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Abstract

In mechanism design, we replace the strong assumption that each player knows his own
payoff type exactly with the more realistic assumption that he knows it only approximately.
Specifically, we study the classical problem of maximizing social welfare in single-good auctions
when players know their true valuations only within a constant multiplicative factor δ ∈ (0, 1).

Our approach is deliberately non-Bayesian and very conservative: each player i only knows
that his true valuation is one among finitely many values in a δ-approximate set Ki, and his
true valuation is adversarially and secretly chosen in Ki at the beginning of the auction.

We prove tight upper and lower bounds for the fraction of the maximum social welfare
achievable in our model, in either dominant or undominated strategies, both via deterministic
and probabilistic mechanisms. The landscape emerging is quite unusual and intriguing.
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1 Introduction

Mechanism design aims at leveraging the players’ knowledge and rationality, so as to produce
desirable outcomes, based on the assumption that each player knows his own true pay-off type. We
raise a natural and general question:

What happens to mechanism design when players approximately know their own pay-off types?

1.1 The Approximate-Valuation Model

We could define our approximate-valuation model, together with its basic notions (of dominance,
implementations, etc.), in a very abstract setting. For simplicity, however, in this paper we define
it just for auctions of a single good.

A realistic motivation. The possibility that a player may have approximate, rather than exact,
knowledge of his own valuation strikes us to be quite realistic. For instance, consider a firm about
to participate in an auction of a given good. In such an auction, a player’s valuation consists
of a non-negative number representing the player’s value for the good for sale. For finiteness
sake, we assume that all valuations are integers in the interval [0, B], where B is a suitably large
(upper)bound. Then, no one would be too surprised if different employees, when asked to figure out
the firm’s true valuation for the good, reported different answers; nor if a given employee reported
a range of values rather than a single value.

A set-theoretic approach to approximation. Our model for the knowledge that each player i
has about his own true valuation tvi is set theoretic (and is inspired by [CM10]). Specifically, we
assume that there is some constant δ ∈ [0, 1) such that each player i knows a “δ-approximate”
subset of {0, 1, . . . , B} containing tvi. That is, even though player i does not know tvi, player i
knows a subset Ki of {0, . . . , B}, which we call the approximate-valuation set of player i, such that:

(i) tvi ∈ Ki and (ii) Ki ⊆
[
(1− δ)xi, (1 + δ)xi

] ∩ Z for some value xi ∈ R.

Essentially, the approximation accuracy δ “upper bounds the coarseness of each player’s knowledge
about his own valuation”. For instance, if δ = 0.1, then everyone knows that each player knows his
own true valuation within a 10% accuracy. We remark that:

• To achieve a greater level of generality, we may consider two distinct accuracy parameters: a
multiplicative one, δ∗, and an additive one, δ+, leading to the following modified constraint:

Ki ⊆
[
(1− δ∗)xi − δ+, (1 + δ∗)xi + δ+

] ∩ Z for some value xi ∈ R.

For simplicity, however, in this extended abstract we consider a single accuracy parameter,
and we find the multiplicative one more meaningful.
• The approximate-valuation set Ki can be an arbitrary subset of the integers in the interval

[(1 − δ)xi, (1 + δ)xi], and in principle could consist of all the primes in it. For example, Ki

may consist of just two values. Consider a player i who is about to participate to a yard-sale
auction of a large piece of furniture that would be illegal for him to transport on top of his car.
Then, even if he knew exactly his valuation for the piece, he should consider “subtracting” the
fine he might incur on the way home. Some players will approach this valuation uncertainty
by computing the probability of being caught by the police, based on the time of the day,
the traffic pattern, the probability that the police has bigger crimes to worry about that day,
and so on. But some others may prefer taking a set-theoretic approach and forgo the above
complexities —after all computation too has a cost!
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• The approximation accuracy is a global parameter, known to the designer. The strategic
behavior of an individual player i is determined by his own set Ki, which is not known to the
designer. While δ-approximate, Ki may consist of fewer and well-clustered possible valuations,
so that in the end, player i de facto has a smaller “individual” approximation accuracy.
• Valuations may actually be very approximate indeed. Consider a firm participating to an

auction for the exclusive rights to manufacture solar panels in the US for a period of ten years.
Even if the demand were precisely known in advance, and the only uncertainty were to come
from the firm’s ability to lower its costs of production via some breakthrough research, an
approximation accuracy of the firm’s own valuation for the license could easily exceed 0.5.

