000

0.000

0.000
0.000

16.31001
16.44001
16.80001
16.94001
17.00001
17.17001
17.20001
17.36001
17.38001
17.42001
18.83001
18.90501
19.04001
19.12001
20.47001
20.52001
20.67001
20.87001
21.01001
21.39001
21.52001
21.54001
22.22001
22.33001
22.45001
22.63001
22.68001
22.86001
23.01001
23.08001
23.22001
23.24001
24.56001
24.73001
25.82001
25.93001
25.95001
27.12001
27.31001
27.33002
27.90000

51;
52;
53;
54;
55;
56;
57;
58;
59;
60;
61;
62;
63;
64;
65;
66;
67;
68;
69;
70;
71;
72;
73;
74;
75;
76;
77;
78;
79;
80;
81;
82;
83;
84;
85;
86;
87;
88;
89;
90;
91;

sil;
c;

a;
sil;
c;

sil;
c;

a;
c;

fb;
sil;
a;
fb;
c;

sil;
c;

a;
sil;
c;

sil;
a;
c;

sil;
c;

sil;
a;
c;

sil;
c;

sil;
afb;
c;

sil;
afb;
sil;
a;
c;

sil;
afb;
c;

sil;

tilt:
tilt:
tilt:
tilt:
tilt:
tilt:
tilt:
tilt:
tilt:
tilt:
tilt:
tilt:
tilt:
tilt:
tilt:
tilt:
tilt:
tilt:
tilt:
tilt:
tilt:
tilt:
tilt:
tilt:
tilt:
tilt:
tilt:
tilt:
tilt:
tilt:
tilt:
tilt:
tilt:
tilt:
tilt:
tilt:
tilt:
tilt:
tilt:
tilt:
tilt:

129.373
129.901
121.205
119.265

95.471
95.471

100.269
100.135
91.129
90.261
88.885
96.423
94.087
84.437
80.580
97.462
97.704
99.371
91.404
87.657
97.259
97.289
97.289

117.558
117.153
111.266
114.225
114.552
118.458
114.883
90.789
91.791
91.791
97.041
83.698

110.098
109.860
109.860

95.015
82.589
82.589

13.343

0.859

12.426

0.170 -1.000

0.110 -0.183

0.190 -1.000

0.000

0.000

0.000

1.667 0.150 1.000 0.000

0.304 0.130 0.165 0.000

7.415 0.180 0.033 0.000

1.133 0.140 0.585 0.000

APPENDIX B: WORD FILE EXAMPLE

KEY:

VocalE vent Tjpes:
<sil>

<inhale>
<exhale>
<sllable>

<cough>

<giggle>
<laugh>

VocalQuality Tpes:
<creak>
<breathy>
<nasal>

Key to
T h
&at

:M
^t

/ word continuees
word ends

Phonetic Constants within Syllable Vocal Events:
phonetic ligature

glottaization
lengthened phone
flap

ngorous unvoiced plosive
ngoroues voiced plosive

File: K-S-sunset29s. words

VocalEvent;
Quality;
<sil>
t-his;
ev/
enin-g;
h:ad;
<sil>

<inhale>
<sil>

t-he;
<sil>

touc-h;
of;
some;
one's;

hand;
<sil>

w hich;
was;
won/
der/
ful;
<sil>

<inhale>
<sil>

t-he;
<sil>
t_he;

End Time; Amplitude; Tilt Accent; Vocal

0.11;
0.45;
0.63;
0.84;
1.34;
1.38;
1.56;
1.62;
1.73;
1.77;
2 . 05;
2 . 12;
2.34;
2.60;
3 . 07;
3 .19;
3 .40;
3 . 55;
3.79;
3 . 92;
4. 18;
4.25;
5 . 05;
5 . 14;

5 .49;
6 . 15;
6 . 57;

0;
2400;
2400;
2400;
1250;
0;
50;
0;
1500;
0;
2500;
2300;
1300;
1600;
900;
0;
1200;
750;
250;
250;
250;
0;
50;
0;
1750;
0;
1500;

3;

7;

12;

17;
18;

<breathy>

<breathy>

<creak>

<sil> 6.76; 0;
:si&gh*t; 7.51; 4000; 25;
<sil> 7.66; 0;
of; 8.06; 1250; <breathy>

t_his; 4.81; 400; <breathy>

h:uge; 9.40; 2400; 29; <breathy>

<sil> 9.77; 0;
beau/ 10.08; 1750; 31;
^ti/ 10.14; 1200;
ful; 10.45; 1000;
red; 10.60; 900;
sun/ 10.97; 1100; 39;

set; 11.24; 600;
<sil> 11.27; 0;

<inhale> 11.66; 50;
<sil> 11.76; 0;

se^t-t/ 11.93; 1700;
in_g; 12.30; 800;
<sil> 12.58; 0;
o/ 12.77; 1450; 43;
ver; 12.83; 750;

t_he; 12.92; 250;
Pa/ 12.97; 250;
ci/ 13.20; 1000;
fic; 13.35; 750;
o/ 13.47; 900;

cean; 13.76; 450;

<sil> 13.87; 0;
<inhale> 14.44; 50;
<sil> 14.64; 0;
and; 15.03; 1850; <breathy>

t_his; 15.30; 1000; <breathy>

<sil> 15.35; 0;

*c:on/ 15.87; 1900; 49;
stant; 16.31; 1600;

:won/ 16.74; 2500; 53;
der/ 16.80; 2100;
ful; 17.00; 1500;
:sound; 17.36; 900; 58;
sound; 18.83; 900; 60;

of; 17.53; 400;
t_he; 17.60; 450;
surf; 18.14; 750;
<sil> 18.17; 0;

<inhale> 18.69; 50;
com/ 18.83; 600;
ing; 18.98; 500; 62;

in; 19.42; 500; 63;
<sil> 19.63; 0;

<inhale> 20.08; 50;
<sil> 20.22; 0;

just; 20.35; 800;
was-h/ 20.84; 1250; 67; <breathy>

in g; 20.94; 1200;
up; 20.09; 950;

<sil> 21.12; 0;
con/ 21.54; 750; 71;
stant/ 21.77; 600;

ly; 22.03; 250;
<sil> 22.14; 0;

an^d; 22.24; 750;
it; 22.40; 1100;

ne/ 22.54; 1250; 76;

ver; 22.71; 1100;

<sil> 22.73; 0;

turns; 23.02; 1150;

of-f;
<inhale>
<sil>
i^t;

<sil>
does/
n't;

cras-h;
<inhale>
<sil>
it's;
<sil>
just;
<sil>
t-here;
<sil>

23.48;
23.76;
23.84;
23 .96;
24.05;
24.21;
24.33;
25.07;
25.35;
25.42;
25.65;
25.71;
26.22;
27.00;
27.60;
27.90;

900;
50;
0;
1250;
0;
1750;
1750;
500;
50;
0;
500;
0;
1500;
0;
1400;
0;

81;

84;

86;

89;

APPENDIX C: FONT FILE

Format Key:

Phonetic letter + Strokes listed in consecutive order they are to be drawn.

a; CIRCLE_0: ; VERTICALLINE: X HEIGHT BASE_LINE;

b; VERTICALLINE: ASCHEIGHT BASELINE; CIRCLE_0:

c; CEE: ;

d; CIRCLE_O: ; VERTICALLINE: ASCHEIGHT BASELINE;

e; CEE: ; FORWARD-SLASH: XHEIGHT BASE LINE MEDIUM;

f; VERTICALLINE: ASCHEIGHT BASELINE CROSSBAR THIN CURVE-TAIL TOP RIGHT THIN;

g; CIRCLE_O: ; VERTICALLINE: XHEIGHT DESCDEPTH CURVETAIL BOT LEFT MEDIUM;

h; VERTICALLINE: ASCHEIGHT BASELINE; HORSESHOE: DOWN MEDIUM;

i; VERTICALLINE: XHEIGHT BASELINE DOT;

j; VERTICALLINE: XHEIGHT DESCDEPTH DOT CURVETAIL BOT LEFT THIN;

k; VERTICALLINE: ASCHEIGHT BASELINE; FORWARDSLASH: XHEIGHT CENTERHEIGHT

THIN; BACKSLASH: CENTERHEIGHT BASELINE THIN;

1; VERTICAL-LINE: ASCHEIGHT BASELINE;

m; VERTICALLINE: XHEIGHT BASE_LINE; HORSESHOE: DOWN THIN; HORSESHOE: DOWN

THIN;

n; VERTICALLINE: XHEIGHT BASELINE; HORSESHOE: DOWN MEDIUM;

o; CIRCLE_0: ;

p; VERTICALLINE: XHEIGHT DESCDEPTH; CIRCLE_0:

q; CIRCLEO: ; VERTICALLINE: XHEIGHT DESCDEPTH;

r; VERTICALLINE: XHEIGHT BASELINE CURVETAIL TOP RIGHT THIN;

s; SNAKE: ;

t; VERTICAL LINE: ASCHEIGHT BASELINE CROSSBAR THIN;

U; HORSESHOE: UP MEDIUM; VERTICALLINE: XHEIGHT BASELINE;

v; VEE: XHEIGHT BASELINE MEDIUM false;

w; BACKSLASH: XHEIGHT BASELINE THIN; FORWARDSLASH: XHEIGHT BASELINE THIN;

BACKSLASH: XHEIGHT BASELINE THIN; FORWARDSLASH: XHEIGHT BASELINE THIN;

x; FORWARDSLASH: XHEIGHT BASELINE MEDIUM; BACKSLASH: XHEIGHT

BASELINE MEDIUM;

y; BACKSLASH: XHEIGHT BASELINE THIN; FORWARDSLASH: XHEIGHT DESCDEPTH

MEDIUM;

z; ZEE: ;
' ; HYPHEN:

tt; VERTICALLINE: ASCHEIGHT BASELINE CROSSBAR THIN; VERTICALLINE: ASCHEIGHT

BASELINE CROSSBAR THIN;

Note: In this implementation, Simultaneity is not defined in the font

specification, but rather in the code.

APPENDIX D: QUESTIONNAIRE

I am interested in the connection between vocal expression and type design. I've designed a font that uses the

voice signal to determine its own shape and motion. There are two examples of this font on the large

computer. Watch the first one and then listen to three audio files on the small computer. Choose the sound

fie that sounds most like the Prosodic Font example looked Circle your choice below. Circle the

emotion that you think best describes the font's expression. Repeat this for the second font example.

EXAMP LE ONE: "Oh wow she placed wow that's ama.zing"

* Circle the audio file that best portrays the expression of the font:

Choice 1A Choice 1B Choice 1C

e Circle the word that best describes the emotion the font is expressing:

Anger Excitement Satisfaction Sadness

EXAMPLE TWO: '"'m not workingfor my own education here"

* Circle the audio file that best portrays the expression of the font:

Choice 1A Choice 1B Choice 1C

* Circle the word that best describes the emotion the font is expressing:

Satisfaction SadnessAnger Excitement

APPENDIX E: PROSODIC FONT CODE

import java.awt.*;
import java.awt.image.*;
import java.awt.datatransfer.*;
import java.awt.event.*;
import java.io.*;
import java.net.*; /for URL I/O of font data
import java.util*;
import java.util.zip.*;
import java.awt.geom.*;
import java.lang.*;
import java.applet.*;

public class myFrame
extends java.awt.Frame
implements ActionListener, WindowListener

public static final boolean DEBUG = false;
public boolean PERFORMSWITCH = false;

public String file = "K-A-myOwn3s"; //"K-S-sunset29s"; "K-E-placed4s", "K-S-sunset29s"
public int filenum = 0;

protected static Dimension framesize = new Dimension(900, 600); /original size of application
protected static int num windows = 0; //remember number of windows open

protected Panel myPanel;
protected CardLayout card;
protected Panel editor = new Panel(new FlowLayout();
protected Panel performer = new Panel(new FlowLayout();
protected ProsodicFont prosodicfont;
protected FontEditor fonteditor;

public LetterGrid grid = new LetterGrid(300); /parameter is the scalar applied to the grid

Menultem open, new-win, close, quit;
Menultem editwin, perform;

public static final String OPEN = "Open";
public static final String NEW = "New";
public static final String CLOSE = "Close";
public static final String QUIT = "Quit";
public static final String FILE = "File";
public static final String MODE = "Mode";
public static final String EDIT = "Edit";
public static final String PERFORM = "Perform";

myFrame(String filename, String incr) {

super("Prosodic Font");
file = filename;
numwindows++;

this.setSize(frame-size);

setResizable(true);

card = new CardLayout(;
myPanel = new Panel(card); /give panel a card layout
myPanel.setSize(frame-size);
this.add(myPanel, BorderLayout.CENTER); /panel to frame window

fonteditor = new FontEditor(this, grid, framesize.width, framesize.height);
try

prosodicfont = new ProsodicFont(this, fonteditor, grid, frame size.width, frame-size.height, (new Double(incr)).doubleValue();

catch (Exception e)

System.out.println(e);

performer.setSize(frame-size);
performer.add(prosodicfont);

editor.setSize(framesize);
editor.add(fonteditor);

myPanel.add(performer, "performer"); /can refer in card to string name
myPanel.add(editor, "editor"); /can refer in card to string name

/making menu
MenuBar menubar = new MenuBaro;
this.setMenuBar(menubar);
Menu file = new Menu(FILE);
menubar.add(file);

/make new menu items in menu File
file.add(open = new Menultem(OPEN, new MenuShortcut(KeyEvent.VKO)));
file.add(new-win = new Menultem(NEW, new MenuShortcut(KeyEvent.VK N)));
file.add(close = new Menultem(CLOSE, new MenuShortcut(KeyEvent.VKS)));

file.addSeparator(;
file.add(quit = new Menultem(QUIT, new MenuShortcut(KeyEvent.VKQ)));

/create and register actionlisteners for the menuitems
open.addActionListener(this); open.setActionCommand(OPEN);

new win.addActionListener(this); newwin.setActionCommand(NEW);
close.addActionListener(this); close.setActionCommand(CLOSE);
quit.addActionListener(this); quit.setActionCommand(QUIT);

Menu mode = new Menu(MODE);
menubar.add(mode);

mode.add(editwin = new Menultem(EDIT, new MenuShortcut(KeyEvent.VKE)));
mode.add(perform = new Menultem(PERFORM, new MenuShortcut(KeyEvent.VKP)));

//create and register actionlisteners for these menuitems too.
editwin.addActionListener(this); editwin.setActionCommand(EDIT);
perform.addActionListener(this); perform.setActionCommand(PERFORM);

/another event listener, this one to handle window close requests.
this.addWindowListener(this);

/set up window size and pop it up.
this.packo;

// myPanel.validate(;
this.showo;

card.show(myPanel, "editor"); /opens initially to editor
fonteditor.readFile(fonteditor.chooseFileo); /opens dialogue to select a font file

}

public void actionPerformed(ActionEvent e)
String command = e.getActionCommando;
if (command.equals(CLOSE)) close(;
else if (command.equals(OPEN)) open(;
else if (command.equals(EDIT)) edito;
else if (command.equals(PERFORM)) performo;
else if (command.equals(NEW)) System.out.println("New not implemented Max hack"); //new myFrameo;
else if (command.equals(QUIT))
this.prosodicfont.shutDown(;
this.fonteditor.shutDown(;
System.exit(O);

public void windowClosing(WindowEvent e) { closeo; }
public void windowActivated(WindowEvent e) {}
public void windowClosed(WindowEvent e) {}
public void windowDeactivated(WindowEvent e) {}
public void windowDeiconified(WindowEvent e) {}
public void windowlconified(WindowEvent e) {}
public void windowOpened(WindowEvent e) {}

