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Abstract

In this thesis, we use the X-ray CT images of Berea sandstones to carry out the
numerical study of the e�ects of wave-induced �uid motion on seismic velocity and
attenuation in porous rocks. In numerical modeling, it is possible to control the factors
and inputs that are hard to accomplish in laboratory measurements and isolate those
of interest that have signi�cant impact on the seismic responses; this can help in
understanding the fundamental physics of seismic waves propagating in saturated
porous rocks. The ultimate goal of computational rock physics is to supplement
the traditional laboratory measurements, that are time consuming and costly, with
cheaper numerical experiments that allow the parameter space to be explored more
thoroughly.

For this purpose, in this thesis we develop a computational method for time do-
main simulation of wave propagation in poroelastic medium. The medium is com-
posed of an elastic matrix saturated with a Newtonian �uid. The method operates on
a digitized representation of the medium where a distinct material phase and proper-
ties are speci�ed at each volume cell. The dynamic response to an acoustic excitation
is modeled mathematically with a coupled system of equations: elastic wave equation
in the solid matrix and linearized Navier-Stokes equation in the �uid. Implementation
of the solution is simpli�ed by introducing a common numerical form for both solid
and �uid cells and using a rotated-staggered-grid �nite-di�erence scheme which al-
lows stable solutions without explicitly handling the �uid-solid boundary conditions.
A stability analysis is incorporated and can be used to select gridding and time step
size as a function of material properties. The numerical results are shown to agree
with the analytical solution for an idealized porous medium of periodically alternating
solid and �uid layers.

When applying the linear solver to compute the e�ective elastic properties of 3D
digitized porous rocks, we �nd discrepencies between the numerical results and the
laboratory measurements. The reason for such a problem is the loss of small features,
such as cracks and micro-pores, in the digitized matrix of rocks during the imaging
process of aggregation. A hybrid approach, combining the numerical computation
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and the e�ective media theories, is developed to deduce the lost cracks from a limited
number of laboratory measurements. This approach can recover the lost cracks and
is capable of predicting the e�ective elastic properties of the rock matrix. Compared
to the traditional inversion schemes based only on the e�ective media theories, this
hybrid scheme has the advantage of utilizing the complex micro-structures of 3D
digitized porous rocks that are resolved in the imaging process, and it helps limit the
inversion space for crack distribution.

In the study of the dynamic and low-frequency responses of saturated porous rocks,
we employ the stress-strain calculation in numerical modeling so as to compute the
velocities and attenuations of rock samples, the sizes of which are much smaller than
the seismic wavelength of interest. For these cases, transmission measurement cannot
be used. Realizing the signi�cant contribution of small cracks to the total attenua-
tion, we extend the hybrid approach by incorporating the modi�ed squirt-�ow model
where a �uid with frequency-dependent bulk modulus is introduced. Therefore, at-
tenuation due to viscous �uid in sti� pores, that are resolved in the imaging process,
can be computed numerically. Attenuation due to viscous �uid in compliant pores
can be determined by the modi�ed squirt-�ow model since we know the crack dis-
tribution. In the inversion for crack distribution, besides using the velocities of P-
and S-waves measured in laboratory for the dry and water-saturated cases, measured
attenuation data of P-waves are also used so as to further constrain the inversion,
and to improve the uniqueness of the inversion results. By using such an extended
hybrid approach, we are able to predict both the velocities of saturated porous rocks
and the attenuations.

From numerical study with the linear solver, we can conclude that the linear solver
is able to accurately couple elastic solid and viscous �uid and handle high material
contrast and the complex micro-structures of 3D digitized porous rocks. The stress-
strain calculation is capable of computing the velocities and attenuations of saturated
porous rocks the sizes of which are much smaller than the wavelength of interest. The
hybrid approach is a practical way to study the seismic properties of saturated porous
rocks until high enough resolution digitized data and enough computational resources
are available. From the computations, we observe that the small features, such as
cracks lost in the imaging process, are critical for accurately predicting velocities and
attenuations of saturated porous rocks. Generally, attenuation is more sensitive to
the viscosity of the saturating �uid than velocity is, and attenuation due to viscous
�uid in compliant pores is greater than that due to viscous �uid in sti� pores.

Thesis Supervisor: M. Na� Toksöz
Title: Professor of Geophysics
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Chapter 1

Introduction

1.1 Objective

The goal of this thesis is to understand the fundamental physics of seismic velocity

dispersion and attenuation of porous rocks saturated with viscous �uids by using high

resolution digitized sandstones and high-performance computational techniques. This

thesis focuses on the dynamic and low-frequency responses of the saturated porous

rocks due to wave-induced �uid motion in the pores.

To accomplish this, we have to �rst develop a multi-physics numerical solver to

couple the wave equation in solid grains with the �uid �ow of viscous �uids in the

pores. This solver has to be able to handle the high material contrast and complex

micro-structures of digitized porous rocks, accurately capture the interaction between

elastic solid and viscous �uid and be parallelized so as to e�ciently deal with large

samples. Second, observing the discrepancies between the computed results and lab-

oratory measurements due to ignoring the discontinuities such as cracks in the matrix

of rocks, we need to �nd a solution to resolve this general problem of computing the

static and dynamic e�ective elastic properties of saturated porous rocks by includ-

ing these cracks lost in the imaging process. We need to develop a framework that

combines the computational techniques and theoretical models to take the advantage

of the high resolution digitized data that describe the complex micro-structures of

porous rocks, while including the e�ects of lost cracks through the use of e�ective
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medium models, such as the Kuster-Toksöz model. Third, in studying the dynamic

and low-frequency responses of saturated porous rock, since the rock samples we can

simulate are much smaller than the wavelengths in which we are interested, we have

to develop a numerical calculation to extract the velocity and attenuation informa-

tion from the computed results. We utilize the idea of the stress-strain calculation in

our numerical modeling for this purpose. When considering the dynamic responses

of saturated porous rocks in terms of attenuation, the contribution of cracks comes

into play in a signi�cant way. To compensate for its contribution to the total atten-

uation, we have to introduce another theoretical model � the modi�ed squirt-�ow

model, and combine it with the numerically computed results so as to provide a good

explanation of the observations in laboratory measurements.

Overall, this thesis introduces a multi-physics numerical solver and a framework

to study the e�ects of wave-induced �uid motion on seismic velocity and attenuation

in saturated porous rocks. The framework combines the numerical computation with

the theoretical models so as to compensate for the contribution of cracks lost in the

imaging process. The thesis demonstrates the merits of the framework for computing

the dynamic responses of saturated porous rocks through comparing the computed

results with the laboratory measurements. Until we can obtain digitized rock data

in high enough resolution and process them with su�cient computational resources,

the hybrid framework, combining numerical computation and theoretical models, is

a practical way of pursuing this goal.

1.2 Review of the Previous Work

Seismic wave propagation velocities and attenuation in poroelastic materials are of

interest in many �elds. For example, oil reservoirs are composed of a porous rock

matrix with oil contained in the pores. Understanding of the intrinsic mechanisms

causing dispersion and attenuation is not only a signi�cant academic topic but also

an industrial one, and can guide us to better analyze the seismic data collected and to

help decipher the geological information underneath. Accurate models for the elastic
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wave velocities and attenuations in such reservoirs are required for depth calibration

of surface re�ection seismograms, lithology classi�cation, hydrocarbon identi�cation,

and reservoir management in oil/gas exploration and production. However, the e�ect

of pore structure and �uid motion on wave propagation in complex rocks is not fully

understood at intermediate frequencies between the theoretical low-frequency and

high-frequency limits. There is an increasing need for characterizing the frequency-

dependent viscoelastic properties of rock to better integrate measurements at di�erent

frequency ranges, from seismic to sonic logging to ultrasonic laboratory measure-

ments.

Researchers have been carrying out laboratory and �eld measurements on di�er-

ent types of rocks from small to large scale so as to gain direct observations and

build empirical relationships [e.g., Nur and Simmons, 1969, Toksöz et al., 1976, 1979,

Winkler and Nur, 1979a, Winkler et al., 1979, Winkler and Nur, 1979b, Murphy,

1982, Winkler and Plona, 1982, Murphy, 1984, Winkler, 1985, Han, 1986, Murphy

et al., 1986, Wang and Nur, 1990, Batzle et al., 2006]. Meanwhile, other investigators

have been developing mathematical theories and models to explain what have been

observed [e.g., Biot, 1956a,b, Walsh, 1965, Kuster and Toksöz, 1974, O'Connell and

Budiansky, 1977, Johnston et al., 1979, Gurevich and Lopatnikov, 1991, Berryman,

1992, Dvorkin and Nur, 1993, Dvorkin et al., 1994, 1995, Gurevich et al., 1997, 1999,

Gurevich, 2002, Pride and Berryman, 2003a,b, Pride et al., 2004, Muller and Gure-

vich, 2005, Galvin and Gurevich, 2006, 2007, Gurevich et al., 2008, Müller et al.,

2008, Galvin and Gurevich, 2009, Gurevich et al., 2009a,b].

Amongst this work, laboratory experiments signi�cantly contribute to our knowl-

edge of the dynamic responses of saturated porous rocks. Depending on the frequency

range of interest, several di�erent techniques can be used to measure the responses

of waves to porous rocks in laboratory. Pulse-echo [Winkler and Plona, 1982] and

ultrasonic pulse transmission [Toksöz et al., 1979] techniques have been used in the

laboratory for frequencies at the range of 100 kilohertz on small samples. The reso-

nant bar technique [Peselnick and Outerbridge, 1961, Tittmann, 1977, Winkler et al.,

1979, Winkler and Nur, 1979a] has been employed for frequencies at the range of one
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kilohertz and lower. The method requires longer samples. For frequencies well o� the

resonance frequency, stress-strain measurement has been carried out in laboratory to

record the stress-strain behavior of rocks [Gordon and Davis, 1968, McKavanagh and

Stacey, 1974, Peselnick and Outerbridge, 1961, Batzle et al., 2006].

Dispersion and attenuation information of rocks can be extracted from data mea-

sured by these di�erent techniques in di�erent ways. Traditionally, researchers formu-

lated empirical relationships from laboratory experiments to help predict properties

of rocks [e.g., Wyllie et al., 1956, 1958, Han, 1986]. However, such relationships are

too simple to be predictive for a wide range of rocks, and lack the detailed description

of the micro-structures of rocks.

Parallel with the laboratory work, di�erent theories and models have been devel-

oped to explain the underlying causes of such dispersion and attenuation. Biot [1956a,

1956b] developed a theory of wave propagation in saturated porous rocks based on a

macroscopic �uid-�ow model. In both low- and high-frequency limits, Biot's theory

predicts little dispersion and attenuation [Winkler, 1985, Han, 1986, Winkler, 1986,

Wang and Nur, 1990]. Mavko and Nur [1975] and O'Connell and Budiansky [1977]

proposed squirt-�ow models to accommodate pore scale �uid �ow and explained the

dispersion and attenuation it induces. Based on the Biot and squirt-�ow models,

Dvorkin and Nur [1993] developed the BISQ (BIot-SQuirt) model to unify the Biot

and squirt-�ow mechanisms. Dvorkin et al. [1994] showed special cases of squirt-�ow

at low and high frequencies and compared them with BISQ model. Dvorkin et al.

[1995] extended BISQ model to fully saturated rocks. For heterogeneous rocks, Berry-

man and Wang [1995, 2000] came up with a double-porosity, dual-permeability model

to capture the reality that sti� spherical pores and compliant cracks are coexistent

within one rock. Pride and Berryman [2003a,b] derived a system of equations to

describe the linear dynamics of double-porosity and dual-permeability materials in

terms of acoustic attenuation and �uid transportation. Pride et al. [2004] proposed a

uni�ed theory to treat P wave attenuation in sedimentary rocks which covers meso-

scopic and microscopic scales. Meanwhile, Gurevich and Lopatnikov [1991], Gurevich

et al. [1997], Gurevich [2002], Muller and Gurevich [2005], Galvin and Gurevich [2006,
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2007], Müller et al. [2008], Galvin and Gurevich [2009], Gurevich et al. [2009a,b] also

developed mathematical theories to study wave dispersion and attenuation due to

wave-induced �uid �ow in the presence of fractures in otherwise porous rocks. To

accurately predict the properties of rocks requires highly precise information of its

complex micro-structure since the e�ective properties of porous rocks depend highly

on pore spaces, solid grains and interactions between these two. Usually in the deriva-

tions of theoretical models, many simpli�cations and assumptions have been made

to make it possible to reach a set of simple mathematical equations describing the

physics. Therefore, it is impossible to include the details of the micro-structures of

porous rocks in theoretical models.

Though more laboratory measurements and theoretical research will be needed to

provide insight on the frequency-dependent acoustical properties of porous media, re-

cent advances in the numerical simulation of wave propagation at the pore-scale may

provide answers to some unresolved questions. The numerical simulation approach,

commonly called �computational rock physics�, computes the e�ective physical prop-

erties of rocks numerically by solving the relevant equations for the pore-scale digitized

rock images acquired from X-ray microtomography.

With current advanced imaging techniques such as micro-computed tomography

(µ-CT), micro X-ray CT [Flannery et al., 1987, Spanne et al., 1994], focused ion beam

scanning electron microscopy (FIBSEM), laser confocal microscopy [Fredrich et al.,

1995], and magnetic resonance imaging (MRI), we are able to generate 3D images

of rocks at high resolution. The usual voxel resolution is about 1-10 µm or higher.

Such high resolution images provide direct measurements of the complex morphology

of porous rocks. Combined with computational techniques, we can calculate the

material properties such as di�usivity, elasticity, permeability and conductivity. The

ultimate goal of the development of these computational experiments and methods

is to supplement the traditional measurements carried out inside laboratories, which

are time consuming and costly, with cheaper numerical experiments that allow the

parameter space to be explored more thoroughly.

Two fundamental classes of numerical methods have been developed and used for
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studying rock properties: static and dynamic methods. Roberts and Garboczi [2000],

Arns et al. [2002, 2007], Grechka and Kachanov [2006] and Madadi et al. [2009] used

the �nite element method (FEM) to study the static e�ective elastic properties of

porous media and rocks. While Saenger and Shapiro [2002], Saenger et al. [2004a,b,

2005, 2006], Masson et al. [2006], Saenger et al. [2007], Masson and Pride [2007],

Saenger [2008] and Masson and Pride [2010] used �nite di�erence method (FDM)

to study the dynamic e�ective properties of porous rocks. Arns et al. [2002] carried

out extensive numerical computations on 3D digitized rocks of several Fontainebleau

sandstones with variable porosities, and compared their numerical predictions to those

from Gassmann's model and experimental measurements. They concluded that for

such type of clean sandstone as Fontainebleau sandstone, elastic property-porosity re-

lationships can be derived from microtomographic images. Arns et al. [2007] applied

the same numerical method on the poorly-cemented granular rocks, and studied the

e�ects of contact moduli on linear e�ective elastic properties of such rocks. Saenger

et al. [2000] developed a �nite di�erence solver using rotated-staggered-grid scheme

(RSG) and studied the dynamic responses of cracked rocks [Saenger and Shapiro,

2002, Saenger et al., 2004a], and he compared the numerical results to those esti-

mated by di�erent e�ective medium theories. Saenger et al. [2005] extended the RSG

scheme to incorporate the viscous e�ect of �uid and studied the Biot's e�ects of syn-

thetic porous rocks. With the same solver, Saenger et al. [2006] and Saenger [2008]

presented a new technique for computing static e�ective elastic properties and ex-

plained discrepancies between some numerical studies in terms of static and dynamic

numerical experiments. Based on Biot's poroelasticity theory [Biot, 1956a,b], Masson

et al. [2006] and Masson and Pride [2007, 2010] published a series papers about their

work on developing time-domain �nite-di�erence solvers to study seismic attenuation

and dispersion across all frequencies due to wave-induced �uid �ow in rocks with

mesoscopic scale heterogeneities. Rubino et al. [2009] studied the same problems for

heterogeneous �uid-saturated porous rocks by solving coupled Biot's equations with

the �nite-element method in the frequency domain. In all of these computations,

they claimed the numerical predictions can verify some theoretical models, and even
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explain some experimental measurements, which is a good aspect of computational

experiments.

The �nite di�erence time-domain solver that Saenger et al. [2005] developed to

perform pore-scale simulation of wave propagation in porous materials saturated with

a viscous Newtonian �uid handles well the large contrast between solid and �uid ma-

terial properties found in porous rocks. The problem of handling viscous �uid was

solved with minimal modi�cation to an existing elastic wave propagation code by rec-

ognizing that the linearized Navier-Stokes equation for the �uid can be regarded as

a wave equation where the �uid has an imaginary, frequency-dependent shear modu-

lus. This frequency-dependent shear modulus was approximated in the time-domain

simulation by a single-order generalized Maxwell body (GMB) model [Emmerich and

Korn, 1987]. Since the approximation used is only exact in the low-frequency limit,

small errors are introduced in �nite-frequency simulations. Additionally, the GMB

approximation may require smaller time steps for stability than the exact solution.

In contrast with the GMB approximation, an exact description of the interaction

between a viscous �uid and a solid has already been studied in computational biome-

chanics [Greenshields and Weller, 2005, Giannopapa and Papadakis, 2008]; in both

cases a �nite-volume method rather than a rotated-staggered-grid �nite-di�erence

method was employed to solve the coupled system. However, Greenshields and Weller

[2005] applied this method on simulating the propagation of pressure waves in an

artery, where the low contrast of material properties did not create instability. Gi-

annopapa and Papadakis [2008] derived a mathematical formulation for the coupled

system, but applied it only on an elastic solid where no coupling between the solid

and a �uid was demonstrated.

Even with the X-ray CT imaging technique, we are unable to obtain images of

rocks with high enough resolution such that every single crack or micro-pore between

and within grains for sandstones or carbonates can be illuminated. Even if we were

able to do so, current computational resources would limit our ability to solve such

a huge 3D problem on a realistic scale, since the resolution required has to be down

to the nanometer scale. Therefore, we generally lose small features of rocks during
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the imaging process such as phase separation. Arns et al. [2007] had realized this

drawback and tried to remedy it by introducing contact porosity for poorly-cemented

sandstones. In their approach, they utilized microtomographic images and grain-

partitioning techniques to assign grain moduli, then used e�ective medium theories

locally to calculate contact moduli between grains for phases such as clay.

However, we found that the loss of small features of rocks due to the imaging pro-

cess not only a�ects poorly-cemented sandstones as Arns et al. [2007] discussed, but

also well-cemented sandstones such as Fontainebleau sandstone and Berea sandstone.

For example, in the paper by Arns et al. [2002], though the numerical predictions with

3D digitized rocks of Fontainebleau sandstones using FEM can match Gassmann's

equations and experimental measurements well, we found that (1) the computed

velocities for both dry and water/oil saturated cases are generally higher than ex-

perimental measurements, and (2) velocities of P-wave for dry rocks are higher than

those for water/oil saturated cases, which contradicts the intuitions and laboratory

observations for sandstones. We also found the same contradicting phenomena in our

own computations on digitized 3D Berea sandstones. One explanation Arns [2002]

gave to such observations is due to the periodic boundary condition used in the FEM

solver. However, we do not think this is the real reason behind these observations.

The low-frequency response of �uid-saturated porous rocks interests the geophysi-

cists the most. In the low-frequency band used in seismic exploration, we can still

observe non-negligible dispersion and attenuation, which is highly dependent on �uid

mobility and the distributions of heterogeneities in rocks [Gurevich et al., 1997, Gure-

vich, 2002, Pride and Berryman, 2003a,b, Pride et al., 2004, Muller and Gurevich,

2005, Galvin and Gurevich, 2006, 2007, Müller et al., 2008, Galvin and Gurevich,

2009]. Generally, stress-strain measurement has been used either in laboratory ex-

periments or in numerical computations to obtain such low-frequency responses [Bat-

zle et al., 2006, Masson et al., 2006, Masson and Pride, 2007, Rubino et al., 2009,

Masson and Pride, 2010]. However, limited by the assumptions made in Biot's poroe-

lasticity theory, the low-frequency responses obtained from any computation based

on poroelasticity theory can represent only the Biot-type mechanism, and the squirt-
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�ow e�ect is not included. The porous rocks synthesized statistically as heterogeneous

poroelastic media do not preserve the detailed micro-structures of pore spaces as well.

1.3 The Content of the Thesis

In this thesis, we include �ve chapters, in total, to accomplish the tasks mentioned in

the objectives in Section 1.1.

In Chapter 1 we describe the objectives of this thesis and review the past work

on the study of rock physics of saturated porous rocks in terms of laboratory work,

theoretical developments and very recent developments in computational rock physics.

We point out the problems we are facing in this type of research, especially those

related to the computational work, and list the tasks we are to accomplish in this

thesis.

