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Chapter 1

Introduction

1.1 Inspiration

Two students sit in front of a computer screen. One student is describing
an animation. With a few short phrases and some careful hand gestures, she
describes the layout of a synthetic room, the motion of a synthetic actor, and
the camera angle. The other student watches her gestures, listens to the scene
description, and then types away furiously at the keyboard. After entering a
series of graphics commands, the animation starts to unfold on the computer
screen. The first student watches carefully, and then starts to describe changes
that might improve the effort. 1

People often take advantage of gesture when describing objects, locations and actions.

The scenario listed above shows such an example. When one student describes a scene

to the other, it is with the use of coverbal gesture: gesture accompanied by speech. The

second student has to translate this mode of communication into a sequence of graphics

commands and approximate coordinate values. In this sense, the student at the keyboard

'The scenario described is based on an actual experience using the CINEMA system for the MIT
gra-duate course Cinematic Knowledge and Synthetic Cinema taught spring semester 1992 by (lorianna
Davenport and David Zeltzer. (see Drucker, et al. [1992]).



is acting solely as an interface agent. Ideally, the first student should be able to describe

the scene to the computer directly, complete with both speech and gesture.

This work presents an approach for designing a computer interface that can interpret some

forms of coverbal gesture; in particular, those gestures where the hand becomes an iconic

representation of a concrete object described in accompanying speech. Gesture recognition

in this sense represents a departure from previous efforts, which were concerned mainly

with using the hand as a. direct manipulation device or as a means for entering symbolic

commands.

1.2 Coverbal Iconic Gesture

When talking face-to-face with one another, people commonly gesture along with their

words. Often these gestures provide images that cannot be easily described using speech.

There is evidence that gesture and speech are combined in an integrated system of com-

munication. Graham and Heywood [1976] showed that the elimination of hand gestures

by the speaker had a detrimental effect on speaking performance. Similarly, Graham and

Argyle [1975] showed degraded comprehension in listeners who were not able to see a

speaker's hands during communication.

The label 'gesture' is often used in a very broad sense. The scope of this work covers

only a narrow, but useful class of gesture which I refer to as Coverbal Iconic Gesture.

'Coverbal,' though technically redundant with Iconic, refers to gestures accompanied by

speech. 'Iconic' comes from the McNeill [1992] classification of gesture. McNeill's classes,

which I will use throughout this work, are provided below.

Iconic: A gesture that, in it's execution and manner of performance, refers to a. concrete

event, object, or action that is also referred to in speech at the same time.

Metaphoric: Metaphoric gestures are similar to Iconics in that they present imagery,

but present an image of an abstract concept, such as knowledge, language, the genre



of the narrative, etc.

Deictic: Deictic gestures are pointing movements, which are prototypically performed

with the pointing finger, although any extensible object or body part can be used

including the head, nose, or chin, as well as manipulated artifacts.

Beats: Movements that do not present a discernible meaning. Beats are typically small,

low energy, rapid flicks of the fingers or hand.

1.3 Iconic vs. Symbolic Gesture

McNeill's classification falls solely under the 'gesticulation' end of what he refers to as

Kendon's Continuum. Specifically this gesticulation is defined as "idiosyncratic sponta-

neous movements of the hands and arms accompanying speech."

The Kendon's Continuum (McNeill [1992]):

Gesticulation e Language-like Gesture e Pantomimes * Emblems - Sign Language.

This continuum shows the broad range of free hand gesture. McNeill points out that while

moving from left to right on this scale, "(1) the obligatory presence of speech declines,

(2) the presence of language-like properties increases, and (3) idiosyncratic gestures are

replaced by socially regulated signs."

Most current methods of gesture recognition have targeted the Sign Language end of the

continuum. This is true whether the sign language being detected was a standard language

such as ASL (Kramer & Leifer [1989]), or a sign language specific to the application

(Rubine [1991], Fisher [1986]).

Gesticulation interfaces to date have primarily focused on deictic gestures relying on a

mouse (Neil & Shapiro [1991]), a, screen pointer (Bolt [1980]), or rigid interpretation of a.

pointing gesture (Thorisson, Koons & Bolt [1991]). It is no coincidence that these early

gesticulation interfaces rely on deictic gesture. Deictic gestures are perhaps the most



common and most important gesture type. It is also the simplest class of gesture to

detect, if not necessarily to interpret.

Iconic gesture is the natural next step for gesticulation interfaces. First, it opens up

interaction far beyond the pointing of deictic gestures. Second, it is feasible to detect

many iconic gestures because they deal with concrete objects that are specifically referred

to in the speech channel. Metaphorics and beats, on the other hand, usually have a,

meaning that is less well defined. 2

1.4 Why is Coverbal Gesture Recognition Different?

The method of operation of most gesture recognition techniques is to map a hand move-

ment to some rigid interpretation of symbolic meaning. Some of the gestures used in these

systems mnimick real world actions. A user might move an object by "picking it up" with

a "virtual hand" (Fisher, et al. [1986]). Other actions are more arbitrary. A user might

use a. two handed finger posture to cause a menu to appear, and then use a wrist turn

to select an item. Gesture recognition has been done by various methods including sta-

tistical pattern recognition for direct manipulation (Rubine [1991]) and Recurrent Neural

Networks for sign language recognition (Murakami & Taguchi [1991]). In sign language

interfaces to date, gestures recognized are limited to sign alphabets.

Simple direct manipulation interfaces can be easy to learn and to operate. Unfortunately,

as the desired repertoire of actions becomes more extensive, the functionality of the system

quickly becomes hidden under hierarchies of different modes and menu trees. Another

limitation is that the gestures cannot be done "any old way" but in a manner dictated by

specific constraints and conventions.

Sign Language interfaces are useful for allowing the deaf to communicate with the sign

2Beats could be used as a clue in turn taking. These gestures are often present when a breakdown of
the speech channel occurs, as when the speaker is trying to think of the right word to say. Presence of
these gestures could be used as a cue that the current stream of speech has not yet concluded.



illiterate. For the novice user, learning to use such an interface would require the learning

of 26 (ASL) to 42 (Japanese SL) alphabet signs. These systems also suffer from forcing

the user to spell out words rather than use the true lexicons of sign languages for the deaf.

Coverbal gesture recognition should not specifically map symbolic interpretations to a

library of hand movements. The meaning of a hand movement or posture is very much

dependent on the meaning of the accompanying speech. The speech sets up a context for

the gesture and similarly the gesture can alter the meaning of the utterance. Interpre-

tation of this type of interaction requires an integrated approach where the parser can

simultaneously look at the clues from the user's speech and gesture to develop a, model of

the user's intent.

To allow this type of interpretation, I am proposing a representation for the hand actions

that is concise, flexible and should preserve much of the naturalness of common iconic

gesture. This form is a level of abstraction loosely analogous to word phrases in the speech

channel. Building this intermediate representation delays final evaluation until integrated

interpretation of the speech and gesture can take place.

1.5 Related Work

Much of this work is based on the research of cognitive scientists who have studied nat-

ural human gesture. In particular, the author relied on the research of McNeill [1992],

McNeill & Levy [1982], Poizner, Klima & Bellugi [1987], Klima & Bellugi [1979], and

Stokoe [1960]. McNeill's work highlights many valuable observations of naturally occur-

ring coverbal gesture. Poizner, Klima and Bellugi concentrate on the discussion of sign

language and how it relates to human cognition. Stokoe provides an in depth discussion

of sign language primitives. Despite the differences in interpretation of sign language and

coverbal gesture, sign language provides some valuable insight into our capabilities to

perceive hand postures and movements.

Many gesture recognition systems have been developed since the appearance of whole



hand input devices. Fisher, et al. [1986] demonstrated one of the first such systems as a

means of navigating and manipulating a virtual environment. More recently, Kramer &

Leifer [1989] demonstrated the recognition of ASL finger spelling. Rubine [1991] developed

a, control system using learned 'free-hand drawing' gestures (i.e. gestures specified by the

path drawn in a 2D plane by the hand or fingers). Sturman [1992] explored whole hand

input in general and his thesis provides a valuable survey of gestural interfaces.

Butterworth [1992] extended Fisher's idea of using hand input to interact with a virtual

world, implementing a virtual environment system called 3DM. This system, likened by

the author to a. 3D MacDraw, used a 3D mouse instead of hand input, to control a palette

of command items.

Bolt [1980] demonstrated the use of combined speech and pointing in a system called "Put-

That-There." This example used a 3-D space sensing cube to generate deictic references.

More recently, Thorisson, Koons & Bolt [1991] demonstrated combined speech, deictic

hand gestures, and gaze. Neal and Shapiro [1991] demonstrated a similar system, only

with mouse and keyboard input. Herranz [1992] demonstrated the usefulness of two hand

input, together with eye tracking. His system allowed a user to scale, rotate and move

objects by using speech and two handed symbolic gesture.