//close a window. if this is last window open, just quit
void closeo {

this.prosodicfont.shutDown(;
this.fonteditor.shutDown(;
if (--numwindows == 0) System.exit(O);
else this.disposeo;

}

void open({
if (!PERFORMSWITCH)
fonteditor.readFile(fonteditor.chooseFileo); /should be a text file.

else if (PERFORMSWITCH) {
/String file-prefix = prosodicfont.chooseFileo;

/if (filenum >= file.length) filenum = 0;
String file-prefix = this.file; /stub name cause dumb system problem with getting a non-null String back from filedialoguebox.

if (file-prefix != null){
prosodicfont.readTWFile(ProsodicFont.TILT, file-prefix, ".tw");
prosodicfont.readWordsFile(ProsodicFont.WORDS, file-prefix, ".txt");

else System.out.println("can't open nothin");

void edito{
if (DEBUG) System.out.println(" Edit mode chosen");
PERFORMSWITCH = false;
editwin.setEnabled(false); perform.setEnabled(true);
prosodicfont.suspend(; /f onteditor.resume(; /suspend animation thread

card.show(myPanel, "editor");
editor.repainto;
if (editor.isShowingo) System.out.println("Editor chosen but it doesn't want to come out..."
}

void perform()
if (DEBUG) System.out.println("Perform mode chosen");
PERFORMSWITCH = true;
editwin.setEnabled(true); perform.setEnabled(false); /sets menu items to accessible/inaccessible
prosodicfont.resume(; //fonteditor.suspendo; /start animation thread
card.show(myPanel, "performer");
prosodicfont.copyFontFromEditoro; /copies vector into hashtable for nonlinear.
if (performer.isVisible() System.out.println("performer panel at "+performer.getLocationo);
if (prosodicfont.isVisible())System.out.println("prosodicfont's sized " +prosodicfont.getSizeo);

public static void main(String args[]) {
System.out.println("opening Prosodic Font...");
myFrame myappw = new myFrame(args[O], args[1]);

class FontEditor
extends Component
implements ActionListener, Runnable {

public static final boolean DEBUG = false;

public static String FONTFILENAME = "Font4_28_98.txt";

//for PAINTING:

public final static String[] gridlinenames = {"BODYHEIGHT",
"ASC HEIGHT",
"CROSSHEIGHT",
"XHEIGHT",
"CENTERHEIGHT",
"BASELINE",
"DESCDEPTH",
"BODYDEPTH" };

public final static String[glyph-widths = { "THIN", "MEDIUM", "FAT" };

public final static int rsz = 8; //resizing rectangle size handles

/PAINTING SWITCHES
public static boolean DRAWLETTERGRID = true;
public static boolean DRAWLETTERID = true;
public static boolean DRAWLETTERGRIDSIZEMANIP = true;

/MANIPULABLE boolean switches:
protected boolean RESIZEGRIDEDIT = false; //true when directly manipulating grid sizelhandle

/ANIMATION THREAD
protected Thread Viz;
protected int frameDelay = 10; //2 second delay before next run() cycle

/GRID VARIABLES
public short grid-scalar = 10; /how to size the letter grid
public short body-height; /DRAWLETTERGRID: determines top of grid placement vertically
public short x.start-pt; //DRAWLETTERGRID: determines grid placement horizontally

public LetterGrid grid; /parameter is the scalar applied to the grid
public LetterGrid grid2 = new LetterGrid(300); /used for screen captures to show range of expressiveness.

/collection of rectangle resizing handles for every variable there is...
public Rectangle grid..size-handle = new Rectangle(rsz, rsz); /the rectangle (width, height) of the lettergrid
public Rectangle[vertical;
public Rectangle[] horizontal;

/DRAWLETTERGRID display variables (timing and sequencing)
protected int current_letter = 26; /character from lines vector currently editing/showing
protected Color currentcolor = Color.black; /current drawing color

/FONT MEMORY STORAGE
protected Vector lines = new Vector(0, 1); /store the letters of the alphabet

/MOUSE COORDINATES
protected short lastx, lasty = 0; /coordinates of last click

//APPLET STUFF
protected Frame frame; //the frame we are all within
protected int width, height; //the preferred size
protected PopupMenu popup; /the popup menu

FontEditor(Frame frame, LetterGrid lettergrid, int width, int height)

this.frame = frame;
this.grid = lettergrid;
this.width = width;
this.height = height;

//hand scribbling wiht low-level events, so we must specify which events we are interested in.
this.enableEvents(AWTEvent.MOUSEEVENTMASK);
this.enableEvents(AWTEvent.MOUSEMOTIONEVENTMASK);

popup = new PopupMenuo; //create the menu

Menu colors = new Menu("Colors"); //create a submenu
popup.add(colors); //add it to the popup
String[colornames = ("Pink", "Black", "Green", "Yellow" };
for(int i=0; i <colornames.length; i++){

Menultem mi = new Menultem(colornames[i]); //create the submenu items
mi.setActionCommand(colornames[i]);
mi.addActionListener(this);
colors.add(mi);

String labels = ("Clear", "Print", "Save", "Load", "Cut", "Copy", "Paste");
String commands[] = {"clear", "print", "save", "load", "cut", "copy", "paste");

for(int i=0; i <labels.length; i++) {
Menultem mi = new Menultem(labels[i]); I/create a new menu item
mi.setActionCommand(commands[i]); //set its action command
mi.addActionListener(this); /add its action listener
popup.add(mi); /add item to the popup menu

}

/init Rectangle handles here
vertical = new Rectangle[gridlinenames.length];
horizontal = new Rectangle[glyph-widths.length];
for(int j=0; j< vertical.length;j++) verticalj] = new Rectangle(rsz, rsz);
for(int k=0; k<horizontal.length;k++) horizontal[k] = new Rectangle(rsz, rsz);

I/finally, register popup menu with the component it appears over
this.add(popup);

/Niz = new Thread(this);
//this.start();

public void starto{
Viz = new Thread(this);
Viz.setPriority(Thread.NORM_PRIORITY);
Viz.start();
System.out.println("Started Viz thread");

}

public void resumeo{ Viz.resumeo; System.out.println("Editor Viz thread resumes...");}
public void suspendo{ Viz.suspendo; System.out.println("Suspended Editor Viz thread.");}
public void stop({ if (Viz.isAliveo) Viz.stopo; System.out.println("Stopped Editor Viz thread.");)

/** Call this when the window is being closed or app is being stopped. It shuts
down the active threads, etc. */

public void shutDowno{
/if (Viz.isAliveo)
// this.stopo;

/* specifies big the component would like to be.
it always returns the preferred size passed to the Scribble() constructor */
public Dimension getPreferredSizeo (return new Dimension(width, height); }

/** this is the actionListener method invoked by the popup menu items */
public void actionPerformed(ActionEvent event) {

/get the "action command" of the event, and dispatch based on that.
//this method calls a lot of the interesting methods in this class.
String command = event.getActionCommand(;
if (command.equals("clear")) clearo;
else if (command.equals("print")) printo;
else if (command.equals("save")) save(;
else if (command.equals("load")) loado;
else if (command.equals("cut")) cuto;
else if (command.equals("copy")) copyo;
else if (command.equals("paste")) pasteo;

else if (command.equals("Black")) current-color = Color.black;
else if (command.equals("Pink")) currentcolor = Color.pink;
else if (command.equals("Yellow")) current-color = Color.yellow;
else if (command.equals("Green")) current-color = Color.green;

}

public void run({

while (Thread.currentThreado == Viz) {

repainto; /initiates all variable update and rendering action

try {
Thread.sleep(frameDelay);

} catch (Exception e) { System.out.println(e.toString()); }

/** Draw all saved lines of the scribble, in the appropriate colors **/
public void paint(Graphics g) {

Graphics2D g2 = (Graphics2D) g;

body-height = (short)(this.height/5); //centers the grid vertically
x_start-pt = (short)((this.width -grid.scalar()/2); //centers the grid horizontally

if (lines.sizeo > 0) {
Glyph current = (Glyph) lines.elementAt(current-letter);

/if (DRAWLETTERID) DrawLetterlD(g2, current);

if (DRAWLETTERGRID) DrawLetterGrid(g2);

if (DRAWLETTERGRIDSIZEMANIP) DrawLetterGridSizeManip(g2);

if (DRAWLETTERGRID) DrawLetter(g2, current);

if (DEBUG) System.out.printn("FontEditor is visible at size "+ getSizeo);

public void DrawLetterlD(Graphics2D g2, Glyph current){
g2.setFont(new Font("Serif", Font.ITALIC, 120));
g2.setColor(Color.lightGray);
g2.drawString(current.letter, 50, 150);

public void DrawLetterGrid(Graphics2D g2){
if (DEBUG) System.out.println(" vertical zero:" +body-height+

" horizontal zero:" +x-start-pt+
" fat width: "+grid.width("FAT")+
" body height: "+grid.height("BODYHEIGHT")+
" desc depth: "+grid.height("DESCDEPTH")+
" grid.scalar: "+grid.scalar();

//horizontal grid lines
g2.setColor(Color.lightGray);
for(int b = 0; b < gridlinenames.length; b++)(

g2.drawLine(x-start-pt,
(int)(body-height +grid.height(gridline-names[b])),
(int)(x-start-pt +grid.scalaro/2),
(int)(body-height +grid.height(gridline-names[b])));

vertical[b].setLocation((int)(x-start-pt +grid.scalar(/2),
(int)(body-height +grid.height(gridline-names[b])));

g2.fill(vertical[b]);

for(int a = 0; a < glyph-widths.length; a++){
g2.drawLine((int)(x-start-pt+ grid.width(glyp hwidths[a])),

body-height,
(int)(x-startpt+ grid.width(glyph widths[a])),
(int)(body-height +grid.height("BODYDEPTH")));

horizontal[a].setLocation((int)(x-start-pt +grid.width(glyph-widths[a])),
(int)(body.height +grid.height("BODY DEPTH")));

g2.fill(horizontal[a]);

public void DrawLetterGridSizeManip(Graphics2D g2){

/drawing the rectangle that is the direct manipulable to resize the letter grid.

gridsize handle.setLocation((int)(x.start pt +grid.scalaro/2),
(int)(body-height +grid.height("BODYDEPTH"))); //lower right hand corner

g2.fill(grid-size-handle);

public void DrawLetter(Graphics2D g2, Glyph current){

current.drawGlyph(g2, currentcolor, x-start-pt, body-height);
}

public void changeGrid(String line, float num){

/ if (line.equals("BODYHEIGHT")) grid.body-height(num);
if (line.equals("ASCHEIGHT")) grid.ascheight(num);
else if (line.equals("CROSSHEIGHT")) grid.cross-height(num);
else if (line.equals("XHEIGHT")) grid.x-height(num);
else if (line.equals("CENTERHEIGHT")) grid.center-height(num);
else if (line.equals("BASELINE")) grid.base-line(num);
else if (line.equals("DESCDEPTH")) grid.desc depth(num);
/else if (line.equals("BODYDEPTH")) grid.body-depth(num);
else if (line.equals("THIN")) grid.incThin(num);
else if (line.equals("MEDIUM")) grid.incMedium(num);
else if (line.equals("FAT")) grid.incFat(num);
else System.out.printin("Strange gridline name");

/** this is the low-level event-handling method called on mouse events that do not
involve mouse motion. Note teh use of isPopupTriggero to check for the platform-dependent
popup menu posting event, and of the show() method to make the popup visible. If the menu is
not posted, then this method saves the coordinates fo a mouse click or invokes the superclass method **/

public void processMouseEvent(MouseEvent e) {

if (e.isPopupTrigger()

popup.show(this, e.getXO, e.getY();

else if (e.getIDO == MouseEvent.MOUSEPRESSED)

lastx = (short)e.getXo; lasty = (short)e.getY(; /save position of mousedown

if (gridsizehandle.contains(lastx, lasty)) { RESIZEGRIDEDIT = true; }

for(int i = 0; i < vertical.length; i++)
if (vertical[i].contains(Iastx, lasty)){
System.out.println("Rectangle hit: "+gridline-names[i]);
this.changeGrid(gridline-names[i], 10);
this.repaint(;
return;

}
for(int j = 0; j < horizontal.length; j++)
if (horizontalj].contains(lastx, lasty)){
System.out.printn(" Rectangle hit: "+glyph-widthsj]);
this.changeGrid(glyph-widthsj], 10);
this.repaint(;
return;

else if (e.get|D() == MouseEvent.MOUSERELEASED) {

RESIZEGRIDEDIT = false;
lastx = (short)e.getX(; lasty = (short)e.getYO;

/anytime mouse released, editing is finished.

/mouse click not in anything else; hence, meant to change current
if ((lastx > (this.getSize().width - (this.getSize(.width/10))) &&

(lasty < this.getSize(.height/2)){
changeCurrentLetter(+1);
grid.reinitScalaro; /reset grid back to manageable size.
repainto;

}

else if ((Iastx > (this.getSizeo.width - (this.getSizeo.width/10))) &&
(lasty > this.getSizeO.height/2)){
changeCurrentLetter(-1);
grid.reinitScalaro;
repainto;

else super.processMouseEvent(e); /pass other event types on.