In Chapter 2 we present a convenient implementation of the full coupled prob-

lem, which is stable even with high contrasts in material properties. The linearized

Navier-Stokes equation is solved in the �uid and coupled with the elastic wave equa-

tion in the solid matrix. A rotated-staggered-grid �nite-di�erence scheme is used to

handle the high contrast of material properties between �uid and solid without the

inconvenience of explicitly and separately solving the �uid-solid boundary conditions.

A single mathematical form is applied to both the solid and �uid cells; this simpli�es

implementation without resorting to the GMB approximation. This implementation

of the coupled problem is validated by comparing the numerical results with analyti-

cal solutions for an idealized porous medium of periodically alternating solid and �uid

layers. A von Neumann stability analysis is provided to guide selection of the time

step.

In Chapter 3 we discuss the observed discrepencies between numerical results and

laboratory measurements. The computed velocities of saturated porous rocks are

higher than laboratory data. The details of the digitized rock images are limited by

the resolution of the imaging process that is usually about 1-10 µm. Therefore, we

lose some very �ne features such as cracks and micro-pores whose scales are usually
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less than 1 µm [Sprunt and Brace, 1974]. Without the cracks, the frame of porous

rock becomes sti�er than it should be. To resolve this issue related to the image

resolution, we propose a hybrid method � combining numerical computation with

the di�erential e�ective media theory and the Kuster-Toksöz model. Using only the

laboratory data of the velocities of P- and S-waves for dry and water-saturated rocks,

a Monte-Carlo inversion has been developed to invert the cracks lost in the imaging

process. By using this hybrid method, we are able to compensate for the contribution

of lost cracks to the �nal e�ective elastic properties of rocks. Finally, we compute

the e�ective elastic properties of rocks and compare these numerical results with

laboratory measurements.

In Chapter 4 we �rst demonstrate the particle motion on microscale for a 2D slice

of digitized rock so as to intuit the cause of frequency-dependent seismic responses.

Then we introduce the stress-strain calculation, which we utilize in numerical com-

putation to measure the low-frequency response and the e�ects of �uid viscosity on

seismic dispersion and attenuation. Since only two phases � solid matrix and �uid

inclusion � are considered in our simulation, friction, the dominant mechanism of

attenuation in sandstones due to cracks within and between grains, cannot be cap-

tured. To compensate for the missing attenuation due to friction and viscous �uid

in compliant pores, we further extend the hybrid method introduced in Chapter 3

by utilizing the modi�ed squirt-�ow model. Besides using the velocities of P- and

S-waves measured in laboratory, we also use the measured attenuation of P-waves in

the Monte-Carlo inversion, which can help further constrain the inversion for crack

distribution. The �nal computed velocities and attenuations for di�erent �uids are

compared with laboratory measurements.

In Chapter 5 we �rst draw conclusions for the work done in this thesis, then to

discuss the future work on this topic, especially emphasizing (1) GPU computing to

speed up the simulation so as to model large 3D cases at low enough frequencies and

(2) the use of the nonlinear solver developed to investigate the issues related to the

wave-induced �uid �ow in large 3D models at low frequencies.
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Chapter 2

Linear Solver for Single Phase

Viscous Fluid1

Intrinsic wave propagation velocity and attenuation in poroelastic materials are of

interest in many �elds. For example, oil reservoirs are composed of a porous rock

matrix, such as sandstone, with oil contained in the pore space. Accurate models

for the elastic wave velocities and attenuations in such reservoirs are required for

depth calibration of surface re�ection seismograms, lithology classi�cation, hydrocar-

bon identi�cation, and reservoir management in oil/gas exploration and production.

However, the e�ect of pore structure and �uid motion on wave propagation in complex

rocks is not fully understood at intermediate frequencies between the theoretical low-

frequency and high-frequency limits. There is an increasing need for characterizing the

frequency-dependent viscoelastic properties of rock to better integrate measurements

in di�erent frequency ranges, from seismic to sonic logging to ultrasonic laboratory

measurements.

It is known that the wave-induced motion of viscous �uid in a porous matrix has a

signi�cant frequency-dependent e�ect on both acoustic velocity and attenuation. Dif-

ferent physical mechanisms and theoretical models have been proposed. Biot [1956a,

1956b] developed a theory of wave propagation in saturated porous rocks based on a

1Zhang, Y., L.M. Song, M. De�enbaugh and M.N. Toksöz. A �nite di�erence method for a
coupled model of wave propagation in poroelastic materials, Journal of the Acoustical Society of
America, 127(5), 2847-2855, 2010.
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macroscopic �uid-�ow model. In both low- and high-frequency limits, Biot's theory

predicts little dispersion and attenuation. The maximum dispersion and attenuation

occur in between, at Biot's characteristic frequency which is proportional to the �uid

viscosity. However, experimental work [Winkler, 1985, Wang et al., 1991, Adam et al.,

2006] shows that Biot's theory cannot explain all the dispersion and attenuation ob-

served in laboratory and �eld. Though the experimental results were statistically

insu�cient to reach general conclusions about physical causes, it seems likely that

heterogeneous and compliant pores/micro-fractures in the samples were signi�cantly

in�uencing the interaction between the �uid and the solid matrix at the pore-scale.

Though more laboratory measurements will be needed to provide insight on the

frequency-dependent acoustical properties of porous media, recent advances in the

numerical simulation of wave propagation at the pore-scale may provide answers to

some unresolved questions. This numerical simulation approach, commonly called

�computational rock physics�, computes the e�ective physical properties of rocks nu-

merically by solving the relevant pore-scale fundamental physics on pore-scale digi-

tized rock images acquired from X-ray microtomography scans. It has been applied

mostly to model the e�ect of pores, fractures and �uid on static elastic properties

using �nite element methods [Roberts and Garboczi, 2000, Arns et al., 2002, Grechka

and Kachanov, 2006].

Recently Saenger et al. [2005] developed a �nite-di�erence time-domain method

to perform pore-scale simulation of wave propagation in porous materials saturated

with a viscous Newtonian �uid. A rotated-staggered-grid scheme was used for the

�nite-di�erence computation, which handled well the large contrast between solid

and �uid material properties found in porous rocks. This problem was solved with

minimal modi�cation to an existing elastic wave propagation code by recognizing

that the linearized Navier-Stokes equation for the �uid can be regarded as a wave

equation where the �uid has an imaginary, frequency-dependent shear modulus. This

frequency-dependent shear modulus was approximated in the time-domain simula-

tion by a single-order generalized Maxwell body (GMB) model [Emmerich and Korn,

1987]. Since the approximation used is only exact in the low-frequency limit, some

30



small errors are introduced in �nite-frequency simulations. Additionally, the GMB

approximation may require smaller time steps for stability than the exact solution.

In contrast with the GMB approximation, an exact description of the interaction

between a viscous �uid and a solid has already been studied in computational biome-

chanics [Greenshields and Weller, 2005, Giannopapa and Papadakis, 2008]; in both

cases a �nite-volume method rather than a rotated-staggered-grid �nite-di�erence

scheme was employed to solve the coupled system. However, Greenshields and Weller

[2005] applied this method on simulating the propagation of pressure waves in an

artery, where the low contrast of material properties did not create instability. Gi-

annopapa and Papadakis [2008] derived a mathematical formulation for the coupled

system, but applied it only on an elastic solid where no coupling between the solid

and a �uid was demonstrated.

This paper presents a convenient implementation of the full coupled problem which

is stable even with high contrasts in material properties. The linearized Navier-

Stokes equation is solved in the �uid and coupled to the elastic wave equation in the

solid matrix. A rotated-staggered-grid scheme is used to handle the high contrast

of material properties between �uid and solid without the inconvenience of explicitly

and separately solving the �uid-solid boundary conditions. A single mathematical

form is applied to both the solid and �uid cells, which simpli�es implementation

without resorting to the GMB approximation. This implementation of the coupled

problem is validated by comparing the numerical results with the analytical solution

for an idealized porous medium of periodically alternating solid and �uid layers. A

von Neumann stability analysis is provided to guide selection of the time step.

2.1 Governing Equations

Consider a medium consisting of a porous elastic matrix �lled with a compressible

Newtonian �uid. The displacement vector, u, associated with a small disturbance

propagating through the medium is described at any point x and time t by the elastic
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dynamic equation in the solid:

ρs
∂2u

∂t2
= (λ+ µ)∇ (∇ · u) + µ∇2u + f (2.1)

and the Linearized Navier-Stokes equation (wherein convection acceleration is ig-

nored) in the �uid:

ρf
∂2u

∂t2
= Kf∇ (∇ · u) +

∂

∂t

[
ηµ∇2u + (ηµ + ηλ)∇ (∇ · u)

]
+ f (2.2)

In equation (2.1), ρs, λ and µ are the density and Lamé elastic constants of the solid

phase, and in equation (2.2), ρf , Kf , ηµ and ηλ are the density, compressional or bulk

modulus, shear viscosity, and second viscosity coe�cient of the �uid phase. In both

equations, the vector f is the volumetric force. At the gridding scale, it is assumed

that the material properties of the solid and �uid are homogeneous and isotropic,

but at a macroscopic scale the medium can be heterogeneous and anisotropic as the

material properties vary spatially. Note that the equations above can describe a rock

composed of multiple solid or �uid phases. The equations are coupled through the

boundary conditions at the interface between adjacent solid and �uid phases. The

equilibrium condition requires that the stresses be continuous across the boundary

and the no-slip condition (due to non-zero �uid viscosity) requires that there be equal

displacement across the boundary.

2.2 Numerical Implementation

2.2.1 Finite di�erence implementation

For the numerical implementation, it is convenient to solve both the elastic wave

equation and the linearized Navier-Stokes equation for the particle velocity vector v

and the stress vector σ. Both equations may be written in the common form:

ρ
∂v

∂t
= ∇ · σ + f (2.3)
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For the solid phase, ρ = ρs, and

∂σij
∂t

= DS
ijkl

(
∂vk
∂xl

+
∂vl
∂xk

)
(2.4)

where DS
ijkl is the sti�ness tensor for the solid.

For the �uid phase, ρ = ρf , and

σij = −pδij + EF
ijkl

(
∂vk
∂xl

+
∂vl
∂xk

)
(2.5)

where EF
ijkl = ηλδijδkl + ηµ (δikδjl + δilδjk) describes the anelastic contribution of the

strain rate to the stress, and the pressure p is expressed in terms of the velocities as,

∂p

∂t
= −DF

ijkl

(
∂vk
∂xl

+
∂vl
∂xk

)
(2.6)

where DF
ijkl = Kfδijδkl is the sti�ness tensor for the �uid.

Equations (2.3)-(2.6) are solved by starting from given initial conditions and step-

ping the solution forward in time. For time-domain �nite-di�erence solvers, the

standard-staggered-grid (SSG) scheme is usually used, but this scheme needs to av-

erage the shear moduli or shear viscosities diagonally between cells. As shown in

Figure 2-1. when the cell edges align with the grid and the velocities are de�ned

on cell edges, the numerical derivatives for compressional strains (e.g., ∂vx
∂x
) approxi-

mate values at the cell centers, while the numerical derivatives for shear strains (e.g.,

∂vx
∂z
) approximate values at the cell corners. Shear moduli (for solid cells) or shear

viscosities (for �uid cells) must then be determined for the cell corners, which is

accomplished by averaging these properties diagonally between cells. When this av-

eraging combines properties between solid and �uid cells, a third expression for stress

is needed which is more complicated than either equation (2.4) or (2.5) alone. Due

to this averaging of properties, the stress in cells along a �uid-solid boundary would

depend on the shear moduli like a solid cell and on the viscosities like a �uid cell.

Furthermore, because of the high contrast of material properties between �uid and

solid, numerical noise due to instability is usually generated along the interface. To
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avoid the inconvenience of handling this third equation for stress and the numerical

instability, a rotated-staggered-grid (RSG) scheme [Saenger et al., 2000; see details

in Appendix A] is used. As shown in Figure 2-2, in the RSG scheme, the axes are

oriented at 45 degrees with respect to the cell edges and all velocity components are

de�ned at every cell corner. The numerical derivatives for both compressional and

shear strains require only di�erences between velocities at diagonal corners of the

same cell and the numerical derivatives approximate strains at the cell centers. Thus

material properties are only required at the cell centers. The advantages of using

the RSG scheme are that it does not require averaging of material properties across

solid/�uid boundaries and the coupling between the two phases is ful�lled naturally

by the continuities of velocities and stresses on the boundaries without explicitly and

separately handling the boundary conditions.

A �nite di�erence method for solving the elastic wave equation using the RSG

scheme has been established by Saenger et al. [2000]. Here a method for solving

the linearized Navier-Stokes equation is described. For the coupled model, Saenger's

method would be applied in the solid cells and this method in the �uid cells. To solve

the linearized Navier-Stokes equations using the RSG scheme, it is useful to de�ne

the pressure and stresses at staggered time steps. Assume the pressure and stresses

are known at time t− ∆t
2
and velocities are known at time t, the pressure and stresses

�eld at time t+ ∆t
2
are found from the velocities at time t using equations (2.5) and

(2.6). Then, the velocities are updated to time t+ ∆t from the pressure and stresses

at time t+ ∆t
2
using equation (2.3).

2.2.2 Relationship between the �uid and solid equations

By comparing the Fourier transforms of equations (2.4) and (2.5), it is clear that

the correct dynamics for the system could be produced at angular frequency ω by

solving only the elastic wave equation (equations (2.3) and (2.4)) in every cell, while

replacing the sti�ness tensor DS
ijkl with,

D
S−Fluid
ijkl = DF

ijkl + iωEF
ijkl (2.7)
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in the �uid cells. In other words, the linearized Navier-Stokes equation can be thought

of as the elastic wave equation with frequency-dependent elastic moduli. Indeed,

an elastic wave propagation code can be modi�ed to solve the coupled equations

by simply adding an anelastic term for the �uid cells which depends on the time

derivative of the strain. This can be seen by comparing equations (2.4) and (2.5).

A wave propagation code can also be modi�ed to approximately handle Newtonian

�uids using the Generalized Maxwell Body (GMB) approximation [Emmerich and

Korn, 1987], though this o�ers no bene�ts over directly implementing equation (2.5).

The GMB approximation sets up an ordinary di�erential equation in time for each

cell which is forced by the strain tensor and generates a tensor of anelastic terms.

The anelastic tensor is added to Hooke's law to approximate arbitrary frequency-

dependent elastic moduli. Unfortunately, the form of the GMB approximation cannot

provide the derivative of strain as required for a Newtonian �uid. Nevertheless, it can

approximate the strain derivative and has been applied to the present problem with

good results [Ciz et al., 2006]. When the GMB approximation uses one relaxation

mechanism and is constrained to be correct at zero frequency [e.g., Saenger et al.,

2005] it amounts to replacing the true frequency-dependent sti�ness tensor of equation

(2.7) with,

DGMB
ijkl = DF

ijkl + iω

[
ωr

ωr + iω

]
EF
ijkl (2.8)

for constant relaxation frequency ωr. From equation (2.8), it is clear that the approx-

imation becomes exact in the low-frequency (small ω) limit, as the term in the square

brackets approaches unity. At higher frequencies, the approximation introduces four

kinds of modeling errors. First, it creates a non-zero real shear modulus at �nite

frequencies, allowing propagating shear waves which cannot actually exist in a �uid.

Second, it reduces the imaginary part of the shear modulus, creating an e�ective

viscosity that is always lower than the true viscosity. Third, it creates an imaginary

part in the bulk modulus causing attenuation of compressional waves beyond that

due to poroelastic e�ects. Fourth, it makes the compressional wave velocity arti�-

cially large, asymptotically approaching
√

Kf+ωr(ηλ+2ηµ)

ρf
at high frequency. Within a
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frequency band of interest, all of these errors can be made insigni�cant by making

ωr su�ciently large. However, if the spurious compressional wave velocity at high

frequency becomes the fastest velocity in the model, it controls the �nite di�erence

time step required to maintain von Neumann stability. At this point, further error

reduction comes at the price of smaller time steps and thus slower execution speed.

The GMB approximation has the additional disadvantage of requiring for each cell

the introduction of a tensor with six anelastic parameters and a �rst order di�eren-

tial equation to describe their time evolution. By contrast, handling the �uid exactly

according to equation (2.5) requires only retaining the time derivative of the existing

strain tensor. For a Newtonian pore �uid, the GMB approximation o�ers no bene�ts

over the full coupled model. It is slightly less accurate, potentially less stable at the

same time step, has a larger memory footprint due to storing the anelastic parameters

and their derivatives, and is slower due to computing the dynamics of the anelastic

parameters.

2.3 Numerical Validation

The numerical solution was tested on a model with periodically alternating solid and

viscous �uid layers. The layered model is an idealized porous medium which has

analytic solutions for the velocity and attenuation of the compressional wave [Ciz

et al., 2006; see also Appendix B]. As shown in Figure 2-3, a two-layered model with

one solid layer and one viscous �uid layer was used. Periodic boundary conditions

were applied on both the top and bottom to represent alternating layers of solid

and �uid extending to in�nity. The modeling parameters are listed in Table 2.1. A

compressional plane wave source was used and four lines of receivers were deployed

perpendicular to the direction of propagation at di�erent ranges from the source.

Lines R1, R2 and R3 were separated by 1000 grid points between each other, and

lines R1 and R4 were separated by one wavelength. The e�ective velocity between

R1 and R2 was estimated from the di�erence in arrival times of the waveform peak at

R1 and R2. Attenuation (1/Q ) was estimated from the amplitude change between
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R1 and R4, assuming a constant Q on this interval. An image of a wave propagating

through this idealized porous medium is shown at one time step in Figure 2-4. Note

that the compressional wave propagating in the solid induces particle motion in the

�uid along the interface. This relative motion between the solid and �uid plays an

important role in causing dispersion and attenuation.

The computed results from the coupled model are compared with the analytical

solution for e�ective velocities (Figure 2-5) and for attenuation (Figure 2-6). As

shown in Figure 2-5, the computed results agree well with the analytic solution at

high viscosity, but diverge at low viscosity. This is attributed to insu�cient sampling

of the viscous boundary layer which becomes much thinner at low viscosity. According

to Ciz et al. [2006], at least 3 grids inside the boundary layer are needed to minimize

this kind of numerical dispersion. However, in the case with ηµ = 0.01 kg/m · s, for

example, there is less than one grid sampling the boundary layer for ∆x = 10−5 m,

which is not su�cient according to this criterion. Increasing the sampling within the

boundary layer by using smaller ∆x = 2×10−6 m improves the computed values. For

higher viscosities, the computed results agree well with the analytic solutions because

of su�cient sampling in the boundary layer.

2.4 Numerical Comparison with the GMB Approxi-

mation

As we have discussed previously, our method has advantages over other methods

[Saenger et al., 2005, Greenshields and Weller, 2005, Giannopapa and Papadakis,

2008] in terms of solving fully coupled system without approximation and handling

high material contrast. Among the other three methods, the one with the GMB

approximation [Saenger et al., 2005] is the one most similar to ours. Also due to

di�culty in accessing to the other two methods [Greenshields and Weller, 2005, Gi-

annopapa and Papadakis, 2008], we only compare our method to the one with the

GMB approximation in this section with an extreme case in which the viscosity of
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�uid was chosen to be 100 kg/m · s.

As shown in Figure 2-7, we recorded traces of compressional wave along middle

axis of solid layer at the lines of R1, R2 and R3, which were computed from our

method (solid line) and the one with GMB approximation (dash line), respectively.

We can see that as the wave propagates further, the amplitudes of waves decrease

with both methods. However, it is obvious that energy computed using the GMB

approximation is attenuated much faster. According to our discussion, the GMB

approximation usually overestimates the attenuation of compressional wave for �nite

frequency due to its simpli�ed approximation, which is demonstrated by our numerical

comparison.

2.5 Stability Analysis

For numerical stability, the �nite-di�erence gridding must satisfy a certain relation-

ship between grid spacing ∆x, time increment ∆t and material properties. The

required relationship is well known for solving the wave equation [Saenger et al.,

2000]. The relationship for solving the linearized Navier-Stokes equations is derived

for the 2D case in Appendix C and descibed here. Numerically solving the quartic

equation (C.8) by using the eigenvalue method [Press et al., 1992] gives four roots

g = {λ1, λ2, λ3, λ4} , which are real or complex values. The stability criterion requires

the absolute values of these four roots to be less than one.

Figure 2-8 and Figure 2-9 show the distribution of the four roots in the complex

coordinate plane for a sampling of wavenumbers (kx, kz) . Given the same physical

properties of the viscous �uid and grid spacing ∆x, all four roots can be within the

unit circle for small enough ∆t (Figure 2-9) and the computation will be stable. For

larger ∆t, some roots, like λ1 and λ3 in Figure 2-8, move outside of the unit circle

for certain wavenumbers and the computation becomes unstable. The stable region

for solving the linearized Navier-Stokes equations also depends on the �uid viscosity.

