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Abstract

This thesis demonstrates the assessment of uncertainty of a simulation model at the system
level, which takes into account the interaction between the modules that comprise the
system. Results from this system level assessment process aid policy-makers by identifying
the key drivers of uncertainty in model outputs, among the input factors of the various
modules that comprise the system. This knowledge can help direct resource allocation
for research to reduce the uncertainty in policy outputs. The assessment results can also
identify input factors that, when treated as deterministic variables, will not significantly
affect the output variability.

The system level assessment process is demonstrated on a model that estimates the air
quality impacts of aviation. The model comprises two modules: the Aviation Environmental
Design Tool (AEDT), which simulates aircraft operations to estimate performance and
emissions inventories, and the Aviation environmental Portfolio Management Tool (APMT)-
Impacts Air Quality module, which estimates the health and welfare impacts associated with
aviation emissions. Global sensitivity analysis is employed to quantify the contribution of
uncertainty in each input factor to the variability of system outputs, which here are adult
mortality rates and total health cost. The assessment results show that none of the input
factors of AEDT contribute significantly to the variability of system outputs. Therefore, if
uncertainty reduction in the estimation of adult mortality and total health cost is desired,
future research efforts should be directed towards gaining more knowledge on the input
factors of the APMT-Impacts Air Quality module.

This thesis also demonstrates the application of system level assessment in policy impact
analysis, where policy impact is defined as the incremental change between baseline and
policy outputs. In such an analysis, it is important to ensure that the uncertainty in policy
impacts only accounts for the uncertainty corresponding to the difference between baseline
and policy scenarios. Some input factors have a common source of uncertainty between
scenarios, in which case the same representation of uncertainty must be used. Other input
factors, on the other hand, are assumed to have independent variability between the different
scenarios, and therefore need to have independent representation of uncertainty. This thesis
demonstrates uncertainty assessment of a technology infusion policy analysis.

Thesis Supervisor: Karen E. Willcox
Title: Associate Professor, Department of Aeronautics and Astronautics
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Chapter 1

Introduction

The use of numerical simulations to support policy- and decision-making analysis has be-

come increasingly widespread. Such analyses include many uncertainties, such as those due

to a lack of knowledge as well as those due to the natural randomness of the system. These

uncertainties impose further challenges on the policy process. Proper characterization and

analysis of uncertainty associated with numerical simulations are thus imperative. This the-

sis discusses the assessment of uncertainty in models that evaluate the air quality impact of

aviation to support policy analysis. In particular, a system level assessment is performed,

where the assessment of uncertainty is done in an integrated manner on a system model

that comprises two modules.

This chapter begins by presenting the motivation for uncertainty assessment in Section

1.1, followed by the motivation for the more specific system level assessment in Section

1.2. A brief overview of uncertainty assessment in policy impact analysis is presented in

Section 1.3. Section 1.4 describes the terminologies that will be used throughout this thesis.

The specific objectives of this research are then stated in Section 1.5, followed by a section

presenting the organization of the remainder of this thesis.

1.1 Motivation for Uncertainty Assessment

It is a widely adopted practice to use results from numerical simulations—which enables

numerical evaluation of a system when the physical systems are too complex to allow ana-

lytical evaluations [59]—to support policy analyses. Deterministic analyses are commonly

performed in policy analysis setting, where the model is assumed to be completely known
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[98]. However, the inherent presence of uncertainty in input factors, model parameters, and

the model itself, coupled with the inclusion of subjective choices and assumptions, deem

deterministic analyses insufficient in policy- or decision-making processes. In order to make

policy decisions to the best of our knowledge, the inherent uncertainty needs to be carefully

characterized and incorporated in the model development and analysis processes [104]. A

complete uncertainty assessment process includes both uncertainty and sensitivity analy-

ses. This process represents, characterizes, and analyzes the uncertainty of a model [1].

In the context of policy- and decision-making process, performing uncertainty assessment

helps investigate whether an informed decision can be made based on the current state

of knowledge on input data and parametric uncertainties. When knowledge improvement

is required to enhance our confidence in the analysis results, the assessment process will

help directing resource allocation [98]. The discussion in this thesis is only limited to the

assessment of uncertainty of input factors, and excludes other sources of uncertainty, e.g.,

model uncertainty.

Uncertainty analysis is defined as the process to determine the uncertainty in model

output based on the uncertainty in input factors [41]. By performing this analysis on a

numerical simulation model, the model outputs are now represented by some probability

distributions instead of a single evaluation value [108]. Care must be taken when charac-

terizing uncertainties in input factors, as the desired outcome of the uncertainty analysis

should be wide enough to include all possible assumptions but narrow enough to be useful

in making policy decisions [60]. In addition to performing uncertainty analysis, a sensi-

tivity analysis can be performed on the system to gain insights into the impacts of uncer-

tainty in input factors on the variability of model output. For example, global sensitivity

analysis can provide the importance ranking of input factors based on their significance,

by means of the apportionment of the output uncertainty to contributions from different

sources of uncertainties in model factors [90]. The results from such an analysis can guide

channeling research efforts to reduce model output uncertainty, as stated by the Intergov-

ernmental Panel on Climate Change (IPCC) in their 1990 report [46]. A general review

of various sampling-based uncertainty and sensitivity analysis methodologies can be found

in [41]. Chapter 2 will provide a survey of methods to perform uncertainty quantification

and sensitivity analysis, with emphasis given to global sensitivity analysis methods, which

are employed in this thesis. Among the available global sensitivity analysis methods (see

14



[39, 49, 87, 88] for an overview of the available methods), this thesis will explore the use of

a variance-based method [44, 96, 89, 90], which will be demonstrated in Chapters 3 and 4.

Although there are no specific techniques to perform uncertainty assessment on a cer-

tain problem, several possible approaches are presented in [25, 72]. The step-by-step guide-

line to uncertainty assessment for general complex models intended to support policy- and

decision-making processes is discussed in detail in [1]. For complex models, the uncertainty

assessment process can also support model development, e.g., by identifying gaps in func-

tionality and assumptions, in addition to supporting policy- and decision-making analysis

[103]. Uncertainty assessment processes have been applied to various fields. For example,

the uncertainty assessment of the Water Isolation Pilot project [39], hydrologic model [71],

economics [66], and hysteretic model in mechanics [65]. In the context of aviation environ-

mental impact analysis, the different representations of uncertainty in climate modeling are

discussed in [48, 77], and the comparison of various uncertainty assessment and sensitivity

analysis techniques (local and global sensitivity analyses, deterministic and variance based

methods) can be found in [52].

1.2 Motivation for System Level Assessment

Real-world problems are typically complex, spanning a wide range of disciplines. Simu-

lation models representing such problems thus often comprise a number of sub-modules.

For example, in the aviation environmental impact analysis tools-suite developed by the

U.S. Federal Aviation Administration’s Office of Environment and Energy (FAA-AEE),

aircraft performance, aircraft emissions, and environmental impacts are modeled in sepa-

rate modules [78]. The modules interact with each other, forming a system. According

to the definition proposed in the NASA Systems Engineering Handbook, a system is a “a

construct or collection of different elements that together produce results not obtainable by

elements alone” [76]. Performing an uncertainty assessment on such a tools-suite needs to

be done in an integrated manner; that is, by considering the relation among the different

modules, and how they interplay. This assessment will henceforth be called the system level

assessment in this thesis.

Discussions of the propagation of uncertainty and sensitivity analysis performed at the

system level are available in several literature sources. For example, the uncertainty prop-
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agation between modules in the context of multidisciplinary system design and optimiza-

tion is presented in [32, 33, 34]. A demonstration of the use of system-level uncertainty

propagation to support model validation process can be found in [22]. A software toolkit

developed to facilitate uncertainty quantification in large computational engineering models

is described in [109]. In [94], local sensitivity analysis is performed on internally coupled

systems, by computing the local sensitivity derivative of the output to inputs of the sys-

tem. A global sensitivity analysis approach called Multi-Disciplinary Multi-Output Global

Sensitivity Analysis with Reducible Interval Uncertainty (MIMOSA) is developed to com-

pute the sensitivity of system and subsystem outputs to input uncertainties; however, the

analysis is limited to only include uncertainties in input factors that can be represented by

interval uncertainties [61].

In this thesis, the system level assessment is demonstrated by performing a variance-

based global sensitivity analysis on a system, to investigate the impact of the uncertainty of

one model input not only on its immediate module output, but also on the system output,

by taking the interaction between modules into account. Depending on the importance

of a particular module, an input factor that is deemed significant within the module may

have little contribution to the overall system output. Channeling research effort to reduce

uncertainty associated with that particular input factor may therefore be unnecessary. By

doing system level assessment in addition to module level assessments, we can therefore

further narrow down the list of input factors that require further research for knowledge

improvement. The background, procedure, and demonstration of system level assessment

will be presented and discussed in more detail in Chapter 3.

1.3 Uncertainty Assessment in Policy Analysis

Regulatory agencies analyze and compare a number of policy scenarios prior to enforcing

a new policy or regulation. This comparison is often done deterministically, for example

by means of cost-benefit analysis (CBA), cost-effectiveness analysis (CEA), and distribu-

tional analysis. CBA aims to maximize the net social benefit of regulation, computed by

subtracting costs from benefits associated with a certain policy or regulation. This method

requires a consistent unit, typically monetary, to enable direct cost and benefit comparison

[83, 57]. In CEA, different policies with similar expected benefits are compared, and the
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policy scenario with least cost is selected [57]. Distributional analyses aims to identify the

different stakeholders who benefit or bear the costs of the proposed regulations [23]. See,

[67], for example, for a demonstration of CEA and CBA approaches to assess the tradeoffs

between environmental benefits and economic costs in NOx stringency analysis context.

Incorporating uncertainties into any policy-science interface always remains a challenge

in policy analysis processes, which often leads to the exclusion of uncertainty in the analysis

[104]. For example, environmental impact assessment is often excluded in the aviation-

related policy-making process due to the growing uncertainty in estimating environmental

impacts [67]. However, the importance of providing uncertainty estimates of policy outputs

has been widely recognized in the recent years. For example, the “ten commandments for

good policy analysis” enumerated in [72] include the explicit characterization of uncertainty,

as well as systematic uncertainty and sensitivity analyses for a thorough policy analysis

process. Also, in preparing for the Third Assessment Report of the IPCC, the researchers

were encouraged to quantify uncertainty as much as possible to support their analyses [74].

Some earlier studies that incorporate uncertainty in policy analysis represent the policy

outputs as an interval without assigned probabilities [16]. However, further studies have

provided probabilistic estimates of key results [55, 92, 97]. Assigning probabilities to input

factors in highly uncertain systems, for example global climate change, is a challenge as

the process often involves subjective judgment that is prone to cognitive biases [73]. Some

studies, however, have provided evidence that these biases can be reduced by means of

formal quantitative approaches in incorporating uncertainty [72, 101]. There is a wide

body of literature that discusses uncertainty assessment to support policy decisions in the

context of global climate change. Works to include uncertainty assessment in cost-benefit

analysis to study the marginal damage costs of Carbon Dioxide emissions are presented in

[99, 100]. A comparison of the climate projection, which is estimated by taking uncertainty

in both economic and climate components into account, corresponding to two different

policy scenarios is demonstrated in [106].

In this thesis, focus is given to study the effect of uncertainties in input factors on policy

impacts, instead of just policy outputs. To compute the policy impacts, a common baseline

scenario must be selected, to which policy outputs are compared. Uncertainty assessment

is then carried out on the incremental changes between the policy and baseline scenarios

[38, 67, 86]. The background, procedure, and demonstration of a policy impact analysis
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will be discussed in Chapter 4.

1.4 Terminology

This section presents the definition of terms used in this thesis, to avoid potential confusions

due to the interchangeable use of some terms in the literature, e.g., input, variable, factor,

and parameter [13, 35, 91]. Models are developed to represent the real-world facility or

process, to enable studies on the system. A model typically represents the system in terms

of logical and quantitative relationships [59], often expressed in mathematical operations,

and characterized by a set of quantities which are called parameters. A factor is defined as

the external input to a model that does not characterize the model, i.e., not a parameter.

Specifically in the context of sensitivity and uncertainty analysis, the term input factor

is used to describe the uncertainty associated to the module input [98]. The outcomes or

results of interest from the model is referred to as output. Further details on this terminology

and definition can be found in [1].

1.5 Thesis Objectives

The key objective of this research is to perform system level assessment on systems of

modules assessing the environmental impact of aviation. More specifically, the objectives

of this research are,

1. Demonstrate the use of Monte Carlo Simulation and Global Sensitivity Analysis meth-

ods for the uncertainty assessment of complex systems with multiple modules.

2. Demonstrate how sensitivity analysis can be applied to policy impact analysis to

identify the key drivers of uncertainty in impacts of introducing new policy scenarios

with respect to the baseline scenario.