Interpretation. Ours is a very adversarial model. The exact true valuation tvi of player i, while
promised to lie in Ki should be thought as having being selected secretly (even with respect to i
himself) by an adversary at the start of the auction. Before bidding, a player i only knows his
knowledge set Ki, and thus that, in an outcome in which he pays Pi, his utility is −Pi if he does
not win the good, and a value in the set {v − Pi : v ∈ Ki} otherwise. But, in the latter case,
he may never realize his exact utility, tvi − Pi, or he may realize it only after bidding, or after
the auction is over —e.g., a day or a year later. (This may sound strange, but is actually quite
reasonable, in auctions and other strategic situations. For instance, many colonial powers realized
to have received negative utility only after their colonies —fortunately— regained their freedom.)

Our definitions of dominance will thus be defined also in an adversarial way. Informally speaking,
a strategy s will be more favored than a strategy t, only when for all possible valuations inside his
knowledge set Ki, s is better than t. By investigating a model of an adversarial nature we may
be able to prove less, but our results will then be guaranteed to hold for a larger variety of more
“realistic” settings.

Difference from Bayesian. We emphasize that our approximate-valuation model is “safer” than
assuming that i knows an “individual Bayesian” Di, from which his true valuation has been drawn.
Indeed, “i knows Di” is a very strong assumption in an auction of a single good: player i may
behave as if his true valuation were exactly the expectation of Di, reducing the problem into the
exact-valuation world. Instead, if i knows that his valuation is in the support of some (unknown)
distribution Di, setting this support to be the set Ki, he does not have such a privilege.

1.2 A Dual View of Our Model

Our set-theoretic model can however be re-interpreted as an approximate-Bayesian model. In
particular, whether or not the entire payoff-type profile is drawn from a given prior (and whether
or not some information about this prior may be known to the designer or common knowledge
to the players), a player i may individually know that his own true valuation is drawn from some
distribution Di in some class of distributions Di, without being sure of which distribution in Di is
the right one. In such a setting, “Di plays the role of Ki”.

Beyond such a generic parallelism, it is actually possible to convert the above Bayesian model
into ours, so that our results and mechanisms apply. For example, suppose that each player i
knows that, for each possible valuation v, the probability that his true valuation is v is between
(1− δ)pi(v) and (1 + δ)pi(v); then, each Di is the class of all distributions that are consistent with
player i’s probability constraints, and it is easy to show that the expectations of distributions in
Di form a δ-approximate set Ki in our set-theoretic model.

A more thorough investigation of this “duality” will however be conducted separately.
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1.3 The First Goal

For concreteness, we choose to investigate the feasibility of mechanism design in the approximate-
valuation model for a very simple and familiar application, maximizing social welfare in single-good
auctions, for which the second-price mechanism gives us a simple, elegant, and perfect solution in
the traditional, exact-valuation model. That is, we wish to start the study of approximate-valuation
mechanism design by providing an answer to the following question:

How much social welfare can we guarantee in approximate-valuation auctions?

1.4 Results

Since we are in a non-Bayesian setting, but in the presence of substantial uncertainty, two types of
implementations are natural to explore: in dominant strategies and in undominated strategies.

1.4.1 The Inadequacy of Dominant-Strategy Mechanisms

When the players know exactly their true valuations, the second-price mechanism is universally
known to maximize social welfare in dominant strategies. A striking signal that the approximate-
valuation model is a “new world” is that dominant strategies, though a priori meaningful, now
become useless.

Superficially, this may seem obvious: if you are uncertain whether your valuation is v or v′,
how can you have a “best bid”? Less superficially, we have to consider that, when the players have
approximate-valuation sets rather than exact valuations, then a reasonable mechanism should give
them the option to report sets of valuations (rather than single valuations). Thus, among such
mechanisms there might be a dominant-strategy one that maximizes social welfare. Perhaps more
realistically, one may expect some degradation of performance due to the approximate accuracy of
the players’ self knowledge. A priori, it would be legitimate to conjecture that under the assumption
that each player knows his own valuation with accuracy δ ∈ (0, 1), a dominant strategy mechanism
might guarantee only a fraction of the underlying, true maximum social welfare: for instance, a
fraction (1− δ), (1− 3δ), or (1− δ)2. We prove, however, that this is not at all the case. Namely,

Theorem 1 (informal). The best fraction of the maximum social welfare that can be guaranteed
by a (possibly probabilistic) dominant-strategy mechanism in the approximate-valuation model is

≈ 1
n
.

