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Abstract The goal of this thesis is to characterize the redundancy inherent in a
holographic fringe pattern and develop novel ways to eliminate it. The thesis
consists of three independent but related parts.

A novel algorithm for computing compact holographic fringe patterns based on
non-uniform sampling is presented. It is shown both analytically and via
simulation that non-uniform sampling does indeed reduce the number of
samples required to represent the holographic fringe pattern by at least 25%
when compared to uniform sampling, with further gains that are dependent on
the geometry of the object under consideration. The issues involved in
determining the parameters are presented and discussed. Results demonstrating
the performance of the algorithm are presented.

A simple model to determine the amount of information transferred to a beam of
light by a spatial light modulator is presented. The model is based on
information theoretic methods and the wave theory of light. Several examples
and limiting cases are provided in order to demonstrate the validity of the
model.

Finally, a comprehensive study of the pixel aspect ratios in holographic displays
is presented. Canonical geometries and pixel aspect ratios are determined for
both the spherical and the more general cylindrical case. In order to demonstrate
the flexibility of the analysis, a holographic display that produces anastigmatic
images using astigmatic horizontal and vertical holograms is presented.

Advisor: Stephen A. Benton

Title: Allen Professor of Media Arts and Sciences

This research was sponsored by the Television of Tomorrow Consortium at the

MIT Media Laboratory.



Minimum Information Holograms

Ravikanth Srinivasa Pappu

The following people served as readers for this thesis:

Reader:

V. Michael Bove, Jr.
Associate Professor of Media Arts and Sciences
Program in Media Arts and Sciences

Reader:
"~ / I-' I

Neil Gershenfeld
Assistant Professor of Media Arts and Sciences
Program in Media Arts and Sciences



Acknowledgments
"The time has come, the Walrus said, to talk of many things......"

Finally, a page that is not in stilted academic prose like the rest of this thesis. Since
many more people will read this page than the rest of the thesis, I guess I'll be a tad
more careful here.

I'm indebted to Steve Benton for taking the gamble and giving me a chance to work
in the Spatial Imaging Group and for giving me the freedom to pursue a problem of
my choice.

Thanks to my readers Mike Bove and Neil Gershenfeld for taking time to provide
excellent feedback about various pieces of this thesis. Also, thanks to Neil for his
terrific class "Modeling Nature" where many of my ideas about the marriage of
holography and information theory were born.

To my friends in the Spatial Imaging Group, a big thank you! Thanks to Michele
Henrion for teaching me holography in the summer of 1993, to John Sutter for
being extremely helpful on both academic and social fronts in my first year, to Mike
Klug and Mike Halle for being around to discuss half-baked ideas (my ideas, not
theirs!), to Wendy "Babe 911" Plesniak for being an unofficial reader of my thesis
and always being around to talk about anything under the sun, to John Underkoffler
for being so eager to get to the bottom of any problem and asking me interesting and
penetrating questions, to Melissa Yoon for being such a good friend, to Arno Klein
for being such a crazy guy that it's hard to be serious around him, and finally to
Nobuhiro Kihara for being such a fun guy!

Thanks to my fellow electro-holographers - to Pierre St. Hilaire for teaching me
everything about the display, to Mark Lucente for teaching me a lot about
computational holography, and to Carlton "Anti-theory" Sparrell who always
wanted to know if "it can be implemented in hardware".

I acknowledge helpful discussions with Josh Smith, and also thank Rich Fletcher
and Libby Shaw for helping me obtain the scanning probe microscope images on
page 26.

A big thank you to my friends who made time away from the lab (?!!) fun: Raji,
Sujal, Shami, Rama, Gaddam, Vani, Giri, Sripriya, Anu, Srikrishna, Kaushik,
Suman,............

Thanks to Linda Peterson and Santina Tonelli for keeping a watchful eye on the
bureaucracy at MIT.

Finally, I want to thank my family who have constantly supported me in my
endeavour to amass several rectangular pieces of paper with fancy writing on them.
The next one will be the last.........perhaps.



Contents

Chapter 1

Chapter 2

Chapter 3

Introduction 7

1.1 Historical perspective 8

1.2 Scope of the thesis 10

1.3 Overview 12

Nonuniformly sampled computer generated holograms 14

2.1 Introduction 15

2.2 Previous work 15

2.3 Nonuniform sampling algorithm 22

2.4 Issues in nonuniform sampling 27

2.5 Results 32

2.6 Future directions 32

Modeling information transfer in Spatial Light Modulators 36

3.1 Motivation 37

3.2 Information theory principles 38

3.3 Information bearing capacity of a plane wave 40

3.4 Classical theory of information transfer 44

3.5 Summary 51



Chapter 4

Chapter 5

Pixel aspect ratios in holographic displays 52

4.1 The display 53

4.2 The generalized image relay system 53

4.3 Canonical geometries: spherical case 58

4.4 Canonical geometries: cylindrical case 63

4.5 Discussion 66

Summary, conclusions, and future work 68

5.1 Future work 69

5.2 Summary and conclusions 70

References 72



1 Introduction



1 Introduction

1.1
Historical
perspective

The problem of synthesizing free-standing spatial images has occupied the

thoughts of researchers for over one and a half centuries. When optical

holography was invented by Denis Gabor in 1949 [1], it was thought that a

satisfactory solution to the problem of creating synthetic autostereoscopic

images was finally found. However, holography has several limitations that

keep it from being a viable medium for the routine presentation of 3D images. It

seemed that the price that one had to pay for being able to see realistic three-

dimensional images was to produce and view them under severely restricting

conditions. Most of the restrictions arose from the use of coherent light to record

and reconstruct the image.

In 1965, inspired by the work of Kozma and Kelly [2], Brown and Lohmann [3]

realized that holograms could also be synthesized by computers by modelling

the process by which optical holograms were recorded. A computer-generated

hologram (CGH) may be defined as a numerical representation of a complex-

valued interference pattern. Once the physics of holography was known, it was

a simple matter to model and produce CGHs. Some of the earliest CGHs were

amplitude-only masks, with applications in spatial filtering of images. The

extension to computed display holograms is conceptually straightforward.

However, simple calculations by Leith and his colleagues in 1965 showed that it

would be extremely difficult, if not impossible, to compute display holograms

using computational resources of the day. The single biggest hurdle was

computing the enormous number of samples required to represent the hologram.

Another obstacle was displaying the computed holograms in real-time. The

possibility of producing CGHs that could be transmitted and reconstructed

optically at a remote location was ruled out.

About six years ago, researchers at the MIT Media Laboratory Spatial Imaging

Group designed and built the first system, dubbed the Mark I Holographic Video

System, capable of displaying 3-D holographic images in real-time [4]. This

advance in near-field computed display holograms was made possible by the

adoption of information reduction strategies that pared down the raw



information content in the CGH to 2 megabytes from approximately 1 gigabyte.

These strategies were: elimination of vertical parallax, reduction of horizontal

and vertical display resolution, and reduction of image size and horizontal

viewzone. Display of the reduced-information CGH was achieved by time-

multiplexing the image of an acousto-optic modulator (AOM) to produce the

final holographic image. The Mark I was capable of filling a volume the size of

a golf ball with a horizontal-parallax only (HPO) three-dimensional holographic

image. The image could be viewed in a 150 viewzone. Computation was

carried out on a Connection Machine CM-2 parallel supercomputer. This work

was reported in [5, 6]

A second-generation display, the Mark II, was built in 1993 [7, 8] and was based

on the same principles as the Mark I. The important change was the introduction

of parallelism into the optical architecture of the display. This allowed for a six-

fold increase in the display capabilities of the system in terms of image volume

and horizontal viewzone. The current configuration allows for an image which

is 150mm wide, 75mm high, and 160mm deep. There are 144 HPO hololines

each containing 256 kilosamples, giving a total of 36 megabytes per frame. The

computing platform for this system is a custom digital video testbed called

Cheops [9], that was developed at the MIT Media Laboratory. The main feature

of Cheops that made it attractive for holographic video is its arbitrary, software-

reconfigurable scan line length. All hologram computing research reported in

this thesis was carried out on the Mark II using Cheops.

Much of the recent work in computed display holography has been done at the

Media Laboratory during the course of the last three years by Lucente [10]. His

recent doctoral dissertation concentrates on developing a new approach to

hologram computing called diffraction-specific computation. This new

approach has two driving forces - one, the rapid generation of holographic

fringes and two, the production of novel holographic encoding techniques to

enable bandwidth compression. In the interest of brevity, I will not describe his

research here. The interested reader is referred to the dissertation for more

details. Sutter [11] experimented with the computation of viewer-plane

holograms for the Mark II.



1.2
Scope of the
thesis

The goal of this thesis is to characterize the various elements of the information

landscape in a holographic display. The primary application of such an effort

would be in gaining insight into the redundancy inherent in computer-generated

holograms and developing novel methods to eliminate it. Redundancy can be

quantified in several ways and it is important to understand what these ways are

and how the numbers they produce are related in order to develop new and

efficient methods of generating and communicating holographic fringe patterns.

Figure 1.1 depicts a typical holographic display as a communication channel.

We will rely on Figure 1.1 on many occasions in the rest of the thesis. Various

manifestations of the same holographic information are shown in the diagram.

# of cycles
# of bits # of pixels

# of samples
# of samples (CGH)
(CGH)

Figure 1.1 Different manifestations of holographic information in a typical display

The computer generates a CGH from a 3-D representation of the object which is

then encoded and transmitted over the channel. The receiver decodes the signal

and pumps the decoded data into the display for human consumption. The same

holographic data is represented in very dissimilar forms at different points in the

system, as is shown in the figure. It is convenient to think of the number of

cycles required to compute the CGH as a form of data representation because

we will treat it as a quantity requiring minimization. The relationships between

the different forms of representation are not trivial and we will briefly discuss

them here.