3. Show how a system level uncertainty assessment can support decision for a technology

infusion policy in the context of environmental impact of aviation.
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1.6 Thesis Organization

Chapter 2 provides the background for the aviation environmental impact analysis frame-

work on which the system level assessment will be demonstrated, i.e., the Aviation envi-

ronmental Portfolio Management Tool (APMT), as well as the uncertainty and sensitivity

analysis methodologies in practice—particularly the global sensitivity analysis. The demon-

stration of system level assessment procedure on a real-world problem that assesses the

aviation impact on air quality is presented in Chapter 3. Chapter 4 discusses the applica-

tion of uncertainty assessment in the context of policy impact analysis. This thesis ends

with summary and general conclusions of this work and is consolidated with some proposed

future work, in Chapter 5.
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Chapter 2

Background

The first section of this chapter provides an overview of the aviation environmental tools-

suite and its components, on which the system level uncertainty assessment will be demon-

strated. More detailed description is given for the two modules that are used in this research,

namely the Aviation Environmental Design Tool (AEDT) and APMT-Impacts Air Quality

module. Section 2.2 discusses the available methods for uncertainty and sensitivity analysis,

focusing mainly on the Sobol’ variance decomposition method, which is used in this thesis.

2.1 The FAA Environmental Tools-Suite

The U.S. Federal Aviation Administration’s Office of Environment and Energy (FAA-AEE),

in collaboration with NASA and Transport Canada, is developing a comprehensive suite of

software tools to thoroughly assess the environmental impacts of aviation activity through

the Partnership for AiR Transportation Noise and Emissions Reduction (PARTNER) Cen-

ter [67, 78]. This development aims to enable the characterization and quantification of

the interdependencies among aviation-related noise and emissions, health, welfare, and eco-

nomic impacts, under different policy, technology, operational, and market scenarios. This

tools-suite, which is illustrated in Figure 2-1, consists of the Environmental Design Space

(EDS), the Aviation Environmental Design Tool (AEDT), and the Aviation environmental

Portfolio Management Tool (APMT).

EDS generates fleet based on the new technology that is modeled through a vehicle-

level trade space, which becomes input to AEDT to simulate aircraft operations and per-

formance. APMT has two key functions: to simulate the demand and supply in aviation
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Figure 2-1: The FAA-NASA-Transport Canada Aviation Environmental Tool Suite.

industry, which is performed in the Economics module; and to quantify the environmental

impacts, which are estimated in the Impacts block. APMT-Impacts is further subdivided

into three modules: Climate, Air Quality, and Noise modules. The environmental impacts

modeled within each module are described briefly in Table 2.1. The computed economic

cost outputs and monetized environmental impact estimates allow policymakers to perform

comprehensive cost-benefit and cost-effectiveness analyses. The two modules used in this

thesis—AEDT and APMT-Impacts Air Quality module—are discussed briefly in the fol-

lowing. The reader can refer to [52, 67, 68] for further details on APMT-Climate modeling

development, [7, 70, 86] for APMT-Impacts Air Quality module, [38, 53] for APMT-Impacts

Noise module, and [36, 37] for APMT-Economics.

2.1.1 Aviation Environmental Design Tool (AEDT)

AEDT is an integrated system with the capability of analyzing aviation-related noise, emis-

sions, and fuel burn on both local and global scales [78]. These analyses are performed

by three main modules within AEDT, namely the Aircraft Performance Module (APM),

Aircraft Emissions Module (AEM), and Aircraft Acoustic Module (AAM). To support the

uncertainty assessment of the model, Volpe Transportation Center developed an assess-

ment application layer that provides a wrapper around the computational module with

the capability of running Monte Carlo simulations with randomized inputs. The assess-
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Impact type Effects modeled
Primary Metrics

Physical Monetary
Noise Population exposure to noise, number of Number of people Net present value

people highly annoyed
Housing value depreciation, rental loss

Air Quality Primary particulate matter (PM), Incidences of Net present value
Secondary PM by NOx and SOx mortality and

morbidity
Climate CO2 Globally-averaged Net present value

Non-CO2: NOx-O3, Cirrus, Sulfates surface temperature
Soot, H2O, Contrails, NOx-CH4, NOx-O3 change
long

Table 2.1: Overview of environmental impacts modeled in APMT [67].

ment application layer allows the user to set the distributional type (uniform, triangular)

and parameters (minimum, peak, and maximum values) for each input factor. Users can

pick from the following selectable options as the output format: segment level, flight level,

airport inventory level, and global inventory level.

2.1.2 APMT-Impacts Air Quality module

Figure 2-2 illustrates the health impact pathway modeled in the APMT-Impacts Air Qual-

ity (AQ) module [7, 86]. The module quantifies the total health cost, which is the mone-

tization of the seven health endpoints modeled in APMT-Impacts AQ module: (1) adult

premature mortality, (2) infant premature mortality, (3) chronic bronchitis, (4) hospital ad-

missions (respiratory), (5) hospital admissions (cardiovascular), (6) emergency room visits

for asthma, and (7) minor restricted activity days.������������	 
��	 ���	�������� ������� ��������� !� ���"���!� ������� �����#�� ��$%!����� �$�� � &'()*+,��*�-./01 20/3.4/056478 9.4 :0; <8 =04>3. 948/6498 ?; <60/
Figure 2-2: Health impact pathway for APMT-Impacts Air Quality module.

Aircraft emissions contain components of primary PM2.5, which is considered as one of

the predominant air pollutants causing health damages. PM2.5 is defined by the EPA as

fine particles of 2.5 micrometers or less, including solid, liquid, and heterogeneous (mixed
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solid and liquid) particles [102]. Changes in concentration of pollutants are computed from

aircraft emissions using the Community Multiscale Air Quality (CMAQ) modeling system,

which is a 3D grid-based Air Quality model [8, 9]. CMAQ is a complex model that simulates

the chemical reactions and transport mechanisms of the atmosphere with a 36 km by 36

km Lambert Conformal grid resolution over the U.S. Population exposure. The dimension

of the grid in the model is 148 × 112 cells. The expensive and long computational time of

CMAQ, i.e., three days to simulate twelve months of data on an hourly basis, call for the

use of reduced order models to enable policymaking applications as well as uncertainty and

sensitivity analyses. Two reduced order models have been developed, namely the Intake

Fraction model [86] and Response Surface Model (RSM) [7, 70]. In this thesis, RSM v2

(speciated) is used, which is described in detail in [7].

The RSM was built based on 27 high-fidelity CMAQ runs, where the 27 sample points

were selected via a low-discrepancy Monte Carlo sampling procedure. The four independent

parameters in the RSM linear regression model are multipliers for fuel burn, fuel sulfur

content (FSC), inventory non-volatile PM (nvPM) Emissions Index, and inventory NOx

Emissions Index. Multipliers are defined as the ratio of emissions for the given scenario to

the baseline aviation scenario emissions. The scenario used in the EPAct study (from [82])

with nvPM correction is used as the baseline. At each grid cell, the five components of PM

concentration—organic particulate matter, ammonium (NH4), PM Nitrates, PM Sulfates,

and Elemental Carbon (EC)—are computed using RSM models separately. The general

linear regression model for each grid cell and each PM component is shown in Equation 2.1,

[·] = β1 · FB multiplier + β2 · SOx multiplier + β3 ·NOx multiplier + β4 · nvPM multiplier, (2.1)

where β1 to β4 are the regression coefficients that are derived based on the 27 CMAQ

sample runs, and [·] denotes any components of the PM concentration mentioned above.

The multipliers corresponding to each airport are first computed from the emissions inputs,

and then assigned to the grid cell containing that particular airport. The current version of

RSM accounts only for 314 U.S. airports, covering 95% of the national commercial aviation

activity [82]. A spatial interpolation is then performed to obtain multipliers associated with

grid cells with no airports, see [70] for details.

Changes in population exposure are obtained by multiplying the changes in the pollutant

concentration corresponding to each grid cell with the affected population. Having obtained
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this metric, we can then compute the changes in health endpoints by means of concentration

response functions (CRFs). The derivation of CRFs, which are also referred to as dose

response functions, is based on epidemiological studies. The monetary valuations are then

computed, depending on the given population’s willingness to pay (WTP) and value of

a statistical life (VSL), which are assigned by policymakers [86]. This computation is

summarized in Equation 2.2.

∆health cost = ∆emissions×∆ambient concentration

∆emissions
× health incidence

∆ambient concentration
× cost

health incidence
(2.2)

2.2 Uncertainty and Sensitivity Analysis

This section presents a brief overview of the uncertainty quantification and sensitivity anal-

ysis methodologies used in this thesis.

2.2.1 Uncertainty quantification methods

Uncertainty quantification (UQ) methods propagate uncertainty from model inputs to out-

puts [75, 110]. There are two types of uncertainty. Uncertainty that is caused by natural

randomness is classified as aleatory or irreducible uncertainty, whereas epistemic or re-

ducible uncertainty refers to uncertainty that is due to a lack of knowledge [3, 45, 75].

Understanding this fundamental difference between the two types of uncertainty is impor-

tant in interpreting the sensitivity analysis results. In many situations, however, the exact

model formulation and distributional parameters, e.g., the nominal values of input factors or

model parameters, are not known precisely and therefore subject to epistemic uncertainty.

Consequently, those input factors and model parameters are subject to both epistemic and

aleatory uncertainties [42]. For example, atmospheric temperature has an inherent natural

randomness; and therefore its uncertainty is classified as aleatory. Nonetheless, an advance-

ment in temperature measurement technology can help better define its uncertainty range.

As such, atmospheric temperature uncertainty has an epistemic uncertainty layer on top of

the aleatory one. In this thesis, all uncertainties that can potentially be reduced are treated

as epistemic uncertainties.

Different UQ methods are employed for the different types of uncertainty. A probabilistic

framework is the most commonly adopted mathematical representation for aleatory uncer-
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tainty. Non-probabilistic means of uncertainty quantification are often used for epistemic

uncertainties [40], including evidence theory [79], possibility theory [19], fuzzy set theory

[15], and imprecise probability theory [58]. An overview of available epistemic uncertainty

quantification techniques is provided in [6].

The most common uncertainty quantification methods are Monte Carlo simulation and

sampling-based methods. Monte Carlo simulations generates an ensemble of random real-

izations by running the model deterministically for different sets of random inputs. The

statistical information of model outputs, e.g., mean and variance, are then extracted from

this ensemble. Some non-sampling methods include perturbation methods [54, 63, 64], mo-

ment equations [112], operator based methods including Neumann series [93, 111] and the

weighted integral method [20, 21], and polynomial chaos expansion [28, 75, 110]. Monte

Carlo simulation is the favored method for high-dimensional and complex problems, as its

convergence is only dependent on the number of realizations and not the dimension of prob-

lem [26]. Moreover, Monte Carlo simulation is non-intrusive, thus it is still applicable in

the absence of governing equations. However, an expensive computational burden can be

incurred if a certain level of accuracy is required, due to the need for a large number of

realizations.

2.2.2 Sensitivity Analysis Methodologies

The main objective of performing sensitivity analysis is to investigate how uncertainty in

input factors and model parameters affect the variability of model outputs [44]. Sensitivity

analysis is particularly useful in studying systems, especially complex ones, as it helps to

understand the behavior of the models, i.e., how they interplay in the system, and to check

the coherence between a model and the physical system that it represents [89]. Sensitivity

analysis methodologies can be classified into two main categories, Global Sensitivity Analysis

(GSA) and Local Sensitivity Analysis (LSA). In LSA, the sensitivity of outputs to inputs is

assessed only around a particular point of interest in the input space. GSA, on the other

hand, takes the variations of input factors and model parameters over the entire input

space into account. These sensitivity analysis methodologies are further elaborated in the

following two subsections.
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2.2.3 Local Sensitivity Analysis

Essentially, the main objective of LSA is to investigate the effect of changing the nominal

values of an input factor on the model output. LSA typically involves the computation of

the Jacobian of the model output with respect to input, and is sometimes normalized with

respect to the means or standard deviations of the input or output. In practical settings

where analytical gradients are not available, finite differencing is typically used to compute

the gradient, where the factors are perturbed one at a time and the change in model out-

put is observed. Other commonly used methods for estimating gradients include adjoint

methods [10, 29], nominal range sensitivity method (threshold analysis) [27], automatic dif-

ferentiation [31], and complex step differentiation [69]. Though LSA methods are mostly

deterministic, that is, they do not have the capability to investigate the probabilistic uncer-

tainty and interaction between factors, a local sensitivity analysis can still provide insight

into how the model behaves under perturbations of one of its input factors.

2.2.4 Global Sensitivity Analysis

Unlike LSA, GSA is not limited to only a selected point in the design space. It also takes

into account the interplay between factors. An overview of GSA methodologies is given

below, followed by a more detailed discussion on variance-based methods, especially the

current state-of-the-art Sobol’ method. The practical implementation of Sobol’ method via

Monte Carlo is then described.

GSA Methods: an Overview

A review of some GSA methods, including the Monte Carlo based regression-correlation

measures, the Fourier amplitude sensitivity analysis (FAST), and various differential anal-

yses is provided in [39]. Some other GSA methods include efficient parameter screening—

using data adaptive modeling [107], Iterated Fractional Factorial Design (IFFD) [2], and

first order reliability analysis (FORM) [14]. A comparison of various GSA methods can also

be found in [49, 87, 88].

