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Abstract

A new image-coding algorithm based on MPEG-2 and specially oriented to applica-
tions involving the transmission, at various bit rates, of previously stored digital video
material is presented. Coding of the input material is performed in two stages. An
interframe lossless or nearly lossless coder is first used to reduce storage requirements
and collect global information about the entire footage. This information is then used
to improve the coding quality and reduce complexity of a second stage consisting of a
bank of MPEG-2 based encoders, working in parallel, at the desired bit rates.

This algorithm, when compared with straight storage of the uncompressed footage
followed by a bank of MPEG-2 coders, requires less storage, is less complex, and provides
better image quality.

Thesis Supervisor: Andrew B. Lippman
Associate Director, MIT Media Laboratory

The work reported herein is supported by a contract from the Movies of the Future consortium, includ-
ing Apple Computer Inc., Bellcore; Eastman Kodak Company; Intel Corporation; Viacom International
Inc., and Warner Brothers Inc., and by DARPA/ISTO under contract DAAD-05-90-C-0333.



Video Coding in a Broadcast Environment

by

Manuela Alexandra Trigo Miranda de Sousa Pereira

Reader:
Jules Bellisio

-ExUutive Director, Video Systems & Signal Processing Research
Bellcore

Donald Mead
Chief Scientist

Hughes Aircraft Corporation

Reader:



To my mother,

and the memory of my father.



Contents

1 Introduction

1.1 The problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.2 The approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 Image coding overview

2.1 Predictive coding . . . . . . . . .

2.1.1 Differential Pulse Coded M

2.1.2 Prediction . . . . . . . . .

2.2 Transform coding . . . . . . . . .

2.2.1 Karhunen-Loeve Transform

2.2.2 Discrete Cosine Transform

2.3 Quantization . . . . . . . . . . .

2.3.1 Optimal quantization . . .

2.3.2 Uniform quantization . . .

2.3.3 Quantizer performance . .

2.3.4 Quantization of transform c

2.4 Entropy coding . . . . . . . . . .

2.4.1 Huffman coding . . . . . .

2.4.2 Arithmetic coding . . . . .

3 The

3.1

3.2

odulation

:oefficients

MPEG-2 video standard

The MPEG-2 syntax . . . . . . . . . . . . . . . . . . . . . . . . . . .

The MPEG-2 compression algorithm . . . . . . . . . . . . . . . . . .

10

11

11

13

17

18

20

22

23

24

25

26

29

30

. . . . . . . . . . . . . . . . . . . . 3 1



3.2.1

3.2.2

3.2.3

3.2.4

3.2.5

Input formats . . . . . . .

Temporal decorrelation

Spatial decorrelation .

Quantization . . . . . . .

Entropy coding . . . . . .

4 The 2-stage coding algorithm

4.1 Motion estimation . . . . . . . .

4.2 Lossless and nearly-lossless coding

4.3 Footage characteristics . . . . . .

4.3.1 Processing of hard to code f

4.3.2 Preload coding . . . . . .

4.3.3 Improved rate-control . . .

4.4 Re-coder stage . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . 35

... ...... .... ... .... 37

... ...... .... ... .... 4 1

... ..... ..... .... ... 4 1

... ...... ..... .... .. 43

45

..... ..... .... .... .. 4 7

..... ..... .... .... .. 49

..... ..... .... .... .. 52

.ram es . ..... .... .... .. 53

..... ..... .... .... .. 54

..... ..... .... .... .. 5 7

..... ..... .... .... .. 6 1

5 Simulation results

5.1 First-stage encoding experiments . . . . . . . . . . . . . . .

5.2 Motion estimation experiments . . . . . . . . . . . . . . . .

5.3 Second-stage encoding experiments . . . . . . . . . . . . . .

5.3.1 Processing of hard to code frames and preload coding

5.3.2 Improved rate-control . . . . . . . . . . . . . . . . . .

5.4 Overall 2-stage encoder performance . . . . . . . . . . . . .

6 Conclusions

Bibliography

Acknowledgments

79

82



Chapter 1

Introduction

The main goal of a scalable coding system is to provide a coded representation of the

original footage that is flexible enough so that the user can decide how much picture

quality to use (or buy). This thesis presents a different approach to the same problem.

The motivation here is to find the representation most suited to the distribution of

movies from a central database that allows each user to get as much picture quality

as the channel to which he is connected can support, or he wants to pay, or his

display device can depict. Since it is difficult to determine the minimum degradation

satisfactory to all types of users, this representation should be able to provide up to

perfect reconstruction and allow the user to set the quality limits.

1.1 The problem

The system presented in this thesis enables a fileserver for a large movie database to

feed several distribution outlets, each at a different bandwidth or bit rate. This is a

form of scalable "pre-coding" where each user is provided with as much image quality

as his communications path allows.

This system is oriented to the class of applications where the input video material



is available on a digital storage format. The most common example of this type of

applications is the broadcasting of movies or any other pre-recorded material. Another

one can be conceived in the future where, from his workstation, a remote user logs

in a movie server and requests a movie to be displayed on a window in his terminal.

These applications present some particular characteristics:

* the delay inherent to the encoding process is not a constraint;

e since the footage is entirely available before transmission, some a priori knowl-

edge of its content can be used in the encoding stage;

e different users can have different quality requirements, i.e. the encoder should

be able to provide bitstreams at distinct bit rates;

which should be taken into account in order to reduce storage requirements, minimize

complexity, and improve coding efficiency.

1.2 The approach

As the basis of this system, a new coding scheme, which can be viewed as an ex-

tension to MPEG-2, is proposed. MPEG-2 is a generic standard oriented to serve a

large number of applications. Therefore, although providing a good quality general

propose coder, its performance can be improved for particular applications, as the

ones discussed above, by tailoring the algorithm to specific characteristics of these

applications.

The scheme now proposed is constituted by two distinct coding stages. In the

first stage, the raw footage is losslessly or nearly losslessly compressed, leading to

an intermediate format that minimizes storage requirements. This operation is done

once, off-line, and, therefore, its complexity is not a constraint. During this stage,

global information about the footage, which will be used in the second stage, is



acquired. The second stage consists of the encoding for transmission at various bit

rates. This operation is MPEG-2 based. Since it is done on-line, and possibly by

different encoders working in parallel at different bit rates, it is important that it can

be kept as simple as possible.

This thesis is organized as follows. Chapter 2 presents an overview of the area of

image coding, with particular emphasis on the aspects relevant to the understanding

of the concepts later presented in the body of the thesis. Chapter 3 describes the

MPEG-2 video compression algorithm, which provides a good example of the state

of art in this field, and was the starting point for all the work developed. Chapter 4

describes the 2-stage coding algorithm proposed, pointing out the differences and

gains over straightforward storage of the uncompressed footage followed by MPEG-2

coding. Finally, simulation results and conclusions are presented in chapters 5 and 6.



Chapter 2

Image coding overview

Image coding has been, during the last decade, one of the main areas of research in the

field of digital signal processing. This chapter provides a brief description of the basic

concepts behind the most common image coding and compression techniques. Par-

ticular emphasis is given to the ones that are relevant to understand the fundamental

ideas later presented in the thesis. This review is not intended to be exhaustive, the

reader is referred to [1] - [7] for a complete overview on this subject.

A typical sequence of images presents a high degree of correlation or redundancy

either in the temporal (between consecutive frames) and in the spatial (between pixels

within the same frame) domains. Also, the human visual system is insensitive to some

types of degradation that can occur when an image is processed. The goal of an image

compression system is to exploit the existing redundancy and to place the allowable

degradations in a visually optimum way in order to minimize transmission bit rate

or storage requirements. Among the large number of techniques presented in the

literature, predictive coding in the temporal domain and transform coding in the

spatial domain have gained widespread acceptance by the image coding community.

Also important is the role of entropy coding, which provides compression without

quality degradation.



The following sections describe in some detail the image coding techniques referred

above. Section 2.1 presents predictive coding and, in particular, interframe prediction.

Section 2.2 discusses transform coding with special emphasis on the KLT and the

DCT. Quantization is discussed in section 2.3, particularly optimal quantization,

uniform quantization, and quantization of transform coefficients. Finally, section 2.4

presents entropy coding.

2.1 Predictive coding

The most basic form of transmission of a signal in a digital format consists in the

use of Pulse Coded Modulation (PCM). In this technique, the continuous amplitude

of the input signal is discretized into a finite set of amplitude values. For most

image applications, a set of 256 distinct levels (which can be digitally represented

with 8 bits/sample) is sufficient to provide a high-quality reconstructed monochrome

signal'.

Since PCM treats each sample independently of all the others, it cannot exploit the

correlation that may exist between them. More elaborated techniques do not transmit

the input sample in itself, but a value which results from processing that takes into

account the dependencies between samples. One such technique is predictive coding

which consists in the transmission of the difference between the original sample and

a prediction of it, based on previously transmitted samples.

2.1.1 Differential Pulse Coded Modulation

The block diagram of figure 2.1 presents the most basic configuration of predictive

coding. This configuration is generally referred to as DPCM (Differential Pulse Coded

Modulation) and consists of a prediction loop that produces a estimate of the input

1 For a color signal, 8 bits for each of the RGB components are sufficient for high quality.



sample, and a quantizer which provides compression for the desired bit rate.

ENCODER DECODER

Figure 2.1: Block diagram of a DPCM system.

For an input signal Uk, the predictor output Uk is given by

N

Uk = (aUN-k,
k=1

where ak and uk represent, respectively, the kth coefficient of the

dictor and the decoder output at the instant N - k.

(2.1)

Nth order pre-

The quantizer input ek, usually referred to as prediction error, is the difference

between the input amplitude Uk and the prediction Uk

ek = Uk - Uk. (2.2)

The quantizer performs a non-linear mapping of the input amplitudes (ek) to a set of

pre-established output levels (e'), as described in section 2.3.

In the decoder, a replica of the original signal is reconstructed by adding the

prediction i'k to the quantized value e'

Uk = Uk + e'1. (2.3)

The introduction of the decoder in the encoder loop eliminates the propagation



of quantization errors since

Uk -Uk = (U k+ e') - (U k+ e) = e'k - e q = , (2.4)

i.e., for each sample, the reconstruction error is equal to the quantization error eq of

the difference signal ek.

Since the energy of the quantization noise is proportional to that of the signal to

be quantized [8] and the prediction error ek has considerably smaller energy than the

input Uk, DPCM provides higher reconstruction quality than PCM, for the same bit

rate2.

The design of a DPCM encoder consists in the joint design of the optimal predictor

and quantizer for the desired bit rate. Given the dependence between these two

elements, this results in a highly non-linear problem for which a solution has not yet

been found. In practice, the predictor is optimized considering the quantization error

negligible, and then the optimal quantizer for the prediction error thus obtained is

determined.

