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Abstract

Agents are semi-intelligent programs that assist the user in performing repetitive and time-con-
suming tasks. Information discovery and information filtering are suitable domains for applying
agent technology. Amalthaea is an evolving, multiagent ecosystem for personalized filtering, dis-
covery, and monitoring of information sites. Amalthaea's primary application domain is the World-
Wide-Web and its main purpose is to assist users in finding interesting information.

Ideas drawn from the field of autonomous agents and artificial life are combined in the creation of
an evolving ecosystem composed of competing and cooperating agents. A co-evolution model of
information filtering agents that adapt to the various user interests and information discovery
agents that monitor and adapt to the various on-line information sources is analyzed. A market-like
ecosystem where the agents evolve, compete, and collaborate is presented: agents that are useful
to the user or to other agents reproduce while low-performing agents are destroyed.
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Chapter 1 Thesis Overview

In the first section of the chapter the problem domain and the techniques used
are analyzed. Following the research contribution section, an outline of the
whole thesis is presented.

1.1

Introduction

Problem Domain

The domain we focus on is that of personalized information filtering and infor-
mation discovery. We introduce Amalthaea, a personalized system that pro-
actively tries to discover information from various distributed sources that may
interest its user and presents it to her in the form of a digest. Amalthaea learns
about the user's interests by examining the hotlist and browsing history and by
getting feedback in the form of ratings of documents (usually Universal
Resource Location strings - URLSs). The system autonomously collects related
documents and URLs. It considers three domains in parallel:

¢ World-Wide-Web documents and data discovery. Amalthaea does not search
the WWW itself but instead launches multiple agents that utilize existing
indexing engines and perform a “meta-search’” in order to discover informa-
tion that is broadly of interest to the user. The system then further analyzes
the retrieved documents using weighted keyword vectors techniques in
order to select those closer to the user's preferences.

* Continuous flow of information environments and information filtering.
Again, multiple agents are analyzing the articles and select only the proper
ones. In this case, instead of pro-actively searching the web, Amalthaea fil-
ters a stream of incoming documents, like the Clarinet news or the Reuters
newsfeed.

* Monitoring of frequently changing information resources. Sometimes the
user wants to monitor certain URLs that are updated in fixed (or random
intervals). For instance he wants to know about the new Formula 1 motor
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Introduction

races results that are updated every other Sunday. Or the user wants to track
new articles on an on-line journal, or new CDs by an artist. Such URLs will
be monitored in regular intervals for changes. If such changes do exist and
are significant then the user will be notified.

Amalthaea's operation does not require the presence or the attention of the user.
The information is presented to the user in the form of a digest: new URLs that
might be interesting, news that is personalized, notification of new material in
certain sites. The user browses the digest, is able to follow the links, gives feed-
back on how good or bad an item is, rates the relevance of an item or keyword
etc. The idea is that the system adapts to the user and follows his interests as
they evolve over time.

Techniques Used

We implemented Amalthaea by creating an artificial ecosystem of evolving
agents that cooperate and compete in a limited resources environment. Two
general species of agents exist: the Information Filtering (IF) Agents and Informa-
tion Discovery (ID) Agents. Information filtering agents are responsible for the
personalization of the system and for keeping track of (and adapting to) the
interests of the user. The information discovery agents are responsible for han-
dling information resources, adapting to those information sources, finding and
fetching the actual information that the user is interested in. When trained, the
discovery agents become better at in specifying which search engines are good
in returning what kind of documents.

Evolving1 a multiagent solution is particularly suited to this domain since it
provides a way of utilizing the best possible existing solution to the problem (in
our case the best possible match to the user's interests) with the ability to
quickly adapt to new situations (for instance following a new user interest or
adapting to changes in the domain). At the same time the system continues to
explore the search space for better solutions using evolution techniques such as
mutation and crossover for refreshing and specializing the agents population.

Significant work has been done on applying artificial intelligence techniques to
information filtering. In contrast, our work is inspired by the artificial life
approach resulting in fully distributed learning and representation mecha-
nisms. In order to understand the system's global behavior in filtering one has
to think of each information filtering agent as a very specialized filter that is
applied only in a narrow sector of the domain. When a user changes interests,
the filters assigned to the old interests are eventually destroyed and new ones
are created that are “directed” towards the new interests by evolution and natu-
ral selection. The intriguing issue in such multiagent systems is to find ways of

1. Evolution is obviously not the only method of adaptation for a multiagent system.
One could also use techniques where the agents learn during their life time. For
example techniques like induction and case-based reasoning (to name a few) also
yield promising results.

14
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Introduction

allowing the system to reach self-imposed equilibria while continuously adapt-
ing to new user interests. In order to evaluate the performance of each agent we
have established the notion of an ecosystem which operates on the basis a sim-
ple economic model: the agents that are useful to the user and to other agents
get positive credit, while the bad performers get negative credit. The more
credit an agent has the better it stands and the less chances it has to be
destroyed.

Amalthaea is uses an agent-based evolutionary architecture. The system is
adapting by evolving a number of agents and trying to bring them closer to the
user interests and not by individual learning in the single agent level.

The major components of the system include:

¢ The user interface which is browser and Java-based and enables the commu-
nication between the user and the application

¢ The information filtering agents which request broad categories of docu-
ments that are similar to the user profile

* The information discovery agents that given the above-mentioned requests,
query various search engine to get relevant sites and then fetch the contents
of those sites.

* The evolution mechanisms that are applied to the above two populations

* The spiders that retrieve the actual documents at the sites returned by the
search engines

* The text processing and vectorization mechanisms that given a retrieved
document produce a keyword vector

¢ The credit allocation mechanisms that convert the rating that the user give to
the system’s recommendations to credit. Consequently, those mechanisms
distribute the credit to the filtering and discovery agents that were responsi-
ble for presenting that digest item

¢ The database where the URLs of all the retrieved articles are stored in order
not to make duplicate recommendations to the user.

The terms “filtering” and “discovery” might seem very difficult to coexist in a
single system, since the literature tends to see them as opposites. However, the
documents that are discovered (retrieved) in Amalthaea are presented to a pop-
ulation of agents that perform the filtering. The system is functioning along
both edges of the scale at the same time.

Along the “agent pro-activeness vs. user querying/user initiating the action”
axis, Amalthaea is positioned very close to the pro-activeness side: after the sys-
tem is bootstrapped by the user it autonomously collects interesting articles,
always running in the background. The system presents information without
the user explicitly asking it to do so or formulating a query.

Chapter 1 - Thesis Overview 15



User Experience

1.2

User Experience

1.3

Amalthaea is a tool that pin-points interesting sites and presents the users with
a digest of ten or twenty documents that will be of interest to them. Amalthaea
acquires the user’s interests in four different ways. Users can:

* submit a bookmark list with favorite sites/documents to provide a starting
point for the system.

* submit the browser history files so that the system can identify patterns in
their behavior (like visiting a web site at regular time intervals)
* select pre-trained “packages” of agents (each package focuses on a particular

topic; for instance “European soccer”, “Greece”, “Agents research” etc.) to
speed-up Amalthaea’s learning.

* specify a specific interests by training the system based on some relevant
documents.

Based on that information, the system will use search engines to find other sim-
ilar documents. Amalthaea will recommend those documents to the user and
will keep improving by receiving two forms of feedback: direct, where the user
rates a specific document and indirect, where the system sees how much time a
user spends inside a web page, and computes a “likability” factor for that page.
Users can monitor Amalthaea’s operation (through the visualization of the sys-
tem state and of the visited URLs) and adjust its behavior accordingly.

Research Contributions and Results

The research goals of this work are:

* To investigate artificial life techniques and their application to information
discovery and filtering; introduce co-evolution of agents in an ecosystem
and explore the relationships between the two populations.

* To explore learning mechanisms not in individual agents but as an emerging
property of a system.

* To apply evolutionary techniques to information filtering and discovery.

* To provide ways of expressing to the user the state of multi-agent systems
through visualization

The project also produced a prototype (called Amalthaea). In order to validate
the effectiveness of Amalthaea we had to show that the system’s evolutionary
algorithms were converging, that the ecosystem was properly designed and
was able to reach equilibria points and that users found that the system pro-
vided them with useful suggestions.

The initial set of experiments we performed was focused on setting up the ini-
tial set of primitives and parameters for the evolution and the economic model.

16
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Thesis Outline

1.4

After a stable platform for experimentations was established, we focused on
fine-tuning the properties of the evolutionary algorithms (mutation, crossover,
cloning) and the credit distribution and flow between the different components
of the system, the Information Filtering Agents and the Information Discovery
Agents.

Consequently we performed real-time iterative experiments by building an
external system that extracted the profiles of different users and was giving
automatic feedback to Amalthaea. Those experiments allowed us to understand
how the system was dealing with real user profiles and deduce the optimal
ratio of Information Filtering Agents to Discovery Agents.

Our final experiments involved actual user interaction with the system and we
measured the effectiveness of the system as perceived by its users in terms of
measuring the error in the system’s recommendations, the rate at which the
error was decreased as the system adapted to the user and the precision of the
system in recommending relevant documents. Significant parts of this work
were published and presented at international conferences and journals
(Moukas, 1996, Moukas and Zacharia, 1997, Moukas, 1997).

Thesis Outline

Chapter one contains an overview of the thesis.

Chapter two begins with a discussion of the motivation for this work and intro-
duces key research issues, terms and definitions. It also describes the main
research topics of Amalthaea, namely information filtering and discovery, user
modeling and agent-based evolutionary architectures. The focus of this chapter
is to present the state of the art of technology used in this project, and discuss
similar agent systems.

Chapter three discusses the functionality of Amalthaea, and its user interface:
how the user builds his profile, configures, fine-tunes and uses the system. Dif-
ferent aspects of the user interface are presented, along with details of its vari-
ous subcomponents, such as digest presentation, new filtering agents
generation, monitoring of sites and browser control. A description of the boot-
strapping procedure is followed by discussions on ways of visualizing multi-
agent systems and secure client-server communication schemes.

Chapter four extensively describes the system and the relationships between its
sub-components: the document discovery engine, information filtering agents,
the information discovery agents, the interactions between them and the eco-
nomic model methods used. The chapter concludes with a synopsis of credit
assignment and information flow in Amalthaea.

Chapter five explains in detail the implementation techniques used. It intro-
duces the different components of Amalthaea and their input and output mech-
anisms from a software engineering point of view. Furthermore, it discusses

Chapter 1 - Thesis Overview 17



Thesis Outline

certain security and privacy considerations on the design of the system. We try
to reveal possible privacy attack methods, and offer suggestions about different
encryption-based and architecture-based solutions.

Chapter six is devoted to the testing and evaluation. We introduce two main
categories of evaluation techniques, virtual users and real users. Virtual users
utilize the profiles of real users and their interests evolve over time. They allow
us to perform many iterations on the same data set. Real user experiments are
based on a set of seven people that used the system over a certain time period.

Chapter seven contains the concluding remarks of this work. It introduces sev-
eral limitations and drawbacks of Amalthaea and identifies possible areas of
future work. The thesis wraps up with conclusions drawn during the progress
of the research and a summary.

18

Chapter 1 - Thesis Overview



Chapter 2 Motivation, Issues and
Related Work

This chapter begins with a discussion of the motivation for this work and
introduces key research issues, terms and definitions. It also describes the main
research topics of Amalthaea, namely information filtering and discovery, user
modeling and agent based architectures. The goal of this chapter is to present
the state of the art of the technology used is in this project and discuss similar
agent systems.

2.1

Motivation

The exponential increase of computer systems that are interconnected in on-line
networks has resulted in a corresponding exponential increase in the amount of
information available on-line. This information is distributed among heteroge-
neous sources, is often unstructured and continuously changing (as in the case
of the World Wide Web.) As it is becoming more and more difficult for users to
cope with such amounts of information, new tools like software agents need to
be devised to assist in dealing with information overload. Agents, semi-intelli-
gent computer programs, will increasingly be used to assist in handling repeti-
tive and time-consuming tasks. In order for agents to be of real help to the user
they have to learn the user's interests and habits using machine learning tech-
niques, maintain their competence by adapting to the changing interests of the
user while at the same time exploring new domains that may be of interest to
the user. We are witnessing a paradigm shift in human-computer interaction
from “direct manipulation” of computer systems to “indirect management” in
which agents play a key role (Maes, 1994).