Prior to the selection of the GSA method to be used, it is important to consider the

output of interest and the concept of importance pertaining to the problem at hand. Some of

the possible sensitivity analysis settings, namely factor prioritization, factor fixing, variance
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cutting, and factor mapping, are discussed in [90]. For this work, the focus is only on

the first two settings. The goal of the factor prioritization setting is to rank input factors

based on their importance, defined more specifically as their contribution to the output

variability. This setting can help establish research priorities, and potentially provide a

better understanding of the factors and thus reduce the uncertainty ranges associated with

them. The factor fixing setting aims to identify factors that, when fixed in the model,

will not affect the output variance. This setting can lead to model simplification and thus

reduction in computational costs.

Variance Based Methods for GSA

Variance is commonly used as a measure of uncertainty, though it is just one of the many

possible options [90]. With the presence of uncertainty, it is imperative to look at and

compare the variance, in addition to the mean, when comparing different model outputs in

making policy decisions. In many policy analysis settings, it is often more important and

insightful to compare the probability of obtaining some values or ranges of model outputs, or

the probability of risk, instead of comparing the expected output values from the different

policy scenarios.

Developing sensitivity measures that rely on the variance decomposition methods is a

very active research area. Variance-based methods were first used for sensitivity analysis

in the early 1970s in the field of chemistry [17]. The first recognized method is FAST,

which uses a search curve through the parameter space to evaluate the multi-dimensional

integral instead of the Monte Carlo simulation [18]. The limitation of the first generation

of FAST is that it only computes the main effect, i.e., the first order term [89, 90]. This

limitation is overcome in the Sobol’ method, which is similar to FAST as it also expresses

the total variance of model output as a sum of terms of increasing dimensionality, but is

able to compute the higher interaction terms [89]. Moreover, the Sobol’ method can also

compute total effect sensitivity index with the same computational cost as computing the

main effect.

Sobol’ Variance Decomposition Method

A Russian mathematician, I.M. Sobol’, first developed a method for computing global sen-

sitivity indices in early 1990s [95]. The method is classified as a variance decomposition
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method as it calculates the fractional contribution of the input factors to the variance of

the model prediction [44, 96], from which the main effect and total effect sensitivity indices

are computed. While the former only includes the first order effect, the latter measures the

total contribution of a given input factor, including all the possible interaction terms be-

tween the input factors in the system [44]. The main effect sensitivity index is particularly

relevant to the factor prioritization setting, as it allows the ranking of factors based on the

expected variance reduction gained if the uncertainty associated with an input factor can

be eliminated. In the factor fixing setting, on the other hand, total effect sensitivity index

is more useful, as a low total effect sensitivity index indicates that the factor can be treated

deterministically without any significant impact on the output variance.

The variance apportionment of Sobol’ method is illustrated for a simple model with

only two factors in Figure 2-3. For this simple example, the main effect of factor 1 will be

the ratio of fractional contribution driven only by factor 1 to the total variance, whereas

the total effect will be the main effect plus the ratio of the variance contributed by the

interaction component (between factors 1 and 2) to the total variance. The derivation for

the computation of both sensitivity indices and their Monte Carlo implementation will be

briefly described below, following the work presented in [44, 90].

����� ������	
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Figure 2-3: Apportionment of output variance [1].

The apportionment of variance makes use of the partial or conditional variance of the

model output, which quantifies the variance reduction in the model output upon fixing a set

of input factors. For a model output Y and an arbitrary input factor xi, the unconditional

variance can be decomposed to main effect, var (E [Y |xi]), and residual, E [var (Y |xi)],

var (Y ) = E [var (Y |xi)] + var (E [Y |xi]) . (2.3)
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The main effect sensitivity index can thus be expressed as

Si =
var (E [Y |xi])

var (Y )
, (2.4)

and the residual, which can be interpreted as the expected remaining variance that would

be left if xi can be fixed, is given as follows,

E [var (Y |xi)] = var (Y )− Si · var (Y ) . (2.5)

Similarly, the output variance can also be decomposed in terms of main effect and residual,

but conditioned with respect to all factors but xi (xic) as shown below,

var (Y ) = E [var (Y |xic)] + var (E [Y |xic ]) . (2.6)

The ratio of the residual in the above variance decomposition to the total variance quantifies

the total effect sensitivity index (τi),

τi =
E [var (Y |xic)]

var (Y )

= 1− var (E [Y |xic ])
var (Y )

,

(2.7)

i.e., the portion of output variance that would be left if only xi is allowed to vary.

The basis for computing the conditional variance, and therefore the Sobol’ sensitivity

indices, is the ANOVA1 High-Dimensional Model Representation (ANOVA-HDMR) of the

model function f(x) that is assumed to be integrable [96]. In the derivation presented below,

the function f (x) is defined in an n-dimensional unit cube, i.e., 0 ≤ xi ≤ 1, i = 1, . . . , n.

This representation is expressed in Equation 2.8, where x is the vector of input variables, i

denotes the variable index and n denotes the total number of variables that are within the

system:

f(x) = f0 +
n∑

s=1

n∑

i1,...<is

fi1···is (xi1 , . . . , xis)

= f0 +
n∑

i=1

fi(xi) +
∑

i<j

fij (xi, xj) + . . . + f12...n (x1, x2, . . . , xn) , (2.8)

1Analysis of Variance
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where f0 is a constant (the function mean), fi (xi) is the term that is only dependent on xi,

fij (xi, xj) is the function that is dependent on xi and xj , and so forth.

The uniqueness of the ANOVA-HDMR decomposition is enforced when the integral of

every summand over any of its independent variables is zero,

∫ 1

0
fi1...is (xi1 , . . . , xis) dxk = 0 for k = i1, . . . , is, s = 1, . . . , n, (2.9)

which in turn guarantees the orthogonality for any two different summands,

∫
fi1...is (xi1 , . . . , xis) · fk1...kt (xj1 , . . . , xjt) dx = 0. (2.10)

Using this orthogonality property, each component can be derived analytically; for details

see, for example, [44, 96].

As previously mentioned, the function—and thus all the components—is assumed square

integrable. We can then express the total variance, var(Y ), as:

D =
∫

f (x)2 dx− f2
0 , (2.11)

and the partial or conditional variance, var (E [Y |xi1...is ]), as:

Di1...is =
∫

fi1...is (xi1 , . . . , xis)
2 dxi1 , . . . , xis . (2.12)

The fractional contribution of a set of input factors to the output variability can then be

written as in the following,

Si1...is =
Di1...is

D
, (2.13)

which is the basis in computing the main (Si) and total effect sensitivity indices (τi), as

shown in Equations 2.14 and 2.15, respectively.

Si =
Di

D
, (2.14)

τi = 1− Sic = 1− Dic

D
. (2.15)
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Monte Carlo Implementation of Sobol’ GSA Method

For complex functions f (x) where the ANOVA-HDMR decomposition components are al-

most impossible to attain analytically, the indices are estimated by evaluating the multidi-

mensional integral via Monte Carlo methods [44]. For a given sample size N , the constant

term can be estimated as follows,

f̂0 =
1
N

N∑

m=1

f (xm), (2.16)

which is also the function mean. xm is the m-th sample point in the n-dimensional hy-

percube, i.e., the input space. The hat is used to distinguish the estimate from the actual

value. The estimate of output variance can also be computed via Monte Carlo,

D̂ =
1
N

N∑

m=1

f (xm)2 − f̂2
0 . (2.17)

For the estimation of the conditional variance Di, the multidimensional integral is solved

by computing the expected value of products of two terms: one with the samples in xm,

and one with all factors resampled except xi,

D̂i =
1
N

N∑

m=1

f
(
[xm

1 , . . . , xm
i , . . . , xm

n ]T
)

f
(
[x̃m

1 , . . . , xm
i , . . . , x̃m

n ]T
)
− f̂2

0 , i = 1, . . . , n,

(2.18)

where the notation x̃m
j is used for a new sample of xj for the m-th Monte Carlo realization.

With the estimates of total and partial variance, the main effect sensitivity index estimate,

Ŝi, is computed following Equation 2.14.

The estimate of the variance due to all factors except xi, i.e., when only one factor is

resampled (denoted as D̂ic) is estimated following the similar procedure,

D̂ic =
1
N

N∑

m=1

f
(
[xm

1 , . . . , xm
i , . . . , xm

n ]T
)

f
(
[xm

1 , . . . , x̃m
i , . . . , xm

n ]T
)
− f̂2

0 , i = 1, . . . , n.

(2.19)

Finally, the total effect sensitivity index is estimated by applying Equation 2.15, upon

computing Ŝic = D̂ic/D̂. The computation of variances (Equations 2.17 to 2.19) may suffer
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a loss of accuracy when the mean value f0 (x) is large. A new mean-subtracted model

function, f (x)− c0, where c0 ≈ f0 (x), is used instead [95, 96].

The computation of error estimates corresponding to the Monte Carlo estimation of

main effect sensitivity indices is provided below, following the derivation presented in [44].

The probable error corresponding to the estimated partial variance, δD̂i, is computed as

follows,

δD̂i =
CI√
N

√
Fi − I2

i , (2.20)

where CI is the confidence interval. Some commonly used values for CI are 0.6745, 1.6449,

and 1.9600 for 50%, 90%, and 95% confidence intervals, respectively. Fi and Ii are as defined

in Equations 2.21 and 2.22.

Fi =
1
N

N∑

m=1

[
f

(
[xm

1 , . . . , xm
i , . . . , xm

n ]T
)

f
(
[x̃m

1 , . . . , xm
i , . . . , x̃m

n ]T
)]2

(2.21)

Ii =
1
N

N∑

m=1

f
(
[xm

1 , . . . , xm
i , . . . , xm

n ]T
)

f
(
[x̃m

1 , . . . , xm
i , . . . , x̃m

n ]T
)

(2.22)

Similarly, the probable error on the total variance, corresponding to the same level of

confidence, is computed as:

δD̂ =
CI√
N

√
D̂. (2.23)

The error estimate on the main effect sensitivity index, δŜi, is then approximated as shown

below,

δŜi ≈ δD̂i

D̂
+ Ŝi

δD̂

D̂
. (2.24)

The population of Si therefore falls within the range of Ŝi± δŜi with the level of confidence

that is associated with the value of confidence interval used in Equations 2.20 and 2.23. By

following the same procedure, but replacing Ŝi with Ŝic and D̂i with D̂ic , the error estimate

for the total effect sensitivity index can be computed.

To compute both total and main effect sensitivity indices for n factors, a total of (n + 2)

Monte Carlo simulations are required. Each input factor that is considered in this analysis
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requires two sets of samples, with N samples within each set. Thus, for the factor xi, we

have xm
i and x̃m

i , for m = 1, . . . , N . As with other Monte Carlo simulation-based methods,

convergence of the Monte Carlo simulations is an important question that needs to be

addressed. The convergence criteria, which are problem-dependent, will be illustrated and

discussed in the demonstration of GSA in the context of aviation environmental impact

analysis, which will be presented in Chapter 3.
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Chapter 3

System Level Assessment on

APMT

As stated in Section 1.5, the first objective of this thesis is to demonstrate the use of Monte

Carlo simulations and Global Sensitivity Analysis methods for the uncertainty assessment

of complex systems with multiple modules. This chapter describes the background and

procedure to perform system level assessment (SLA), followed by the demonstration on a

real-world problem in the context of aviation environmental impact analysis. The illustra-

tive problem involves a system comprising the aviation performance and emissions modules

within AEDT and APMT-Impacts Air Quality module.

3.1 System Level Assessment Background

For a system that comprises more than one module, for example the FAA-AEE aviation

environmental tools-suite, a thorough assessment process should include both module level

and system level assessments. In module level assessment, each individual module is as-

sessed independently, involving only immediate inputs into and outputs from the module

of interest, as illustrated in Figure 3-1. In SLA, on the other hand, the assessment is done

on multiple modules in an integrated manner, taking into account the interaction between

modules. The main purposes of SLA within APMT can be summarized as follows:

1. Assessing the impact of the uncertainty of input factors to the system output, instead

of only to their immediate module outputs, in an integrated manner. The results from
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this assessment process can support the policy- and decision-making processes, by

providing policymakers with a more focused research direction, when the uncertainty

reduction in system outputs is concerned.

2. Identifying any inconsistency of assumptions across the different modules by analyzing

and comparing results from both module level and system level assessments

3. Identifying gaps in functionality and limitations of each module to contribute to the

model development process

APMT

Module 

����������	
 ��������	��	

Figure 3-1: Module level assessment within APMT.

The module level assessments within APMT have been performed by the respective

model developers for AEDT [78], APMT-Impacts Climate module [1, 52, 67], APMT-

Impacts Air Quality (AQ) module [7], and APMT-Impacts Noise module [38]. The first

SLA effort within APMT aims to assess AEDT and APMT-Impacts modules in an inte-

grated manner. As discussed in Chapter 2 of this thesis, there are three modules within

APMT-Impacts, i.e., Air Quality, Climate, and Noise. This thesis only focuses on perform-

ing system level assessment on a system comprising AEDT and APMT-Impacts Air Quality

module.