2.1.2 Prediction

Ignoring the quantization error, considering a linear predictor, and assuming that the

input values are samples of a wide-sense stationary stochastic process, the optimum

predictor coefficients can be found by solving the Yule-Walker equations [9]

N

Ri = (ak RIk I= 1, 2 ... , N, (2.5)
k=1

where ak is the kth coefficient of the Nth order predictor and RI the autocorrelation

function of the input sequence Uk. Due to the complexity involved in solving this

system of equations and the inadequacy of the assumptions on which it is based

2 Or, analogously, the same distortion with a lower bit rate.



to typical image sequences, the optimal predictor is generally not used in practice.

Instead, simpler implementations, based on a reduced number of samples and intuitive

heuristics, are usually considered.

Common predictors can be classified in three types, according to the location of

the samples used for prediction:

e unidimensional predictors are based on the last or on a set of previous samples

in the current line;

* two-dimensional predictors are based not only on samples of the current line,

but also on samples of previous lines;

e three-dimensional predictors are based on samples of previous lines of the same

frame as well as samples from previously transmitted frames.

Predictors of the first two types are commonly known as intraframe predictors, while

those belonging to the last class are designated by interframe predictors.

In the case of intraframe prediction, it has been shown [10] that, although there is

no theoretical limitation on the number of samples that can be used in the predictor,

its gain saturates for about three elements. There is, therefore, no advantage in using

higher order predictors, which makes intraframe schemes fairly simple.

On the other hand, interframe predictors, having the capability to explore tem-

poral correlation (which is high for typical image sequences), provide higher coding

efficiency at the cost of increased complexity. However, with the recent advances in

semiconductor technology, complexity constraints are becoming an issue of lesser im-

portance, and interframe prediction is a technique of widespread use in video coding.



Interframe prediction

The simplest form of interframe prediction consists in subtracting from each input

pixel the corresponding one (i.e. with the same spatial coordinates) in the previous

frame. This approach is efficient for the stationary areas of the sequence, such as the

background or still objects, but fails when in the presence of motion. More accurate

prediction can be achieved incorporating motion estimation/compensation techniques

into this scheme.

The basic idea behind motion estimation is to find for each moving object its

location in the previous frame. Once this location is found, the previous image can

be warped (motion compensated), minimizing the prediction error. This procedure

originates some side information (the motion parameters that describe the warp),

which must be transmitted so that the decoder can perform the same operation as

the encoder. However, since pixels belonging to the same object will have similar

motion, this side information can be coded without significant increase of the total

bit rate. In this way, the cost due to the overhead is largely compensated by the gain

due to the reduced energy of the prediction error; and, overall, motion compensation

provides higher coding efficiency.

The best approach to motion estimation would be to perform a segmentation of

the sequence of frames into the objects that compose it, and then find the motion

parameters associated with each object. However, the complexity of such an ap-

proach is quite high and, in practice, much simpler implementations are used. The

most common solution consists in splitting each frame into a set of blocks of pixels

and motion compensating each of these blocks. This solution has the advantages of

simplicity and easy integration with the block-based spatial decorrelation techniques

to be described later.

The most widely used method to perform block-based motion estimation is the

block matching [11] technique. For each input block, the encoder searches for the

closest match in the previous frame. The measure of similarity between the current



and the block candidate for prediction is typically the Sum of the Squared Errors

(SSE):

SSE = 1 [f(x, y, t) - f(x - dx, y - dy, t - 1)]2, (2.6)
x,yER

where x and y are the coordinates of the pixels that make the block, R its region of

support (typically 8x8 or 16x16), dx and d the displacements in the horizontal and

vertical directions, and f(x, y, t) the amplitude of the pixel (x, y) in the frame t.

A slightly different measure, the Sum of Absolute Differences (SAD), is sometime

used to avoid the complexity of the squaring operation:

SAD= E |f(x,y,t)-f(x-dxy-dyt-1)|. (2.7)
x,yER

As can be inferred from the above equations, this block-matching operation is very

heavy in terms of computation because the distance measure has to be computed

for each of the possible displacements. Therefore, these displacements are usually

confined to a subset of pixels of the previous frame, designated by search window.

Nevertheless, the computational load can still be heavy and some sub-optimal but

faster algorithms have been proposed in the literature [12]. Among these, the most

popular is the three-step search method.

After motion estimation, i.e. upon finding the closest match, this is then displaced

and used as prediction to the input block. The resulting prediction error is then coded

and transmitted with the displacement or motion vectors (d, and d.). The decoder

uses these vectors to add the motion-compensated block from the previous frame to

the coded residual.

Different implementations of block matching differ mainly in the number of frames

used for prediction, and in the accuracy of the motion vectors. The most basic solution

is to use the previous frame only, and integer motion vectors. More elaborate schemes

use two frames (one from the past and one from the future) and fractional accuracy.

Obviously, these extensions originate extra complexity due to the need of extra frame



stores and interpolation.

2.2 Transform coding

The term transform coding is used to characterize image coders where the input signal

is transformed to a new domain, typically the frequency domain, before quantization

and entropy coding. The input image is first split into a set of blocks and a reversible

transformation is then applied to each block, mapping its pixels into a set of transform

coefficients. To achieve high efficiency, the transform operation must provide:

e maximum decorrelation between output coefficients;

e maximum energy compaction, i.e. concentration of the energy in a minimum

number of output coefficients.

Maximum decorrelation between coefficients is a desirable property because it

increases the efficiency of the scalar quantization stage that usually follows the trans-

form. As will be seen in section 2.3, a scalar quantizer cannot exploit the redundancy

between samples, which results in decreased performance when they are correlated.

However, if after the transform operation there is no correlation, each sample can be

quantized by itself, using the optimal scalar quantizer as determined by its statistical

characteristics, without significant decrease in coding efficiency.

Energy compaction is desirable because it enables the quantizer stage to quantize

accurately a few coefficients that contain most of the energy and quantize coarsely,

or even throw away, most of the others. In this way, the bit rate can be significantly

reduced without considerable degradation in image quality.



2.2.1 Karhunen-Loeve Transform

Among all the transforms [13], the Karhunen-Loeve transform (KLT) is optimal in

the sense that it provides complete coefficient decorrelation and the best energy com-

paction. The basic idea behind this transform is that complete decorrelation can be

achieved by a rotation of coordinate axes.

Consider the unidimensionala vector v = (v1 ,..., vN)T, where the vi are samples

of the input image, and A, is the covariance matrix of this vector. The element in

the ith row and jth column of A., Aij, is by definition

Aj3= E[(v - m, ) (v - m,)], (2.8)

where me is the expected value of vi. Or, in matrix representation,

AV = E[(v - m,) (v - mv)T]. (2.9)

Since, from 2.8, Aij = Agg, the matrix AV is symmetric and, therefore, has a

complete set of orthonormal eigenvectors [14]. Consider now the vector

u = Tv, (2.10)

where T is the matrix whose rows are the transposes of the orthogonal eigenvectors of

AV. The linear transformation of the vector v into the vector of transform coefficients

u defined by this matrix is defined as the Karhunen-Loeve Transform4 (KLT) of u.

From equation 2.9, with v replaced by u = T v, it is easily shown that the

covariance matrix of u, AU, is

A= TAvTT. (2.11)

3 The results presented can easily be extended to higher dimensions.

In the general case, where T is any orthonormal matrix, the operation in equation 2.10 is

designated by transform coding.



But, since T is an orthonormal matrix, TT - T-1, and 2.11 is equivalent to

Au = T Av T- 1 = diag (Au, A2 2 , ... IANN), (2.12)

i.e. the vector u has a diagonal covariance matrix and thus, from equation 2.8, its

components are uncorrelated.

From the above, it can be seen that the KLT is nothing more than a rotation of

the vectors of the basis, which spans the N-dimensional vector space of input blocks.

This can be illustrated by a simple example [15] of a block constituted by two adjacent

samples and a quantizer with 3 bits/sample. The set of the two samples can assume,

after quantization, one of the 64 values represented in figure 2.2.

Y,
8 e... :: : 8 e

7 ee .. ...... 7 .. @e ....

6 ** . ::%::: 6 e e e
4...... 0 S 4.. ..... ...

3 5 6 7 836 0 0 0 0 0

a) b)

Figure 2.2: Example of spatial decorrelation provided by transform coding. From [15].

Given the redundancy presents on a typical image, the two samples are more likely

to have identical amplitudes, which results in the high concentration of points near

the line x1 = x2 represented in figure 2.2 a). By rotating the coordinate system, from

the axes (x1 , x2) to the axes (y1, y2), the concentration of points occurs in the vicinity

of the axis yi (figure 2.2 b)), and the variables y1 and y2 become uncorrelated.

This "decorrelating effect" can be better understood from the following arguments.

In a), if the value of x1 is known, then the value of x2 can be guessed with reasonable

accuracy. On the other hand, on b), by knowing the value of y1, very little can be said



about the value of Y2. This would even be easier to see if, instead of ellipsoidal, the

shaded region were rectangular. In this case, and supposing an uniform probability

density, yi and Y2 would clearly be independent.

The energy compaction property is also exemplified in the figure. In a), the two

variables x1 and x2 have similar energy; while, in b), y1 has much higher energy than

Y2. Notice, however, that the total energy remains unchanged since only a rotation

of axes was performed.

Despite being optimal, the KLT is not used in typical applications because of its

computational complexity. This complexity is mainly due to the need of computing

the covariance matrix and associated eigenvalues for the input. The importance of

the KLT relies on the fact that, being optimal, it provides a reference to which the

performance of another sub-optimal transforms can be compared.

Various sub-optimal transforms [16] of easier implementation, such as Fourier,

cosine, Walsh-Hadamard, Haar, and Slant, have been considered for image processing.

Among them, the Discrete Cosine Transform (DCT) [17] [18] is widely accepted as

the more efficient since it achieves performance closer to the KLT, both in terms of

energy compaction and coefficient decorrelation.

2.2.2 Discrete Cosine Transform

Several slightly different definitions of the DCT have been presented in the literature.

The following one [6] will be adopted in the remaining of this thesis. Consider a set

of pixels v(n), 0 < n < N - 1. The 1-D DCT of v(n) is defined as

N-1

Cv(k) = E 2v(n) cos -k(2n + 1), 0 < k < N - 1, (2.13)
n=O 2N



mapping the N pixels of v(n) into N coefficients C,(k). From this, the original set of

pixels v(n) can be reconstructed by the inverse operation, the 1-D IDCT

1 N-1
v(n) = N Z w(k)Cv(k) cos Nk(2n + 1), 0 < n < N - 1, (2.14)

Nk=0 2

where w(k) is 1/2 for k = 0, and 1 for 1 < k < N -1. The 2-D DCT can be obtained

by separably applying the 1-D DCT in the vertical and horizontal dimensions.

From equation 2.13, it can be seen that the first transform coefficient Cv(0) is

just the average or DC value of the input vector v(n). This coefficient is, therefore,

usually designated as the DC coefficient. The other coefficients, associated with the

non-zero frequency components of the input, are designated as AC coefficients.

As referred above, the main advantage of the DCT comes from the fact that its

energy compaction and decorrelation are very close to those of the KLT. Experimental

results [13] have shown that the energy compaction of the DCT is very robust against

different characteristics of the input image, i.e. it stays very close to that of the KLT

for a large range of input statistics. This behavior is not observed for the decorrelating

property. However, since the decorrelating efficiency of the KLT is itself very sensitive

to variations of statistical properties (covariance matrix), it turns out that the DCT

is close or better than a KLT not matched to the image statistics.