1.6 Prototype Overview

The demonstration platform for the ideas in this thesis is the Virtual Environment Cover-

bal Iconic Gesture interface system (VECIG). This interface allows a user to interact with

a three-dimensional computer generated environment through the use of speech and ac-

coinpanying gestures. The specific interaction scenario depends on the object descriptions

loaded into the Object Knowledge Base and the lexicon present in the interpreter parse

code. Currently, a scenario has been designed to allow a user to arrange a room with

furniture and other simple objects. Iconic gesture types supported allow relational object

placement, object manipulation, and simple object animation. The specific details of this



system are described in chapter 4.



Chapter 2

Foundations

The goal of this work is to develop a coverbal gesture recognition scheme that will allow

interaction to be as natural as possible. By natural, I refer to the use of commonly

occurring, spontaneous speech and gesture. The naturalness of any system of this sort is

limited by its robustness, and producing a catch-all scheme is well beyond the scope of

this work. It is a goal, however, to establish a foundation on which more robust systems

can be built. To accomplish this goal, it is important to look at how naturally occurring

iconic gestures might be described and interpreted.

The previous chapter defined Iconic Gesture and specified how this class fits into the

continuum of gestural communication. Iconic gesture can be further broken down into

three subgroups. The names of these subgroups vary by author. I will use as a standard

the groups proposed by Rim6 and Schiaratura [1991], spatiographic, kinetographic, and

pictographic. The relation of these sub-groups, combined with the McNeill hierarchy of

gestures is shown in Figure 2-1.

Spatiographic iconic gestures are used to represent some spatial relationship of the ref-

erents. This is typically done by using the relative location of gestures in the speaker's

reference space. An example of this might be someone explaining the layout of a parcel
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Figure 2-1: The Gesture Hierarchy

of land, "The house was over [gesture] here, and the barn was over [gesture] here." 1

Pictographic iconic gestures are used to present the shape of an object. An example of

this might be someone showing the outline of an object with their two hands, "The vase

was shaped like [gesture) this."

Kinetographic iconic gestures are used to represent some type of motion. An example of

this might be someone explaining an accident that they witnessed, "The car swerved off

like [gesture] this..."

There are three parameters among these gesture types that contain the meaning. The

first parameter is spatial information. When describing the relative location of objects,

the speaker sets up a reference space in front of themself. Once a point of reference has

been established in this space, subsequent gestures provide a spatial relationship in this

gesture space.

A second parameter is that of hand configuration (shape) and orientation. With iconic

'As will be discussed later, it has been observed that gestures precede speech in meaning, with the
stroke phase terminating just before or at the peak syllable.



gesture the hand shape often provides an image of that object. The hand may become

the object, such as a flat hand representing a car, or a curled hand representing a, spider.

The hand may also mime the grasping of the object, such as a curved hand holding a.

glass. The orientation provides additional information, answering such questions as how

the barn is oriented with respect to the house, or illustrating the direction a car is headed.

The third parameter is that of hand motion. The path that the hand draws out might

represent the movement of the car, or portray a falling body. The path might also illustrate

the outline of an object. Hand motion is also crucial in determining the phase of the

gesture, as will be discussed later.

2.1 The Search for Primitives

Each of the hand parameters can assume a wide array of values, yet the parametric

information needed to interpret a gesture can typically be represented by very few values.

In a spatiographic gesture, for example, we may only need to know the place of the hand

at one moment in time to disambiguate the speech. The task of interpreting the gesture

then becomes a. problem of analyzing the speaker's hand movements, in the context of the

speech, in an effort to zero in on the important information. The significance of this is

that the bulk of the coverbal-gesture recognition process can be performed on qualitative

descriptions of the hand movements, and only a small amount of parametric information

need be retained. This section proposes a set of device-independent gesture primitives

that may be used to describe gestures for the purpose of coverbal interpretation.

Ideally, a set of primitives is one that is mutually exclusive and collectively exhaustive.

Mutually exclusive in this case can be thought of as gesture features that are sufficiently

differentiable to alter the perceived meaning. Developing a collectively exhaustive set is a

bit more of a task. Iconic gesture is by definition spontaneous and idiosyncratic, leaving

potentially endless possible variations. In reality, however, we find that a small set of

particular features can account for the majority of iconic gestures.



Despite the vast differences between Gesticulation and Sign Language, McNeill observed

that hand shapes in spontaneous gesture can be approximated to those in ASL. One

explanation for this is that sign languages typically evolve out of spontaneous gesture. The

significance of this observation is that it suggests that primitives for spontaneous gesture

might be found by examining the research of those whom have studied ASL closely. The

ASL classification was first developed by Stokoe [1960] and his work is summarized in

Klima and Bellugi [1979]: "Stokoe observed that ASL signs are not just uniquely and

wholly different from one another and posited that they can be described in terms of a

limited set of formational elements." Stokoe's Dictionary of American Sign Language lists

19 hand configurations, 12 placement primes and 24 primes of movement. These primes,

which lie calls chereies, in analogy to phonemes, are further broken down into various

sub-primes called allochers.

2.1.1 Configuration Primes

McNeill and Levy [1982] performed an experiment in which subjects were shown an an-

imated cartoon and asked to retell the story to another person. During the recounting,

the speaker's gestures were recorded and then cataloged. The researchers were able to

categorize every hand shape used among all six narrators using 20 of Stokoe's primitive

hand configuration sub-primes. McNeill warns that narratives of other genres would un-

doubtedly produce a different distribution of primitives. Accordingly, non-narrative input

would yield different results as well. This study does suggest, however, that configuration

primes for natural gesture might be taken from the list of ASL primes, and that a small

number of hand configuration primitives is sufficient, given a specific context. The specific

list of primes used for the current work is detailed in chapter 4.

Orientation of the hand can be considered a subclass of configuration. Although Stokoe

does not present orientation primes, a general set of orientation primes would provide

valuable information when analyzing hand input data. The primes used in this work

distinguish the orientation of the paln by quantizing the tangent vector out of the front
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Figure 2-2: Hand Orientation Vectors

of the hand and normal vector out of the palm as forward, back, left, right, up, or down.

Henceforth, the tangent will be referred to as the point vector, and the normal will be

referred to as the palm vector. The precise vectors are illustrated in Figure 2-2.

2.1.2 Place of Articulation Primes

While ASL research provides an adequate foundation of configuration primes, the list

of place markers is less appropriate. Stokoe's place of articulation cheremes primarily

reference parts of the body. He specifies six place markers around the face and head, four

on the arms, one for the trunk and one away from the body for a pause or rest.

Spontaneous gesture, by contrast, almost exclusively occurs in the space out in front

of the speaker's body. McNeill observed that gestures in adults are usually performed

in a space roughly defined by a shallow disk in front the speaker. His study recorded

gesture placement and mapped these places of articulation into the subdivisions shown

in Figure 2-3. Almost all iconic gestures recorded fell inside the periphery, center, or
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Figure 2-3: McNeill's Subdivision of Gesture Space

center-center regions. The distribution within these regions was almost uniform. Ideal

place of articulation primes should only divide this space into regions that would affect

the gesture meaning. I will distinguish between the extreme periphery, most notably the

"rest space" below the center, and the more central regions which I will henceforth refer

to as the gesture space. For iconic gesture, I suggest the set of place markers consist solely

of a binary parameter specifying whether the hand was in gesture space or not.

More robust gesture schemes would benefit from a more exact set of place of articulation

primes. McNeill's studies suggest that metaphorics tend to be articulated more specifically

in the lower center region. Deictics more often show up in the periphery, and beats often

are bunched in a small off center region that is idiosynchratic to the speaker. These

distinctions can be of importance in trying to filter out certain gesture types, or in trying

to classify the gesture type.

2.1.3 Movement Primes

Spontaneous gesture movements suffer from being highly context specific, but common

movement types similar to those seen in ASL do emerge. Stokoe [1960] specifies the



distinct linear hand movements of up, down, left, right, to, and fro. These movements are

also common in various phases of spontaneous gesture and the distinct meanings make

them excellent primes.

Stokoe lists the reflective movements of forward then back, left then right, to then fro,

etc. as movement clieremes. While these movements do occur within normal gesticulation,

they are components of different phases of a gesture and will be treated as combinatoric

constructions of the other primes. The wrist cheremes in ASL also map well into coverbal

gesture. These consist of the supination (wrist bending forward), pronation (wrist bending

back), and rotation clock- and counter-clockwise.

Circular, spiral, and other complex motions of the hands are observed in everyday gesture.

Of these, only circular exists as a Stokoe prime. Identifying these more intricate motions

would take significant observation of test subjects and is outside the scope of this work.