Search engines and sites indices are available to people interested in finding
more information about a particular topic. In order to formulate a query to a
search engine one needs to know what one is searching for. Furthermore, search
engines usually return tons of information unless the query is formulated very
carefully. Indices like Yahoo contain links only to interesting pages (as rated by
humans) but one usually has to be familiar with the categorization ontology of
the index in order to easily find information she needs. On top of that, hundreds
of sites are getting added each day and the average user has neither the time
nor the inclination to find out if they contain something of interest to her.

19
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2.2

We see the need for a pro-active (i.e. not query-driven) system that would oper-
ate on the background and present to the user a digest of sites that the agent
thinks are of interest to the user. We also want our system to be usable by a
majority of users so it cannot require a permanent internet connection. In
response to this we have biult a system called Amalthaea. The system’s user
interface is based on HTML and Java. The system is pro-active and non-intru-
sive. It runs continuously on a remote server, even when the user is not logged-
on, and presents its results at the next possible time.

Key Issues, Terms and Definitions

2.3

This work spans several different research fields, such as information filtering,
information discovery and retrieval, user modeling, evolution and multi-agent
systems. Researchers in those fields sometimes use different terms to refer to the
same concepts. In this chapter we will try to identify the key issues and define
the key terms that will be used:

* Information filtering and retrieval systems appear similar in that they both
try to return useful and relevant information to the users.

* However, filtering systems try to fulfill long-term user goals, while retrieval
systems usually focus on one-time queries.

* User Modeling describes the effort to create profiles define the interests of
individual users and use those profiles in a variety of tasks.

* Agents are semi-intelligent, proactive computer programs that help users
cope with repetitive tasks, and deal with information overload.

The terminology we use is influenced by the bottom-up, Artificial Life approach
we are using to build Amalthaea. Some members of the scientific community
might disagree with this terminology. Let’s take for instance the relationships
between the Information Filtering and Discovery Agents: some may disagree
with the use of the terms”cooperation” or “collaboration” because this implies a
more active desire to cooperate maybe through formal exchange of information,
through KQML (Labrou and Finin, 1994) for instance. Again, based on a bot-
tom-up, biologically inspired approach we use the term “collaboration” to refer
to a form of symbiosis. In general, interpreting the terms depends a lot from
what field one approaches agents from.

Information Filtering

Information filtering systems usually share the following characteristics (Belkin
and Croft, 1992)

* They involve large incoming streams of data
* They primarily deal with unstructured or semi-structured textual data
* They are based on some sort of predefined filter

20
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Information Filtering

¢ Their objective is to prune data that does not match the filter rather than
locate data

Information filtering systems can be categorized along several different axes

based on the technology/architecture they use for filtering the data, the location

of their operation relative to the information source and the user, the way they

find information sources and the way they represent different user profiles.

Several different architectures have been proposed for building effective and
efficient filtering systems. They can all, however, be classified under two broad
categories:

* Content-based filtering, where the system actually processes a document
and tries to extract useful information about its content. The techniques used
in content-based filtering can vary greatly in complexity. Keyword-based
search is one of the simplest techniques that involves matching different
combinations of keywords (sometimes in boolean form). The Newsweeder
system (Lang, 1995) was designed for filtering in USENET newsgroups. The
Fishwrap system (Chesnais et al., 1995) developed at the Media Lab at the
early 90s is another such system. Statistical keyword analysis represents a
more advanced form of filtering, where the stop-words are removed from
the document, the rest of the words are stemmed, vectorized and given a
weight based on their significance. Introduced in the SMART system in the
late 60s, early 70s (Salton, 1971), this form of representation is one of the
most popular. A more advanced form of filtering is the one based on extract-
ing semantic information of the documents’ contents. This can be achieved
by using techniques like associative networks of keywords in a sentence
(Riordan and Sorensen, 1995), directed graphs of words that form sentences,
or exploration of the semantic meaning of words by using tools like Word-
Net, a lexical reference system (Miller, 1985).

* Social (or collaborative) and Economic-based filtering, where the system uti-
lizes feedback and ratings from different users to filter out irrelevant infor-
mation. These systems do not attempt to analyze or “understand” the
contents of the documents; instead they are using the impressions that the
users had when they were reading them to create a “likability” index for
each document. This index is not global, but is computed for each user on
the fly by using other users with similar interests: documents that are liked
by many people will have a priority over documents that are disliked. Eco-
nomic-based filtering augments this idea with a cost-benefit analysis on
behalf of the user. It takes into consideration parameters like the price of the
document and its cost of transmission from the source to the user (in the case
of company intranets) when making decisions on whether to filter it out or
not. Systems that use these approaches include Lens (Malone et al., 1987),
GroupLens (Resnik et al., 1994) Webhound, (Lashkari, 1995), and Ringo
(Shardanand and Maes, 1995).

Based on the location where they operate relative to the user and the data
source, information filtering systems can be divided into two broad categories:
systems located at the source of information and systems located in the user’s
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machine (we assume that the systems that are filtering information at some
point inbetween the user and the source belong to the former category.) Both
approaches, have their advantages and disadvantages. The server-side filtering
approaches main advantage is minimization of network traffic, since all non-rel-
evant articles are filtered before reaching the end user. On the other hand, a
server based system requires that users send their profiles to a centralized place,
with all the update limitations and privacy considerations that this design deci-
sion carries.

Finally, filtering systems can described as “active” or “passive” based on the
methods they employ for finding the information. Passive are the systems that
filter out a given information stream, while active are the ones that besides this
stream try to find relevant information at an external database or even the
WWW. As mentioned before, the user profile representation methods used by
different systems vary. Smart-like keyword vector representations, keyword
search based rules, neural networks and genetic algorithms are among the most
popular.

Information Retrieval

Although they appear similar to filtering systems, Information Retrieval (IR)
systems have inherently different characteristics (Belkin and Croft, 1992):

* Information retrieval usually deals with static databases of information as
opposed to the dynamic streams used in filtering.

* Information retrieval systems are usually query-based as opposed to non-
query driven filtering systems.

* Information retrieval focuses on single interactions of the user with the sys-
tem and assumes that by the end of each query the system has reached its
goal (short-term goals). Information filtering assumes a different approach to
the interaction of the user with the system and tries to identify long-term
goals, that span over multiple interactions.

* Information retrieval mainly focuses on static, organized, and structured
databases

Information Retrieval systems are divided into three major categories: Boolean-
based systems, Vector-space based systems and probabilistic systems (Salton
and Buckley, 1987, Salton, 1983).

* Boolean systems are based on keywords or phrases that are combined with
boolean operators (like AND, OR, NOT) to form queries. These systems are
also called exact-match systems because an exact match is needed between
the textual elements of the query and the contents of the database elements
that will be retrieved.

* The vector-space model uses multi-dimensional vectors composed of key-
words and weights to represent queries and retrieved text. One of the advan-
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2.5

tages of vector space models, is that unlike boolean systems, the retrieved
documents can be ranked based on their relevance.

¢ Probabilistic models try to analyze the statistical distribution of terms in the
database and identify relevant and non-relevant items using inference net-
work models like Bayesian networks.

User Modeling

User modeling can be defined as the effort to create a profile of the user’s inter-
ersts and habits and employ the profile in order to improve human-computer
interaction. User Modeling systems differ in the ways they acquire, use and
represent a user profile. Profiles can be acquired or generated in a variety of
ways:

* By direct user interviews

* By “knowledge engineers” using user stereotypes (that is, a collection of
interests that are shared by users that belong to a specific group.) For
instance the stereotype of “Computer Science” users would include a sub-
category “programming” into their profile.

* Machine learning techniques like inference, induction, where the modeler
tries to identify certain patterns in the user’s behavior.

* Profile building by example, where the user provides examples of his/her
behavior and the modeling software records them.

* Rule-based profiles, where the user specify their own rules in the profile,
rules that control the behavior of the model under certain trigger conditions.

The above-mentioned methods have their advantages and disadvantages, but
in general the most successful are those that try to analyze the information not
just at a keyword level, but sometimes at a contextual and semantic level. User
profiles can be represented using a wide range of techniques, from simple key-
word-based files, to artificial-intelligence based representations. The represen-
tational formats include keyword-based profiles, rule-based profiles, vector
representations of collections of keywords and weights and Neural network-
based representations (usually associative and backpropagation networks).

It is useful to note that a typical user has multiple and sometimes overlapping
interests. The categories of interests in stereotype user profiles must be very
fine-grained and the user has to select those categories on her own in order to
build her profile. User interviews are very time-consuming, sometimes the
users fail to properly identify categories of their interests and the cost of profile
maintenance is very high. The use of machine learning techniques for generat-
ing and maintaining user profiles in information filtering applications is there-
for very compelling.
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2.6

Software Agents

2.7

Presently, in the Computer Science and Artificial Intelligence literature, the use
of the term “agent” is overwhelming. Almost any system that performs a func-
tion and is described as a black box is labeled an agent. It is getting increasingly
difficult to draw a line amongst different systems and clearly define what is and
what it is not an agent. Agent systems should best be viewed as a direction
towards which software should be headed. Nonetheless, in our opinion agent
systems must have a set of different characteristics:

* They must be pro-active, act without a direct command, on behalf of the user

* They must be personalized, that is they acquire the user’s interests and
adapt as they evolve over time

¢ They must be persistent, either run continuously or save their state, so the
user can see the agent as a stable entity and develop a trust relationship with
the agent.

In general, agent and multi-agent systems like Amalthaea are not trying to

solve the old Al problem, they are just tools to assist human capabilities and
lead to a world of augmented intelligence (Maes, 1997).

Evolutionary Techniques

2.8

Adaptation in computer systems via evolution was first proposed by John Hol-
land as a limited framework (Holland, 1962) and later in a full-blown form
(Holland, 1975). Evolutionary techniques have been used to evolve program
code in search for an optimal solution to a programming problem (Koza, 1992).
It has also been used to evolve collections of parameters rather than the code
that uses them (for instance neural network evolution, general optimization
problems, etc.)

Evolutionary systems draw paradigms from biology and apply them to com-
puter science and usually refer to populations of computational entities that
compete. Optimization or adaptation is a result of the overall/macroscopic
behavior of the system, and not of individual learning by the members of the
population. However evolution can coexist with systems where the individual
entities exhibit some sort of learning (Belew and Mitchell, 1996). Amalthaea
falls in the former category.

Multiagent Systems

Multi-Agent systems provide a collaborative way of solving complex problems
by multiple agents. Multiagent systems can differ along the axes of complexity
(ranging from completely reactive, cellular-automata like agents to very com-
plex ones); homogeneity (all agents are identical in terms of programming but
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2.9

they process different data, similar to a SIMD massive parallel architecture pro-
gramming paradigm or completely different agents); communication (actively
communicating with each other or using the changes in their environments as a
communication means) and learning (individual agents can have a plastic
learning component or can be static). Multiagent systems have been used in
telecommunication network switching, load balancing (Chavez et al., 1997),
robotic communication and group behavior (Mataric, 1993 and Moukas and
Hayes, 1996), industrial process management, electronic marketplaces (Chavez
and Maes, 1996.)

Related Software Agent Systems

Metacrawler (Etzioni, 1995) is an agent that operates at a higher abstraction
level by utilizing eight existing WWW index and search engines. Metacrawler is
an example of a “parasite” agent that does not index the documents itself, but
provides a common interface to a number of search engines. The user posts his/
her query once, and metacrawler forwards it to all search engines, collects the
results and returns a unified list. It is easy to extend this approach to a higher
level of abstraction and have agents that filter information which consult agents
that discover information, which in turn consult search engines that index
information. By creating several processing levels between the actual informa-
tion and the user, we allow for greater flexibility in utilizing other novel forms
of filtering or other forms of discovery. Etzioni is referring to that as the infor-
mation food chain and is advocating that Metacrawler is an information carni-
vore high up the information food source (Etzioni, 1996).

Webcompass is a WWW product by Quarterdeck. Webcompass is directed
towards off-line search and indexing. It enables the user to generate queries that
will search the WWW off-line and presents the results at a later time. The
MACRON multiagent system (Decker and Lesser, 1995) developed at UMass/
Ambherst, is built on top of the CIG searchbots and uses a centralized planner to
generate sub-goals that are pursued by a group of cooperating agents, using
KQML (Labrou and Finin, 1994), a standardized language for inter-agent com-
munication and negotiation. A comparable system is RAISE (Grosof, 1995),
developed by IBM. RAISE is a rule-based system that provides a framework for
knowledge reuse in different domains (like electronic mail, newsgroups e.t.c.)
INFOrmer (Riordan and Sorensen, 1995), developed at University of Cork
introduces the idea of using associative networks instead of keywords for infor-
mation retrieval. CMU’s RETSINA project (Sycara etal, 1996, Sycara and
D., 1996, Decker et al., 1997) defines a framework for distributed intelligent
agents. This framework was applied to organizational decision making in the
Pleiades system (Sycara, 1995) and to financial investment management in the
Warren system. Pleiades introduces task-specific and information-specific
agents deployed in different levels that can collaborate with one another to pro-
vide the information requested by the user.