Furthermore, since the DCT is based on the set of basis functions represented

in 2.13, it requires no coding overhead. On the other hand, unless a specific sta-

tistical model of the input is assumed (sacrificing optimality), the KLT requires the

transmission of the basis functions to allow the inverse transform in the decoder.

From all these factors, the possible (marginal) gain of using the KLT is not enough

to justify its increased complexity over that of the DCT. The DCT is, therefore,

unanimously accepted as the most efficient transform for image coding.



2.3 Quantization

A quantizer maps each input sample ek into one of a finite set of values5, designated by

reconstruction levels. Typically, the range of possible input values is divided into N

subsets, associated with the N possible reconstruction levels. The boundaries of these

subsets are designated by decision levels. The design of a quantizer (see figure 2.3)

consists in the determination of these reconstruction levels r,, n = 1,2,..., N, and

corresponding decision levels dn, n = 0,1,... ,N. An input amplitude ek between

dn_ 1 and dn is mapped into the output e' = r,.

output

dh.-1 da input

ek

Figure 2.3: Quantizer characteristics. d and rn are the decision and reconstruction levels, re-

spectively. An input ek between dn_ 1 and d is quantized to rn.

Usually, dn and rn are chosen to minimize a distortion measure D, which is given

D = E(eq2 ) = E[(e' - ek)2  Pe, (eko) (e' - eko) 2 deko,
k ek0=-OO

(2.15)

when the Mean Square Error (MSE) criteria is used. In this equation, pe, (eko) is the

probability density function (pdf) of the input ek.

5 In this discussion, it is assumed that each input value is quantized independently, what is known

as scalar quantization. Alternatively, when a vector quantizer is used, the same index is assigned to

a set of input values.



Since 'k = r,, for d,_ 1 < e < da, equation 2.15 can be simplified to

N deko.
1: = ekd, Pek (ekO) (rn - eko2 deko.
n=1 oOE-

(2.16)

Due to the lack of a better mathematically tractable distortion measure than the

MSE, this equation is used to determine the optimal quantizer for a particular input

pdf.

2.3.1 Optimal quantization

The minimization of D leads to a pair of equations that determines the optimal

quantizer, usually known as Lloyd-Max [19] [20], where the decision levels are the

middle points between adjacent reconstruction levels

d = rn +2rn+1, 1 n < N - 1,2
(2.17)

with do = -oo and dN = oo, and the reconstruction levels are the centroids of pe (eko)

between consecutive decision levels

_n feko=dn_, ekO pe (eko) deko < n < N. (2.18)
feko=dn_1 Pe, (eko) deko

The solution to both equations 2.17 and 2.18 is a non-linear problem. It has,

however, been solved for some common probability density functions, such as the

uniform, the Gaussian, and the Laplacian [8].

The performance of the MSE optimal quantizer is limited by two factors. First,

an accurate probabilistic description of the input is not usually available. Second, the

optimization criteria (MSE) is itself very weak in the sense that it does not takes into

account the characteristics of the human visual system. Due to these limitations, and

since the implementation of a Lloyd-Max quantizer is generally more complex than



that of an uniform quantizer, the later is usually used in practical applications.

2.3.2 Uniform quantization

An uniform quantizer is one where the distance between any two consecutive decision

levels (step-size) is constant. Consequently (see equation 2.17), the distance between

any two consecutive reconstruction levels is also constant. As can be derived from

2.18, the uniform quantizer is the optimal Lloyd-Max quantizer when the pdf of the

input is uniform.

The main attractive of uniform quantization is that it can be implemented with

a simple division of the input sample by the step-size. Moreover, it turns out that

the output of an uniform quantizer has lower entropy than that of the corresponding

optimal quantizer [4] at the cost of some sacrifice in quantization error.

This result is intuitively acceptable by the following argument. For the optimal

quantizer, the decision levels will be closer in the range of amplitudes where the input

pdf is larger, and distant in the one where the input pdf has a small value. Therefore,

the area under the pdf curve given a reconstruction level will be approximately the

same, independently of the reconstruction value. Consequently, the probability of

occurrence of the reconstruction values will be approximately uniform. On the other

hand, for an uniform quantizer, and since the decision levels are equally spaced, the

reconstruction levels associated with the regions of higher probability of the input

will be more likely than those associated with the regions of lower probability. So,

the probability of occurrence of the reconstruction levels will be peaked at the areas

of greater probability of the input. Since uniform distributions have higher entropy,

the optimal quantizer generates an output with larger entropy than the uniform one.

Due to this "low-entropy" property, the uniform quantizer can, if used with an

entropy-coding stage, provide overall coding efficiency larger than that obtainable

with the optimal Lloyd-Max quantizer. For this reason and the simplicity of im-



plementation, the joint use of uniform quantization and entropy coding is generally

preferred to the use of optimal non-uniform quantization.

2.3.3 Quantizer performance

Due to the non-linearities involved, it is difficult to establish a closed-form equation

relating the number of reconstruction levels (or equivalently, the number of bits)

of the quantizer and the distortion originated by quantization. There is, however, a

particular case for which the problem is solvable and that can be used as a reference of

performance for the general case. This particular situation is known as high-resolution

quantization, and occurs when the number of reconstruction levels is very high. When

this happens, the pdf of the input signal can be assumed to be smooth enough such

that it is constant between any two successive decision levels. If a uniform quantizer

of step-size A is used, equation 2.16 simplifies to

N rfn+A/2 N A 3

D = E p(n) ] (rn - eko) 2 deko = E p(n) , (2.19)
n=1 rn=/21

where p(n) is the value of pek(eko) for eo in [dn_ 1, dn[.

Since the probability Pn of the input being in [d,_ 1 , dn[ is, under the assumptions

stated above, approximately equal to p(n)A, after some simple manipulations of 2.19,

the total distortion is given by
A2

D 12 (2.20)

Defining the Signal to Noise Ratio (SNR) as

SNR = 10 log( ) = 10log(12 ), (2.21)

and, since
R R

A 2  (2.22)
N 21'



where .2 is the input variance, R the range of input values, and b = log 2N the number

of quantization bits,

SNR = 6.02b + C, (2.23)

with C = 10log(12U 2/R 2 ). Equation 2.23 provides a useful rule of thumb which says

that the SNR increases by approximately 6 dB per quantization bit.

As a final remark, it should be emphasized that all the analysis above is directed

to the minimization of the MSE. As has already been referred, this distortion measure

is not well suited to the properties of the human eye. An alternative approach would

be to design quantizers optimized according to subjective-fidelity criterion. Some

results of studies in this area can be found in [21] and [22], where quantizers that

limit the quantization error bellow a threshold of perceptibility of the human eye are

presented.

2.3.4 Quantization of transform coefficients

It was seen in section 2.2 that efficient coding can be achieved by the use of a decorre-

lating transform followed by quantization. The advantage of this two-step procedure

comes from the fact that distinct frequency coefficients have different characteristics

and can, therefore, be quantized with different accuracies without decrease of the

overall coding performance.

For example, it was mentioned in section 2.2.2 that the first coefficient of the

DCT of an input vector is just the mean (DC) value of that vector, while the other

coefficients represent the AC frequencies of the input. Efficient quantization of the

DC coefficient is crucial because the human eye is very sensitive to the block artifacts

(usually known as blocking effect) created by discontinuities in average luminance

between consecutive blocks. On the other hand, the AC coefficients can be quantized

more coarsely since the eye is less sensitive to degradation in areas of high activity

(such as edges).

N _ W



So, to fully explore the advantages of transform coding, it is necessary to solve

two major problems:

* how to distribute the total bit-rate between the different coefficients according

to their characteristics;

e given a desired coefficient bit-rate, how to design the best quantizer for that

coefficient.

The first problem, bit allocation, has been addressed in the literature, although

an optimal and easily implementable solution has not yet been found. Huang and

Schultheiss were the first to present a solution to this problem [23], using an approach

based in Lagrange multipliers, and showing that the optimal bit allocation should be

based on the variance of the different coefficients according to

B 1 2
b =- + - log 2  /N 1 < i < N, (2.24)

N 2 [N

where b; is the bit rate allocated to ith coefficient, B the total bit rate, N the number

of coefficients in the block, and c,? the variance of coefficient i. This equation can be

extended to take into account the perceptual importance of each of the coefficients

by introducing coefficient weights wi

B 1 wio-?
b2 = + 12 2 1/N, 1 < i < N, (2.25)

N + l2  [H 1 W 0

where Y wi = 1.

The bit allocation thus obtained is theoretically optimal but, in general, cannot

be implemented since the bi's are not guaranteed to be integer or even positive. In

practice, it is, therefore, necessary to apply an additional algorithm that reassigns

some of the bits so that these constraints are not violated. The constraint of an

integer number of bits is not a problem if quantization is followed by a variable-

length coding stage, such as the ones described in the next section. The constraint



of a positive number has, however, to be met under any circumstances.

Notice that, if a particular value of distortion is allowable for a certain coefficient

and the coefficient variance is smaller than this distortion, there is no need to code

the coefficient at all. In this case, the MSE due to this coefficient will be equal

to its variance and lower than the desired distortion. This is the principle of an

allocation technique widely used in practice: threshold coding [8]. In a threshold

coder, the amplitude of the coefficients is compared with a pre-defined threshold,

and the coefficient is transmitted only if its amplitude exceeds the threshold. This

technique is efficient because it provides an adaptive selection of the coefficients that

contain most of the energy. However, since the decoder cannot know in advance the

position of the relevant coefficients, their position has to be transmitted, originating

bit-rate overhead.

To avoid this overhead, a simpler approach, zonal sampling [8], is sometimes used.

Here, the reasoning is that, due to the energy compaction provided by transform

coding, most of the energy is always contained in a subset (generally, low-frequencies)

of the coefficients. This subset is pre-defined, and only the coefficients in it are

transmitted. Obviously, this implies a loss of efficiency when "non-standard" blocks

with significant coefficients outside the subset have to be coded.

After a suitable bit-allocation procedure is determined, the problem of quantizer

design must be addressed. As mentioned before, different coefficients have different

characteristics, which should be take into account in the design of the quantizers.

Since a transform coefficient is a weighted sum of the random variables that compose

the input vector (see equation 2.13), it would be expected from the central limit

theorem [24] that the transform coefficients were Gaussian. However, since the input

samples are not independent, this does not hold for every coefficient.

In fact, while a Gaussian or generalized Gaussian probability density is well suited

for the AC coefficients, this does not happen for the DC coefficient [13]. Since the DC

coefficient is just the mean of the input vector, its pdf is similar to that of the input



which is, for typical images, uniform. From this and the fact that the human eye is

particularly sensitive to errors in the DC component, the DC coefficient is generally

quantized by an uniform quantizer at high bit-rate (typically 8 bits).