/** this method is called for mouse motion events. it adds a line to the scribble, on screen, and
in the saved representation **/
public void processMouseMotionEvent(MouseEvent e)

if (e.getlD() == MouseEvent.MOUSEDRAGG ED)
short xdif = (short)(e.getX() - lastx);

letter, if right++, if left--

short ydif = (short)(e.getY() - lasty);

if (RESIZEGRIDEDIT){
/acting upon grid-scaling
//grid-scalar += java.lang.Math.min(xdif, ydif);
grid-scalar = (short) java.lang.Math.max(xdif, ydif);
grid.incWeight(grid-scalar*2);
//grid.incHeight(grid-scalar);
grid.incFullness(grid-scalar);
grid.incScalar(grid-scalar); //set grid instance to scaling result

lastx = (short)e.getX(; //save last position
lasty = (short)e.getYo; /save last position too.

repainto;

else super.processMouseMotionEvent(e); /IMPORTANT!

void changeCurrentLetter(int which){
/after click on panel, this function called to either decrement or increment current-letter by one
if (DEBUG) System.out.printn("Old letter: "+currentletter+ " new letter :" +(current-letter+which));

currentletter += which;

if (currentletter < 0) current-letter = lines.size(-1;

else if (current-letter >= lines.size() current-letter = 0;

/* clear the scribble. invoked by popup menu **
void clear()

Glyph I = (Glyph)lines.elementAt(current_letter);
L.glifs.removeAllElementso;
repainto;

}

/** print the scribble. invoked by the popup menu *
void printo {

/obtain a printjob object. this posts a print dialogue.
//printprefs (created below) stores user printing preferences.
Toolkit toolkit = this.getToolkito;
PrintJob job = toolkit.getPrintJob(frame, "Scribble", printprefs);

/if the user clicked Cancel in the print dialogue, then do nothing.
if (job == null) return;

/get a graphics object for the first page of output
Graphics page = job.getGraphicso;

// check the size of the scribble component and of the page.
Dimension size = this.getSize(;
Dimension pagesize = job.getPageDimension(;

//center the output on the page. otherwise it would be scrunched up in the upper-left corner of the page.
page.translate((pagesize.width = size.width)/2,

(pagesize.height = size.height)/2);

/draw a border around the output area, so ti looks neat.
page.drawRect(-1, -1, size.width+1, size.height+1);

//set a clipping plane region so our scribbles don't go otuside the border.
//onscreeen this clipping happens automatically, but not on paper.
page.setClip(0, 0, size.width, size.height);

//print this scribble component. by default this will just call paint(.
//this method is named print() too but that is just coincidence
this.print(page);

//finish up printing
page.disposeo; /end the page--send it to the printer.
job.endo;

/** this properties object stores the user print dialogue settings. */

private static Properties printprefs = new Propertieso;

/** the DataFlavor used for our particular type of cutand paste data.
this one will transfer data in the form of a serialized Vector object.
note that in java 1.1.1, this works intra-application, but not between applications.
java 1.1.1 inter-application data transfer is limited to the pre-defined string
and text data flavors.

public static final DataFlavor dataFlavor = new DataFlavor(Vector.class,
"StrangeVectorOf Scribbles");

/* copy the current scribble and store it in a simpleselection object (defined below)
then put that object on the clipboard for pasting

public void copyo {
//Get system clipboard
Clipboard c = this.getToolkito.getSystemClipboardo;
//copy and save the scribble in a Transferable object
Glyph I = (Glyph)lines.elementAt(current letter);
SimpleSelection s = new SimpleSelection(l.glifs.cloneo, dataFlavor);
/put that object on the clipboard
c.setContents(s, s);

/* cut is just like copy, except we erase the scribble afterwards */
public void cut() { copy(; clear(; }

/** ask for the trasnferable contents of the system clipboard, then ask that
object for the scribble data it represents. if either step fails, beep! **/
public void pasteo {

Clipboard c = this.getToolkit(.getSystemClipboard(); /get clipboard
Transferable t = c.getContents(this); /get its contents

if (t == null) {
this.getToolkito.beep();
return;

}
try {

/ask for clipbaord contents to be converted to our data flavour.
//this willl throw an exception if our flavor is not supported.
Vector newlines = (Vector) t.getTransferData(dataFlavor);
/add all htose pasted lines to our scribble.
for(int i = 0; i < newlines.size(; i++){

Glyph I = (Glyph) lines.elementAt(current-letter);
l.glifs.addElement(newlines.elementAt(i));

/and redraw the whole thing
repainto;

catch (UnsupportedFlavorException e)
this.getToolkit(.beepo; /if clipboard has soeother type of data

catch (Exception e) {
this.getToolkito.beepo; /or if anything else goes wrong

/* prompt the user for a filename, and save the scribble in that file
serialize the vector of lines with an ObjectOuputStream.
Compress the serialized objects with a GZIPOutputStream.
Write the compressed, serialized data to a file with a FileOutputStream.
don't forget to flush and close the stream!

public void save()
//create a file dialog to query the user for a filename.
FileDialog f = new FileDialog(frame, "Save Scribble", FileDialog.SAVE);
f.showo; //display the dialog and block
String filename = f.getFileo; //get the user's response
if (filename != null) { /if user didnt' click "Cancel",

try {
I/create the necessary output streams to save the scribble.
FileOutputStream fos = new FileOutputStream(filename); /save to file
GZIPOutputStream gzos = new GZIPOutputStream(fos /compressed
ObjectOutputStream out = new ObjectOutputStream(gzos); /save objects
out.writeObject(lines); //write out entire vector of scribbles
out.flusho; /get rid of crap in the chute.
out.closeo; /and close the stream.

} catch(IOException e) { System.out.println(e); }

/ prompt for a filename, and load a scribble from that file. read compressed, serialized data
with a FilelnputStream. Uncompress that data with a GZIPlnputStream. Deserialize iwth ObjectlnputStream.
replace current data with new data, and redraw everything. *
public String chooseFileo {

String filename = null;
//create a file dialogu to query the user for a filename.
FileDialog f = new FileDialog(this.frame, "Load file", FileDialog.LOAD);
f.show(; //display the user dialogue and block
filename = f.getFileo; //Get the user's response

return filename;
}

/** prompt for a filename, and load a scribble from that file. read compressed, serialized data
with a FilelnputStream. Uncompress that data with a GZIPInputStream. Deserialize iwth ObjectlnputStream.
replace current data with new data, and redraw everything. *
public void load()

//create a file dialogu to query the user for a filename.
FileDialog f = new FileDialog(frame, "Load Scribble", FileDialog.LOAD);
f.show(; //display the user dialogue and block
String filename = f.getFile(; //Get the user's response
if (filename != null) { /if the user didn't click cancel

try {
//create necessary input streams
FilelnputStream fis = new FilelnputStream(filename); //read from file
GZIPlnputStream gzis = new GZIPlnputStream(fis); Iluncompress
ObjectinputStream in = new ObjectlnputStream(gzis); //read objects
//read in an object. it should be a vector of scribbles
Vector newlines = (Vector) in.readObjecto;
in.close(; //close the stream
lines = newlines; //set the Vector of lines
repainto; /and redisplay the scribble

//print out exceptions. we should really display them in a dialog...
catch (Exception e) { System.out.println(e); }

/* THE following procedures are for accessing and reading a font file
contained in a URL */

public FileReader openFile(String filename){
FileReader fr = null;
try {

fr = new FileReader(filename);
catch (FileNotFoundException fnf){
System.out.printn("file not found... "+ fnf.getMessageo);
System.exit(1);

return fr;

public void readFile(String filename){

String line;
String letter, semicolon, colon, type, commands;
Glyph Itr;

BufferedReader in = new BufferedReader(openFile(filename));

try {
while ((line = in.readLineo) != null)

System.out.println("Read: " +line);

StringTokenizer st = new StringTokenizer(line, ":;", true); //parseable by semicolon delimiters

if (line.startsWith("//")) {
System.out.println("Comment: " +line);

}
else if (line.lengtho < 2){}
else {

letter = st.nextTokeno.trimO;
semicolon = st.nextTokeno;

ltr = new Glyph(letter, grid);

while(st.hasMoreElements()){

type = st.nextTokeno.trimo;
colon = st.nextTokeno;
commands = st.nextTokeno.trimo;

if (commands.startsWith(";)) {

Itr.addGlif(type, "");
if (DEBUG) System.out.println("no comm

}
else { //th

semicolon = st.nextTokeno.trimo;
if (semicolon.startsWith(";")) {

Itr.addGlif(type, commands);

/gets letter
/gets semicolon delimiter

/makes new Glyph

/reads in Glifs consecutively

/if any commands, are in this string
/ALWAYS a colon after a type glif

/either a semicolon or commands

/no additional commands with type spec

ands after type spec "+type);

ere are commands with type spec

/Iyep, commands are commands...

/new glif with additional specs

I
lines.addElement(Itr)

} catch (IOException e){System.out.println("error reading file " +e.getMessageo);
System.out.println("finished reading file " +filename+ " and filling letters vector.");

repainto;

/** this nested class implements the Transferable and
ClipboardOwner interfaces used in data transfer
it is a simple class that remembers a selected object and
makes it available in only one specified flavor.

static class SimpleSelection
implements Transferable, ClipboardOwner {

protected Object selection; //data to be transferred
protected DataFlavor flavor; //the one data flavor supported.

public SimpleSelection(Object selection, DataFlavor flavor)
this.selection = selection;

this.flavor = flavor;
}

public DataFlavor[] getTransferDataFlavorso {
return new DataFlavor[(flavor };

}

/** return the list of supported flavors. jsut one in this case *
public boolean isDataFlavorSupported(DataFlavor f)

return f.equals(flavor);
}

/** if the flavor is right, trasnfer the data (i.e. return it) **
public Object getTransferData(DataFlavor f)
throws UnsupportedFlavorException {

if (f.equals(flavor)) return selection;
else throw (new UnsupportedFlavorException(f));

}

/** this is the ClipboardOwner method. called upon when the data is no longer on the clipboard.
in this case, we dont' need to do much **/
public void lostOwnership(Clipboard c, Transferable t)

selection = null;

courtesy of Nelson Minar, 1997

Draw model:
When drawing, don't use this.getGraphics() or painto's argument-
use imageBuffer.getGraphicso.
override painto as expected to paint, but make sure to
call super.paint() to actually render your changes.
call this.repaint() to actually cause the drawing to show up
(or wait for something else to call this.updateo).
use this.setBackground() as you would normally.
call clearlmageBuffer() to reset the entire drawing to
background color.

class DoubleBufferPanel extends Panel {

protected Image imageBuffer;

protected Dimension imageBufferSize;

/*** paint just calls update.
Subclass can override this. Be sure to call
super.painto as the last step.

public void paint(Graphics g)

this.update(g);

}

/*** clears the image buffer to whatever the newest
background colour is.

public void clearlmageBuffero {

Graphics ig = imageBuffer.getGraphicso;

Color oldColor = ig.getColoro;
ig.setColor(this.getBackgroundo); / clear the buffer
ig.fillRect(O, 0, imageBufferSize.width, imageBufferSize.height);
ig.setColor(oldColor);

}

/*** update renders the buffer onto the screen.
also handles lazy creation of the offscreen buffer.

public void update (Graphics g)

Dimension appletSize = this.size(;

// check that the buffer is valid - if not, build one
if (imageBuffer == null ||
appletSize.width != imageBufferSize.width li
appletSize.height != imageBufferSize.height)

/System.out.println("Building a buffer of size" + appletSize);

imageBuffer = this.createlmage(appletSize.width, appletSize.height);
//imageBuffer = new Bufferedlmage(appletSize.width, appletSize.height, BufferedImage.TYPEBYTEINDEXED);

imageBufferSize = appletSize; /save new size

//this.clearlmageBuffer(; //sets to background color
}

g.drawlmage(imageBuffer, 0, 0, this);

/**/

class ProsodicFont
extends DoubleBufferPanel
implements ActionListener, Runnable {

public static final boolean DEBUG = false;

public static final String AUDIO = "audio"; /the directory (from here) that holds audio files (
public static final String WORDS = "words"; /the directory (from here) that holds words files (.txt)
public static final String TILT = "tilt"; /the directory (from here) that holds tilt files (.tw)

public double INCREMENT = 0.02; /for nonrealtime play, controls the time resolution of the fO reconstruction
public static final double FOFREQUENCYTOP = 500.0; /used to calculate stem width and other visual variables

public final static int SCALAR = 1000; //scales realtime playback of tilt file for butt slow computers

public final static double LONGSILENCE = 0.5; /a silence long enough to indicate a potential new subject...
/COLOR VARIABLES
protected Color background = Color.black;
protected Color foreground = Color.white;

/ANIMATION THREAD (doesn't work)...
protected boolean PLAY = false;
protected Thread Viz;
protected int frameDelay = 10; Imillisecond delay before next runo cycle
double timer = 0.0; Iruns the linear prosodic font track
double eventtimer = 0.0; Itimes the duration from beginning of each event to current
/double wordtimer = 0.0; Itimes the internal duration from beg. of word to end of word
double begin = 0.0; I/holds system clock at beginnign of text file playback
double event-begin = 0.0; Iholds system clock time at beginning of each new event
protected boolean RISE = true; I/for an accent, during RISE portion true,...

//TOBI VARIABLES
double Arisel, Afalll, Arise2, Afall2; /Amplitude RFC parameters converted from TILT numbers
double Drisel, Dfall1, Drise2, Dfall2; I/Duration RFC parameters converted from TILT numbers
double f0first, fOprev, fOnow, fOnext; /fundamental frequency value previous event current event
int inhale_vol = 0;
int exhalejvol; /number for diameter of circle representation
int ampprev, ampnext, ampnow; /numbers used for base word scalars

/DRAWING
Color hue = Color.white; //the shade that the graduated words will be
int xpos, ypos = 0; //the position (upper left corner where glyphs will be drawn
int kerning = 8; /space added between letters
LetterGrid ActiveGridSize; /a lettergrid that sizes active and shrinks inactive -copy

//FONT MEMORY STORAGE
protected Hashtable alphabet = new Hashtable(0, 1); /copies Vector alphabet from fonteditor to hashtable
protected Vector tilt = new Vector(0, 1); /stores the tilt events from the file selected
protected Vector words = new Vector(0, 1); /stores Syllables (which store letters) and phonetic marks
protected Vector fO = new Vector(0, 1); /a vector of the fO curve at INCREMENT resolution.
int tiltindex, word_index, syl_index = 0; /current indices into vectors
TiltEvent prev, te, next, last; /current index into tilt vector, safer than an index number
VocalEvent prevSyllable, currentSyllable; /uses wordindex and syl-index to get this.

//APPLET STUFF
protected PopupMenu popup;
protected Frame frame;
protected LetterGrid grid;
//protected int width, height;
protected FontEditor fonteditor;

//FILE MEMORY STUFF
String filename;

/****************/

/run or play sound file
//the frame we are all within

I/font measurements
//the preferred size

/pointer to the place where the alphabet resides.

ProsodicFont(Frame frame, FontEditor fonteditor, LetterGrid lettergrid, int width, int height, double incr)
supero;

// Max Hack
INCREMENT = incr;
//
this.frame = frame;
this.fonteditor = fonteditor;
this.grid = lettergrid;
exhalevol = height;

super.imageBufferSize = new Dimension(width, height);

if (DEBUG) System.out.println("prosodicfont inited with vars: width: " +width+" height: "+height);

//hand scribbling wiht low-level events, so we must specify which events we are interested in.
this.enableEvents(AWTEvent.MOUSEEVENT_MASK);
this.enableEvents(AWTEvent.MOUSEMOTIONEVENTMASK);

popup = new PopupMenuo; //create the menu
String[] options-Jist = { "Play font", "Play sound" };
for(int i=0; i < options-list.length; i++){

Menultem mi = new Menultem(options list[i]); I/create the submenu items
mi.setActionCommand(optionsjlist[i]);
mi.addActionListener(this);
popup.add(mi);

}
this.add(popup);

this.start(); //starts thread Viz to doublebuffer animation

this.setSize(width, height);
this.setBackground(background);
this.setForeground(foreground);
this.doLayouto;

public void start(){
Viz = new Thread(this);
Viz.setPriority(Thread.NORM_PRIORITY);
Viz.start();
System.out.println("Started Viz thread");

}

public void resumeo{ Viz.resumeo; System.out.printn("Viz thread resumes...");}
public void suspendo{ Viz.suspendo; System.out.println("Suspended Viz thread.");}
public void stopo{ if (Viz.isAliveo) Viz.stopo; System.out.println("Stopped Viz thread.");)

/** specifies big the component would like to be.
it always returns the preferred size passed to the Scribbleo constructor */
public Dimension getPreferredSizeo (return super.imageBufferSize;

public void actionPerformed(ActionEvent event)
String command = event.getActionCommando;
if (command.equals("Play font")) playFonto;
else if (command.equals("Play voice")) playVoiceo;
I

public void copyFontFrom Editoro(

if (fonteditor.lines.sizeo > 0) {
alphabet = new Hashtableo;
for(int i = 0; i < fonteditor.lines.size(; i++){

Glyph I = (Glyph) fonteditor.lines.elementAt(i);
alphabet.put(letter, I);

}
System.out.println("Copied font into performance mode");

void playFonto{
System.out.println(" Font reset to play again");

if (!tilt.isEmptyo){

PLAY = true; /flip the switch
tiltindex = syl-index = wordindex = 0;

initCalculateFrameo; /sets all for real time calculation

public void initCalculateFrameo{

tiltindex = 0;

last = (TiltEvent) tilt.lastElement(; /test case
prev = te = (TiltEvent) tilt.firstElemento; /global TiltEvent pointers
if (tilt-index < (tilt.sizeo)-1))

next = (TiltEvent) tilt.elementAt(tilt-index +1);

wordindex = syl-index = 0;
Word w = (Word) words.elementAt(word_index);
prevSyllable = currentSyllable = (Syllable) w.elementAt(syl-index); /global pointer

timer = eventtimer = 0.0; /reinit basic timing variables
begin = event-begin = System.currentTimeMilliso; /re-init beginning time to playback

fOfirst = fOprev = fOnow = 0; /always init back to 0...

ampprev = ampnext = ampnow = currentSyllableamplitudeo; //font base scalar

inhalevol = 0; exhalevol = this.imageBufferSize.height; //where breath circle starts

RISE = true; /rise always happens before the fall...

this.grid.scalar((int)ampnow); /init grid size - should be based on amplitude
this.grid.height((int)fOnow);
this.grid.fullness((int) fOnow);
this.grid.weight((int) fOnow);

if (DEBUG) System.out.println("Time begins at "+begin);

void playVoiceo{
/doesn't work unless this is an applet...stupid.