2.2 Gesture Parametrics

The gesture primitives can be used to transform the raw data from hand tracking devices

into a, description that can be parsed in the context of the accompanying speech. The

primitives can also be used to greatly reduce the amount of data that requires processing.

Sequential data records may be compared, and only those that represent a change from the

previous record need be extracted for interpretation. Parametric vectors representing the

hand position and orientation can be extracted along with these distinct feature records.

These vectors give more detailed information of the hand at significant points in time;

those points where the descriptive primitives changed.

The final step of interpretation of a spatiographic gesture is to map a specific location

and sometimes orientation to the object represented by the hand. When a feature record

has been determined to be the point of reference, the location and orientation vectors at

that moment in time will contain the only necessary parametric information in the entire

gesture. With kinetographic and pictographic gestures, the parametric vectors will provide



a, keyframe representation of the hand movement for the record or records determined

significant by the feature descriptions. The process for determining the significant records

is discussed in Chapter 3.

2.3 The Timing of Gesture

Timing of coverbal gesture is of utmost importance in understanding its meaning. There

are two aspects of this timing that must be relied on for iconic gesture recognition: gesture

phase and gesture synchrony. The phase of the gesture can be determined by looking at

the the movement with respect to the preceding and subsequent gesture segments, as

discussed below. The synchrony of the gesture with the speech will determine what part

of the speech gives the context.

2.3.1 Phases of Gesture

Kendon [1980] specified that gestures consist of at least one, usually more phases of

movement. These phases were classified as preparation, pre-stroke hold, stroke, post-stroke

hold, and retraction. Of these phases, only the stroke is obligatory. The preparation phase

almost always occurs to some extent, though the retraction may be dropped if another

gesture follows immediately. Most gestures occur by themselves with the hand returning

to rest before another is formed. The hold phases occur whenever necessary to regain

synchronization of speech and gesture (McNeill [1992]).

The stroke of the gesture is where the information lies. In iconic gesture, this phase will

usually occur near the center of gesture space and is synchronized with the accompanying

speech. The other phases of the gesture are useful bookends to help isolate the stroke

phase.



2.3.2 The Synchrony of Gesture

The success of coverbal gesture recognition depends heavily on the timing relationship

between the stroke phase of the gesture and the linguistic content of the utterance. In

iconic gesture this means the gesture will be synchronized with discussion of a concrete

object or action. Specifically, McNeill [1992] has observed that: "Gestures are integrated

with the speech output. They anticipate the speech in their preparation phase, and

synchronize with it in the stroke phase, which is timed to end at or before, but not after,

the peak syllable."

In multi-modal interpretation, this tightly matched synchrony allows a tie between the

linguistic model of the speech and the spatial model portrayed by the hands. When

building a prepositional relation, for example, the gesture stream can be examined near

a specific time for any spatiographic iconics to provide specific placement information.



Chapter 3

Knowledge Representation and

Communication

Chapter 2 discussed the foundations of a feature-based gesture recognition scheme de-

veloped from the observations of cognitive scientists studying spontaneous gesture. This

feature-based representation gives us a working model of gesture that can be combined

with the other modes of a user's input to determine an appropriate response. To inter-

pret this representation, it is necessary to examine what types of information make up our

knowledge an( look at how we communicate this information through speech and gesture.

3.1 Representation of Information

Hutchins, Hollan & Norman [1986] discuss two terms in relation to human-computer

interaction, The Gulf of Execution, and The Gulf of Evaluation. The gulf of execution

refers to the the chasm we must cross to to communicate our mental image of a. task we

want accomplished to the computer. The gulf of evaluation refers to the return trip of

information, where the computer must reflect to us what has been transpired, and allow



us to understand the new state of the system.

In direct manipulation interfaces, this problem is often solved by allowing only small, incre-

niental changes and reflecting them in WYSIWYG 1 fashion. Natural language interfaces,

on the other hand, seek to minimize the small incremental details in communication and

allow more general interactions where the details are left to the system.

In a, virtual environment, for example, a user might desire to place a chair in the corner

of a room. With direct manipulation the user would have to create the object and then

specify the location and orientation by interacting with some input device. With natural

language, the user may only need to state "Place a. chair in the far corner of the room."

For this to work satisfactorily, there must be a large amount of shared knowledge between

the user and the system. The computer must have enough embedded knowledge to act

in a manner consistent with the user's expectations. In this example, the computer must

know which corner is the far corner in relation to the viewer, and should also know enough

to place the chair feet-down on the floor.

3.1.1 Representation of Knowledge for Multi-Modal Interaction

Koons [1993] proposes a representational system for multi-modal descriptions. Elements

in this system are described in three interconnected encoding formats, allowing for visual

information (such as shape and appearance), metric information (spatial and temporal

relations), and algebraic information (categorical or abstract relations). As information

is received from the various modes, frames are added to the system containing the new

information. Empty slots are then compared against the available information in an

attempt to build a complete model of the user's input. When a model is completed, an

associated action for that model type is carried out and any new information is added to

the visual, metric and algebraic information networks. I will use the term semantic model

to refer to this generated model of the user's meaning.

"What You See Is What You Get"



This representational system is especially appropriate for multi-modal interactions be-

cause each mode is well suited to communicating only one, or sometimes two of the

fundamental information types. Speech may carry elements of each of the three funda-

mental information types, but speech often breaks down in communicating visual and

some metric information. Gesture is rarely used to carry algebraic information, but is

often well suited to indicate visual and metric information. Other modes, such as gaze,

only supply spatial information.

3.1.2 A Speech-Only Example

A simple speech-only example of the construction of the semantic model is illustrated in

Figure 3-1. Here the phrase "Make a red cube" is spoken. As each word comes in from

the speech channel, frames are generated for each element and combined into component

phrases. The word "make" is tied to a verb frame which holds other slots such as subject,

location of subject, and reference object. Each of these slots is initially empty. The word

"a" is initialized into a, determiner frame, "red" is initialized into a adjective frame, and

"cube" is initialized into a noun frame.

After the noun frame is created, the complete noun phrase can be generated. All adjec-

tives, for example, are combined into an object description (here just "red"). The noun

frame is then combined with the object description and this structure is combined with

the determiner. The resulting structure is the noun phrase. This frame now replaces the

individual components in the speech buffer. The category slot is set to "red cube" and

the number slot is set to one (from the indefinite determiner "a"). Lacking any input

from other modes, the spatial slot is still empty.

The noun phrase could be automatically combined with the verb (or verb phrase) here,

but this action is delayed until it is determined that no other information will be following.

The speaker could be saying "Make a red cube next to the blue cylinder" for example.

There are many clues in multi-modal communication that could be used to determine

that the phrase is completed, such as a suitable pause, characteristic speech intonation,
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the speaker's gaze behavior, or absence of gesticulation (Thorisson [1993]). In the demon-

stration system described in this document, an acceptable pause determines the end of

the input phrase.

When the end of input has been established, the verb and noun phrase can be combined

and a task method associated with the verb will be carried out. In the above example,

a red cube of default size and orientation might be created at some default place in a

3-D environment. The visual, metric, and algebraic information are then entered into the

stored information network for future reference.

3.1.3 Bringing in the Hands

Building a model out of speech requires each word be classified so that an appropriate

frame can be constructed. Often the interpretation of the word token is dependent on the

context in which it is spoken. Although multiple frames and models might co-exist, only

one model will be successfully completed.

Creating model elements out of the gesture channel is more of a challenge. There is

no predefined grammar for iconic gesture. To determine the meaning of a user's hand

movements, one must draw from the context of the speech and rely on knowledge of the

objects, actions, or spatial situations being described. The remainder of this chapter

proposes a methodology that can be used to extract meaning from gesture in simple

interactions.

3.2 Finding Meaning in Gesture

Iconic gestures by definition make reference to concrete objects. Combined with speech,

these gestures convey information about where an object is, how an object moves, what

an object looks like, or what transformation that object goes through. The computer

interface must be able to develop a, model of the hand movements and transfer this model



to the appropriate object in the computer's representation of the world. Chapter two

described a method for modelling a user's hand movement. To apply this model, we must

be able to answer three questions:

9 When to look at the user's hand movements.

9 Where to look in the user's hand motion.

9 How to correlate the hand and object.

After these questions have been answered, it will be possible to extract the correct in-

formation to transfer the user's model of the object in gesture space to the computer's

model of the object in representational space.

3.2.1 When to Look

Timing of gesture is very important. Kendon [1980] and McNeill [1992] have shown that

gestures are highly synchronized to the accompanying speech. Kendon's studies revealed

that the stroke phase of gesture slightly precedes, or ends at, the peak phonological syllable

of the accompanying speech. Further, he determined that when both speech and gesture

are present, both must provide the same meaning at the same time.

There are two immediate applications of these principles. First, when looking for a ges-

ture associated with a given reference, only those movements immediately preceding or

coinciding with the speech reference need be examined. Second, when an appropriate

motion is found in this time window, it is reasonable to expect that the gesture refers to

the same thing as the speech.