As far as the AC coefficients are concerned, the best quantizer depends on the

existence of an entropy coder after quantization. When entropy coding is not used,

optimal Lloyd-Max quantizers (suited to the coefficient pdfs) should be chosen. In

this case, for the sake of simplicity, it is common to assume that all AC coefficients

are Gaussian and divide each coefficient by its variance before quantization. In this

way, only one quantizer optimized for a unit-variance Gaussian pdf is required, re-

ducing complexity at the cost of some overhead necessary to transmit the coefficient

variances. When entropy coding is used, and as has seen in section 2.3.2, the uniform

quantizer provides the highest efficiency and should be chosen.

2.4 Entropy coding

Entropy coding is usually the last stage of a typical image compression system, and

can be jointly used with any of the compression techniques described above.

The goal of entropy coding is to reduce the bit rate, without additional quality

degradation, by exploring the statistical properties of the signal to be coded. Accord-

ing to the information theory [25], the information contained in a symbol (which can

be an amplitude value, a transform coefficient, etc.) is a function of the probability

of occurrence of that symbol. For example, a particular amplitude value with high

probability of occurrence contains less information than one with low probability.

The average amount of information, or entropy H, originated from a source that

generates symbols from an alphabet si, i = 1,... , N, with associated probabilities of



occurrence Pi, is given by

N

H = - E Pi log 2Pi (bits/symbol). (2.26)
i=1

Equation 2.26 provides the theoretical lower bound on the average bit-rate required

to code symbols from that source and, therefore, sets a reference for the performance

of an efficient entropy coder.

The basic idea behind entropy coding is to assign long codewords to unlikely input

symbols and short codewords for the more likely ones, a process which is usually

known as variable-length coding.

2.4.1 Huffman coding

One of the most common variable-length coding techniques is Huffman coding [26],

which is optimal in the sense that it minimizes the average bit-rate. In fact, when

each symbol is coded independently, the average symbol rate T= 6 Li Pi is

H < L < H + 1 (bits/symbol), (2.27)

i.e. within 1 bit/symbol of the entropy. The algorithm used for the construction of

a Huffman code [4] involves ordering the source symbols by probabilities P, consider

them as nodes of a tree, and recursively:

e combine the two nodes with lowest probabilities, forming a new node with

probability given by the sum of the probabilities of the combined nodes;

e assign a "0" or a "1" to each of the two branches associated with the new node;

and this process is repeated until a unique node with probability one is reached. The

codeword associated with the symbol Sk can be found by, starting from the node



with probability one, following the branches necessary to reach the initial node with

probability Pk and reading the "Os" and "Is" associated with these branches.

The performance given by 2.27 can be increased if, instead of coding each symbol

independently, blocks of symbols are coded jointly. If each block has r symbols, the

bound for the average symbol rate L becomes

1
H < T < H + - (bits/symbol). (2.28)

r

From 2.28, it can be seen that, theoretically, a bit rate arbitrarily close to the

entropy H can be achieved by increasing the number of symbols coded jointly. In

practice, however, r is limited to small values to avoid long encoding delays and large

encoder buffers.

2.4.2 Arithmetic coding

A different approach to variable-length coding is arithmetic coding [27]. Here, unlike

the case of Huffman coding, there is no unique correspondence between symbols and

codewords. A sequence of k symbols is initially associated with the interval of real

numbers between 0 and 1. This association is done by breaking the interval into

k sub-intervals of size proportional to the probability of occurrence of each of the

k symbols. According to the first symbol of the sequence, the coder chooses the

sub-interval that is associated with it, and this sub-interval is then subdivided by

applying the same procedure. In this way, the size of the interval becomes smaller as

the number of symbols grows up, and the number of bits required to represent that

interval increases.

It can be show [28] that, after a large number of symbols, the number of bits re-

quired to uniquely identify the sub-interval approaches the entropy H of the source.

However, due to implementation constraints (such as the use of finite precision arith-
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metic), this theoretical bound cannot be achieved in practice.

Nevertheless, arithmetic coding represents an improvement over Huffman coding

because the implementation constraints posed to the former are less restrictive than

those posed to the latter.



Chapter 3

The MPEG-2 video standard

Traditional image compression algorithms have been based on temporal predictive

coding, where a displaced version of a region in a previously transmitted image is

used to predict a region of the present frame. Most of the state of the art coders

are based on this approach, differing in the way of handling the spatial correlation

of the prediction error signal. The best example of the state of art is the MPEG-2 1

algorithm [29] [30] [31] based on this motion-compensation loop structure, and where,

in the spatial domain, a DCT is used to remove spatial correlation before quantization

and entropy coding.

MPEG-2 is a generic standard oriented to serve a large number of applications.

It can be seen as a toolkit where, in order to satisfy the specific requirements of a

particular application, a subset of its features can be used. Each of these subsets

composes a different profile and provides a specific functionality. A profile can have

different levels, generally associated with different resolutions of the input video ma-

terial (such as SIF, SDTV, HDTV, etc.). In this chapter, we will focus on the main

level of the main profile, which was the starting point for the work developed in this

1 MPEG is the Moving Pictures Expert Group, a group of the International Organization for

Standardization (ISO) working in the creation of a standard for the compression of video and asso-

ciated audio.



thesis.

The MPEG-2 standard only specifies a bitstream syntax and associated decoder.

Some degree of freedom is left in the encoder that can be used to optimize coding

quality. Any encoder that generates a MPEG-2 bitstream will, however, have to be

based on the basic interframe predictive coding structure mentioned above.

The following sections describe in some detail the main level of the MPEG-2

video standard main profile. Section 3.1 describes the MPEG-2 syntax. Section 3.2

presents the compression algorithm and discusses its input formats (section 3.2.1),

the techniques used to achieve temporal (3.2.2) and spatial (3.2.3) decorrelation,

quantization (3.2.4), and entropy coding (3.2.5).

3.1 The MPEG-2 syntax

The MPEG-2 syntax defines a bitstream composed of five hierarchical layers, delimited

by the corresponding headers, and described as follows.

o The sequence layer defines global parameters, such as picture dimensions, frame

rate, and transmission parameters. It comprises all the information for which

these parameters are valid (for example, an entire movie).

o The picture layer comprises a single frame, defining parameters specific to that

particular frame, such as picture type, and temporal reference.

o The slice layer enables data packetization in the bitstream. The slice header

is always aligned on a byte boundary, constituting the lowest level entry point

in the bitstream in case of a loss of synchronization. It comprises a set of

contiguous macroblocks delimited by two slice layer headers.

o The macroblock layer is comprised of macroblocks. A macroblock is formed

by six blocks and constitutes the processing unit for motion estimation/com-



pensation. Several parameters specific to each macroblock, such as the mac-

roblock type and its motion vectors, are specified in its header.

e The block layer comprises 8x8 blocks of pixel data, and is the processing unit

for the DCT.

An optional layer is also defined by the MPEG-2 syntax.

e The Group of Pictures (GOP) layer provides the capability of random access

to any point of the sequence with a granularity of a pre-specified number of

frames. For example, by setting the number of pictures in the GOP to ten,

every tenth frame can be decoded without decoding the frames in between.

This hierarchical structure provides logical (random access, resynchronization, etc.)

and signal processing (motion estimation/compensation, DCT, etc.) functionality

with division of tasks between the different layers.

3.2 The MPEG-2 compression algorithm

The basic interframe-predictive coding structure, which will be from now on referred

to as the MPEG-2 encoder, is based on motion estimation/compensation, the DCT,

and entropy coding. The block diagrams of the MPEG-2 encoder and decoder are

shown in figures 3.1 and 3.2.

3.2.1 Input formats

The input video signal for an encoder of the main level at the MPEG-2 main profile

must conform to the 4:2:0 format of the CCIR 601 Recommendation [32] specifica-

tions. In particular, it must be represented in the Y, Cr, and Cb color space, where

the Y component carries the luminance information, and the Cr and Cb components
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Figure 3.1: Block diagram of a MPEG-2 encoder.
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Figure 3.2: Block diagram of a MPEG-2 decoder.

convey the chrominance information. The CCIR 601 signal is composed of 60 fields/s

interlaced and displayed at the rate of 30 frames/s 2. Table 3.1 presents the main

parameters of this input format. Several input formats that can be derived from the

CCIR 601 input and are supported by MPEG-2 are described in [32]. For the 4:2:0

format, each of the chrominance components of the CCIR 601 signal is vertically

decimated by a factor of two, originating a color representation of 240 lines by 360

pixels.

As mentioned above, all the processing performed by a MPEG-2 encoder is mac-

roblock or block-based. Each input frame is split into 8x8 blocks. A macroblock

is a set of four luminance blocks and two chrominance blocks, grouped as shown in

figure 3.3.

2 These numbers apply to the 525-lines system used in the U.S. Other countries use the 625-lines

system, also supported in MPEG-2.



Table 3.1: Input format characteristics according to the CCIR 601 Recommendation.

Y Y
Y Y1 Cbc r

D : 8x8 block

Figure 3.3: Macroblock structure.

3.2.2 Temporal decorrelation

Three types of pictures are defined by MPEG-2:

e intra pictures (I-pictures) are coded without reference to any other neighbor-

ing frames (i.e. without motion estimation/compensation), and are, therefore,

decodable on their own;

e predicted pictures (P-pictures) are first motion compensated with reference to

the most recently transmitted I or P-picture (forward prediction), and only the

prediction error is coded;

* interpolated or bidirectional pictures (B-pictures) are motion compensated with

reference to both a past and future I or P-picture.

Number of active lines

luminance (Y) 480

chrominance (Cr, Cb) 480

Number of active pixels per line

luminance (Y) 720

chrominance (Cr, Cb) 360

Frame aspect ratio (hor:ver) 4:3



Input frames are usually grouped into GOPs that always start with an I-picture

and may contain any number of P and B-pictures (see figure 3.4), depending on the

requirements of the application. The number of P and B-pictures is usually described

by two parameters: N, the number of pictures in the GOP, and M, the number of

B-pictures between consecutive P-pictures plus one.

forwil predition

I B B P B B P B B I

liin~ctioWA pred2ctioa

GOP (Group of Picturs) - 15 frmes

Figure 3.4: The GOP structure. In this example, N=15 and M=3.

Since the coding of each B-picture requires motion compensation with reference

to a future I or P-picture, the concept of transmission order, as opposed to display

order, was introduced in MPEG. Display order is the one that corresponds to that

of the input frames. For transmission, all the pictures that are used as a references

for motion compensation of a B-picture are sent before that B-picture. An example

of these orderings for the case of a 9-frames GOP (N = 9) is:

display order:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 ...

I B B P B B P B B I B B P B B P B ...

transmission order:

1 4 2 3 7 5 6 10 8 9 13 11 12 16 14 15 19 ...

I P B B P B B I B B P B B P B B I ...



Temporal decorrelation is achieved in P and B-pictures by motion estimation/com-

pensation. Motion estimation is performed only by the encoder, and as such is

not subject to standardization. Some of its parameters are, however, common to

motion compensation, which is both an encoder and decoder operation, and are

defined by MPEG-2. These parameters are half-pixel accuracy for motion estima-

tion/compensation, and the definition of the macroblock as the processing unit for

motion estimation/compensation.