Another category of WWW agents includes Carnegie Mellon’s University Web-
watcher (Armstrong etal,1995) and MIT Media Laboratory's Letizia
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(Lieberman, 1995). These agents are designed to assist the user and provide per-
sonalization, while the user browses the WWW. They perform a breadth-first
search on the links ahead and provide navigation recommendations. More sim-
ilar to our work in terms of application domain and representation is the system
built at Stanford (Balabanovic and Shoham, 1995). They introduced a system for
WWW document filtering which also utilized the weighted keyword vector
representation.

In terms of evolutionary filtering systems, NewT (Sheth and Maes, 1993) devel-
oped at the Media Lab, is a multiagent system that uses evolution and relevance
feedback for information filtering. NewT's application domain is structured
newsgroups documents (clarinet) and the system is able to adapt successfully to
such a dynamic environment. The main difference between NewT and Amalth-
aea (apart from the application domain) is that NewT employed only one kind
of agents, namely specialized information filters, while the system presented
here introduces different types of agents which base their relationships on a
simple market-based model. The Infospiders or ARACHNID project (Menczer
et al., 1995) at University of California at San Diego combine evolutionary tech-
niques with the idea of endogenous fitness to create a scalable distributed infor-
mation retrieval system. Finally analysis of text fitness in the internet in an
ecological framework was done at the MIT Media Lab using LSI techniques
(Best, 1997).
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Chapter 3 Functionality of
Amalthaea

This chapter discusses the functionality of Amalthaea, and its user interface:
how the user builds his profile, configures, fine-tunes and uses the system.
Different aspects of the user interface are presented, along with details of its
various subcomponenets, such as digest presentation, new filtering agents
generation, monitoring of sites and browser control. A description of the
bootstrapping procedure is followed by discussions on ways of visualizing multi-
agent systems and secure client-server communication schemes.

3.1

Introduction

3.2

The core of the system’s operations runs on a centralized Amalthaea server. The
server contains the various Filtering and Discovery Agents for each user, his/
her preferences and information about the sites that the user has already visited.
From the user’s point of view, Amalthaea is controlled via a graphical interface
(Amalthaea User Interface - AUI) that runs on the his/her computer.

The AUI is built using Sun’s Java language. When a user connects to the
Amalthaea server, the AUI is brought up on his/her screen as a Java window
separate from the browser. The Amalthaea interface is continuously running
while the user is connected to the system. Via the AUI the user can receive lists
of WWW sites that are of interest to him or her, give feedback, configure and
visualize the state of the system. The AUI is composed of several different parts
that correspond to the different functions of the system.

Configuration

The user is able to alter the basic parameters of Amalthaea and visualize its
state. The basic parameters can be configured in two modes. The low level
mode (Expert) allows manipulation of variables like evolution, mutation, and
crossover rates as well as the number of filtering and discovery agents in the
system and the way they collaborate. The higher level mode is more suitable to
end users: it provides higher-level abstractions for the above mentioned low-
level parameters. Those abstractions include configuration settings such as
“Quick Learning” vs. “Slow Learning”, “Fast Adaptation”, vs. “Stable Inter-
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ests”, etc., that tune the low-level variables in such a way that enable the system
to either learn faster but with less accuracy and breadth or slower but more
accurate. For instance the evolution rate of the system is lower in the “Slow
Learning” setting than it is in the “Quick Learning” setting. The default values
in the above-mentioned configuration settings were assigned to the system after
performing a set of small-scale experiments on the evolution parameters.

In the Configuration part of the AUI the user is also able to view the current
state of the system in terms of fitness of Agents and their evolution over time (in
the form of a plot). Each user can further tailor Amalthaea to his/her need by
modifying parameters like the number of documents the system should retrieve
and present to the IFAs for filtering and the amount of documents the IFA
should present to the user. A snapshot of the AUI Configuration Window can be
found in Figure 3 - 1.

Figure 3 - 1

The Expert Configuration Mode
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3.3

Monitoring Sites

The user can specify that certain sites which are updated every certain time
intervals should be monitored by Amalthaea. The user can enter information
like how often should the site be checked, and whether he wants the monitor-
ing to include URLs that are contained in that site as well (and up to what
depth). Other configurable options include parameters like when should the
user be notified (i.e. Notify when something in the site changed? When a new
URL was added or deleted from that site? When the site changed above a cer-
tain percentage?) In a way this function of Amalthaea acts like “active book-
marks”.

Figure 3-2

3.4

Monitoring Sites Window

The Digest

This is the part of the AUI where the system presents its recommendations to
the user and she gives feedback. The recommended URLs are organized in sec-
tions (where each section contains the documents that were retrieved by a cer-
tain cluster of information filtering agents), and are displayed along with a
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The Digest

small part of the actual contents of the site and the confidence level that the sys-
tem has about each URL. The user can click on those URLs and the AUI opens
the browser to that specific URL. He can check out the site and then select a rat-
ing for that suggestion (the AUI is always running in a separate window out-
side the browser.) This rating is going to be user's feedback to the system.

B MIT Media Lob, Softwace Agents Croup: Resesrch 5% IFA:086
Root Agmts Previews Suggerbiens

An agent s « computational system that inhabits
complex, dynamx

25% IFA:072

| Cluster: Java

B JavaWord- October . Java O&A - lova S Open

Figure3-3

A user’s digest with recommended sites.

On the lower left hand side there is the rating window (the higher the number, the
more interesting was the recommendation) and on the lower right hand side a
visualization of the Information Filtering Agents.

Each entry of the digest contains the URL of the recommended site, its title, the
first 300 bytes of its contents as well as the IFA and the IDA that are suggesting
this item and the confidence of the suggestion. On the right half of the browser,
the system displays other sites (WWW pages) that were recommended by the
same IFA at previous digests.
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3.5

The user feedback is used by the system to allocate credit to the information fil-
tering agents that were responsible for selecting that document. A seven-scale
feedback mechanism is available to the user. A rating of 1 means that the sug-
gested site was very bad while a rating of 7 means that the site was excellent. If
the user chooses not to use the explicit form of feedback, the system tries to
infer the “likability” of a page in an indirect way. A JavaScript process running
in the browser checks how much time the user actually spends following a link,
how big the contents of the link was, how much time the user’s machine was
idle, how much time the browser window was in focus, and computes an indi-
rect feedback rating. The basic idea behind this mechanism is that if the user
doesn’t like a specific site she won’t stay that long in there; the rest of the
parameters (like for instance the idle time of the computer) are a way to check
for possible caveats, like the user going for lunch directly after she entered a
bad web page. Finally the user can also pick a number of keywords from the
document vector that best describe the given document and the weights of
these keywords will be reinforced.

The user has the option to get more information on a specific recommendation
by clicking the “Details” button in the digest. That provides her with additional
data like previous suggestions by the same Information Filtering Agent, other
suggestions that had lower scores and didn’t make it to the digest, etc.

Bootstrapping Amalthaea

Amalthaea is bootstrapped by the generation of a number of information filter-
ing agents and an equal number of discovery agents. This first generation of
information filtering agents has to be somewhat relevant to the user's interests.
This can be done in one of the following ways:

* The user submits a list of his favorite bookmarks or documents. This is usu-
ally the bookmarks list. Each of the sites in the list is examined and for each
site an Information Filtering Agent is created (for more information on this
process refer to Section 4.4).

* Amalthaea checks the user’s browser history files. Many browsers (like
Netscape for instance) keep a history file (often several MBytes large) that
contains all the URLs that the user has visited!. The system analyses that
information and tries to infer certain patterns in order to decide if it has to
monitor any sites.

* Users can point Amalthaea at a specific page (possibly while they are brows-
ing) and request the generation of more agents that will find similar infor-
mation. In that case, the contents of the page is retrieved and a new
Information Filtering Agent is created based on it.

1. The history file is also helpful in the case that Amalthaea recommends sites: if the
user has already been at a specific site, Amalthaea never recommends that site again,
unless it has changed since the last user visit. The system does a CRC check of all
those files to ensure this.
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3.6

* Finally users can select pre-trained “packages” of agents (each package
focuses on a particular topic; for instance “European soccer”, “Greece”,
“Agents research” etc.) This method speeds up the learning curve of the sys-
tem significantly.

The above methods explain the generation of Information Filtering Agents.
Information Discovery Agents are generated by random assignment of WWW
indexing engines to each agent. Each Information Discovery Agent also con-
tains information on the amount of keywords provided to the discovery agents
by the filtering agents that will actually be used in the queries and how those
queries will be formulated in terms of logical operators between the keywords
(for instance will a query be formed as “computers AND F1" or “computers OR
F1” etc.) Different search engines have different ways of formulating queries
and allow for different operators on them (AND, OR, NEARTO etc). Depending
on the engine assigned to each Discovery Agent, the correct set operators is
used.

Visualization of the User Profile

In order for a user to develop a sense of “trust” for the system she must under-
stand when the agent system initiatives and more important why it performed
a certain action. The latter is usually accomplished by having the user inspect
the state of the system and the set of conditions that let it to that action. While it
is quite easy to do something like that in a centralized top-down system (like a
rule-based system or a memory-based reasoning system) this task is very diffi-
cult for a system like Amalthaea. A common problem of multiagent systems
(and other bottom-up or complex systems, for instance neural networks) is their
lack of ability to easily express their state to users. This is mainly the case
because their behavior is not a result of a set of rules but the outcome of the
dynamic interaction between the different agents. In Amalthaea we are dealing
with this problem by visualizing the populations of agents in 2D space. The
(x,y) coordinates of each agent are calculated by the following formulae:

M

x; = Zr]»cos(zﬁn-i) @)
i=0
u 21

y, = zrj~sin(-M—-i) @
i=0

Where j denotes the Information Filtering Agent, i the keywords in the vector
and M is the number of keywords in vectorfile. The variable rjis defined

as:

rj= ZWJ.,. ©)]
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3.7

where wj; is the weight of the ith keyword of the jth Information Filtering Agent.

The user is be able to browse through their personal information landscape and
see what the system thinks their interests are. When this visualization window
initially is brought up, basic clusters of agents are seen, each one labeled using
the most prevailing word shared between their elements (that is, agents). So for
instance a landscape might contain clusters labeled “Greece”, “Agents”, “F1
motor racing”. When the user does a “close-up” of a particular cluster she sees
more details about the cluster, including individual cluster elements or Infor-
mation Filtering Agents.

In a system like Amalthaea trust can be developed at different system levels,
from the micro (single agent) to the macro (whole system) and in between the
two at the cluster level. Our aim is for the users to develop trust at the cluster
level: a user must be able to identify distinct clusters of her behavior and under-
stand if those clusters make relevant and consistent recommendations. We
believe that developing a sense of trust at the single agent level is difficult and
not sufficient (thought the user can see other links that that a specific agent has
retrieved and how they were rated, but there are too many agent in the system
and identification by a single ID number is not very helpful). Trust at the whole
system level is developed easier if the user trusts the individual clusters
(although this is not a necessary and sufficient condition)

Sometimes the dynamics of the system are more important than a “snap-shot:”
of its state at any given time. The last component of the visualization applet
enables the user to see how the system’s perception of her has changed over
time. Amalthaea saves snapshots of its state at certain time intervals. The user
can “play-back” those user interests space snapshots in the form of a movie and
observe what the initial “bootstrap conditions” of the systems where, which
clusters grew larger over times, which shrunk, what the future trends will be.
Other efforts to visualize information retrieval results include the method intro-
duced by (Bartell etal,1994) which organizes retrieval term and phrase
weights in the perimeter of a circle.

Client - Server Communication

The AUI is using standard socket communication to the Amalthaea server.
When the Java-based AUI starts running, it creates a socket connection to the
server and sends (in an encrypted form) the ID and the password of the user.
The server responds by sending back the information it has collected for that
user since the last time he logged on, and the AUI presents is accordingly.