As shown in Figures 2-9 to 2-11, keeping ∆x and ∆t the same while increasing the

�uid viscosity, changes the distribution of the roots from the case where all roots are
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within the unit circle to the case where some roots are outside of it, which means

that the computation becomes unstable with increasing viscosity.

The von Neumann analysis is more complicated for the linearized Navier-Stokes

equation. The stable and unstable combinations of ∆x and ∆t for the example

material properties were found numerically and are shown in Figure 2-12. In the

stable region, the absolute values of all roots are less than one, and in the unstable

region, the absolute value of at least one root is larger than one. For small viscosity,

the linearized Navier-Stokes equation approaches the acoustic wave equation, and the

stability region is bounded by ∆t = c−1∆x , where c =
√

Kf
ρf

is the compressional wave

velocity, 1483 m/s in Figure 2-12. When the viscosity is large, the linearized Navier

Stokes equation approaches a di�usion equation, and the stable region is bounded

by ∆t = d−1 (∆x)2

2
where d = (ηλ+2ηµ)

ρf
is the di�usion coe�cient. For example, d =

233 m2/s on the curve for ηµ = 100 kg/m · s in Figure 2-12. The boundary of the stable

region is seen to approach these small-viscosity and large-viscosity asymptotes in

Figure 2-12. Note that the small viscosity case applies for typical viscosities, densities,

and bulk moduli of pore liquids in nature ( ηµ ≤ 0.1 kg/m · s,ρf ∼ 1000 kg/m3,Kf ∼

2 GPa) when the grid spacing is 10−6 m or larger. For a model with given source

frequency and material properties, the grid spacing ∆x is selected to provide enough

grid cells within the smallest wavelength. Then, the �nite di�erence time step ∆t is

chosen to satisfy the stability criterion.
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Table 2.1: Material properties for numerical modeling with the coupled model (In all
the cases, we only consider the situation where ηλ = ηµ).

Vp (m/s) Vs (m/s) Density (kg/m3) Viscosity (kg/m · s)
Solid 5100 2944 2540
Fluid 1483 0 1000 0.001,0.01,0.1,1,10,100
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Figure 2-1: Standard-staggered-grid scheme for (a) cells in the solid and (b) cells in
the viscous �uid.
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Figure 2-2: Rotated-staggered-grid scheme for (a) cells in the solid and (b) cells in
the viscous �uid.
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Figure 2-3: Model with periodically alternating solid and �uid layers. A compressional
plane wave is used as the source. Four receiver lines R1, R2, R3 and R4 are deployed.
Periodic boundary conditions are applied at the top and bottom of the model.
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Figure 2-4: A snapshot of the compressional wave propagating in an idealized porous
medium at some time step. Waves travel faster in the solid (upper half) than in the
�uid (lower half). The wave traveling in the solid induces motion of the �uid within
a certain skin depth along the interface.
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Figure 2-5: Variation of the compressional wave velocity with �uid viscosity. Numer-
ical results calculated at a coarser grid ( ∆x = 1× 10−5 m, shown by triangles) and a
�ner grid ( ∆x = 2× 10−6 m, shown by squares) are compared to the analytic solu-
tion (solid curve). At lower viscosities, numerical dispersion is caused by insu�cient
sampling of the viscous boundary layer. This is remedied by �ner gridding.
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Figure 2-6: Variation of the compressional wave attenuation with �uid viscosity.
Numerical results calculated at a coarser grid ( ∆x = 1×10−5 m, shown by triangles)
and a �ner grid ( ∆x = 2× 10−6 m, shown by squares) are compared to the analytic
solution (solid curve). At lower viscosities, numerical dispersion occurs because of
insu�cient sampling of the viscous boundary layer. This is remedied by �ner gridding.
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Figure 2-7: Comparisons between compressional waves computed from the fully cou-
pled method (solid) and the one with GMB approximation (dash). The method with
GMB approximation overestimates the attenuation of compressional wave.
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Figure 2-8: Distribution of the four roots in the complex plane for a sampling of
wavenumbers. The roots λ1 and λ3 are outside the unit circle for some wavenumbers.
The model considered has ∆x = 2×10−6 m, ηµ = 0.01 kg/m · s, and a relatively large
∆t = 1× 10−8 s.
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Figure 2-9: Distribution of the four roots in the complex plane for a sampling of
wavenumbers. All four roots remain within the unit circle at all wavenumbers. The
model considered has ∆x = 2 × 10−6 m, ηµ = 0.01 kg/m · s, and a relatively small
∆t = 1.338× 10−9 s.
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Figure 2-10: Distribution of the four roots in the complex plane for a sampling of
wavenumbers. The model considered has ∆x = 2× 10−6 m, ∆t = 1.338× 10−9 s, and
a large viscosity ηµ = 0.1 kg/m · s.
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Figure 2-11: Distribution of the four roots in the complex plane for a sampling of
wavenumbers. The model considered has ∆x = 2× 10−6 m, ∆t = 1.338× 10−9 s, and
a large viscosity ηµ = 1 kg/m · s.
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Figure 2-12: The stable and unstable regions for the linearized Navier-Stokes equa-
tions according to the von Neumann analysis.
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Chapter 3

Determination of the E�ective Elastic

Properties of Digitized Rock Matrix

In seismic data interpretation, understanding the relationships between elastic prop-

erties of rocks, pore spaces and �uids is critical, and forms the basis for reservoir

characterization and monitoring. E�ective properties of porous rocks depend highly

on pore spaces, solid phases and interactions between these two. To accurately predict

the properties of rocks requires precise information of their complex micro-structures

and the ability to computationally solve the large 3D problems.

Traditionally, researchers formulate empirical relationships statistically from lab-

oratory experiments to help predict properties of rocks [e.g., Wyllie et al., 1956, 1958,

Han, 1986]. However, such relationships are too simple to be predictive for a wide

range of rocks and lack the detailed description of the micro-structures of rocks. Re-

cently, the emergence of computational rock physics �lls this gap and expands the

research on rock physics in a new direction [e.g., Roberts and Garboczi, 2000, Arns

et al., 2002, Grechka and Kachanov, 2006, Saenger, 2008].

With current advanced imaging techniques such as micro-computed tomography

(µ-CT), micro X-ray CT [Flannery et al., 1987, Spanne et al., 1994], focused ion

beam scanning electron microscopy (FIBSEM), laser confocal microscopy [Fredrich

et al., 1995], and magnetic resonance imaging (MRI), we now are able to generate

3D digitized images of rocks in high resolution, the usual voxel resolution of which
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is about 1-10 µm or even higher. Such high resolution images provide direct mea-

surements of the complex morphology of porous rocks. Combining these with com-

putational techniques, we can calculate the material properties such as di�usivity,

elasticity, permeability and conductivity. The ultimate goal of the development of

these computational experiments and methods is to supplement experiments, which

have traditionally been carried out in laboratories and are time consuming and costly,

with cheaper numerical experiments that allow the parameter space to be explored

more thoroughly.

Two fundamental classes of numerical methods have been developed and used for

studying rock properties: static and dynamic methods. Roberts and Garboczi [2000],

Arns et al. [2002, 2007], Grechka and Kachanov [2006] and Madadi et al. [2009] used

the �nite-element method (FEM) to study the static e�ective elastic properties of

porous media and rocks, while Saenger and Shapiro [2002], Saenger et al. [2004a,b,

2005, 2006], Masson et al. [2006], Saenger et al. [2007], Masson and Pride [2007],

Saenger [2008] and Masson and Pride [2010] used the �nite-di�erence method (FDM)

to study the dynamic e�ective properties of porous and cracked rocks. Arns et al.

[2002] carried out extensive numerical computations on 3D digitized rock samples

of Fontainebleau sandstones with variable porosities and compared their numerical

predictions to those from Gassmann's model and experimental measurements. They

concluded that for such types of clean sandstone as Fontainebleau sandstone, elas-

tic property-porosity relationships can be derived from microtomographic images.

Arns et al. [2007] applied the same numerical method on poorly-cemented granular

rocks and studied the e�ects of contact moduli on linear e�ective elastic properties

of such rocks. Saenger et al. [2000] developed a �nite-di�erence solver using rotated-

staggered-grid scheme (RSG) and studied the dynamic responses of cracked rocks

[Saenger and Shapiro, 2002, Saenger et al., 2004a], comparing the numerical results

to those estimated by di�erent e�ective medium theories. Saenger et al. [2005] ex-

tended the RSG scheme to incorporate the viscous e�ect of �uid and studied the

Biot's e�ects of synthetic porous rocks. With the same solver, Saenger et al. [2006]

and Saenger [2008] presented a new technique for computing the static e�ective elastic
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properties and explained discrepancies between some numerical studies in terms of

static and dynamic numerical experiments. In all of these computations, they claimed

the numerical predictions can verify some theoretical models and even explain some

experimental measurements.

The X-ray CT imaging technique is unable to obtain images of rocks with high

enough resolution to illuminate every crack or micro-pore between and within grains

for sandstones or carbonates. Even if it were able to do so, current computational

resources limits our ability to solve such huge 3D problems on a realistic scale since the

resolution required would be down to nanometer scale. Therefore, we generally lose

small features of rocks during the imaging process, such as phase separation. Arns

et al. [2007] realized this drawback of our current technique and tried to remedy it by

introducing contact porosity for poorly-cemented sandstones. In their approach, they

utilized microtomographic images and grain-partitioning techniques to assign grain

moduli, then used e�ective medium theories locally to calculate the contact moduli

between grains for phases such as clay.

However, we found that the loss of small features of rocks due to the imaging

process not only a�ects poorly-cemented sandstones as Arns et al. [2007] discussed,

but also well-cemented sandstones such as Fontainebleau sandstones and Berea sand-

stones. For example, in the paper by Arns et al. [2002], though the numerical pre-

dictions with 3D digitized rocks of Fontainebleau sandstones using FEM can match

Gassmann's equations and experimental measurements well, we found that (1) the

computed velocities for both dry and water/oil saturated cases are generally higher

than experimental measurements; (2) velocities of P-waves for dry rocks are higher

than those for water/oil saturated ones; this contradicts the intuitions and labora-

tory observations for sandstones. We also found the same contradicting phenomena

in our own computations on digitized 3D Berea sandstones. One explanation Arns

[2002] gave for such observations is that the periodic boundary condition is used in

the FEM solver. However, we show below that this is not the real reason behind these

observations.

In this chapter, we will discuss this problem and give an explanation for it. Then
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we will propose a hybrid method � combining numerical computation with the dif-

ferential e�ective media theory and the Kuster-Toksöz model � to resolve this issue.

Finally, we will compute the e�ective elastic properties of rocks and compare these

numerical predictions to laboratory measurements.

3.1 Numerical Predictions without Cracks

3.1.1 3D X-ray CT images of Berea sandstone

3D X-ray CT images for a cylindrical plug of Berea sandstone were obtained. The

images have a total size of 1840 × 1840 × 1940 pixels with resolution of 2.8 µm per

pixel. Gray scale images from X-ray CT have been thresholded so as to separate them

into two main phases: solid grain and pore space, respectively. From the original

cylindrical plug, we extracted a cubic subset in the center with the size of 250×250×

250 pixels for analysis. In Figure 3-1, we show the gray scale CT images of the 2503

pixels cubic subset, and in Figure 3-2, we show the corresponding segmented images

for this same subset, in which grains are represented in red and pores are in blue.

The porosity (φ) of this sample is about 19.2%. As concluded by Arns et al. [2002],

the representative image volume for well-cemented Fontainebleau sandstone should

be a 1203 pixels cubic subset at resolution of 5.7 µm, which exactly corresponds to

our sample with size of a 2503 pixels at 2.8 µm.

3.1.2 Property predictions

We focus on the static e�ective properties of porous rocks as Arns et al. [2002] did on

digitized 3D rocks with the �nite-element method (FEM). We use the �nite-element

solver from NIST (National Institute of Standards and Technology) [Garboczi and

Day, 1995, Garboczi, 1998] to estimate the e�ective elastic properties of the Berea

sandstone represented by the 2503 pixels cubic subset. FEM solves the weak form of

the linear elastic equations and utilizes iterative solvers such as conjugate-gradient

method to �nd the solutions. In FEM, each pixel is taken to be a trilinear �nite
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element and constant strain boundary conditions are applied. The e�ective elastic

properties are obtained from average stresses and strains.

In the computation, we �rst assume the grains are occupied by pure quartz with

bulk modulus K = 37 GPa, shear modulus µ = 44 GPa and mineral density ρ =

2650 kg/m3 [Mavko et al., 1998]. We model dry and water-saturated cases at 40 MPa

pressure where Kwater = 2.2 GPa, µwater = 0 GPa and ρwater = 1000 kg/m3 [Han,

1986]. The numerically predicted results for e�ective bulk 〈K〉 and shear 〈µ〉 moduli

and velocities of P- and S-waves are listed in Table 3.1. In Table 3.2, we list some

laboratory measurements on Berea sandstones with similar porosities at 40 MPa as the

one we used in this study for comparison where pulse-echo technique was employed to

measure the velocities [Winkler, 1985, Han, 1986]. At 40 MPa pressure, Winkler [1985]

and Han [1986] both concluded that velocity dispersion due to �uids was so small as to

be able to be ignored. Although the numerical predictions for dry and water-saturated

cases satisfy Gassmann's equation as Arns et al. [2002] demonstrated, we can see

that the numerical predictions from FEM generally overestimate the e�ective elastic

properties resulting in large velocities in general. Also P-wave velocity predicted in

water-saturated case is less than that for dry case, which usually occurs only for well-

sintered glass beads packs. This indicates that in our numerical computations, the

bulk modulus of water contributes less to the �nal e�ective properties, but the e�ect

of density takes over in the computation.

3.2 Crack Loss in Imaging Process

The reason for the overestimates of numerical predictions is the loss of micro-structures

of rocks in X-ray CT scanning and the image segmentation afterwards. As we know,

small features like cracks or micro-pores in rocks are mostly in nanometer scale [Mur-

phy et al., 1986]. Although the X-ray CT technique can provide high resolution

images in micrometer scale, compared to small features in nanometer scale, its res-

olution is still too low to resolve the micro-structures when we digitize rocks into

CT images and separate phases afterwards. Realizing these issues with the imaging
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process, Arns et al. [2007] introduced the concept of contact porosity to estimate the

contact moduli between grains with e�ective medium theories, and Knackstedt et al.

[2009] utilized SEM images, which have much higher resolution than CT images, to

recover lost micro-pores. For the samples of Berea sandstone we used in our study,

we are facing the same issues. Shown in Figure 3-3a is a 2D slice of X-ray CT im-

age cut from the 3D volume of the digitized Berea sandstone. The arrows in Figure

3-3a indicate cracks between grain contacts that are lost during the segmentation

process. As shown in Figure 3-3b, after segmentation, we obtain a rock with continu-

ous matrix where no micro-structures between grains are resolved. As expected, the

continuous matrix without cracks resulting from segmentation strengthens the rock

frame and contributes to the over-predicted e�ective elastic properties of digitized

rocks. Besides cracks, although there should have been other micro-structures lost in

the imaging process, we only study the e�ects of cracks since we believe they have the

most impact on the e�ective elastic properties of rocks as already discussed by many

researchers [e.g., Walsh, 1965, Kuster and Toksöz, 1974, O'Connell and Budiansky,

1977, Hudson, 1980].

3.3 E�ects of Cracks on Digitized Rock Matrix

As discussed in the previous section, we believe that the loss of cracks during the

imaging process is the main cause of higher predicted e�ective elastic properties of

rocks. Therefore, we have to modify the continuous matrix of digitized rocks by

taking the cracks into account. To accomplish this, e�ective medium theories are

used along with computational approach. In Section 3.1.2, we have calculated the

velocities of P- and S-waves of Berea sandstone for dry and water-saturated cases

with the continuous rock matrix without cracks; the results are much higher than the

laboratory measurements. In order to recover cracks in the continuous matrix, we

carry out a Monte-Carlo inversion on numerical predicted properties of rocks listed

in Table 3.1.

58



3.3.1 E�ective medium theories

Note that instead of working on the continuous matrix directly to invert crack dis-

tribution, we �rst start with the numerically predicted e�ective moduli of the rock

frame. According to the di�erential e�ective medium theory (DEM), for a composite

consisting of two phases, by choosing a preferred host material, we can incrementally

add other phases or inclusions into the host. For the composite host medium at some

porosity value φ , the e�ective moduli K∗ (φ+ dφ) and µ∗ (φ+ dφ) after a small por-

tion of the composite host has been replaced by inclusions of the other phase can be

obtained by

(1− φ)
d

dφ
[K∗ (φ)] = (Ki −K∗)P ∗ (3.1)

(1− φ)
d

dφ
[µ∗ (φ)] = (µi − µ∗)Q∗ (3.2)

where K∗ (φ) and µ∗ (φ) are the e�ective moduli to be estimated after adding a small

portion of the second phase, Ki and µi are moduli of the second phase, and P ∗ and

Q∗ are geometric factors that depend on the shapes of inclusions of the second phase

[Berryman, 1992, Mavko et al., 1998].

Returning to our cases, at the beginning we could treat pure quartz as the host

that occupies the whole cubic domain without pores and cracks, and the pore spaces

resolved and cracks lost in the imaging process as the second phase to be added into

the host of quartz. There are two ways of adding pores and cracks into host according

to the DEM: we can add pore spaces �rst, followed by cracks, or vice verse. In practice,

the �nal e�ective elastic properties obtained from these two di�erent ways of adding

the second phase can be quite di�erent for some cases. The numerical predictions

in Table 3.1 can be taken as the intermediate e�ective properties of rocks after only

adding pore spaces. Therefore, starting with these results, we can invert distribution

of cracks that should have existed in continuous matrix by using the Kuster-Toksöz

model [Kuster and Toksöz, 1974; see details in Appendix D].
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3.3.2 Monte-Carlo inversion with the Kuster-Toksöz model

According to the DEM model, the numerical predictions listed in Table 3.1 can be

thought of as the intermediate e�ective moduli of the Berea sandstone by only taking

into account pores resolved from the imaging process. Cracks lost in this process can

be added into the continuous matrix as the rest of the portion of the second phase

de�ned in the DEM model. Taking the saturated Berea sandstone in the intermediate

stage of DEM model as an isotropic and homogeneous elastic block and using the

Kuster-Toksöz model, we can invert the distributions of spheroidal cracks with a

Monte-Carlo inversion by �tting the laboratory measurements of velocities of P- and

S-waves. For the laboratory data, we choose only those for dry and water-saturated

cases in Table 3.2 measured by Han [1986]. Since the laboratory data were measured

at 40 MPa pressure, we believe most cracks with a smaller aspect ratio (< 10−5) are

closed by pressure [Toksöz et al., 1976]. Therefore, in the Monte-Carlo inversion, we

choose 4 sets of cracks with initial aspect ratios α0 and maximum concentrations cmax,

respectively

α0 =
[
(5± 2.5)× 10−2, (1± 0.5)× 10−2, (5± 2.5)× 10−3, (1± 0.5)× 10−3

]
(3.3)

cmax =
[
5× 10−2, 5× 10−3, 1× 10−4, 1× 10−5

]
(3.4)

Note that we allow the values of aspect ratio corresponding to each set of cracks to

vary within some speci�c range as de�ned above. We ran 100 Monte-Carlo inversions,

in each of which 100000 trials were computed. We use L2-norm to measure the error

between the computed P- and S-wave velocities and laboratory measurements for dry

and water-saturated cases . The best set of cracks with minimum error was chosen

out of these 100 best solutions as the �nal inverted result. Listed in Table 3.3 are the

best solutions for aspect ratio and concentration of cracks after inversion. We can see

that adding a small amount of cracks, especially those with small aspect ratios, can
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a�ect elastic properties of rocks signi�cantly. By adding the inverted set of cracks

into Berea sandstone according to the DEM and Kuster-Toksöz models, we can obtain

the �nal P- and S-wave velocities for dry: Vp = 3957 m/s, Vs = 2647 m/s; water:

Vp = 4119 m/s, Vs = 2600 m/s, which are close to the laboratory measurements by

Han [1986].

3.3.3 Numerical predictions with cracked digitized matrix

We have discussed the e�ects of cracks lost on the e�ective properties of porous

medium from a computational approach and inverted a set of cracks with laboratory

measurements based on the DEM and Kuster-Toksöz models. To carry out computa-

tions on digitized rocks by taking cracks into account, alternatively, we can �rst add

cracks into the host of quartz to soften the matrix of the rock. Then we can saturate

the pore spaces resolved in the imaging process and compute the total e�ective elastic

properties at the end. This sequence of adding inclusions or second phase is opposite

to what we did in Section 3.3.2. According to the DEM model, the e�ective properties

of composite, which depend on the sequence of adding di�erent inclusions, generally

could be di�erent, but can be quite close in some cases.