3.2.2 Where to Look

The timing information limits us to examining a small window of the gesture informa-

tion. The size of this window depends on the accuracy and synchrony of the hand and



speech data acquisition channels. Within this window there may be more than one hand

movement, while we are often only interested in just part of a single movement. To zero

in on the exact point or points of interest, we must know where in the phases of gesture

the information lies.

With spatiographic gesture, the hands reference a point and sometimes an orientation

in space. This information is clearly static, and can be revealed by a snapshot of the

hand in gesture space. Gestures of this type usually occur in two phases, preparation and

retraction. The preparation phase of this gesture is also considered the stroke. When two

subsequent spatiographic gestures are performed using the same hand, the stroke of the

first gesture may be immediately followed by the stroke of the second with no intervening

retraction. The reference of this gesture type occurs at the end of the stroke phase.

Examining the hand at this point in time reveals the position and orientation information

desired.

Consider the example: "Place a [gesture] cylinder next to the [gesture] cube." A typical

set of gestures for this interaction would be one hand moving up into gesture space to

represent the cylinder, followed by the second hand moving up to represent the cube.

Each hand will come to rest in gesture space at about the same time as the word for

the represented object is spoken. The moment when the hand comes to rest becomes the

moment of interest in the hand movement. The position and orientation can be extracted

from the single hand feature at the end of that stroke phase.

The movement and place of articulation features can be used to find the end of the stroke

phase. Motions up into the gesture space from rest space or from a previous reference

suggest stroke phases of this sort. Each movement in the reference time window can

be examined to find the stroke closest to the reference time. The desired position and

orientation can then be extracted from the final feature record of that movement..

Kinetographic and pictographic gestures are dynamic. The information for these gesture

types is contained in the movement of the hand during the stroke phase. The stroke phlase

in these gestures is usually preceded by a distinct preparation phase and followed by a



retraction phase. As with spatiographic gestures, the phases can be determined by the

movement and place of articulation primes. Movements up into the gesture space are

preparation phases. Movements down and back from gesture space are retraction phases.

Stroke phases either follow preparation phases or other stroke phases. The entire list of

feature records of the stroke occurring at the reference time gives a key-frame model of

the user's hand movement. This key-frame path can then be applied to the object of

reference.

"Move the car like [gesture] this" is an example of a utterance that would be accompanied

by a kinetographic gesture. The hand would typically move up into gesture space in a

preparatory phase, demonstrate some path of motion with a stroke phase, and then retreat

to rest space with a retraction phase. The stroke phase would coincide with the reference

"like this." The list of hand keyframes for the stroke phase can be applied to the car to

produce the animation.

Certain kinetographic gestures indicate transformations of the reference object. The

movement of the hand provides a before and after image of this transformation, such

as might accompany the utterance "Rotate the cup this way." Here the stroke phase call

be determined as with other types of kinetographic gestures. The first feature record of

the stroke can then be extracted for the before image. The last feature yields the after

information.

3.2.3 How to Correlate

The timing aid phase elements of the gesture determine which feature records are of

interest. The next step is to determine how the hand correlates to the object. This

step, which I refer to as Iconic Mapping, is far from trivial and will be discussed further

in Section 3.3. Iconic mapping is performed by examining the hand configuration and

orientation features to determine what image of the object they present. Orientation

information is not always provided by the gesticulation. In some cases, a loose hand

configuration will be used when only position information is being presented.



3.2.4 Transferring the Model

After the three questions outlined above have been satisfied, the model of the hand may

be transferred to the computer's representation of the object of reference. In the case

of a spatiographic gesture, a single record of hand location and orientation in gesture

space can be used to disambiguate the position and orientation of the object referred

to in speech. With kinetographic gesture, a list of hand locations and orientations can

be used to key-frame the movement of an object. A list of positions and orientations

can be combined to develop an image with pictographic gesture. In the special case of

transformation kinetographics, two records may be used to demonstrate the before and

after images of an object.

For this transfer to take place, a coordinate system transformation must exist between

the user's gesture space and the graphics space of the computer. In some circumstances

the orientation of one of the objects portrayed in the speaker's gesture space may reveal

the orientation of the gesture space as relative to that object. In other cases, the user will

adapt the orientation of their gesture space to reflect the orientation of the image being

displayed on the computer monitor.

Scale must also be a part of this transformation. When showing the relative placement of

two objects, for example, the vector between the hands shows direction, but distance is

implied. I will suggest the following factors as yielding clues to the scale of the speaker's

gesture space. When discussing objects which one might hold, the scale of gesture space

is usually actual size. Objects may be placed in this space and the listener visualizes them

full size. Other objects, either too large or too small to be comfortably held, are often

scaled up or down to take on the size of the hand. In special circumstances, the scale

may be determined by the hands themselves. If two facing sides of a box of known size

are portrayed with a two-handed gesture, for example, the interpreted scale of the gesture

space can be determined precisely for the given context.



3.3 Iconic Mapping

Gestures are powerful because of the images that they can present. Hands have amazing

flexibility to represent objects. The area of imagistic interpretation of hand postures

is largely unexplored. The interpretations of hand configurations that I discuss in this

chapter are largely the result of my personal theories and observations, as well as ideas

that have come out of discussions with members of my research group. It is beyond the

scope of this thesis, and it would be a solid dissertation in itself, to perform the necessary

observations with research subjects to determine a comprehensive set of interpretation

rules.

A major factor in the mapping of iconic gesture is the determination of whether the hand

configuration represents the hand acting on the object, or the object itself. The difference

often depends on the point of view in the speaker's narrative. If the speaker is indicating

that someone was doing something to an object, the gesture is frequently nime-like,

showing how the object might be held or acted upon by that person. If the speaker is

describing from an observer point of view, the hand will become the object, somehow

representing the shape of that object. Some gesture classifications, such as Efron's [1941],

make a. distinction calling gestures acting on an object pantomimic, reserving the label

iconic for gestures where the hand becomes the object. I prefer to use the term iconic

broadly, encompassing both situations. I will adopt the descriptions pantom im ic and

strict-iconic to subdivide iconics only to make the distinction in the process of iconic

mapping.

General rules for iconic mapping can be specified for simple objects. More complex objects

may be mapped by either associating them in classes of basic objects they resemble, or

by decomposing them into simpler objects, such as representing a table by it's bounding

box. In the end, object shape alone is often not enough to perform iconic mapping. Image

perception of objects portrayed in mime-like and strictly iconic gesture sometimes relies

strongly on socially ingrained background knowledge.



3.3.1 Extracting Basic Shapes from Pantomimic Hand Configurations

We can construct mental images of three dimensional objects based on component zero,

one, and two dimensional pieces. Mime-like gesture often produces images by using the

hands to present points, axes, and surfaces. Significant points on an object are often

represented by a. grasping hand configuration. By themselves, these points lack sufficient

definition to provide an iconic mapping. Using two hands opposite one another is useful

for portraying a major axis of an object.

Ilerranz [1992] demonstrated the usefulness of identifying the principal axes of objects

for manipulations such as rotation. In his demonstration, a user could indicate rotations

using two-handed gesture. With objects such as airplanes, the user indicated the desired

rotation by holding both hands in opposition and rotating both around some point. The

users would place the hands as if they were grabbing one of the major axes, such as

the wings or ends of the fuselage, and then move as if grabbing the actual airplane and

rotating it.

Surfaces are easily portrayed using the flat of the hand. With the palm and fingers

outstretched straight, a flat surface is easily demonstrated. Bending the fingers down

90 degrees provides a good representation of the corner of two meeting planar surfaces.

Adding the thumb introduces a third surface. Curved surfaces can be portrayed easily

with the bend of the fingers. Even a sphere can be easily suggested with a. two-hand

gesture.

Interpretation of flat surfaces and corners can be accomplished using a model of the object

that specifies their location and orientation. Simple curvature of objects such as cylinders

can also be specified, allowing for easy mapping of hand posture to object orientation.

Complex objects would require a much more sophisticated method of determining the

shape bounded by one- and two-handed gestures.

The orientation of many objects cannot be uniquely determined by merely demonstrating

a major axis or surface. For manipulations of objects displayed for the user, the starting



orientation of the gesture can be correlated to the starting orientation of the object. Sur-

faces portrayed in gesture space may be mapped to the surfaces in virtual space that have

roughly the same orientation from the user's point of view. The resulting manipulation

of the hand representation can then be applied directly to the object.