System.out.println("Voice soundfile should be played here again");
/*
try

//URL audio = new URL("http://www.media.mit.edu/-tara/au/"+filename);

AudioClip ac = Applet.getAudioClip(new URL("http://www.media.mit.edu/-taralaul"), filename);

if (ac != null) ac.play(;

} catch (MalformedURLException e){ System.out.println("bad url: "+ e.getMessage();
*/

public void run({

double mark = System.currentTimeMilliso; //re-init beginning time to playback

while (Thread.currentThreado == Viz) {

double now = System.currentTimeMilliso;
double timer = now - mark; //difference between beginning and nown

if (timer > 0){

doFrame(; /initiates all variable update and rendering action
mark = now;

}

try

//Thread.sleep(frameDelay);
Thread.sleep(0);

catch (InterruptedException ex) { System.out.println("Sleep Interrupted??");

public void doFrameo{

if (PLAY){

eventtimer = whichFrameo; //moves through tilt and word vectors

int scale = (int)(0.08*calculateConnectF0((double) ampprev,
(double) ampnow,
(double)(currentSyllable.timeo-prevSyllable.timeo),
(double) (timer - prevSyllable.time()));

if (scale > -1) grid.scalar(scale);

float inc_num;

if ((te.eventtype.equals("a"))l
(te.eventtype.equals("m"))
(te.eventtype.equals("I"))Il
(te.eventtype.equals("fb"))ll

(te.eventtype.equals("afb"))II
(te.eventtype.equals("c"))){ /only use real fO events for font appearances.

if (fOnow > 0) fOprev = fOnow; //save now into prev before getting new one-- prev < 0
fOnow = calculateFrame(event-timer); /decodes tilt numbers into an FO value
if (fOnow = 0)
incnum = (float)(f0now - fOprev);

else
incnum = 0;

}
else { /a silence tiltevent - interpolate

I/fOprev to next.freq() for te.timeo duration
if (fOnow > -1) fOprev = fOnow; // interpolating over unvoiced phonemes, effectively
fOnow = (float)(calculateConnectF0((double) fOprev,

(double) next.freqo,
(double) te.timeo,
(double)(event-timer)));

incnum = (float)(fOprev - fOnow);
)

grid.incWeight(-1*inc-num*1/50); /incrementally changes weighting of font; fat when low
grid.incHeight((float)(inc-num*1/8)); //tall when high
grid.incFullness((float)(-1*inc-num*1/10)); /wide when low

paintBuffer(event-timer, fOnow);

/** increments TiltEvent pointer, keeps timers, returns eventtime elapsed */
public double whichFrameo(

/double now = System.currentTimeMillis(;
/timer = now - begin; /difference between beginning

timer += INCREMENT; /not a real time clock cause

/eventtimer = now - event-begin; /real time clock
eventtimer += INCREMENT; /tilt vector event timer

if (DEBUG) System.out.println("global time: " +timer+
" event: "+event timer+" at TiltEvent "+

tiltindex+" "+te.eventtypeo+
" at word index: "+word-index);

whichWordAtFrameo; /advances through a word v

whichEventAtFrame(); /advances through a tilt vect

return event-timer;

public void whichWordAtFrameo(

if (wordindex < words.sizeO)(

and nown

puter can't keep up

ector

or

//controls word vector progress.

if (timer >= currentSyllable.timeo){
lithe prevSyllable and curSyllable variables should be named prevVocalEvent and CurrentVocal Event...

/figure out amplitude numbers at the syllable change - esp. if silence event and amp is 0...
if (currentSyllable.eventtypeo.equals(VocalEvent.SILENCE) ||

currentSyllable.eventtypeo.equals(VocalEvent.INHALE) Il
currentSyllable.eventtypeo.equals(VocalEvent.EXHALE)){

/only copy over 0 to ampprev if the silence has been substantial (new topic, etc.)
double duration = currentSyllable.timeo - prevSyllable.time(;
if (duration > LONGSILENCE) ampprev = ampnow;

}
else ampprev = ampnow; /if a syllable, then definitely use amplitude supplied.

H .------ ------- copy current syllable to old syllable
prevSyllable = currentSyllable; /save out new into old for interpolations

if (prevSyllable.eventtype(.equals(VocalEvent.SYLLABLE)){ /if its linguistic and not silence

Syllable s = (Syllable) prevSyllable; /cast upwards to see if end of word or not

if (s.endOfWordo){ /word ends, need to build next one.

Word w = (Word)words.elementAt(++word_index);
syl_index = 0;
currentSyllable = (VocalEvent) w.elementAt(syl-index); /global pointer to first syllable in new word

}
else{

Word currentWord = (Word) words.elementAt(word-index); //find current word
currentSyllable = (VocalEvent) currentWord.elementAt(++sylindex); /advance syllable pointer to new

else { //a vocal event, advance on, cause only ever one deep
syl index = 0;
Word w = (Word)words.elementAt(++wordindex);
currentSyllable = (VocalEvent) w.elementAt(syl-index);

}

ampnow = (int) currentSyllable.amplitudeo; //get new amplitude number inhale vol = 0; exhale vol =
this.imageBufferSize.height; //where breath circle starts

public void whichEventAtFrameo(

//TESTING FOR TILT VECTOR ADVANCEMENT
if (timer >= te.timeo) { /can lengthen time scale here to manage speed

event-begin = timer; /save current time as new event beginning time

event-timer = 0.0; /new Event begins, reinit the event timer

RISE = true; //IMPORTANT:resetting boolean for Accent calculations

prev = te; /save current into previous pointer

te = (TiltEvent) tilt.elementAt(++tilt-index); /increment pointer into tilt vector

if (te.equals(last)){
next = (TiltEvent) tilt.elementAt(tilt-index +1);

}
else PLAY = false;

if ((te.eventtype.equals("a"))l
(te.eventtype.equals("m"))ll
(te.eventtype.equals("I"))I
(te.eventtype.equals("fb"))ll
(te.eventtype.equals("afb"))){

this.calculateRiseFall(te); /moves current tilt vars into old vars
}

}
}

/* Draw all saved lines of the scribble, in the appropriate colors **/
public void paintBuffer(double evtjtime, double f0_frame) {

if ((super.imageBuffer != null) && (!alphabet.isEmptyo)){

Graphics g = super.imageBuffer.getGraphicso;
Graphics2D g2 = (Graphics2D) g;

Dimension d = imageBufferSize;

super.clearlmageBuffer(;

if ((!tilt.isEmptyo)&&(!words.isEmptyo)){

g2.setFont(new Font("Helvetica", Font.PLAIN, 10));

g2.setColor(Color.lightGray);

g2.drawString(te.eventtypeo+" fO: "+
String.valueOf((int)fOframe)+
" Word: "+currentSyllable.eventtypeo+
" Event time: "+String.valueOf((float)evtjtime)+
" Db prev: "+ampprev+" Db now: "+ampnow,
10, 10);

drawCurrentVocalEvent(g2, (Word)words.elementAt(word-index), fO frame, "LEFTJUSTIFIED");

if (DEBUG) System.out.println("Painted at tilt index "+tiltindex+" and word index "+word-index);
}

super.repainto;

public void drawCurrentVocal Event(Graphics2D g2, Word current, double fOnow, String justification){

Dimension d = super.imageBufferSize; /what size am I?

VocalEvent ve = (Vocal Event)current.elementAt(0); /get first (if not last) object from word vector

xpos = 100; //currently left aligned.
ypos = (int)((d.height -grid.height("BODYDEPTH"))/2); //to center, put all glyphs into a temp vector

//while keeping a tally of width, then paint

if (ve.eventtype().equals(VocalEvent.SILENCE)){

paintSilence(g2, xpos, ypos); }

else if (ve.eventtype().equals(VocalEvent.SYLLABLE)){ //ahhhh, its a word.

paintWord(g2, current, xpos, ypos);

else if (ve.eventtype(.equals(VocalEvent.EXHALE)){

paintExhale(g2, xpos, ypos);

else if (ve.eventtypeo.equals(VocalEvent.INHALE)){

paintlnhale(g2, xpos, ypos);

else System.out.println("Current word's syllable isn't of any known type.");

public void paintWord(Graphics2D g2, Word current, int x-pos, int y pos){

//currentSyllable gives me the active syllable
Color temp = hue.darker(;
boolean highlight = false;
//ActiveGridSize = (LetterGrid) grid.clone(; //copy current params

for(int i = 0; i < current.size(; i++) { /get all the syllables from the Word Vector

/interpolates between previous and current amplitudes. uses same equations as Connection FO...
//this is continuous notion -does not need to just use Accent eventtypes

Syllable s = (Syllable) current.elementAt(i); //cast this VocalEvent up into a linguistic event

if (s.equals(currentSyllable)) highlight = true; //syllable that's current is a different shade

else highlight = false;

Vector lttrs = s.getLetterso; //get the letter vector from Syllable

for(int j = 0; j < lttrs.sizeo; j++){ /iterate through the letters

Letter I = (Letter)lttrs.elementAtj);

/here's where to determine what kind of letter...and apply phonetic effects

for(int k = 0; k < I.get(.length(); k++){ /iterate through phonetic-ligature, if any

String ch = l.geto.substring(k, k+1).toLowerCase(); /only lowercase letters in font so far...

Glyph g = (Glyph) alphabet.get(ch); //a glyph for a letter...

if (g != null){

/now xpos is the exact x coordinate for the ending of the character just drawn.
if (highlight){
//xpos += g.drawGlyph(g2, ActiveGridSize, hue, xpos, ypos).width; //xpos incremented width used
xpos = g.drawGlyph(g2, grid, hue, xpos, ypos).x; //xpos incremented the width used
//xpos += g.drawGlyph(g2, hue, xpos, ypos).width; //xpos incremented the width used

}
else
//xpos += g.drawGlyph(g2, ActiveGridSize, temp, xpos, ypos).width;
xpos = g.drawGlyph(g2, grid, temp, xpos, ypos).x;
/xpos += g.drawGlyph(g2, temp, xpos, ypos).width;

xpos += kerning;

public void paintlnhale(Graphics2D g2, int x-pos, int y-pos){

/obviously this should involve some notion of force or vol. air displaced , but it doesn't. data limitations
g2.setColor(hue);
g2.drawOval(imageBufferSize.width/2 -inhalevol/2,
imageBufferSize.height/2 -inhale-vol/2,
inhalevol, inhalevol);

inhalevol += 10; //way too simple man.

public void paintExhale(Graphics2D g2, int x-pos, int y-pos){

/obviously this should involve some notion of force or vol. air displaced , but it doesn't. data limitations
g2.setColor(hue);
g2.drawOval(imageBufferSize.width/2 -inhale-vol/2,
imageBufferSize.height/2 -inhale vol/2,
exhale vol, exhale-vol);

inhale.vol -= 10; //way too simple man.
}

public void paintSilence(Graphics2D g2, int x-pos, int y-pos){
/*
String{] sil =

for(int v = 0; v < sil.length; v++) {

Glyph g = (Glyph) alphabet.get(sil[v]);

if (g != null){
x-pos += g.drawGlyph(g2, hue, x pos, y-pos).width; //xpos incremented the width used to paint glyph
x-pos += kerning; //xpos incremented wiht global kerning number

}
else

System.out.println("Glyph g is null and shouldn't be");
}

public double calculateFrame(double evt time){

double currentFO = 0.0;

if(! te.equals(last){ //when we get to last element in Vector, quit

if ((te.eventtype.equals(a"))ll
(te.eventtype.equals("m"))ll
(te.eventtype.equals("I"))ll
(te.eventtype.equals("fb"))ll
(te.eventtype.equals("afb"))){

double duration, amplitude;
Accent a = (Accent) te; /cast TiltEvent up to Accent

if (evt-time >= (a.durationo-Dfalll)) RISE = false;

if (RISE) {
duration = Drisel; /Rise portion of Accent
amplitude = Arisel;

else {
duration = Dfalll; /Fall portion of Accent
amplitude = Afall1;

if((evt-time > 0.0) && (evt-time <= (duration/2))) /first time part of either rise or fall

currentF0 = a.freqO +firstF0(amplitude, duration, evttime);

if((evt time > duration/2) && (evt time <= duration)) /second time part of either rise or fall

currentF0 = a.freq() +secondF0(amplitude, duration, evt time);
}

else if (te.eventtype.equals("c"))

currentF0 = calculateConnectFO(te.freqO, next.freqO, (te.timeo-prev.timeo), evt-time);

else if (te.eventtype.equals("sil")) currentFO = -1000.0;

else System.out.println("unknown tilt event in vector "+tiltindex);
}
return currentFO;

}

public double firstF0(double Amp, double Dur, double time){

double fOt = Amp -2*Amp*((time/Dur)*(time/Dur));

if (DEBUG) System.out.println("Accent rise frequency: "+fot+" at "+time);

return fOt;

public double secondF0(double Amp, double Dur, double time){

double fOt = 2*Amp*((1 - (time/Dur))*(1 - (time/Dur)));

if (DEBUG) System.out.printIn("Accent fall frequency: "+f0t+" at "+time);

return fOt;
}

public double calculateConnectF0(double first val, double secondval, double duration, double evtjtime){

if ((first-val == 0) && (second-val == 0)) return 0.0;

double slope-val = slope(first-val, secondval, duration);

double y-val = (slope-val*evt-time) + firstval;

if (DEBUG) System.out.println("Connect value at "+evttime+" is "+y-val);

return y_val;

public double slope(double ptOne, double ptTwo, double run){

double slope-val = (ptTwo -ptOne)/ run;

return slopeval;
}

public Vector connectionF0(Vector v, double firstF0, double secondFO, double duration){

if (v != null){

double counter = 0.0;

double slope-val = slope(firstF0, secondF0, duration);

while(counter <= duration){

/figure out numbers here

//v.addElement(;

counter += INCREMENT;

if (DEBUG) System.out.println("Connection frequency: "+firstF0+" to "+secondFO);

return v;
}

public Vector silenceF0(Vector v, double startf0, double duration){

if (v != null)(

v.addElement(new Double(startf0)); /add the "last" fO value before silence

double counter = 0.0;

while (counter < duration){

v.addElement(new Double(0.0)); //a silence has a double
counter += INCREMENT;

return v;
}

/** this is the low-level event-handling method called on mouse events that do not
involve mouse motion. Note teh use of isPopupTrigger() to check for the platform-dependent
popup menu posting event, and of the showo method to make the popup visible. If the menu is
not posted, then this method saves the coordinates fo a mouse click or invokes the superclass method **/

public void processMouseEvent(MouseEvent e) {
if (e.isPopupTrigger()) popup.show(this, e.getX(, e.getY();

else if (e.getlD() == MouseEvent.MOUSEPRESSED) {}

else if (e.get|D() == MouseEvent.MOUSE_RELEASED) {}

else super.processMouseEvent(e); /pass other event types on.