3.2 SLA Terms and Definitions

The input factors to the system, system outputs, and intermediate variables for a simple

system with two modules are shown in Figure 3-2. Inputs to the system include all module

level inputs, except those that become intermediate variables at system level, which will

be elaborated further next. For analysis processes where Sobol’ Global Sensitivity Analysis
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method is needed, the number of inputs that are treated as random variables, i.e., input

factors according to the definition stated in Section 1.4, determines the required number of

Monte Carlo simulations, and therefore the computational cost of the analysis. When the

limited computational resources only allow a handful of input factors to be included in such

an analysis, priority is given to those that are deemed significant from the corresponding

module level assessment results. Intermediate variables include module level outputs that

are passed as inputs to other modules. The module where the intermediate variables are

outputs will be referred to as the source module, whereas the module where the intermediate

variables are passed to will be called the receptor module. System outputs are outputs of the

system, which can be outputs of any modules within the system, of which the uncertainty

and sensitivity will be assessed. Although Figure 3-2 only shows two modules in the system,

it is not unusual that the system comprises more than two modules, potentially with some

feedback loops. Feedback loop exists when a module passes its outputs to any of the

predecessor modules. The presence of feedback loops in the system increase the analysis

complexity, and therefore special care must be taken in handling them. This issue is,

however, outside the scope of this thesis.

������ �� ������ ��	
�������� 	
�� ������	
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Figure 3-2: Coupling between modules in the system level assessment procedure.

One major source of complexity in system level assessment, as compared to the module

level assessment, is the coupling or interaction between modules. Data handoff mechanism,

which models the coupling between modules, thus plays an important role in the SLA

procedure. The data handoff mechanism must facilitate the transfer of data between the
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different modules, and often includes data format conversion. It is common to have the

different modules being developed in different institutions, e.g., universities or research

centers, using different programming languages or platforms. Having different data format

across the different modules is therefore not unusual. For example, Volpe Transportation

Center develops modules using C# programming environment, whereas MIT does most of

the code development for APMT-Impacts modules in MATLAB. In this case, data format

conversion is an important part of the data handoff mechanism.

3.3 SLA General Procedure

Prior to any assessment processes, it is important to set up the key questions that need

to be addressed by the assessment process. For example, do we only need to know the

probability distribution of outputs, given the assumed variability of inputs? Do we need

to get insights into which input factor, from which module, on which we need to focus our

research to reduce the variability in output? Do we need to know the impact of changing

the distributional type and parameters of a certain input factor to the system level output?

Here, uncertainty analysis is sufficient for the first case, where the uncertainty in input

factors is propagated through to the different modules via Monte Carlo simulations, whereas

Global Sensitivity Analysis (GSA) is required to answer the second question. Additional

distributional analyses are necessary to answer the last question. The step-by-step guideline

to perform SLA on a system is presented below, which will be made clearer with the

demonstration of the sample problem.

1. Define the system structure

The main backbone of the system structure is the modules that comprise the system,

which must be clearly defined at the beginning of the SLA process. Next, the uncer-

tainty characterization of each input factor, e.g., probability density function (PDF),

needs to be determined. Depending on which output uncertainty needs to be assessed

in the SLA process, we can determine the system outputs of interest. Knowledge

of the system and how the modules interact will help identify the intermediate vari-

ables that need to be passed between modules; the corresponding source and receptor

modules can also be determined.

2. Assess the need of having a surrogate model
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Surrogate modeling is an important consideration in the SLA procedure when it is

prohibitive to carry out the complete analysis on the full model. A decision on whether

a surrogate model is required is made based on the required computational efforts

and the available computing resources. A very brief discussion on surrogate modeling

methodologies is given in the next section. The derivation of a surrogate model is

largely dependent on the problem at hand. Verification of the quality of the derived

surrogate model in representing the full model must be carried out prior to its use in

the analysis.

3. Determine the appropriate data handoff mechanism to connect the source and recep-

tor modules for each intermediate variable

The data handoff mechanism may require some code modifications or additional func-

tions when the modules are not integrated yet. In doing so, some data format con-

versions may be required.

4. Perform the analyses

Some analyses require additional post-processing modules. For example, an additional

module to estimate sensitivity indices is required to perform GSA on the system.

3.4 Surrogate modeling

The large number of trials, typically in thousands, required in Monte Carlo simulations

often makes uncertainty analysis too expensive to perform. Performing GSA on top of

uncertainty analysis further exacerbates this computational burden, owing to the relation

between the number of required Monte Carlo simulations and the number of input factors in

performing GSA. As mentioned in Section 2.2.4, a total of (n + 2) Monte Carlo simulations

are needed for GSA purposes, where n is the number of input factors to be assessed. The

escalating requirements in computing power, computational time, and memory space call

for the use of surrogate model, which is a simpler and less expensive model on which the

required analyses can be performed with much less computational expenses.

Surrogate modeling methodologies can be classified into three main categories, namely

data-fit, reduced-order, and hierarchical models [24]. The construction of data-fit surrogate

models involves interpolation or regression of data generated by solving the large-scale

system at a set of sample points, which are often generated using a design of experiment
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[105]. An overview of many methods that belong to this category can be found in [81].

Most reduced-order models rely on the projection of the large-scale model onto a basis that

spans a space of lower dimension. Readers can refer to [4] for an overview of available

model reduction methods. The third category of surrogate modeling method involves the

construction of hierarchical models, also referred to as multifidelity, variable-fidelity, or

variable-complexity models [62, 84, 85].

3.5 SLA on a System Comprising AEDT and APMT-Impacts

Air Quality module

The two modules within APMT that comprise the system for this SLA process are AEDT

and APMT-Impacts Air Quality (AQ) module. The key objective of this assessment pro-

cess is to quantify the contributions of input factors of the system to the variability of

some selected system outputs. This information will facilitate the policymakers to channel

research resources in efforts to reduce the uncertainty in system outputs, which in this case

are the quantification of the impacts of aviation activity on air quality. In order to achieve

this objective, GSA is performed to estimate the main and total effect sensitivity indices

of outputs with respect to input factors. A convergence analysis is carried out as part of

the GSA procedure, to study the relation between the number of Monte Carlo trials and

the sensitivity index estimates. The important considerations that need to be taken into

account to determine the required number of Monte Carlo trials, for general cases and then

specific for this SLA process, will also be discussed.

3.5.1 System Structure

Figure 3-3 illustrates the coupling between AEDT and APMT-Impacts AQ module. The

input factors to the system are tabulated in Table 3.1; the distributional type and param-

eters corresponding to these input factors are provided in Appendix A. The uncertainty in

Response Surface Model (RSM) linear regression parameter, which is assessed in the module

level assessment of APMT-Impacts AQ module, is not included in this SLA process, since

results from the former assessment show that the sensitivity indices of all APMT-Impacts

AQ module outputs to this input factor are less than 0.01, which are deemed insignificant.

The system level outputs are the two main outputs of APMT-Impacts Air Quality module,
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Figure 3-3: The structure of system level assessment involving AEM and APMT-Impacts
Air Quality module.

namely adult mortality and the total health cost.

The intermediate variables in the system are fuel burn, Sulfur Oxide (SOx) emissions,

Nitrogen Oxide (NOx) emissions, and non-volatile particulate matter (nvPM). As shown

in Figure 3-3, the source module for all four intermediate variables is AEDT, and the re-

ceptor module is APMT-Impacts AQ module. Note that the emissions values admitted

in APMT-Impacts AQ module are only those corresponding to the Landing and Takeoff

Operation (LTO) procedure. SOx emissions output should already capture fuel sulfur con-

tent (FSC) variability; however, until this analysis is completed this capability has not

been incorporated into the numerical model that runs AEDT. At the system level setting,

APMT-Impacts AQ module obtains random samples for the emissions species directly from

AEDT, which is different from the module level assessment procedure, as depicted in Fig-

ure 3-4. For the module level assessment, APMT-Impacts AQ module obtains the nominal

values for the emissions from an emissions inventory corresponding to the specific scenario

in question. The random samples are then obtained by multiplying the inventory values by

some random numbers whose nominal values are set to one. These multipliers are drawn

depending on the distributional type and parameters assumed for the corresponding input

factors.
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Module Input description

AEDT

Atmospheric factors
Airport weather:
• Temperature, pressure, headwind, relative humidity

Aircraft performance factors
Aircraft maximum stopping distance
Aircraft thrust static
Flaps Coefficients:
• Coeff. B, Coeff. CD, Coeff. R

Jet Thrust Coefficients:
• Coeff. E, Coeff. F, Coeff. Ga, Coeff. Gb, Coeff. H

Propeller Thrust Coefficients:
• Efficiency, power

Terminal fuel coefficients:
• Coeff. 1, Coeff. 2, Coeff. 3, Coeff. 4

Profile weight
BADA Mach Drag Coefficient
BADA Fuel Coefficients:
• Coeff. 1, Coeff. 2, Coeff. 3, Coeff. 4, Coeff. Cr

NPD Curve:
• L2001, L4001, L6301, L10001, L20001
• L40001, L63001, L100001, L160001, L250001

Emissions indices
Engine Carbon Monoxide (CO) Emissions Indices:
• Takeoff, Climb out, Approach, Idle

Engine Hydrocarbon (HC) Emissions Indices:
• Takeoff, Climb out, Approach, Idle

Engine Nitrogen Oxides (NOx) Emissions Indices:
• Takeoff, Climb out, Approach, Idle

Engine Smoke Numbers (SN):
• Takeoff, Climb out, Approach, Idle

APMT-Impacts Air
Quality module

Concentration Response Function (CRF) adult mortality
Value of a Statistical Life (VSL)

Table 3.1: List of inputs to the system (AEDT and APMT-Impacts Air Quality module).
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Figure 3-4: Obtaining random samples for input factors for module level and system level
assessments.

3.5.2 Surrogate Modeling

For this SLA process, surrogate models are required for both AEDT and APMT-Impacts

AQ module. The same Response Surface Model (RSM) that was used in the module level

assessment of APMT-Impacts AQ module (see Section 2.1.2) is employed. The reader is

referred to [7] for the verification of the RSM version used for APMT-Impacts AQ module,

i.e., the comparison between the RSM results and results from the high-fidelity CMAQ

model. In order to use this RSM, the emissions outputs from AEDT need to be in airport-

by-airport format. As mentioned in Chapter 2, APMT-Impacts AQ module can admit

314 major US airports, inclusive of some military, regional, and international airports.

The computational time required to run the aircraft performance and emissions modules

pertaining to these airports on the assessment application layer can be prohibitive. For

example, running 1000 trials for only JFK airport takes approximately three hours. Thus,

completing Monte Carlo simulations required for GSA purposes, which depends on the

number of input factors, for 314 airports may take approximately 3 years to complete on

a single computer, assuming 1000 trials are sufficient. The use of a surrogate model is

therefore appropriate to enable the many Monte Carlo simulations required for GSA. In

particular, a hierarchical surrogate model is selected, where the full aircraft performance

and emissions modules are run for only a few representative airports, instead of the entire

314 airports.
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The surrogate model is derived by employing an aggregation (clustering) algorithm,

which is applied to the 314 admissible airports. Further details on this algorithm can be

found in [62]. The algorithm forms groups of similar airports, and from each airport group,

a representative airport is then selected. The ensemble of these representative airports then

form the surrogate model, on which AEDT will be run. The similarity between airports

is determined by means of the average LTO fuel burn for each airport, which is computed

by dividing the total departure and arrival fuel burn by the total number of flights flying

to and from that particular airport. For this analysis, airports that have average LTO fuel

burn within ±15% of each other are considered similar, and thus aggregated into the same

group. This aggregation procedure produces 19 airport groups representing a total of 248

airports—thus there are a total of 19 representative airports. This number is less than 314,

owing to the omission of groups that only have one airport. These groups are omitted due to

the limited computational time available to run AEDT. The selection of the representative

from each group is done by selecting an airport with medium size—in terms of number of

flights—relative to other members of the same group. The list of representative airports and

the number of airports within each group are tabulated in Table 3.2; the list of members of

each group is provided in Appendix B.