Two motion estimation/compensation modes are defined by MPEG-2 for both

P and B-pictures: field MC and frame MC.

9 In the field MC mode, there are two motion vectors associated with each mac-

roblock. Macroblock rows belonging to the same field are motion compensated

by the same vector. In this way, pixel rows from any of the two fields in the

current image can be predicted from pixel rows from any of the two fields in

the previous one.

* In the frame MC mode, there is only one motion vector, which is applied to all

the pixel rows within the macroblock.

The reasoning behind the existence of two distinct modes is that, in areas of fast

motion, the two fields (which are temporally spaced by 1/60 seconds) may require

two different motion vectors for accurate prediction. However, when there is small or

no motion at all, or with progressive material, the second vector is not needed and

its transmission would imply unnecessary overhead.

In addition to these two modes, a third motion estimation/compensation mode

is also allowed in P-pictures: dual prime MC. In this mode, only one vector v and

two differentials di and d2 (restricted to values of 0 and t1/2) are transmitted by

macroblock, but the prediction for the rows of each field is actually obtained using

two displacement vectors, and a total of four motion vectors is emulated without the

cost of significant increase in overhead. These four motion vectors are obtained from



v, di, and d2 as described by table 3.2.

Table 3.2: Motion vectors for dual prime MC.

The constants a and # are defined to appropriately scale v according to the tem-

poral distance between fields. Once the motion vectors are computed, the prediction

for the lines of the first field is obtained by averaging the predictions associated to

vn and v12, and that for the lines of the second field by averaging the predictions

associated with V21 and v22. In this way, dual prime MC tries to combine the higher

flexibility of field MC with the reduced overhead inherent to frame MC to achieve an

overall higher efficiency.

In addition to these different motion estimation/compensation modes, a mac-

roblock from a P or B-picture can have one of several types.

" P-picture macroblocks can be coded as intra, if no motion compensation is

performed, or inter, if there is motion compensation.

" B-picture macroblocks can also be classified in the same way. Additionally, if

classified as inter, they can be:

- forward predicted if only a previous frame is used for prediction;

- backward predicted if only a frame from the future is used for prediction;

- interpolative predicted if both a previous and a future frame are used for

prediction.

reference field predicted field

of reference frame of predicted frame motion vector

first first on = v

second first V12 = av + di

first second V1= #v + d2

second second v22 = v



In the interpolative case, the prediction macroblock is obtained by linear inter-

polation (typically, averaging) of the past and future macroblocks.

The decision criteria to choose the prediction mode is not standardized by MPEG-2.

However, a common procedure is to compare the energy of the prediction error ob-

tained with all the modes and select the mode which minimizes this energy. If this is

still greater than the energy of the original macroblock, the intra mode is preferred.

3.2.3 Spatial decorrelation

The spatial correlation existent in the input blocks in I-pictures and in the prediction

error residuals in P and B-pictures is minimized by applying a 2-D 8x8 DCT.

Two DCT coding modes are defined by MPEG-2: frame DCT and field DCT.

These two modes differ in the ordering of pixel rows within a luminance macroblock

(chrominance macroblocks use only the frame mode), as shown in figure 3.5. The

motivation behind this is to perform the DCT on blocks with maximum correlation

between rows in order to achieve higher coding efficiency. Whenever there is motion,

adjacent rows of a block (that belong to different fields) have low vertical correlation,

and the decorrelation provided by the DCT is higher if rows of the same field are

grouped together. On the other hand, when there is no motion, the correlation is

highest between adjacent rows and the frame mode is more efficient.

3.2.4 Quantization

The use of both motion compensation and DCT minimizes the correlation between

samples of the original sequence of images. Neither of these techniques provides,

however, compression to the desired bit-rate. In MPEG-2, this is achieved by the

quantization and entropy coding stages, described in this and in the next section.

After DCT, intra and non-intra blocks present different characteristics.



Frame DCT
mode

Field DCT
mode

Figure 3.5: Luminance macroblock organization in frame and field DCT coding modes.

* Intra blocks have considerable low-frequency energy content. A fine quantization

of its DC coefficient is, therefore, needed to avoid the "blocking effect", described

in section 2.3.4.

9 Non-intra blocks have predominantly high-frequency energy content, and do not

require any special treatment of the DC coefficient.

In MPEG-2, quantization is performed in two stages. A fixed quantization matrix,

selected according to the block type, is first applied to the entire block. Then, uniform

scalar quantization is performed on each of the block coefficients.

The reasoning behind the first stage is to explore the characteristics of the human

visual system, which is less sensitive to quantization noise in regions of high-frequency

content. For the same overall quantization noise, higher subjective quality can be

obtained with a weighted distribution of this noise into different frequency ranges. In

MPEG-2, this is achieved with quantization matrices that quantize more coarsely the

high-frequency coefficients.

Two quantization matrices are defined: one for the quantization of intra mac-
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roblocks, and another for the quantization of inter macroblocks. Typically, the intra

quantization matrix is more slanted, originating coarser quantization of the high-

frequencies; in contrast to the inter one, where a more uniform quantization is per-

formed. This is due to the fact that, since the prediction-error signal is by nature

high-pass, the high-frequency information is more important in predictive frames

than in intra ones. Also, to avoid the "blocking effect" above mentioned, no intra-

quantization matrix value is defined for the DC coefficient.

The reasoning behind the second quantization stage is to adapt the quantization

to the varying characteristics of the input signal. Associated with each macroblock,

there is a macroblock quantizer (mquant) which is applied to all the coefficients in

the macroblock. The only exception to this rule are the DC coefficients of intra

macroblocks, which are always quantized with 8 bits.

The variation of quantization step-size, provided by the mquant, allows the control

of the output bit-rate. In fact, mquant is the only mechanism within MPEG-2 that

provides rate-control functionality, i.e. the necessary adaptation between the bit rate

generated by the encoder and the one supported by the transmission channel.

3.2.5 Entropy coding

After quantization of the DCT coefficients, these are ordered according to one of the

zig-zag scanning patterns shown in figure 3.6: the pattern a) is generally used for

progressive sources; while the pattern b) is more suited for interlaced material. The

goal of this coefficient ordering is to maximize the length of runs of zeros originated

by quantization.

The resulting array of coefficients is coded using a run-length/amplitude scheme.

Starting from the first position in the array, the encoder counts the number of con-

secutive zeros until the next non-zero coefficient. The zero count (run-length) and

the amplitude of this coefficient are Huffman-coded and transmitted.
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a) b)

Figure 3.6: Zig-zag scan patterns for the 8x8 transform coefficient blocks.

Apart from the DCT data, most of the side information originated in the encoding

process is also Huffman coded before transmission. In particular, motion vectors and

DC coefficients of intra macroblocks are DPCM coded to remove some remaining

correlation, before the entropy coding stage.



Chapter 4

The 2-stage coding algorithm

This thesis addresses the problem of efficient coding of video material recorded off-

line, i.e. before the start of the encoding procedure, in a way such that it can be made

available to different users according to their different qualities requirements.

This type of material is very common, particularly in television broadcast appli-

cations where a significant portion of the transmission time is allocated to previously

recorded footage, such as movies, documentaries, etc. In addition to being common,

these applications present specific characteristics that can be exploited to achieve

high-coding efficiency. In particular, they are suited to the use of multiple-pass en-

coding techniques where the entire footage (or parts of it) is first globally analyzed,

and the characteristics thus revealed used in the subsequent encoding stages.

To understand more clearly the specific characteristics of these type of applica-

tions, consider the following scenario: a previously stored sequence of images (for

example, a movie) is to be transmitted for different users. Suppose that the footage

is stored digitally (in some kind of digital equivalent to a VCR tape), and the users

are equipped with decoders of different complexities (capable of decoding different

bit rates and, therefore, providing different image qualities).

A simple solution to this problem would be to use various MPEG-2 encoders at



different bit rates, working in parallel. Obviously, this approach would require the

multiplication of the encoding power by the number of rates desired. Also, enough

storage space should be available to keep the entire raw footage. Clearly, this is

not a good solution since, by pre-processing the image data, this storage space and

complexity requirements can be reduced.

This thesis presents an algorithm capable of achieving reduced storage and com-

plexity with increased coding efficiency through the application of a 2-stage encoding

procedure, whose block diagram is shown in figure 4.1.
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Figure 4.1: Block diagram of the 2-stage coding scheme.

In this coding scheme, the first stage has a double purpose. First, it is responsible

for the analysis of the footage as a whole, or at least by considering a set of significant

frames at each time, in order to obtain characteristics such as local activity, the

location of frames that are particularly hard to code (like scene changes), etc. Second,

it provides an intermediate representation of the video data which requires reduced

storage capacity, while maintaining the data integrity.

The second stage uses the footage characteristics collected in the first one to

achieve high-coding efficiency. This stage provides larger compression ratios at the

cost of loss of data integrity.



The functionalities associated with each stage are implemented through the appli-

cation of the image coding techniques discussed in chapters 2 and 3. In the first stage,

the input sequence is first motion compensated, and the resulting motion-vector field

stored. The prediction-error signal is then losslessly encoded providing, together with

the motion-vector field, the intermediate representation referred above. Global infor-

mation about the footage, which will be used in the second stage, is also acquired

in this stage. The second stage consists of a bank of MPEG-2 based encoders (re-

coders), operating at different bit rates, and using the motion-vector field previously

stored as well as the enhancements provided by the prior knowledge of the footage

characteristics.

The following sections describe in more detail each of the different blocks that

compose the block diagram of figure 4.1. Section 4.1 presents the motion-estimation

procedure used in the first stage. Section 4.2 discusses the lossless encoding of the

prediction error signal. Section 4.3 describes the methods used to extract the footage

characteristics. Finally, section 4.4 presents the re-coder stage.

4.1 Motion estimation

It was seen in section 2.1.2 that motion-compensated predictive coding is a power-

ful technique for the minimization of the temporal redundancy existent in a video

sequence. This technique was, therefore, chosen to achieve temporal decorrelation;

and, since compatibility with MPEG-2 was desired, the block-matching procedure

also described in section 2.1.2 was selected to perform motion estimation, based on

the MPEG-2 GOP structure with I, P, and B-frames.

Motion estimation can be performed between original images, i.e. before coding

takes place, or between the input original image and the previously coded one. Using

the originals, the estimation is more accurate, originating motion vectors that are

closer to the real motion of the input sequence. Using the previously coded image,



the estimate is less accurate, resulting in the appearance of motion vectors that do

not fully recreate the original motion, but the prediction error is minimized.

In general, the two approaches originate roughly equal results, and the best perfor-

mance depends on the application. For example, motion-compensated interpolation

requires an accurate reproduction of the motion-vector field and the use of the original

images; while, for coding applications, it is more important to minimize the energy of

the prediction-error signal. In this case, it is more appropriate to use the previous re-

constructed frame for prediction. However, by using the originals, the motion vectors

will be the same, independently of the transmission bit rate and coding quality.