3.3.2 Extracting Basic Shapes from Strict-Iconic Hand Configurations

In strictly iconic gesture, the hand becomes a, representation of the object itself. As with

pantomimic configurations, basic objects are often constructed out of surfaces and major

axes. The flat hand becomes a, representation for a great many objects, from automobiles

to people to brick walls. A fist works equally well for more boxy objects. The fingers are

often brought into play to demonstrate major axes or other appendages. A thumb sticking

straight up from a fist can portray a bottle, for example, while stretching the index finger

out suggests a gun. As with the pantoninic gestures, correspondence between the gesture

and the screen representation can help to disambiguate.

3.3.3 Socially Accepted Interpretations

General iconic mapping rules for basic objects can only go so far; interpretation of many

niore complex objects requires previous knowledge of social implications. While the in-

troduction of social knowledge often leads deep into the "Turing tar-pit" 2, the application

of iconic mapping requires this knowledge in a very limited context.

This social knowledge plays a part in disambiguating possible interpretations of the basic

iconic mappings. A flat hand, for example, can be used to demonstrate a human figure.

Only cultural information, however, leads us to interpret the front of the hand as the

front of the figure. Other interpretations can be traced to the construction of the humnian

anatomy. The reason the back of the hand becomes the top of a car is most likely because

2Attributed to Alan Perlis, 1982, by Hutchins, Hollan & Norman [1986]



our wrists have a much broader range of motions when the palm is facing down, and this

facilitates our gestural animations.

The group of objects that is perhaps the most dependent on our cultural conditioning

is that of hand tools. Hand tools play an important part in our society, so it should

be of no surprise that a large number of gestures reflect this. By hand tools, I mean a,

broad range of objects from hammers to tea-cups; from pencils to broom sticks. What

is common with each of these objects is that how we hold them is grounded in our basic

knowledge. Orientations of these objects can easily be specified by holding the hand in

the appropriate configuration.

3.4 Combining Gesture with Speech

The gesture information can be combined in the interpreter model in a similar fashion

to the linguistic information, except that the gesture channel requires the context of the

speech. In a related example to the one given at the start of the chapter, a speaker

says "Make a room." The model combines as before, only now the interpreter can look

for spatial information in the gestures. When the noun phrase is being combined, the

incoming gesture stream can be examined for a spatiographic gesture that could be applied

to a "room" type object.

Two types of spatial information could be obtained here. One possibility is that a location

in gesture space is indicated as the position desired for the room object. This type of

reference is usually performed in relation to some point in gesture space indicated by an

earlier context. The second type of information is that which sets up this type of context.

When "room" is spoken, the user might hold both hands out as if holding a box. This

sets up a square region that represents the room in gesture space. If the next comm and

is "Add a couch here," another spatiographic gesture might be used to indicate a point

within that square that determines the relative location of the chair.

The parsing the gesture requires several pieces of contextual information including the



time near when gesture may have occurred, the type or types of gesture being sought, the

object for which iconic (i.e. hand configuration) mapping will be made, and all types of

information being sought. The gesture parser can then scan the gesture segments around

the desired time, examine each of these gesture segments for appropriate phase of gesture

given the gesture type, attempt to map the posture and orientation to the object type

given, and return the information requested (where possible). The interpreter may then

use this information to fill in empty slots in the semantic model, and the task for the

completed model can then be initiated.



Chapter 4

The VECIG System

The Virtual Environment Coverbal Iconic Gesture (VECIG) interface system was devel-

oped as a way to demonstrate some of the theories presented in this thesis and to provide

a platform for further research of multi-modal reference. Currently, this system allows

a user to interact with a simple 3-D virtual environment through the use of combined

speech and gesture.

4.1 System Overview

A system block diagram for the VECIG system is shown in Figure 4-1. The system

consists of the following parts.

* The Hand Input Hardware

* The Speech Recognition System

* The Gesture Processing Modules

* The Gesture Parser



Figure 4-1: VECIG Block Diagram

* The Multi-Modal Interpreter

* The Object Knowledge Base

* The MVERSE Graphics System

The following sections provide a brief overview of each of the component parts. A detailed

description of the portions specifically pertaining to this thesis is given in Section 4.2.

4.1.1 The Hand Input Hardware

One of the goals of this research was to develop a device-independent method of gesture

recognition. There are several commercially available hand sensing devices on the market

today, and the future quite possibly holds hand tracking by cameras at a distance. The

type of hand input device used here was the VPL DataGlove Model 2 System. This input

device senses the flex (extension and flexion) of the upper two joints on each finger, as

well as the flex of both joints on the thumb. It does not provide any information about

the spread of the fingers (abduction and adduction), or to the spread or rotation of the



thumb. Sturman [1992] provides a detailed explanation of the degrees of freedom of the

hand, and details common hand input devices.

The VPL system is integrated with a Polhemus 3Space position sensing device. This

device provides the X, Y, and Z coordinates of the hand in 3-space, as well as roll, pitch,

and yaw. This data., along with the finger joint angles, is passed to the system at up to

30 records a second over an RS-232 line. The data is received on an HP835 workstation

and time stamped by a. Real Time Interface board.

4.1.2 The Speech Recognition System

The speech recognition system is a beta-test version of a soon to be released, commer-

cially available software package developed by BBN Systems and Technologies 1, called

HARK. This is a, continuous, speaker independent speech recognizer that runs on a Silicon

Graphics Indigo workstation. As with the gloves, the input to the interpreter should be

device independence. Another requirement is that each of the words detected be time-

stamped. To meet both of these requirements, a post-processor was developed to interface

the HARK system to the Multi-Modal Interpreter. This module converts the word data.

into a compact device-independent format, and calculates a real-world time from the in-

ternal BBN timecode. It also provides error detection and is responsible for control of the

BBN package.

The speech post-processor was developed by the author in C.

4.1.3 The Gesture Processing Modules

The development of the gesture processing modules was a significant part of the research

for this project. This code is responsible for interfacing with the VPL DataGloves and

'A division of Bolt Beranek and Newman



processing the code into gesture segment,.or "gestlet", 2 format for the Gesture Parser.

This code also served as a stand-alone package for analyzing the hand data, which was

useful for determining a suitable set of features.

During system operation, there are two separate but identical modules running, one for

the left glove and one for the right glove. The modules start off by initializing the appro-

priate glove box and then guiding the user through glove calibration. Once calibration is

complete, the module continuously reads in the raw data from the glove. Each raw data

record is filtered to reduce the random error of the various values. Every record is then

processed into the feature-based representation, and its features are compared against

those of the most recent stored record. If the features in the new record differ from those

of the previous record, the new record is extracted for further processing. These key frame

records are passed to an output buffer to be gathered into gesture segments.

The output buffer gathers the features into groups that constitute a, single hand movement.

For the current implementation, the gestlet format consists of a record tagged as a "stop,"

followed by any number of records where the hand was moving, and ending with the next

stop. When a complete gestlet feature list has been formed, it is output to the gesture

parser. The output buffer then starts queueing up another gestlet.

Several versions of The Gesture Processing Module were developed by the author, with

significant changes occurring as research progressed. The final version was written in C.

4.1.4 The Gesture Parser

The Gesture Parser is an integral part of the Multi-Modal Interpreter. This block is

responsible for reading in and storing the gestlets until a request for gesture information

is initiated by the interpreter. When a request is received, this module is also responsible

for analyzing the gestlet queue to recognize the desired gesture, and for extracting the

2The tern gestlet was inadvertently coined by the author as an abbreviated way of referring to gesture
segments in code. See Koons, Sparrell and Thorisson (1993]



requested information from that gesture.

When a new gestlet is received by the parser, it is first put into a list format that is easy

to process. The incoming features are put in a list, and this list is put in a structure with

several high level descriptors of the movement. This structure is then put in another list

with previously received gesture segments.

Hand data and speech data both have different latencies into the system, causing possible

timing problems. Realignment of the gesture data takes place in the gesture parser.

New requests from the Interpreter are processed immediately, examining the gestlet list

for recognizable gestures. If no appropriate hand movements are found, the request is

queued until more information becomes available.

Parsing of the data is accomplished by applying one or more models to the list of gesture

segments. The model used is dependent on the class or classes of gesture being sought.

When recognition of an appropriate gesture has been completed, a frame is created and

passed back to the interpreter containing as much of the requested information as could

be determined.

The Gesture Parser was implemented by the author in LISP.

4.1.5 The Multi-Modal Interpreter

The Multi-Modal Interpreter is responsible for receiving speech data from the speech

recognition system, and interfacing with the Gesture Parser to collect information about

the user's actions. The incoming speech elements are placed into frames and the frames

are combined into phrases as applicable.

When necessary or optional information slots are empty, the interpreter will look to the

other modes, here the gesture channel. The interpreter will send requests to the gesture

parser for any gesture types that might be possible given the context of the speech. The

Gesture Parser will then analyze the gesture data in an attempt to recognize gestures of



those types, and return information as available.