/** this method is called for mouse motion events. it adds a line to the scribble, on screen, and
in the saved representation **/
public void processMouseMotionEvent(MouseEvent e)

if (e.getID(== MouseEvent.MOUSEDRAGGED) {}
else super.processMouseMotionEvent(e); /IMPORTANT!

/** use this to decode each the Rise and Fall portions of a, m, I, fb, afb **
public void constructAccentF0(Vector v, double Amp, double Dur){

double evttime = 0.0001;

if (v != null){

while((evttime > 0.0) && (evttime < (Dur/2))){

v.addElement(new Double(firstF0(Amp, Dur, evttime)));
evttime += INCREMENT;

}
while((evttime > Dur/2) && (evttime < Dur)){

v.addElement(new Double(secondF0(Amp, Dur, evttime)));
evttime += INCREMENT;

else System.out.println("constructAccentF0: vector is null");

100

protected void calculateRiseFall(TiltEvent tevt){

if (!tilt.isEmpty()){

Accent a = (Accent) tevt;

if ((a.eventtype.equals(a"))l
(a.eventtype.equals("m"))ll
(a.eventtype.equals("I"))l
(a.eventtype.equals("fb"))l|
(a.eventtype.equals("afb"))){

Arisel = (a.amplitudeO*(1+a.tilt())/2;
Afall = (a.amplitudeO*(1-a.tilt())/2;
Drisel = (a.duration()*(1+a.tiIto)))/2;
Dfalll = (a.duration()*(1 -a.tilto))/2;

if (DEBUG)

//both rise and fall elements

System.out.println("ACCENT Arise: "+Arisel +" Afall: "+Afall +" Drise: "+Drisel +" Dfall: "+Dfall1);

/** after a new tilt file read in, construct a vector of the fundamental
frequency. its not fast enough to do this in real time. for each .01 of a second there
should be a10 **/

public void reconstructFrequencyo{

double duration;

/timer = eventtimer = 0.0;
TiltEvent last = (TiltEvent) tilt. astElemento;
prev = te = (TiltEvent) tilt.firstElement(;
duration = (double)(te.timeo);

int counter = 0;
while(! te.equals(last)){

if ((te.eventtype.equals("a"))ll
(te.eventtype.equals("m"))|
(te.eventtype.equals("l"))ll
(te.eventtype.equals("fb))ll
(te.eventtype.equals("afb"))){

calculateRiseFall(te);

constructAccentF0(fO, Arise1, Drisel);

constructAccentF0(fO, Afall1, Dfall1);
I

else if (te.eventtype.equals("c")){

/reinit the global suckers prep for proc
/test case

/global TiltEvent pointer
/duration inited to the first event duration

//when we get to last element in Vector, quit

//decode the Rise part of accent

//decode the Fall part of accent

101

double nextf0 = 0.0;

if (counter < (tilt.sizeo-1)){
next = (TiltEvent) tilt.elementAt(counter+1);
nextf0 = next.freq(;

}

connectionF0(fO, te.freq(, nextf0, duration);

else if (te.eventtype.equals("sil")){

silenceF0(fO, te.freqO, duration);

else { System.out.println("unknown tilt event in vector "+counter);

/event timer = 0.0; //reinited after each event calculated
prev = te; //save current into prev pointer
te = (TiltEvent) tilt.elementAt(counter); /increment global pointer
duration = (double)(te.timeo -prev.time(); //difference tween now and next time.

counter++;

/** THE following procedures are for accessing and reading a font file
contained in a URL **/

public String chooseFileo{
FileReader fr = null;
String name = null;
int period = 0;

//create a file dialogu to query the user for a filename.
FileDialog f = new FileDialog(this.frame, "Load file", FileDialog.LOAD);
f.showo; /display the user dialogue and block
//name = f.getDirectory() +File.pathSeparator +f.getFileo; //Get the user's response
name = f.getFile(;
//StringTokenizer st = new StringTokenizer(name, ".", false);
//filename = st.nextTokeno; //the global file we're working with
period = name.indexOf((int)('.'));
if (period > 0) {

filename = name.substring(0, period);
System.out.println("filename parsed: "+filename);

}
/else System.exit(0);

/*
try

fr = new FileReader(name);
} catch (FileNotFoundException fnf){
System.out.printn("file not found... "+ fnf.getMessage();
System.exit(1);

}
return fr;
*/
return filename; /just the prefix file name

}

102

/** THE following procedures are for accessing and reading a font file
contained in a URL **/

public FileReader openFile(String filename){
FileReader fr = null;
try {

fr = new FileReader(filename);
catch (FileNotFoundException fnf){
System.out.println("file not found... + fnf.getMessageo);
System.exit(1);

return fr;

public void readTWFile(String dir, String file, String postfix){

FileReader fr = null;
BufferedReader in = null;
String line;
/*
try

fr = new FileReader(new File(dir, file+postfix));
catch (FileNotFoundException fnf){
System.out.println("file not found... "+ fnf.getMessageo);
System.exit(1);

*/
//in = new BufferedReader(chooseFileo);
//in = new BufferedReader(fr);
in = new BufferedReader(openFile(file+postfix));

try {

//need to make sure its a proper TILT file.
line = in.readLineo;
if (line.startsWith("separator"

line = in.readLineo;
if (line.startsWith("nfields")) {//get whatever

line = in.readLine(;
if (line.startsWith("#")) {//do while loop for rest of file

while ((line = in.readLineo) != null) {

if (DEBUG) System.out.println("Read: " +line);
parseTILTLine(line);

else System.out.println("This file is not a Tilt file. Can't read this");
} catch (IOException e){System.out.println("error reading file" +e.getMessageo))
if (DEBUG) System.out.println("prosodicfont finished reading file");
if (DEBUG) System.out.printn("tilt vector holds a total of "+tilt.sizeO+" events.");

103

public void readWordsFile(String dir, String file, String postfix){

FileReader fr = null;
BufferedReader in = null;
String line;
/*

try
fr = new FileReader(new File(dir, file+postfix));

} catch (FileNotFoundException fnf){
System.out.printn("file not found... "+ fnf.getMessageo);
System.exit(1);

*/
//in = new BufferedReader(chooseFile();
//in = new BufferedReader(fr);
in = new BufferedReader(openFile(file+postfix));

try

/need to make sure its a proper TILT file.
line = in.readLine(;

while ((line = in.readLineo) != null) {

if (line.startsWith("//")) {} //a comment, ignore

else {
if (DEBUG) System.out.println("Words file: "+line);
parseWordsFile(line);

catch (fOException e){System.out.println("error reading file" +e.getMessage))
if (DEBUG) System.out.println("finished reading Words file");
if (DEBUG) System.out.println("words vector holds a total of "+words.sizeO+" syllables.");

Word developingWord = new Wordo; //global just used for parsing word input files

public void parseWordsFile(String line){
// String eventtype, double endTime, String syl, boolean end of-word){
Syllable s = null;
String word, event, mark, semicolon1l, type;
double endtime;
int amp;

StringTokenizer st = new StringTokenizer(line, ";/>", true);
System.out.println("New line: "+ line);

word = st.nextTokeno.trimo;
mark = st.nextTokeno.trimo;

endtime = stringToDouble(st.nextTokeno.trimo);
semicolon1 = st.nextTokeno; //trash, toss it

amp = (int)(stringToDouble(st.nextTokeno.trimo)); /amplitude number
semicolon1 = st.nextTokeno; //trash, toss it

104

/an event, or a trash semicolon

System.out.println("Word: "+word+" Mark: "+mark+" endtime: "+endtime+" semicolon: "+semicolonl+
" event: "+event);

/here is where i would get vocal colors (like <creak> or <breathy>, but not right now

if (mark.equas(";")){ /its a EOW syllable

s = new Syllable(Syllable.SYLLABLE, endtime, word, true, amp);
if (event.startsWith(";")) s.addAccent(stringTolnt(event)); /if its semicolon, no number specified
developingWord.addElement(s); /add last syllable to word
words.addElement(developingWord); /add word to words Vector
developingWord = new Wordo; /allocate new memory to developingWord

else if (mark.equals("/")) { /its a EOS syllable

s = new Syllable(Syllable.SYLLABLE, endtime, word, false, amp);
if (event.startsWith(";")) s.addAccent(stringTolnt(event)); /if its semicolon, no number specified
developingWord.addElement(s);

}
else if (mark.equals(">")) { /its an vocalEvent, append mark back on String
if (word.startsWith("<sil")) type = VocalEvent.SILENCE;
else if (word.startsWith("<inhale")) type = VocalEvent. INHALE;
else if (word.startsWith("<exhale")) type = VocalEvent. EXHALE;
else type = word+mark;
System.out.printin("type is "+VocalEvent.aml(type)+" a vocal event");
VocalEvent ve = new VocalEvent(type, endtime, amp);
words.addElement(new Word(ve));

/**CHANGE THIS FUNCTION
protected void parseTILTLine(

String temp;
double endtime, startf0;
double amplitude = 0.0;
double duration = 0.0;
double tiltval = 0.0;
double peakpos = 0.0;
int event num = 0;
String eventtype;

IF YOU ADD TO THE TILT INPUT FILE!!!!!!***/
String line){

if (tilt==null) tilt = new Vector(0, 1);

StringTokenizer st = new StringTokenizer(line, "\r\n\t;");
/parse line into tilt vector

/make line parseable by space delimiters

while (st.hasMoreTokenso){

endtime = stringToDouble(st.nextTokeno);
temp = st.nextTokeno;
event num = stringTolnt(st.nextTokeno);
eventtype = st.nextTokeno.trimo;
temp = st.nextTokeno;
startf0 = stringToDouble(st.nextToken();

//end of event time
//trash -color of waves

//number of event - used to match up with syllables
/event type

//trash - the word "tilt:"
//start f0

if (DEBUG) System.out.println("endtime: "+endtime+" eventtype: "+eventtype+" startf0: "+startfO);

105

event = st.nextToken().trim();

if (st.hasMoreTokenso){ /its some type of accent
duration = stringToDouble(st.nextToken(); //duration
amplitude = stringToDouble(st.nextTokeno); /amplitude
tiltval = stringToDouble(st.nextToken(); /tilt value
peakpos = stringToDouble(st.nextToken(); //peak position

}

if (DEBUG)
System.out.println("endtime: "+endtime+" eventtype: "+eventtype+" startf0: "+startf0+

" duration: "+duration+" amplitude: "+amplitude+" tiltval: "+tiltval+
" peakpos: "+peakpos);

if ((eventtype.equals("c")) ||
(eventtype.equals("sil")))

tilt.addElement(
new TiltEvent(eventtype, event-num, endtime, startf0));

else if ((eventtype.equals("a"))lI
(eventtype.equals("m"))Il
(eventtype.equals("I"))Il
(eventtype.equals("fb"))Il
(eventtype.equals("afb")))

tilt.addElement(
new Accent(eventtype,

endtime,
event-num,
startf0,
duration,
amplitude,
tiltval,
peakpos));

else System.out.println("This is no tiltEvent I can recognize...");

/**utility function for parsing input file ***/
public double stringToDouble(String s){

double num = 0.0;

try {

num = (double) Double.valueOf(s).doubleValueo;

} catch (NumberFormatException e){ System.out.println("Couldn't make a string a number" +e.getMessageo);}

return num;

public int stringTolnt(String s){
int i = 0;
try {
i = Integer.parselnt(s.trimo);

106

} catch (NumberFormatException e){System.out.println(e.getMessage());
return i;

}

/*** internal class to hold the tilt event types */
static class TiltEvent {

protected String eventtype;
protected int eventnum = 0; /just add +1 to the elementAto method to get the event at eventNum
protected double endtime = 0.0;
protected double startf0 = 0.0;

TiltEvent(String eventtype, int eventnum, double endtime, double startf0)
this.eventtype = eventtype;
this.eventnum = event_num;
this.endtime = endtime;
this.startf0 = startf0;
if (DEBUG) System.out.println(" new TiltEvent " +eventtype);

public String eventtypeo{ return eventtype;

public int num({ return event-num;

public double freq({ return startfO; }
public void freq(float startf0){ this.startf0 = startfO;

public double timeo{ return endtime; }
public void time(float endtime){ this.endtime = endtime;

/** internal class to hold all accent and falling boundary types.
a (accent), I (level accent), m (minor accent), fb (falling boundary), afb (accented falling boundary?)
all these types use the same four additional tilt specifications. **

static class Accent
extends TiltEvent {

protected double amp = 0.0;
protected double duration = 0.0;
protected double tilt = 0.0;
protected double peak-pos = 0.0;

Accent(String eventtype, int event-num, double endtime, double startf0){
super(eventtype, event-num, endtime, startfO);

Accent(String eventtype,
double endtime,
int event-num,
double startf0,
double amp,
double duration,
double tilt,
double peak-pos){

super(eventtype, event-num, endtime, startfO);

107

this.amp = amp;
this.duration = duration;
this.tilt = tilt;
this.peak pos = peak_pos;
//compute peak-pos?

if (DEBUG) System.out.println(" New Accent: "+eventtype);
}

public double amplitudeo{ return amp;)
public void amplitude(double amp){ this.amp = amp; }
public double durationo{ return duration;)
public void duration(double duration){ thisduration = duration; }
public double tilt({ return tilt; }
public void tilt(double tilt){ this.tilt = tilt; }
public double peak-pos({ return peak-pos;}
public void peak-pos(double peak-pos){ this.peak-pos = peak-pos; I

/** Call this when the window is being closed or app is being stopped. It shuts
down the active threads, etc. *
public void shutDowno{
if (Viz.isAliveo) {
this.stopo;

/***

class Letter
extends Object {

public static final char GLOTTAL =;
public static final char LENGTHENEDPHONE =
public static final char FLAP = 'A';
public static final char RIGOROUS_.UNVOICEDPLOSIVE =

public static final char RIGOROUSVOICEDPLOSIVE =

public static final char PHONETIC LIGATURE =

private String CHARACTERISTICS;
private String letter;

Letter(String letter){ this.letter = letter;
Lettero{;}

public void setCharacteristic(char amThis){ CHARACTERISTICS = new String(new char[amThis));
public void setCharacteristic(char[] amThis){ CHARACTERISTICS = new String(amThis);

public void add(char ch){
letter+=ch;
System.out.println("Added: "+ch+" to letter: "+letter);

108

public int lengtho{ return letter.lengtho; }
public String geto{ return letter; }
protected void set(String letter){ this.letter = letter;

protected boolean aml(char thisOrThat){
char[] tmp = CHARACTERISTICS.toCharArrayo;
for(int i = 0; i < CHARACTERISTICS.length(; i++){

if (tmp[i] == thisOrThat) return true;

return false;
}

/***** CLASS METHODS*/
public static boolean phoneticSymbol(char ch){
if ((ch == GLOTTAL)Il

(ch == LENGTHENEDPHONE)lI
(ch==FLAP)ll
(ch == RIGOROUS-UNVOICEDPLOSIVE)Ill
(ch == RIGOROUSVOICEDPLOSIVE)){

return true;

return false;