In the case of a 2-stage encoder, this independence of the bit rate makes it pos-

sible to perform the motion estimation once, in the first stage, and use the same

motion vectors for all the different rate encoders of the second stage. Since motion

estimation is typically the more expensive encoding step, this provides extremely sig-

nificant computational savings when compared to the use of various MPEG-2 coders

in parallel.

x x x

* 0 0 OV

Figure 4.2: Two-step motion estimation. vi and Vh are the integer and half-pel motion vectors,

respectively, and v is the resulting motion vector. The half-pel samples (x) are obtained by linear

interpolation of the neighboring pixels.

In this work, the motion estimation was implemented with half-pixel accuracy. In

order to reduce the computational load, the two-step procedure exemplified in fig-

ure 4.2 was employed. First, the best match with integer-pel accuracy is found by the



exhaustive search on a window of pre-specified size. Then, the half-pel motion vector

refinement is found through a search in a window of ±1/2 pixel in each dimension,

centered on the position of that best integer-pel match. The samples associated with

half-pel displacements are obtained by linear interpolation.

4.2 Lossless and nearly-lossless coding

It was already mentioned that the simpler solution to the problem addressed by this

thesis would be to start from a digital representation of the data, and apply several

coders in parallel. It was also seen that this would result in an unnecessary replication

of the computational resources required and, therefore, totally inefficient.

In addition, it would require the storage of the entire digital footage without any

compression, which would also lead to inefficient use of the available storage resources.

This aspect is particularly important due to the large amount of memory required

to store digital video sequences of considerable duration. For example, the storage

of a 2 hours-long digital movie with 30 frames/s, CCIR 601 resolution (480 lines

of 720 pixels), and 24 bits/pixel would require a storage capacity of approximately

224 Gbytes.

Since the bit rates and coding qualities provided by the second stage are not known

in advance and should be set by the user, the intermediate representation should be

able to allow up to perfect reconstruction. Therefore, the coding techniques applied

in the first stage should belong to the class of lossless encoding techniques.

The lossless coder implemented is based on predictive coding. As in MPEG-

2, the coded frames are divided in three groups according to the type of motion-

compensated prediction used for their encoding: I, P, and B-frames. However, a

significant difference to MPEG-2 is that, in a lossless scheme, the DCT cannot be

used for spatial decorrelation due to the requirement of finite-arithmetic precision

characteristic for its practical implementation. Consequently, a different approach



was required for the encoding of I-frames, and the motion-compensated prediction

error in P and B-frames.

In I-frames, and since the DCT is not used, there is no need for a block or even

a macroblock layer. The smallest processing unit considered is a picture slice of 16

by 720 pixels. This processing unit provides a trade-off between coding efficiency

and capacity to recover from errors originated by the storage media. The lossless

coding algorithm used is based on intraframe prediction using the predictor shown in

figure 4.3.
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Figure 4.3: Intraframe predictor used in I-frames. a) Basic predictor structure: x is the pixel to

be coded, and a and b are previously coded pixels. b) Predictor used as a function of location in the

slice.

With this predictor, for a given pixel x to be coded, designating by b the previous

pixel in the same line and by a the pixel immediately above, the prediction p of x is

given, outside the slice boundaries, by

a + b (4.1)
2

In the first line of the slice, p = b; and, in the first column of the slice, p = a. The

predictor is initialized in the first pixel of the slice with the value of p = 128. In this

way, the propagation of any storage errors is limited to one slice.

This predictor was chosen according to the results presented in [33], where the

performance of intraframe encoding with several different third-order predictors, us-

ing contiguous pixels from the same and previous lines, was compared. As it was



already referred in section 2.1.2, the use of predictors of order greater than three

does not provide any significant coding gain, and so such types of predictors were not

considered.

The prediction error ep, given by

e,= x - p, (4.2)

is Huffman-coded using the table provided by MPEG-2 [29] for the predictive encoding

of the DCT DC-coefficients in intraframes.

In P and B-frames, and due to the block-based nature of the motion-estimation

procedure used (block matching), the smallest processing unit of the lossless encoder

is a block of 16 by 16 pixels. For each block, a spatial decorrelation operation similar

to that used at the slice level on I-frames is applied to the temporal prediction error

signal. Those blocks for which the motion estimation is not efficient are classified as

intrablocks and, for these blocks, the temporal decorrelation operation is applied to

the image pixels. The prediction error residuals are encoded with the Huffman table

referred above.

The requirement of preserving the data integrity and the use of lossless coding

techniques limits the achievable compression ratios to values around 2:1. Due to

the massive storage requirements referred above, this performance boundary can re-

sult in insufficient compression. To achieve higher compression ratios, an alternative

approach, based on MPEG-2, using the DCT and high-rate quantization was also

considered. This nearly-lossless mode is acceptable if the distortions introduced are

bellow the threshold of visibility of the human eye, resulting in reconstructed im-

ages that are visually indistinguishable from the originals. In this case, the coding

performance will be satisfactory for the greater majority of the common users.



4.3 Footage characteristics

In addition to providing a losslessly compressed intermediate representation of the

digital data, the first encoding stage performs two functions that are useful for an

efficient operation of the second encoding stage. The first of these functions is the

computation of the motion-vector field that, as seen above, greatly simplifies the

implementation of each of the second stage re-coders. The second function consists

in the gathering of information about the input footage that is used to increase the

efficiency of the second stage.

As discussed in chapter 2, image coding techniques are based on statistical models

because the content of the data to compress is not known in advance and is, therefore,

best modeled as a stochastic process. Although this still remains true in the case of

the 2-stage encoder here described (otherwise there would be no real transmission

of information, at least in the sense of its definition by Shannon), it is possible to

extract, during the first stage, global information that characterizes the footage and

to tailor the encoding of the second stage according to this information in order to

achieve higher efficiency.

In the 2-stage encoder implemented, this tailoring of the encoding of the second

stage to the footage characteristics is obtained through the following mechanisms:

9 initialization of a new GOP in the location of scene changes or frames that are

particularly difficult to code;

e the use of preload coding;

* an improved rate-control based on the bit distribution associated with the loss-

less/nearly lossless coding stage;

which will be discussed in detail in sections 4.3.1, 4.3.2, and 4.3.3, respectively.



4.3.1 Processing of hard to code frames

A hard to code frame is defined in the present context as a frame for which the

prediction fails, originating a prediction-error signal with large energy that is difficult

to encode. The reason for a frame to belong to this category is the result of a mismatch

between the underlying coding model associated with the coding algorithm, which

assumes mainly translational motion from frame to frame, and the content of the

input sequence. There are several different causes which can lead to this mismatch,

namely large areas of object newly revealed or occluded, the existence of strong non-

translational motion, or simply the occurrence of a scene change.

Whenever a hard to code frame occurs, the use of motion-compensated prediction

results in both large prediction errors and a highly non-smooth motion-vector fields.

The possibility of encoding blocks of P and B-frames as intra blocks attenuates the

effect of the large prediction errors. The lack of smoothness of the motion-vector

fields remains, however, a problem and leads in general to a poor performance than

the obtained if the entire frame were coded as an I-frame from the beginning.

In addition, since the GOP structure implies a periodicity for I-frames, it is likely

that an I-frame occurs in the vicinity of this hard to code frame. Since I-frames

are expensive, this would result in a bad distribution of I-frames and, consequently,

a decrease in coding efficiency. This problem can be minimized by classifying each

hard to code frame as an I-frame and, simultaneously, re-initializing a new GOP.

The "degree of coding difficulty" of a P or B-frame is measured, during the motion

estimation operation, using the following algorithm.

o For each macroblock, the energy of the motion-compensated prediction error

is compared with that of the original pixel amplitudes in the macroblock. If

the prediction error has smaller energy, the macroblock is classified as inter;

otherwise, it is classified as intra.

o If the number of intra macroblocks in the frame is greater than the number of



inter macroblocks:

- in the case of a P-frame, this is coded as intraframe, and a new GOP is

started;

- in the case of a B-frame, this is coded as interframe (as would be usual) but

using only backward prediction, the next P-frame is coded as intraframe,

and a new GOP is then started.

e Otherwise, the frame is not considered as hard to code, and the usual procedures

are used.

Obviously, if a hard to code frame coincides with an I-frame, no special action takes

place.

This procedure provides a reliable detector of hard to code frames without any

significant computational overhead since the macroblock classification would have to

take place anyway. The only possible problem originated by this approach would be

the existence of several hard to code frames in succession, resulting in several GOP

re-initializations and, consequently, an increase in overhead and in the complexity of

the rate control. Such a situation could be prevented by the introduction of a lower

limit in GOP size. However, and since it was never verified in the several simulations

performed, this limitation was not introduced.

4.3.2 Preload coding

As mentioned in the previous section, the underlying coding model associated with the

coding algorithm can be inappropriate in some occasions, originating frames that are

hard to code. In result, to maintain a constant coding quality, an encoding algorithm

should be capable of allocating a variable number of bits per frame depending on the

coding complexity. In particular, hard to code frames require a much larger number

of bits than average frames. It would be desirable to distribute that large number of



bits by a large number of surrounding frames in order to avoid degradation in quality

imposed by the limitation in the number of bits per frame associated with a fixed-rate

channel.

Although this can, in part, be done with a rate-control mechanism using channel

buffers, the hard to code frames always present a problem due to the large ratio

between the number of bits required by them and that required by common frames.

The distribution of this peak would require a large number of frames and, therefore,

a large channel buffer, introducing large encoding delays. In practice, such delays

are not tolerable, and common decoders avoid the problem by allocating less bits to

these hard to code frames, allowing some quality degradation and relying on the fact

that the human eye is in general less sensitive to distortion in them. Such a solution

fails, however, not only to maintain the quality during these active periods, but also

originates poor prediction for the frames that follow them.

An alternative solution to this problem, only possible to implement with a two-pass

encoder, is the use of preload coding. Preload coding consists in transmitting, during

low activity periods or even prior to the begging of transmission, stills corresponding

to high activity periods. These stills are used by the decoder as the basis for prediction

when these high-activity periods occur, resulting in increased coding quality. This

technique is particularly suited to use with the method of processing hard to code

frames described in section 4.3.1 since, with that method, these frames are coded in

intramode, i.e. can be coded on their own.

An example of preload coding is represented in figure 4.4. In this case, a scene

change occurs in the tenth frame. If the first and tenth frame are coded (as in-

traframes) and transmitted before of the start of the "regular transmission", they

can be used in the decoder for more accurate prediction.

In the 2-stage coder, preload coding was implemented by creating an additional

bitstream of reduced size, incorporating all the hard to code frames. This bitstream

should be downloaded by the user before the start of the transmission, and stored
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Figure 4.4: Example of preload coding.

locally in disk. As the transmission progresses, the required hard to code frames are

decompressed into RAM memory, and used as needed.

This method requires the existence of memory in the decoder in the form of hard

disk. The memory requirements are, however, within reasonable limits as pointed out

by some simple calculations indicating that, for a 10 Mbits/s rate, a 80 Mbytes disk

unit would be capable to store approximately 2,000 frames. Although no attempt

was made to encode an entire movie, this number of frames seems capable of holding

at least the majority of scene changes. The downloading time for such a bitstream

would be of approximately one minute.