Hologram computing at interactive rates requires that the number of processor

cycles used to compute each new hologram be as small as possible. Another

quantity that requires minimization is the raw information that is represented by

the number of samples in the computer-generated hologram. Currently used

computing methods rely on uniform sampling to generate the CGH. This thesis

explores minimization of the total number of samples using a nonuniform

sampling technique.

The function of the encoder is to extract structure from the CGH and represent it

in a compact and uniquely recoverable form. The bandwidth of the channel

places a strong upper bound on the total number of bits that can be sent and

recovered with arbitrarily small probabilities of error at the output. However,

the relationship between the number of bits and the number of cycles is not

intuitive. Shannon's channel coding theorem only demonstrates that there exist

good codes that can be decoded with exponentially small probabilities of error,

but provides no constructive method of generating them. Consequently, a code

without some structure to it may take an infinite number of processor cycles to

encode and decode. The decoded CGH is then presented to the beam of light via

a modulator that is (usually) pixellated. Issues that require attention on the

display end of the system are pixel sizes and dynamic range or bit-depth of each

pixel.

In this thesis, we will focus attention on the following three issues:

- developing a nonuniform sampling technique to minimize the number

of samples in the CGH - reducing the raw information

e looking at the process of information transfer in a spatial light

modulator (SLM) - how to compute CGHs efficiently and

- characterizing pixel sizes corresponding to various reconstruction

geometries.

The ultimate goal of this research is to completely characterize the information

at every location in any holographic display. In order to build scaled-up, real-

time, interactive holographic displays, it is essential to understand the complex

interplay between distinct elements of the information space in the display.

Admittedly, this thesis only begins that process and suggests avenues for deeper



exploration of the information landscape in a holographic display.

1.3 This document is organized as follows. The next chapter outlines the algorithm
Overview for nonuniform sampling and demonstrates, using simple algebra, that the total

number of samples is indeed less than if the fringes were generated using

uniform sampling techniques. Implementation of this algorithm is documented

and results are provided to support the hypothesis. Chapter 3 is a discussion of

an attempt to quantify the amount of information transferred to light in an SLM.

The problem is approached both classically and quantum mechanically, with

results being presented for the classical case. The format of information

presentation to light in the display is the subject of Chapter 4. Pixel aspect-ratios

are derived for both spherical and cylindrical optical systems and it is shown

that cylindrical optical systems lead to a greater variety in pixel aspect-ratios.

Chapter 5 summarizes the results of this thesis and restates the context in which

the work was carried out. Future avenues for research are discussed. Figure 1.2

on the following page is a roadmap of this thesis and will be used often to

pinpoint the reader's location in the information space of a holographic display.
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Figure 1.2: Thesis overview



2 Non-uniformly sampled computer
generated holograms
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2 Nonuniformly sampled computer
generated holograms

2.1 The idea of computing holographic fringe patterns and using them in optical
Introduction setups is not new. It is almost as old as off-axis holography. This chapter is

devoted to developing a different method of computing holographic fringe

patterns. The technique presented in this section represents a departure from the

conventional methods of thinking about CGHs. The primary difference between

all previous methods and the method presented here lies in the way the

hologram is sampled. The new method relies on a nonuniform sampling

technique to represent different areas of the hologram plane.

A search of the literature has revealed no previous work in nonuniform

sampling approaches of the type discussed in this chapter. There is, however, a

paper by Vanderlugt [12] which mentions a related nonuniform technique of

representing fringe patterns. The results of his paper will be presented in the

next section, which presents previous work in computer-generated holography.

The nonuniform sampling algorithm is developed in section 2.3. A simple

algebraic proof that the algorithm does indeed reduce the number of samples

necessary is also presented in this section. A visual corroboration of the

algorithm is presented by means of scanning probe micrographs. Section 2.4

describes methods used to bring the subsampled CGH back to the original

sampling rate and presents results for each method. The final section

summarizes the material presented in this chapter and discusses approaches for

future work.

2.2 In this section, a concise review of the important techniques used to generate
Previous holographic fringe patterns in the past is presented. The list of techniques
work

discussed serves two purposes. First, it demonstrates the historical progression

of ideas related to representation of CGHs. Second, it shows that all but one of

the methods rely on sampling the holographic fringe pattern uniformly. The one

exception is [12] where Vanderlugt proves that the total number of samples

required to represent a Fresnel (near-field) hologram is exactly the same as the

number of samples needed for a Fourier (far-field) hologram provided the

sample size is varied.



The problem of generating holographic fringe patterns may be stated very

simply - how can the complex-valued fringe pattern be generated efficiently?

In order to produce moving holographic images, the pattern has to be written

onto an erasable and rewritable material which can be refreshed rapidly. All but

one of the methods listed below rely on the physical model of interference of

two waves - the object wave and the reference wave - to compute the

hologram. A "recording geometry" is usually assumed and the complex

amplitudes of the two waves are added in the hologram plane to produce the

holographic fringe pattern. Then, a transparency has to be produced with the

holographic fringe pattern on it. The encoding of the fringe pattern on a

transparency is also dependent on the output devices available to print the

pattern. It must be noted that it took a great amount of ingenuity to produce a

high-resolution fringe pattern using fairly low-resolution output devices. We

now proceed to review the different methods in roughly chronological order.

The binary detour-phase hologram: This type of computed hologram [3, 13]

uses only two output levels in amplitude. The output plane is divided into N x N

cells where each cell corresponds to a single Fourier coefficient of the Fourier

Transform (FT) of the object. Each opaque cell has a rectangular aperture whose

area is proportional to the amplitude of the Fourier coefficient. The phase is

represented by translating the center of the opening to a different location within

the cell as shown in Figure 2.1. The dimensions of the cell are p x q and the

dimensions of the rectangular aperture are a x b. The area ab is proportional to

the magnitude of the transform and the displacement of the center of the

aperture from the center of the cell is proportional to the phase of the transform.

It may be shown that the diffracted far-field approximates the discrete Fourier

transform of the computed complex amplitude under fairly general conditions.

The diffracted far-field is equivalent to the required image. The binary masters

are usually produced using a pen and ink plotter. However, this method doesn't

make full use of the plotter resolution, since the number of plotter points in each

cell must be large in order to keep quantization noise at bay.

Generalized binary detour-phase holograms: These holograms [14] are simply

detour-phase holograms with a different method of amplitude and phase

encoding. Instead of having a single aperture, as in the previous case, each cell

is now subdivided into binary-valued subcell. This method allows for finer



area ab

offset

offset

Figure 2.1: A single cell in a binary detour-phase hologram. The area of the aperture
represents magnitude and the offsets represent phase of the Fourier transform

quantization of both amplitude and phase. This method is the holographic

analog of halftoning and is illustrated in Figure 2.2 below.

Lee's method: This is an alternative method [15] of encoding amplitude and

phase where the cell is divided into four vertical strips arranged side by side.

transparent subcell

opaque subcell -

Figure 2.2: A single cell from a generalized binary detour-phase hologram



The four subcells contribute relative phases of 0, 90, 180, and 270 degrees as a

consequence of their relative positions within the cell. The opacity of the

subcells determines their amplitude contributions. In practice, it is possible to

implement this method by keeping two out of four cells completely opaque, and

adjusting the transmittances of the other two cells. Evidently, having two cells

that are always zero implies that the encoding is redundant. Burckhardt [16]

suggested that it was possible to implement this method using only three

subcells, where each subcell had a different transmittance, possibly different

from zero. Figure 2.3 (a) and (b) show typical cells from both methods. Note

that the resultant amplitude and phase are identical in both cases but the

configuration of subcells is distinct.

90

180

0 180

(a)

120

180

240

resultant

270

90

resultant

270

Figure 2.3: (a) Lee's method of encoding amplitude and phase (b) Burckhardt's
modification. The numbers represent the relative phase shifts imparted by the
various subcells.

0

(b)

270 r
90

120



The kinoform: When the object is diffusely illuminated the phases of the

transform assume importance. This fact is exploited in the construction of the

kinoform [17]. The CGH has all cells completely transparent so the moduli of

the Fourier coefficients is arbitrarily set to unity. The phase of each cell in the

kinoform is equal to the phase of the computed Fourier coefficient modulo 2N,

which implies that the total phase variation over the area of the kinoform never

exceeds 2n. Valuable dynamic range is conserved as a consequence of

restricting the maximum phase excursion to be less than 2n. The kinoform is

recorded on a photographic plotter which exposes a piece of film. The resulting

master is photographed and bleached with a tanning bleach, which coverts any

intensity variations into phase variations. If the processing is linear, then the

bleached film contains a phase relief pattern which matches the phases of the

Fourier coefficients.

The referenceless on-axis complex hologram (ROACH): This is an extension of

the kinoform approach wherein both amplitude and phase are modulated [18].

Different layers of color film are used to encode both amplitude and phase. The

magnitude of the Fourier transform is displayed on a cathode-ray tube and

photographed using a filter of one color, say red. Then the phase of the

transform is photographed using a blue-green filter. After processing, the image

may be reconstructed by illuminating with red light. The red-sensitive layer

modulates the amplitude of the illuminating light. The other layers pass red light

but change the phase of the wavefront because their thickness is modulated with

the phase of the Fourier transform. Thus, the emerging light is modulated by

both the amplitude and the phase of the Fourier coefficients.

Several variations on the Fourier method have been explored in the last twenty

years. Attempts have been made to compute the holographic fringe patterns of

3-D objects by slicing them in depth and computing and superposing the far-

field hologram of each slice [19]. Iterative methods have been used to compute

Fourier transform holograms [20]. The complexity of the objects used has kept

pace with the increase in computing power available to the research community.

However, Fourier transform holograms, by definition, are far-field holograms.

In order to produce vivid 3D images, near-field - also known as the Fresnel

regime - holograms have to be computed. We now turn our attention to efforts

relating to the computation of near-field display holograms at the MIT Media



Laboratory.