Group no. No. of airports Airport code Representative airport name
1 14 MAF Midland International Airport (TX)
2 36 ICT Wichita Mid-Continent Airport (KS)
3 13 MDT Harrisburg International Airport (PA)
4 14 FAT Fresno Air Terminal (CA)
5 4 LEX Blue Grass Airport (KY)
6 9 LGA La Guardia Airport (NY)
7 22 ORL Orlando Executive Airport (FL)
8 21 CRW Charleston Yeager Airport (WV)
9 20 PQE Northern Maine Regional Airport (ME)
10 5 DTE Destin-FT Walton Beach Airport (FL)
11 17 MHT Manchester Airport (NH)
12 15 BLV Midamerica Airport (IL)
13 16 ALB Albany International Airport (NY)
14 17 OMA Eppley Field (NE)
15 8 MEM Memphis Airport (TN)
16 8 AOO Altoona-Blair County Airport (PA)
17 5 LZU Gwinnett County Airport (GA)
18 2 BOS Boston Logan International Airport (MA)
19 2 JFK John F. Kennedy International Airport (NY)

Table 3.2: List of airport groups and representatives.
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In order to run APMT-Impacts AQ module, the emissions values associated with airports

other than the representative airports need to be obtained. For this analysis, the emissions

values for airports within a certain airport group are estimated based on the emissions values

of the representative airport for that particular group. Specifically, within each group, the

emissions values of the representative airport is multiplied by a ratio of the total number

of flights departing from and arriving at a certain airport to the total number of flights

of the representative airport to estimate the emissions values of that particular airport.

This procedure will be referred to as the scaling procedure in the subsequent discussion.

An illustration of this procedure is given in Figure 3-5. Having obtained the emissions

values corresponding to each airport, these airport emissions values are then assigned to

the appropriate grid cell, that is, the grid cell that contains the location of the airport.

For grid cells with no airports, the grid cell emissions values are obtained via the spatial

interpolation procedure [70].

The verification of the derived surrogate model is done by comparing the statistics, i.e.,

mean and variance, of system outputs upon propagating the emissions values corresponding

to one airport group through to the APMT-Impacts AQ module using the full and surrogate

model. This verification procedure is carried out with two arbitrarily selected airport groups.

For the full model run, AEDT is run to obtain emissions values of all airports that are

members of a particular group. For the surrogate model run, on the other hand, only

the emissions values of the representative airport are computed via AEDT. The emissions

values corresponding to the rest of the group members are then obtained by the means of

the scaling procedure described above. These emissions values are then propagated through

to APMT-Impacts AQ module to obtain the system outputs corresponding to the full and

surrogate models. In this thesis, only the comparison of mean and variance of the valuations

of a few health endpoints are presented, see Figure 3-6 for the comparison of mean values

and Figure 3-7 for the comparison of variance. The x-axis in the figures denote the health

endpoints, whereas the y-axis is for the mean or variance of the valuations. Note that some

health endpoints with mean or variance that are too large or small in comparison with the

values associated with other health endpoints are omitted, for a better visual clarity. The

bar charts show that the derived surrogate model, which requires less computational efforts,

and scaling procedure are able to provide close approximations of the results associated with

the full model.
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Figure 3-5: Scaling procedure to estimate emissions values of members of the airport group
from those of the representative airport.
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Figure 3-6: Comparison of mean values of health endpoints valuations associated with the
full and surrogate models corresponding to two arbitrarily selected airport groups.
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Figure 3-7: Comparison of variances of health endpoints valuations associated with the full
and surrogate models corresponding to two arbitrarily selected airport groups.
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3.5.3 Data Handoff Mechanism

For this analysis, the data handoff mechanism is done manually. Data format conversion is

required, since emissions outputs from AEDT are available in the Microsoft SQL Server’s

table format. These emissions values need to be passed to the APMT-Impacts AQ module,

which is developed in MATLAB, as intermediate variables. Outputs from AEDT are then

converted into comma-separated values (CSV) files, a format MATLAB can read directly

and use in computation, though this chosen conversion procedure is not the only available

option. See, for example, the Visual Query Builder tool which is available in the MATLAB’s

Database toolbox.

3.5.4 Global Sensitivity Analysis

The Monte Carlo implementation of Sobol’ variance decomposition method (see Section

2.2.4) is employed to estimate the total effect sensitivity indices. As part of this analysis,

the important question of Monte Carlo convergence needs to be addressed. In this section,

the GSA results will first be presented, followed by the discussion on the convergence study.

GSA Results

The estimated main and total effect sensitivity index values of adult mortality and total

health cost are tabulated in Table 3.3 and 3.4, respectively. Results shown in these tables are

obtained with 15,000 Monte Carlo trials. Although all input factors of AEDT, as listed in

Table 3.1, are treated as random variables in this analysis, the sensitivity indices of outputs

are only estimated to ten of them, due to the limited available computational time. The ten

input factors of AEDT that are included in this analysis are the ten most significant input

factors to AEDT outputs, based on the module level assessment results. The corresponding

error estimates are displayed in the table as well. These error estimates provide a confidence

bound around each sensitivity index value estimated via the Monte Carlo simulations; in

this analysis 90% level of confidence is used. Therefore, the population sensitivity index has

a 90% chance of falling in the interval of ±(error estimate) around the estimated sensitivity

index value. For small sensitivity indices, that is, values that are very close to zero, the

numerical error in Monte Carlo estimation procedure can result in negative values. These

negative sensitivity indices are theoretically not feasible, since variance is always nonnegative
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and therefore sensitivity index, which is a ratio of variances, is too. The numerical error

explains the negative sensitivity index values shown in Table 3.3 and 3.4. Figures 3-8 and 3-9

graphically show the negative sensitivity indices and their corresponding confidence bounds

for main effect of adult mortality and total health cost, respectively. The dashed lines shown

in the confidence bounds indicate the negative values, which are not valid for sensitivity

indices. The actual sensitivity index value lies in the positive region of the corresponding

confidence bound, although the estimated sensitivity index is negative. The main and total

effect sensitivity indices of adult mortality with respect to VSL are supposed to be zero, due

to the independence between VSL and adult mortality. The numerical error in the Monte

Carlo estimation procedure accounts for the negative value displayed for the main effect

sensitivity index.

Input factor Main effect Total effect
Sensitivity index Error estimate Sensitivity index Error estimate

NOx EI -1.02×10−3 1.34×10−2 7.14×10−4 1.60×10−2

BADA Coeff 1 -1.08×10−3 1.34×10−2 5.51×10−4 1.60×10−2

Flaps Coeff CD -2.07×10−3 1.34×10−2 1.74×10−4 1.60×10−2

Weight -1.36×10−3 1.34×10−2 4.60×10−4 1.60×10−2

Jet Coeff E -2.07×10−3 1.34×10−2 2.67×10−4 1.60×10−2

Flaps Coeff R -2.14×10−3 1.35×10−2 2.09×10−4 1.60×10−2

Terminal Fuel Coeff 1 -1.65×10−3 1.34×10−2 3.69×10−4 1.60×10−2

Terminal Fuel Coeff 2 -2.12×10−3 1.34×10−2 1.19×10−4 1.60×10−2

Temperature -2.10×10−3 1.34×10−2 8.96×10−5 1.60×10−2

Relative humidity -2.18×10−3 1.34×10−2 6.62×10−5 1.60×10−2

CRF 9.96×10−1 1.60×10−2 1.00 1.35×10−2

VSL -2.15×10−3 1.34×10−2 0 1.60×10−2

Table 3.3: Sensitivity index estimates and the corresponding error estimates, with 90%
confidence bound, for adult mortality.

Before discussing the GSA results, it is important to note that FSC variability has

not been included in this analysis. Its inclusion will alter the importance ranking of the

input factors, and therefore it is prudent not to draw any conclusion before the assessment

application layer integrates the FSC variability handling capability into the model. The

GSA results for this SLA process show that the uncertainties in APMT-Impacts AQ module

outweigh those in AEDT in the quantification of uncertainty in outputs, as deduced from

comparing the estimated sensitivity indices with respect to input factors of the two modules.

These results suggest that research efforts should be focused on reducing the uncertainty

in APMT-Impacts AQ module inputs in order to reduce the variability of adult mortality
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Input factor Main effect Total effect
Sensitivity index Error estimate Sensitivity index Error estimate

NOx EI -6.75×10−3 1.31×10−2 1.46×10−4 4.00×10−2

BADA Coeff 1 -6.94×10−3 1.31×10−2 1.19×10−4 4.00×10−2

Flaps Coeff CD -7.23×10−3 1.31×10−2 3.70×10−5 4.00×10−2

Weight -6.86×10−3 1.31×10−2 9.47×10−5 4.00×10−2

Jet Coeff E -7.18×10−3 1.31×10−2 5.39×10−5 4.99×10−2

Flaps Coeff R -7.13×10−3 1.31×10−2 4.29×10−5 3.99×10−2

Terminal Fuel Coeff 1 -7.02×10−3 1.31×10−2 7.80×10−5 4.00×10−3

Terminal Fuel Coeff 2 -7.14×10−3 1.31×10−2 2.40×10−5 3.99×10−2

Temperature -7.13×10−3 1.31×10−2 1.80×10−5 4.00×10−2

Relative humidity -7.16×10−3 1.31×10−2 1.34×10−5 4.00×10−2

CRF 1.55×10−1 1.43×10−2 2.03×10−1 3.04×10−2

VSL 7.85×10−1 3.29×10−2 8.37×10−1 1.52×10−2

Table 3.4: Sensitivity index estimates and the corresponding error estimates, with 90%
confidence bound, for total health costs.
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Figure 3-8: Main effect sensitivity indices and the corresponding error estimates, with
90% confidence bound, of adult mortality with respect to inputs to AEDT. The confidence
interval that corresponds to negative index, which is not feasible, is indicated by dashed
lines.
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Figure 3-9: Main effect sensitivity indices and the corresponding error estimates of total
health cost with respect to inputs to AEDT. The confidence interval that corresponds to
negative index, which is not feasible, is indicated by dashed lines.

and total health cost.

Of the two input factors of APMT-Impacts AQ module that are considered in this

analysis, only the Concentration Response Function (CRF) has an epistemic uncertainty

element in it. The uncertainty in value of a statistical life (VSL), on the other hand, is

categorized as an aleatory, or irreducible, uncertainty. The refinement of the uncertainty

around CRF value can be obtained through a more thorough epidemiological study [7].

Based on the estimated sensitivity indices of the system outputs, this uncertainty refinement

will result in a larger variance reduction in adult mortality level than the total health cost.

Convergence Study

For the convergence study performed in this assessment process, priority is given to the

convergence of sensitivity index, instead of the convergence of other metrics, e.g., mean and

variance as used in, for example, [1, 38]. In particular, the main and total effect sensitivity

indices are estimated with increasing number of Monte Carlo trials. 500 trials are used in

the first Monte Carlo simulation, and then 100 trials are added at each new simulation until

a total of 15,000 trials is achieved; sensitivity indices are computed whenever new trials are
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added. The convergence plots for the estimated sensitivity indices are shown in Figures 3-

10 and 3-11, for adult mortality and total health cost, respectively. The 90% confidence

bounds corresponding to the sensitivity index estimation are shown as the shaded area.

Since sensitivity indices of a particular system output to all input factors of AEDT have

similar values for a given number of MC trials, only one value is displayed in the plot for

clarity. Of the two input factors of APMT-Impacts AQ module, the sensitivity indices of

adult mortality are only estimated with respect to CRF, since adult mortality is independent

of VSL.

(a) AEDT inputs (b) AQ input (CRF)

Figure 3-10: Convergence of sensitivity indices of adult mortality to input factors of AEDT
and APMT-Impacts AQ module.

Figures 3-10 and 3-11 show that the estimated sensitivity indices fluctuate less with

increasing number of Monte Carlo trials, and the 90% confidence bounds are narrower

as well. The determination of the required number of trials for Monte Carlo simulation

procedure depends on the objective of the analysis at hand. The limited computational

resources can also be a deciding factor. The following discussion will focus only on the

convergence of the Monte Carlo implementation of Sobol’ GSA procedure in the policy-

and decision-making analysis context, in particular the factor prioritization and factor fixing

settings of GSA. The discussion on the important consideration in determining the required

number of Monte Carlo trials, depending on the key objective of the analysis, is presented

below, followed by the more specific discussion corresponding to the illustrative example

used in this thesis.

1. When the key objective of the analysis is to quantify the contribution of the uncer-
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(a) AEDT inputs

(b) AQ input (CRF)

(c) AQ input (VSL)

Figure 3-11: Convergence of sensitivity indices of total health cost to input factors of AEDT
and APMT-Impacts AQ module.
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tainty of each input factor to the output variability

To achieve this objective, the required number of Monte Carlo trials will depend on

the desired accuracy. As such, computing the confidence bound around the sensitivity

index estimates, with a certain level of confidence, plays an important role. A number

of Monte Carlo trials is deemed sufficient when the error estimates corresponding to

all input factors achieve the desired accuracy, say, ±0.1 with 90% level of confidence.

2. When the key objective of the analysis is to obtain the importance ranking of input

factors

The importance ranking of input factors based on their main effect sensitivity indices

is relevant to factor prioritization setting. In this setting, research priority is given to

input factors with highest main effect sensitivity indices. On the other hand, factor

fixing setting looks into input factors with lowest total effect sensitivity indices that

can be treated as deterministic variables in the model without changing the output

variability significantly. When the sensitivity indices corresponding to different input

factors are fairly distinct from each other, the importance ranking can be obtained

with less number of Monte Carlo trials, as compared to when a high accuracy in

sensitivity indices is required.