Saturating the cracks inverted in the previous Section 3.3.2 with dry, water, brine

and oil, and adding them into quartz by using the Kuster-Toksöz model, we can

obtain the e�ective elastic properties of the new continuous matrix as listed in Table

3.4. Here we choose properties for brine: Kbrine = 2.51 GPa, µbrine = 0 GPa and

ρbrine = 1040kg/m3; oil: Koil = 2.16 GPa, µoil = 0 GPa and ρoil = 890kg/m3 [Winkler,

1985]. Since Berea sandstone is not as clear as Fontainebleau sandstone, saturating

brine can change micro-structures of pore spaces by changing the morphology of clay.

Therefore we reduce 5% of the shear modulus of quartz when saturating with brine

so as to take into account the e�ect of clay [Toksöz et al., 1976].

Assigning the values of e�ective elastic properties in Table 3.4 to solid grains of

the 3D digitized Berea sandstone shown in red in Figure 3-2, we use the FEM solver

to compute the �nal e�ective properties for cases saturated with di�erent �uids. The

�nal results are listed in Table 3.5 where we put the computed results side by side
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with laboratory measurements of Winkler [1985] and Han [1986] for comparison. The

values in percentage below the laboratory data are errors between computed velocities

and corresponding laboratory measurements. We can see from these small errors that

(1) our newly predicted velocities match laboratory measurements quite well for all

four cases; (2) since we inverted the distribution of cracks only with the laboratory

measurements by Han [1986] for dry and water-saturated cases, the good match be-

tween computed results for these two cases and the laboratory measurements should

be within expectation; this also indicates that the sequences of adding inclusions

de�ned by DEM model does not lead to much di�erent results; (3) importantly, by

adding cracks inverted from dry and water-saturated cases based on the measurements

by Han [1986], we can predict the e�ective properties of brine and oil-saturated rocks

well enough so as to match the laboratory measurements by Winkler [1985]. In Fig-

ure 3-4, we conclude the procedure employed above to predict the e�ective elastic

properties of rocks by taking into account cracks lost in the imaging process. Note

that the rock we use here has porosity of 19.2%, and we think the inverted results

can only apply to rocks with similar porosity.
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Table 3.1: Numerical predictions from �nite-element simulation for the digitized Berea
sandstone without cracks.

〈K〉 (GPa) 〈µ〉 (GPa) Vp (m/s) Vs (m/s)
Dry 20.6 20.3 4717 3678
Water 23.0 20.6 4640 2964
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Table 3.2: Laboratory measurements of velocities on Berea sandstones with similar
porosities at 40 MPa [Winkler, 1985, Han, 1986].(unit: m/s)

porosity
(%)

Dry Water Brine Oil
Vp Vs Vp Vs Vp Vs Vp Vs

Han (1986) 20.3 4040 2620 4150 2510
Winkler (1985) 19.0 3963 2527 4044 2417 4189 2521
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Table 3.3: The set of cracks from Monte-Carlo inversion at 40 MPa.

Aspect Ratio (α) [6.62× 10−2, 1.36× 10−2, 3.13× 10−3, 9.09× 10−4]
Concentration (c) [4.50× 10−2, 1.30× 10−3, 3.26× 10−5, 5.01× 10−6]
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Table 3.4: E�ective elastic properties of continuous matrix with cracks included at
40 MPa.

〈K〉 (GPa) 〈µ〉 (GPa)
Dry 24.1 30.3
Water 28.6 31.6
Brine 28.7 30.3
Oil 28.6 31.6
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Table 3.5: Comparison of computed e�ective properties of the 3D digitized Berea
sandstone with laboratory data for di�erent �uid saturation at 40MPa. (unit: m/s)

Computed Laboratory
〈K〉
(GPa)

〈µ〉
(GPa)

Vp Vs
Han (1986) Winkler (1985)
Vp Vs Vp Vs

Dry 13.6 13.9 3989 2624
4040 2620 3963 2527
-1.27% 0.13% 0.65% 3.81%

Water 17.8 14.9 4085 2569
4150 2521
-1.56% 1.9%

Brine 18.1 14.3 4052 2516
4044 2417
0.19% 4.08%

Oil 17.7 14.9 4105 2583
4189 2521
-2.01% 2.46%
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Figure 3-1: Gray scale X-ray CT images for the 2503 pixels cubic subset of a Berea
sandstone.
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Figure 3-2: Segmented images for the 2503 pixels cubic subset of a Berea sandstone.
Grains are represented in red and pores are in blue.
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Figure 3-3: 2D slices of digitized Berea sandstone. (a) X-ray CT image in gray scale;
(b) segmented image. We can clearly see the loss of cracks between grain contacts
due to the imaging process, as indicated by arrows in (a).
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Figure 3-4: Flow chart for the procedure to predict the e�ective elastic properties of
3D digitized porous rocks with cracked matrix.
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Chapter 4

Computation of Seismic Responses to

Viscous Fluid in Pores and Cracks

Seismic dispersion and attenuation of porous rocks saturated with �uids have been

of interest to geophysicists for many years. Understanding the intrinsic mechanism

causing dispersion and attenuation is not only an academic topic but also an industrial

one, which can guide us to better analyze the seismic data collected and help to

decipher the geological information underneath. Researchers have been carrying out

laboratory and �eld measurements on di�erent types of rocks from small to large scale

so as to directly gain observations and build empirical relationships [e.g., Nur and

Simmons, 1969, Toksöz et al., 1976, 1979, Winkler and Nur, 1979a, Winkler et al.,

1979, Winkler and Nur, 1979b, Murphy, 1982, Winkler and Plona, 1982, Murphy,

1984, Winkler, 1985, Han, 1986, Murphy et al., 1986, Wang and Nur, 1990, Batzle

et al., 2006]. Meanwhile, others have been developing mathematical theories and

models to explain what have been observed [e.g., Biot, 1956a,b, Walsh, 1965, Kuster

and Toksöz, 1974, O'Connell and Budiansky, 1977, Johnston et al., 1979, Gurevich

and Lopatnikov, 1991, Berryman, 1992, Dvorkin and Nur, 1993, Dvorkin et al., 1994,

1995, Gurevich et al., 1997, 1999, Gurevich, 2002, Pride and Berryman, 2003a,b, Pride

et al., 2004, Muller and Gurevich, 2005, Galvin and Gurevich, 2006, 2007, Gurevich

et al., 2008, Müller et al., 2008, Galvin and Gurevich, 2009, Gurevich et al., 2009a,b].

Amongst this work, laboratory experiments that signi�cantly contribute to our
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knowledge of the dynamic responses of saturated porous rocks are the most important

part. Depending on the frequency range of interest, several di�erent techniques can

be used to measure the responses of waves to porous rocks in the laboratory. Pulse-

echo [Winkler and Plona, 1982] and ultrasonic pulse transmission [Toksöz et al., 1979]

techniques have been used in the laboratory for frequency at the range of megahertz

on smaller samples, and the resonant bar technique [Peselnick and Outerbridge, 1961,

Tittmann, 1977, Winkler et al., 1979, Winkler and Nur, 1979a] has been employed

for frequency at the range of kilohertz and lower, though this requires longer samples.

For frequency well o� the resonance frequency, stress-strain measurement has been

carried out in the laboratory to record the stress-strain behavior of rocks [Gordon

and Davis, 1968, McKavanagh and Stacey, 1974, Peselnick and Outerbridge, 1961,

Batzle et al., 2006]. Dispersion and attenuation of rocks can be extracted from data

measured by these di�erent techniques in di�erent ways. The general observations

in the laboratory for sandstones are (1) for dry rocks, velocity and attenuation show

little or no frequency dependence; (2) for �uid saturated rocks, velocity increases with

frequency while attenuation increases generally with frequency but might drop after

some characteristic frequency.

Parallel with the laboratory work, di�erent theories and models have been devel-

oped to explain the physics causing such dispersions and attenuations. Biot [1956a,

1956b] developed a theory of wave propagation in saturated porous rocks based on

a macroscopic �uid-�ow model. In both low- and high-frequency limits, Biot's the-

ory predicts little dispersion and attenuation [Winkler, 1985, Han, 1986, Winkler,

1986, Wang and Nur, 1990]. Mavko and Nur [1975] and O'Connell and Budiansky

[1977] proposed squirt-�ow models to accommodate pore-scale �uid �ow and explain

the dispersion and attenuation induced. Based on the Biot and squirt-�ow models,

Dvorkin and Nur [1993] developed the BISQ (BIot-SQuirt) model to unify the Biot

and squirt-�ow mechanism. Dvorkin et al. [1994] showed special cases of squirt-�ow

at low and high frequencies and compared them with the BISQ model. Dvorkin et al.

[1995] extended the BISQ model to fully saturated rocks. For heterogeneous rocks,

Berryman and Wang [1995, 2000] came up with a double-porosity, dual-permeability
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model to capture the reality that sti� spherical pores and compliant cracks are coex-

istent within one rock. Pride and Berryman [2003a,b] derived a system of equations

to describe the linear dynamics of double-porosity and dual-permeability materials in

terms of acoustic attenuation and �uid transportation. Pride et al. [2004] proposed

a uni�ed theory to treat P-wave attenuation that covers mesoscopic and microscopic

scales in sedimentary rocks. Meanwhile, Gurevich and Lopatnikov [1991], Gurevich

et al. [1997], Gurevich [2002], Muller and Gurevich [2005], Galvin and Gurevich [2006,

2007], Müller et al. [2008], Galvin and Gurevich [2009], Gurevich et al. [2009a,b] also

developed mathematical theories to study wave dispersion and attenuation due to

wave-induced �uid �ow at the presence of fractures in otherwise porous rocks.

Besides the laboratory experiments and developments of mathematical theories,

recently researchers have begun to take advantage of computational techniques to

study the e�ects of �uids on dispersion and attenuation. As described in Chapter

3, Roberts and Garboczi [2000], Arns et al. [2002, 2007], Grechka and Kachanov

[2006] and Madadi et al. [2009] studied the static e�ective elastic properties of dry

and �uid-saturated porous rocks with �nite-element method (FEM), while Saenger

and Shapiro [2002], Saenger et al. [2004a,b, 2006] and Saenger [2008] used �nite-

di�erence method (FDM) to study the dynamic e�ective properties of porous and

cracked rocks, in both of which �uid was assumed to be nonviscous. Saenger et al.

[2005] extended the �nite-di�erence method with RSG scheme to incorporate the

viscous e�ect of �uid and studied the Biot's e�ects of synthetic porous rocks with

pore scale simulation. Based on Biot's poroelasticity theory [Biot, 1956a,b], Masson

et al. [2006], Masson and Pride [2007, 2010] published a series papers about their

work on developing a time-domain �nite-di�erence solver to study seismic attenuation

and dispersion across all frequencies due to wave-induced �uid �ow in rocks with

mesoscopic scale heterogeneities. Rubino et al. [2009] studied the same problems for

heterogeneous, �uid-saturated porous rocks by solving coupled Biot's equations with

the �nite-element method in frequency domain.

The low-frequency responses of �uid-saturated porous rocks interest geophysicists

the most. Researchers believe that even in the low frequency range such as in the
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seismic band, we can still observe non-negligible dispersion and attenuation, which

is highly dependent on �uid mobility and the distributions of heterogeneity in rocks

[Gurevich et al., 1997, Gurevich, 2002, Pride and Berryman, 2003a,b, Pride et al.,

2004, Muller and Gurevich, 2005, Galvin and Gurevich, 2006, 2007, Müller et al.,

2008, Galvin and Gurevich, 2009]. Generally, stress-strain measurement has been

used either in laboratory experiments or numerical computations to obtain such low-

frequency responses [Batzle et al., 2006, Masson et al., 2006, Masson and Pride, 2007,

Rubino et al., 2009, Masson and Pride, 2010]. However, limited by the assumptions

made in Biot's poroelasticity theory, the low-frequency responses obtained from any

computation based on the poroelasticity theory can represent only the Biot-type

mechanism. The squirt-�ow e�ect is not included. The porous rocks synthesized

statistically as heterogeneous poroelastic media do not preserve the detailed micro-

structures of pore spaces as well.

In this chapter, we will �rst demonstrate the particle motion on microscale for

a 2D slice of digitized rock so as to intuit from where frequency-dependent seismic

responses come; then, introducing the stress-strain calculation, we utilize numerical

computation to measure the low-frequency responses of saturated digitized porous

rocks and study the e�ects of viscous �uids on seismic dispersion and attenuation.

Since only two phases � solid matrix and �uid inclusion � are considered in our

simulation, friction, the dominant mechanism of attenuation in sandstones due to

cracks within and between grains, cannot be captured. To compensate for the missing

attenuation due to friction and viscous �uid in compliant pores, we further extend the

hybrid method introduced in Chapter 3 by utilizing the modi�ed squirt-�ow model.

The �nal computed velocities and attenuations for di�erent �uids are compared with

laboratory measurements.

4.1 Particle Motion on Microscale

When considering the acoustical properties of granular materials, even "homoge-

neous" samples exhibit a wide variety of microstructural features capable of in�u-
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encing wave propagation. Materials such as quartz and clay in a rock sample can be

treated as heterogeneities; pores saturated with �uids between them can have di�erent

sizes and shapes. In laboratory experiments, seismic waves propagating at high fre-

quencies are more sensitive to these pore-scale features. Particle motion on microscale

in the �uid and solid phases controls the dispersion and attenuation of wave�elds on

macroscale. We begin with the fundamental physics � the particle motions of the

�uid and solid phases on microscale, which helps us to understand how seismic waves

propagate through porous media, and how microstructural features can modify the

signal. To explore this topic, we will carry out a set of numerical experiments with a

digitized 2D image of a loose sample of beach sand and show the interactions between

�uid and solid on microscale as a function of frequency.

4.1.1 2D digitized sample

In our modeling study, we used a segmented 2D transmission micrograph of a quartz

beach sand (San Gregorio, CA), shown in Figure 4-1. The binary model shown has

dimensions of 551 × 496 pixels with the resolution at 2.4 µm per pixel. Since the

original sample consisted of a loose arrangement of grains epoxied to a slide, the solid

phase (shown in black) is not continuous and the resulting model should be viewed

as a suspension. For our modeling study we assume the grains are pure quartz with

a density of 2650 kg/m3 and bulk and shear moduli of 37 and 44 GPa, respectively

[Mavko et al., 1998]. We use the properties of water for the liquid phase, with bulk

modulus of 2.2 GPa and density of 1000 kg/m3. In 2D modeling, the e�ects of �uid

viscosity are not explicitly included.

4.1.2 2D numerical modeling

In our numerical modeling, we used the linear solver developed in Chapter 2. Since

the RSG approach can e�ectively incorporate high material contrast, the method is

well-adapted for modeling the sharp interfaces between grains and the surrounding

pore �uids. For computational purpose, we put water bu�er zones around the 2D
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model (shown in Figure 4-2) and used a periodic boundary along the vertical direc-

tion. A perfectly-matched-layer (PML) absorbing boundary condition was applied

at both ends of the sample in the horizontal direction. We modeled a compressional

plane wave propagating in the x-direction from the right side of the sample as shown

in Figure 4-2. The 2D sample acts like a �lter converting the incident wave into

a transmitted wave, which is altered by the micro-structures and inclusions of the

sample. Since the size and shape of the quartz, pores and channels vary in di�er-

ent scales, frequency-dependent seismic phenomena occur when seismic waves travel

through such a sample. For this reason, we considered three sources with three dif-

ferent frequencies - 2.5 MHz, 6.7 MHz and 20 MHz, the equivalent wavelengths of

which are on the scales of the larger quartz grains, medium quartz grains, and small

inter-grain channels in this sample, respectively.

4.1.3 Relative particle motion

Because water is much more compliant than quartz, the same body force can generate

higher perturbations in the water as compared to those in grains, as seen in Figure

4-3. The larger particle motions in water generate a vigorous change of the pressure

�eld, especially at high frequency. As a result, pressure changes in the water a�ect the

solid phase, and cause stress concentrations on the sharp tips and corners of grains.

This kind of perturbation and stress concentration contributes to dynamic changes in

the mechanical properties of the rock sample during wave propagation. We can see

that the velocity �eld is generally large in narrow channels because a pressure �eld

with relative higher gradient has been developed there. Also shown in Figure 4-3,

in the case where a low frequency source is used, the particle motion exhibits more

coherent variation � longer wavelengths average over larger regions of the sample.

When the center frequency of the source wavelet is increased, the motions of particles

become disordered and random, especially in water.

The di�erent responses of particle motion on microscale to di�erent frequencies

gives rise to frequency-dependent seismic properties of saturated porous rocks such as

velocity dispersion and attenuation. We used relatively high frequencies (way above
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1MHz) in numerical modeling where transmission experiments can be carried out on

such a small rock sample. Limited by computational resources and the resolution

of digitized rocks, the sizes of rocks that can be simulated are usually much smaller

than the seismic wavelength of interest. Therefore, the transmission experiment is no

longer approximate for numerical modeling and a new numerical calculation needs to

be developed for this purpose.

4.2 Seismic Responses of 2D Digitized Rocks

4.2.1 Frequency-dependent velocity and attenuation in 2D

To obtain the frequency-dependent responses of saturated rocks in terms of velocity

and attenuation, we have to �rst determine the complex bulk modulus K (ω) and

shear modulus µ (ω) according to the Hooke's law in frequency domain

σ̇ (ω) = K (ω) ε̇ (ω) I + 2µ (ω)

[
ε̇ (ω)− 1

3
ε̇ (ω) I

]
(4.1)

where σ̇ (ω) and ε̇ (ω) are stress and strain rate tensors, respectively.

Assuming plane strain condition, a 2D modeling is equivalent to a 3D case where

no strain out of the plane of modeling is allowed, i.e., where ε̇yy = 0. Under this

assumption and from equation (4.1), the 3D elastic bulk modulus K3D (ω) can be

obtained from the relation

K3D (ω) = K2D (ω)− 1

3
µ3D (ω) (4.2)

where 2D bulk modulus K2D (ω) is determined from a pure compression calculation

as shown in Figure 4-5a by

K2D (ω) =
1

2

(
σ̇xx + σ̇zz
ε̇xx + ε̇zz

)
(4.3)

while Figure 4-5b shows a pure shear calculation, the 3D shear modulus µ3D (ω) is

obtained by
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µ3D (ω) =
1

2

σ̇xz
ε̇xz

(4.4)

Due to the viscous e�ects of �uids, the bulk and shear moduli exhibit frequency

dependence, which causes velocity dispersion and attenuation. In our computation,

once we obtain these two frequency dependent moduli, we can easily determine the

complex velocities by [Carcione, 2001]

VPc (ω) =

√
K3D (ω) + 4

3
µ3D (ω)

ρ̄
(4.5)

VSc (ω) =

√
µ3D (ω)

ρ̄
(4.6)

where ρ̄ is the average bulk density of the saturated porous rock. Following the

relations below, we can estimate the equivalent phase velocities by [Carcione, 2001]

VP (ω) =

[
Re

(
1

VPc (ω)

)]−1

(4.7)

VS (ω) =

[
Re

(
1

VSc (ω)

)]−1

(4.8)

O'Connell and Budiansky [1977] showed that the inverse quality factor Q−1 which

measures the total energy loss per cycle has to be de�ned as the ratio of the imaginary

and real parts of the complex elastic modulus involved. Represented in term of

complex velocities, Q−1 for P- and S-waves can be expressed as

Q−1
P =

Im
(
VPc (ω)2)

Re
(
VPc (ω)2) (4.9)

Q−1
S =

Im
(
VSc (ω)2)

Re
(
VSc (ω)2) (4.10)
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4.2.2 Stress-strain calculation in 2D

Since the typical size of the digitized rocks we can currently solve for is several orders

of magnitude smaller than the seismic wavelength in which we are interested, it is

almost computationally impossible to model the full wave propagating through such

a tiny chunk of rocks, especially for those at lower frequencies, which can be compu-

tationally ine�cient. Instead, following Masson and Pride [2007] and Rubino et al.

[2009], we utilize a stress-strain calculation to study the seismic responses so as to

estimate the velocity dispersion and attenuation. In such a way, it is possible for us

to extract information on low-frequency responses from smaller rocks. To obtain the

frequency-dependent bulk and shear moduli from 2D rocks, we carry out two indepen-

dent calculations - pure compression and pure shear calculations as shown in Figure

4-5. In both of these calculations, prescribed velocity or equivalent strain bound-

ary conditions are applied along four edges. The time function for these boundary

conditions is chosen to be a sinusoidal wave. However, to ensure that the �nal mea-

sured strain is on the order of 10−6 or less as usually observed for seismic waves, we

have to modify the sinusoidal velocity boundary conditions to be v (t) = Aω sin (ωt),

the corresponding displacement of which after integration in time has the form of

u (t) = −A cos (ωt). Amplitude, A, controls the maximum strain we can achieve

in numerical modeling, and angular frequency, ω, speci�es the frequency content in

which we are interested. We prefer to simulate one frequency at a time so as to raise

the signal-to-noise ratio in the results.