Near-field holograms on a supercomputer: The first implementation of an

algorithm to compute display holograms at the MIT Media Laboratory was

performed on a Connection Machine - II supercomputer [5]. The approach was

fairly straightforward in that it modelled the interference of light and computed

the fringe pattern according to the model. Only HPO holograms were computed,

which meant that the hologram was composed of hololines - different

horizontal lines of the CGH - each of which diffracted light only in the left-

right direction. The holograms were displayed on the Mark I MIT Holographic

Video System.

Diffraction-specific computation: This is a novel approach by Lucente [10] that

does away with computing the interference pattern prescribed by the physical

model of interference. Instead, an attempt is made to compute the diffracting

structure that will cause a given image to form. Diffraction-specific fringe

computation is essentially a recipe for deciding what to put into a computed

fringe pattern so that it achieves a particular goal. This goal is usually defined in

terms of bending light through a certain angle or focusing it at some point, in the

simple case. The CGH is treated as an array of small pieces, called hogels, each

of which is the superposition of a certain number of basis fringes. The

contribution of each basis fringe in a hogel is specified by the corresponding

element of a vector called a hogel-vector. A vector-algebra representation of this

process follows.

-basis1 ]
basis2 _

[w 1  W2WN] -as [fringe]

hogel-vector _basisN- hogel

The basis functions are derived by a process of simulated annealing. The

elements of the hogel-vector are determined using geometrical optics. The hogel

can then be generated by doing a simple vector-matrix multiply. This approach

provides a significant improvement in the speed of computing because it does

away with computing interference patterns. There is a one-time effort in

computing basis fringes that are then stored in a lookup table. The physics of



diffraction is embedded in the basis fringes while the amount of light that goes

in each direction is determined by the elements of the hogel-vector.

Optimal sampling of Fresnel Transforms: Finally, we present the one piece of

work that proposes a flavor of nonuniform sampling. In [12], Vanderlugt states

and proves that it is possible to represent a Fresnel transform - in other words,

a near-field hologram - with exactly the same number of samples required to

represent a far-field hologram provided a specified nonuniform sampling

method was used. His method involves the use of unequal sample sizes (and

hence, unequal sample spacing) to represent Fresnel transforms. It is interesting

to observe that Vanderlugt anticipated one of the principal advantages of

nonuniform sampling in almost the same words as the author of this thesis. A

brief quote from [12] follows.

"This nonuniform sampling pattern is completely independent of

the exact structure of the object and may be used in any

application"

Vanderlugt's work, however, was purely theoretical and was not implemented

on any holographic display because there was only one real-time holographic

display - The Mark I MIT Holographic Video system - in existence at the

time of his writing the paper.

A quick review of the methods presented above reveals one feature common to

all of them. The hologram area is populated with samples - either real or

complex-valued - which are have a uniform spacing between them. In other

words, they are all sampled at two times the maximum spatial frequency that

occurs in the fringe pattern, following the prescription of the Shannon-Nyquist

sampling theorem. This is perfectly justified if - and only if - every point on

the hologram records every possible spatial frequency from zero to the

maximum spatial frequency, say fmax It is the author's view that such a situation

rarely, if ever, arises. There are several areas of the hologram that record

maximum spatial frequencies that are significantly less than fa. In all the

methods listed above, these areas would still be sampled at twice f , causing

them to be oversampled. In this thesis, we explore a technique of sampling the

hologram area nonuniformly and present some of the trade-offs involved. In the



reference source

object plane
hololine

farthest object point

Figure 2.4: Maximum spatial frequency is approximately constant across
the hololine.

next section, the proposed algorithm is developed and a proof that it does indeed

reduce the total number of samples is presented.

2.3
Nonuniform
sampling
algorithm

In this section, we present the nonuniform sampling algorithm. Consider a

typical hologram recording geometry as shown in Figure 2.4. The reference

beam source is located at the very edge of the object plane - a technique

possible in computational holography because the intermodulation (or "halo")

term can explicitly excluded from the computation process. In the configuration

shown, the maximum spatial frequency recorded on every point of the hologram

is approximately the same. This is clear from the fact that the angles subtended

by light from the farthest object point and reference beams at both ends of the

hologram are the same, and this angle is approximately constant as the length of

the plate is traversed. Constancy in spatial frequency is maintained under two

conditions. First, the object should be two-dimensional. Second, the reference

beam is diverging from a certain location. In the context of holovideo, both

these conditions are not met. The objects are always three-dimensional and the

reference beam has to be a plane wave because of the Bragg selectivity of the

acousto-optic modulator. We conclude that the maximum spatial frequency



point
object

AOM

CGH

plane reconstruction beam

Figure 2.5: In holovideo, the reconstruction beam is plane and the spatial frequency
across the length of the AOM is nonuniform.

recorded across the length of the hololine is not constant, but varies significantly

from point to point. This is illustrated in Figure 2.5. We now proceed to develop

the nonuniform sampling algorithm.

What follows is applicable to one hololine of an HPO hologram where the

object is three-dimensional and lies behind the hologram plane.

Algorithm:

-Segment the hololine into N equal parts

-Identify the maximum spatial frequency fmax in each part (i = 1, 2 ...... , N)

-Sample at 2fmax in each segment

Theorem:

The total number of samples in a hologram computed using the algorithm above



will always be less than or equal to an equivalent hologram computed using

uniform sampling.

Proof-

Let the physical length of the hololine be P mm. The length of each segment is

P/N mm. The total number of samples T, in the ith segment is given by

Ti = (2Pfrmax) /N samples

Since we picked the highest spatial frequencies in each segment, we may

assume, without loss of generality, that

2-2fmax -Jmax --...- --- ax

The total number of samples Tnonunifor. in the hololine is given by

N N 2P

nonuniform Y T N ) Jmax
i=1 i=1

2-3

If the hologram had been sampled uniformly at 2f ax, the maximum spatial

frequency on the hololine, then the total number of samples in the line would be

Tuniform 2Pfma x

N 2P

N (fmax
i= 1

Using Eq. 2-2, it is clear that

Tnonuniform T uniform 2-5

This is an interesting result. It demonstrates that the total number of samples

required to represent the nonuniformly sampled hologram is always less than or

equal to the total number of samples required to represent an equivalent

uniformly sampled hologram.

2-4



Visual justification:

In the previous subsection, we proved that the number of samples in a

nonuniformly sampled CGH is smaller than the number of samples in a

uniformly sampled CGH for the same object. The proof was based on the

assumption that the maximum spatial frequency recorded is not constant across

the length of the hololine. In order to see that this is indeed the case, the fringes

on an optically recorded horizontal-parallax only hologram were observed using

a scanning probe microscope. The hologram used was a 4 inch by 5 inch

bleached rainbow hologram. Bleaching is necessary to convert intensity

variation into a surface relief pattern. Three 100 micron by 100 micron scans

were taken at three different locations along a horizontal line. These three scans

are reproduced on the following page in Figures 2.6 (a), (b), and (c).

Perceptual justification:

The nonuniform sampling algorithm proposed may also be justified from a

perceptual standpoint. In order to do this, consider the arrangement in Figure

2.7. A and B are two point sources of light located at different depths behind the

hologram plane as shown. A plane reference beam is used to record the

hologram. We will assume that the fringe patterns due to the two points do not

overlap. It may be shown mathematically that the spatial frequencies recorded

on the hologram due to point A are greater than those due to point B. In general,

as the depth of the point increases behind the hologram plane, the spatial

frequency components that the point contributes to the hologram decrease.

Therefore, the maximum spatial frequency that the point contributes to the

hologram may be used as a depth-dependent measure of information about the

point. The nonuniform sampling algorithm described above is effectively

performing the task of allocating samples on the hologram based on the depth of

the points that contribute to it. It is, in some sense, giving priority to points that

are closer to the viewer than those that are further away. Intuitively, one would

expect that the viewer derives more three-dimensional information from objects

that are closer than those that are far away. This intuition is supported by the fact

that binocular disparity is zero for an object at infinite depth and greatest for an

object that is at the near point of the viewer. The nonuniform sampling



Figure 2.6: (a) The low spatial frequency portion of the hologram (b) the medium
spatial frequency portion and (c) the highest spatial frequency portion. These three
scans came from different locations on a single horizontal line in an HPO hologram.
The horizontal extent of all these scans is about 7 microns.
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Figure 2.7: The maximum spatial frequency due to a point close to the hologram is
higher than that due to a point further away.

algorithm achieves this by sampling different segments of the hologram at

different rates.

2.4
Issues in
nonuniform
sampling

The implementation of any new algorithm brings with it a host of issues that

must be understood and resolved in order to fully utilize the benefits that the

algorithm provides. Nonuniform sampling is no exception. In this section, we

present and discuss the most important issues that arise when nonuniform

sampling is used to compute holograms for display applications. An example of

an implementation is presented following which each of the issues is

enumerated.

Example:

Once the object is available as a database of luminous points in space, the first

priority is to determine the number of segments in the hololine. This is a non-

trivial problem because the number of segments is object-dependent as



discussed below. However, experiments with various objects have shown that

the savings begin to diminish when the number of segments exceed 128. This is

evident from Figure 2.8 as well. In order to make the choice of the number of

segments object independent, the number of segments was fixed at 128. After

determining the number of segments, the maximum spatial frequency in each

segment was determined using a geometrical optics approach. This process is

very fast because it involves only a simple computation of the slope of the ray

from an object point to the end of the segment. The maximum spatial frequency

in each segment automatically determines the sampling rate and hence the pitch

of the holographic fringe pattern. The hologram may then be computed in each

segment using any method. The bipolar intensity method was used for the

experiments in this thesis. The computed hologram is then stored in a format

that will enable easy decompression. The format used for the examples in this

thesis was quite simple. Each segment was accompanied by three pieces of

information - the sampling rate in the segment, the number of samples in the

segment, and the index of the segment. This is all that is necessary to upsample

back to the maximum rate. The format is depicted in Figure 2.8.

segment index number of samples

samples samples samples

sampling rate

Figure 2.8: The file format of the computed hologram. The three pieces of header
information enable upsampling to be performed on each segment.