Amalthaea supports users with both continuous and dial-up connections to the
network. All the modules of the system are aware of this distinction and act
accordingly. For instance if a site that has been monitored changes when the
user is logged on to the system, this information is presented in a popup win-
dow. If he is not logged on then the information is either stored for the first time
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that he connects to the system or is sent to him via email. The same is true for
the presentation of the suggested sites. They can either be presented and
updated continuously or in the form of ““digests” presented to the user each
time he logs into the system. For users with a direct and continuous connection
to the Internet Amalthaea follows a ““background running approach”. That is,
the AUI is running in a corner of the user's screen and is continuously display-
ing and updating information. If the user is interested in that information he
acts accordingly; if not he just ignores the system.
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Chapter 4 Architecture

Chapter four describes the system in detail and the relationships between its
sub-components: the document discovery engine, information filtering agents,
information discovery agents, the interactions between them and the economic
model methods used. The chapter concludes with a synopsis of credit
assignment and information flow in Amalthaea.

4.1

Overview

Amalthaea’s architecture assigns to each user her own Information Filtering
and Information Discovery Agents and generates a closed ecosystem. More that
one persons can use the system but all their files are separate; no interaction
between different users is taking place in the system. All the components of the
system that will be discussed in this chapter operate on a single user. For han-
dling multiple users the system just uses multiple instances of those compo-
nents.

As mentioned in Section 1.1.1 Amalthaea is composed of the following parts
(illustrated in Figure 4 - 1):

* The user interface (described in the previous chapter), where the user is pre-
sented with the retrieved information and gives feedback on its relevance.

* Two distinct types of agents: information filtering agents and information
discovery agents, and mechanisms that support the credit allocation and the
evolution

* The engine for retrieving documents from the WWW.

* The engine that processes the documents and performs stemming and
weighting operations in order to generate the keyword vectors.

¢ A database of the retrieved documents URLs.

35



WWW documents and and Representation

User
J
Digest Feedback

WWW/Java Interface

Credit
Filtered
Information Clusters of
Interests
f
]
Document :
]

|
I
1 Credit
|
I

Information Discovery Agents

Monitor Discover Flow Database,

Keyword
Extractor

Distributed Information Sources Closed economy

Figure 4 -1

4.2

An overview of the architecture

The user is presented with a digest of sites by Amalthaea. She then provides feed-
back by rating the sites included in the digest. Based on the user’s ratings, credit
is assigned to the related filtering and discovery agents.

WWW documents and and Representation

All the sources of information! for the system can be accessed through the
World-Wide-Web (http, ftp, news, gopher connections). The initial engine for
document retrieval was based on the WWW Organization's 1ibwww library
(Frystyk and Lie, 1994). However, Amalthaea's latest version of the engine is a
Java application. Although there is a slight performance loss, we found that the
Java language's handling of outside connections is much more efficient and por-
table. On top of this engine, a library is built for normalizing URLs before they
are stored in the “already retrieved" database.

1. By “information” we mean documents from various sources like WWW pages,
gopher sites, ftp sites, WWW-based information services, newsgroups etc.
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All retrieved URLSs are kept in a database in the form of weighted keyword vec-
tors. They are accompanied by a HTML checksum that enables the discovery
agents to know if the specific URL has changed since last visited, in case it is a
monitored site. A separate list of the links contained in each URL is generated
(up to a user-defined depth, currently two) to assist the monitoring of certain
sites that act as “starting points” in Internet exploration (for instance a list of all
the agents-related sites). Finally the database is used for keeping track of the
URLs already included in previous digests to prevent presentation of duplicate
information to the user.

Amalthaea's internal representation of documents is based on a standard infor-
mation retrieval technique called weighted vector representation (Salton and
Buckley, 1987). The basic representation of the Information Filtering Agents and
the parsed HTML files is the weighted keyword vector. When the HTML files
are processed, a clear-text version is generated, the text is decomposed into its
keywords, which are weighted and compose the keyword vector (as explained
below). Document similarity and IFA selection of documents is based on the
weighted keyword vector operation. After the HTML source code of a given
URL is retrieved, a parser application removes the markup language tags,
indentifies the title of the document and the hypertext links it contains and
saves those data for later processing.

The original text is consequently processed in order to identify and rank the
important words it contains. The following is an example of the evolution of a
sentence through the different parts of the vector generator:

* Original Text:
Agents are running objects with an attitude
¢ Words like “the”, “it”, “he”, “will”, which are the most common in the
English language are removed from the text. After stop-word removal the
sentence becomes:
Agents running objects attitude
* The remaining words are stemmed, their suffixes are removed, leaving just
the roots. The stemmer algorithm used here is a modified version of that
introduced by Porter (see Porter, 1980):

Agent run object attitud

The keywords that survive the stemming process are recorded in the form of an
Mx2 matrix, where M is the number of the keywords. The first column of the
matrix stores the keywords in alphabetical order and the second column stores
their frequency in the document. The keywords of the title of the submitted
WWW page and the URL of the page are assigned a weight equal to 0.05*M?,
and the URLs found in the HTML document are given a weight equal to half
their frequency in the document.

2. A set of iterated experiments revealed that this is the optimal value when processing
a pool HTML documents
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4.3

Finally, each keyword is weighted by producing its “tfidf" measure. The “tfidf"
acronym stands for term frequency times inverse document frequency and it is
a standard information retrieval weighting mechanism:

W= H, T, idf, @

where T¢ is the frequency of the keyword in the current document (term fre-
quency), the H is the header constant, and idfy is formally defined as:

idf = 1og(difk) ®

N is the total number of documents that have been already retrieved by the sys-
tem and dfy is the document frequency of k. The term idfy is the frequency of

the keyword in the whole collection of documents (document frequency).

In this case the collection of documents is the set of all weighted keyword vec-
tors, which are the internal representation of the retrieved documents. The
header constant equals 1.0 if the keyword was found in the document's body
text. If on the other hand the keyword was part of the title, its weight is multi-
plied by a constant greater than 1.0. In this way title keywords have more
weight than plain body keywords.The process of the creation of the vector is
completed by augmenting the weighted vector with some additional fields like
the canonical URL of the document and the server and sometimes the author.
Using the above method, all WWW documents are represented in a multi-
dimentional space.

Evolution in the Multiagent System

The evolution of the agents is controlled by two elements: their individual fit-
ness and the overall fitness of the system. Fitness measures of agents are
described in Section 4.6. Only a variable number of the top ranked (the best per-
formers) of the whole population is allowed to produce offspring. The rank of
an agent is based solely on its fitness. The number of the agents that will be
allowed to produce offspring is linearly related to the number of agents that
will be purged because of poor performance (low fitness). These numbers are
not constant and are related to the overall fitness of the system. If the overall fit-
ness is diminishing then the evolution rate is increased in search for quicker
adaptation to the user's new interests. If the overall fitness is increasing the evo-
lution is kept at a lower rate to allow the system to slowly explore the search
space for better solutions.

New agents are created by copying (or cloning), crossover or mutation (see
Mitchell, 1996). All operators are applied to the evolvable part of the agents, the
genotype. The other part of the agents, the phenotype contains information that
should not be evolved, usually instructions on how to handle the evolvable
part. The copying operator takes the best performing agents and creates more
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4.4

agents like them. The two point crossover operator, given two agents returns
two new agents that inherit a part of the keyword vectors of the parents. This
operator randomly selects two points in the keyword vector and exchanges all
fields of the two parents that lie between these points creating two new agents.

For the sake of this project the distinction between the genotypes and pheno-
types (as discussed in the next sections) is quite narrow. Usually a more com-
plex development process occurs for deriving the phenotype from the genotype
(Belew, 1989). In our case there is no individual learning or adaptation of indi-
vidual agents, resulting in an one-point phenotypic search space.

Given two genotypes G; and G, the two point crossover operator is formally
defined as:

G,®G,-G,,G, ®)

The algorithm that returns the two crossover points p; and p, works as follows:
p; = rand(1, sizeof (G)-2)) )

p, = rand(p, sizeof (G)-1)) ®)

The new genotypes inherit a part of the keyword vectors of their parents that
lies between those numbers. The variable i represents the weighted keyword.

G,, 0<i<pyandp,<i<sizeof(G)-1
G, = . )
G, Pisisp

Gl.- p1<isp,
G4 = . . (10)
G, 0<i<p,andp,<i<sizeof(G)-1

Mutation is another operator that can be used either on its own, or in conjunc-
tion with cloning and crossover. The mutation operator takes the genotype of
an agent as argument and creates a new agent that is a randomly modified ver-
sion of its parent. The weights of the mutated keywords are modified randomly
while the new “mutated” keyword is a randomly selected keyword from an
agent that belongs to another cluster or from a recently-retrieved highly-rated
document.

Information Filtering Agents (IFAs)

An information filtering agent is based on an augmented keyword vector
(which is the major part of its genotype). Keyword vectors are used to assess the
similarity of two documents as well as the match between an information filter-
ing agent and a particular document. These vectors are augmented with other
information such as the author of the document (if possible) and whether it was
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created by the user explicitly or not. If it was, then the long-term interest field (a
boolean parameter) is activated indicating that the documents proposed by this
agent are treated more favorably.

The genotype of the information filtering agents is essentially a weighted key-
word vector. The phenotype of these agents contains the non-evolvable part of
the agent like its fitness, the long-term interest field and of course the com-
mands that enable the agents to exchange information with each other and the
system>. Essentially the phenotype resembles a fixed template that is “filled”
with the genotype information and then “executed”. Figure 4 - 2 visualizes the
relation between the genotype and the phenotype of the information filtering
agents:

Weight | Weight | <~/ | Weight Genotype
Keyword | Keyword | -\ | Keyword

Creation User
Date Created?

Phenotype

AgentiD | Fitness Execution Code

Figure 4 -2

The information filtering agent genotype and phenotype

The information filtering agents are presented some documents by the informa-
tion discovery agents (described later on.) The former act as “masks” that allow
only the documents that are close to their weighted keyword vectors to pass
through. Each filtering agent selects one document that is closest to its vector
and calculates how confident it is that the specific document will interest the
user. In this decentralized approach each agent believes that it is a perfect
model of part of the user’s interests, so if a document matches its vector com-
pletely, the agent's confidence is 1. 0.

In order for an Information Filtering Agent to assess its similarity to a given
WWW page, it has to compare its genotype to the vector representation of the
text inside that page. As mentioned above, each document is represented by a
multi-dimensional vector (each vector can have different a dimension). In order
to make the document comparison and clustering feasible we project each vec-
tor in the multidimensional space of the hypervector vectorfile that
includes all the keywords found in the whole collection of the Information Fil-
tering Agents. Their dimensionality is expanded by adding to them all the
additional keywords of vectorfile and setting their weight to zero.

3. This exchange of information is simple and should not be considered communication
between agent entities in a higher cognitive level.
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When two documents are compared for similarity, we evaluate the cosine of the
angle between the vectors representing the two Information Filtering Agents.
This is done by evaluating the dot product of the two vectors and dividing it by
the product of their magnitudes. The formula that returns the distance between
two keyword weighed vectors 2 and b is the following:

j
Z Wak " Whik
k=1 (o))

IFA,, = 7 7
JZ (a2 Y, (wy)?

k=1 k=1

As mentioned in the previous section, not all documents introduced by filtering
agents make it into the digest. The system decides if the agent is going to
present something to the user by ranking the proposed documents using the
following formula (confidence level):

Ci = Dipy- F; 12)

where i is the document number, and F is the fitness of the filtering agent that
proposed the document. The top # documents are selected from the ranked list,
where 7 is a user-definable number that indicates the amount of items that the
user is interested in including in the digest.

The file format of the Information Filtering Agents is text-based. Each IFA has a
unique ID, a creation date, a fitness, a genotype that contains the weighted key-
words, the coordinates of that agent in a 2D space (as discussed in Chapter 3)
and the number of times this agent has been invoked, presented something to
the user and the user gave feedback. The format of the files is the following:

***Amalthaea-IFA***AgentID
000001
***Amaltahea-IFA***Creation-Date
March 25, 1996 14:45 EST
***Amaltahea-IFA***Fitness
578.69
***Amaltahea-IFA***Keywords
Smokey 1.823

Bear 2.357
***Amaltahea-IFA***Coords

X,y

***Amaltahea-IFA***Invoked

13

***Amaltahea-IFA***Present

7
***Amaltahea-IFA***WithFeedback
6

***Amaltahea-IFA***End
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4.5

Information Discovery Agents (IDAs)

Each information filtering agent issues “requests” (and standing orders, that is
long-term commands) to information discovery agents about the type of docu-
ments they are interested in finding. Discovery agents select which contract
they want to take on.