An alternative solution, avoiding the requirement of a dedicated hard-disk, con-

sists in the use of a CD-ROM for the storage of the additional bitstream. This

CD-ROM could be provided to the user in advance of the broadcast, with the ad-

vantage that a much larger number of frames could be incorporated in the preloaded



bitstream.

4.3.3 Improved rate-control

It was already seen that different input frames have different amounts of activity. To

maintain a constant encoding quality, an efficient coding algorithm should have the

capability of assigning different number of bits to different frames. This is particularly

true in the case of a MPEG-2 encoder due to the different type of encoding applied

to distinct frames.

The ability to achieve a variable bit-allocation can only be obtained through the

use of a channel buffer and a rate-control algorithm that, by introducing some feed-

back from the state of this buffer into the coding procedure, is able to maintain the

instantaneous bit-rate within the bounds imposed by the transmission capacity.

As referred in section 3.2.4, rate control is performed in a MPEG-2 encoder by

varying the value of the macroblock quantizer (mquant). A typical rate-control algo-

rithm starts by defining a target number of bits for each frame, and then dynamically

updates the macroblock quantizer in a way such that the number of bits generated to

encode the frame is as close to the target as possible. For efficient performance, the

mquant should be updated taking into account not only the state of the transmission

buffer, but also the local activity of the picture.

For a standard MPEG-2 encoder, and since no information about the footage is

known in advance, the target number of bits per frame is set in a linear fashion,

i.e. attributing to each frame of the same type (I, P, or B) the same number of

bits. Obviously, this kind of distribution cannot take into account local variations of

activity and can lead to inefficient performance. For example, on a GOP where strong

motion occurs during the first frames and then nothing happens during the remaining

frames, a linear distribution of bits as described above is clearly sub-optimal.

On a 2-stage encoder, the knowledge of the footage characteristics acquired during



the first encoding stage (which, being lossless, does not require any rate control) can

be used to achieve an improved bit-allocation in the second stage. In fact, the lossless

encoding can be considered as a first pass where information about the number of bits

necessary to code each frame (based on the particular characteristics of this frame)

is collected.

In principle, the number of bits necessary to losslessly encode each frame is pro-

portional to the difficulty associated with that frame. If the target distribution of

the second stage is made proportional to the natural distribution of bits of the first

stage, it will be possible to achieve a smoother quality variation from frame to frame

than that achievable with a linear target strategy.

An example of such a linear strategy is the mechanism for the distribution of bits

between frames defined in the MPEG-2 Test Model [29]. The target number of bits

for the next picture (I, P, and B) in the GOP is computed, using only the available

knowledge about previously transmitted frames, by the following equations:

T .R (4.3)
X1Kp X1KB

Ty= 1 Nnpn.R (4.4)TP NP + NRKPXRR(4)
XpKB

TB 1
NB - NKXp .R, (4.5)

XBKP

where R is the remaining number of bits in the GOP. X 1 , Xp, and XB are complexity

measures defined by:

XI = S1Q1 , XP = SpQp, XB = SBQB, (4.6)

where S1, Sp, and SB are the number of bits generated by encoding the previous

respective frame; and Q1, Qp, and QB are the average quantization step-size for

all the macroblocks in that frame. KP and KB are constants dependent on the



quantization matrices. R is defined, at the beginning of the GOP, as the average

number of bits per frame (obtained by dividing the bit rate by the frame rate) times

the number of frames in the GOP, and is updated after the encoding of each picture

by:

R = R - SI,p,B, (4.7)

where SI,PB is the number of bits generated in the I, P, or B picture just encoded.

Finally, Np and NB are the number of P and B-frames remaining in the current GOP.

Clearly, this strategy assumes an equal distribution of bits by the future frames

of the same type in the GOP, introducing only weighting factors when considering

the influence of frames of different types. This is a wise decision since, in the absence

of information about future frames, we might as well assume an equal distribution of

bits between frames of the same type.

It is not wise, however, in the case of a 2-stage encoder since here the first stage

makes available information about future frames, which can be exploited to achieve

an improved rate-control in the second stage. Such a rate control was implemented

in this work by considering that, for a given bit rate, a nearly constant image quality

can be achieved if the number of bits allocated to each frame of the same type is

proportional to the number of bits required for its lossless encoding. The reasoning

behind this assumption is that the number of bits necessary to encode each frame

in the first stage is a measure of the difficulty associated with that frame; and, for

constant quality, the target number of bits allocated to each frame in the second stage

should be proportional to this difficulty.

The 2-stage rate control was implemented as follows. Considering frm-bits[k] as

the number of bits required to encode the frame k during the first stage, gop-bits the

number of bits spent on the lossless encoding of the GOP to which frame K belongs,

and cum-bits the number of bits required to lossless encode all the frames in the GOP

up to frame k, the target number of bits for the second-stage encoding of frame k (I,



P, or B) is determined by:

TI,p,B[k] = wfrmbits[k] .R (4.8)
gop-bits - cum-bits

where R is the number of remaining GOP bits as defined above, and wI,pB are

weighting factors introduced to compensate the effect of the different quantization

matrices applied to different picture types1 :

wI = 1.6, wP = 1.3, wB =_ 1. 0. (4.9)

The idea behind equation 4.8 is that the target TI,P,B[k] must be proportional to

frm-bits[k], and the constant of proportionality the ratio between the remaining bits

in the GOP of the lossy encoder (second stage) and that of the lossless encoder (first

stage).

This target strategy is capable of providing a totally non-linear bit allocation if

such is required by the footage characteristics. For example, if the complexity of

the first frame is such that it required 50% of the total number of the GOP bits in

the first stage, the target set for the second-stage encoding will also be 50% of the

available GOP bits. If a linear strategy, such as the described by equations 4.3 - 4.5,

were applied, this frame would receive approximately 7% of the GOP bits (assuming

a 15-frames GOP). On the other hand, if a linear allocation is required by the footage

characteristics, it can also be easily achieved with the new rate-control algorithm.

Once the targets are determined, the computation of the actual macroblock quan-

tizers (mquants) is carried out according to the equations provided in the MPEG-2

Test Model, taking into account both the fullness of the transmission buffer and the

local picture activity.

1 The values of these weighting factors are optimized for rates bellow 10 Mbit/s. A different set

of values may be required for higher rates.



4.4 Re-coder stage

The re-coder stage is constituted by a bank of MPEG-2 based encoders, operating

at different bit-rates, and using the previously stored motion-vector field and the

enhancements provided by the knowledge of the footage characteristics acquired in

the first stage. The block diagram of one of the re-coders used in this stage is shown

in figure 4.5.
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Figure 4.5: Block diagram of the re-coder.

As in MPEG-2, each re-coder uses interframe motion-compensation in the tempo-

ral domain (in the case of P and B-frames), and the DCT followed by uniform scalar

quantization and variable-length coding in the spatial domain (as described in detail

in chapter 3). The motion-vector field already computed in the first stage is used by

the motion-compensated predictor and multiplexed into the bitstream originated by

the second stage. The footage characteristics, also collected during the first stage, are

used to improve the encoding of "hard to code frames" (as discussed in section 4.3.1),

in the formatting of the preloaded bitstream (section 4.3.2), and in the rate-control

mechanism applied in the re-coder (section 4.3.3).

In a practical implementation of this type of 2-stage encoding, two different con-

figurations can be considered. These configurations differ only on the second stage,



which can be totally distributed or concentrated in a unique broadcast unit.

In the distributed configuration, one re-coder is allocated to each user. In this

way, the user will have complete control over the transmission bit-rate. Since the

motion estimation and part of the decision making involved in the encoding pro-

cess are performed on the first stage, the implementation of each re-coder will be

only slightly more expensive than that of a standard MPEG-2 decoder, making this

solution economically viable.

In the centralized configuration, a unique broadcast unit composed by a bank of

re-coders covering a pre-specified range of transmission bit-rates feeds all the users.

In this case, the user will only have the possibility of choosing one of the pre-specified

rates, but the system will be less expensive.



Chapter 5

Simulation results

This chapter presents simulation results of the experiments performed to determine

the efficiency of the 2-stage encoder, described in the previous chapter, and some

of its implementation parameters. These experiments were performed with several

CCIR 601, 30 frames/s, input sequences.

Since there was no intention to optimize the algorithm to handle interlaced inputs,

most of the experiments were performed on three progressive sequences from the

"Sharky's machine" movie. These sequences are representative of several types of

scenes, ranging from those composed by a few human figures moving slowly until

those composed by a vast number of objects subject to different types of fast motion.

Interlaced sequences were also used whenever it was thought that interlace might

affect significantly the coding performance. This situation was not very frequent be-

cause, although no new features to handle interlace were introduced in the algorithm,

the ones already existing in MPEG-2 were maintained in the 2-stage encoder.

In all the experiments run, the simulation results were analyzed both subjectively

(by comparing original and reconstructed images) and objectively. The distortion

metric chosen for objective evaluation was the Mean Squared Error (MSE) defined



MSE = N Z (xi - sij) 2 , (5.1)
i~JER

where N is the number of image pixels, i and j the pixel coordinates, R the image's

region of support, xi; the amplitude of the pixel ij in the original image, and sig
the correspondent amplitude in the reconstructed image. Objective results are also

presented in the form of the usual Signal to Noise Ratio (SNR) defined as

SNR = 10 log 2552 (5.2)
MSE

The performance of the first encoding stage is analyzed in section 5.1. Section 5.2

presents the results of the experiments performed to optimize the efficiency of the mo-

tion estimator implemented. The efficiency of the features introduced in the second

encoding stage (processing of "hard to code frames", preload coding, and improved

rate control) is discussed in section 5.3. Finally, section 5.4 presents an overall com-

parison between the efficiency of the 2-stage encoder and that of a standard MPEG-2

encoder.

5.1 First-stage encoding experiments

The bit rate required for the storage, without any compression, of a CCIR 601 4:2:0

input sequence (with 704 by 480 pixels) is

RcCR-1601 = 704 x 480 x 1.5 x 30 = 121.65 Mbit/s.

To evaluate the performance of the lossless encoding algorithm, this algorithm

was run on several 100 frames input sequences, originating the results presented in



table 5.1. The compression ratio comp, defined by

RcCIR-601
comp = R

where R is the bit rate achieved with the lossless algorithm, was chosen to measure

the performance obtained in the first stage.

Table 5.1: Performance of the lossless encoding algorithm for different input sequences.

The efficiency of the lossless encoder is approximately constant for the three pro-

gressive "Sharky" sequences, and slightly inferior for the remaining two interlaced

sequences. This is a consequence of the lack of optimization of the spatial predictor

to handle interlaced inputs. The decrease in efficiency is, however, small (approxi-

mately only 4.5 %); and, in average, the lossless encoder achieves a compression ratio

of

compv = 1.826.