Conceptual issues:

What is the optimal number of segments in a hololine? A look at the algorithm

presented in the previous section indicates that a decision has to be made

regarding the number of segments in any given hololine. Recalling Eq. 2.3,

which is repeated here for convenience, we observe that the total number of



# of samples vs. # of segments

20 40 60 80 100 120 140 160 180 200
Number of segments in the hololine -N

Figure 2.9: Variation in the number of samples in a hololine with the number of
segments. The total number of samples reaches a steady state. The apparently
periodic fluctuations on the left hand side are artifacts.

samples apparently decreases with increasing N.
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What, then, prevents us from making the number of segments very large? There

are three reasons for keeping N reasonably small. First, the maximum spatial

frequency fmax in each segment depends on the size of the segment and the

locations of its endpoints. fnax therefore, depends on N in a non-trivial way.

The relationship between the number of segments and the total number of

samples in a hololine is examined graphically in Figure 2.9. Second, it must be

kept in mind that the AOM requires that all the incoming data be sampled at a

uniform rate. This is because the velocity of the acoustic wave in the AOM is

constant regardless of sampling rate. In order to bring a low-rate segment back

to a uniformly high rate, some form of interpolative filtering is necessary. A

larger number of segments implies more time consumed in filtering. The

interpolation issue is discussed more completely in the following section. Third,

the law of diminishing returns takes effect as the number of segments is made

larger. The savings in the number of samples diminishes and reaches a steady

value when the number of segments crosses a certain threshold. Any number of

segments above this threshold is more trouble than good. This is also illustrated

in the example below.

Consider an object that is composed of a small number of points which are

distributed randomly in the x - z plane. Figure 2.9 is a plot of the total number of

samples as the number of segments is varied from 1 to 180. The graph clearly

indicates the drop in the number of samples as the number of segments is

increased. Also, the total number of samples levels off when the number of

segments becomes very large.

Interpolation: The output of the algorithm is a hololine which has N segments,

each possibly sampled at a different rate. This hololine is fed into an acousto-

optic modulator, which requires that its input signal be sampled at the same

uniform rate. This is because the acoustic wave propagates down the crystal at a

uniform velocity of 617 m/s regardless of the rate at which the signal was

sampled. It is, therefore, necessary to convert the entire hololine to a uniform

rate before sending it to the AOM. Conversion to a uniform rate can be achieved

by interpolation, of which there are several kinds. Interpolation is simply the

creation of some number of samples "in-between" the samples that one already

has. No new information is created. Some of the kinds of interpolation are: low-

pass interpolation, linear interpolation, and replication. In low-pass and linear



interpolation, the data to be interpolated is filtered by a specially designed

digital filter to produce interpolated output [21]. Replication is a much simpler

form of this where the number of extra samples required is produced by

replicating existing sample values. For example, if a segment has 657 samples

and it is required to have 1024 samples, then 367 samples randomly chosen in

the data and replicated to produce a segment that contains 1024 samples.

Replication is much faster than filtering if the operations are performed in

software, but it also causes the shifting of samples from their original location-

an artifact that does not accompany any other method of interpolation. Another

method of interpolation is a technique borrowed from computer graphics known

as the Digital Differential Analyzer. This algorithm uses a simple incremental

algorithm to rapidly compute intermediate values given the endpoints of a line

[22].

Object considerations: The number of points in the object, their density in the

x - z plane, and their depth from the hologram plane are all important factors in

determining the total number of samples in any hololine. In this section, we look

at a few limiting cases to get a feel for the behavior of the algorithm.

The worst case is when the object is a single line of points at the same depth

with a very high density (number of points per unit length). Every segment will

then receive a maximum spatial frequency contribution from some point in the

line, which means that every segment will have to be sampled at a high rate. It

makes sense in such cases to choose N = 1 so as to simplify the computation. It

is indeed fortunate that not many of the objects of interest possess such a

structure. On the other hand, objects with random point locations and depths,

such as the one that generated Figure 2.9, make for very varied sampling rates

leading to compact holograms. In this case, N should be chosen as large as

possible to ensure greater savings. Of course, such objects also are not of much

interest for display purposes either. Most of the objects that we will be

interested in tread the middle ground between the two cases mentioned above.

We, therefore, expect the savings in the number of samples to be somewhere

between the two cases. There is also a slight cost in saving the header

information as shown in Figure 2.8. The total number of bytes required to save

the header information is 3N bytes, which is a very small number compared to

the total number of samples.



To summarize, the total number of samples decreases with the number of

segments chosen, but the effort to interpolate goes as the number of segments

increases. The structure of the object also determines what kind of sampling

rates are necessary in each segment so it is important to look at the object and

make a decision on the number of segments. It is only necessary to look at the

gross structure of the object because the spatial frequency structure of the

hologram depends solely on geometrical considerations. The exact structure is

not important in this calculation. Once the sampling rates are determined, they

can be stored for use again. In this sense, it is a one-time effort.

2.5 The nonuniform sampling algorithm was implemented on an SGI Onyx
Results workstation. Figure 2.10 shows the images of a single line of points which are

spaced 1 mm apart in the x direction and 0.5 mm apart in the z direction.

Because the points are uniformly spaced and span the whole object space, this is

almost a worst-case scenario. There is always at least one object point that

contributes the maximum possible spatial frequency in a particular segment.

The hologram corresponding to the topmost image had a single segment and is

equivalent to a fully computed hologram. The subsequent images had the

number of segments indicated in the table alongside the figure. Two points must

be noted. First, no interpolation was performed on the computed hologram. The

hologram was displayed as computed, after being padded with zeros to make it

appear like a 256 kilobyte hologram (as required by CHEOPS). The high

tolerance of the AOM to changes in sampling rate is clearly evident. This

feature indicates the possibility of doing less interpolative filtering than

required. For example: if two consecutive segments have maximum spatial

frequencies that differ by no more than 10%, it is possible to filter both of them

with the same filter, or not at all as the case may be. Another point to note is that

the images captured from the display have been through several format

conversions before they ended up in Figure 2.10. The images look significantly

better on the Mark II display than they do in Figure 2.10 for this reason.

2.6 It was shown in the preceding sections that a nonuniform sampling algorithm
Future may be used to reduce the number of samples in a computer-generated
directions hologram by 25 to 30 percent depending on the object under consideration. This

is the first time, to the best of the author's knowledge, that nonuniformly

sampled holograms have been used for display purposes. The approach closest



Segments

1 232500

64 229774

128 223280

256 218288

512 215736

Figure 2.10: Images of a single line of points produced by the algorithm. The first line
consists of a single segment and is equivalent to a fully computed hologram. All
subsequent lines are produced with varying number of segments (and hence samples)
as indicated in the figure. All of these lines were produced without any interpolation,
demonstrating the high tolerance of the AOMfor varying sampling rates.

to the one in this chapter was proposed by Vanderlugt. It must be pointed out

that the savings that accrue due to the nonuniform sampling algorithm are

independent of any further savings that may be possible due to encoding

schemes. The nonuniform sampling algorithm is lossless from an information

theory standpoint. In this final section, we present two avenues for further study

in the area of nonuniformly sampled computer-generated holograms.

Nonuniform segment widths: The algorithm described above used a certain

number of segments all of which were the same physical width, but sampled at
different rates. There is no reason why all the segments should be the same

width. They could easily have been of different widths without increasing the

Samples



complexity of computation or interpolation. To see the implications of variable

segment widths, let us reconsider Eq. 2-3. We replace the segment width P/N

with w;, the width of an individual chunk which may or may not be the same as

wI, for i #j. We then have

N N

Tnonuniform = T = 2wmax 2-6

i=1 i=1

with the constraint that

N

x wi= P
i =1

where P is the physical width of the hologram. This is an optimization problem.

One possible approach is to decide the segment width adaptively based on the

local spatial frequency gradient.

Bandpass sampling of CGHs: One assumption that was made in the formulation

of the nonuniform sampling algorithm was that every segment has spatial

frequency contributions all the way from zero to fmax* Studies have shown that

this is not always true and that there are several segments where the spatial

frequency range is quite small. Such a segment may be called a bandpass

segment. There are well known techniques in communication theory that allow

for sampling bandpass functions at a smaller rate of twice the actual bandwidth

instead of at twice the maximum spatial frequency. One possible

implementation of this technique is called heterodyned sampling. The bandpass

signal is shifted in the frequency domain by multiplying by a sinusoid and then

low-pass filtered to retain only the baseband. The baseband signal is then

sampled at twice the bandwidth as prescribed by Nyquist. Some postprocessing

is required to recover the actual samples from the baseband samples. The

postprocessing involves representing the signal in the conventional analytic

form and using a Hilbert Transform to recover the bandpass signal. This

technique is documented in [23, 24]. The big gain lies in the significantly lower

bandwidth communication between the host computer and the framebuffer

made possible by using bandpass sampling.

How is this technique of advantage to computational holographers? We recall



the arguments made in Section 1.2. One of the quantities that required

minimization was the total number of samples in the CGH. Both nonuniform

sampling and bandpass sampling achieve this goal - bandpass sampling is

more effective. The number of samples that are sent to the framebuffer are

reduced by using either method. If the framebuffer had no computational

capability, then the entire exercise would be futile, because there would be no

means of recovering a uniformly sampled stream of CGH data before it was

input into the AOM. However, with an intelligent framebuffer like CHEOPS, it

is possible to perform a great deal of signal processing on the data through the

use of one or more specialized "daughter cards" - cards that are designed to

implement a specific type of operation in hardware. Both nonuniform and

bandpass sampling require the use of such hardware. Once again, it is

emphasized that any advantages in computation and communication are

independent of encoding methods that are used downstream in the

communication chain.