The Multi-Modal Interpreter is also responsible for the interface to the Object Knowl-

edge Base. The interpreter can query the knowledge base for current status information

about the objects instantiated, or for model information about objects in general. The

interpreter also sends updates to the knowledge base as a result of the interpretation of

the user's input. When construction of a complete input sequence is successful, the inter-

preter will send the appropriate command sequences to the knowledge base to carry out

the desired action.

The Multi-Modal Interpreter is based on previous such interpreters (Thorisson, Koons &

Bolt [1991] and Koons, Sparrell & Thorisson [1993]) developed by the Advanced Human

Interface Group, and is the subject of continuing research. The command lexicon was

specifically designed for this project. The entire interpreter was implemented in LISP.

4.1.6 The Object Knowledge Base

The Object Knowledge Base is responsible for maintaining information about objects

and their relationships within the virtual environment. It contains general information

about object classes, such as the major and minor axes, or other shape information that

may be used to map the object to hand postures. Other records include major surfaces

and default orientations which define how each object interacts with others in the virtual

world. The knowledge base keeps track of specific information about instantiated objects,

such as color, scale, orientation, location, and child and parent objects.

The Object Knowledge Base allows primitive relationships between objects in the virtual

world. These relationships include simplified interactions representing gravity and "stic-

tion". The simple gravity model provides that one object can be placed on another object

and the knowledge base will put the object in such a position that it rests on the surface

of the other object. The simple stiction model provides that objects resting on some base

object will remain in place on that base object, even when it is moved.



The Multi-Modal Interpreter sends commands and queries to the Object Knowledge Base,

which in turn, sends back status information. The knowledge base also interfaces to the

MVERSE graphics system. As the internal model of the world is updated in the knowledge

base, graphics commands are sent to the MVERSE system to reflect those changes.

The Object Knowledge Base was designed specifically for this project, under direction of

the author. It was implemented in C++.

4.1.7 The MVERSE Graphics System

The MVERSE graphics system allows high level access to 3-D graphics commands. In

the current implementation, it runs on top of the Hewlett Packard graphics language

Starbase. The system is designed to allow loading of objects from a standard file format.

All standard object and camera manipulations are supported.

The MVERSE system was developed by the Advanced Human Interface Group as a

platform for this type of research.

4.1.8 The System Layout

The operation of this system requires significant processing power, so a distributed pro-

cessing network is used. The processing is spread out over five workstations as described

below.

The Gesture Parser and the Multi-Modal Interpreter are the heart of the system, running

on a Decstation 5000/240. The hand data is read in to an HP9000/835 workstation

through a Real Time Interface Board, which time stamps the incoming data.. This raw

data is passed through a dispatcher to separate Decstation 5000/133s, one for the right

hand, one for the left. The gesture processing code passes the abstracted data to tile

gesture parser.



The Speech Recognition System runs on a Silicon Graphics R3000 Indigo, and the post-

processed speech data is sent to the Multi-Modal Interpreter. The Object Knowledge

Base runs on the master Decstation 5000/240, receiving commands from the interpreter

and sending commands to MVERSE. MVERSE runs on the HIP9000/835 and displays

the graphics on a 1280x1024 high-resolution display.

4.2 Gesture Recognition in Practice

The method of coverbal iconic gesture recognition outlined in this document can be broken

down into two distinct phases. First, the hand information is abstracted into an interme-

diate representation that is a feature-based description of the hand movement. Second,

once the speech information has been partially evaluated, the context of the speech can

be applied to the movement descriptions in a directed search for the relevant information.

These two phases of operation are the respective responsibilities of the Gesture Processing

Modules and the Gesture Parser.

4.2.1 The Gesture Processing Module

The demonstration system analyzes the raw data glove records into qualitative features

and associated quantitative key-frames. This representation is shown in Figure 4-2. The

raw data records are processed into preliminary features. These features are used to

compare the record against preceding ones. If none of the record's features differ from

the preceding record, the data record is destroyed. The preliminary features are then

processed into the feature primes. The processed records are then combined into groups

of movements representing gesture segments.
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Determining Hand Configuration

The joint angles of the finger are quantized into preliminary descriptors of straight, relaxed

or closed. The descriptors for each of the ten joints measured are then used to determine

the hand configuration in a pattern matching scheme similar to fuzzy logic. An example

configuration programming for "G" is shown in Figure 4-3. Each joint flex possibility is

given a score from 0-10 depending on how strongly it contributes to the configuration.

An incoming data record is compared against this table to determine a score representing

how well the current hand shape fits that posture.

Several methods for determining hand shape have been demonstrated in previous systems

(Kramer & Leifer [1989], Murakami & Taguchi [1991]). This method was chosen because

it is easy to modify, and works well on top of the finger quantization. The system is able

to distinguish the 11 hand configuration primes shown in Figure 4-4.

Determining Place of Articulation

The place of articulation primes are determined by a fixed "rest" volume close to the user's

body. Any hand position within this volume yields a rest space prime, any other position

results in a gesture space prime. An ideal system would calculate a moving gesture space

based on the user's position and orientation. This cannot be done in this system due to

the lack of body tracking. The exact position of the hand is maintained as part of the

key-framime.

Determining Orientation

The hand orientation is determined by generating a palm vector and a pointing vector out

of the hand (refer to Figure 2-2). These records are stored as part of the key-frame, and

are also used to determine the orientation primes. The primes are generated by comparing

the vectors to the closest axis of the fixed coordinate system of the user's gesture space,
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yielding the descriptors of up, down, left, right, forward, and back for both vectors.

Determining Hand Motion

The hand motion is determined by examining the velocity of the hand. If the velocity of

the hand exceeds a minimum noise threshold, the record is logged as a "move" prime. If

the speed falls below that threshold, the movement feature is determined to be a "stop".

The velocity is filtered using a five point gaussian filter.

Grouping of Features into Gestlets

A simple method was employed for grouping the feature records into gesture segments

or gestlets. All distinct feature records tagged as a "move" are grouped together with

the preceding and following "stop" records. This method is sufficient for capturing most

gesture movements. One exception to this is the case of a "finger gesture" where the hand

shape changes, but the hand stays in the same place. An additional method could be added

to account for these gesticulations. A completed gestlet is parsed to produce a header

containing information about which hand caused the segment, what hand movement prime

was carried out by the segment, and how long the segment lasted.

Determining Hand Movement primes

The hand movement primes are determined at the gestlet level. The system is capable of

determining forward, back, left, right, up, and down movements. More advanced primes,

such as circular motion, would require a much more complex modeling of the hand's path.

The six primes mentioned were determined by examining the start and end points of the

gesture segment.



Gestlet Output

After a. complete gestlet has been detected, the segment header and feature list are sent

to the Gesture Parser for context-dependent interpretation.

4.2.2 The Gesture Parser

The Gesture Parser maintains a list of the incoming gesture segments. When the inter-

preter starts to evaluate a word phase that has the possibility of accompanying gesture,

it sends a query to the gesture parser. The gesture parser examines the gestlet list for

appropriate motions and returns the necessary information. If no appropriate gesture

information is available, the request is queued temporarily, in the event that the desired

hand information is still being processed by the Gesture Processing Module. Currently,

the Gesture Parser is capable of searching for spatiographic, animation kinetogra-phic and

tranformational kinetographic gestures. Pictographic gestures have not been included in

the current implementation.

Spatial References

For spatial information, the parser will look for movements where the hand is being

brought into place to show a location. These types of gestures are typically limited to

three phases. The preparatory and stroke phases are coincident; the hand moving into

place. There is a post-stroke hold of the hand in this position, and then a retraction. If

the gesture is immediately followed by another using the same hand, no retraction will

occur.

When looking for a. gesture of this type, the parser tries to map each segment that happens

near the target time to either a stroke or retraction phase. The end time for each stroke is

then compared to the target time, and the closest candidates are selected. If simultaneous

gesture information exists for both hands, the movements are compared to detect two-



handed gestures. The last feature in any selected segments becomes the static reference

for the iconic gesture. The position, orientation, and configuration are loaded into a frame

to allow iconic mapping of the associated object.

Dynamic Animations

When dynamic animation information is required, the parser looks for prominent stroke

phases. Gestures of this type usually involve distinct preparatory, stroke, and retraction

phases. If the gesture is preceded by another dynamic gesture made by the same hand

representing the same object, the retraction phase of the first gesture and the preparatory

phase of the second gesture may be dropped.

The parser looks at all segments made close to the target time and maps each movement

to be a, preparatory, stroke, or retraction phase. Small movements with little change can

be considered noise and are given low priority. If multiple stroke phases exist for the same

hand, the one closest to the reference time is selected. If segments occur simultaneously

in both hands, the movements are used as a two-handed gesture. Each feature in the

stroke phase is important in this type of gesture. The key frames for each feature record

yield the movement information for the object being described. A frame is loaded with

the entire feature list to allow mapping of the object to the string of key-frames.