Since the focus of the analysis is to compute the contribution of input factors to output

variability, the confidence bound is observed. With the desired accuracy of ±0.1, corre-

sponding to 90% level of confidence, 5,000 trials is deemed sufficient for the Monte Carlo

simulations. If, on the other hand, only the importance ranking of input factors is desired,

a handful of Monte Carlo trials are sufficient to provide policymakers with the necessary

information. In factor fixing setting, policymakers can pick all ten insignificant input factors

to be treated as deterministic variables, without obtaining the exact importance ranking

among them. In factor prioritization setting, the importance ranking among the significant

input factors can be obtained with as little as 500 Monte Carlo trials.
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Chapter 4

Sensitivity Analysis of a

Technology Infusion Policy

The second objective of this thesis is to demonstrate how sensitivity analysis can be applied

to policy impact analysis to identify the key drivers of uncertainty in policy impacts. This

task is accomplished by performing Global Sensitivity Analysis (GSA) on the policy impacts

instead of on outputs pertaining to a single scenario, e.g., baseline, as presented in Chapter

3. A technology infusion policy analysis is used as an illustrative example to demonstrate

the policy impact assessment process. This policy impact assessment process is performed

on a system comprising AEDT and APMT-Impacts Air Quality module. It is important to

note that this chapter does not intend to provide any final results that policymakers can use;

rather, it only aims at providing a guideline through a simple illustrative example to perform

a policy impact assessment. This chapter begins with the background and motivation on

such an analysis. The description of the proposed procedure is then presented, followed by

results and discussions.

4.1 Background

In the policy analysis setting, comparisons between different policy scenarios are often done

by comparing the incremental changes of the policy scenarios with respect to a common

baseline scenario. These changes are designated as policy impacts. Different terms, though

referring to the same quantity, are used in some literature, e.g., policy effect [86], and pol-

icy minus baseline [38]. Some other policy analysis processes use a selected certification
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standard, instead of a baseline scenario, to which the policy scenarios are compared. For

example, NASA compares future generations of aircraft to the International Civil Aviation

Organization (ICAO) certification standard [80]. Some policy impact analyses performed

within APMT include: uncertainty analysis to compute the variance of the difference in

aviation-induced health impacts between baseline and policy [86]; sensitivity of policy im-

pacts in the context of NOx stringency analysis [67]; and sensitivity analysis of policy

impacts in the context of economic evaluation of aviation noise [38].

4.2 Procedure

Policy impacts are computed by subtracting the model outputs corresponding to the base-

line scenario from the policy outputs. The modeling of policy scenarios can be different from

the baseline scenario in several ways. For example, the policy scenario may lead to changing

the governing equation of the model, changing the model parameters, changing the input

distributions, and/or adding new input factors to the model. Some analyses, such as GSA,

involve Monte Carlo simulations that require random samples for input factors correspond-

ing to both baseline and policy scenarios. For input factors whose uncertainty distributions

remain unchanged in the baseline and policy scenarios, questions arise on whether the cor-

responding samples should be drawn in pairs or drawn independently. Some input factors

have independent random variability between the two scenarios, and thus independent sets

of random samples must be drawn. Such input factors are categorized as the scenario-

dependent input factors. On the other hand, other input factors have a common source of

uncertainty between scenarios, thus paired samples are used for both models. These input

factors will be referred to as the scenario-independent input factors. By selecting different

sampling procedures for the different categories of input factors, the modeled uncertainty of

policy impacts will only account for the uncertainty corresponding to the difference between

baseline and policy scenarios.

4.3 Technology Infusion Policy Impact Analysis

The technology infusion policy analysis, in the context of environmental impact of aviation,

is used as an illustrative example to demonstrate the policy impact assessment process.

The technology infusion policy refers to the introduction of new technology aircraft as part

58



of the efforts to mitigate the environmental impact of aviation. A brief description of this

technology infusion policy is given below, further details can be found in [80]. Specifically,

the policy scenario corresponding to the year of 2040 is assumed, where the new technolo-

gies implemented in 2015, 2020, 2025 are already incorporated. Note that the mention of

“system level” in [80] refers to the global or national level, specifically in terms of total

energy consumption, which is different from the definition of “system level” used in this

thesis. In the technology infusion policy problem, the new technology needs to reflect the

desired performance, noise, and emissions improvement as regulated by the proposed policy.

This technology infusion process involves the replacement of some current aircraft-engine

combinations, which do not meet the desired performance, with the new “Anticipated In-

dustry Response” technology vehicles. The emissions indices and adjusted reference fuel

flow corresponding to the new vehicles are then derived, following the “Emissions Index

Determination Flow” procedure, which is illustrated in Figure 2 of [80] and adapted from

[43].

In this analysis, the policy impact in question is the impact of introducing the Antici-

pated Industry Response technology on adult mortality and total health cost caused by air

quality impact of aviation. The sensitivity analysis is performed on a system comprising

AEDT and APMT-Impacts Air Quality (AQ) module. The system used in the sample

problem presented in Chapter 3 is employed in this analysis. The same numerical models,

for both modules, are used for the baseline and policy scenarios. As mentioned, the new

technology is introduced in the policy scenario by replacing some aircraft-engine combi-

nations with the Anticipated Industry Response vehicles. This replacement affects some

origin-destination routes, which are assumed unchanged for the different scenarios, and is

reflected in the different fleet databases used as input to AEDT for the different scenarios.

In the following discussion, the baseline scenario will refer to the evaluation of the aviation

impact on air quality when only the current aircraft-engine combinations included in the

fleet, whereas the policy scenario evaluations use the fleet where the aircraft replacements

have taken place. The modeling for baseline and policy scenarios discussed above is illus-

trated in Figure 4-1. As shown in the figure, each origin-destination pair is assumed to be

flown under the same atmospheric conditions, despite having different aircraft-engine com-

binations in the different scenarios. The emissions results from AEDT are then propagated

through to APMT-Impacts AQ module, to obtain the adult mortality and total health
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costs corresponding to baseline and policy scenarios. Policy impacts are then computed by

subtracting the baseline outputs from policy outputs.������ �����	
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Figure 4-1: Modeling of baseline and policy scenarios in the technology infusion policy
analysis.

To perform GSA on the uncertainty in policy impacts, random samples are required

for the input factors of the system. To decide on the appropriate sampling procedure

for each of them, the input factors need to be classified as being scenario-dependent or

scenario-independent. In this analysis, the scenario-dependent input factors only include

input factors pertaining to aircraft-engine combinations that are replaced in the policy

scenario. Therefore, for each Monte Carlo realization, two random samples are drawn for a

particular input factor, say BADA Fuel Coefficient, for the current and Anticipated Industry

Response aircraft-engine combination, respectively. All other input factors are considered

independent of scenario, and thus have paired samples for baseline and policy scenarios.

4.4 Results and Discussion

The main and total effect sensitivity indices of policy impacts in adult mortality and total

health cost are estimated by employing the Monte Carlo implementation of Sobol’ variance

decomposition method. The number of trials for each Monte Carlo simulation in this

analysis is 5000. The obtained sensitivity indices are tabulated in Tables 4.1 and 4.2 for the

policy impacts in adult mortality and total health cost, respectively. The error estimates,

corresponding to 90% level of confidence, and the summations of indices are also shown in
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the table.

Table 4.2 shows that the summation of main effect sensitivity indices are greater than

one, which is not theoretically feasible. As discussed in Chapter 2, main effect sensitivity

indices only account for the first order contribution of each input factor, thus the summation

is always less than or equal to one, depending on whether higher order terms, which are

always nonnegative, exist. The summation of total effect sensitivity indices, on the other

hand, does not necessarily add up to one, due to the overlapping interaction terms among

the indices. Recall that total sensitivity index of an input factor quantifies not only the

first order (main effect) term, but also all the interaction terms involving that particular

input factor. Therefore, total effect sensitivity index is always greater than or equal to

the main effect, due to the nonnegativity of the interaction terms. Table 4.2 shows that

some of the estimated total effect sensitivity indices are less than the corresponding main

effect. Numerical errors associated with the Monte Carlo estimation procedure account for

these results. Figure 4-2 graphically shows the estimated main and total effect sensitivity

indices, with their corresponding 90% confidence bounds, for policy impacts in total health

cost. The actual sensitivity index values can be any positive values within the confidence

bound. The plot shows that despite the smaller estimates for total effect, the confidence

bound corresponding to total effect sensitivity index is wider than that of the main effect.

Therefore, there is a fair chance that the total effect sensitivity index is greater than or

equal to the main effect. Also, there are some negative indices, which theoretically are not

feasible; the discussion presented in the previous chapter regarding these negative values

also applies in this case.

The results from the GSA performed on the technology infusion policy analysis show

that the contribution from the uncertainties associated with input factors of APMT-Impacts

Air Quality module outweigh those of input factors of AEDT. With 90% probability, all

the sensitivity indices corresponding to input factors of AEDT fall below 0.1. Recall that

in the estimation of sensitivity indices of the policy impacts, the input factors of APMT-

Impacts AQ module pertaining to the baseline and policy scenarios are assumed to have

the same variability. The fact that the uncertainties in input factors of APMT-Impacts AQ

module are still dominant in determining the output variability, despite having the same

random samples for both scenarios, shows that the relationship between inputs and outputs

in APMT-Impacts AQ module is highly nonlinear.
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Input factor Main effect Total effect
Sensitivity index Error estimate Sensitivity index Error estimate

NOx EI 4.27×10−2 2.38×10−2 4.97×10−2 3.37×10−2

BADA Coeff 1 2.68×10−2 2.41×10−2 2.78×10−2 3.48×10−2

Flaps Coeff CD 7.91×10−3 2.37×10−2 1.38×10−2 3.50×10−2

Weight 5.72×10−3 2.36×10−2 1.17×10−1 3.23×10−2

Jet Coeff E 2.42×10−3 2.37×10−2 5.44×10−3 3.51×10−2

Flaps Coeff R 5.42×10−3 2.37×10−2 7.14×10−3 3.50×10−2

Terminal Fuel Coeff 1 1.06×10−2 2.39×10−2 1.33×10−2 3.51×10−2

Temperature -1.14×10−3 2.36×10−2 2.32×10−4 3.53×10−2

Relative humidity -1.84×10−3 2.36×10−2 7.59×10−5 3.53×10−2

CRF 8.32×10−1 3.06×10−2 8.48×10−1 2.49×10−2

VSL -2.19×10−3 2.36×10−2 0 3.53×10−2

Total 0.93 - 1.08 -

Table 4.1: Sensitivity index estimates and the corresponding error estimates, with 90%
confidence bound, for policy impacts in adult mortality.

Input factor Main effect Total effect
Sensitivity index Error estimate Sensitivity index Error estimate

NOx EI 2.38×10−2 2.29×10−2 1.25×10−2 7.28×10−2

BADA Coeff 1 2.30×10−2 2.34×10−2 6.99×10−3 7.62×10−2

Flaps Coeff CD 1.96×10−2 2.35×10−2 3.27×10−3 7.57×10−2

Weight 1.47×10−2 2.31×10−2 2.87×10−2 7.55×10−2

Jet Coeff E 1.85×10−2 2.34×10−2 1.31×10−2 7.47×10−2

Flaps Coeff R 1.87×10−2 2.33×10−2 1.74×10−3 7.43×10−2

Terminal Fuel Coeff 1 1.95×10−2 2.36×10−2 3.24×10−2 7.68×10−2

Temperature 1.80×10−2 2.34×10−2 5.73×10−5 7.48×10−2

Relative humidity 1.78×10−2 2.33×10−2 1.82×10−2 7.50×10−2

CRF 1.73×10−1 2.59×10−2 2.02×10−1 5.92×10−2

VSL 7.68×10−1 5.29×10−2 8.24×10−1 2.70×10−2

Total 1.11 - 1.08 -

Table 4.2: Sensitivity index estimates and the corresponding error estimates, with 90%
confidence bound, for policy impacts in total health cost.
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Figure 4-2: Main and total effect sensitivity indices and the corresponding error estimates,
with 90% confidence bound, of policy impact in adult mortality with respect to inputs to
AEDT. The confidence interval that corresponds to negative index, which is not feasible, is
indicated by dashed lines.
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As discussed in Chapter 2, the information on total effect sensitivity indices of an output

can be used for factor fixing purposes. The insignificant total effect sensitivity indices of

adult mortality and total health cost imply that the input factors of AEDT, for both baseline

and policy scenarios, can be treated as deterministic variables without significantly changing

the distributions of policy impacts in air quality metrics. As such, when an uncertainty

analysis, i.e., to obtain the probability distribution of outputs, of policy impacts in air

quality outputs is required:

• When the model and distributions of input factors are unchanged

The uncertainty in policy impacts can be quantified by propagating the nominal val-

ues of emissions species, corresponding to the different scenarios, through to APMT-

Impacts AQ module. The only input factors that are treated as random variables are

those pertaining to the APMT-Impacts AQ module. The required number of runs for

AEDT thus only depends on the number of scenarios, since Monte Carlo simulation

is not required, which reduces the computational burden significantly. This computa-

tional gain is beneficial especially when there are a number of policy scenarios to be

evaluated. The resulting distributions of policy impacts will still be representative,

despite the exclusion of uncertainties associated with AEDT.