Search [Number of[ Minimum | Maximum Genotype
Engine | keywords Hits Hits

) Creation | Transact. ; Phenotype
AgentlD | Fitness Date History Execution Code

Figure 4-3

The information discovery agent genotype and phenotype

An information discovery agent is based on a genotype that contains informa-
tion on the keywords it should utilize when querying the WWW indexing
engines, along with the canonical URL of the engine (or information source)
that it contacts. The aim here is to create a diverse body of agents that will allow
different types of documents to be discovered through different search engines.
The information discovery agents that are monitoring sites operate a bit differ-
ently than discovery agents specializing in WWW and those specializing in
steady information flow. They are not using any search engine as mediator but
instead visit directly the site of interest and analyze the document to discover if
it has changed and by how much, using the database where the URLs are
stored.

Distinct characteristics of information discovery agents include that they search
alternative information sources in remote computers and that most are parasitic
(in the sense that they are utilizing existing WWW search engines to find infor-
mation and not dig it up on their own, a type of meta-search).The IDAs do not
receive credits directly from the user but indirectly, from the information filter-
ing agents that “employ" them.

The Information Discovery Agents are responsible for spawning the spiders
that post queries to various Internet Search Engines, collect the results and
present them to the Information Filtering Agents that requested them. The
number of spiders that concurrently post and process the queries is config-
urable by the user. In our current implementation we are running 64 spiders at
any given time.

Depending on the search engine it uses, each spider uses different query types.
In this case a querytype “1” means AND-ing all the keywords together, “2” OR-
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ing them etc. Not all engines have the same keyword combination abilities (for
instance Altavista has a “NEAR TO” query operator, unlike Lycos etc.) The spi-
der forms a query according to its parameters and appends each engine’s wild-
character at the end of the stemmed words. If the number of hits returned from
that query is greater than the MaxHits or less than the MinHits parameter then
the spider re-posts the query but with more or fewer keywords until it reaches
the level of hits requested by the Discovery Agent. If a link is already visited by
the user or already proposed to him or her, it is not considered again. For each
of the remaining links, the spider fetches its HTML contents, processes them
and saves them into separate files for consideration by the related IFA later on.

The Information Discovery Agents have a unique ID number. The following of
their parameters are part of their genotype and are evolved: the search engine
they use when searching for relevant information, the number of keywords to
submit in an initial query, the method they should use (boolean AND or OR,
NEAR TO, etc) and the range of URLs to expect as an answer (that should be
less than the MaxHits variable but greater than the MinHits). Some variables
like the history of transactions with Information Filtering Agents and the fitness
are not evolved. The format of the IDAs is presented in the next table:

***Amalthaea-IDA***AgentID
000001
***Amaltahea-IDA***Creation-Date
March 25, 1996 14:45 EST
***Amalthaea-IDA***EngineID

4

***Amaltahea-IDA***Fitness
578.69
***Amaltahea-IDA***NumberOfKeywords
15
***Amaltahea-IDA***CombiningMethod
4

***Amaltahea-IDA***MinHits

50

***Amaltahea-IDA***MaxHits

235

***Amaltahea-IDA***History
000014,300,15

000345,790,3

000893,213,4
***Amaltahea-IDA***End

The history of transactions is a table of finite size; each record has the form of
(IFA_ID, Total Credit, number of transactions).

IFA_ID {int) Credit (float) Transactions (int)
000005 763 4
000123 501 5

The Information Discovery Agents select which Information Filtering Agents’
requests to fulfill. From an implementation point of view this is happening in
the following way: All Information Filtering Agents’ requests are placed on a
table. When an Information Discovery Agent selects a request, that request is
erased from the table. The Information Discovery Agents refer to their history
logs and check if the Information Filtering Agents which has been the most
profitable in doing business with has posted any requests. If no, it proceeds to
the next preferred Filtering Agent and checks again. If yes, that request is
selected. Then the system proceeds to the next Information Discovery Agent,
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until all Information Filtering Agents’ requests are fulfilled (so usually an IDA
serves more than one IFA). The Information Discovery Agents use the above-
mentioned method for 80% of the time. The 20% of the time the selection is ran-
dom in order for the system to explore its search space and identify potential
new interesting matches. The Information Discovery Agent that gets to pick an
Information Filtering Agent first is selected in three different ways: randomly,
best-fitness first and worst-fitness first. Each of those methods has their advan-
tages and disadvantages.

The Ecosystem

The interactions between filtering agents and discovery agents, as well as
among themselves control the global behavior of the system. The technique is
inspired by an approach called “Market-Based Control”. As Clearwater put it
“Market-Based Control is a paradigm for controlling complex systems that oth-
erwise would be very difficult to control, maintain or expand”
(Clearwater, 1996). Our form of control views the system as a miniature econ-
omy. We are trying to yield desirable global behavior in a complex system on
the basis of agents acting on local information.

The agents that compose the ecosystem operate under a penalty/reward strat-
egy, supported by the notion of “credit” that is assigned indirectly by the user
based on the system's performance. The user is giving feedback on the suitabil-
ity of an item in the digest. The system relates this feedback to the filtering
agent that proposed the item and the discovery agent that retrieved it and
assigns the credit. Credit serves as the fitness function in both populations
which are evolved separately. The higher the fitness of an agent, the more
chances it gets to survive and produce offspring.

If the user feedback is positive then the information filtering agent that pro-
posed the item is awarded an amount of credit directly related to its proposal's
confidence level. If an agent is confident that the user would like the item it pro-
poses then it receives positive credit, but not as much as when it would be very
confident. If on the other hand it is very confident that the document would be
of interest and the user's feedback is negative then it receives a lot of negative
credit, which is bad for its fitness. Information filtering agents “pay" a fixed per-
centage of the amount of the credits they receive to the information discovery
agents whose outputs they used.

It is evident that not all filtering agents are able to present something at each
digest. The documents proposed by the agents are ranked by confidence level
and the top are selected and presented to the user. Although the agents that
present items are not always the same, they usually represent the top 40% of the
population, fitness-wise. The rest of the population is there for diversity pur-
poses. One would notice that if an information filtering agent doesn't present
anything to the user then its credit would remain constant. In order to accelerate
the destruction of non-competent agents and the evolution of new ones we
introduced a linear decay function which can be seen as a type of “rent”
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(Baclace, 1992). In order for the agents to inhabit the ecosystem they have to pay
something. If the credits they gain exceed this “rent” then they live. Otherwise
they are removed and new ones are created. Moreover, if two agents propose
the same document then they receive a penalty in order to discourage that and
increase the diversity of the population. The information filtering agents receive
ratings directly from the user depending on their performance. They, in turn,
assign some credit to the information discovery agents that helped them locate
and retrieve the information rated by the user.

The Information Filtering Agents evolution has one particularity: the whole
population is not evolved together; instead, Filtering Agents compete with each
other inside a given cluster. So all the IFAs that belong to cluster “Greece” are
evolved together, the “Computer Science” IFAs together, etc. This yielded better
performance in terms of user feedback, merely because it is to the interest of the
system to create niches of agents, and inside those niches to keep the best IFAs.
The size of the clusters is a result of the overall feedback that the user has given
to its members.

The number of agents that are purged in each system cycle is not fixed but
instead it is based on the amount of positive feedback the user is giving to the
system. If the overall negative feedback of the current digest is higher than the
average of the past ten digests (a user-definable parameter) then the percentage
of purged agents increases. If on the other hand there is more positive feedback
this number decreases. Even in the best-case scenario of very positive feedback,
there is still a percentage of the population that is purged in order to explore the
search space for possible new user interests. A sample requests and information
flow in Amalthaea goes as follows:

* The filtering agents send requests for documents to the discovery agents in
the form of a keyword vector.
* The discovery agents select a filtering agent's request and based on their

phenotype they try to retrieve relevant documents utilizing the WWW
indexing engine they are assigned to.

* Each discovery agent presents to its filtering agent the set of retrieved docu-
ments and the filtering agent selects the ones that best match its keyword
vector.

* A number of filtering agents include their selected documents in the user's
digest based on their fitness confidence in the documents.

* The user rates the documents presented in the digest, thus giving feedback
to the system.

Interaction between IFAs and IDAs

The overall system behavior depends a lot on the way the filtering and the dis-
covery agents interact. As mentioned before, the filtering agents do not impose
commands on the discovery agents. Instead, they post requests to the whole
population of discovery agents. Then, individual discovery agents choose one
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of those requests based on their experience. The phenotype of the discovery
agents includes a history of transactions with different filtering agents and how
well the filtering agents performed in those transactions (that is whether the
user gave positive feedback to the items discovered, filtered and presented as a
result of that transaction/cooperation). Depending on this history an IDA cre-
ates a credit-sorted ranked list of all the filtering agents they worked for and
they try to get “contracts” from the highest ranked ones to maximize their own
fitness. This way the discovery agents figure out by themselves which filtering
agents they best serve, based on the WWW indexing engine they use and the
combination of the keywords they query. Since the number of the discovery
agents is smaller than the number of the filtering agents, after a discovery agent
fulfills the request of a filtering agent, it goes on and selects the next request, if
available. In order to achieve a better exploration vs. exploitation ratio (match
up different filtering and discovery agents) 20% of the filtering agents requests
are served by more than one discovery agent.

Since some filtering agents are closer to the user interests than others, they tend
to gather more credit in a typical document presentation. It is in the interest of
the discovery agents to select the filtering agent that will bring them the most
credit. This is an interesting issue: in what order do discovery agents pick up a
filtering agent request? Several different methods exist: one could try ranked-
based selection. That is, the discovery agent with the most credit selects first the
request from the filtering agent of its choice. The second method is that of ran-
dom selection: a random discovery agent is picked and allowed to select a
request; the process continues until all discovery agents are selected and then
restarts. The third method is that of inverse-rank selection: to enforce diversity
and keep a balance in the population, the discovery agent with the least credit is
selected and is allowed to pick a request first with its favorite filtering agent.
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This chapter explains the implementation techniques used in detail. It
introduces the different sections of Amalthaea and their input and output mecha
nisms from a software engineering point of view. Furthermore, it discusses
certain security and privacy considerations on the design of the system. We try
to reveal possible privacy attack methods, and offer suggestions of different
encryption-based and architecture-based solutions.

5.1

Overview

Amalthaea is written in ANSI C++ and Java. Versions of the code are running in
standard Unix boxes using GNU’s g++ compiler and SunSoft’s Java Software
Development Kit (SDK). Our latest implementation is compiled using Microsoft
Visual C++ 5.0 and Microsoft Visual J++ 1.1 on a Windows NT 4.0 system. We
decided to switch to the Windows environment because of the much better mul-
tithreaded support of the Java virtual machine on a multi-processor system, like
the dual PPro we were using for our server.

The C++ part of Amalthaea deals primarily with handling the various parts of
the agent ecosystem: the Information Filtering and Discovery Agents are gener-
ated and their populations are being evolved; the credit-distribution mecha-
nisms and the management of the simple economy/ecosystem; the text-
processing and the vector generation routines. In general the code that needed
to be fast and efficient is written in C++.

The first Java segment (which is a Java stand-alone application, not an applet) of
the code deals chiefly with network-access related tasks: the multithreaded spi-
ders that open URL connections and fetch information; the parasite spiders that
pose queries to the major search engines; the HIML parsing routines that
extract title information, internal and external links. The second Java segment is
an applet that is fetched by the user’s browser when he/she reads the digest or
re-configures the system. The main advantage of Java applets in the design of
Amalthaea is the portability that this language offers through the virtual
machine.
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5.2 WWW Server, Java and CGI Scripts design

The Amalthaea HTML server backbone is based on Microsoft’s IIS server and a
combination of C++ and Java script files that handle user interaction. When a
user opens the main Amalthaea homepage she has to create an account, or if she
already has one, log into the system. The first of the scripts authenticates the
user and the password by comparing the provided data with those stored in
Amalthaea’s database. Provided that those are correct the user can select her
course of action from a variety of options, like digest presentation, new agent
creation, system configuration etc.

Most of the scripts work and provide services to the user in real time. However,
a few scripts generate overview descriptions of the Filtering and Discovery
Agents operations so that the user can view those even in slow connectivity sit-
uations. For instance, one of the scripts summarizes the actions and the contents
the Information Filtering and Discovery Agents in a single compressed file, so
that it can be downloaded to an applet running on a remote computer even if
the user has a slow network connection. This file contains a compact version of
the Information Filtering and Discovery Agents landscape.