Object Transformations

Object manipulations fall into a special subclass of the dynamic animations. Here a

rotation or scale might be shown with the hands. With most dynamic gestures, the parser

seeks to extract a prominent stroke phase. With object transformations the parser will

also need to single out a stroke phase. The difference is that only the first and last features

of the stroke are needed to interpret the transformation. Object manipulation gestures

provide example by showing correspondence and transformation. The hand before the

stroke represents the object before the manipulation, and the hand after the stroke shows



how it has been transformed. The important features for this movement are the start

and end features for the stroke gestlet. These features are loaded into a frame and passed

back.

4.2.3 Iconic Mapping

The last phase of gesture recognition involves the iconic mapping of the hand posture

to the object being described. For the VECIG system, objects belong to simple classes,

and these base classes are composed of basic parts. The cube class, for example, contains

objects that are roughly cubical in shape such as a table and a chair. Cubes are composed

of parts such as corners and flat surfaces. Hand shape primitives are mapped to the parts

they most closely resemble. The "tapered 0" prime would be mapped to a corner for a,

cube class, for example, while a "B spread" prime would be mapped to a surface.

Objects may belong to as many base class groups as are appropriate. The object classes

currently supported are cube, cylinder, blob, major axis, and planar surface. The major

axis class indicates that the object has one or two major axes that can be gripped as a

handle or grasped at either end.

4.3 The Scenario

The scenario currently supported by VECIG allows a user describe the layout of a virtual

room. Objects that may be placed in the room include a table, chair, couch, teapot, glass,

and a dog. Objects may be placed relative to each other using spatiographic gestures.

Objects may also be manipulated or animated using kinetographic gestures. No support

is currently available for referencing or creating objects using pictographic gestures.



Chapter 5

Conclusion

This work has shown that recognition of Coverbal Iconic Gesture is not only possible, but

useful as well. A computer interface can be developed that allows the users a range of

control through the use of natural language and spontaneous gesticulation. This will allow

humans to communicate with computers with the same powerful modes of communication

they use with other humans.

Coverbal Iconic Gesture by its very definition is closely linked to speech. Interpretation

of these gestures cannot be accomplished through a symbolic mapping to a predefined

meaning; it can only be accomplished through careful consideration of how the hand

movements relate to the context of speech. Recognition of this type of gesture requires

a departure from previous, symbolic-based schemes. An efficient method for interpreting

the gestures in the context of speech involves abstracting a feature level description of

the hand movements in real-time, and extracting the essential information from these

descriptions at evaluation time.

One of the goals of this thesis is to suggest a set of primitives for various aspects of the hand

motion. By examining the research of others who have studied gesture in cognitive science,

primitives have been suggested for the characterization of coverbal hand movements. The



primitives allow the features to be described in a form that is compact and easy to

evaluate in conjunction with speech. The primitives suggested here relate to the hand

configuration, orientation, movement and place of articulation and have foundations in

the research of cognitive scientists studying human gesture.

Interpretation of a. gesture by this method involves first determining the part of the

movement that is applicable by looking at the movement and place primes together with

the timing information of the accompanying speech. After a specific record or records are

determined to be appropriate, the hand configuration and orientation information can be

used to determine the specific location or transformation of the object being described.

The VECIG system was developed as a platform to test out these theories. This system

allows a user to interact with a. simple virtual environment through the use of speech and

iconic gesture. A simple scenario of arranging furniture in a room gives the user a specific

context in which to manipulate objects. The purpose of this system was to demonstrate

some of the theories presented in this thesis, and to show a, simple example of how coverbal

iconic gesture recognition might be used.

5.1 Applications

The scenario for the VECIG system was chosen for its similarity to two previous systems

developed in the lab. The first was the Divadlo desktop theater system developed by

Steve Strassnan [1991]. This system allowed automatic generation of animations that

expressed emotions and intentions of synthetic actors. These actors could be directed

using natural language keyboard input.

The second platform that inspired my scenario was the CINEMA system developed by

Steven Drucker and Tinsley Galyean [1992]. CINEMA allowed procedural camera move-

ments through a virtual movie set with a pre-defined animation. The user could specify

such parameters as position, orientation and field of view relative to objects, events, aid

the general state of the environment. The purpose of CINEMA was to provide a. platform



for teaching cinematographic camera and editing techniques and to demonstrate the po-

tential of 3-D computer graphics for planning out live action film shoots. Commands to

the CINEMA system were entered in a. conunand-line format using a keyboard.

These two systems, together with VECIG, demonstrate important pieces of what could

be a powerful creative environment for desktop theater. Imagine a system with semi-

autonomous synthetic actors capable of expressing intentions and emotions and respond-

ing to voice and gesture input. Camera positions and movements could also be specified

in much the same way that animations of other objects are specified. The results would

provide a reasonable desktop theater with a simple yet powerful method of directing.

Professional CAD systems could also benefit from the addition of coverbal iconic gesture.

While detailed design modifications would be better controlled through direct manipula-

tion, overall layout and view control would be better controlled by speech and gesture.

Virtual manifestations of human descriptions could also be used to overcome the Gulf of

Evaluation between humans. In our intra-human communications, we rely heavily on our

ability to span the Gulf of Execution. If I were describing an accident, for example, I would

trust the perceptive powers of the listener to understand my narrative. With computers

we rely on feedback to verify that a command was understood. In some situations it

is imperative that the listener understand. The jurors of a trial should understand the

description of a witness completely. To facilitate this, models or diagrams are often

constructed. Recently, 3-D animations have been used for this purpose. A system which

allowed a computer illiterate individual to construct a rough animation could be of great

benefit.

5.2 Future Work

This is an area where little work has been done in the past. Understandably, there are

many areas where future research is needed. Three research areas in particular would

greatly extend the the usefulness of this thesis.



One improvement would be to combine this work with other gesture types. Deictic ges-

tures in particular have been shown to be of great benefit in multi-modal interactions.

Previous interfaces have relied on strict pointing symbol hand configurations to signal a

deictic reference. In related research, I have found that the gesture recognition scheme

outlined in this thesis works well at detecting a wide range of deictic references, from

pointing gestures to sweeping references to grab type motions used to indicate groups.

Further work needs to be done on introducing an expanded set of deictic gestures and

on determining how to disambiguate deictic from iconic gestures when the context of the

speech would support either.

A second big improvement could come from an in-depth cognitive study of how we map

objects to hand configurations in iconic gesture. McNeill's work falls short of developing

any rules that might be followed in such interpretations. I have set forth several theories,

but backing them up through experimentation with subjects is out of the scope of this

work.

The third area where further work could yield improvement is in the analysis of complex

hand movements. The method used in the VECIG system performs well at detecting

distinct hand movements that roughly follow straight lines. Complex movements, such

as circles and spirals cannot be detected as such. A better hand tracking model would

allow the system to detect such motions, and possibly break some up into simpler seg-

ments. The motions detected could also be described in somewhat finer detail, revealing

whether a gesture was quick and assertive or slow and meandering. The addition of such

information to gesture recognition is not unlike including intonation and inflection with

speech recognition and could supply some valuable clues into the characteristic motion of

the object being portrayed.

In general I would expect to see a growing interest in Natural Language and Multi-modal

interfaces. The time has just arrived when continuous, speaker-independent speech recog-

nizers are becoming available. Hand-tracking hardware is getting better, and progress is

being made towards tracking with cameras at a, distance. Better input technology alone

is not the solution, but will fuel the interest.
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Appendix A

Examples of Interaction

This appendix outlines several excerpts representative of the VECIG scenario interaction.

Three examples are given. In the figure for each example, the reference word that triggers

the search for gesture information is underlined. A transcript of word and gesture input

is given at the end of this section.

The first example is shown in Figure A-1. This is a spatiographic gesture where the speaker

first sets up the context of the gesture space. Both hands are brought into gesture space

in the "tapered 0" shape representing the far corners of the table. By correlating the

hand positions with the coordinates of the table, a transformation between gesture space

and object space is determined. After the "on the table" context has been setup, the left

hand is moved to refer to a position within this context. The point at which the hand

comes to rest is then used to determine a relative position for the teapot on the table.

The resulting action is shown in Figure A-2.

The second example (Figure A-3) shows another spatiographic gesture. Here the location

of a new object (the glass) is being shown in relation to an existing object (the teapot).

The left hand comes to rest in gesture space about the time the word "glass" is spoken,

with an "0" hand shape representing the glass. The right hand joins the left in gesture



on the ~.

Place a a...

Figure A-1: Example of specifying context for spatiographic placement.

Figure A-2: Placement of the teapot on the table.



Add a clas...

Next to the tAAnot ...

Figure A-3: Example of relative position spatiographic placement.