In the stress-strain calculation on saturated porous rocks, we actually study the

average seismic responses of rocks as a whole. Therefore, during the numerical mod-

eling, we record the average �elds of stress and strain rates throughout the whole

sample at every time step

〈σ̇ (t)〉 =
1

MNK

∑
σ̇ (t) (4.11)

〈ε̇ (t)〉 =
1

MNK

∑
ε̇ (t) (4.12)
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where MNK is the total number of grids in the �nite-di�erence modeling. Finally,

once we obtain these averaged �elds, we can use the Fourier transformation (FT) to

compute the corresponding responses in frequency domain

σ̇ (ω) = FT {〈σ̇ (t)〉} (4.13)

ε̇ (ω) = FT {〈ε̇ (t)〉} (4.14)

In the real computation, the fast Fourier transformation (FFT) is used.

As an example, we apply this stress-strain calculation to an isotropic and homoge-

neous 2D elastic solid sample. The bulk and shear moduli of this sample are: K = 37

GPa and µ = 44 GPa. The size of the sample is 250 × 250 pixels at resolution of

2.8 µm. Sinusoidal velocity boundary conditions at 10 kHz and 100 kHz are applied,

respectively, and a total of 5 cycles is simulated. Shown in Figure 4-6 are the mea-

sured time traces of average stress and strain rates from pure compression and shear

calculations at 10 kHz. Converting them to frequency domain by FFT and using

equations (4.2) - (4.18), we can invert the values for bulk and shear moduli, which

are exactly equal to K10 kHz = 37 GPa and µ10 kHz = 44 GPa for responses at such

speci�c frequency content. In the same way, we can also estimate the bulk and shear

moduli at 100 kHz, which are also equal to K100 kHz = 37 GPa and µ100 kHz = 44

GPa. As we know, for an elastic solid, we expect to see no velocity dispersion, which

gives rises to the same estimated values of bulk and shear moduli at 10 kHz and 100

kHz. Taking one step further, we can estimate the attenuation Q−1 for both P- and

S-waves by equations (4.9) and (4.10), which give values of Q−1 on an order of 10−8,

small enough to be considered to be zeros that are reasonable for a pure elastic solid.

This example validates our methodology of using stress-strain calculation to obtain

low-frequency responses on very tiny rock samples and provides us a meaningful way

to estimate both velocity and attenuation simultaneously. In the following sections, we

will use this methodology and the linear solver developed in Chapter 2 to extensively

study the seismic responses of saturated porous rocks both in 2D and 3D.
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4.2.3 Size e�ects on numerical results

People studying transportation and static elastic properties of porous rocks have

found that the results depend on the total size of the imaged or digitized rocks

[Schwartz et al., 1994, Auzerais et al., 1996, Arns et al., 2002]. Theoretically, the larger

the size, the better the results will be. However, in reality, limited by computational

resources, i.e., computational time and memory storage, we can only work on samples

of small size. Therefore, a representative element volume (REV) of rocks that is large

enough to cover the variability of the heterogeneity of rocks should be chosen so as to

give more consistent results. For problems of dynamic responses of porous rocks, we

believe the e�ects of the size of rocks should be as important as those in problems of

transportation and static elastic properties. Therefore, it necessary for us to discuss

this issue by extensively carrying out numerical study on samples with variable sizes.

For this purpose, we cut from the 3D X-ray CT images of the Berea sandstone

described in Section 3.1.1 40 slices of 2D samples in size of 250× 250 pixels, 20 slices

in size of 500×500 pixels and 10 slices in size of 1000×1000 pixels, as shown in Figure

4-7. We only choose those slices whose porosities are within range of 19 ∼ 20% such

that we can utilize the e�ective elastic properties of the digitized matrix computed in

Chapter 3 where a 3D subset of the CT images with porosity of 19.2% is used. As an

example, we apply velocity boundary conditions with frequency of 10 kHz along the

edges of each slice, and 5 cycles are simulated. We study dry and water-saturated

cases at 40 MPa, and the properties of the matrix used are listed in Table 3.4. In the

dry case, we choose Vp = 0.0 m/s, Vs = 0.0 m/s and ρ = 0.0001 kg/m3 for inclusion

in pore space, while in the water-saturated case Vp = 1480.0 m/s, Vs = 0.0 m/s,

ρ = 1000.0 kg/m3and ηµ = 0.001 Pa · s.

During the simulations, we record the time traces of average stress and strain rates,

and process them as described previously to estimate the velocity and attenuation.

We found that shear velocities of some slices in size of 250 × 250 pixels are much

smaller than others. This is because the size of those 2D samples is not large enough

to include enough micro-structures of rocks and thus ensure enough contacts between
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grains. As an example, one of the slices is shown in Figure 4-8. We can see that

parts A and B of the rock in this slice are only connected through one contact, which

is unable to provide enough resistance to the shear. For similar slices whose shear

velocities are much smaller, we remove them from the �nal results shown. In total, 6

slices, 250× 250 pixels in size, having this problem are eliminated at the end.

We plot the results in terms of velocity and attenuation in Figure 4-9. From those

mean values, we can see that in general velocities of water-saturated cases are larger

than those of dry cases, and the same is true for attenuation, where Q−1 for water-

saturated cases is larger than those for dry cases by at least one order of magnitude.

With increasing size of samples, velocities gradually decrease, as does the variation

of velocities. While for attenuation, Q−1 increases with size of samples, as does the

variation; this trend is opposite to that of velocity. The increase of Q−1 that is

attributed to viscous frictions between �uid and solid for water-saturated case with

size can be expected since large samples have much more grain surface in absolute

values.

From the Figure 4-9, we conclude that sample size has non-negligible e�ects on

the �nal results in terms of velocity and attenuation. Limited by our computational

resources, we choose the sample of 1000× 1000 pixels in size in our study of dynamic

responses of rocks in the next section.

4.2.4 E�ects of viscosity on frequency-dependent responses

Depending on the viscosities of �uids and micro-structures of porous rocks, �uid mo-

bility can contribute to the equilibrium of pore pressure within rocks di�erently. For

example, if �uid mobility is low, even within the seismic frequency band, pore pressure

might remain out of equilibrium; this can be considered in high-frequency regime. It

is signi�cant for us to understand the relationships between seismic responses and

viscosity and micro-structures. To do so, we choose a 2D sample of 1000 × 1000

pixels in size with porosity of 19.2% as shown in Figure 4-10; this has exactly the

same porosity as the 3D subset of rock described in Chapter 3. Hence, we can use

the computed e�ective elastic moduli listed in Table 3.4 for a matrix saturated with
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the corresponding �uids. We apply the stress-strain calculations - pure compression

and pure shear - to such 2D sample and simulate dry and �uid-saturated cases with

variable viscosities: 0.001 Pa · s, 1 Pa · s and 5 Pa · s. The frequencies studied span

from 100 Hz to 10 kHz.

In Figure 4-11 we show the dispersion of P- and S-wave velocities of the 2D

sample for di�erent viscosities. We can observe signi�cant frequency and viscosity

dependence of the velocities. At a given frequency, especially for those at relatively

higher frequencies, velocity increases with increasing viscosity. While for a given

viscosity, especially for cases with higher viscosities, velocity signi�cantly increase

with frequency as well. These observations are mostly attributed to the contribution

of viscosity to the equivalent shear modulus. The maximum dispersion of velocity for

P-waves is about 1% and 5% for S-waves, which is close to the dispersion of P-waves

observed on the idealized porous medium up to 1 Pa · s as shown in Figure 2-5. From

Figure 4-11, we see that the dispersion curves, for both P- and S-waves, shift to lower

frequency with increasing viscosity; this indicates that the characteristic frequency

(fc), if there is one for such 2D complex rock, is proportional to the inverse of viscosity,

fc ∼ η−1
µ . In fact, increasing the viscosity decreases the �uid mobility, which pushes

the dispersion, which usually happens at high frequency, to low frequency where

pressure in �uid can have enough time to reach equilibrium.

As may be observed in such 2D cases, the velocities for both P- and S-waves

computed are much smaller than those predicted from the 3D rock introduced in

the previous chapter, since the micro-structures of the 3D rocks cannot be replaced

by 2D slices even though plane strain is assumed. The weaker shear rigidity of the

2D samples causes most problems. Limited by the computing resources, we can only

carry out the numerical simulations on a 2D sample of reasonable size, i.e. 1000×1000

pixels, to frequencies as low as 100 Hz. For example, the total time step the simulation

takes for case with ηµ = 5 Pa · s at 100 Hz is about 100 million per cycle, which takes

at least 7 days even though the code has been parallelized.

In Figure 4-12 the dispersion curves of attenuations (Q−1) for both P- and S-waves

are shown for di�erent saturations at di�erent frequencies. In �uid-saturated cases,
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Q−1
P and Q−1

S generally increase with frequency, but we can see the e�ects of viscosity

of �uid on attenuation. For cases with ηµ = 0.001 Pa · s, Q−1 is at least 1 or 2 orders

of magnitude larger than that of dry cases whether for P- or S-waves. With increase

of viscosity, the viscous e�ect become dominant since the equivalent shear modulus

due to the viscosity of �uid in fact lowers the degree of heterogeneity present in such

2D porous rock. In general, Q−1
S is larger than Q−1

P from the computed results; this

demonstrates the same trend observed in laboratory measurements [Johnston and

Toksöz, 1980]. With increasing viscosity, the attenuations for �uid-saturated cases

increase as well. The shift of the attenuation curves to lower frequency with increasing

viscosities agrees with the relationships established in mathematical models between

velocity dispersion and attenuation, where the shift of the peak of the attenuation

curve in frequency should corresponds to the shift of transition part of velocity in

frequency.

As we have discussed previously, since we use a 2D sample rather than a 3D sam-

ple the computed dispersions of velocity and attenuation cannot be compared to data

measured in laboratories. However, we are more interested in demonstrating the de-

pendence of the dispersions of velocity and attenuation on frequency, inclusions and

�uid viscosity through such numerical simulations on digitized rocks by capturing the

micro-structures of rocks and interactions between �uid and solid explicitly. We in-

deed observe such dependence and conclude that �uid mobility is the dominant factor

to the frequency responses of seismic waves; this agrees with laboratory observations

[Batzle et al., 2006].

86



4.3 Seismic Responses of 3D Digitized Rock

4.3.1 Frequency-dependent velocity and attenuation in 3D

In the 3D case, instead of assuming a plane strain condition, we can directly estimate

the bulk modulus K3D (ω) by

K3D (ω) =
1

3

(
σ̇xx + σ̇yy + σ̇zz
ε̇xx + ε̇yy + ε̇zz

)
(4.15)

in which a pure compression calculation is applied along six surfaces of the 3D cubic

subset as shown in Figure 4-13a.

While the total average shear modulus µ3D (ω) is estimated from shear moduli

µ3D
xy (ω), µ3D

yz (ω) and µ3D
xz (ω) that are measured independently along three directions

as shown in Figures 4-13b to 4-13d. The relationship between these moduli is

µ3D (ω) =
1

3

(
µ3D
xy (ω) + µ3D

yz (ω) + µ3D
xz (ω)

)
(4.16)

and the three shear moduli are obtained from

µ3D
xy (ω) =

1

2

σ̇xy
ε̇xy

(4.17)

µ3D
yz (ω) =

1

2

σ̇yz
ε̇yz

(4.18)

µ3D
xz (ω) =

1

2

σ̇xz
ε̇xz

(4.19)

Once we have obtained the frequency-dependent elastic moduli for a 3D sample,

we can still use equations (4.5) to (4.10) to estimate the corresponding frequency-

dependent velocities and attenuations for P- and S-waves.
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4.3.2 Stress-strain calculation in 3D

We can measure the dynamic responses of a 3D sample by carrying out these four

stress-strain calculations: one pure compression and three pure shear calculations as

shown in Figure 4-13. Prescribed velocity boundary conditions are applied on the

surfaces of the 3D cube, accordingly, to which a sinusoidal wave is employed. Single

frequency content is simulated separately for each case so as to raise the signal-to-

noise ratio in results. During the simulation, we collect the �elds of average stress and

strain rate in the whole domain as well by equations (4.11) and (4.12), and convert

them into frequency domain with equations (4.13) and (4.14).

To benchmark the methodology of measuring average elastic moduli of 3D rocks

developed above, we compare the results computed for dry and water-saturated cases

on a 3D cubic subset of the digitized Berea sandstone with �nite-di�erence method

(FDM) to those computed from �nite-element method (FEM) from NIST. We use

the same 3D sample described in Chapter 3. According to Table 3.4, we choose

the properties of matrix for dry case: Kdry
m = 24.1 GPa, µdry

m = 30.3 GPa and

ρdry
m = 2527.2 kg/m3, and water-saturated case: Kwater

m = 28.6 GPa, µwater
m = 31.6

GPa and ρdry
m = 2573.5 kg/m3, which has already taken cracks inverted into account.

The inclusions for dry case are: K = 0.0 GPa, µ = 0.0 GPa and ρ = 0.0001 kg/m3,

and for water-saturated case are: K = 2.2 GPa, µ = 0.0 GPa and ρ = 1000 kg/m3.

Note that FEM measures the static responses while FDM measures the dynamic

responses. In the modeling with FDM, we use a sinusoidal wave at 100 kHz as the

boundary conditions. In Table 4.1, we show the comparison of the e�ective elastic

properties estimated by the �nite-element method and the stress-strain calculation

with the �nite-di�erence method. We can see that the numerical results computed

from these two methods are quite close; this validates our methodology developed.

Also we can conclude from the comparison that there is almost no obvious dispersion

between velocities at 0 Hz computed by FEM and those at 100 kHz by FDM. We will

utilize this stress-strain calculation in the following study for 3D cases.
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4.3.3 Laboratory measurements on Berea sandstones

Berea sandstones have been used in laboratory study for a long time and the measured

dispersion and attenuation data can be found in many published papers. Johnston

and Toksöz [1980] used the transmission technique to measure attenuation for dry

and water-saturated Berea sandstones. Assuming a constant Q model, the spectrum

of signals within the frequency band of 300 kHz - 600 kHz was �tted so as to estimate

the attenuations for P- and S-waves. Winkler [1983, 1985] utilized the pulse echo

technique to measure attenuation for P-wave of Berea sandstones saturated with

brine. The frequency range considered was 400 kHz and above. Winkler and Nur

[1982], Jones and Nur [1983], Murphy et al. [1986] used the resonant bar technique to

measure the attenuation of Berea sandstones for water-saturated case at frequencies

around 1700 - 3400 Hz. Most recently, Best and Mccann [1995] measured the velocities

and attenuations for both P- and S-waves on several similar Berea sandstones for

dry and �uid-saturated cases with di�erent viscosities. The physical properties of

the Berea sandstones Best and Mccann [1995] used are listed in Table 4.2. In the

laboratory experiments, they measured the velocities and attenuations with the pulse

echo technique with source at 0.8 MHz for samples under 50 MPa e�ective pressure,

which simulated the in-situ conditions. The physical properties of those �uids are

listed Table 4.3, and the measured velocities and attenuations are listed in Table 4.4.

The digitized Berea sandstone used in our study, as described in Chapter 3, has

porosity ∼ 23.5%, clay content ∼ 3.5% and permeability ∼ 500 mD, which are

similar to those which Best and Mccann [1995] used in their laboratory experiments.

Therefore, we can use the data measured by Best and Mccann [1995] as the laboratory

measurements to numerically study the viscosity dependent velocity and attenuation

with our digitized 3D Berea sandstone.
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4.3.4 Viscosity dependence of velocity and attenuation

4.3.4.1 Total attenuation

As pointed out by Toksöz and Johnston [1981], the total attenuation of rocks can

be attributed to at least three mechanisms: friction, viscous �uid and scattering as

described by expression

1

QTot

=
1

QFri

+
1

QVis

+
1

QSca

(4.20)

where 1
QTot

is the total attenuation, 1
QFri

, 1
QVis

, 1
QSca

are attenuations due to friction,

viscous �uid and scattering, respectively.

Friction usually occurs along cracks or grain contacts both in dry and �uid-

saturated cases. It can be described with Coulomb friction and convert seismic energy

into heat. Researchers have studied this type of attenuation both mathematically and

experimentally [e.g., Walsh, 1965, O'Connell and Budiansky, 1977, Winkler et al.,

1979], and concluded that the attenuation due to friction for the dry case is almost

constant with frequency, and Q−1
P and Q−1

S are almost the same order of magnitude.

In the �uid-saturated case, the friction coe�cient between two planes of cracks or

grain contacts decreases due to the lubrication e�ect of �uid so as to increase relative

motion between the planes; this can cause higher attenuation due to the friction.

Under the vibrations of seismic waves on a rock frame, the �uid saturated in pore

space can be driven to �ow; this causes attenuation due to the viscous e�ect of �uid.

Usually in rocks, the total pore space is composed of big pores and small cracks.

When a wave propagates through rocks, big pores are sti� and hard to deform, while

cracks are compliant and easy to deform. Because of the co-existence of sti� and com-

pliant pores in rocks, attenuation due to viscous �uid can be attributed to the Biot

type in big pore and the squirt-�ow type in cracks. Scattering only comes into play

signi�cantly when the frequency reaches the height where the equivalent wavelength

of the wave is on the same order of the sizes of pore space or grains. By taking into

account the sti� and compliant pores, we can rewrite equation (4.20) as
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1

QTot

=
1

QFri

+
1

Qs
Vis

+
1

Qc
Vis

+
1

QSca

(4.21)

where the attenuation due to viscous �uid can be divided into two parts: 1
Qs

Vis
due to

sti� pores and 1
Qc

Vis
due to compliant pores.

In our numerical study, since our solver does not include the physics of friction

but only the viscous �uid e�ect, we are unable to capture the attenuation, 1
QFri

, due

to friction loss. Furthermore, as we discussed in Chapter 3, due to the loss of small

cracks in the low resolution digitized data, the viscous e�ect of �uid in small cracks

� the squirt-�ow e�ect � cannot be captured as well. Therefore, for the digitized

3D Berea sandstone, only the e�ects of viscous �uid in big pores and scattering can

be simulated by our numerical solver.

4.3.4.2 The modi�ed squirt-�ow model

As discussed earlier, the loss of small cracks in the imaging process has signi�cant

impact both on the computations of velocity and attenuation. In Chapter 3, we

have used the Kuster-Toksöz model to include the lost cracks in the matrix of digi-

tized rocks. As for attenuation, we also need to �nd another mathematical model to

compensate for the contribution of small cracks to the total attenuation through the

squirt-�ow mechanism.

For this purpose, we choose a new model of squirt-�ow dispersion and attenuation

developed by Gurevich et al. [2009c], which combines the pressure relaxation approach

of Murphy et al. [1986] with the extension of equations of Mavko and Jizba [1991]

to arbitrary �uid. The resulting model is consistent with the Gassmann and Mavko-

Jizba models at low and high frequencies, respectively. In order to cover a broad band

of frequencies, this model can be incorporated into Biot's model to obtain velocity

and attenuation at corresponding frequencies. We describe the details of the new

model of squirt-�ow in Appendix E.
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4.3.4.3 Crack inversion

To compute the velocity and attenuation that vary with viscosity of �uid with the 3D

digitized Berea sandstone, we �rst need to invert the distribution of cracks lost during

the imaging process as we did in Chapter 3. Instead of only using velocities of P- and

S-waves measured for dry and water-saturated cases, we can further take advantage

of the attenuation data measured in the laboratory so as to further constrain the

inversion for crack distribution.

Since we use the data measured at 50 MPa on Berea sandstones with 7.4% clay

content [Best and Mccann, 1995], in the inversion we �rst have to take clay into

account by using the Voigt-Reuss-Hill (VRH) average to compute the averaged elastic

properties of the matrix [Mavko et al., 1998], in which we assume quartz and clay are

mixed homogeneously. Taking the values of the properties for quartz: Kquartz = 37.0

GPa, µquartz = 44.0 GPa and ρquartz = 2650 kg/m3, and for clay: Kclay = 25.0 GPa,

µclay = 9.0 GPa and ρclay = 2550 kg/m3, we obtain the elastic bounds for the mixture

of the matrix, where K ∈ [35.8, 36.2] GPa and µ ∈ [34.6, 41.6] GPa. In the VRH

average, we usually take the average between the upper and lower bounds as the �nal

results. However, we �nd that this works for the bulk modulus because the upper and

lower bounds of K are so close that the averaged bulk modulus is tightly restricted

in a narrow range. Therefore, we take K = 36.0 GPa. As for shear modulus, we

notice that it spans a wide range of values between [34.6, 41.6] GPa. We believe

that the elastic properties of clay will be quite di�erent in dry and water-saturated

cases, especially for shear modulus. Being �lled with water, the shear modulus of clay

should decrease. Therefore, we chose µ = 37.5 GPa for the dry case, and µ = 36.0

GPa for the water-saturated case as the shear moduli for the mixture of matrix.