This value could be improved by further optimization of certain encoding pa-

rameters, such as the replacement of the Huffman coder by a slightly more powerful

arithmetic coder, or the introduction of more elaborated spatial predictors (for exam-

ple, an adaptive structure where each predictor is selected based on the local activity).

However, the gains to be obtained with these improvements would not be substantial

since they would probably not exceed 5 to 10%, leading to the empiric bound of 2:1

characteristic of the best known lossless encoding techniques for the compression of

Sequence R (Mbit/s) comp

Sharky (frame 0 to 100) 65.1 1.87

Sharky (frame 100 to 200) 66.3 1.83

Sharky (frame 200 to 300) 64.7 1.88

Mobile & Calendar 68.2 1.78

Flower Garden 68.4 1.77



noiseless data, such as computer files, text, etc.

However, even if this bound were satisfied, the resulting compression would be

insufficient for several applications. For example, with 2:1 compression, a 2 hour-long

movie would still require approximately 55 Gbytes of storage. Significantly larger

compression ratios cannot be obtained with lossless coding, and it is necessary to

allow some loss in the data integrity to achieve them.

As referred in section 4.2, an acceptable solution for this problem is to use MPEG-

2 encoding with high-rate quantization (nearly-lossless encoding) in the first stage,

and assuring that the distortion introduced is bellow the threshold of visibility of the

human eye.

R (Mbit/s)

65.00

60.00

55.00

50.00

45.00

40.00

35.00

30.00

25.00

20.00

15.00

10.00

0.00 5.00 10.00 15.00

R_(d)

MSE
20.00

Figure 5.1: Rate-distortion curve for MPEG-2 with high-rate quantization.

An experiment was performed to determine this threshold, and correspondent

bit rate, by running the MPEG-2 encoder at different bit rates and observing the

associated degradation in picture quality. The rate-distortion curve of figure 5.1 was

obtained as a result of this experiment.

Figures 5.2 and 5.3 present two reconstructed frames of the "Sharky" sequence and

corresponding coding errors obtained by running the MPEG-2 coder at 10, 15, and



20 Mbit/s. These two frames are those for which the objective coding performance

(MSE) is the lowest among all the 300 frames in sequence. This is, therefore, a worst

case situation for performance analysis.

It was observed that, even on a display device in still mode, at 15 Mbit/s, the

distortion introduced by the loss of data integrity is not noticeable, i.e. the subjective

quality of the reconstructed image is indistinguishable from that of the original. At

this rate, the storage requirements would be reduced to less than a quarter of those

associated with the lossless encoder.

Therefore, the main conclusion provided by this experiment is that a nearly-

lossless MPEG-2 mode at or above 15 Mbit/s is an efficient alternative to lossless

encoding when the compression ratio obtained with the later is considered insufficient.

5.2 Motion estimation experiments

It was pointed out in section 4.1 that the choice of a specific type of pictures (original

or reconstructed) for prediction affects both the coding efficiency and the implemen-

tation complexity of the second-stage re-coders. Typically, the use of reconstructed

pictures leads to some improvement in efficiency at the cost of a slight increase in

complexity.

To evaluate the importance of using reconstructed frames for prediction, two dif-

ferent solutions were implemented. In the first, the entire motion estimation was

performed using original frames. In the second, the integer-pel motion vectors were

computed using original frames, but the half-pel refinements were computed using

reconstructed frames for prediction.

In the first experiment, all the computations are carried in the first stage, imposing

no additional computational load to the second stage; while, in the second experiment,

the half-pel refinements are re-computed in the second stage re-coders. Table 5.2
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presents the results of the two experiments for different bit rates (3, 4, and 8 Mbit/s),

and using 100 frames of the "Sharky" sequence.

Table 5.2: SNR obtained for different motion estimation approaches. In experiment #1, the entire

motion estimation was performed using original frames. In experiment #2, the half-pel refinements

were computed using reconstructed frames.

For all the three bit rates, the SNR is always greater if the half-pel refinements

are computed using the reconstructed frames for prediction. It can be seen from

the table that the gain obtained with this solution is greater for low bit-rates, which

makes sense since, at high bit-rates, the reconstructed frames have high quality and

the two solutions will lead to similar results.

Since the computational load of the half-pel refinements is reduced due to the

small size of the search window (± 1/2 pixel in each dimension) associated with it,

the complexity overhead thus imposed to each re-coder of the second stage is not very

significant. Therefore, given the gain of about 0.5 dB that it provides at low bit-rates,

this approach was chosen for the implementation of the 2-stage encoder.

5.3 Second-stage encoding experiments

5.3.1 Processing of hard to code frames and preload coding

In order to evaluate the performance gain provided by the special processing of "hard

to code frames" (described in section 4.3.1) and preload coding (section 4.3.2), both

Experiment #1 Experiment #2

R (Mbit/s) SNR (dB) SNR (dB)

3 30.58 31.12

4 31.73 32.19

8 34.53 34.70



based on the footage characteristics collected in the first stage, the 2-stage encoder

incorporating these two algorithmic features was compared with a standard MPEG-2

encoder.

Table 5.3 presents the results of this experiment for 100 frames of the "Sharky"

(frames 100 to 200) sequence at 3, 4, and 8 Mbit/s. This sequence has 6 "hard to

code frames" (of which 3 are scene changes), originating a preload bitstream with

approximately 100 kbytes. It was chosen because of the high number of "hard to

code frames" that it contains (the other two "Sharky" sequences contain only a total

of 4 of these frames). Based on these higher than average figures, we can estimate

that the coding of the entire 2 hour movie would require the preload of approximately

7,200 frames, originating a preload bitstream of 120 Mbytes and a downloading time

of approximately 3 minutes on a 5 Mbit/s channel.

Table 5.3: Comparison between the SNR obtained by using the MPEG-2 coder and the 2-stage

coder with the enhancements provided by the processing of "hard to code frames" and preload

coding.

Based on the results of table 5.3, it can be concluded that the introduction of the

two new algorithmic features leads to an improvement of approximately 0.45 dB. A

higher improvement is, however, observed in terms of the subjective image quality.

Figure 5.4 illustrates this improvement by presenting a comparison for both the re-

constructed images and coding errors obtained for a frame of the "Sharky" sequence

with MPEG-2 and 2-stage encoding, both running at 3 Mbit/s.

MPEG-2 2-stage encoder

R (Mbit/s) SNR (dB) SNR (dB)

3 30.68 31.10

4 31.74 32.19

8 34.37 34.82
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5.3.2 Improved rate-control

To evaluate the gain in performance obtained with the improved rate-control de-

scribed in section 4.3.3, the 2-stage encoder incorporating this new rate-control was

compared with the standard MPEG-2 encoder. Table 5.4 presents the results of this

experiment for 100 frames of the "Sharky" (frames 200 to 300) sequence at 3, 4, and

8 Mbit/s.

Table 5.4: Comparison of both the SNR obtained and the bit rate generated by using MPEG-2

and 2-stage encoding with improved rate-control.

0.00

MPEG-2 Improved rate-control

R (Mbit/s) SNR (dB) R (Mbit/s) SNR (dB)

3.0667 35.00 3.0044 35.05

4.0871 35.94 4.0031 36.04

8.1710 37.61 8.0018 37.82
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Figure 5.5: Comparison between the SNR obtained with 2-stage encoding using

rate-control scheme and the standard MPEG-2 encoder, both running at 8 Mbit/s.
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(0.05 dB for 3 Mbit/s, 0.1 dB for 4 Mbit/s, and 0.21 dB for 8 Mbit/s) is associated

with the new rate-control. The subjective quality is, however, increased much more

significantly due to the much smoother variation of coding quality from frame to frame

achieve with the improved rate-control scheme. This is illustrated by figure 5.5, where

the coding quality of the MPEG-2 and the 2-stage encoder (without the features of

section 5.3.1) are compared.

An additional advantage of the new rate-control algorithm is the much higher

accuracy with which the target bit-rate is met. This is also illustrated by table 5.4,

where the target bit-rates are met with an accuracy of at least 0.15 % for the 2-stage

encoder as opposed to an accuracy of only 2.3 % for the standard MPEG-2 encoder.

5.4 Overall 2-stage encoder performance

In order to analyze the global improvement obtainable with the various enhancements,

individually analyzed in the previous sections, a 2-stage encoder incorporating all

these features was simulated, and its performance compared with that of the standard

MPEG-2 encoder.

Table 5.5: Comparison between the SNR obtained with the MPEG-2 and the 2-stage encoder.

MPEG-2 2-stage encoder

R (Mbit/s) SNR (dB) SNR (dB)

3 30.68 31.16

4 31.74 32.25

6 33.24 33.82

8 34.37 35.01

10 35.20 35.83

15 36.83 37.47



Table 5.5 presents a comparison, in terms of coding efficiency, between the 2-stage

and the MPEG-2 encoders for 100 frames of the "Sharky" (frame 100 to 200) sequence

at several bit rates. The 2-stage encoder is consistently better in terms of objective

coding quality, as is also illustrated by the rate-distortion curves of figure 5.6.

R (Mbit/s)
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Figure 5.6: Rate-distortion curves for MPEG-2 and 2-stage encoding.
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pected from the average 0.6 dB gain of table 5.5 alone. This is due to the increased

smoothness in the temporal variations of the coding quality and the elimination of

the negative peaks associated with the "hard to code frames" provided by the 2-stage

encoder. Both of these aspects are illustrated by figure 5.7.

Notice, in particular, the elimination of the negative peaks in frames 26, 28, 80,

and 92, leading to a peak coding gain of approximately 3 dB. Notice also that, in

the case of frame 27, the use of preload coding and the improved rate-control lead to

significantly increased prediction, originating a considerable improvement in coding

quality not only in the preloaded frame, but also in the neighboring ones.



Chapter 6

Conclusions

This thesis presents a new 2-stage encoding algorithm for applications involving the

broadcast of previously recorded materials. It was shown by this work that a 2-stage

structure can lead to both an increased coding efficiency and reduced coding complex-

ity, when it is desired to fulfill several different and parallel quality requirements. In

addition, the 2-stage structure provides an intermediate representation of the original

footage that allows significant decrease of the storage requirements with no or small

(subjectively not noticeable) quality degradation.

It was also shown by this thesis that the potential for improvement of 2-stage en-

coding resides mainly in the capability to acquire knowledge about the characteristics

of the source during the encoding of the first stage. This structure can, therefore, be

seen as a form of two pass look-ahead encoding from which the performance of the sec-

ond stage benefits considerably, leading to an overall improved coding performance.

In this particular implementation, this potential was exploited by the introduction of

three complementary features: special processing of scene changes, preload coding,

and an intelligent rate-control.

Preload coding can be seen by itself as a useful technique to implement the idea

of "quality on demand", where standard quality is provided to all the users and each



user has the choice to obtain higher quality by preloading of the necessary number of

frames.

The simplicity and high flexibility of the 2-stage algorithm make it a solution for

the implementation of a movie server, capable of satisfying diverse quality require-

ments of different users, that can be achieved with current technology. In this way,

2-stage encoding can also be seen as a different approach to satisfy the requirements

posed to an efficient scalable coding system.
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