Note that 1
n of the social welfare can be trivially achieved by the dominant-strategy mechanism

that ignores all bids and assigns the good to a random player! Thus our theorem says that, in the
approximate-valuation model, no matter how small the approximation accuracy may be, there is
nothing smarter to do in dominant strategies. Thus, one way to interpret our result is the following:

Dominant strategies are intrinsically linked to the exact knowledge of our own valuations.

When at least one player’s valuation is known to have positive approximation accuracy (e.g., he
knows his own valuation only within 0.001%), then, as long as the possible valuations are sufficiently
(in the previous case, that would be 2,000), demanding the use of a dominant-strategy mechanism
to generate high social welfare is tantamount to demanding that the good be assigned at random.

New worlds, new realities.
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1.4.2 The Power of Deterministic Undominated-Strategy Mechanisms

In light of Theorem 1, implementation in undominated strategies now becomes a natural choice.
For such type of implementation, we prove the following theorem. It states that even deterministic,
undominated-strategy mechanisms can guarantee a good fraction of the social welfare, that is, a
fraction that depends solely on the approximation accuracy δ. Indeed, the second-price mechanism
does this job, and is optimally too. Namely,

Theorem 2 (informal). In the approximate-valuation model, the best fraction of the maximum
social welfare that can be guaranteed in undominated strategies by a deterministic mechanism is

≈
(

1− δ
1 + δ

)2

.

Moreover, the second-price mechanism with lexicographic tie-breaking rule essentially guarantees
such performance.

That is, in the approximate-valuation world, although the second-price mechanism is useless
under the solution concept of dominant strategies (since it does not provide any dominant strategy),
it gives modest social welfare guarantee in undominated strategies. (The second-price mechanism
actually delivers excellent social welfare in undominated strategies also in the exact-valuation world,
but this fact is overshadowed by its perfect performance in dominant strategies.)

In the exact-valuation world, proving that the second-price mechanism maximizes social welfare
in dominant strategies is almost immediate. However, proving Theorem 2 is more involved. To begin
with, any analysis in undominated strategies is more complex. In addition, in the approximate-
valuation world this difficulty is compounded by the fact that each player has to consider many
candidates for his own valuation rather than a single one. We thus choose to prove our theorem
only after establishing some structural properties of the new world.

1.4.3 The Greater Power of Probabilistic Undominated-Strategy Mechanisms

We prove that, there exists a performance gap between probabilistic and deterministic mechanisms
working in undominated strategies. Namely,

Theorem 3 (informal). For every δ ∈ (0, 1), there exists a probabilistic, undominated-strategy
mechanism Mopt satisfying the following two properties in the approximate-valuation model:

• Its guaranteed fraction of the maximum social welfare is

(1− δ)2 + 4δ
n

(1 + δ)2
.

• Its guarantee is essentially optimal among all undominated-strategy mechanisms.

The performance gap between probabilistic and deterministic implementations in undominated
strategies tends to zero as the number of players increases, but is quite relevant in concrete scenarios.
For instance, when δ = 0.5, our mechanism Mopt guarantees a social welfare that is at least five
times higher that of the second-price mechanism when there are 2 players, and at least three
times higher when there are 4 players. Even when δ = 0.25, the guaranteed performance of our
mechanism is almost two times higher than that of the second-price when there are 2 players. (See
Appendix F for a chart comparing our optimal mechanism with the second-price one.)
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Besides its potentially practical relevance, Theorem 3 is actually of theoretical value. Indeed,
it emphasizes another difference between the exact-valuation and approximate-valuation worlds.
In the exact-valuation world, no performance gap like ours exists between the probabilistic and
deterministic mechanisms working in undominated strategies. (Due to the excellent performance of
the deterministic second-price mechanism, the only possible gap is a mere additive 1.) In addition,
the proof of Theorem 3 has required us to develop a set of techniques that we believe to be of
independent interest.

1.5 Techniques

Exploring a new direction requires developing a new set of tools. To begin with, extending to
the approximate-valuation world even the basic concept of weak dominance and the revelation
principle requires some care. (Else, one runs the risk of “defining out” crucial alternatives and
forcing impossibilities.) In addition, to guide the design and analysis of mechanisms in our new
setting, we find it useful to establish two structural lemmas. Let us describe the simpler one first.