Let us now consider how a nonuniform sampling scheme may be implemented

if CHEOPS did not exist or, for some reason, was not available to us. The

options available would be to use the radio-frequency (RF) portion of the

holographic display to do some signal processing or to use optical means to

decompress the data. An RF solution would involve changing the carrier

frequency dynamically in order to match the sampling rate of each segment.

This solution may be practically implemented. An optical solution would almost

certainly involve more moving parts or a pulsed laser or both. Since one of the

ultimate goals is to eliminate all moving parts from the display and make it

inexpensive, both optical options do not seem to be very practical.

It is clear to the author that a great deal of work is still possible in simply

reducing the number of samples in computer-generated holograms. This effort

leads to CGHs that are lossless both perceptually and information theoretically.

It is also necessary to study optical configurations that will allow the use of

innovative algorithms in computational holography.
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3 Modeling information transfer in
spatial light modulators

3.1
Motivation

The history of holography -- both optical and computer-generated -- is replete

with efforts to reduce the amount of "information" required to produce a

"visually or perceptually lossless" image. The methods of attack have been very

varied but the goal has always been the same. These methods usually fall into

one of two categories - optical or computational. Optical methods use novel

optical configurations to reduce the amount of information in fairly obvious

ways. Computational methods introduce a greater measure of subtlety into the

process of information reduction by using information theory and signal

processing.

The big leap in reduction of information in a hologram came with the

introduction of horizontal-parallax only (HPO) imaging. Much has been said

about HPO holograms [25, 26] and the reader is referred to the literature for

more details. At about the same time, Lin [27] proposed that smaller, identical

holograms could be tiled to produce a larger hologram. The reconstructed image

exhibited a significant loss of resolution and was therefore not perceptually

lossless. In his concluding remarks, Lin noted that a "practical method of

electronic processing of even a very small hologram" was still to be found.

Though the problem of computing holographic fringe patterns has been solved,

important questions about the nature of holographic information remain to be

answered. Several other researchers developed similar schemes to reduce the

amount of information in a hologram.

The bag of computational tricks used to reduce the information content in a

hologram contains several methods. Among them are: using the Fast Fourier

Transform to compute far-field holograms and manipulating phase to reduce

speckle artifacts in computed holograms. More recently, Lucente [12] worked

on developing encoding schemes specific to holographic data. All of the

schemes outlined above approached the problem by asking the question: A

hologram contains a certain amount of information. What is the best way to

reduce it? The author of this thesis believes that the key to efficient CGH

computation lies in approaching the problem from the bottom up - to

determine the minimum amount of information required to produce a desired



visual sensation. The key to answering this question lies in understanding the

mechanism of information transfer from a CGH to a beam of light. This chapter

is devoted to a preliminary exploration of this important topic.

The structure of this chapter is as follows. The next section presents a brief

introduction the principles of information theory. In section 3.3, the information

bearing capacity if a plane wave is determined. The information bearing

capacity of a plane wave is only of tangential interest to us because we are not

engaged in the production or communication of plane waves. In a sense, we are

end users of plane waves that have already been produced in a laser. However,

determining the information bearing capacity of a plane wave provides some

insight into information theoretic methods. Section 3.4 treats the light as a

collection of plane waves and assumes that the SLM transfers information to the

plane waves to produce a different set of plane waves. The amount of

information required to achieve this input-output transformation is determined.

The premise of this chapter is that if the minimum amount of information is

determined, then the next step would be to isolate a class of waveforms that can

deliver this amount of information to a beam of light efficiently.

3.2
Information
theory
principles

Information theory [28, 29, 30] is the science that is concerned with two

fundamental questions - what is the ultimate data compression possible and

what is the ultimate transmission rate of a a communication channel?

Information theory deals with estimating the information content of

mathematical objects, which in our case, are computer-generated holograms. By

its very nature, information theory usually never provides constructive methods

of achieving the limits it prescribes. Achieving the limits is left entirely to the

ingenuity of researchers and their insight into the mathematical object at hand.

The most often used tools in information theory are the concepts of entropy,

relative entropy, and mutual information. They will be defined here for use later

in the chapter.

The entropy of a random variable X with probability density function p (x) is

defined by

H (X) = -Yp (x) log 2p (x)



By definition, the entropy is a positive quantity measured in units of bits. It may

be interpreted as the average number of bits required to describe the random

variable X. It is also a measure of the average uncertainty of the random

variable. One of the primary results in information theory states that codewords

used to describe mathematical structures must have an average length that is

greater than or equal to the entropy of those structures. The most efficient

coding schemes will generate codewords whose average length is equal to the

Source symbols Encoder b

t

channel

Figure 3-1: The encoder acts as an information "impedance-matching" device
between the source and the channel

entropy of the source. The encoder may be interpreted to be an information

"impedance-matching" device in that it matches the entropy of the source to the

capacity of the channel. This is shown in Figure 3.1. In the context of holovideo,

the channel capacity is determined by the output bandwidth of the frame buffer.

In order to have a metric for comparing different encoding schemes, we need to

know what the entropy of the source (the CGH) is. There are two approaches

that can be used to determine this quantity. It is possible to look at a large

number of holograms statistically and determine their probability density

function empirically and use it to estimate the entropy. The other method, which

is more elegant, is to determine the entropy of the hologram from first



principles. The latter approach is taken in the following sections.

Relative entropy is the distance between two probability density functions. It is

a measure of the of the inefficiency of using a distribution q to describe

something when the true distribution is p. It is also known as the Kullback-

Liebler (KL) distance in the statistical literature. It is defined as

D (p|| q) = JP (x) lg2 (x) 3-2
ap~x qog(x)

For example, if we knew the true density function of the random variable, we

could construct a code with average codeword length H (p) bits. If, instead, we

used a code for a distribution q, we would need H (p) + D (p|1 q) bits on

average to describe the random variable. The relative entropy will be used later

to determine the amount of information transferred in a hologram or spatial light

modulator.

The mutual information is another quantity that is used often in describing the

interplay between two variables. Mutual information is related to conditional

probability. The uncertainty of an event occurring decreases if we know that

another event has already occurred. The definition of mutual information is a

quantitative statement of this fact.

I(X;Y) = H (X) -H (X|Y) = J(pXIY)log2 , 3-3
x, y

H (XI Y) is the conditional entropy which may be computed using Eq. 3.1 Since

H ( ) is always positive, it is clear that prior knowledge reduces entropy - a

fact that makes intuitive sense. Having defined entropy and mutual information

as they will be used in this chapter, we proceed to look at the classical approach

to determining the entropy of a hologram.

3.3 In this section, the information bearing capacity of a plane wave is determined.

Information This material in this section is a digression from the actual goal of this chapter
bearing because we are not called upon to generate plane waves synthetically. We
capacity of a
plane wave simply use the plane waves that are generated by a laser. The notation to be used
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Figure 3.2: Convention for angles

in this section is as follows. The hologram is always assumed to be at z = 0

and all angles are measured with respect to the positive direction of the z-axis

as shown in Figure 3.2. The input beam is assumed to come in from the left and

leave the hologram plane travelling to the right. We will work only with one-

dimensional plane waves with HPO holograms in mind.

The one-dimensional plane wave representation that will be adopted is

U (x) = a eJ2 x 3-4

ag is the amplitude of the plane wave and f is the spatialfrequency of the input

plane wave. The spatial frequency is related to the direction of propagation of

the wave via Eq. 3-5 below.

fi = (sin O) /x 3-5



where X is the wavelength of light being used.

Let us denote the entropy of the input wave by Hi. We require a method by

which we can describe the input entropy in terms of the physical parameters of

the wave, such as its spatial frequency or amplitude. How much information

does a plane wave contain? Intuitively, one would feel that a single plane wave

requires an infinite amount of information to specify both the wavelength and

direction exactly. However, ideal plane waves do not exist. They are a

mathematical idealization. There is always a spatial frequency uncertainty

(which is intimately related to the angular uncertainty, as shown below)

associated with a wave that depends on the size of the source that produced the

wave. Let us denote this quantity by Afj for the input wave. The relationship

between f1 and 0, is

sin (0) 3-6

Differentiating Eq. 3-6 gives us the relationship between the spatial frequency

uncertainty Afj and the angular uncertainty AOL.

cos (0.)
Af. = A0. 3-7

Keeping in mind that a plane wave with a lower Afj requires greater precision to

specify it, we define a measure of information of a plane wave as the logarithm

to the base two of the ratio of f1 to Aft. This is simply the total number of bits in

the binary representation of the ratio. Clearly, this ratio is inversely proportional

to the spatial frequency - and therefore, angular - resolution. The ratio may

also be interpreted as a "quality factor" for the plane wave. The higher the

quality factor, the greater the number of bits required to describe the plane

wave. The entropy, using Eqs. 3-12 and 3-13, is:

H. = l o2 = rn)1082  ) bits 3-8
S Afj Af AO I. A6



The entropy, as defined by Eq. 3-8, depends on both the spatial frequency (or,

equivalently, angle of propagation) and the spread in the spatial frequency. A

limiting case of interest is: Afj -> 0 implies that Hi -> oo. This is related to

infinite spatial frequency resolution The behavior of the entropy is plotted

against spatial frequency resolution and input angle in Figure 3.3. This analysis

also highlights that fact that an origin and a coordinate system are always

required when information is measured.

Entropy vs. Input angle for various values of angular resolution
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Figure 3.3: The behavior of entropy as the input angle is varied for various
angular resolution values.
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3.4
Classical
theory of
information
transfer

We now focus attention on the problem of determining the information-theoretic

lower bound on the amount of information in a holographic fringe pattern.

There are three reasons why such an endeavour should be undertaken. First,

such a measure provides a clear way of comparing different encoding schemes.