/*************************************
class VocalEvent
extends Object {

//static variables:
public static final String SILENCE = "<sil>";
public static final String INHALE = "<inhale>";
public static final String EXHALE = "<exhale>";
public static final String SYLLABLE = "<syllable>";
public static final char EOW = ';';
public static final char EOS = 'I';

//state variables:
protected String eventtype = SILENCE; /all files begin in silence.
protected double endTime; /all events have a duration, implicit beginning.
protected int amplitude; /all vocal events have an amplitude - the most continuous signal characteristic

VocalEvent(String eventtype, double endTime, int amplitude){

this.eventtype = eventtype;
this.endTime = endTime;
thisamplitude = amplitude;
System.out.println(" New VocalEvent type: "+eventtype+" at time "+endTime);

}

public void eventtype(String s){
if (this.aml(s)) eventtype = s;
else System.out.println("VocalEvent::that's not a legitimate event type: "+ s);

}
public double timeo{ return endTime; }
public String eventtypeo{ return eventtype; I
public int amplitude({ return amplitude; }

109

/class method;
public static boolean aml(String s){

if ((s.equals(SILENCE))l|
(s.equals(INHALE))Il
(s.equals(EXHALE))) return true;
return false;

/******************************

class Syllable
extends VocalEvent{

protected boolean endofword = true;
protected Vector syllable = new Vector(0, 1

protected boolean ACCENTED = false;
protected int ACCENTINDEX = 0;

Syllable(String eventtype, double endTime,
super(eventtype, endTime, amplitude);

if (end-of-word) this.end ofword = true;
else this.endofword = false;

parse(syl);

String syl, boolean endofword, int amplitude){

public boolean endOfWordo{ return end-of word;

public void addAccent(int index){
if (index > -1){
ACCENTED = true;
ACCENTINDEX = index;
System.out.printn("Added Accent "+index+" to syllable "+this.print();

public String printo{
String word = "";

for(int i = 0; i < syllable.sizeo; i++){
Letter I = (Letter)syllable.elementAt(i);
word += I.geto;

return word;

public String geto{ return this.printo; }

public int lengtho{

int count = 0;

for(int i = 0; i < syllable.size(; i++){
Letter I = (Letter)syllable.elementAt(i);
count += l.lengtho;

110

}
return count;

}

public Vector getLetterso{ return syllable; }

protected void parse(String syl){
for(int i = 0; i < syl.lengtho; i++){

char[] c = new char[{ syl.charAt(i) };

if (Letter.phoneticSymbol(c[O])){ /Letter next (cause only one symbol allowed currently)
char[] ch = new char[]{syl.charAt(++i)}; /get actual letter, increment i
Letter I = new Letter(new String(ch)); /make new letter passing the letter to it
I.setCharacteristic(c); /add the phonetic color to letter
this.add(I); //add new Letter to this.Vector

}

else if (c[0] == Letter.PHONETICLIGATURE){ /Iprevious and next chars are a single Letter
char second = syl.charAt(++i); /increment pointer and get second ligature
Letter I = (Letter)syllable.lastElemento; /get previous
I.add(second);

else if c[] superEOW){ this.end-of-word true; return;
else if (c[O] == super.EOS){ this.endof-word = false; return;
else /just a normal letter in a syllable
this.add(new Letter(new String(c)));
}
System.out.println("Syllable "+syl+" is parsed.");

private void add(Letter I
syllable.addElement(I);
System.out.println("New Letter "+.geto+" added to syllable "+printo);

class Word
extends Vector

Wordo{ super(0, 1);

Word(Syllable s){
super(0, 1);
this.addElement(s);

Word(VocalEvent ve){
super(0, 1);
this.addElement(ve);

/**I*

abstract class Glif
extends Object
implements Serializable

111

protected String name;
protected LetterGrid g;
protected Glyph glyph;

/what am i
/the measurement grid to which all are held, feet burning.

/pointer to the Glyph picture that controls this

Glif(LetterGrid grid, Glyph glyph, String name){
this.g = grid;
this.glyph = glyph;
this.name = name;

}

public void grid(LetterGrid g){ this.g = g;
public LetterGrid grid({ return g; }
public String nameo{ return name;
public Glyph glyph({ return glyph;

public abstract GeneralPath getShapeo;

/**I*

class VERTICALLINE
extends Glif {

public static final String WEIGHT = "STEM";

public static final String CB = "CROSSBAR";
public static final String CT = "CURVETAIL";
public static final String DT = "DOT";

public boolean cross-bar = false;
public boolean curve-tail = false;
public boolean dot = false;

protected CROSSBAR cb;
protected CURVETAIL ct;
protected DOT dt;

protected String TOP = "XHEIGHT";
protected String BOT = "BASELINE";

VERTICALLINE(LetterGrid Ig, Glyph letter,
super(Ig, letter, "VERTICALLINE");
parse(commands);

}

//bullshit init value
//bullshit init value

String commands){

protected void parse(String commands){
String tmp, wd, vt-place, hz-place, wdth;
StringTokenizer st = new StringTokenizer(commands);

TOP = st.nextTokeno.trimo;
BOT = st.nextTokeno.trimo;

while (st.hasMoreTokenso){

tmp = st.nextToken(;

if (tmp.equals(CB)){

//top line parameter
//bottom line parameter

112

wd = st.nextTokeno.trimo;
makeCrossBar(wd);

else if (tmp.equals(CT)){
vt-place = st.nextToken(;
hz-place = st.nextTokeno;
wdth = st.nextToken(;
makeCurveTail(vt-place, hz-place, wdth);

}
else if (tmp.equals(DT)){

makeDoto;

//vertical placement: TOPIlBOT
//horizontal placement: RIGHTIlLEFT

/width of curve (should be dependent)

private void makeCrossBar(String wd){
this.cross bar = true;
cb = new CROSSBAR(super.g, super.glyph, wd, "CROSSHEIGHT", "UP", this);

}

private void makeCurveTail(String vt, String hz, String wd){
this.curvejtail = true;
ct = new CURVETAIL(super.g, super.glyph, vt, hz, wd, this);
ct.HT = (g.height(BOT) -g.height(TOP))/3; /height of ct is always 1/3 of LINE

private void makeDot({
this.dot = true;
dt = new DOT(super.g, super.glyph, this);

public GeneralPath getShapeo{
GeneralPath gp = new GeneralPath(

float left = 0.0f;
float top = g.height(TOP);
float bot = g.height(BOT);

if (curve-tail) {
if (ct.TOP) top = top+ct.HT;
else bot = bot-ct.HT;

}

float stem =g.width(WEIGHT);

gp.moveTo(left, top);
gp.lineTo(left, bot);
gp.lineTo(left+stem, bot);
gp.lineTo(left+stem, top);
gp.lineTo(left, top);
gp.closePath(;

GeneralPath.WIND_EVEN ODD);

//could figure out total displacement from ct and cb.

//start line down a little lower to make room for ct
/end line up further to leave room for ct

//top left hand corner
I/lower left hand corner

I/lower right hand corner
/upper right hand corner

//top left hand corner

if (dot) gp.append((Shape) dt.getShapeo, false);

if (curve-tail){
if (ct.LEFT){ //mostly for the letter j

float newpos = g.width(ct.WD)-g.width(WEIGHT); //width of curve tail
AffineTransform muv = new AffineTransformo;

minus width of this.stem

113

muv.setToTranslation(new pos, .Of);
gp.transform(muv);

}
gp.append((Shape) ct.getShape(, false);

/translate the line and dot, if dot.

/append the curve tail to new positioned line
}
if (cross-bar) {
AffineTransform at = new AffineTransformo; /if curve or cross bar used, this comes in handy
at.setToTranslation(g.width(cb.WIDTH)/2-g.width(WEIGHT)/2, .Of);
gp.transform(at);
gp.append((Shape) cb.getShape(, false);

}
/gp.closePatho;

return gp;

class CROSSBAR
extends Glif {

public final static String WEIGHT = "STEM";

public String WIDTH = "THIN";
public String PLACE = "XHEIGHT";
public String ORIENTATION = "UP";

protected Glif parent;

CROSSBAR(LetterGrid Ig, Glyph letter,
super(Ig, letter, "CROSSBAR");
this.parent = parent;
this.WIDTH = width;
this.PLACE = place;
this.ORIENTATION = orient;

String width, String place, String orient, Glif parent){

CROSSBAR(LetterGrid Ig, Glyph letter, String commands){
super(Ig, letter, "CROSSBAR");
parse(commands);

}

public void parse(String commands){
if (commands.length() > 0){
StringTokenizer st = new StringTokenizer(commands);
PLACE = st.nextTokeno.trimo;
ORIENTATION = st.nextTokeno.trimo;
WIDTH = st.nextTokeno.trimo;

public GeneralPath getShapeo{

GeneralPath gp = new GeneralPath(GeneralPath.WIND_EVEN ODD);

float left = 0.0f;
float right = g.width(WIDTH);

114

float sit = g.height(PLACE);
float stem = g.width(WEIGHT)*0.9f;
float next;
if (ORIENTATION.equals("UP")){

next = sit -stem; }
else next = sit + stem;

gp.moveTo(left, sit);
gp.lineTo(left, next);
gp.lineTo(right, next);
gp.lineTo(right, sit);
gp.lineTo(left, sit);
gp.closePatho;

/sits on top of horizontal alignment coord
/take a little visual depth off horizontal line.

//top left hand corner
/lower left hand corner
/lower right hand corner

I/upper right hand corner
//top left hand corner

return gp;

class CURVETAIL
extends Glif{

public final static String WEIGHT = "STEM";

public boolean TOP = false;
public boolean LEFT = false;
public String WD = "THIN";
public float HT = 0.0f;

protected VERTICALLINE line;

CURVETAIL(LetterGrid Ig, Glyph glyph,
super(Ig, glyph, "CURVETAIL");
this.WD = wd;
this.line = line;
if (vt.equals("TOP")) this.TOP = true;
if (hz.equals("LEFT")) this.LEFT = true;

I/default is BOT
I/default is RIGHT - like a q

String vt, String hz, String wd, VERTICAL-LINE line){

public GeneralPath getShapeo{

GeneralPath gp = new GeneralPath(GeneralPath.WINDEVEN_ODD);

float left = 0.0f;
float width = (float)(g.width(this.WD));
float stem = (float)(g.width(WEIGHT));
float bot = (float)(g.height(line.BOT)); //bot of the Line that this connects to, that is
float top = (float)(g.height(line.TOP)); //top of the Line that this connects to, that is.
HT = ((g.height(line.BOT))-g.height(line.TOP))/3; //height always 1/3 that of the line this belongs to
//HT is multiplied by 2 below because for some bizarre reason that it only uses 1/2 of the height its given

//if (TOP && LEFT){}
if (TOP && !LEFT){

//never happens
//like r and f

/if this choice, no x translation in Line needs to occur cause the motion proceeds from 0.0
float arcextent = 180.0f;
float arcstart = 0.0f;

115

gp.moveTo(left, top);
gp.append((Shape) new Arc2D.Float(left, top,

width, HT*2,
arcstart, arcextent,
Arc2D.CHORD), false);

gp.append((Shape) new Arc2D
width-2*stem, 2*HT-2*stem,
arcstart, arcextent,
Arc2D.CHORD), false);

else if (!TOP && LEFT){

.Float(left+stem, top+stem,

//like j and g and maybe y

float arcextent = 180.0f;
float arc start = 180.0f;

gp.moveTo(left, bot-HT);
gp.append((Shape) new Arc2D.Float(left, bot-2*HT,

width, HT*2,
arcstart, arcextent,
Arc2D.CHORD), false);

gp.append((Shape) new Arc2D.Float(left+stem, bot-2*HT+stem,
width-2*stem, 2*HT-2*stem,
arcstart, arcextent,
Arc2D.CHORD), false);

/else if (!TOP && LEFT){ //like q might be.

gp.closePath(;

return gp;

/**************************************/

class DOT
extends Glif

public final static String BOT = "CROSSHEIGHT";
public final static String WEIGHT = "STEM";

VERTICALLINE line;

DOT(LetterGrid Ig, Glyph glyph,
super(Ig, glyph, "DOT");
this.line = line;
I

public GeneralPath getShape(){

float weight = g.width(WEIGHT);
float bot = g.height(BOT)-weight;

VERTICALLINE line){

//this sits dot on CROSSHEIGHT line

GeneralPath gp = new GeneralPath(GeneralPath.WINDEVENODD);

gp.moveTo(0, 0);

116

gp.append((Pathlterator)(new Ellipse2D.Float(
0,
bot,
weight,
weight).getPathlterator(new AffineTransform())), false);

gp.closePatho;
return gp;

/**/

class CIRCLE_0
extends Glif {

public final static String WD = "MEDIUM";
public final static String WEIGHT = "STEM";
public final static String TOP = "XHEIGHT";
public final static String BOT = "BASE_LINE";

CIRCLEO(LetterGrid Ig, Glyph glyph, String commands){
super(Ig, glyph, "CIRCLE_O");
parse(commands):

protected void parse(String commands){}

public GeneralPath getShapeo{

float left = 0.0f;
float top = g.height(TOP);
float width = g.width(WD);
float bot = g.height(BOT);
float height = bot-top;
float stem = g.width(WEIGHT);
float circle-hint = (0.01f*height);

GeneralPath gp = new GeneralPath(GeneralPath.WIND_EVEN_ODD);
gp.moveTo(left, top);
gp.append((Pathlterator)(new Ellipse2D.Float(

left,
(top -circle-hint),
width,
(height + 2*circle-hint)).getPathlterator(new AffineTransformo)), true);

gp.append((Pathlterator)(new Ellipse2D.Float(
left +stem,
top +stem -circlehint,
width -stem*2,
height -stem*2 +2*circlehint).getPathlterator(new AffineTransformo)), true);

gp.closePath(;
return gp;

117

class SNAKE
extends Glif

public final static String TOP = "XHEIGHT";
public final static String BOT = "BASE_LINE";
public final static String MID = "CENTERHEIGHT";
public final static String WDTH = "THIN";
public final static String WEIGHT = "STEM";

SNAKE(LetterGrid Ig, Glyph glyph, String commands){
super(Ig, glyph, "SNAKE");

}

public GeneralPath getShapeo{

GeneralPath gp = new GeneralPath(GeneralPath.WIND_EVEN_ODD);

float center = g.height(MID);
float width = g.width(WDTH);
//float left = 0.0f;
float top = g.height(TOP);
float bot = g.height(BOT);
float height = bot-top;
float curvdist = height/3;
float left = curvdist/2;
float stem = g.width(WEIGHT);

float top-arc-extent = 280.0f;
float top-arc-start = 80.0f;
float botarcextent = 280.0f;
float botarcstart = 220.0f;

float hint = 0.025f*height;

gp.moveTo(left +stem, top);

gp.lineTo(left, top);
gp.append((Shape)new CubicCurve2D.Float(left, top,

left-curv dist, top +height/4,
left+curv-dist, bot -height/4,
left, bot), true);

gp.lineTo(left +stem, bot);
gp.append((Shape) new CubicCurve2D.Float(left+stem, bot,

left+stem+curvdist, bot -height/4,
left+stem-curv-dist, top +height/4,
left+stem, top), true);

gp.closePatho;

return gp;

/**I*

118

class HORSESHOE
extends Glif
{

public final static String TOP = "XHEIGHT";
public final static String BOT = "BASE_LINE";
public final static String WEIGHT = "STEM";

boolean right.side up = true;
protected String WD = "MEDIUM";

//if its an 'n' then its false...