5.3 Typical Operation Cycle

Amalthaea saves the various user-specific files (like Information Filtering and
Discovery Agents, incoming HTML files, text vectors) in text format so it can be
easily integrated into different agent applications (British Telecom is currently
integrating Amalthaea into one of their prototypes, Radar (Crabtree, 1997). A
description of how different modules of the system interact and which files each
uses, along with a typical operation cycle of the system follows:

Amalthaea's File Structure

[ c++
‘ deve m

[2] IFAs [31 SEARCH | |[4] IDA-OUTPUT | [5]1DAs

IFASummary.dat toExpiore.bd Results.bi

|

000001 .#a

‘ 000002.#

Figure5-1 A typical user filestructure. The gray directories are created/processed by the C++
modules, the white ones by the Java modules.
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* Check with the interface if user requests to create new agents (either while
bootstrapping the system or by explicitly asking so). If yes, get a list of the
URLs, fetch the files and place them in the directory NEW_IFA.

¢ Check the directory NEW_IFA [Figure 5-1, Box 1] to see if any files [Figure 5-
1, Box 1.1] are there. If yes, create their keyword vector, generate new agents
in directory IFAs [Figure 5-1, Box 2]. The new agent filenames should be in
the form: 000001.ifa, 000002.ifa etc [Figure 5-1, Box 2.1]

¢ Create an array that contains the top keywords and weights of the selected
IFAs. Using the history of the IDAs, select the appropriate IDA for each IFA.
Note that since IDAs are fewer than IFAs, each IDA gets to select more than
one IFA request. Save the results in a file toExplore.txt [Figure 5-1, Box 3].

* Read the file toExplore.txt and the IDAs directory. For each entry get key-
words and the IDA ID and create a thread that goes to the related search
engine, enters a query and fetches the URLSs of the returned documents. For
each URL create a thread and fetch its contents. Create under IDA_OUTPUT
a directory with the agent’s ID number and then one called IN and store the
documents there (i.e. IDA_OUTPUT/000001/IN/filel.txt.) [Figure 5-1, Box
4.1.1]

¢ Read all the IDA_OUTPUTY/.../IN directories, create the vector files of all
the documents, store them in the VECTOR directory (ie IDA_OUTPUT/
000001/ VECTOR/filel.vec). [Figure 5-1, Box 4.1.2]

¢ Compare all vectors with their related IFAs and get the top matches (n=1 for
now) into a file called Results.dat [Figure 5-1, Box 4].

* Read the file Results.txt [Figure 5-1, Box 4] and construct a digest in the
appropriate directory. Digest also contains the first few lines of each docu-
ment.

* Based on user feedback generate a feedback file (Feedback.dat) that contains
the user’s reactions to suggestions

* Read the file Feedback.dat, update the weights of all the agents.

File Formats

5.4.1

Amalthaea uses several different file templates to store its state. This section
gives an overview of the most important of them along with possible bootstrap-
ping variable values.

Vectorized HTML Files

After being fetched by a spider, the processed content of a URL is saved in the
following format:

***Amalthaea***URL
http://www.media.mit.edu
***Amalthaea***Title

The MIT Media Laboratory
***Amalthaea***Body
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5.4.2

5.4.3

5.4.4

Click here for People,Sponsors, Research,
Academic Programs, Information
***Amalthaea***URLs
http://agents.www.media.mit.edu/
http://....

ftp://....

***Amalthaea***Fitness

0

***Amalthaea***EOF

Web Discovery Files

The Information Discovery Agents choose which Information Filtering Agents
requests to fulfill, and generate a file that the Amalthaea spiders use for actually
fetching the information. That file contains the IFA and IDA IDs, and the key-
words that need to be searched. All the other data needed to spawn the actual
spiders that would query the search engines are provided by the IDA files (for
instance, which engine, how many keywords etc).

***Amalthaea-ToSearch***Begin

IFA_ID, IDA-ID,Keywordl, Keyword2, ... .Keyword N
***amalthaea-ToSearch***End

Results Files

For each Information Filtering Agent, the spiders save a number of files that
they have been instructed to retrieve by the Information Discovery Agents.
Each Information Filtering Agent selects the most prominent site and a new file
is created that contains all the information needed for the generation of a new
user digest. The top n files that best match the vector of the respective agent are
selected. Their URLs are saved in a file along with a similarity quantity
(between the IFA and the document). The resulting file is called Results.txt:
***Amalthaea-Results***Begin
IFA_ID,IDA_ID,URL,Title,Abstract,Similarity,Confidence,FitnessIFA,FitnessIDA

IFA_ID, IDA_ID,URL,Title,Abstract,Similarity,Confidence,FitnessIFA,FitnessIDA
***Amalthaea-Results***End

User Interface Related Files

The HTML code for the digest is created using the final results file that was
described in the previous subsection. The user’s digest HTML code is generated
in such a way that it contains information on the actual user and details on the
suggested items, so that proper credit can be assigned to the Information Filter-
ing and Discovery Agents.

A “summary” file of all the Information Filtering Agents is generated when the
user file is updated. This file is a collection of the most basic information of each
IFA for visualization purposes. If a user requests a visual map of the state of the
system, it is very difficult to use the raw data of the IFAs, mainly because of
their size. The summary file contains just the Agent ID, the Creation Date, the
Fitness, a few keywords and the x and y coordinates of the 2D representation of
the agent. The IFASummary . dat file is generated in the following way:

* Read ifa files in the user’s “IFAs” directory.
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* For each file, create an IFAgentSpec object that stores information about each
agent. Store objects in a vector.

* Enumerate through all IFAgentSpec objects and generate a summary file.
Each entry in the summary file has the following format:

AgentID, Creation Date, Fitness, first 10 keywords, x-coord, y-coord

Issues on Security and Privacy

In general, in order for an agent to serve the user better it has to know aspects of
the interests of the user that he or she might not be willing to share with other
people, or even interests that the user is not even aware of. This situation brings
forward several privacy issues in the design of agents that assist the users. We
will discuss what those privacy issues are and how they relate to the current
implementation of Amalthaea.

Amalthaea was designed in such a way so as to allow maximum design flexibil-
ity in terms of where its components run. Right now, the Java environment
imposes certain limitations on the capabilities of the user interface that runs on
the user’s machine. Two of those limitations directly affect Amalthaea: The first
one is Java security: a Java applet when downloaded from a remote machine
can either write data to the local machine or communicate with the originator
machine through the network but cannot do both. In our implementation we
chose to have the AUI communicate with the Amalthaea server and store all the
information there. The second is the speed of the language (or lack thereof):
Java is interpreted and consequently quite slow. Although a number of
improvements are being worked out by the designers (like compilation of the
virtual machine code to the machine’s native code) right now running the
whole Amalthaea system under Java (so everything can run on the AUI on the
user side) in infeasible speed-wise.

Ironicaly, the current security provisions of Java lower the security standards of
Amalthaea: under the current implementation of the system all the user profiles
(the Information Filtering agents) are stored in a centralized place, namely the
Amalthaea server. This method encompasses several security problems that
might affect the privacy of the user. Two different categories of security prob-
lems arise:

* Network Security: Sensitive information about the user may be passed
through the network and can be easily obtained by a third party.

* Server Security: Although a case of compromised security on the server part
(either from a malicious administrator or from an outside attack) is rarer, its
consequences if it happens are much more severe.

There are several ways to address those problems in Amalthaea: they range
from simple additions to the communication protocol to support encryption to
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5.5.1

5.5.2

5.5.3

complete re-distribution of the components of the system from the Amaltahea
server to the user side.

Sockets Encryption Layer

A simple modification is to add an encryption layer in the socket communica-
tion model between the client and the server. This way, no clear-text informa-
tion is going to be transmitted via an open channel.

One-way encryption of IFAs

When new filtering agents are generated, encrypt their genotypes using one-
way encryption techniques. In this case, the vectors have to be encrypted as
well before compared with the filtering agents. Even if the security of the sys-
tem is compromised, decyphering the filtering agents will be extremelly diffi-
cult.

Place IFAs on the user side

This is a more drastical change in the architecture of the system. By moving the
IFAs from a centralized server to a completely distributed system where each
user will run his/her own IFA agents on their own machine the system doesn’t
have any more a single point of attack and security failure.

It is evident that the above modifications are not mutually exclusive; they can
be used in parallel to provide maximum security. We are gradualy moving
towards a more distributed version of the system by placing the IFAs in the Java
applet running on the user’s machine. Apart from the enhancement of security
of the system, this change will assist the scalability of Amalthaea since the com-
putational requirements of the server will not be as great as in the centralized
version. Since Amalthaea’s design is completely modular only minimal changes
in the code are needed to implement this move. In addition to that, we are
implementing encryption methods like the one mentioned above to enhacethe
security between the Amalthaea server and local machines.
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This chapter is devoted to testing and evaluation. We introduce two main
categories of evaluation techniques, virtual users and real users. Virtual users
utilize the profiles of real users and their interests evolve over time. They allow
us to perform many iterations on the same data set. Real user experiments are
based on a set of seven people that used the system over a certain time period.

6.1

Testing and Evaluation Techniques

The experiments we conducted to validate the hypotheses presented in this the-
sis, were developed along two axes. One group of experiments focused on test-
ing the ability of the system to evolve and stabilize into meaningfull equilibria
positions and infering the optimal distribution of agents. For those experiments
we used the notion of “virtual users”, profiles created by real user interests that
automatically tested and provided feedback to the system. The virtual users
enabled us to iterativelly perform big scale lenghty experiments without the use
of people.

The second axis which we worked along is that of testing the performance of
the whole system with real users. We tested if the system could actually find
useful information on the WWW and present it to its users. We used a group of
seven people and used the data from their interaction with the system to mea-
sure quantities like the mean absolute error between an agent’s suggestions and
the user’s feedback, its standard deviation, and the correlation coefficient
between Amalthaea’s predictions and actual user ratings.

One important aspect of the testing phase was to select a set of metrics for eval-
uating the performance of the system. Those metrics combine overall user satis-
faction from using the system (as reported by the users themselves at the end of
the experiments) as well as system-recorded user feedback for its recommenda-
tions.
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6.2

Experiments with Virtual Users

6.2.1

In order to provide an objective and consistent evaluation of the system's per-
formance we had to use fixed points of reference in the two external factors that
were influencing the system's performance: the user interests and the results of
the queries posted to the WWW indexing engines. We compiled several differ-
ent user profiles with different interests each and we also collected a number of
HTML pages. The user profiles had the form of a number of different keyword
weighted vectors. We then compared the items created by the filtering agents in
the digest with those profiles and provided positive or negative feedback based
on their similarity. Depending on the feedback, the agents received an amount
of credit that was added to their existing credit. The items that the agents were
presenting to the user profiles were selected from a fixed collection of HTML
documents arranged in different directories to resemble the different search
engines. The use of those local documents provided us with a quick response
time and more importantly with a constant reference frame for evaluating the
system.

Virtual Profile Evolution over Time

The purpose of this set of experiments was to evaluate the ability of the system
to reach stable equilibria conditions and adapt to slowly changing user inter-
ests. At the beginning of the experiments a random set of user interests was cre-
ated. Those interests were not static, but they were changing at a rate of 5% per
system iteration. We performed seven different sets of runs, each one consisting
of five trials for averaging the randomness of the genetic operators. Figure 6 - 1
visualizes the mean value of fitness (or credit) of the agents for each set.

The only difference between the sets was the initial user profiles. The first curve
(with the lowest fitness/credit) indicates the average fitness of all the agents in
the system, while the second curve represents the average fitness of the agents
that actually present documents in the user's digest). The two curves exhibit in
general the same behavior, although (as expected) the curve that represents the
fitness of all agents is smoother. The number of generations is that high because
the initial user profiles used are random (regular users use their bookmark list
to bootstrap the system.)

The results demonstrate that the system is able to converge starting from differ-
ent (random) initial populations.
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System Performance with constant user interests

1 1 1 1 1
0 20 40 60 80 100 120 140 160 180 200
Generations

Figure 6 - 1

The system is converging as the user interests change smoothly.

The top group of lines represents the average fitness of the IFAs that presented
digest items to the user; the bottom group represents the average fitness of all the
IFAs. The system is able to increase its overall fitness regardless of the different
starting points (user profiles.)

In the second set of experiments we introduced sudden changes in the interests
of our virtual users. At random time intervals there was a bin change in the user
profile. We configured the system in such a way as to alter the user's profile by a
mean of 50% and a standard deviation of 15% (i.e. on the average change half of
the user profile's interests randomly). These random changes were necessary in
order to test if the system would be able to adapt in abrupt changes on its equi-
librium position. As Figure 6 - 2 shows, the system is able to follow abrupt
changes in the user's interests and after a sudden decrease of its fitness (because
of the negative feedback it is receiving, since a big percentage of the user inter-
ests has changed) it is able to quickly adapt to the changes, by retrieving docu-
ments that interest the user more. Figure 6 - 3 shows the same technique
applied to a different user profile.
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Fitness

Overall vs Presenters Fitness #1

1 1 1 i 1
0 20 40 60 80 100 120 140 160 180 200
Generations

Figure 6 - 2

Changing suddenly the user interests: Evaluation of Amalthaea’s performance for
user profile one.
The top group of lines represents the average fitness of the IFAs that presented

digest items to the user; the bottom group represents the average fitness of all the
IFAs.