• When there are changes in the model or input distributions

The sensitivity indices need to be recomputed. Depending on the newly computed

total effect sensitivity indices, a decision can be made on which input factors are

treated as deterministic variables.
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Chapter 5

Conclusion and Future Work

The primary focus of this thesis is to demonstrate the use of Monte Carlo simulation and

Global Sensitivity Analysis to perform system level assessment, which assesses the un-

certainty of a system comprising multiple modules in an integrated manner, to support

policy-making analysis. The system level assessments were performed on a baseline sce-

nario and policy impact, in the context of aviation environmental impact analysis. This

chapter presents the summary of research done to achieve the thesis objectives, followed

by the conclusions from the results presented in this thesis. Some opportunities for future

work will also be presented.

5.1 Summary

System level assessment is performed on a system comprising the Aviation Environmen-

tal Design Tool (AEDT) and APMT-Impacts Air Quality (AQ) module by following four

key steps: defining the system structure, assessing the need to have a surrogate model,

determining the required data handoff mechanism, and performing the analyses. In this

particular system, AEDT passes its emissions outputs as inputs to APMT-Impacts AQ

module. Surrogate models are used for both modules, to enable performing the required

analyses, which are computationally intensive, within the limited available computational

time. Global sensitivity analysis is performed to obtain the importance ranking of input

factors, of both modules, to two selected system outputs, i.e., adult mortality and total

health cost. The ranking is obtained by estimating main and total effect sensitivity indices

via the Monte Carlo implementation of the Sobol’ variance decomposition method. Error
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estimates corresponding to the indices are also computed, to provide confidence bounds for

the estimation. Convergence analysis is performed as part of the global sensitivity analysis

process to determine the required number of Monte Carlo trials.

The same system is used to demonstrate system level assessment in the policy impact

analysis setting, using a technology infusion problem as an illustrative example. For this

assessment process, global sensitivity analysis is carried out to quantify the sensitivity of

policy impacts, i.e., the difference between policy and baseline outputs, to input factors of

both modules. In order to correctly model the uncertainty corresponding to the difference

between baseline and policy scenarios, careful consideration must be taken when selecting

the appropriate sampling procedure, i.e., drawn independently or in pairs, for each input

factor.

5.2 Conclusions

The results presented in this thesis show that the system level assessment process can sup-

port policy- and decision-making analyses by means of factor prioritization and factor fixing.

The two system level assessment results show that the contribution of the uncertainty in

the APMT-Impacts AQ module dominates the variability of both baseline outputs and

policy impacts, whereas the contribution from the uncertainty in AEDT is shown to be in-

significant. Based on the estimated main effect indices, the concentration response function

(CRF) is the sole key driver to the variability of adult mortality, whereas the uncertainty

in value of a statistical life (VSL) accounts for most of the variability of total health cost.

These results suggest that future research efforts should be directed to reduce the uncer-

tainty associated with the APMT-Impacts AQ module if reduction in the variability of

adult mortality and total health cost is desired. The small total effect sensitivity indices

corresponding to input factors of AEDT imply that those input factors can be treated as

deterministic variables in the model without any significant effects on the output variabil-

ity. Note, however, that the results presented in this thesis only pertain to specific model

versions used. Any changes to the model or input factors, e.g., the inclusion of Fuel Sulfur

Content (FSC) in the simulation model for AEDT, will require another round of system

level assessment that may have different implications on the policy decisions.

For analyses that require Monte Carlo simulations, e.g., the global sensitivity analysis
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method employed in this work, the determination of the required number of Monte Carlo

simulations largely depends on the objective of the analysis at hand. When only the impor-

tance ranking of input factors is required, less Monte Carlo trials are required than when

the contribution of the uncertainty in each input factor to the output variability needs to be

quantified with a certain degree of accuracy. In the convergence study presented in Chapter

3, 5,000 Monte Carlo trials are required to estimate the sensitivity index with ±0.1 accuracy

corresponding to 90% level of confidence, whereas 500 Monte Carlo trials are sufficient when

only the importance ranking is required.

Numerical errors in the Monte Carlo simulation procedure are shown to result in neg-

ative sensitivity indices, as well as main effect sensitivity indices that are higher than the

corresponding total effect, which are theoretically infeasible. It is thus important to present

the confidence intervals of sensitivity indices, instead of just single-point estimates, for the

assessment results to be more informative. The confidence intervals can be obtained by

computing the error estimates corresponding to a certain level of confidence.

5.3 Future Work

This section presents some recommendations to have a more complete system level assess-

ment. The system level assessment results are expected to change once FSC variability

is included in the analysis, since results from module level assessment for APMT-Impacts

AQ module show that FSC is one of the significant input factors to the variability of

adult mortality (approximately 45% contribution) and total health cost (approximately

15% contribution). It is therefore recommended to redo the system level assessment after

the capability of modeling the FSC variability is included in the AEDT model.

Several additional analyses can be performed to complete the system level assessment

process. One example the distributional sensitivity analysis (DSA) that is introduced and

demonstrated in [1]. In computing the sensitivity index, DSA takes into account the un-

certainty in the amount of input variance that can be reduced, as opposed to GSA that

assumes that an input factor can be fixed to a certain value. Another analysis can be per-

formed to study the effect of having different nominal values of input factors to the mean

and variance of outputs.

The current system level assessment only includes uncertainties in input factors that can
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be represented by probability distributions. This representation of uncertainty, however, is

often insufficient to represent epistemic uncertainty. As such, non-probabilistic uncertainty

quantification methods are required, such as evidence theory, possibility theory, or fuzzy

set theory. Including the capability of handling the non-probabilistic means of quantifying

uncertainty in the assessment process is thus recommended.

The numerical models that are used to demonstrate the system level assessment pro-

cedure in this thesis comprises only two modules, without any feedback loops, i.e., the

intermediate variables are only propagated forward. Future research should explore the

application of the system level assessment procedure on more intricate systems that have

more than two modules, with more complex interaction between modules, e.g., where the

passing of intermediate variables results in feedback loops in the modeling of the system.

In the context of policy impact analysis, a certain policy impact target is often specified.

As such, instead of finding the key drivers to the variability of policy impacts, policy-makers

are more interested in performing the sensitivity analysis pertaining only to a specific policy

impacts region of interest, e.g., above or below a certain minimum or maximum bound, or

within a certain range. By doing so, policymakers would then be able to answer two

important questions: When the policy target is achievable, can we identify specific factors

on which we should focus our research so that achieving policy target is more possible?

When the introduced policy is unable to attain the specified target, can we identify the key

drivers for the violation of the target, to guide us to find a more realistic target? It is thus

a subject for future research focus to develop a regional sensitivity analysis method.
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Appendix A

Input distributions for AEDT and

APMT-Impacts AQ module

Input factor Dist. type Dist. Parameters

AEDT Inputs – Atmospheric factors

Temperature Triangular [0.90, 1.00, 1.10]

Pressure Triangular [0.97, 1.00, 1.03]

Headwind Triangular [-0.25, 1.00, 2.00]

Relative Humidity Triangular [0.85, 1.00, 1.15]

AEDT Inputs – Aircraft performance factors

Aircraft maximum stopping distance Triangular [0.90, 1.00, 1.10]

Aircraft thrust static Triangular [0.85, 1.00, 1.15]

Flaps Coefficient B Triangular [0.86, 1.00, 1.14]

Flaps Coefficient CD Triangular [0.86, 1.00, 1.14]

Flaps Coefficient R Triangular [0.86, 1.00, 1.14]

Jet Thrust Coefficient E Triangular [0.85, 1.00, 1.15]

Jet Thrust Coefficient F Triangular [0.85, 1.00, 1.15]

Jet Thrust Coefficient Ga Triangular [0.975, 1.00, 1.025]

Jet Thrust Coefficient Gb Triangular [0.975, 1.00, 1.025]

Jet Thrust Coefficient H Triangular [0.975, 1.00, 1.025]

continued on the next page
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continued

Input factor Dist. type Dist. Parameters

Propeller Thrust Coefficient (Efficiency) Triangular [0.90, 1.00, 1.10]

Propeller Thrust Coefficient (Power) Triangular [0.90, 1.00, 1.10]

Terminal Fuel Coefficient 1 Triangular [0.90, 1.00, 1.10]

Terminal Fuel Coefficient 2 Triangular [0.90, 1.00, 1.10]

Terminal Fuel Coefficient 3 Triangular [0.90, 1.00, 1.10]

Terminal Fuel Coefficient 4 Triangular [0.90, 1.00, 1.10]

Profile weight Triangular [0.90, 1.00, 1.10]

BADA Mach Drag Coefficient Triangular [0.86, 1.00, 1.14]

BADA Fuel Coefficient 1 Triangular [0.90, 1.00, 1.10]

BADA Fuel Coefficient 2 Triangular [0.90, 1.00, 1.10]

BADA Fuel Coefficient 3 Triangular [0.90, 1.00, 1.10]

BADA Fuel Coefficient 4 Triangular [0.90, 1.00, 1.10]

BADA Fuel Coefficient 5 Triangular [0.90, 1.00, 1.10]

NPD Curve L2001 Triangular [-1.50, 1.00, 1.50]

NPD Curve L4001 Triangular [-1.50, 1.00, 1.50]

NPD Curve L6301 Triangular [-1.50, 1.00, 1.50]

NPD Curve L10001 Triangular [-5.00, 1.00, 5.00]

NPD Curve L20001 Triangular [-5.00, 1.00, 5.00]

NPD Curve L40001 Triangular [-5.00, 1.00, 5.00]

NPD Curve L63001 Triangular [-5.00, 1.00, 5.00]

NPD Curve L100001 Triangular [-5.00, 1.00, 5.00]

NPD Curve L160001 Triangular [-5.00, 1.00, 5.00]

NPD Curve L250001 Triangular [-5.00, 1.00, 5.00]

AEDT Inputs – Emissions Indices

Carbon Monoxide (CO) Emissions Index (Takeoff) Triangular [0.74, 1.00, 1.26]

Carbon Monoxide (CO) Emissions Index (Climbout) Triangular [0.74, 1.00, 1.26]

Carbon Monoxide (CO) Emissions Index (Approach) Triangular [0.74, 1.00, 1.26]

continued on the next page
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continued

Input factor Dist. type Dist. Parameters

Carbon Monoxide (CO) Emissions Index (Idle) Triangular [0.74, 1.00, 1.26]

Hydrocarbon (HC) Emissions Index (Takeoff) Triangular [0.45, 1.00, 1.55]

Hydrocarbon (HC) Emissions Index (Climbout) Triangular [0.45, 1.00, 1.55]

Hydrocarbon (HC) Emissions Index (Approach) Triangular [0.45, 1.00, 1.55]

Hydrocarbon (HC) Emissions Index (Idle) Triangular [0.45, 1.00, 1.55]

Nitrogen Oxide (NOx) Emissions Index (Takeoff) Triangular [0.76, 1.00, 1.24]

Nitrogen Oxide (NOx) Emissions Index (Climbout) Triangular [0.76, 1.00, 1.24]

Nitrogen Oxide (NOx) Emissions Index (Approach) Triangular [0.76, 1.00, 1.24]

Nitrogen Oxide (NOx) Emissions Index (Idle) Triangular [0.76, 1.00, 1.24]

Smoke Number (SN) (Takeoff) Triangular [-3.00, 1.00, 3.00]

Smoke Number (SN) (Climbout) Triangular [-3.00, 1.00, 3.00]

Smoke Number (SN) (Approach) Triangular [-3.00, 1.00, 3.00]

Smoke Number (SN) (Idle) Triangular [-3.00, 1.00, 3.00]

APMT-Impacts Air Quality module inputs

Concentration Response Function (CRF) Triangular [0.60, 1.00, 1.70]

Value of a Statistical Life (VSL) Lognormal Mean = 6.3×106

Std. dev. = 2.8×106

Table A.1: Distributional type and parameters for input factors of

AEDT and APMT-Impacts Air Quality (AQ) modules. The dis-

tributional parameters for a triangular distribution are presented

in a [minimum, peak, maximum] values format.
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Appendix B

List of Airport Groups

The 19 airport groups used as surrogate model in the system level assessment are tabulated

below. The representative airport within each group is typed in bold.