Second, it is expected that such an analysis will provide some insight into the

dynamic range requirements on holographic fringe patterns. Finally, it may also

provide insight into designing the encoding scheme itself - although this is a

less practical expectation. The approach to determining the information content

of a fringe pattern is straightforward. The "information distance" between the

input and output plane wave distributions will be determined by invoking a

variant of the Kullback-Liebler (KL) distance defined in Eq. 3-2. When this

distance is measured in bits, it represents the amount of information added to

the input distribution of plane waves by the grating. It should also be

remembered that the KL distance is a lower bound on the information content of

a holographic fringe pattern. Determining KL distance does not predicate the

existence of an encoding scheme that enables us to reach the lower information

bound. The assumptions that we will make are: (a) The illumination used is

coherent (b) signal-to-noise ratio (SNR) is infinite and (c) the length of the

hologram or spatial light modulator is infinite.

The problem breaks down into two parts: representing the input and output

collections in a useful form and determining the (KL) distance between them.

The familiar plane-wave representation is adopted for both the input and output.

Assume that the input is a collection of N plane-waves each propagating in a

specific direction. The input collection may be represented as

3-9
i age1

The grating has a spatial frequency fg and the wavelength of the light being

used is k. The set of plane waves produced as a consequence of the interaction

between the input set of plane-waves and the grating may be represented as

N

Y b ej x (f, + mkf,)x
i 1

3-10
N

= , (biej
2 xmkfx) e2 xfix

i = 1

Eq 3-16 follows from the familiar relationship between the spatial frequencies



of the input and the output which is given below.

four mfE +fi 3-11

where m = ... -3, -2, -1, 0, 1, 2, 3, ... is the order of diffraction.

In order to determine the KL distance between the input and output plane wave

distributions, mathematical objects known in quantum mechanics as density

matrices [31, 32, 33] have to be introduced. The elements of a density matrix

are all possible bilinear products of the coefficients of an expansion in some

basis. As an example, consider Eq 3-15, where the input to the grating is

represented as an expansion in a plane-wave basis. The density matrix

corresponding to the input would then be determined by the outer product given

below.

al

a2

p a [ai* a2 * - - aN* 3-12

aN

where * indicates complex conjugation. The matrix written out in full is

* * *
alai ala2 alaN

* * *
a2a1 a2a2 a 2aN

3-13

* * *
aNal aNa 2  aNaN

The diagonal elements of the density matrix represent the energies

corresponding to the different plane wave states. In quantum mechanics, the

diagonal elements would represent the probabilities of photons being found in

the particular states. Matrices with similar properties are also seen in digital

signal processing, especially in spectral analysis. The use of density matrices



permits compact expressions and makes it easier to visualize more complex

situations.

The relative entropy of two states p and T is defined [34] as

D (pI| a) = trace (p (log2 P - 10 2 y) ) bits 3-14

where trace is the sum of the diagonal elements of the resulting matrix and is

usually abbreviated to tr. It can be shown that this definition is equivalent to Eq.

3-2.

Both the ingredients that are required to compute the information content of a

fringe pattern are available. They are now used to determine the information

required to accomplish the change of state of a single plane wave of amplitude

aI and spatial frequency fl impinging on a grating of spatial frequency f to

produce output plane waves of amplitude bm and spatial frequency

(f1 + mf ). The density matrices of the input and output states are simply

scalars al and lbm 2 respectively. The KL distance is then given by

22

D (inputl output) = all log2 2 bits 3-15
all m |bm)

Clearly, this is a function of the energies in the two states and depends on the

logarithm of the ratio of the energies. The summation is carried out over all m

because a single input wave produces several output waves. This situation may

be interpreted as a single wave impinging on several different gratings. At first

glance, it appears that the amount of information transferred is independent of

the grating spatial frequency. The dependency of the KL distance on the grating

spatial frequency is quite subtle. In Eq. 3-15, the summation is carried out over

all m. How many values of m are there? There are as many values of m as there

are non-evanescent output waves. Rewriting Eq. 3-11 in terms of the angles of

propagation, we have



sin ( 0  ,) = mkf + sin (Oin) 3-16

Non-evanescent output waves require that Oout Tc/2. It follows that

M I - sin(Oin) 3-17
Afg

Because the number of output waves has to be an integer, the maximum value of

m is given by

mmax sin (01-d 3-18

where Lxi denotes the greatest integer less than or equal to x. Therefore, the

number of terms in the summation of Eq. 3-15 is quite strongly dependent on

both the wavelength of light and the grating spatial frequency. Of course, Eq. 3-

15 is not valid for purely sinusoidal gratings which produce only the zero and

positive and negative first orders. To recapitulate, the ingredients required to

compute the amount of information in a holographic fringe pattern are the input

and output density matrices and Eq. 3-15.

A few qualitative observations about Eq. 3-15 are in order here. The KL

distance depends on the reciprocal of the energies in each diffracted component.

This has two implications. First, the smaller the output energy (for unit input

energy), the greater the number of bits required. This conclusion seems to make

sense when we take into account the fact that smaller output energies imply

more precise control over the input wave. It takes more effort, in terms of bits,

to achieve precise control. The second point to note has to do with the number

of output waves. A low spatial frequency grating produces several output orders

and the energies of those orders are smaller than when a high spatial frequency

grating is used. Thus, the KL distance is larger for a lower spatial frequency

grating than for a high spatial frequency grating - a rather surprising

conclusion. The explanation of this result lies in realizing that low spatial



frequency gratings produce several non-evanescent orders. In order to resolve

- i.e., physically distinguish - all these orders, a greater amount of

information is required. The classical connection between information and

resolution [35, 36, 37] emerges naturally from this argument. Another

connection to classical information theory is also manifest in Shannon's

analysis of entropy loss in linear filters [28].

In order to test the above theory on real gratings, a few examples [38] are

presented below.

A piece of clear glass: The transmittance function of a piece of clear glass is

unity. It simply lets all the light pass through. In this case, the output plane wave

has exactly the same amplitude and direction as the input plane wave. Therefore

the information transferred to the input plane wave by the piece of glass must be

zero. Substituting the input and output amplitudes into Eq. 3-15 and noting that

there are no diffracted orders, we have:

D = llog2() = 0 bits 3-19

A piece of neutral density glass: This piece of glass attenuates the input light but

leaves the direction intact. If we assume that the amplitude transmittance is to,

then we obtain:

(1\
D = llog 2 - bits 3-20

~to

Sinusoidal amplitude grating: The transmittance function of a sinusoidal

amplitude grating may be written as

t (x) = to + Atsin (27tfx) 3-21

where to is the bias term and At is the maximum excursion from the mean

value. It is a well known fact that the energies of the diffracted components are

proportional to the coefficients of the Fourier expansion of the transmittance

function for thin gratings. Using this fact, we obtain the coefficients of the zero



and ±1 orders. They are given by t0 , At/2, and At/2 respectively.

Substituting these values into Eq. 3.15 and assuming that the input plane wave

has unit amplitude, we have

1 + 2 1
D (inputll output) = log 2 t + 21og 2  2

t (At/2)
3-22

For the case where to = 0.5 and At = 0.5, we compute the KL distance to be

10 bits.

Square-wave amplitude grating: The transmittance function of a square-wave

transmission grating is represented by

t (x) = to + Atsq (27rfx) 3-23

where sq(.) represents a square wave with a duty cycle of 50%. The coefficients

of the Fourier expansion of this transmittance function are

2At 2At 2At
t _ - , 0, , 0, , 0, ...... .

T 3n 5 Tc
3-24

Substituting these values into Eq. 3-15, we have

D = log 2 1 + f(log 2  ) +log 2 ( 2) bits
to oddi (2At/r)2

3-25

Eq. 3-25 is rewritten below to make some interesting facts apparent.

D = logj+2og 2  1 + log 2 ) bits 3-26

term oddi (2at ) odd i

The first term in Eq. 3-26 pertains to zero-order light. The second may be



interpreted as relating to the amplitudes of all diffracted orders and the final

term may be interpreted to be the direction-related component of the KL

distance. It is clear from the definition of the direction related component that it

takes more information to deviate the incoming plane wave through a larger

angle - an observation that is consistent with the quantum mechanical

interaction picture in acousto-optic modulators. By expressing the KL distance

as the sum of three components, we can decouple amplitude and directional

information. Each of these quantities may be treated independently - a feature

that will come in handy when more complex gratings are analyzed.

Square-wave phase grating: The transmittance function of a square-wave phase

grating is as follows:

$ (x) = $0 + Aosq (21cfx) 3-27

where $0 is the constant bias and A$ is the maximum excursion from $0. The

coefficients of the Fourier expansion of this transmittance function are given by:

cos (A$), 2 sin2 (An) 0, sin (Ait) ......... 3-28
it 3 T 5Tc

Substituting these values into the now familiar Eq. 3-15, we get

D = log 2 ( 2 ) + log 2  2 + Ylog2 ( 2)
cos (A$) odd i 4 sin (Ai) o32 i

To summarize the salient points of this section: the two ingredients required to

compute the amount of information that a grating imparts to an incoming plane
wave are the input and output density matrices. Once these are determined, the

Kullback-Liebler distance may be computed using Eq. 3-15. The result of the

computation is the least number of bits required to encode grating transmittance

function. The KL distance may be expressed as the sum of three independent

components, each of which accounts for the zero-order term, amplitude

dependence and direction dependence of the KL distance on the diffracted



components.

This chapter described a bottom-up approach to determining the information

content of a hologram. In contrast to previous approaches, which treated the

holographic fringe pattern as an image, the mechanism of information transfer

in a fringe pattern was modeled using information theory principles. The

predictions of the model appear to be consistent with the observations of

previous researchers. The model is valid only under the three assumptions stated

in section 3.4. Further work should include extending the model to incoherent

sources of illumination and including the effects of noise and finite modulator

length. The author is firmly convinced that a complete theory of information

transfer needs to be formulated in order to arrive at practical methods of

hologram computation for scalable displays.