Figure A-4: Placement of the glass next to the teapot.

space with an "A" shape about the time the word "teapot" is spoken. By comparing

the positions where the two hands come to rest, the relative direction of the glass is

determined. Scaling information is determined by looking at what context the two objects

share. Here, both the glass and the teapot are on the table, and the table has been recently

established in gesture space, so the scale is assumed to be the same as before. The "0"

shape portrays the hand wrapped around a cylinder. The cylinder configuration is a

good match to the glass and vertical orientation (which also happens to be the default) is

extracted from the vertical cylinder of the hand. The system response is shown in Figure

A-4.



Make the dog move
like ha.

Figure A-5: Example of kinetographic gesture.

Figure A-6: Still-frames of dog animation.

The final example (Figure A-5) demonstrates a kinetographic gesture referring to a path.

The speech interpreter looks for gesture information when the reference "like this" occurs.

The left hand moves up into gesture space in anticipation of the stroke phase. The stroke

phase indicates the desired path of the dog and terminates right around the time the

word "this" is spoken. The feature list from this stroke is used to generate a smooth

animation for the dog along the desired path. Three still-frames representing this action

are displayed in Figure A-6.

Parser Input Transcription

The following is a transcript of word and gestlet input into the multi-modal interpreter.

All time codes are in hundredths of seconds. Only the first and last features of each gestlet

have been printed out for brevity.



Key:
Gestlet <hand> Strt: <start-time> Stp: <stop-time> Feats: <# features>
Feature: 0 <time> Mtn: <stop or start> Place <rest or gest space>

<x y z>
H: <Hand shape> Pt: <point direction> <point vector x y z>

Plm: <palm direction> <palm vector x y z>

Gestlet left : Strt: 416688 Stp: 416822 Feats: 8 Mv: 2 dl: 15.52
Feature: 0 416688 Mtn: S Plc: R ( 4.50, -4.96,-21.28)
H:O Pt: F ( 0.16, 0.31, 0.94) Pm: R ( 0.95, -0.31, -0.05)
Feature: Q 416822 Mtn: S Plc: G ( -4.32, 1.02, -9.99)
H:tO Pt: F ( -0.26, 0.15, 0.95) Pm: R ( 0.96, 0.17, 0.24)

Gestlet right: Strt: 416688 Stp: 416815 Feats: 7 Mv: 3 dl: 11.56

Feature: 0 416688 Mtn: S Plc: R ( 13.84, -4.77,-16.02)
H:L Pt: L ( -0.64, 0.42, 0.64) Pm: L ( -0.71, -0.65, -0.28)

Feature: 0 416815 Mtn: S Plc: G ( 12.79, 1.91, -6.64)
H:tO Pt: F ( -0.36, 0.05, 0.93) Pm: L ( -0.93, 0.05, -0.37)

Word uttered: ON! 0 416782
Word uttered: THE! 0 416788
Word uttered: TABLE! 0 416835

Gestlet left : Strt: 416993 Stp: 417106 Feats: 7 Mv: -2 dl: 12.59
Feature: 0 416993 Mtn: S Plc: G ( -4.07, 0.79, -9.63)

H:bO Pt: F ( -0.24, 0.13, 0.96) Pm: R ( 0.95, 0.25, 0.20)

Feature: 0 417106 Mtn: S Plc: G ( 8.30, 0.52,-11.94)
H:C Pt: F ( 0.50, 0.34, 0.80) Pm: R ( 0.85, -0.38, -0.37)

Word uttered: PLACE! 0 417024
Word uttered: A! 0 417029
Word uttered: TEAPOT! 0 417083

Gestlet left : Strt: 417184 Stp: 417340 Feats: 10 Mv: -3 dl: 13.35

Feature: 0 417184 Mtn: S Plc: G ( 8.26, 0.46,-11.86)

H:C Pt: F ( 0.48, 0.33, 0.81) Pm: R ( 0.86, -0.36, -0.36)

Feature: 0 417340 Mtn: S Plc: R ( 4.45, -5.59,-23.13)

H:bO Pt: F ( 0.48, 0.40, 0.78) Pm: R ( 0.88, -0.25, -0.41)

Gestlet right: Strt: 417207 Stp: 417345 Feats: 8 Mv: -3 dl: 14.10
Feature: 0 417207 Mtn: S Plc: G ( 13.02, 1.98, -6.77)
H:tO Pt: F ( -0.37, 0.04, 0.93) Pm: L ( -0.93, 0.05, -0.38)

Feature: 0 417345 Mtn: S Plc: R ( 14.85, -6.64,-17.78)
H:L Pt: L ( -0.83, 0.15, 0.54) Pm: B ( -0.56, -0.34, -0.76)

Gestlet left : Strt: 417996 Stp: 418100 Feats: 7 Mv: 3 dl: 13.13

Feature: 0 417996 Mtn: S Plc: R ( 4.08, -4.39,-22.57)

H:bO Pt: F ( 0.46, 0.29, 0.84) Pm: R ( 0.89, -0.12, -0.44)

Feature: 0 418100 Mtn: S Plc: G ( 2.59, 0.60,-10.52)
H:O Pt: F ( -0.06, 0.32, 0.94) Pm: R ( 0.99, -0.08, 0.09)

Word uttered: ADD! 0 418009
Word uttered: A! 0 418014

Word uttered: GLASS! 0 418047



Gestlet right: Strt: 418196 Stp: 418298 Feats: 7 Mv: 3 dl: 12.24

Feature: 0 418196 Mtn: S Plc: R ( 14.96, -6.63,-17.55)

H:O Pt: L ( -0.80, 0.10, 0.59) Pm: B ( -0.60, -0.21, -0.78)
Feature: 0 418298 Mtn: S Plc: G ( 12.08, 0.53, -8.05)

H:A Pt: L ( -0.67, 0.31, 0.67) Pm: L ( -0.73, -0.40, -0.55)

Word uttered: NEXT! 418216

Word uttered: TO! 0 418226

Word uttered: THE! 0 418236

Word uttered: TEAPOT! C 418286

Gestlet right: Strt: 418368 Stp: 418517 Feats: 9 Mv: -3 dl: 11.74

Feature: 0 418368 Mtn: S Plc: G ( 12.03, 0.57, -7.99)

H:A Pt: L ( -0.68, 0.27, 0.68) Pm: L ( -0.72, -0.41, -0.56)

Feature: 0 418517 Mtn: S Plc: R ( 14.42, -6.36,-17.16)

H:O Pt: L ( -0.83, 0.14, 0.54) Pm: B ( -0.55, -0.35, -0.75)

Gestlet left : Strt: 418379 Stp: 418543 Feats: 10 Mv: -3 dl: 13.33

Feature: 0 418379 Mtn: S Plc: G ( 2.32, 0.93,-10.88)

H:tO Pt: F ( -0.04, 0.35, 0.94) Pm: R ( 1.00, -0.01, 0.05)

Feature: 0 418543 Mtn: S Plc: R ( 4.46, -5.63,-22.28)

H:bO Pt: F ( 0.34, 0.33, 0.88) Pm: R ( 0.93, -0.22, -0.28)

Gestlet left : Strt: 491776 Stp: 491888 Feats: 7 Mv: 2 dl: 13.84

Feature: @ 491776 Mtn: S Plc: R ( 5.21, -5.11,-22.15)

H:O Pt: F ( -0.09, 0.48, 0.87) Pm: R ( 0.85, -0.42, 0.32)

Feature: 4 491888 Mtn: S Plc: G ( -1.48, 6.53,-18.78)
H:O Pt: F ( 0.01, 0.59, 0.81) Pm: R ( 0.57, -0.67, 0.48)

Word uttered: MAKE! 0 491866

Word uttered: THE! 0 491874

Word uttered: DOG! 0 491900

Word uttered: MOVE! @ 491924

Gestlet left : Strt: 491921 Stp: 492053 Feats: 8 Mv: 2 dl: 17.19

Feature: 0 491921 Mtn: S Plc: G ( -1.77, 6.13,-18.12)

H:O Pt: F ( 0.05, 0.58, 0.81) Pm: D ( 0.51, -0.71, 0.49)

Feature: 0 492053 Mtn: S Plc: G ( 8.46, 5.21, -4.33)

H:C Pt: F ( 0.07, 0.26, 0.96) Pm: D ( 0.10, -0.96, 0.25)

Word uttered: LIKE! 0 491969

Word uttered: THIS! C 492012

Gestlet left : Strt: 492072 Stp: 492238 Feats: 10 Mv: -3 dl: 20.31

Feature: 0 492072 Mtn: S Plc: G ( 8.44, 5.30, -4.35)
H:C Pt: F ( 0.07, 0.26, 0.96) Pm: D ( 0.10, -0.96, 0.25)

Feature: 0 492238 Mtn: S Plc: R ( 5.40, -4.68,-21.77)

H:O Pt: F ( 0.00, 0.52, 0.85) Pm: R ( 0.61, -0.68, 0.42)