HORSESHOE(LetterGrid Ig, Glyph glyph, String commands){
super(Ig, glyph, "HORSESHOE");
parse(commands);

}

protected void parse(String commands){
if (commands.lengtho > 0){
StringTokenizer st = new StringTokenizer(commands);
String direction = st.nextTokeno.trimo;
WD = st.nextTokeno.trimo;
if (direction.equals("UP")) right-side-up = true;
else if (direction.equals("DOWN")) right-side-up = false;
else System.out.println("What kinda horseshoe did you specify for "+glyph.letter+"?");

public GeneralPath getShape({

GeneralPath gp = new GeneralPath(GeneralPath.WINDEVENODD);

float stem = g.width(WEIGHT);
float top = g.height(TOP);
float bot = g.height(BOT);
float width = g.width(WD);
float height = bot-top;
float left = 0.0f;
//float hint = 0.01f*height;
float arcextent, arc_start;
/height is multiplied by 2 below because for some bizarre reason that it only uses

if (!right-side-up){

1/2 of the height its given.

/an n

//if this choice, no x translation in Line needs to occur cause the motion proceeds from 0.0
arcextent = 180.0f;
arc_start = 0.0f;

gp.moveTo(left, top);
gp.append((Shape) new Arc2D.Float(left, top,

width, height*2,
arc-start, arc-extent,
Arc2D.CHORD), false);

gp.append((Shape) new Arc2D.Float(left+stem, top+stem,
width-2*stem, 2*height-2*stem,
arcstart, arcextent,
Arc2D.CHORD), false);

}

119

else {
arcextent = 180.0f;
arc start = 180.0f;

//rightsideup horseshoe (a u)

gp.moveTo(left, top);
gp.append((Shape) new Arc2D.Float(left, bot-2*height,

width, height*2,
arcstart, arc-extent,
Arc2D.CHORD), false);

gp.append((Shape) new Arc2D.Float(left+stem, bot-2*height+stem,
width-2*stem, 2*height-2*stem,
arc-start, arcextent,
Arc2D.CHORD), false);

gp.closePatho;

return gp;

class CEE
extends Glif{

public static final String TOP = "XHEIGHT";
public static final String BOT = "BASELINE";
public static final String WEIGHT = "STEM";
public static final String WD = "MEDIUM";

protected boolean CB = false;
protected CROSSBAR cb;

CEE(LetterGrid Ig, Glyph glyph,
super(Ig, glyph, "CEE");
parse(commands);

String commands){

protected void parse(String commands){
if (commands.length() > 0){

String type, wd;

StringTokenizer st = new StringTokenizer(commands);

type = st.nextTokeno;
wd = st.nextTokeno;

if (type.equals("CROSSBAR")) {
this.CB = true;
cb = new CROSSBAR(g, glyph, wd, "CENTERHEIGHT", "DOWN", this);

public GeneralPath getShape({

GeneralPath gp = new GeneralPath(;

float stem = g.width(WEIGHT);

120

float top = g.height(TOP);
float bot = g.height(BOT);
float width = g.width(WD);
float height = bot-top;
float left = 0.0f;

gp.moveTo(left+width, top);
gp.curveTo(left-stem, top-stem,

left-stem, bot+stem,
left+width, bot);
gp.lineTo(left+width, bot-stem);
gp.curveTo(left, bot,

left, top,
left+width, top+stem);
gp.lineTo(left+width, top);

if (this.CB) gp.append(cb.getShape(, false);

gp.closePath(;

return gp;

class FORWARDSLASH
extends Glif {

public final static String WEIGHT = "STEM";

protected String TOP;
protected String BOT;
protected String WD; /determines angle of slash

FORWARDSLASH(LetterGrid Ig, Glyph glyph, String commands){
super(Ig, glyph, "FORWARDSLASH");
parse(commands);

public void parse(String commands){
StringTokenizer st = new StringTokenizer(commands);
TOP = st.nextTokeno.trimo;
BOT = st.nextTokeno.trimo;
WD = st.nextTokeno.trimo;

public GeneralPath getShapeo{

GeneralPath gp = new GeneralPath(GeneralPath.WINDEVENODD);

if ((TOP null) && (BOT != null) && (WD != null)){

float top = g.height(TOP);
float bot = g.height(BOT);
float height = bot-top;
float stem = g.width(WEIGHT); I/slashes need mare weight when the slope is fierce or they look wimpy
stem += stem*(1/height);
float wd = g.width(WD);

float left = 0.0f;

gp.moveTo(left, bot);
gp.lineTo(left+stem, bot);
gp.lineTo(wd, top);
gp.lineTo(wd-stem, top);
gp.lineTo(left, bot);
gp.closePatho;

//bot left hand corner
I/lower right hand corner

/upper right hand corner
/upper left hand corner

//bot left hand corner

return gp;

class BACKSLASH
extends Glif {

public final static String WEIGHT = "STEM";

String TOP;
String BOT;
String WD; //determines angle of slash

BACKSLASH(LetterGrid Ig, Glyph glyph,
super(Ig, glyph, "BACKSLASH");
parse(commands);

String commands){

public void parse(String commands){
StringTokenizer st = new StringTokenizer(commands);
TOP = st.nextToken(.trimo;
BOT = st.nextTokeno.trimo;
WD = st.nextTokeno.trimo;

public GeneralPath getShape({
GeneralPath gp = new GeneralPath(GeneralPath.WIND_EVEN_ODD);

if ((TOP != null) && (BOT != null) && (WD != null)){

float top = g.height(TOP);
float bot = g.height(BOT);
float stem = g.width(WEIGHT);
float height = bot-top;
stem += stem*(1/height);
float wd = g.width(WD);
float left = 0.0f;

gp.moveTo(left, top);
gp.lineTo(left+stem, top);
gp.lineTo(wd, bot);
gp.lineTo(wd-stem, bot);
gp.lineTo(left, top);
gp.closePatho;

//slashes need mroe weight when slope is fierce or they look wimpy

I/bot left hand corner
I/lower right hand corner

/upper right hand corner
/upper left hand corner

I/bot left hand corner

return gp;

122

class VEE
extends Glif

public static final String WEIGHT = "STEM";

protected String WD;
protected String TOP;
protected String BOT;
protected boolean ISX = false;

VEE(LetterGrid Ig, Glyph glyph, String commar
super(Ig, glyph, "VEE");
parse(commands);

}

//this would be used by the Glyph painting routine

public void parse(String commands){
/look for 4 params: wd, top, bot, IS_X
StringTokenizer st = new StringTokenizer(commands);
TOP = st.nextTokeno.trimo;
BOT = st.nextTokeno.trimo;
WD = st.nextTokeno.trimo;
ISX = (boolean) Boolean.getBoolean(st.nextTokeno.trimo);

}

public GeneralPath getShapeo{

GeneralPath gp = new GeneralPath(GeneralPath.WINDEVENODD);

if ((TOP null) && (BOT != null) && (WD != null)){

float left= 0.0f;
float top = g.height(TOP);
float bot = g.height(BOT);
float stem = g.width(WEIGHT);
float wd = g.width(WD);
float nexus = (bot-top)*0.45f;
float hint = (bot-top)*.04f;

gp.moveTo(left, top);
gp.lineTo(wd/2, bot+hint);
gp.lineTo(wd, top);
gp.lineTo(wd-stem, top);
gp.lineTo(wd/2, bot+hint-nexus);
gp.lineTo(stem, top);
gp.lineTo(left, top);
gp.closePatho;

//top left hand corner
//bottom middle

//top right
//top right inner

//middle inner
//top left inner

//top left

return gp;

class ZEE
extends Glif

public static final String TOP = "XHEIGHT";
public static final String BOT = "BASE_LINE";
public static final String WD = "THIN";
public static final String WEIGHT = "STEM";

123

ZEE(LetterGrid Ig, Glyph glyph, String commands){
super(Ig, glyph, "ZEE");

}

public GeneralPath getShapeo{

float top = g.height(TOP);
float bot = g.height(BOT);
//float hgt = bot-top;
float left = 0.0f;
float right = g.width(WD);
float stem = g.width(WEIGHT);
//stem += stem*(1/hgt);

GeneralPath gp = new GeneralPath(GeneralPath.WIND_EVEN_ODD);

gp.moveTo(left, top);
gp.lineTo(right, top);
gp.lineTo(right, top+stem);
gp.lineTo(left+stem, bot-stem);
gp.lineTo(right, bot-stem);
gp.lineTo(right, bot);
gp.lineTo(left, bot);
gp.lineTo(left, bot-stem);
gp.lineTo(right-stem, top+stem);
gp.lineTo(left, top+stem);
gp.lineTo(left, top);
gp.closePath(;

return gp;

class HYPHEN
extends Glif {
//need this for contractions - phonetic pronunciation used commonly

//public static final String TOP = "ASCHEIGHT";
public static final String WEIGHT = "STEM";
public static final String BOT = "CROSSHEIGHT";

HYPHEN(LetterGrid Ig, Glyph glyph, String commands){
super(Ig, glyph, "HYPHEN");

}

public GeneralPath getShapeo{

float left = 0.0f;
float bot = g.height(BOT);
float stem = g.width(WEIGHT);
float top = bot-(stem*2);
float tip = (bot-top)*0.20f;
//stem += stem*((bot-top)*0.01f); //gives a bit more thickness

GeneralPath gp = new GeneralPath(GeneralPath.WINDEVEN_ODD);

gp.moveTo(left +tip, top); //top left (tipped)
gp.lineTo(left+(stem*1/4), bot); //bottom left
gp.quadTo(left+(stem*1/2), bot+(stem*1/4),

124

left +(stem*3/4), bot +tip/2); /curve to bottom right
gp.lineTo(left+stem +tip, top +tip/2); //top right (tipped)
gp.quadTo(left+(stem*1/2) +tip/2, top-(stem*1/2),

left +tip, top); /curve to top left
gp.closePatho;

return gp;

class Glyph
extends Object
implements Serializable {

public final static String[] SIMULTANEOUS = { "e", "g", "k", "x", "y", "I"); /kludge - this could be done easily in input file format, but... time.

LetterGrid grid; //this can be unique to the glyph, but currently it is the same as all are.
String letter; //a string to account for phonetic ligatures.
Vector glifs; //GlifPlaces: keeps track of where glif is from (0,0)upper left hand point in Letter grid

Glyph(String letter, LetterGrid Ig){
this.letter = letter;
this.grid = Ig;
this.glifs = new Vector(0, 1);
System.out.println("Made new Glyph with letter: "+letter);

//this would attempt to make centering the word possible, but damn it this isn't worth my time right now.
public Glif[getGlyph(Color c, int y){
//alright this one's confusing. first array spot is dimension of glyph.
//the ones after that are the glyphs themselves.

Object[] gfs = new Object[glifs.size() +1];

Glif gl;
GeneralPath gp;
AffineTransform at;
Rectangle prev-size = new Rectangle(0, 0);
Rectangle size = new Rectangle(0, 0);
Dimension d = new Dimension(0, 0);

//this is the product this returns

//this just saves some time and effort
//this is what accumulates the drawn space

for(int i = 0; i < glifs.sizeo; i++){

gl = (Glif) glifs.elementAt(i);
gl.grid(grid); /always set the grid space before drawing
gp = gl.getShapeo;
size = gp.getBoundso;
if (size.height > d.height) d.height = size.height; /biggest height returned. for no reason really.

at = new AffineTransformo;
if ((i == 0)ll(this.simultaneous(letter))){

at.setToTranslation(x, y);
d.width += size.width; /

else{
at.setToTranslation(x +r.width -grid.width("STEM")
d.width += size.width -grid.width("STEM"):

//if first time, add at 0,0
/need to return x distance used

y); /afterwards add at width of prev minus stem
/need to return x distance used.

125

}
g2.setColor(c);
g2.fill(gp.createTransformedShape(at)); /add transform and draw glif

prev_size = size; /save out this glifs measurements for next draw
System.out.println("Drew: "+letter+" number "+i+" glif.");

return gf;

public Point drawGlyph(Graphics2D g2, LetterGrid lettergrid, Color c, int x, int y){

this.grid = lettergrid;

Glif gl;
GeneralPath gp;
AffineTransform at;
Rectangle size;
Point consecutive = new Point(x, y);
Point simultaneous = new Point(x, y);

for(int i = 0; i < glifs.size(; i++){

gl = (Glif) glifs.elementAt(i);
gl.grid(lettergrid);

gp = gl.getShapeo;
size = gp.getBoundso;

at = new AffineTransformo;

if (this.simultaneous(this.letter)){ /
at.setToTranslation(simultaneous.x,

simultaneous.y);
if (consecutive.x < (simultaneous.x+size.width))
consecutive.x = simultaneous.x + size.width;

//this just saves some time and effort
/this is what accumulates the drawn space

/always set grid space before drawing.

need to make contingent upon glif, not letter.

/set consecutive pointer to far right glyph point

else if (i == 0){ I/first one don't subtract out for stem width
at.setToTranslation(consecutive.x, consecutive.y); /afterwards add at width of prev minus stem
consecutive.x = simultaneous.x +size.width; //move pointer to far right of glyph -here add entire width of glyph...

}
else { //a consecutive glyph.

at.setToTranslation((consecutive.x -grid.width("STEM")),
consecutive.y); /afterwards add at width of prev minus stem

simultaneous.x = consecutive.x; /move pointer to position of last glif drawn.
consecutive.x += size.width -grid.width("STEM"); /move pointer to far right of glyph -here add width minus stem width to consecutive

pointer so that 3 or more consecutive glyphs (eg. '') will turn out right.
}

g2.setColor(c);
g2.fill(gp.createTransformedShape(at)); /add transform and draw glif

return consecutive;

public Point drawGlyph(Graphics2D g2, Color c, int x, int y){ //top left coordinate letter space
return drawGlyph(g2, grid, c, x, y);

126

private boolean simultaneous(String s){
for(int i = 0; i < SIMULTANEOUS.length; i++)

if (s.equals(SIMULTANEOUS[i])) return true;
return false;

protected Glif makeGlif(String type, String commands){
Glif g = null;
if (type.equals("VERTICALLINE")) (g = new VERTICALLINE(grid, this, commands);)
else if (type.equals("CROSSBAR")) { g = new CROSS-BAR(grid, this, commands);
else if (type.equals("CIRCLEO")) { g = new CIRCLEO(grid, this, commands);)
else if (type.equals("HORSESHOE")){ g = new HORSESHOE(grid, this, commands);
else if (type.equals("FORWARDSLASH")){ g = new FORWARDSLASH(grid, this, commands);)
else if (type.equals("BACKSLASH")){ g = new BACKSLASH(grid, this, commands);)
else if (type.equals("SNAKE")){ g = new SNAKE(grid, this, commands);
else if (type.equals("CEE")){ g = new CEE(grid, this, commands);
else if (type.equals("ZEE")){ g = new ZEE(grid, this, commands);
else if (type.equals("HYPHEN")){ g = new HYPHEN(grid, this, commands);
else if (type.equals("VEE")){ g = new VEE(grid, this, commands);
else System.out.println("What kind of Glif is THAT? " + type);
if (g==null) System.out.println("Letter: "+letter+" is null.");

return g;

public void addGlif(String type, String commands){
glifs.addElement(makeGlif(type, commands));
System.out.println("Glyph "+letter+" added new Glif: "+type+" with additional specs: "+commands);

}

public void eraseGlif(Glif g){
for(int i=0; i < glifs.sizeo; i++){

if (g.equals((Glif) glifs.elementAt(i))) {
glifs.removeElementAt(i);
return;