Secondly, in the experiments at 50 MPa, most of the small cracks within and between

grains should be closed under such high pressure and cracks with large aspect ratio

could be left open. Therefore, in the inversion, we keep cracks with large aspect ratio

(α ∼ 10−1) in the initial guess for the binary structure of crack distribution [Shapiro,

2003].
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Following the procedure of Monte-Carlo inversion described in Chapter 3, we can

invert the crack distribution for the �rst round only with the measured velocities of

P- and S-waves for dry and water-saturated cases. Using the best results inverted

after this round, with the Kuster-Toksöz model or numerical computation we can

compute the e�ective elastic moduli for the dry frame with cracks included: Kdry and

µdry. Nonetheless, we have already computed the elastic moduli for the dry frame of

rocks containing only sti� pores resolved in the imaging process with no cracks, so we

can take them as Kh and µh for dry frame bulk and shear moduli of the hypothetical

rocks, respectively. We can further re�ne the inverted cracks within a small range

so as to �t only the measured attenuation data of P-waves by using the modi�ed

squirt-�ow model introduced in Appendix E.

In fact, we �nd that depending on the initial guess of cracks in the �rst round

inversion, in most cases we are able to end up with a best solution to crack distribution

that can �t the measured velocities of P- and S-waves for both dry and water-saturated

cases well. However, not all the best solutions obtained in the �rst round can �t the

attenuation data of P-waves. Actually it is critical to include the cracks with large

aspect ratio (α ∼ 10−1) in order to do so. We think two reasons can physically

justify the need to include cracks with large aspect ratio. First, cracks with high

aspect ratios have the chance to be left open under high pressure. Second, in the

squirt-�ow mechanism, cracks with small aspect ratios and small porosities, in fact,

push the attenuation peak to low frequencies. In order to gain enough attenuations

at frequency as high as 0.8 MHz used in experiment, cracks with large aspect ratio

are needed. After two rounds of inversion, we obtain the best set of cracks listed in

Table 4.5.

4.3.4.4 Computations of velocity and attenuation

In the previous section we mentioned brie�y the use of the modi�ed squirt-�ow model

to estimate the attenuation data of P-waves during inversion. In this section, we

will expand this topic and introduce the hybrid method by combining numerical

computation with theoretical models so as to compute the velocity and attenuation
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with the 3D digitized Berea sandstone.

As discussed before, the loss of small cracks during the imaging process not only

has impact on the computation of velocity but also attenuation. By including cracks

into the continuous matrix used in numerical computation, we can resolve the issue

of velocity computation as describe in Chapter 3. However, as for the attenuation,

we have to consider that the total attenuation due to viscous �uid e�ect consists of

two parts: 1
Qs

Vis
due to sti� pores and 1

Qc
Vis

due to compliant pores. In our numerical

computation, actually we are only able to capture the viscous e�ects of �uids in sti�

pores resolved in the imaging process, 1
Qs

Vis
, but miss the other part attributed to small

cracks that a�ect not only the elastic properties of rocks but also the attenuation. In

order to compensate for the missing part of attenuation, 1
Qc

Vis
, we use the modi�ed

squirt-�ow model with the help of the inverted crack distribution.

By the stress-strain calculation, we can easily compute the attenuations for both

P- and S-waves at 0.8 MHz for the di�erent �uids listed in Table 4.3. After gaining

all the necessary parameters needed in the modi�ed squirt-�ow model, we can also

compute the velocities and attenuations for both P- and S-waves at the same frequency

for the same �uids. Besides the attenuation due to viscous �uid e�ect, the friction

loss should be included into the total attenuation as well. One simple way to estimate

the friction loss is to use the attenuations measured for dry case. However, we believe

that the friction loss in �uid-saturated cases should be slightly larger than that in dry

case due to the lubrication e�ect of �uid on planes of cracks. Therefore, the values for

attenuations due to friction for both P- and S-waves should be somewhere between

attenuations for dry and water-saturated case. We choose 1
QPFri

= 0.00625 for P-wave

and 1
QSFri

= 0.02 for S-wave, respectively.

From the large 3D digitized Berea sandstone with size of 1840×1840×1940 pixels,

we cut a 5003 pixels cubic subset as shown in Figure 4-14 for the numerical study.

This subset has porosity ∼ 20.5%, which is close to the samples used by Best and

Mccann [1995]. After the crack inversion and numerical computations, we obtain

the numerically computed velocities for both P- and S-waves as shown in Figure 4-

15, which match the laboratory measurements well. With the modi�ed squirt-�ow
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model and necessary parameters, we can also estimate the velocities for di�erent �uids

theoretically. As shown in Figure 4-16, the theoretically estimated velocities also

match the laboratory measurements well. The consistency between the numerically

computed and theoretically estimated velocities indicates that (1) the capability of the

modi�ed squirt-�ow model when hybridized with numerical computation for velocity

prediction; (2) the uniqueness of the inversion results for crack distribution should

be in high con�dent level. Furthermore, in Figure 4-17 we show the increase of the

bulk and shear moduli of the partially relaxed frame computed from the modi�ed

squirt-�ow model. The increase of bulk moduli with viscosities of �uids is attributed

partially to the increase of the bulk moduli of saturating �uids. However, the increase

of the shear moduli is attributed totally to the e�ects of viscosities of �uids, which

is consistent with laboratory observations where increase of dynamic shear modulus

is caused by the squirt-�ow of viscous �uid in clay [Han, 1986, Khazanehdari and

Sothcott, 2003].

In Figure 4-18 we show the attenuations due to the viscous �uid e�ect and to

the friction loss. By saturating the sti� pores of the 5003 pixels cubic subset of the

digitized Berea sandstone with the corresponding �uids in numerical simulations, we

can compute the attenuations due to viscous �uid in sti� pores 1
Qs

Vis
as shown in Figure

4-18a. With the modi�ed squirt-�ow model and necessary parameters, we can predict

the attenuations due to viscous �uid in compliant pores as shown in Figure 4-18b.

Finally, by adding the attenuations estimated for friction loss, as shown in Figure 4-

18c, we can obtain the total attenuations of both P- and S-waves for di�erent �uids as

shown in Figure 4-19. These attenuation values match the laboratory measurements

as do the velocity data. At frequency of 0.8 MHz, the shortest wavelength of the

S-waves is ∼ 2 mm, which is still much longer than the heterogeneities due to grains

and pore space in the Berea sandstone. Therefore, the attenuation due to scattering

is ignored at current study.

By hybridizing the numerical computation with theoretical model and taking into

account the cracks lost in the imaging process, we have successfully predicted the

velocities and attenuations for a 3D digitized Berea sandstone. Predicted values
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match the laboratory data quite well. In this work, we only use the measured velocities

of P- and S-waves for dry and water-saturated cases and attenuations of P-waves for

di�erent �uids to carry out the inversion for crack distribution. Based on the inverted

cracks, we demonstrate the capability of the hybrid method on predicting velocities

of P- and S-waves and attenuations of S-waves for cases saturated with other types

of �uids. This study also shows the importance of the squirt-�ow mechanism on

controlling the velocity dispersion and attenuation of porous rocks under saturation.
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Table 4.1: Comparison for results of the e�ective elastic properties estimated by
the �nite-element method from NIST and the stress-strain calculation with �nite-
di�erence method for a 3D cubic subset of the digitized Berea sandstone.

〈K〉 (GPa) 〈µ〉 (GPa)

FEM
Dry 13.6 13.9
Water 17.8 14.9

FDM
Dry 13.5 14.1
Water 17.7 15.0

97



Table 4.2: Physical properties of the Berea sandstones used by Best and Mccann
[1995].

Porosity (%) 20.5
Permeability (mD) 519.0
Clay content (%) 7.4
Clay/porosity ratio 0.361
Grain size (µm) 180

Pore diameter (µm) 28.1
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Table 4.3: The physical properties of �uids [Best and Mccann, 1995].

Fluid Viscosity (Pa · s) Density (kg/m3) Velocity (m/s) Bulk Modulus (GPa)
Water 0.001 1000 1483 2.2

Solution 3 0.023 1177 1763 3.658
Solution 4 0.074 1210 1811 3.968
Solution 2 0.456 1242 1868 4.333
Solution 1 0.943 1249 1880 4.414
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Table 4.4: Experimental measurements of velocities and attenuations for both P- and
S-waves for dry and �uid-saturated cases on Berea sandstones at 0.8 MHz and 50
MPa [Best and Mccann, 1995].

Dry Water Solution 3 Solution 4 Solution 2 Solution 1
Viscosity (Pa · s) 0.001 0.02 0.067 0.311 0.765

Vp (m/s) 3935 3913 3964 4064 4111 4074
Vs (m/s) 2571 2394 2331 2444 2445 2438

QP >200 133±62 179±128 24±1 33±3 30±2
QS 109 32±1 23±1 27±1 21±1 23±1
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Table 4.5: The best set of cracks from Monte-Carlo inversion at 50 MPa.

Aspect Ratio (α) [1.07× 10−1, 7.94× 10−2, 7.73× 10−3, 8.36× 10−4]
Concentration (c) [3.94× 10−2, 1.43× 10−3, 3.00× 10−7, 4.50× 10−6]
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Figure 4-1: A segmented 2D image of a quartz sand sample (San Gregorio, CA). The
quartz grains are shown in black. In our simulations, the grains are assumed to be
suspended in water.
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Figure 4-2: The geometry of our numerical experiment in 2D. A compressional plane
wave propagates through the sample from the right. One array of receivers (red
dotted line) samples the transmitted wave.
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Figure 4-3: Snapshots for pressure and velocity �elds of three cases in which sources
are at di�erent frequencies � 2.5 MHz, 6.7 MHz and 20 MHz, respectively. Colorful
background shows the magnitude of pressure �eld: blue represents extension and red
represents compression. Arrows show the magnitude of the velocity of the particle
motion on microscale.
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Figure 4-4: Seismic wave propagates through a small chunk of rock. The size of the
rock is usually many orders of magnitude smaller than the wavelength of seismic wave
investigated.
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Figure 4-5: Stress-strain calculations on a 2D sample. (a) pure compression calcula-
tion; (b) pure shear calculation.
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Figure 4-6: Time traces of average stress and strain rates from pure compression and
shear calculations for an 2D elastic solid sample at 10 kHz.
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Figure 4-7: 2D slices cut from 3D X-ray CT images in variable sizes.
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Figure 4-8: A 2D slice in size of 250 × 250 whose shear velocity is much lower than
others. The connected pore spaces are marked with green lines, and the only grain
contact linking part A and B is indicated by green arrow.
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Figure 4-9: Velocities and attenuations of dry and water-saturated cases for variable
sizes of 2D slices. Velocity boundary conditions at 10 kHz are applied along edges of
each slice. Inside each parenthesis in every legend, the �rst value is the mean velocity,
and the second value is the standard deviation.
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Figure 4-10: 2D sample in size of 1000× 1000 with porosity of 19.2%.
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Figure 4-11: Velocity dispersions for P- and S-waves of a 2D digitized Berea sand-
stone with frequency and viscosity. (a) P-wave velocity (square); (b) S-wave velocity
(circle). Frequency varies from 100 Hz to 10 kHz.
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Figure 4-12: Attenuation for P- and S-waves of a 2D digitized Berea sandstone with
frequency and viscosity (Q−1

P : square; Q−1
S : circle) . Frequency varies from 100 Hz

to 10 kHz. The black, red and blue curves represent computed attenuations for
saturating �uids with viscosities of 0.001, 1 and 5 Pa · s, respectively.
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Figure 4-13: Stress-strain calculations on a 3D sample. (a) pure compression calcu-
lation; (b) pure shear calculation along xy direction; (c) pure shear calculation along
yz direction; (b) pure shear calculation along xz direction.
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Figure 4-14: Segmented images for a 5003 cubic subset of the 3D digitized Berea
sandstone. Grains are represented in red and pores are in blue.
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Figure 4-15: Numerically computed velocities of both P- and S-waves on the 5003

pixels cubic subset of the 3D digitized Berea sandstone for di�erent �uids, which
match the laboratory measurements well.
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Figure 4-16: Theoretically predicted velocities of both P- and S-waves on the 5003

cubic subset of the 3D digitized Berea sandstone with the modi�ed squirt-�ow model
for di�erent �uids, which also match the laboratory measurements well.

117



Figure 4-17: Partially relaxed frame bulk and shear moduli predicted from the mod-
i�ed squirt-�ow model. The increase of the moduli with viscosities of �uids is consis-
tent with laboratory observations [Han, 1986, Khazanehdari and Sothcott, 2003].
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Figure 4-18: Attenuations due to viscous �uid and friction loss. (a) numerically
computed attenuations due to viscous �uid in sti� pores; (b) theoretically predicted
attenuations due to viscous �uid in compliant pores; (c) attenuations due to friction
loss along the surfaces of cracks.
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Figure 4-19: Total attenuations of both P- and S-waves of the 3D digitized Berea
sandstone for di�erent �uids, which is the sum of the attenuations computed numer-
ically, predicted theoretically and friction loss. The total attenuation matches the
laboratory measurements well.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this thesis, I studied the e�ects of wave-induced �uid motion on seismic velocity

and attenuation in porous rocks. The goal of this work was to numerically model

wave propagation in 3D digitized rocks saturated with �uids and to determine the

seismic responses in terms of velocity and attenuation. Numerical modeling provides

an e�cient way to control the conditions and inputs, which are di�cult to accomplish

in laboratory experiments. In numerical modeling it is possible to isolate the factors

which we believe are important and to simulate their e�ects on the seismic responses,

such as velocities, attenuations and dispersions.

We developed and used a multi-physics solver to simulate the wave propagation

in a poroelastic material with Newtonian �uid and high property contrast. A single

mathematical form was applied to both the solid and �uid cells, and the use of the

rotated-staggered-grid �nite-di�erence scheme allows stable solutions without explic-

itly and separately handling the solid-�uid boundary conditions. The von Neumann

analysis was applied to characterize the numerical stability of the solution in the

�uid cells. Asymptotic bounds were found on the stable region for the small-viscosity

and large-viscosity cases, but it was noted that typical pore �uids in nature could

be considered as the small-viscosity case for stability analysis. Tests on an idealized

porous medium consisting of alternating solid and viscous �uid layers show that the
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new implementation provides stable results and agrees with analytical solutions both

for velocities and attenuations of compressional waves.

Realizing the signi�cant impact of the small cracks lost during the imaging process

on the computed e�ective elastic properties of digitized porous rocks, we developed a

Monte-Carlo inversion algorithm to recover the small cracks lost. We hybridized the

numerical computation with e�ective media theories such as the di�erential e�ective

media theory and the Kuster-Toksöz model. Using these, we can determine the

e�ective elastic properties of rocks saturated with di�erent �uids. In the Monte-

Carlo inversion, we only need limited laboratory data of velocities of P- and S-waves

such as those measuring dry and water-saturated cases. Once the crack distribution is

obtained, we are able to predict the e�ective elastic properties of rocks saturated with

other types of �uids. The inversion results may have uncertainties. However, since

we used the elastic moduli computed from the digitized 3D rock as an intermediate

step in our hybrid method, we actually captured most of the information about the

micro-structures of the rocks. Therefore, the inversion results of cracks based on such

digitized 3D rocks should be much more meaningful than those inverted by using a

theoretical model alone, which has to invert the whole spectrum of crack distribution

� both sti� pores and compliant cracks � rather than small cracks alone as in our

inversion.

To study the seismic responses of porous rocks saturated with di�erent types of

�uids, I developed the stress-strain calculation to compute the velocity and attenu-

ation of rocks with sizes of which are much smaller than the seismic wavelength of

interest. This is critical for numerical simulation because we are always limited by

the computational resources available. Therefore, smaller size of rocks is preferred

in modeling. In addition to the impact on the velocity, crack is also the dominant

factor a�ecting attenuation of porous rocks. Besides the compensation to velocity, we

also developed a methodology to compensate for the attenuation due to the cracks

that are lost in the imaging process. In addition to the measured velocities for dry

and water-saturated cases, we further utilized the attenuation data of P-waves in the

inversion for crack distribution. The modi�ed squirt-�ow model had been employed
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to compute the attenuation due to small cracks lost. The total attenuation is the

sum of the numerically computed attenuation due to the viscous �uid in sti� pores,

the theoretically predicted one due to the viscous �uid in compliant pores and the

friction loss. The numerically computed and theoretically predicted velocities match

the laboratory measurements well, as does the total attenuation. This demonstrates

the capability of this proposed method to numerically determine the velocity disper-

sion and attenuation with the digitized rocks. In summary, the hybrid method to

compute the viscosity-dependent velocity and attenuation is:

1. The Voigt-Reuss-Hill average to estimate the e�ective elastic properties of dig-

itized matrix consisting of di�erent minerals.

2. The Monte-Carlo inversion to estimate the crack distribution, in which two

rounds of inversion are carried out. In the �rst round inversion, using the

Kuster-Toksöz model, we �t the laboratory measured velocities of P- and S-

waves for dry and water-saturated rocks; in the second round inversion, using

the modi�ed squirt-�ow model, we �t the measured attenuation data of P-waves

for rocks saturated with di�erent �uids to re�ne the crack distribution obtained

in the �rst round inversion.

3. Compute the �nal viscosity-dependent velocity and attenuation of saturated

rocks with the inverted crack distribution.

Compared to the traditional methods using only theoretical models, such as the BISQ

model [Dvorkin and Nur, 1993, Dvorkin et al., 1994, Marketos and Best, 2010], to

explain the laboratory measurements, the method using digitized porous rocks with

resolved sti� pores has provided much more information about the micro-structures of

the rocks. Therefore, the numerical study based on these digitized rocks shows many

advantages over those studies using theoretical models alone, even though resolution

of the digitized rocks might be low with respect to small features like cracks, since

many parameters, such as tortuosity and squirt-�ow length etc., used in the theoret-

ical models are hard to physically de�ned. However, this will not be a problem for
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numerical computation with digitized rocks since the 3D data stands on its own and

contains these information.

In summary, the contributions made in this thesis are:

1. Developed a multi-physics solver to couple the elastic solid and viscous �uid for

seismic wave propagation. The rotated-staggered-grid �nite-di�erence scheme

was employed to handle the high material contrast and the complex micro-

structures of 3D digitized rocks.

2. An �e�ective media� approach has been combined with the numerical approach

to calculate the e�ective elastic properties of digitized matrix. This hybrid

scheme can recover small features, such as cracks, in the digitized matrix of

porous rocks that are lost during the imaging process. By using such a hy-

brid approach, we help resolve the discrepencies observed between numerical

results and laboratory measurements and predict the e�ective elastic properties

of saturated porous rocks with a limited number of laboratory measurements.

3. Developed the stress-strain calculation method to compute the seismic proper-

ties of saturated porous rock samples whose sizes are much smaller than the

seismic wavelength of interest.

4. Incorporated the squirt-�ow mechanism into the numerically computed results

for accurately calculating the total attenuation, including the contribution of

viscous �uid in cracks lost in the imaging process. The extended hybrid ap-

proach can predict both the seismic velocities of saturated porous rocks and the

attenuations.

5. Attenuation is much more sensitive to the viscosity of the saturating �uid than

velocity is, and attenuation due to the viscous �uid in compliant pores is greater

than that due to viscous �uid in sti� pores.
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5.2 Future Work

The ultimate goal of computational rock physics is to supplement the laboratory

experiments with numerical computations. To be able to do so, we �rst have to guar-

antee that the numerical solvers are capable of capturing the complex physics, such

as friction and viscous �uid e�ect; second, the resolution of the digitized porous rocks

has to be high enough to capture as many small features, which are able to signi�-

cantly a�ect the acoustical properties of porous rocks, of the complex micro-structures

of rocks as possible; third, with powerful solvers and high resolution digitized data,

we also need to have enough computational resources to be able to simulate models

with meaningful size and within reasonable time, especially for studying the dynamic

seismic responses. Unfortunately, none of the above requirements can be fully ful-

�lled in my study at the current stage. Therefore, the idea of hybridizing numerical

computation with theoretical models is actually a practical approach to study the

velocity dispersion and attenuation of porous rocks in 3D digitized data, until we can

carry out the pure and brutal-force numerical computation with high resolution 3D

digitized rocks in the future.