3.5
Summary
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4 Pixel aspect ratios in holographic
displays

4.1
The display

4.2
The
generalized
image relay
system

The display is the penultimate stop in the communication chain before

holographic image information is presented to the human visual system. The

decoded CGH is presented to the beam of light - which may be coherent or

partially incoherent - via a spatial light modulator (SLM). Therefore, the display

performs two important tasks - modulation and image presentation. In this

chapter, we will be concerned exclusively with the physical format of

presentation of information to the beam of light - that is, the complete

description of the pixels of the SLM. A complete description entails specifying

the size of each pixel and the dynamic range that each pixel should have in order

to make the displayed image appear perceptually lossless.

The next section is an introduction to the generalized image relay system

(GIRS), which provides the framework in which pixel sizes will be determined.

Then, canonical geometries are presented for the spherical GIRS case and pixel

sizes are determined. Cylindrical-optical extensions of the GIRS are presented

in section 4.4. The final section discusses the utility of determining the pixel

sizes and dynamic range requirements.

The GIRS is a simple two-lens relay system [39] as shown in Figure 2.1. LI and

L2 are identical spherical lenses which are separated by twice their focal length

F. LI is the objective lens and L2 is the field lens. Li forms a real image of the

three-dimensional scene in space. The primary function of L2 is to prevent

vignetting of the image. It has no effect on the power of the system per se, but it

bends rays which would otherwise leave the system back towards the axis.

Another important function of L2 is that it corrects simple geometric distortions

so that longitudinal and lateral magnifications of the image are independent of

z-location. This statement may be proved simply. The effective focal length

feffective of a pair of thin lenses of focal lengths f1 and f2 separated by a
distance d is given by

1 1 1 d

feffective 1 f2 f2f2
4-7



For our case, f, = F, f2 = F, and d = 2F. This gives:

feffective = 0 4-8

which means that the magnification of the system is unity and the image is the

same size as the object and inverted regardless of the location of the object

along the axis. The connection between the GIRS and holography is the subject

of the rest of this section.

object
plane

image
plane

viewer

plane

objective
2F lens L1 il

les L2

Figure 4.1: The generalized image relay system

To model a hand-held holographic image viewing configuration, the images are

taken to be 100 mm on a side and the viewing distance is 500 mm. This implies

that the lenses have a focal length of 250 mm, and a diameter of 141 mm. The

images in this configuration are approximately the same size as the images in

the Mark II system. The f-number of the lenses is approximately 1.8. The

magnification is taken to be unity without loss of generality. Consider inserting

a holographic plate at some plane in the system and recording a hologram in that

plane. All components downstream of the plate may be removed in the

recording process. The image may then be reconstructed from that hologram by

"playing it back" through the rest of the system. This is shown in Figures 4.2(a)

and 4.2(b). If the hologram were recorded just before or after the field lens L2, it
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Figure 4.2: (a) Recording and (b) reconstruction of a hologram in a GIRS



would bisect the three-dimensional image of the scene formed by LI. This is the

equivalent of an image-plane hologram in which the viewer looks at the

hologram. The other extreme, a viewer-plane hologram, can be recorded by

putting the hologram plane just before or after the objective lens Li. Lens L2

would image the hologram to the viewer's plane, who would look through it at

the image in the plane of L2. The location of the hologram plane between LI

and L2 is a free variable - a knob - using which the hologram may be

recorded as an image-plane hologram, a viewer-plane hologram, or anything in

between. Another degree of freedom is the location of the reference source.

The GIRS may also be used to model and analyze horizontal parallax only

(HPO) imaging geometries. This is shown in Figure 4.3. Reduction of vertical

parallax is achieved by using a horizontal slit in the plane of Li, much like in a

rainbow hologram. The slit permits only a side-to-side range of perspectives to

enter the system. The view-zone is now an aerial image of the slit. A vertical

diffusing element must be provided after L2 in order to make the view-zone

usable. The introduction of the slit brings with it astigmatism - particularly in

deep images. Astigmatism is a feature of any HPO imaging scheme,

holographic or otherwise. It occurs because vertical information is always

object reference
plane source

L1g

hologram
horizontal plane
slit aperture

object
source

Figure 4.3: HPO imaging in a GIRS



centered at the surface of the diffuser while horizontal information is centered at

the apparent viewing distance. Astigmatism limits the usable depth of the

image.

As was mentioned before, one degree of freedom is the location of the reference

source. The recording of an image-plane HPO hologram is shown in Figure 4.4.

The hologram plane is located just before L2 and the reference source is placed

at the end of the slit. In optical holography, the source would be placed at least

the width of the slit from its end, but this is not a restriction in computer-

object
plane

reference
source L2

L1

horizontal
slit aperture

hologram
object plane
source

Figure 4.4: Reference source location. In computational holography the source can be
located at the edge of the slit.



generated holography, because the "halo" term can explicitly be excluded in the

computation. The position of the reference source is chosen so as to keep the

maximum spatial frequency of the hologram transmittance pattern

approximately constant over the hologram area. If the reference source were in a

different location or produced plane waves, the maximum spatial frequency

would vary across the hologram area. The consequences of varying spatial

frequency was the subject of Chapter 2. In this chapter, uniform sampling is

assumed. In the following sections, we take a closer look at canonical or

prototype uniformly-sampled computed hologram geometries and determine

pixel aspect ratios for each case.

4.3
Canonical
geometries:
spherical
case

Canonical geometries refer to either image-plane or viewer-plane hologram

configurations [40]. As was noted before, there are two degrees of freedom

involved: the location of the hologram plane and geometry of the reference

beam. In this section, we explore all possible combinations of hologram

location and reference beam geometry when spherical lenses are used in the

GIRS. The cylindrical lens case is examined in the following section. In the

interest of brevity, only the image-plane case will be considered completely; the

viewer-plane case will be outlined and only results will be stated.

Full-parallax image-plane holograms: Table 4-1 shows the parameters for all

possible canonical configurations. The reference source locations and hologram

locations are indicated in Figure 4.5. For example, one canonical geometry for a

Table 4-1: Computed hologram parameters

Hologram Reference
Hologram type source Slit

location location

Full-parallax image-plane L2 1,2 K

HPO image-plane L2 1,3 V

Full-parallax viewer-plane Li 4,5 K

HPO viewer-plane Li 4,5
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Figure 4.5: Hologram and reference source locations

full-parallax image-plane computed hologram would consist of the following: a

hologram plane located at L2, a reference source located at location 1 in Figure

4.5, and no slit. This is indicated by the X in the 'slit' column. A second

canonical configuration would require the reference source to be placed at

location 2 in Figure 4.5.

The following analysis is valid for the full-parallax image-plane case with the

reference source at location 1. The analysis for all other cases is similar and will

not be presented. We begin by noting that the pixel dimensions depend only on

the maximum sampling rates which in turn depend only on the maximum spatial

frequencies that are recorded on the hologram. in the x and the y directions. Let

us label these maximum spatial frequencies fx, max and fy, max respectively. In

order to simplify things, consider the variation off vs. as two point sources

interfere with each other in the hologram plane. One of the points is at location

1 while the other point traverses the semi-perimeter of a square aperture as

shown in Figure 4.6. Clearly, fy = fy, max when the second point is directly



hologram

max

Figure 4.6: Two points on the edge of the aperture - one stationary and the other
moving. The lower figure shows the variation in the spatial frequencies.

above the first point i.e., directly above location 1. This observation simplifies

the computation of the maximum spatial frequencies considerably. Let 6 H, max

and OV, max be the maximum angles subtended at the hologram plane in the x

and y directions respectively and D be the length of the square aperture. Then

the following equations are true.

OH, max = tan- (
4-9

V, max = tan 1 4F



where F is the focal length of either Li or L2. Therefore, the maximum spatial

frequencies in both directions are given by:

sin (OH, max)
x, max =

sin (V max) line pairs per mm 4-10

fy, max

where X is the wavelength of light used to record the hologram. Recognizing

that the hologram transmittance pattern must be sampled at twice the maximum

spatial frequency in either direction, following the prescription of the Shannon-

Nyquist sampling theorem, we determine the number of samples in each

millimeter of the hologram. The dimensions of each pixel follow in a

straightforward way from the number of samples per unit length. Let us label

the pixel dimensions px and p Y. Then:

Px 2 sin (OH, max)
mm 4-11

P Y 2 sin (0v, max)

If the dimensions of the hologram are P x Q mm, then the total number of

pixels required is

Nfull-parallax = ) (PQ) sin (, sin (, 4-12

This is the space-bandwidth product (SBWP) or the Smith-Lagrange optical

invariant of the hologram. Clearly, the SBWP depends on the hologram area

and the angles subtended at the hologram, as expected. Any full parallax

hologram recorded in the GIRS will have exactly the same number of pixels.

Evaluating (3) and (4) for a test case using F = 250 mm, D = 100 mm, and

= 633 nm, we obtain px = 1.6gm, p , = 3.2gm, and the total number of

samples Nfull -parallax = 1.96 x 1 This is a prohibitively large number of

samples and was one of the primary factors in discouraging holographic video

research in the early days of holography. The aspect ratio of these pixels is 1:2.



HPO image-plane holograms: In the previous case, we computed the pixel

dimensions for each axis independently. This is a useful approach, because it

simplifies the computation for the HPO case. The horizontal dimension of the

pixel remains exactly the same. The only change is in the vertical dimension,

because we don't require diffraction in the vertical direction. If we require L

lines in the hologram, then the vertical dimension of each pixel becomes

py = Q/L mm. For our example, p , becomes 390gm, giving an aspect ratio

of 1:244. In this case, we require pixels which are much taller than they are

wide, which matches our intuition about HPO holograms. Holographic

resolution is required in the horizontal direction but not in the vertical direction.