/***

/** this nested class represents the scale ratios and measurements of the glif grid
that i use to design a uniform set of glifs. This grid assumes a model of historical typographical
proportions, BUT SIZED FROM THE TOP LEFT HAND CORNER LIKE MOST SCREEN GRAPHICS **/
class LetterGrid
extends Object
implements Cloneable {

public static final float BEGINSCALAR = 300.0f;
public static final float BEGINHEIGHT = 01.00f;
public static final float BEGIN FULLNESS = 0.80f;
public static final float BEGIN_WEIGHT = 0.050f;

127

public float mediumo{ return MEDIUM*fullnesso; }
public float fato{ return FAT*fullnesso; }

/height String access routine:
public float height(String s){
if (s.equals("BODYHEIGHT")) return body-height(;
else if (s.equals("ASCHEIGHT")) return asc-heighto;
else if (s.equals("CROSSHEIGHT")) return cross-heighto;
else if (s.equals("XHEIGHT")) return x-heighto;
else if (s.equals("CENTERHEIGHT")) return centerlheighto;
else if (s.equals("BASELINE")) return base-line(;
else if (s.equals("DESCDEPTH")) return descdepthO;
else if (s.equals("BODYDEPTH")) return body-depth(;
else System.out.println("What kind of height spec is THAT? "+s);
return 0.0f;

}

//width String access routine:
public float width(String s){
if (s.equals("STEM")) return stemo;
else if (s.equals("THIN")) return thino;
else if (s.equals("MEDIUM")) return mediumo;
else if (s.equals("FAT")) return fato;
else System.out.println("What kind of a width spec is THAT? "+s);
return 0.0f;

}

/change percentage positions

public void weight(double d){
if (d > 0) WEIGHT = (float)(d*.01f);

}
public void incWeight(float inc){

float tmp = inc*.01f +BEGINWEIGHT;
if ((tmp < .30f) && (tmp > 0.001f) //WEIGHTING NEVER EXCEEDS 30%
WEIGHT = tmp;

}

public void height(double d){
if (d > 0) HEIGHT = (float)(d*.lf);

}
public void incHeight(float inc){

float tmp = inc*.1f +BEGINHEIGHT;
if ((tmp > 1.4f) && (tmp < 0.1)) return;
else

HEIGHT = tmp;
}

public void fullness(double d){
if (d > 0) FULLNESS = (float)(d*.1f);

public void incFullness(float inc){
float tmp = inc *.01f +FULLNESS;
if ((tmp > 2.8f) && (tmp < 0.1)) return;
else

FULLNESS = tmp;

I

public void incThin(float inc){

129

float tmp = inc *.1f + FULLNESS*THIN;
if ((tmp > MEDIUM) && (tmp < 0.00001)) return;
else

FULLNESS = tmp;
}

public void incMedium(float inc){
float tmp = inc *.1f + FULLNESS*MEDIUM;
if ((tmp > FAT) && (tmp < 0.00001)) return;
else

FULLNESS = tmp;

public void incFat(float inc){
float tmp = inc*.lf + FULLNESS*FAT;
if ((tmp > FULLNESS) && (tmp < 0.00001)) return;
else

FULLNESS = tmp;
}

public void asciheight(float inc){
float tmp = inc*.01f + ASCHEIGHT*SCALAR; //the anticipated result
if ((tmp < body-height() | (tmp > x-height()) return; /can't exceed above line or transceed lower.
else
ASCHEIGHT += inc*.01f; /it's PERFECT!

public void crossheight(float inc){
float tmp = inc*.01f +CROSSHEIGHT*SCALAR;
if ((tmp < asc-height() II (tmp > basejlineo)) return;
else
CROSSHEIGHT += inc*.01f;

}

public void x-height(float inc){
float tmp = inc*.01f +X HEIGHT *SCALAR;
if ((tmp < asc-heighto) II (tmp > base-lineo)) return;
else

X_HEIGHT += inc*.01f;
}

public void centerheight(float inc){
float tmp = inc*.01f +CENTERHEIGHT *SCALAR;
if ((tmp < x-heighto) || (tmp > basejline()) return;
else CENTERHEIGHT += inc*.01f;

public void baseline(float inc){
float tmp = inc*.01f +BASELINE *SCALAR;
if ((tmp < x-heighto) || (tmp > desc-depth()) return;
else BASELINE += inc*.01f;

public void descdepth(float inc){
float tmp = inc*.01f +DESCDEPTH *SCALAR;
if ((tmp < base-line() || (tmp > body-deptho)) return;
else DESCDEPTH += inc*.01f;

}

/can't exceed ascender or base-line

/can't exceed ascender or base-line

/can't exceed x height or baseline

/can't exceed x height or descenders

/can't exceed base line or body depth

130

BIBLIOGRAPHY

Adobe Systems Incorporated. (1998). The Compact Font Format Specfication. Technical Note #5176. Version 1.0. March

18.

Anderson, NI., Pierrehumbert, J., & Liberman, M. (1984). Synthesis by rule of English intonation patterns. Proceedings

of the IEEE International Conference on Acoustics, Speech, and Signal Processing, 2.8.2-2.8.4.

Arons, B. (1994). Pitch-Based Emphasis Detectionfor Segmenting Speech Recordings. In Proceedings of the International

Conference on Spoken Language Processing, 1931-1934.

Beckman, M. (1986). Stress and Non-Stress Accent. Dordrecht, Holland/Riverton: Foris Publications.

Beckman, NI. & Ayers, G. (1994). Guidelinesfor ToBI Labelling (version 2.0, February 1994), Available:

http://ling.ohio-state.edu/Phonetics/ToBI/

Black, A. (1997). "Predicting the intonation of discourse segments from examples in dialogue speech", ATR Workshop
on Computational modeling ofprosody for spontaneous speech processing. ATR, Japan. Republished in "Computing

Prosody," Eds. Y. Sagisaka, N. Campbell and N. Higuchi, Springer Verlag.

Bolinger, D. (1958). A Theory of Pitch Accent in English. Word 14:2-3, 109-149.

(1972). Accent is predictable (if you're a mind reader). Language 48, 633-644.

. (1989). Intonation and its Uses: MAelody in Grammar and Discourse. Stanford University Press, Stanford.

Bringhurst, R. (1992). The Elements of T)pographic Sty/e. Second Edition (1996). Point Roberts, WA: Hartley & Marks,
Publishers.

Brown, G. (1983). Prosodic structure and the Given/New distinction. In A. Cutler and D.R.Ladd, editors, Prosody:

Models and Measurements, Springer-Verlag, Berlin Germany. 67-78.

Bruce, G. (1977). Swedish Word Accents in Sentence Perspective. PhD Thesis, Lund: CWK Gleerup.

Cahn, J. (1990). Generating Expression in Synthesized Speech. Thesis at the Massachusetts Institute of Technology, Media

Lab, Cambridge, NIA.

_ . (1992). An Investigation into the Correlation of Cue Phrases, Unfilled Pauses and the Structuring of Spoken

Discourse , Proceedings of the IRCS Workshop on Prosody in Natural Speech, Technical Report IRCS-92- 37. University

of Pennsylvania. Institute for Research in Cognitive Science, Philadelphia, PA., 19-30.

(1995). The Effect of Pitch Accenting on Pronoun Referent Resolution. Proceedings ofthe 33rdAnnualMeeting of
the Assodationfor Computational Linguistics. (Student Session), 290-292.

Cho, Peter. (1997) Pliant Tjpe: Experiments in Expressive and Malleable Tpography. Massachusetts Institute of Technology,
S.B. Thesis.

Clumeck, Harold. (1977). Topics in the acquisition of Mandarin phonology: A case study. Papers and Reports on Child

Language Deevelopment, Stanford University. 14, 37-73.

Cohen, A., Collier, R. & 't Hart, J. (1982). Declination: construct or intrinsic feature of speech pitch? Phonetica 39, 254-

273.

Cutler, A. & Swinnev, D. (1987). Prosody and the development of comprehension. Journal of Ci/Id iLanguage 14, 145

167.

Daft, R. & Lengel, R. (1986). Organizational Information Requirements, Media Richness, and Structural Design.

Management Science, Vol. 32, No. 5, May.

Drucker, J. (1995). The Aphabetic Labyrinth: The Letters in Histop and Imagination. London: Thames and Hudson Ltd.

Ferrara, K., Brunner, H., & Whittemore, G. (1991). Interactive Discourse as an Emergent Register. Written
Communication. Vol. 8, No. 1, January, 8-34.

Fujisaki, H. (1983). Dynamic characteristics of voice fundamental frequency in speech and singing. Ed. P

NlacNeilage. The Production of Speech, New York: Springer-Verlag, 39-55.

Gibson, E.J. & Levin, H. (1975). The Psychology of Reading. Cambridge, L: MIT Press.

Grosz, B. & Sidner, C. (1986). Attention, Intention, and the structure of discourse. Journal fo Computational

Linguistics 12, 175-204.

131

Grosz, B. & Hirschberg, J. (1992). Some intonational characteristics of discourse structure. In Proceedings of1the 1992
International Conference on Spoken Language Processing, Banff, Canada, 429-432.

Grandour, J. (1978). "The Perception of Tone." In Tone: a Linguistic Survey. Ed. Victoria Fromkin. New York:
Academic Press.

Gumperz, J. J. (1982). Discourse Strategies. Cambridge: Cambridge University Press.

Halliday, M. (1967). Notes on transitivity and theme in English, Part 2. Journal ofLinguistics, 3, 199-244.

Hawley, M. (1993). Structure out of Sound. Ph.D. Thesis at the Massachusetts Institute of Technology, Media Lab,
Cambridge, NLA.

Ishizaki, S. (1996). Tjpographic Performance: Continuous Design Solutions as Emergent Behaviors ofActive Agents. PhD

Dissertation, Massachusetts Institute of Technology, Media Laboratory, February.

Ishizaki, S. (1997). Kinetic Typography: Prologue. In Digital Communication Desgn Fom at Tokyo Design Center.

January 10-11, 1997, International Media Research Foundation.

Kagan, J., Sindman, N., Arcus, D., & Reznick, J.S. (1994). Galen's Prophecy: Temperament in Human Nature. New York:
Basic Books, Division of HarperCollins.

Kappas, A., Hess, U., & Scherer, K.R. (1991). "Voice and Emotion" in Fundamentals ofNon VerbalBehaviour. Eds.
Feldman and Rime. Cambridge: Cambridge University Press.

Kiesling A., Kompe, R., Niemann, H., Noth, E., & Batliner, A. (1995). Voice Source State as a Source of Information
in Speech Recognition: Detection of Laryngealizations. In Speech Recognition and Coding. New Advances and Trends,
Eds. Antonio J. Rubio Ayuso and Juan NI. Lopez Soler. NATO ASI Series. Series F: Computer and Systems
Sciences, v. 147: p. 329. Berlin: Springer-Verlag.

Knuth, D. (1986a). Computer Modern Tpefaces. Reading, NlIA: Addison Wesley Publishing Company.

. (1986b). NIETAFONT: The Program. Reading, NA: Addison Wesley Publishing Company.

Ladd, D. R. (1980). The Structure ofIntonationalMeaning. Indiana University Press, Bloomington.

(1996). IntonationalPhonology. Cambridge Studies in Linguistics 79. Cambridge: Cambridge University Press.

Lehrer, W. (1995). Brother Blue - The Portrait Series. Seattle, Washington: Bay Press.

Lerdahl, F. & Jackendoff, R. (1983). A Generative Theog of TonalMusic. Cambridge: MIT Press.

Nakatani, C. (1995). "Discourse Structural Constraints on Accent in Narrative." In Progress in Speech Synthesis. Eds. Jan
P.H. van Santen, Richard Sproat, Joseph Olive, and Julia Hirschberg. Berlin: Springer-Verlag.

Ohala, J. J. (1983). Cross-language use of pitch: an ethological view. Phonetica 40, 1-18.

Olsen, C. L. (1975). Grave vs. Agudo in two dialects of Spanish: a study in voice register and intonation. Jouernal of the

International Phonetic Association 5, 84-91.

Picard, R. (1997). Afective Computing. Cambridge, NIA: MIT Press.

Pierrehumbert, J. (1980). The Phonology and Phonetics ofEnglish Intonation. PhD thesis at the Massachusetts Institute of

Technology.

Pierrehumbert, J. & Hirschberg, J. (1990). "The meaning of intonation contours in the interpretation of discourse."

In Plans and Intentions in Communication and Discourse, Eds. P. R. Cohen, J. Morgan, and NI. E. Pollack, Cambridge:

MIT Press, 271-311.

Prevost, S. & Steedman, NI. (1994). "Specifying intonation from context for speech synthesis." Speech Communication

15, 139-153.

Scherer, K. R. (1981). "Speech and emotional states." In Speech Evaluation in Psychiatg. Ed., J. K. Darby, Grune and

Stratton, Inc., 189-220.

Shapiro, B., & Danly, NI. (1985). "The role of the right hemisphere in the control of speech prosody in propositional

and affective contexts."Brain and Language 25, 19-36.

Silverman, K. Beckman, NI., Pitrelli, J., Ostendorf, NI., Wightman, C., Price, P., Pierrehumbert, J., & Hirschberg, J.
(1992). ToBI: a standard for labelling English prosody. In Proceedings of ICSLP92, v. 2, 867-870.

Small, D. (1996). Perception of Temporal Typography. Paper written for Ph.D. Comprehensive Exams. Available:

http://wwwv\.media.mit.edu/-dsmall/.

132

Sparacino, F. (1996). DirectIVE: Choreographing Mediafor Interactive Virtual Environments. Masters Thesis, MIT Media
Lab.

Stifleman, L. (1995). A Discourse Analysis Approach to Structured Speech. Presented at the AAAI 1995 Spring
Symposium Series: Empirica/Methods in Discourse Inteprelation and Generation. Stanford University, March 27-29.

Sun Systems Incorporated. (1998). Java 1.2 (beta 3 and 4). Available: http://java.sun.com/products/jdk/.

Taylor, P. A. (1995). The Rise/Fall/connection Model of Intonation. Speech Commnunication, 15, 169-186.

. (1998). Analysis and Synthesis of Intonation using the Tilt Model. Draft Journal paper on Tilt model. Available:
http://wwv.cstr.ed.ac.uk/~pault/papers.htm.

Terken, J. (1984). The distribution of pitch accents in structures as a function of discourse structure. Ianguage and

Speech, 27, 269-289.

Terken, J. & Hirschberg, J. (1994). Deaccentuation of words representing given information: effects of persistence of
grammatical function and surface position. LgSp. 37, 125-145.

Ward & Hirschberg, J. (1985). Implicating uncertainty. Language. 61, 747-76.

Wieman, L. (1975). The stresspattern of early child language. PhD. Dissertation, University of Washington. Eric document
111 201.

Weintraub, S., Mesulam, M., & Kramer, L. (1981). Disturbances in prosody: a right-hemisphere contribution to
language. Archives of Neurology 38, 742-744.

Wong, YinYin. (199 5). Temporal Tpography: Characterization oftime-vajing ypographic forms. M.S. Thesis, Massachusetts
Institute of Technology, Media Laboratory.

Wright & Taylor. (1997). Modelling Intonational Structure using Hidden Nlarkov Models , ESCA [orkshop on
Intonation, Athens, September.

Vygotsky, (1975). On the Perception of Words: An Application of Some Basic Concepts. In The Psychology of Reading.
Eds. Gibson & Levin. Cambridge, MA: MIT Press.

133