As mentioned in the title of this thesis, we study the e�ects of wave-induced �uid

motion. However, in the papers published so far on mathematical derivations of wave-

induced �uid �ow at local scale, such as cracks, I have not observed that the solution

of the nonlinear term or the convection term in the Navier-Stokes equation has been

included. We understand the di�culty of solving a nonlinear system, but whether it is

physically appropriate to drop the nonlinear term is still debatable in some situations.

However, researchers studying wave-induced �uid �ow on macro-scale with the help

of the poroelasticity theory usually assume a Darcy type of �uid �ow. It is hard to

imagine how �uid can �ow on macroscale if it was unable to do so in microscale,

but researchers believe that this indeed takes place at frequencies su�ciently low. So

far, no laboratory experiment or observation can verify whether wave-induced �uid

�ow happens or not. If it indeed happens, what is the magnitude of the velocity

of such �ow? We believe this can be answered by numerical computation at low
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frequency on large models since large models can exhibit enough heterogeneities in

which high pressure gradient �eld might be developed. In Appendix F, we developed a

nonlinear solver which keeps the nonlinear term in numerical computation to simulate

the wave-induced �uid �ow for single viscous �uid. We have not seen much di�erence

in results computed from the linear and nonlinear solvers on the same cases tested;

this could be due to the small size of the 3D models on which we are able to work,

and that the frequencies we are able to simulate are still not low enough. This

nonlinear phenomenon related to wave-induced �uid �ow needs further investigation,

when computational resources become feasible.

In the modeling of the low-frequency responses of porous rocks to viscous �uids,

since the period of the seismic wave of interest increases, for a given time stepping ∆t,

the total time step need to be simulated increases as well. Especially, the increasing of

time step becomes signi�cant for frequencies below 100 Hz. One solution to speed up

the computation is to take advantages of GPU computing. Shown as an example in

Figure 5-1, by simply implementing GPU computing without optimizing the memory

usage, we directly gained 6X speed. The computing time will increase further if high

resolution digitized data are used in the future. We believe the GPU can make a

di�erence for modeling work with large models at lower frequencies, especially for 3D

models and nonlinear problems.
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Figure 5-1: Comparison between CPU and GPU computing. The GPU computing is
able to gain at least 6X speed from direct implementation.
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Appendix A

Rotated-Staggered-Grid

Finite-Di�erence Scheme in 2D and

3D

Saenger et al. [2000] employed a so-called rotated-staggered-grid (RSG) �nite-di�erence

scheme to model seismic wave propagating through fractured media where high ma-

terial contrast exists between solid frame and inclusions (i.e. gas and water). One of

the advantages of using RSG scheme is to handle such high contrast because it places

all components of the sti�ness tensor at the same position within each cell � at the

center of each cell. In such way, it avoid averaging shear moduli of neighboring cells

for updating shear stresses as does standard-staggered-grid (SSG) scheme [Virieux,

1986], which causes numerical instability. The other advantages of RSG are that it

has the same stability criteria for both 2D and 3D cases, which allows to choose larger

∆t than SSG does, and it can also handle anisotropy of medium up to triclinic and

the problem with free-surface topography as well.

A.1 Finite Di�erence Scheme in 2D

In a grid with rectangular cells of length (∆x,∆z) along coordinates (x, z), as shown

in Figure A-1, two di�erent sets of variables are de�ned at corners (m∆x, n∆z) and
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Figure A-1: Rotated coordinate system in 2D.
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centers
(
m∆x+ ∆x

2
, n∆z + ∆z

2

)
of each cell, respectively. To approximate the �rst-

order derivatives
(
∂
∂x
, ∂
∂z

)
m+ 1

2
,n+ 1

2

at center, one has to choose a set of new derivative

direction (x̃, z̃), which can be de�ned as,

 x̃

z̃

 =

 ∆x
∆r
−∆z

∆r

∆x
∆r

∆z
∆r

 x

z

 (A.1)

where ∆r =
√

∆x2 + ∆z2. Let us de�ne

T =

 ∆x
∆r
−∆z

∆r

∆x
∆r

∆z
∆r

 (A.2)

which is the transformation matrix from basis (x, z) to (x̃, z̃). For case with ∆x = ∆z,

we have

T =

 √
2

2
−
√

2
2

√
2

2

√
2

2

 (A.3)

From equations (A.1) and (A.3) and by taking T−1, we can obtain

 x

z

 =

 √
2

2

√
2

2

−
√

2
2

√
2

2

 x̃

z̃

 (A.4)

According to equation (A.4), derivatives in (x, z) can be expressed by a linear

combination of derivatives in (x̃, z̃).

∂

∂x
=

√
2

2

(
∂

∂z̃
+

∂

∂x̃

)
(A.5)

∂

∂z
=

√
2

2

(
∂

∂z̃
− ∂

∂x̃

)
(A.6)

In numerical simulation, we must de�ne �nite di�erence operators Dx and Dz to

approximate the partial di�erentiations ∂
∂x

and ∂
∂z

in (x, z). However, for RSG scheme,
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the second order operators performed in (x̃, z̃) have to be de�ned �rst as

Dx̃u (x, z, t) =

[
u
(
x+ ∆x

2
, z − ∆z

2
, t
)
− u

(
x− ∆x

2
, z + ∆z

2
, t
)]

√
2∆x

Dz̃u (x, z, t) =

[
u
(
x+ ∆x

2
, z + ∆z

2
, t
)
− u

(
x− ∆x

2
, z − ∆z

2
, t
)]

√
2∆x

Then according to equations (A.5) and (A.6), we can have operators Dx and Dz as

Dxu(x, z, t) =
1

2
[Dz̃u (x, z, t) +Dx̃u (x, z, t)]

Dzu(x, z, t) =
1

2
[Dz̃u (x, z, t)−Dx̃u (x, z, t)]

A.2 Finite Di�erence Scheme in 3D

In a grid with cubic cells of length (∆x,∆y,∆z) along coordinates (x, y, z), as shown

in Figure A-2, two di�erent sets of variables are de�ned at corners (m∆x, k∆y, n∆z)

and centers
(
m∆x+ ∆x

2
, k∆y + ∆y

2
, n∆z + ∆z

2

)
of each cell, respectively. To approxi-

mate the �rst-order derivatives
(
∂
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, ∂
∂y
, ∂
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)
m+ 1

2
,k+ 1

2
,n+ 1

2

at center, one has to choose a

set of new derivative directions
(
d̃1, d̃2, d̃3, d̃4

)
along diagonals, which can be de�ned

as, 
d̃1

d̃2

d̃3

d̃4
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where ∆l =
√

∆x2 + ∆y2 + ∆z2. Let us de�ne

d̃ =


d̃1

d̃2

d̃3

d̃4

 (A.8)
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Figure A-2: Rotated coordinate system in 3D.
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x =
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 (A.9)
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such that equation (A.7) can be expressed as

d̃ = Tx (A.11)

where T is the transformation matrix from basis (x, y, z) to
(
d̃1, d̃2, d̃3, d̃4

)
. For case

with ∆x = ∆y = ∆z, we have
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Since T is not a square matrix, we must multiply TT on both sides of equation (A.11).

So we can have

x =
(
TTT

) −1TT
d̃ (A.13)

and in explicit form
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 (A.14)
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According to equation (A.14), derivatives in (x, y, z) can be expressed by a linear

combination of derivatives in
(
d̃1, d̃2, d̃3, d̃4

)
.

∂

∂x
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√
3

4

(
∂
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+
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(A.15)
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In numerical simulation, we must de�ne �nite di�erence operators Dx, Dy and Dz to

approximate the partial di�erentiations ∂
∂x
, ∂
∂y

and ∂
∂z

in (x, y, z). However, for RSG

scheme, second order operators performed in
(
d̃1, d̃2, d̃3, d̃4

)
have to be de�ned �rst

as
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, t
)]

√
3∆x

Then according to equations (A.15) - (A.17), we can have operators Dx, Dy and Dz

as

Dxu(x, z, t) =
1

4

[
Dd̃1

u (x, y, z, t) +Dd̃2
u (x, y, z, t) +Dd̃3

u (x, y, z, t) +Dd̃4
u (x, y, z, t)

]
Dyu(x, z, t) =

1

4

[
Dd̃1

u (x, y, z, t) +Dd̃2
u (x, y, z, t)−Dd̃3

u (x, y, z, t)−Dd̃4
u (x, y, z, t)

]
Dzu(x, z, t) =

1

4

[
Dd̃1

u (x, y, z, t)−Dd̃2
u (x, y, z, t) +Dd̃3

u (x, y, z, t)−Dd̃4
u (x, y, z, t)

]
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Appendix B

Analytical Solution for the Dispersion

and Attenuation of a Compressional

Wave in an Idealized Porous Medium

The propagation of a compressional wave in an idealized porous medium with peri-

odically alternating solid and viscous �uid layers denoted by s and f is governed by

[Brekhovskikh, 1981, Ciz et al., 2006],

4 (µs − µf )2K1K2 + ω2ρs
[
c2ρs − 4 (µs − µf )

]
K2 tan

βshs
2

+ω2ρf
[
c2ρf + 4 (µs − µf )

]
K1 tan

βfhf
2

(B.1)

−ω2ρsρfc
2

[
L1 tan

βfhf
2

+ L2 tan
βshs

2

]
= 0

where,

K1 =
ω2

c2
tan

βshs
2

+ αsβs tan
αshs

2

K2 =
ω2

c2
tan

βfhf
2

+ αfβf tan
αfhf

2

L1 =
ω2

c2
tan

βshs
2
− αfβs tan

αfhf
2

L2 =
ω2

c2
tan

βfhf
2
− αsβf tan

αshs
2
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and where

α2
s = ω2

(
1

c2
s

− 1

c2

)
α2
f = ω2

(
1

c2
f

− 1

c2

)

with

cs =

√(
Ks + 4

3
µs
)

ρs

cf =

√(
Kf + 4

3
µf
)

ρf

being the compressional wave velocity in the solid and �uid, respectively, and where

β2
s = ω2

(
1

b2
s

− 1

c2

)
β2
f = ω2

(
1

b2
f

− 1

c2

)

with

bs =

√
µs
ρs

bf =

√
µf
ρf

being the shear wave velocity in the solid and �uid, respectively.

µf = −iωη

Kf = λf +
2

3
µf

hs and hf are the thickness of the solid and �uid layers, respectively. c is the speed

of the compressional wave propagating in such a system. Once we obtain c, we can
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estimate the wave attenuation as,

1

Qp

=
Im {c−2}
Re {c−2}

(B.2)
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Appendix C

Stability Analysis for Linearized

Navier-Stokes Equations in 2D

In a 2D case, the linearized Navier-Stokes equations are [Landau and Lifshitz, 1959]:

ρf
∂vx
∂t

= −∂p
∂x

+
∂σxx
∂x

+
∂σxz
∂z

ρf
∂vz
∂t

= −∂p
∂z

+
∂σxz
∂x

+
∂σzz
∂z

∂p

∂t
= −Kf

(
∂vx
∂x

+
∂vz
∂z

)
(C.1)

σxx = (ηλ + 2ηµ)
∂vx
∂x

+ ηλ
∂vz
∂z

σzz = ηλ
∂vx
∂x

+ (ηλ + 2ηµ)
∂vz
∂z

σxz = ηµ

(
∂vx
∂z

+
∂vz
∂x

)

where vi, σij, p are the velocity, stress rates and pressure �eld, Kf , ρf , ηµ and ηλ are

the bulk modulus, density, shear viscosity and second viscosity of the viscous �uid. In

a �nite di�erence scheme, equations (C.1) are approximated as di�erence equations
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using discrete di�erence operators Dt and Dx (see Appendix A for details),

ρfDtvx = −Dxp+Dxσxx +Dzσxz

ρfDtvz = −Dzp+Dxσxz +Dzσzz

Dtp = −Kf (Dxvx +Dzvz) (C.2)

σxx = (ηλ + 2ηµ)Dxvx + ηλDzvz

σzz = ηλDxvx + (ηλ + 2ηµ)Dzvz

σxz = ηµ (Dzvx +Dxvz)

De�ne the displacement ux and uz through relations,

vx = Dtux

vz = Dtuz (C.3)

Then the equations (C.2) can be written in terms of the displacement as

Au = 0 (C.4)

where A, a 2× 2 matrix operating on displacement vector u = [ux, uz]
T , is

A =



ρfDtt −KfDxx −KfDxz − (ηλ + ηµ)Dtxz

− (ηλ + 2ηµ)Dtxx − ηµDtzz

−KfDxz − (ηλ + ηµ)Dtxz ρfDtt −KfDzz

− (ηλ + 2ηµ)Dtzz − ηµDtxx


(C.5)

In the von Neumann stability analysis, a time-harmonic plane wave is typically

assumed,  ux (m,n, l)

uz (m,n, l)

 =

 u0x

u0z

 g(k)lei(kxm∆x+kzn∆z) (C.6)

where the grid spacing is (∆x,∆z) and the time increment is ∆t. In this analysis,
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∆x and ∆z are assumed equal. Stability of the numerical calculation requires,

|g (k)| ≤ 1 ∀k (C.7)

The values of g (k) are obtained by solving equation (C.4), which requires the

determinant of the system of equations to be equal to zero, i.e. det (A) = 0. The

determinant then yields a quartic equation in g (k),

g4 + c3g
3 + c2g

2 + c1g + c0 = 0 (C.8)

where the coe�cients ci are functions of the physical properties of the viscous �uid,

grid spacing and time increment de�ned as

c3 = β31φ− 4

c2 = β22φ
2 − β21φ+ 6 (C.9)

c1 = −β12φ
2 + β11φ− 4

c0 = β02φ
2 − β01φ+ 1

φ = 1− cos (kx∆x) cos (kz∆x) (C.10)

β31 =
2π1∆t2

∆x2
+

6π2∆t

∆x2
+

2π3∆t

∆x2

β22 =
4π1π2∆t3

∆x4
+

8π2
2∆t2

∆x4
+

4π2π3∆t2

∆x4

β21 =
4π1∆t2

∆x2
+

18π2∆t

∆x2
+

6π3∆t

∆x2
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β12 =
4π1π2∆t3

∆x4
+

16π2
2∆t2

∆x4
+

8π2π3∆t2

∆x4
(C.11)

β11 =
2π1∆t2

∆x2
+

18π2∆t

∆x2
+

6π3∆t

∆x2

β02 =
8π2

2∆t2

∆x4
+

4π2π3∆t2

∆x4

β01 =
6π2∆t

∆x2
+

2π3∆t

∆x2

π1 =
Kf

ρf

π2 =
ηµ
ρf

(C.12)

π3 =
ηλ
ρf

Equation (C.8) is associated with the four roots of g = {λ1, λ2, λ3, λ4} which may

be real or complex values. The eigenvalue method [Press et al., 1992] is used to solve

this quartic equation, where a Hessenberg matrix is constructed with the coe�cients

ci as

H =


−c3 −c2 −c1 −c0

1 0 0 0

0 1 0 0

0 0 1 0

 (C.13)

The four roots of equation (C.8) correspond to the four eigenvalues of matrix H .

The stability criterion requires the magnitudes of these four roots to be less than one

for all kx and kz.
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Appendix D

Kuster-Toksöz Model for Cracked

Medium

In the Kuster-Toksöz model [Kuster and Toksöz, 1974], it assumes long-wavelength

approximation and pores of spheres and oblate spheroids randomly distributed in an

isotropic and homogeneous host medium.

Let us de�ne properties of medium in terms of bulk modulus K, shear modulus

µ and density ρ. (K,µ, ρ) refers to the matrix,
(
K
′
, µ
′
, ρ
′)

refers to the inclusions

and (K∗, µ∗, ρ∗) refers to the e�ective properties of the composite medium. If c is the

volume concentration of a set of inclusion with aspect ratio of α, we can have the

relationships between these quantities

K∗ −K
3K∗ + 4µ

=
1

3
· K

′ −K
3K + 4µ

· c · Tiijj (α)

µ∗ − µ
6µ∗ (K + 2µ) + µ (9K + 8µ)

=
µ
′ − µ

25µ (3K + 4µ)
· c ·

[
Tijij −

1

3
Tiijj

]

ρ∗ = ρ (1− c) + cρ
′

In case of multiple cracks with M sets of aspect ratios saturated with N multiple

�uids, the equations above can be easily extended to

145



K∗ −K
3K∗ + 4µ

=
1

3

N∑
n=1

K
′
n −K

3K + 4µ
·
M∑
m=1

c (αm,n) · Tiijj (αm,n)

µ∗ − µ
6µ∗ (K + 2µ) + µ (9K + 8µ)

=
N∑
n=1

µ
′
n − µ

25µ (3K + 4µ)

M∑
m=1

c (αm,n)·
[
Tijij (αm,n)− 1

3
Tiijj (αm,n)

]

ρ∗ = ρ (1− c) +
N∑
n=1

cnρ
′

n

where cn represents the volume concentration of the nth �uid and αm,n is the mth

aspect ratio associated with the nth �uid.

The scalars Tiijj and Tijij used are de�ned as

Tiijj =
3F1

F2

Tijij −
1

3
Tiijj =

2

F3

+
1

F4

+
F4F5 + F6F7 − F8F9

F2F4

where

F1 = 1 + A

[
3

2
(g + φ)−R

(
3

2
g +

5

2
φ− 4

3

)]

F2 = 1 + A

[
1 +

3

2
(g + φ)− R

2
(3g + 5φ)

]
+B (3− 4R)

+
A

2
(A+ 3B) (3− 4R)

[
g + φ−R

(
g − φ+ 2φ2

)]

F3 = 1 +
A

2

[
R (2− φ) +

(1 + α2)

α2
g (R− 1)

]

F4 = 1 +
A

4
[3φ+ g −R (g − φ)]
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F5 = A

[
R

(
g + φ− 4

3

)
− g
]

+Bφ (3− 4R)

F6 = 1 + A [1 + g −R (g + φ)] +B (1− φ) (3− 4R)

F7 = 2 +
A

4
[9φ+ 3g −R (5φ+ 3g) +Bφ (3− 4R)]

F8 = A

[
1− 2R +

g

2
(R− 1) +

φ

2
(5R− 3)

]
+B (1− φ) (3− 4R)

F9 = A [g (R− 1)−Rφ] +Bφ (3− 4R)

A =
µ
′

µ
− 1

B =
1

3

(
K
′

K
− µ

′

µ

)

R =
3µ

3K + 4µ

φ =
α

(1− α2)3/2

[
arccos (α)− α

(
1− α2

)1/2
]

g =
α2

1− α2
(3φ− 2)
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Appendix E

The Modi�ed Model of Squirt-Flow

Dispersion and Attenuation

E.1 Generalized Mavko-Jizba Model

Mavko and Jizba [1991] proposed a quantitative model for squirt-�ow and predicted

the dispersion in granular rocks. The important contributions of the work of Mavko

and Jizba [1991] are the expressions for the so-called unrelaxed bulk and shear moduli

of the frame, which are computed assuming the sti� pores are dry but compliant

pores are �lled with a �uid. However, the unrelaxed moduli go to in�nity for dry

or gas-saturated case, which is physically invalid. Gurevich et al. [2009b] developed

alternative expressions for ultrasonic moduli using the discontinuity formalism of

Sayers and Kachanov [1991], which reduce to the expressions of Mavko and Jizba

[1991] for the �uid-saturated case, but are also valid for gas-saturated case. The work

of Gurevich et al. [2009b] assumes a statistically continuous distribution of cracks in

rocks, and takes a volume average of the whole cracks no matter the orientations or

the compliance of each set of cracks. The expression linking the unrelaxed moduli of

frame and the compliances of cracks are

1

Kuf

=
1

Kh

+ sBN (E.1)
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1

µuf
=

1

µh
+

4

15
sBN +

2

5
sBT (E.2)

where Kuf and µuf are the unrelaxed bulk and shear moduli, Kh and µh are the dry

bulk and shear moduli of a hypothetical rock without the compliant pores, BN and

BT are the normal and shear compliance of each plane discontinuity of cracks with

s surface to volume ratio of all cracks. However, assuming the binary distribution of

cracks in rocks [Toksöz et al., 1976, Shapiro, 2003], we can come up with relationships

from equations (E.7) and (E.8)

1

Kuf

=
1

Kh

+
∑
i

siB
i
N (E.3)

1

µuf
=

1

µh
+

4

15

∑
i

siB
i
N +

2

5

∑
i

siB
i
T (E.4)

where Bi
N and Bi

T are the normal and shear compliance of the ith set of cracks with

si surface to volume ratio. Each set of cracks is assumed statistically homogeneously

distributed in rocks. Equations (E.2) to (E.8) are valid for rocks in which compliant

pores are either dry or �uid-saturated. For a dry rock, we have

1

Kdry

=
1

Kh

+
∑
i

siB
i
N,dry (E.5)

1

µdry

=
1

µh
+

4

15

∑
i

siB
i
N,dry +

2

5

∑
i

siB
i
T,dry (E.6)

where Bi
N,dry and Bi

T,dry are the dry normal and shear compliance of the ith set

of cracks. In the �uid-saturated case, the shear stresses are negligible up to the

characteristic frequency of viscous shear relaxation and shear compliance of cracks is

independent of �uid, so that BT = BT,dry. Subtracting equation (E.1) from equation

(E.3) and equation (E.2) from equation (E.4) gives

1

Kdry

− 1

Kuf

=
∑
i

si
(
Bi
N,dry −Bi

N

)
(E.7)
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1

µdry

− 1

µuf
=

4

15

∑
i

si
(
Bi
N,dry −Bi

N

)
(E.8)

Substituting equation (E.7) into equation (E.8), we still obtain the same relation for

dry shear modulus µdry (P ) at a given pressure P as Gurevich et al. [2009b] have in

original Mavko-Jizba equation

1

µdry (P )
− 1

µuf (P )
=

4

15

(
1

Kdry (P )
− 1

Kuf (P )

)
(E.9)

Equation (E.5) indicates that, by sequentially adding di�erent set of dry cracks

into dry frame of a hypothetical rock without the compliant pores, we actually con-

tinue updating the dry frame so as to obtain the �nal dry bulk modulus of the cracked

rock. The contribution from the ith set of dry cracks to �nal dry bulk modulus of the

rock is equal to siB
i
N,dry. We can express the equation (E.5) in an alternative way as

1

Kdry

=
1

Kh

+
∑
j 6=i

sjB
j
N,dry + siB

i
N,dry (E.10)

which isolate the contribution from the ith set of dry cracks. If we de�ne K
i

h, the

equivalent dry bulk modulus of a hypothetical rock without including the ith set of

dry cracks, as

1

K
i

h

=
1

Kh

+
∑
j 6=i

sjB
j
N,dry (E.11)

then we can have equation (E.10) written as

1

Kdry

=
1

K
i

h

+ siB
i
N,dry (E.12)

Following the derivation of Gurevich et al. [2009b], we can obtain the relation for

the unrelaxed bulk modulus of cracked rocks at a given pressure P ,

1

Kuf (P )
=

1

Kh

+
∑
i

1
1

1
Kdry(P )

− 1

K
i
h

+ 1(
1
Kf
− 1
Kg

)
φic(P )

(E.13)

151



where Kf and Kg are bulk moduli of the �uid and of the material of the solid grains,

φic is the porosity of the ith set of compliant cracks.