Table 4-2: Full-parallax holograms

Hologram type Reference source Pixel dimension Pixel aspect ratio
location (pm)

Image-plane 1 1.6 x 3.2 1:2

2 3.2 x 1.6 2:1

Viewer-plane 4 1.6 x 3.2 1:2

5 3.2 x 1.6 2:1

Table 4-3: HPO holograms

Hologram type Refe urce Pixel dimension Pixel aspect ratio
location (m)

Image-plane 1 1.6 x 390 1:244

3 3.2 x 390 1:122

Viewer-plane 4 1.6 x 3.2 1:2

5 3.2 x 1.6 2:1



If the reference source is now moved to position 2 (Figure 4.5), the pixel aspect

ratios are simply transposed for the full parallax case. For the HPO case, they

become 3.2gm x 390gm, giving an aspect ratio of 1:122. A similar analysis

may be performed for the viewer-plane case. Pixel aspect ratios for all canonical

MPH geometries are presented in Tables 4-2 and 4-3 below. At first glance, it

appears that the SBWP is not the same for the image-plane and viewer plane

cases in Table 4-3, because the pixels are much smaller in the viewer-plane case.

This apparent violation of SBWP constancy may be explained by the fact that

the viewer-plane HPO hologram has a smaller area than a corresponding

image-plane HPO hologram The fact that the SBWP is invariant in both cases

can be used to determine the slit height. In this case, the slit height is 0.82 mm,

which exactly matches the value derived from Fourier considerations [39].

4.4
Canonical
geometries:
cylindrical
case

It is clear that the variety of pixel aspect ratios changes considerably when HPO

imaging is taken into account. In this section we examine cylindrical optical

extensions of the GIRS and determine the pixel aspect ratios. Our motivation for

studying the cylindrical case is the following. First, the variety in pixel aspect

ratios is broadened. Second, there is an additional degree of freedom when

cylindrical lenses are used, which provides the ability to control the amount of

astigmatism. Finally, the dynamic range requirement on the samples may be

relieved in this case, although this problem is deferred to future studies. We will

consider the most useful case in which the image of the modulator is in the

image-plane.

Consider Figures 4.7(a) and 4.7(b). Figure 4.7(a) depicts the vertical subsystem

while Figure 4.7(b) depicts the horizontal subsystem. Our goal is to set up a

geometry such that the image is anastigmatic and the image of the hologram is

astigmatic. This means that horizontal and vertical image information are

focused at lens LV4. The hologram plane is located at lens LV2. Horizontal

hologram information is focused at LV4 while vertical hologram information is

focused at the viewer-plane - the hologram is imaged to two different planes.

From the discussion in section 4.2, it is clear that this arrangement produces an

image-plane hologram as far as horizontal hologram information is concerned

and a viewer-plane hologram for the vertical hologram information. This is

clear from Figures 4.7(a) and 4.7(b) where the viewer looks at the horizontal

hologram and through a vertical hologram at an anastigmatic image. There are
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four possible reference source locations - A, B, C, D - as shown in Figures

4.7(a) and 4.7(b). We use an analysis similar to the one in section 4.3 to

determine pixel aspect ratios for both the full parallax and HPO cases.

The results are summarized in Tables 4-4 and 4-5. It must be noted that lens

LH2 should have a different focal length than lens LHl. If we assume that the

viewing distance is Dview, then we have the following relationship for the

required focal length.

2 DviewFLH1

LH2 2 FLH1+Dview

Continuing our previous example, with Dview = 500 mm, we have

FLH2 = 250 mm. All values in the tables below pertain to computed

holograms which mimic hand-held holograms as mentioned in section 4.2.

Table 4-4: Full-parallax holograms - cylindrical case

Reference source Pixel dimension P aspect ratio
location (pm)

A 1.6 x 1.8 1:1.125

B 0.852 x 1.6 1:1.880

C 1.6 x 0.823 1:.0.514

D L6 x 0.852 1:0.532

For the HPO case, we interpose a horizontal slit aperture at lens LV2 that allows

only a limited vertical perspective. A vertical diffusing element is located in the

plane of lens LV4. In this case, the vertical pixel dimensions are determined by

the number of lines required in the hologram. For our example, the number of

lines is 256, as before. We also use the same slit width as before: 0.82 mm. This

leads to the entries in Table 4-5. For purposes of comparison, we note that some

of the newest LCDs from Epson have aspect ratios between 1:1 and 1:3 with

common pixel dimensions being on the order of tens of microns.



Table 4-5: HPO holograms - cylindrical case

Reference source Pixel dimension Pixel aspect ratio
location (pm)

A 1.6 x 3.2 1:2

B 0.852 x 3.2 1:3.755

C 1.6 x 3.2 1:2

D 1.6 x 3.2 1:2

4.5
Discussion

In this chapter, we determined the pixel sizes required in various canonical near-

field geometries. One fact that clearly emerged from this exploration was that

cylindrical-optical GIRS configurations allow for a greater variety in pixel sizes

than spherical-optical ones. This variety stems from the fact that there are two

subsystems working together, and their relative position introduces a free

variable which is reflected in the pixel dimension choices.

Another novel concept was the introduction of anastigmatic images and

astigmatic horizontal and vertical holograms. A related approach was followed

by Fritzler and Marom [25] in their quest to reduce the information content of a

holographic image. It must be mentioned that Vanderlugt [12] also performed a

careful analysis of the spatial frequencies at different planes in the system. He

concluded that by using pixels with variable aspect ratios over the hologram

plane it was possible to represent near-field holograms with the same number of

samples as required for far-field holograms. This chapter dealt with samples

which have the same dimensions all over the hologram plane, keeping a

practical system in mind.

There are, however, various other consequences and applications of this

analysis. First, if a modulator with a given pixel aspect ratio is available, this

analysis useful in deciding what optics must be used so as to make full use of

the SBWP of the modulator. The difference between pixel aspect ratio given and

that required can be used to determine the power of the optical system used to

image the modulator to a different plane. Second, the analysis may be carried

out for any geometry with ease. This allows modulator designers to determine



the required aspect ratios in advance while designing custom SLMs for

holographic imaging.

Finally, having decided how big each pixel must be in a particular geometry, we

must decide how much dynamic range or bit-depth each pixel must have. This is

a question that requires careful consideration. A thorough survey of the

literature in computer-generated holography revealed that no careful analysis of

the bit-depth requirements has been performed for near-field display holograms.

This is the subject of studies in the near future.
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5.1 In this section, the achievements of the foregoing three chapters are highlighted.
Summary The goal of this thesis was to characterize the various elements of the
and
conclusions information landscape in a holographic display with the hope that such a

characterization would provide insight into eliminating redundancy in

computed fringe patterns. The greater goal was to build a firm foundation on

which to base the scale-up process of current holographic display systems. The

contribution of each chapter is briefly summarized below.

Nonuniform sampling of fringe patterns: An algorithm to reduce the total

number of samples in a holographic fringe pattern by using nonuniform

sampling was presented. A mathematical proof of the algorithm was developed

and justified on both visual and perceptual grounds. To the best of the author's

knowledge, this is the first ever time such an algorithm has been used to

compute display holograms. The issues/trade-offs involved were presented and

the performance of the algorithm was demonstrated on the Mark II MIT

Holographic Video System. The results clearly indicate the lossless nature of the

algorithm.

Information transfer in spatial light modulators: In chapter 3 an attempt was

made to determine the minimum number of bits that would be required to

encode a fringe pattern. The approach was firmly grounded in information

theory and the expressions derived were tested on real gratings to determine

their validity. The numbers obtained seemed reasonable and various limiting

cases gave satisfactory answers. The method is amenable to experiment in that

predictions may be made and tests may be carried out.

Pixel aspect ratios in holographic displays: General methods were developed in

chapter 4 to determine the pixel aspect ratios required in SLMs for use in

holographic displays. The advantage of knowing the required aspect ratio for a

particular geometry is that any SLM may be optically transformed to match the

requirements - thus fully utilizing the available bandwidth. Both spherical and

the more general cylindrical case were considered. A method that produced



anastigmatic images with astigmatic horizontal and vertical holograms was

presented.

5.2 Several new avenues of research emerge from the work presented in the
Future work previous three chapters. These directions are summarized below.

Nonuniform sampling offringe patterns: This is one area where a great deal of

work is possible. First, faster ways have to be found to implement the algorithm.

This will enable interactive displays to be built. Currently, the performance of

the algorithm in terms of speed is not satisfactory, because of the large amount

of interpolative filtering that has to be performed. The ideal solution to this

problem would be an optical one, in which case the performance would improve

dramatically. Second, it was suggested in section 2.6 that nonuniform segment

widths could be used to advantage. Once again, such a scheme would require a

fast decompression method to be available. The greatest gains, however, will be

possible when a bandpass sampling algorithm for CGHs is implemented. This

algorithm is the subject of research at the current time.

Information transfer in spatial light modulators: This is another area where a

significant progress can be made. The contribution of chapter 3 is only the tip of

the iceberg. A comprehensive analysis of the various representations of

information and their relationship to one another will be the cornerstone of the

scale-up process of holographic displays. At the current time, the question

"what is the information content of a hologram?" remains almost wholly

unanswered.

It is important to break away from the attitude of treating a holographic fringe

pattern as an image. It must be pointed out that the first estimates of the number

of samples in a hologram relied on uniform Nyquist sampling and treating the

holographic fringe pattern as an image. It is the author's firm conviction that

there is more structure to a holographic fringe pattern than the foregoing

treatment would have one believe. Several researchers are currently working on

the problem of determining the degrees of freedom of optical systems and

channels. Similar analyses must be performed on holographic displays in order

to gain insight into the modalities of information propagation in such displays.



Just as the Fast Fourier Transform algorithm changed the face of digital signal

processing by exploiting structure in the computation, an algorithm that exploits

the structure of holographic fringe patterns will one day be the basis for real-

time, life-size, interactive holographic displays.
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