The third set of experiments involving virtual users had to do with the evalua-
tion of the system’s performance when the user was not giving feedback at each
system iteration, but in a sporadic fashion. We have tried evolving the system
for a number of steps between user feedback. The result when using a random
interval with a mean of five steps can be seen in Figure 6 - 4. The fitness curves
of the agents are not as smooth as in the previous figures as a result of the irreg-
ular user feedback. These results show that a user can have the system evolve
more frequently even “on the background”, without any direct feedback. The
above three sets of experiments show that Amalthaea can learn the user inter-
ests and adapt to them over time as they evolve on a set of different user scenar-
ios with different agents’ configurations.

56

Chapter 6 - Testing and Evaluation



Experiments with Virtual Users

Overall vs Presenters Fitness #2

0 1 1 1 1 1 1
0 50 100 150 200 250 300 350
Generations
Figure 6 -3 Changing suddenly the user interests: Evaluation of Amalthaea’s performance for

user profile two.

The top group of lines represents the average fitness of the IFAs that presented

digest items to the user; the bottom group represents the average fitness of all the
IFAs.
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System Performance with occasional user feedback

1 1
0 20 40 60 80 100 120 140 160 180 200
User feedback (x5 for generations)

Figure 6 - 4

6.2.2

Evaluation of system performance when the user is providing feedback at random
time intervals with a mean of five generations.

The top group of lines represents the average fitness of the IFAs that presented
digest items to the user; the bottom group represents the average fitness of all the
IFAs.

Ratio of Filtering Agents and User Interests

Extensive experiments have been performed on the relations of the number of
filtering agents to the number of user interests and the fitness of the presenting
filtering agents of the system. We tried to identify the different behaviors of the
system when the ratio of user interests over filtering agents varies. We compiled
different user profiles using data from actual users and then we clustered the
generated filtering agents into groups by keyword vector similarity. The defini-
tion of an “interest” varies from very narrow-focused when the radius that
defines the cluster around the centroid of the cluster is quite small resulting in
an interest cluster that contains only a few agents, to very wide-spread when
the radius is greater an contains a large number of agents. We set the radius
equal to a value that gave us the best results in a number of preliminary test
runs.
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Figure 6 - 5 shows how the different number of user interest clusters effects the
performance of the system. Notice the non-linear increase in the performance of
the system as the number of interest clusters is dropping. Also notice how good
the bookmark-list bootsrapping method works when there are few interests
clusters. With 10 clusters the system reaches over 60% performance in just 10%
of the total generations.

Varying interests (10,20,30,40,50). 500 Agents

i 1 i ] L
0 20 40 60 80 100 120 140 160 180 200
Generations

Figure 6 -5

Filtering Agents and User Interests

The number of filtering agents in the system remains constant while the number
of user interest clusters is varying. The five lines (from top to bottom) represent
10, 20, 30, 40 and 50 interest clusters respectively. The performance of the system
is over 90% for a number interest clusters less or equal to 40. There is a 13% dete-
rioration in the performance from 40 to 50 interests while this number is less than
5% in the other cases (i.e. 10-20, 20-30, 30-40).

This experiment was conducted in order to assess the performance of the system
when the number of the interests the users had increased without a correspond-
ing increase in the number of agents.
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Figure 6 - 6 illustrates an overview of all the experiments. The results verify the
facts that: i) the more agents the better the performance of the system; ii) the
number of interest clusters does affect the overall fitness but less than one
expects (except in the case of many = greater than 40) user interest clusters and
iii) there seems to be a flattening of the performance curve above 225 agents.
Most probably the diversity of the population need to be enforced in large num-
bers of agents.

Overall Fitness in Varying Interests, Agents

250

Filtering Agents

Interest Clusters

Figure 6-6

Overall System fitness vs. Number of User Interest Clusters vs. Number of Agents.

The value displayed for each data point is the maximum of all generations (0-200).
The number of User Interest vectors per cluster, totaling more than 550 vectors). It
is quite unlikely that a user will have that many interests at the same time. Note
that when the number of agents is small and the number of interest clusters is
large (greater than 40) the results are not satisfactory. Nevertheless, when the
number of agents increases above 100 the overall fitness rises significantly.
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6.3

Experiments with Real Users

6.3.1

After validating the assumption that the multiagent system can reach equilibria
points and adapt to the user interests regardless the degree that those were
changing with, we performed a set of experiments that involved a set of seven
users. Our experimentation methods closely follow those introduced by the
NewT and Webhound research projects (Sheth and Maes, 1993 and
Lashkari, 1995) here at the Media Lab.

One of the goals of this research project was to produce a useful system, utilized
frequently by internet users. Experiments to assess the positive or negative
feedback of the users were an important part of the evaluation process. A group
of seven people were used to test the system. The testers were given a set of
instructions on how to submit their bookmark lists to the system, how to manu-
ally generate agents, a few overall instructions on how to interact with the sys-
tem. Because the parameter tuning space in Amalthaea is very big (number of
agents, mutation rates, crossover rates, cloning rates, etc.) all the tests were con-
ducted using a fixed set of parameters (because of time and computational
resources limitations.)

Evaluation Criteria

The evaluation criteria for the first set of the experiments are similar to
Lashkari, 1995. Assuming that set C = { ¢y, ¢y, ¢c3, ... , ¢y } represents the confi-
dence (or rating) of the agents’ recommendations and set F = { f}, f), f3, ... , f\y}
the user feedback on the system’s suggestions, we define the error set E = {
e1exe3 ..., en ) = { - f1, cp- £y, c3-f3, ..., on- £y} The measured quantities are
the following:

*  Mean Absolute Error. The smaller this error, the better the performance of the
system.

N
Z led

o - i=1
|E| = N 13)

* Standard Deviation of Error. This quantity measures the consistency of the
algorithm’s performance over the data set. The smaller the standard devia-
tion, the better the algorithm. The standard deviation of the error is defined
as:

(14
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Number of Occurencies

Correlation Coefficient. The higher the correlation of the agent confidence pre-
diction to the user rating, the better the algorithm according to Hill
etal., 1995

N
2 Covariance(c; f;)

r=1=1 a5)
O'CGf

Extreme Values. Lashkari, 1995 and Shardanand and Maes, 1995 assert that
the confidence of the agents for extreme values (that is weighted values
above six or below two) “indicate very strong user preferences” and “are
probably more important than other values”. The ability of the system to
maintain low absolute mean error, standard deviation and high correlation
coefficient both in regular and in extreme confidence values is important.

Precision: The percentage of the articles presented to the user that were rele-
vant. Precision is a standard performance measuring quantity in the Infor-
mation Retrieval community.

Distribution of User Feedback
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Figure 6 -7 Distribution of Rating Values in the User Feedback Data Set.
The y-axis denotes the number of documents the users that participated in the
experiment rated, while the x-axis denotes the sum of the ratings that the user
gave to those document.
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6.3.2

Results

During the testing period we were logging the behavior of the system and the
users’ feedback in order to perform an analysis after the conclusion of the
experiments. Figure 6 - 7 shows the distribution of the user feedback over a
scale of 1 (for bad) to 7 (for excellent). The x axis measures the feedback scale
and the y axis the number of occurrences. In general, users gave more positive
feedback to the system than negative. When users disliked a recommendation,
they preferred to give the absolute negative rating (1) rather than a somewhat
negative response (3 or 2).

Error Distribution
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Figure 6 - 8

Error Distribution in the whole data set.

The y-axis expresses the number of occurencies of the errors in each range. The
distribution has an gaussian-like form.

Figure 6 - 8 above shows the distribution of the error in the whole data set. The
error distribution has a gaussian form with a couple high peaks around +2 and
-2. One feature of the error distribution is the usually high peak in the negative
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end of the x axis, around -6.5. As the figure shows, the system’s error distribu-
tion is concentrated around 0.

Figure 6 - 9 depicts the evolution of the feedback that the users provided to the
system over time. In this scatter plot, the x axis represents the number of times
the users provided feedback to the system while the y axis represents the error.
The line represents a least-squares fit on the data set. At the beginning of the
experiments the absolute error was quite high, around 2.5 (or 35.71%). How-
ever, as time passed, users provided feedback and the system evolved, the error
dropped to nearly 0.5 (or 7.14%). Also, at the beginning of the experiments
users provided both positive and negative feedback: their response to the sys-
tem’s performance had a lot of variations. However, later on as the system’s
performance increased, the user ratings improved a lot and at the end were
mostly positive.

Mean Error Evolution over Time
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0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
User Feedback Instances

Joe-

Figure 6-9 Plot of the mean absolute error over time.
As the number of feedback instances from the users increases, the system is pro-
viding better recommendations.
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Table 1 summarizes the performance of the system using the metrics introduced
in Section 6.3.1. The mean absolute error of all the users throughout the experi-
ment was roughly 1.5 in a scale of 7. So the average, an agent’s recommendation
will be within 1.5 rating points from the user’s actual interest; in the percentage
scale this is translated to an error of 22%. The standard deviation of the absolute
error is 1.4 and the correlation between the agents recommendations and the
user’s interests (as expressed by their feedback) is 0.57. The mean error in the
extreme values ratings (1 and 7) is slightly higher (approximately 24%). Stan-
dard deviation exhibits the same increasing behavior. The correlation between
the mean error and the user interests increases in the case extreme values to

0.62.

Table 1: Mean Absolute Error

All Values Extreme Values

Mean Absolute Error 1.5536 (22.19%) 1.6874 (24.11%)
Standard Deviation 1.4015 1.6239
Correlation Coeff. 0.5728 0.6214

Precision of Amalthaea over Time

Precision
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User Feedback Instances

4500 5000

Figure 6 - 10

Precision rate over time.
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A set of standard performance measures of information retrieval system are
precision and recall. Precision is defined as the percentage of the retrieved arti-
cles that is relevant and recall as the percentage of relevant articles that were
retrieved. In this case, the whole World-Wide-Web constitutes our document
collection so we cannot compute the recall performance of the system.

In order to compute the progress of the precision rate of the system over time,
we counted as relevant all the documents for which the users gave a rating of
more than four. The results are displayed in Figure 6 - 10 and show that the pre-
cision of the system is increasing as time passes and Amalthaea is modelling the
users better. Although precision is a useful measurement for comparison pur-
poses, we cannot draw many conclusions for the system’s performance because
we cannot compute the recall quantity. In information retrieval systems, preci-
sion improves at the expense of the recall. In this case (where the recall cannot
be computed), we believe that the mean error is a better quantitative method for
evaluating the ability of the system to perform better over time, since it takes
into consideration the agents’ confidence when proposing a document.

The experiments performed with real users suggest that Amalthaea can be a
useful tool that serves the everyday information needs of its users. The overall
performance of the system was good and it was improving over time. Com-
pared to other WWW filtering systems that use different filtering techniques the
performance of Amalthaea proved to be as good. Media Laboratory’s Web-
hound project (Lashkari, 1995) is a WWW filtering system that uses featured-
guided automated collaborative filtering (FGACF) techniques. Although the
underlying technology is different, the similar assessment methods used in both
Amalthaea and Webhound enable us to compare the performance of the two
systems. Webhound’s mean absolute error ranged from 21.18 to 24.77 in the
FGACEF algorithms, while the correlation coefficient ranged from 0.55 to 0.64 in
the same algorithms. Overall, the performance of Amalthaea, a multiagent-
based, evolutionary, content-based filtering system was comparable to that of
Webhound, a collaborative filtering system, that uses its users’ intelligence to
provide recommendations.

Our experiments were concluded by the distribution of a set of questionnaires
to the users of the system for them to fill out after the experiments. The ques-
tionnaire inquired the users about their interaction with the system and was
divided into four categories.