No Airport code Airport name

1 MAF Midland International Airport (TX)
2 ATW Outagamie County Regional Airport (WI)
3 BED Bedford Hanscom Field (MA)
4 BIL Billings Logan International Airport (MT)
5 FAI Fairbanks International Airport (AK)
6 GTF Great Falls International Airport (MT)
7 HIO Portland Airport (OR)
8 MGM Montgomery Regional Airport (AL)
9 MOB Mobile Regional Airport (AL)
10 OPF Opa Locka Airport (FL)
11 PSP Palm Springs International Airport (CA)
12 BZN Bozeman Gallatin Field Airport (MT)
13 ILG New Castle Airport (DE)
14 PSM Pease International Airport (NH)

Table B.1: Airport group 1.
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No Airport code Airport name

1 ICT Wichita Mid-Continent Airport (KS)
2 ABE Allentown (PA)
3 AGS Augusta Regional Airport (GA)
4 AMA Amarillo International Airport (TX)
5 AZO Kalamazoo/Battle Creek International Airport (MI)
6 BHM Birmingham International Airport (AL)
7 BMI Central Illinois Regional Airport (IL)
8 BRO Brownsville/South Padre Island International Airport (TX)
9 BTR Baton Rouge International Airport (LA)
10 BTV Burlington International Airport (VT)
11 CAK Akron-Canton Airport (OH)
12 CID Cedar Rapids Eastern Iowa Airport (IA)
13 CRP Corpus Christi International Airport (TX)
14 DAB Daytona Beach International Airport (FL)
15 DLH Duluth International Airport (MN)
16 DSM Des Moines International Airport (IA)
17 EGE Eagle County Regional Airport (CO)
18 FAR Hector International Airport (ND)
19 FAY Fayetteville Regional.Grannis Field Airport (NC)
20 FNT Bishop International Airport (MI)
21 FSD Sioux Falls Regional Airport (SD)
22 GRB Austin Straubel International Airport (WI)
23 GRK Killeen-Fort Hood Regional Airport (TX)
24 GSO Piedmont Triad International Airport (NC)
25 HPN Westchester County Airport (NY)
26 ILM Wilmington International Airport (NC)
27 JAN Jackson-Evers International Airport (MS)
28 LAN Lansing Capital City Airport (MI)
29 LBB Lubbock International Airport (TX)
30 LCK Rickenbacker International Airport (OH)
31 LSE La Crosse Municipal Airport (WI)
32 MLB Melbourne International Airport (FL)
33 MLI Quad City International Airport (IL)
34 MMU Morristown Municipal Airport (NJ)
35 OXC Waterbury-Oxford Airport (CT)
36 PNS Pensacola Regional Airport (FL)

Table B.2: Airport group 2.
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No Airport code Airport name

1 MDT Harrisburg International Airport (PA)
2 AVL Asheville Regional Airport (NC)
3 BGR Bangor International Airport (ME)
4 BOI Boise Airport (ID)
5 GFK Grand Forks International Airport (ND)
6 GPT Gulfport-Biloxi International Airport (ND)
7 HSV Huntsville International Airport (AL)
8 LBX Brazoria County Airport (TX)
9 LIT Little Rock National Airport (AR)
10 MFE McAllen-Miller International Airport (TX)
11 MSN Dane County Regional Airport (WI)
12 GSP Greenville/Spartanburg Airport (SC)
13 PIA Peoria Regional Airport (IL)

Table B.3: Airport group 3.

No Airport code Airport name

1 FAT Fresno Air Terminal (CA)
2 APC Napa County Airport (CA)
3 BGM Greater Binghamton Airport (NY)
4 BIS Bismarck Municipal Airport (ND)
5 CGF Cuyahoga County Airport (OH)
6 CHA Chattanooga Metropolitan Airport (TN)
7 CHO Charlottesville-Albemarle Airport (IN)
8 DPA Dupage County Airport (IL)
9 EVV Evansville Regional Airport (IN)
10 FTW Fort Worth Meacham International Airport (TX)
11 JAC Jackson Hole Airport (WY)
12 MKC Charles B. Wheeler Downtown Airport (MO)
13 PTK Oakland County International Airport (CA)
14 APF Naples Municipal Airport (FL)

Table B.4: Airport group 4.

No Airport code Airport name

1 LEX Blue Grass Airport (KY)
2 EFD Ellington Field (TX)
3 IXD Olathe/New Century Aircenter Airport (KS)
4 LFT Lafayette Regional Airport (LA)

Table B.5: Airport group 5.
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No Airport code Airport name

1 LGA La Guardia Airport (NY)
2 BWI Baltimore/Washington International Airport (MD)
3 ELP El Paso International Airport (TX)
4 FLL Fort Lauderdale Hollywood International Airport (FL)
5 MCI Kansas City International Airport (MO)
6 PHX Phoenix Sky Harbor International Airport (AZ)
7 IAD Washington Dulles International Airport (DC)
8 LGB Long Beach Airport (CA)
9 MSY New Orleans International Airport (LA)

Table B.6: Airport group 6.

No Airport code Airport name

1 ORL Orlando Executive Airport (FL)
2 ABI Abilene (TX)
3 ADS Addison Airport (TX)
4 AGC Allegheny County Airport (PA)
5 APA Arapahoe County Airport (CO)
6 AVP Wilkes-Barre/Scranton International Airport (PA)
7 CMI Champaign Willard Airport (IL)
8 CPR Natrona County International Airport (WY)
9 BCT Boca Raton Public Airport (FL)
10 CRQ McClellan-Pallomar Airport (CA)
11 FRG Republic Airport (NY)
12 FTY Fulton County
13 GON Groton-New London Airport (CT)
14 HVN Tweed New Haven Regional Airport (CT)
15 ITH Ithaca Tompkins Regional Airport (NY)
16 LMT Klamath Falls Airport (OR)
17 LNK Lincoln Airport (NE)
18 MCN Middle Georgia Regional Airport (GA)
19 MSO Missoula International Airport (MT)
20 MLU Monroe Regional Airport (LA)
21 OXR Oxnard Airport (CA)
22 PSC Tri-Cities Airport (WA)

Table B.7: Airport group 7.
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No Airport code Airport name

1 CRW Charleston Yeager Airport (WV)
2 BJC Jeffco Airport (CO)
3 BPT Southeast Texas Regional Airport (TX)
4 CPS St. Louis Downtown Airport (MO)
5 BTL W V Kellogg Airport (MI)
6 CWA Central Wisconsin Airport (WI)
7 ERI Erie International Airport (PA)
8 EUG Eugene Airport (OR)
9 FSM Fort Smith Airport (AR)
10 FXE Fort Lauderdale Executive (FL)
11 GJT Walker Field Airport (CO)
12 LBE Arnold Palmer Regional Airport (PA)
13 LUK Cincinnati Municipal Airport Lunken Field (OH)
14 MRY Monterey Peninsula Airport (CA)
15 PDK Dekalb Peachtree Airport (GA)
16 PNE North Philadelphia Airport (PA)
17 PWK Pal Waukee Airport (IL)
18 BFL Meadows Field Airport (CA)
19 BIV Tulip City Airport (MI)
20 BTM Bert Mooney Airport (MT)
212 EAU Chippewa Valley Regional Airport (WI)

Table B.8: Airport group 8.
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No Airport code Airport name

1 PQI Northern Maine Regional Airport (ME)
2 ASE Aspen-Pitkin County Airport (CO)
3 BKL Burke Lakefront Airport (OH)
4 ELM Elmira/Corning Regional Airport (NY)
5 EYW Key West International Airport (FL)
6 GNV Gainesville Regional Airport (FL)
7 HTS Tri-State Airport (WV)
8 HYA Barnstable Municipal Airport (MA)
9 IDA Idaho Falls Regional Airport (ID)
10 INT Smith Reynolds Airport (NC)
11 LBF North Platte Regional Lee Bird Field (NE)
12 LWB Greenbrier Valley Airport (WV)
13 MKG Muskegon County Airport (MI)
14 MSL Northwest Alabama Regional Airport (AL)
15 MVY Martha’s Vineyard Airport (MA)
16 PFN Panama City-Bay County International Airport (FL)
17 PKB Mid-Ohio Valley Regional Airport (WV)
18 PWA Wiley Post Airport (OK)
19 MFR Medford Rogue Valley International Airport (OR)
20 ACK Nantucket (MA)

Table B.9: Airport group 9.

No Airport code Airport name

1 DTS Destin-FT Walton Beach Airport (FL)
2 HEF Manassas Municipal (VA)
3 HLN Helena Regional Airport (MT)
4 HXD Hilton Head Airport (SC)
5 MOD Modesto City-County Airport (CA)

Table B.10: Airport group 10.
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No Airport code Airport name

1 MHT Manchester Airport (NH)
2 ABQ Alburquerque International Airport (NM)
3 ACY Atlantic City International Airport (NJ)
4 AUS Austin-Bergstorm International Airport (TX)
5 BDL Bradley International Airport (CT)
6 BNA Nashville International Airport (TN)
7 CLT Charlotte/Douglas International Airport (NC)
8 DCA Ronald Reagan Washington National Airport (DC)
9 HRL Valley International Airport (TX)
10 IFP Laughlin/Bullhead International Airport (AZ)
11 JAX Jacksonville International Airport (FL)
12 JNU Juneau International Airport (AK)
13 KTN Ketchikan International Airport (AK)
14 LIH Lihue Airport (HI)
15 MBS Saginaw International Airport (MI)
16 MDW Chicago Midway Airport (IL)
17 PVD T.F. Green Airport (RI)

Table B.11: Airport group 11.

No Airport code Airport name

1 BLV Midamerica Airport (IL)
2 DEN Denver International Airport (CO)
3 DTW Detroit Metro Airport (MI)
4 IAH Bush International Airport (TX)
5 KOA Kona International Airport (HI)
6 LAS McCarran International Airport (NV)
7 MCO Orlando International Airport (FL)
8 MSP Minneapolis/St. Paul International Airport (MN)
9 OAK Oakland International Airport (CA)
10 OGG Kahului Airport (HI)
11 ONT Ontario International Airport (CA)
12 PHL Philadelphia International Airport (PA)
13 IND Indianapolis International Airport (IN)
14 ORD Chicago O’Hare International Airport (IL)
15 DFW Dallas/Fort Worth International Airport (TX)

Table B.12: Airport group 12.
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No Airport code Airport name

1 ALB Albany International Airport (NY)
2 AEX Alexandria International Airport (LA)
3 BFI Boeing Field/King County International Airport (WA)
4 CHS Charleston International Airport (SC)
5 CLE Cleveland Hopkins International Airport (OH)
6 COS Colorado Springs Airport (CO)
7 CVG Cincinnati/Northern Kentucky International Airport (OH)
8 DAY Dayton International Airport (OH)
9 GEG Spokane International Airport (WA)
10 GRR Gerald R. Ford International Airport (MI)
11 MYR Myrtle Beach Airport (SC)
12 OKC Will Rogers World Airport (OK)
13 ORF Norfolk International Airport (VA)
14 PHF Newport News/Williamsburg International Airport (VA)
15 PIT Pittsburgh International Airport (PA)
16 PWM Portland International Jetport (ME)

Table B.13: Airport group 13.

No Airport code Airport name

1 OMA Eppley Airfield (NE)
2 BFM Mobile Aerospace Field (AL)
3 BUF Buffalo Niagara International Airport (NY)
4 CAE Columbia Metropolitan Airport (SC)
5 CMH Port Columbus International Airport (OH)
6 DAL Dallas Love Field (TX)
7 FWA Fort Wayne International Airport (IN)
8 HOU Hobby Airport (TX)
9 LRD Laredo International Airport (TX)
10 MKE General Mitchell International Airport (WI)
11 PDX Portland International Airport (OR)
12 ISP Long Island Mac Arthur Airport (NY)
13 MHR Sacramento Mather Airport (CA)
14 PIE St. Petersburg-Clearwater International Airport (FL)
15 ITO Hilo International Airport (HI)
16 PBI Palm Beach International Airport (FL)
17 BUR Burbank Bob Hope Airport (CA)

Table B.14: Airport group 14.
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No Airport code Airport name

1 MEM Memphis Airport (TN)
2 ADW Andrews Air Force Base (MD)
3 AFW Fort Worth Alliance Airport (TX)
4 ATL Atlanta International Airport (GA)
5 EWR Newark Liberty International Airport (NJ)
6 HNL Honolulu International Airport (HI)
7 LAX Los Angeles International Airport (CA)
8 MIA Miami International Airport (FL)

Table B.15: Airport group 15.

No Airport code Airport name

1 AOO Altoona-Blair County Airport (PA)
2 CIC Chico Municipal Airport (CA)
3 HND Henderson Executive Airport (NV)
4 IPL Imperial County Airport (PA)
5 IYK Inyokern Airport (CA)
6 MCE Merced Municipal Airport (CA)
7 MTJ Montrose Regional Airport (CO)
8 PIH Pocatello Regional Airport (ID)

Table B.16: Airport group 16.

No Airport code Airport name

1 LZU Gwinnett County Airport (GA)
2 JQF Concord Regional Airport (NC)
3 JST Johnstown-Cambria County Airport (PA)
4 OSU Ohio State University Airport (OH)
5 DET Detroit City Airport (MI)

Table B.17: Airport group 17.
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No Airport code Airport name

1 BOS Boston Logan International Airport (MA)
2 ABY Southwest Georgia Regional Airport (GA)

Table B.18: Airport group 18.

No Airport code Airport name

1 JFK John F. Kennedy International Airport (NY)
2 ANC Anchorage International Airport (AK)

Table B.19: Airport group 19.
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