With the equations (E.13) and (E.9), we can estimate the unrelaxed bulk and

shear moduli of rocks where �uid �lls the compliant pores but sti� pores are dry so

as to take into account the squirt-�ow e�ect. Most parameters used in these two

equations can be obtained in laboratory measurement, while only the equivalent dry

bulk modulus of a hypothetical rock, K
i

h, needs to be estimated. Assuming we know

the distribution of the binary sets of cracks in a rock and the dry bulk modulus of

frame under really high pressure P > Ph, by adding the other jth sets of cracks

into the dry frame, where j 6= i, we can estimated K
i

h for the ith set of cracks by

the numerical computation or theoretical models such as the Kuster-Toksöz model or

other e�ective media theories.

E.2 The Modi�ed Squirt-Flow Model

The unrelaxed moduli derived in the previous section are high-frequency moduli.

To obtain the frequency-dependent moduli due to the squirt-�ow dispersion requires

additional information about the compliant pores. As proposed by Murphy et al.

[1986] and Gurevich et al. [2009c], we can assume a particular con�guration of pore

space: a compliant pore described as a disk-like gap between two grains links to a

toroidal sti� pore as shown in Figure E-1. The gap has radius a and thickness h.

The impact of this gap on e�ective elastic property is determined by the additional

e�ective sti�ness K∗ of the gap due to the presence of �uid, which can be de�ned as

K∗ =
4F
−4h

(E.14)

where 4F is the acoustic force exerted by �uid onto the gap wall, and 4h is the

uniaxial dynamic loading or displacement under such force. The force can be obtained

by integrating the pressure over surface Sg of the gap
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∆F =

ˆ
Sg

p (r) dS (E.15)

For a sinusoidal loading 4h exp (iωt), the pressure developed inside gap can be

obtained as a solution to the equation

d2p

dr2
+

1

r

dp

dr
+ k2p = C (E.16)

where r is radial coordinate, and k is the wavenumber de�ned by k2 = −iωh0D/Kf ,

D = 12η/h3
0 is the viscous resistance, η is dynamic viscosity of the �uid and C =

iωD4h. Solving the equation (E.16) with the boundary condition at the edge of the

gap p|r=a = 0, we can have solution of pressure �eld

p =
C

k2

[
1− J0 (kr)

J0(ka)

]
(E.17)

Combining this solution with equations (E.14) and (E.15) leads to expression for

the e�ective sti�ness

K∗ = πa2

[
1− 2J1 (ka)

kaJ0 (ka)

]
Kf

h0

(E.18)

At low frequency limit k → 0 and thus K∗ = 0. However, at high frequency limit,

equation (E.18) gives

K∗ =
πa2

h0

Kf (E.19)

This is the unrelaxed e�ective sti�ness of gap when �uid in gap has no time to escape

from the gap to sti� pore within the half-period of the wave. The e�ective sti�ness

at a given frequency in equation (E.18) is actually computed from unrelaxed e�ective

sti�ness in (E.19) for a modi�ed �uid with a frequency dependent bulk modulus

K∗f =

[
1− 2J1 (ka)

kaJ0 (ka)

]
Kf (E.20)

Substituting this equivalent �uid bulk modulus into equation (E.13), we can have
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the partially relaxed bulk modulus

1

Kpf (P )
=

1

Kh

+
∑
i

1
1

1
Kdry(P )

− 1

K
i
h

+ 1(
1
K∗
f
− 1
Kg

)
φic(P )

(E.21)

thus the partially relaxed shear modulus in equation (E.9) by substituting Kpf (P )

for Kuf (P )

1

µdry (P )
− 1

µpf (P )
=

4

15

(
1

Kdry (P )
− 1

Kpf (P )

)
(E.22)

Because the equivalent �uid bulk modulus in equation (E.20) is frequency depen-

dent, so are the partially relaxed bulk and shear moduli, which gives us the velocity

dispersion and attenuation due to the squirt-�ow taking place in cracks. By using ei-

ther Gassmann's or Biot's equations, we can compute the saturated moduli of porous

rocks which is frequency dependent as well. If the frequency is low compared with

Biot's characteristic frequency, Gassmann's model is used by substituting Kpf for the

frame modulus, while keeping µpf as the saturated shear modulus. However, if the

frequency is higher than Biot's characteristic frequency, Biot's model is used instead.
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Figure E-1: Schematic con�guration for the squirt-�ow model: Axisymmetric section
through the model.
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Appendix F

Nonlinear Solver for Single Phase

Viscous Fluid

Seismic propagation in porous and permeable media usually produces di�erent par-

ticle motion in �uid and solid, the relative motion of which gives rise to seismic

attenuation. At very high frequencies, motions in �uid consist of vibrations around

equilibrium, while at low frequencies �uid �ow takes place in pores due to the lo-

cal pressure gradient. Biot [1956a, 1956b] developed a theory to study the seismic

attenuation in �uid-saturated porous media at low- and high- frequencies, which

considered the coupling between �uid and solid at macroscale. However, the the-

ory underestimates the attenuation observed in real data [Nur and Simmons, 1969,

Winkler, 1985, Murphy et al., 1986, Wang and Nur, 1990]. Theories to account for

more seismic energy loss other than Biot's loss have been developed. Mavko and

Nur [1979], O'Connell and Budiansky [1977], Murphy et al. [1986], Dvorkin and Nur

[1993], Dvorkin et al. [1994, 1995] proposed a mechanism to account for the �uid �ow

at microscale - the �squirt-�ow�, where �uid is squeezed out of cracks into open pores

by high pressure due to compressional waves. White [1975], Pride and Berryman

[2003a,b], Pride et al. [2004] modeled the wave-induced �uid �ow in model where

mesoscopic heterogeneity due to lithological variations or due to patches of di�erent

immiscible �uids is considered. In this type of model, compressional waves squeeze

compliant part of the media and drive �uid �ow to sti� part. The wave-induced
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�uid �ow at di�erent scales � �macroscopic�, �mesoscopic� and �microscopic� � plays

an important role in attenuating seismic wave energy. Though theoretical models

can be developed to understand the e�ect of wave-induced �uid �ow on velocity and

attenuation, their applications are limited on real rocks for the sake of simpli�ed as-

sumptions about the geometry of porous media. Recently, with the developments of

computational techniques and power, it becomes possible to numerically study the

seismic wave propagating in �uid-saturated porous media with the help of digitized

rocks. Saenger et al. [2005] studied Biot's e�ect in digitized porous rocks numerically

where they used the general Maxwell model to approximate the viscous e�ect of �uid.

However, this model only considers the Biot's e�ect approximately. In order to study

the mechanism of seismic attenuation due to �uid �ow at three di�erent scales, a

model fully coupling �uid and solid has to be developed and solved numerically on

digitized rocks representing the complex pore structures of real rocks.

As discussed in Chapter 2, we have developed a coupled and uni�ed model to

govern the �uid and solid, which is able to take into account the interaction between

viscous compressible �uid and solid. However, ignoring the nonlinear convection

term in the Navier-Stokes equations, we have linearized the system in �uid domain,

which is appropriate for �uid with small velocities induced by passing seismic wave.

Linearizing the Navier-Stokes equations is an approach people have taken to study

wave propagation in viscous �uid [Lighthill, 2002] and derive mathematical models for

the squirt-�ow phenomenon [Mavko and Nur, 1979, Murphy et al., 1986]. However,

according to local velocity �eld, �uid particles physically move from one position

to another, in which convection plays an important role, especially when velocity is

large. Therefore, it is necessary to keep the convection term in numerical modeling,

and leave physics to decide how much e�ect convection can have on the results.

Actually, Greenshields and Weller [2005] kept the convection term in their modeling

of pressure wave propagating in an artery, and Käser and Dumbser [2008] studied wave

propagation in moving water by considering convection due to background velocity

�eld.

In this chapter, we �rst review the governing equations for both �uid and solid.
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Second, following the work of Käser and Dumbser [2008], we will show how to treat the

convection term under the assumption of small perturbation. Then we will introduce

the numerical method - upwind scheme - to handle the convection in numerical solver.

Finally, we will demonstrate an example of the nonlinear solver on modeling wave

propagating in moving �uid.

F.1 Governing Equations

Considering a medium consisting of a porous elastic matrix �lled with a compressible

Newtonian �uid, it is convenient to describe the coupled system with an uni�ed

system of governing equations. We take the classical way by using velocity-stress

formulation to describe the �uid and solid domains. For wave propagating in purely

elastic medium, the equations are

ρs
∂v

∂t
= ∇ · σ + f (F.1)

∂σ

∂t
= λtr (ε̇)I + 2µε̇ (F.2)

ε̇ =
1

2

(
∇v + (∇v)T

)
(F.3)

where v is the velocity vector, σ and ε̇ are stress tensor and strain rate tensor, ρs, λ

and µ are the density and Lamé elastic constants of the solid phase.

For wave propagating in viscous �uid, the equations from the fundamental equa-

tions of �uid dynamics [Landau and Lifshitz, 1959] are given by

∂ρf
∂t

+∇ · (ρfv) = 0 (F.4)

ρf

(
∂v

∂t
+ (v · ∇)v

)
= ∇ · σ + f (F.5)
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σ = −pI + τ (F.6)

τ = ηλtr (ε̇)I + 2ηµε̇ (F.7)

where p and τ are pressure and deviatoric stress tensor, ρf , ηµ and ηλ are the density,

shear and second viscosity coe�cients of the �uid phase. In both solid and �uid

domain, the vector f is the volumetric force.

F.2 Treatment of Convection Term in Fluid Domain

As we have known that strain induced by passing seismic wave usually has mag-

nitude of 10−7 − 10−6, we can assume small density, velocity, pressure and viscous

stresses perturbation for acoustic wave propagating in viscous �uid. Therefore, we

can introduce decompositions

ρf = ρf0 + ρ
′

f , v = v0 + v
′
, p = p0 + p

′
, τ = τ 0 + τ

′
(F.8)

where ρ
′

f , v
′
, p
′
and τ

′
are small density, velocity, pressure and viscous stresses per-

turbations corresponding to background density ρf0, velocity v0, pressure p0 and

viscous stresses τ 0. Under assumption of small perturbation, perturbations of these

quantities are much smaller than the background state, i.e., ρ
′

f � ρf0, p
′ � p0.

Furthermore, for the case we are interested in, seismic wave length is much larger

than pore space of porous rocks. Hence, we can assume that the background �uid

in pores is incompressible, i.e., ρf0 is constant in space and time. According to the

conservation of mass in equation (F.4), this leads to

∇ · v0 = 0 (F.9)

First we need to derive partial di�erential equation for perturbed pressure �eld

p
′
. Expanding equation (F.4), we can have
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∂ρf
∂t

+ v · ∇ρf + ρf∇ · v = 0 (F.10)

Based on these assumptions, we can simpli�ed the conservation equation (F.4)

with the help of equations (F.8) and (F.9). Note that under such small perturbation

assumptions, quantities of the �uctuations are so small that their products can be

ignored. After some mathematical manipulations, we can obtain

∂ρ
′

f

∂t
+ v · ∇ρ′f + ρf0∇ · v

′
= 0 (F.11)

For an isentropic �uid, pressure perturbation p
′
can be linked to perturbation of

density ρ
′

f by equation of state [Landau and Lifshitz, 1959]

p
′
= c2

pρ
′

f (F.12)

where cp is wave speed in �uid, and de�ned as

c2
p =

K

ρf
(F.13)

where K is the bulk modulus of �uid.

Using equation (F.8), neglecting ρ
′

f against ρf0, and substituting equation (F.12)

into equation (F.11), we have the �nal equation for the pressure perturbation

∂p
′

∂t
+ v · ∇p′ +K∇ · v′ = 0 (F.14)

From equation (F.14), we can see that this degrades back to pressure equation for

linear acoustic wave propagation as in equation (2.6) if the second term, convection

term, is ignored.

Second, we need to derive the governing equation for velocity perturbation v
′
.

Because of the existence of a background state, we actually assume it satis�es

∂v0

∂t
+ (v0 · ∇)v0 = −∇p0

ρ0

+
1

ρ0

∇ · τ 0 (F.15)
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Using assumptions in equation (F.8) and substituting equation (F.15) into equa-

tion (F.5), we can simplify the governing equation

∂v
′

∂t
+ (v · ∇)v

′
= −∇p

′

ρ0

+
1

ρ0

∇ · τ ′ + f −
(
v
′ · ∇

)
v0 (F.16)

from which we can see an additional source term
(
v
′ · ∇

)
v0 is introduced. For small

velocity perturbation or constant (or zero) background velocity �eld, we can drop out

the source term in equation (F.19), which gives

∂v
′

∂t
+ (v · ∇)v

′
= −∇p

′

ρ0

+
1

ρ0

∇ · τ ′ + f (F.17)

Through these mathematical manipulations, the movement of �uid, or �uid con-

vection, is preserved via �uid velocity in v ·∇p′ and (v · ∇)v
′
, respectively. For cases

starting with initial state where v0 = p0 = τ 0 = 0, we have v = v
′
, p = p

′
and τ = τ

′
.

Hence, equations (F.11) and (F.17) can be further simpli�ed as

∂p
′

∂t
+ v

′ · ∇p′ +K∇ · v′ = 0 (F.18)

∂v
′

∂t
+
(
v
′ · ∇

)
v
′
= −∇p

′

ρ0

+
1

ρ0

∇ · τ ′ + f (F.19)

Combining equations (F.18) and (F.19) with equation (F.7), we �nally obtain a

close system of equations with which we can describe the �uid dynamics in viscous

�uid domain.

F.3 Upwind Scheme for Solving Convection

Adequate numerical methods to solve advection equation have been studied for many

years in �uid/gas dynamics so as to accurately handle shocks or other discontinu-

ities existing in solutions [e.g., Godunov, 1959, van Leer, 1979, Roe, 1981, Harten,

1983, Toro, 1997]. Pursuing high order accuracy of the numerical scheme is always

the e�ort researchers aim at, especially if sharp discontinuities present. The most
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recent development is the WENO scheme [Harten et al., 1987, Shu and Osher, 1988,

1989, Shu et al., 1992], which achieves 5th order accuracy in space. As for our prob-

lem of wave propagating in viscous �uid, generally smooth wave �eld is generated.

Hence, scheme with lower order accuracy should be applicable. Within these available

schemes, upwind scheme [LeVeque, 2007] is the better one to use because it is so easy

to implement and the computational cost is low.

In general, an advection equation has the basic form as in equations (F.18) and

(F.19) as

∂v

∂t
+ (v · ∇)v = 0 (F.20)

in which information of v is carried with velocity v itself and evolves in time. Because

the velocity v is a vector, the motion itself under the control of convection is asym-

metric. Depending on the direction of motion, information should move accordingly.

To approximate the (v · ∇)v in equation (F.20), upwind scheme uses one-sided

�nite di�erence scheme. Depending on direction of local velocity �eld, it might choose

backward or forward �nite di�erencing. As an example, we only consider 2D case

where v(x, z) = (u(x, z), w(x, z)). For velocity component u in x direction, equation

(F.20) becomes

∂u

∂t
+ uux + wuz = 0 (F.21)

Asymmetric approximation to ux can be

D+
x u ≈

Ui+1,j − Ui,j
∆x

(F.22)

D−x u ≈
Ui,j − Ui−1,j

∆x
(F.23)

where ∆x is the spacing between �nite di�erence grid, Ui,j is the discrete values

of u approximated in �nite di�erence, and D+
x and D−x are forward and backward

di�erencing operators, respectively. The same rules apply to spatial derivative of u
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in z direction

D+
z u ≈

Ui,j+1 − Ui,j
h

(F.24)

D−z u ≈
Ui,j − Ui,j−1

h
(F.25)

As we can see that, if u > 0, the solution moves to positive direction along x,

while if u < 0 it moves to the negative direction. In the same way, solution moves

to positive direction along z if w > 0, while if w < 0 it moves to negative direction

as well. It is best to acknowledge these asymmetry by using one-sided di�erence

in the appropriate directions. Coupling one of these approximations with forward

di�erencing in time, we can have methods for solving the advection equation

Un+1
i,j = Un

i,j −∆t
[([

Un
i,j

]+
D−x u+

[
Un
i,j

]−
D+
x u
)

+
([
W n
i,j

]+
D−z u+

[
W n
i,j

]−
D+
z u
)]

(F.26)

where Un
i,j and W

n
i,j are velocity of (u,w) on grid (i, j) at time step n, and also we

de�ne

[
Un
i,j

]+
= max

(
Un
i,j, 0

)
[
Un
i,j

]−
= min

(
Un
i,j, 0

)
[
W n
i,j

]+
= max

(
W n
i,j, 0

)
[
W n
i,j

]−
= min

(
W n
i,j, 0

)
Besides the Courant-Friedrichs-Lewy (CFL) stability criterion we have to satisfy,

equation (F.26) has to satisfy another stability condition to make it stable only if
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∣∣∣∣max(u,w) ·∆t
∆x

∣∣∣∣ < 1 (F.27)

To extend this into 3D case, we only need to work on direction y in the same

fashion. Nothing much complicated will be involved at end.

F.4 Numerical Example

To demonstrate the capability of our nonlinear solver on solving wave propagation

in moving �uid, we take the classical 2D test as did Käser and Dumbser [2008]. As

shown in Figure F-1, the 2D model consists of two homogeneous �uid and solid half-

spaces where the viscous �uid half-space is on top of an elastic solid half-space with a

plane interface. A compressional point source is excited in �uid domain. A snapshot

of the velocity component w is plotted at time t = 0.185s in Figure F-2a for case

of the �uid at rest where v0 = 0 m/s. We can clearly see (a) direct and (b) re�ect

acoustic wave in �uid, and (c) transmitted P-wave and (d) converted S-wave in solid.

Along interface, clear refracted head wave (e) and (f) are generated, and Scholte

wave (g) can be observed as well. Compared to the symmetric pattern of wave �eld

in Figure F-2a, the wave �eld developed in case of the moving �uid with u0 = 500

m/s is asymmetric due to the motion of �uid as shown in Figure F-2b.
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Figure F-1: A 2D model consists of two homogeneous �uid and solid half-spaces.
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Figure F-2: Snapshot of the velocity component w at time t = 0.185 s. (a) �uid is at
rest (v0 = 0 m/s); (b) �uid is moving with u0 = 500 m/s.
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