* General performance evaluation (overall evaluation)
* Agents Issues (adaptation of the system)
¢ Interface Issues (communication with the system, ease of use)

* Trust Issues (privacy concerns, authority delegation)
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The testers had to choose between five different options when answering the
questions (Very Good/4, Good/3, Fair/2, Bad /1, Don’t know/0). Although the
duration of the experiment was quite small, the majority of the testers felt that
the general sense on performance of the system was “Good” and that the rec-
ommended articles’ relevancy was “Very Good”. The feelings were mixed
when the tester were asked about the adaptation of the system: a few people
responded “Don’t know” whereas the some found it “Good”. As far as the Ul in
concerned, most reviewers agreed that it was “Good”. Furthermore, most of the
testers agreed that the privacy model was “Good” and they claimed they could
easily delegate authority to the agents in the system. This is not surprising
given the relatively low risk (in terms of damage that might occur to the user)
task of Amalthaea. In a more critical application (like an agent that manages
personal finances and makes automatic payments) users would be more reluc-
tant to delegate authority to their agents.
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Chapter 7 Concluding Remarks
and Future Work

Chapter seven contains the concluding remarks of this work. It identifies
possible areas of future work. The thesis wraps up with conclusions drawn
during the progress of the research and a summary.

This thesis has discussed the idea of using evolving populations of agents for
personalized information filtering and discovery. In particular, we introduced
the idea of integrating two different populations of agents, the Information Fil-
tering Agents and the Information Discovery Agents into an ecosystem. The
two different populations competed and cooperated as the ecosystem worked
its way towards equilibria points. We have shown that an evolving multiagent
system can converge to loci stable and useful to their users. Based on the above-
described architecture, we have built a working system, Amalthaea, that pro-
vides to its users personalized information from the World-Wide-Web. In
Amalthaea agents that are of service to users or other agents will run more
often, reproduce, and survive while incompetent agents will be removed from
the population.

The experiments we conducted suggested that the ecosystem of Amalthaea can
reach stable equilibria states with both varying and suddenly changing user
interests.Moreover the real-users testing phase showed that the system is
indeed useful to its users, that the error rate on its predictions goes down and
that the precision rate of its predictions goes up after receiving user feedback.

During the progress of this project we have touched upon several interesting
research questions that need further investigation. The system equilibria issue is
central to the success of Amalthaea and different types of equilibria can be
defined; the “overnight” equilibrium refers to a balanced system state before
the system presents the digest of articles to the user. A longer-term equilibrium
refers to the re-adaptation of the system to the user’s interests after a sudden
change in those interests. However, other types of equilibria, namely those that
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emerge as the user learns about a subject area or the speed at which an area of
interests is changing as reflected by the changing documents? (Belew, 1997)

The issue of trust which the user must have towards the agent is a very impor-
tant one; it is quite difficult in a multiagent setting to express the state of the sys-
tem to the user and to be able to show why the system performed a certain
action. Several enhancements can be made to the user interface in order to sup-
port the capabilities described above. The visualization solution we are offering
can be greatly enhanced in a variety of ways, one of them is by using self-orga-
nizing topographical maps (Kohonen, 1989). The idea behind them is a network
composed of nodes that would store multi-dimensional weight vectors. When a
multidimensional vector is presented to the network, the node whose weight
vector is the closest to the presented vector is updated and it gets a bit closer to
the presented vector. As certain node areas attract similar vectors, all the sec-
tions of the map can be labelled according to the vector type they attract, pro-
viding another way of expressing the state of the system. Another Ul
enhancement has to do with the evolution of the users interests over time. The
“user interests playback mechanism” described in Chapter 3 can be augmented
with graphs on the flow of information segmented by country or domain. That
type of visualization would enable the user to see from where she is drawing
from most of the information she is using, what information flow patterns are
forming and how they are changing compared to her interests.

When we discussed our privacy concerns over the centralized storage of the
users profiles we briefly mentioned ways of deploying a distributed version of
the system by placing the IFAs at the user side. A distributed version would
have the advantages of keeping the user profiles at a trusted machine, reducing
the load of the server and would require minimal communication between the
user’s machine and the server in the form of the toexplore.dat file. Such a dis-
tributed version can be implemented without breaching our requirement of
non-continuous internet connection, since when the user dials-up and opens his
digest in a browser, the new “toexplore” commands would be uploaded to the
server.

The way Amalthaea accesses the search engines right now is quite indirect: it
formulates queries based on keywords and the search engines return related
sites based on those keywords. If search engines provided an API for directly
querying their databases, Amalthaea would be able to pinpoint documents with
much greater accuracy: it could utilize the term weights or the eigenvectors of
the engines (that are now opaque to any outside observer). Moreover, in the
case of the engines that are using term weights to assess similarity, there would
be no need to fetch that document over the network: the comparison could be
done directly be using the data of the search engine.

Most information discovery systems exhibit the so-called serendipity problem:
when reading a newspaper, people often read articles that are of interest to
them but they would never have think of asking to read them. In Amalthaea’s
architecture this problem is partly addressed by the inherent randomness of the
evolution process, but this alone is not enough. If Amalthaea, a content-based
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system was combined with a collaborative filtering system like Webhound
(Lashkari, 1995) the system could offer recommendations on novel subjects that
were not part of the original IFAs repertoire.

Chapter 7 - Concluding Remarks and Future Work 71



72

Chapter 7 - Concluding Remarks and Future Work



Amalthaea: Information Filtering and Discovery in an Evolving MultiAgent System

References

Armstrong, R,, Freitag, D., Joachims, T., and Mitchell, T. (1995). Webwatcher: A learning apprentice for the
world wide web. In Proceedings of the Symposium on Information Gathering from Heterogeneous, Distributed
Environments. AAAI Press.

Baclace, P. (1992). Competitive agents for information filtering. Communications of the ACM, 35 (12):50.
Balabanovic, M. and Shoham, Y. (1995). Learning information retrieval agents: Experiments with
automated web browsing. In AAAI Technical Report SS-95-08, Proceedings of the 1995 AAAI Spring

Symposium Series..

Bartell, B., Cottrell, G., and Belew, R. (1994). Automatic combination of multiple ranked retrieval systems.
In Proceedings of the 1994 SIGIR Conference.

Belew, R. (1989). Evolution Learning and Culture: Computational metaphors for adaptive algorithms. UC at San
Diego Technical Report C589-156.

Belew, R. (1997). Personal communication.
Belew, R. and Mitchell, M. (1996). Adaptive individuals in evolving populations. Addison-Wesley.

Belkin, N. and Croft, B. (1992). Information filtering and informatiuon retrieval. Communications of the
ACM, 35, No. 12:29-37.

Best, M. (1997). Corporal ecologies and population fitness on the net. submitted to Journal of Artificial Life.
Chavez, A. and Maes, P. (1996). Kasbah: An agent marketplace for buying and selling goods. In Proceedings
of the First International Conference on the Practical Application of Intelligent Agents and MultiAgent technology
(PAAM), London 1996.

Chavez, A., Moukas, A., and Maes, P. (1997). Challenger: A multiagent system for distributed resource
allocation. In Proceedings of the First International Conference on Autonomous Agents, Los Angeles, 1997.

Chesnais, P., Mucklo, M., and Sheena, J. (1995). The fishwrap personalized news system. In Proceedings of
the 2nd International Workshop on Community Net. IEEE Press.

Clearwater, S. (1996). A comparative-developmental approach to understanding imitation. In Clearwater,
S., editor, Market Based Control: a paradigm for distributed resource allocation.

73



Amalthaea: Information Filtering and Discovery in an Evolving MultiAgent System

Crabtree, B. (1997). Personal communication.

Decker, K. and Lesser, V. (1995). Macron: An architecture for multi-agent cooperative information
gathering. In CIKM Conference, Workshop on Intelligent Information Agents.

Decker, K., Pannu, A., Sycara, K., and Williamson, M. (1997). Designing behaviors for information agents.
In Proceedings of the First International Conference on Autonomous Agents, Los Angeles, 1997.

Etzioni, O. (1995). Results from using the metacrawler. In Varela, F. and Bourgine, P, editors, Proceedings of
the Fourth WWW Conference. MIT Press.

Etzioni, O. (1996). Moving up the information food chain: deploying softbots on the www. In Proceedings of
the AAAI-96. AAAI Press.

Frystyk, H. and Lie, H. (1994). Towards a uniform library of common code. In Proceedings of the Second
WWW Conference.

Grosof, B. (1995). Reusable architecture for embedding rule-based intelligence. In CIKM Conference,
Workshop on Intelligent Information Agents. :

Hill, W., Stead, L., Resenstein, R., and Furnas, G. (1995). Recommending and evaluating choices in a virtual
community of use. In Proceedings of CHI '95, Denver, CO.

Holland, J. (1962). Outline for a logical theory of adaptive systems. JACM, 9:297-314.

Holland, J. H. (1975). Adaption in natural and artificial systems. The University of Michigan Press.

Kohonen, T. (1989). Self-Organization and Associative Memory. Springer-Verlag, Berlin.

Koza, J. (1992). Genetic Programming. MIT Press.

Labrou, Y. and Finin, T. (1994). A semantics approach for kqml - a general purpose communication
language for software agents. In Proceedings of Conference on Information and Knowledge Management 1994.
ACM Press.

Lang, K. (1995). Newsweeder. In Proceedings of the 12th International Conference on Machine Learning.

Lashkari, Y. (1995). Webhound? Master'’s thesis, MIT Media Laboratory.

Lieberman, H. (1995). Letizia, an agent that assists web browsing. In Proceedings of JCAI-95. AAAI Press.

74



Amalthaea: Information Filtering and Discovery in an Evolving MultiAgent System

Maes, P. (1994). Agents that reduce work and information overload. Communications of the ACM, 37, No.
7:31-40.

Maes, P. (1997). Personal communication.

Malone, T., Grant, K., Turbak, F.,, Brobst, M., and Cohen, M. (1987). Intelligent information sharing sytems.
Communications of the ACM, 30, No. 5:390-402.

Mataric, M. (1993). Designing emergent behaviors: From local interactions to collective intelligence. In
From Animals to Animats II. MIT Press.

Menczer, F., Belew, R., and Willuhn, W. (1995). Artificial life applied to adaptive information agents. In

Working Notes of the AAAI Symposium on Information Gathering from Distributed, Heterogeneous Databases.
AAAI Press.

Miller, G. (1985). Wordnet: A dictionary browser. In Proceedings of the First Conference of the UW Centre for
the New Oxford Dictionary. Waterloo, Canada.

Mitchell, M. (1996). An Introduction to Genetic Algorithms. MIT Press.
Moukas, A. (1996). Amalthaea: Information discovery and filtering using a multiagent evolving
ecosystem. In Proceedings of the First International Conference on the Practical Application of Intelligent Agents

and MultiAgent technology (PAAM), London 1996.

Moukas, A. (1997). Amalthaea, an intelligent agent for information overload. to appear in International
Journal of Applied Artificial Intelligence.

Moukas, A. and Hayes, G. (1996). Synthetic robotic language acquisition by observation. In From Animals
to Animats. MIT Press.

Moukas, A. and Zacharia, G. (1997). Evolving multiagent filtering solutions with amalthaea. In Proceedings
of the First International Conference on Autonomous Agents, Los Angeles, 1997.

Porter, M. (1980). An algorithm for suffix stripping. Program, 14(3):130-138.

Resnik, P, Iacovou, N., Sushak, M., Bergstrom, P., and Ried], J. (1994). Grouplens: An open architecture for
collaborative filtering of netnews. In Proceedings of CSCW’94.

Riordan, A. O. and Sorensen, H. (1995). An intelligent agent for high-precision information filtering. In
Proceedings of the CIKM-95 Conference.

75



Amalthaea: Information Filtering and Discovery in an Evolving MultiAgent System

Salton, G. (1971). The SMART retrieval System. Experiments in automatic document processing. Englewood
Clifs, NJ.

Salton, G. (1983). Introduction to Modern Information Retrieval. McGraw-Hill.

Salton, G. and Buckley, C. (1987). Text Weighting Approaches in Automatic Text Retrieval. Cornell University
Technical Report 87-881.

Shardanand, U. and Maes, P. (1995). Social information filtering: Algorithms for automating ‘word of
mouth’. In Proceedings of the CHI-95 Conference, Dencer, CO. ACM Press.

Sheth, B. and Maes, P. (1993). Evolving agents for personalized information filtering. In Proceedings of the
Ninth Conference on Artificial Intelligence for Applications, 1993. IEEE Computer Society Press.

Sycara, K. (1995). Intelligent agents and the information revolution. In UNICOM Seminar on Intelligent
Agents and their Business Applications. November 8-9, London.

Sycara, K. and D., Z. (1996). Coordination of multiple intelligent software agents. International journal of
Intelligent and Cooperative Information Systems, 5(2-3):181-211.

Sycara, K., Decker, K., Pannu, A., Williamson, M., and D., Z. (1996). Distributed intelligent agents. IEEE
Expert, 11(6).

76