The Undominated Intersection Lemma. To prove impossibility results for general mecha-
nisms, we must deal with arbitrary sets of strategies. In our approximate-valuation model, even
the “natural” strategies are richer than before. For instance, a player i having an approximate-
valuation set Ki might report a single number (e.g., a member in Ki), or a set of numbers (e.g., Ki

itself). However, no matter what strategies a mechanism may grant, we prove that for any two suf-
ficiently overlapping approximate-valuation sets Ki and K ′i, the corresponding sets of undominated
strategies S and S′ must have a pair of (mixed) strategies that are “arbitrarily close”.

This lemma has been key to establish our impossibility results for undominated strategies.

The Distinguishable Monotonicity Lemma. To prove possibility results, we are instead happy
to consider only special sets of strategies. In particular, we consider mechanisms that constrain
the players to report only individual numbers in {0, 1, . . . , B}, like direct mechanisms in the exact-
valuation model. In both cases, a player’s strategies are well-ordered, and it is thus meaningful to
ask whether his probability of getting the good grows monotonically with his reports (keeping the
ones of his opponents fixed). Indeed, a proper monotonicity condition characterizes which single-
good auction mechanisms are dominant-strategy in the exact-valuation model. The advantage of
artificially restricting the strategies to {0, 1, . . . , B} in the approximate-valuation model is that a
simple lemma, based on a slightly stronger monotonicity condition, provides a clean characterization
of the set of undominated strategies associated to any approximate-valuation set Ki of a player i:
namely, the strategies between the minimum integer and the maximum integer in Ki.

2 Related Work

Social welfare in auctions. When players know exactly their own valuations, the problem of
maximizing social welfare in auctions is optimally solved (even in multiple good setting) by the
well-known VCG mechanism [Vic61, Cla71, Gro73]. In this mechanism, reporting the truth is a
very-weakly-dominant strategy for every player and, the maximum social welfare is guaranteed at
such strategy. In the special case of auctions of a single good, the VCG mechanism reduces to the
familiar second-price mechanism.

Note that the VCG mechanism and, in particular, the second-price mechanism do impose prices
on the players, but only as a means to achieve the goal of maximizing social welfare. The alternative
goal of revenue maximization has been studied extensively, but it is a goal that we do not consider
in this work.
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Relevant non-Bayesian solution concepts. Since in this paper we focus on non-Bayesian
settings, the relevant solution concepts are dominant strategies and undominated strategies. With
regard to dominant strategies, the revelation principle (see e.g. [Mye79]) states that if a very-
weakly-dominant strategy mechanism exists so does a truthful one (where stating the truth is a
very-weakly-dominant strategy). With regard to undominated strategies, Jackson [Jac92, JPS94]
points out that studying undominated strategies is meaningful only when considering bounded
mechanisms. (All undominated strategy mechanisms in our model will be bounded, because they
are finite.)

Bayesian models of type uncertainty. Milgrom [Mil89] studies the revenue difference between
the second-price and the English auctions in single-good setting, where players do not exactly know
their valuations; they know that their valuations are drawn from a common distribution. Porter et
al. [PRST08] consider a scheduling problem where tasks are to be scheduled to players, and player
i has a private failure rate pij for task j. This failure rate can be understood as a distribution of
player’s private type, and this paper studies the dominant strategy mechanisms with respect to the
social welfare. Feige and Tennenholtz [FT11] consider another variant of the scheduling problem,
where each player i has a task of length li to be scheduled and there is only one machine. They study
dominant strategy mechanisms without monetary transfer in the case that players have uncertainty
(and thus a Bayesian distribution) about their own li’s. They prove that even if each player i has
only two possible li’s, no constant fraction of the maximum social welfare can be guaranteed. To
overcome this, they introduce a different measure of social efficiency, which they call “fair share”,
and provide mechanisms to guarantee an Ω(1) fair share.1

Set-theoretic models of type approximation. The Bayesian model of incomplete information
assumes that the players’ types are drawn from a joint prior. An alternative way is the set-theoretic
approach introduced by Chen and Micali [CM10]: the set of possible types can be considered as a
list, and a strategy is dominated only when it is unfavored for all possible types in this list. For
instance, this list can be an interval, or can be two different values where the player does not know
which is to happen. However, they only model the external knowledge (that is a player’s knowledge
about others’) as sets, still assuming that players know their exact true valuations.

In our setting, we use the set-theoretic approach when player do not know their own valuations.
We choose to use the terminology “approximate valuations” to emphasize the “Bayesian-free”
nature of our model, as opposed to the other natural terminology “uncertain valuations”, which
carries a Bayesian connotation. (And, of course, our “approximation” has nothing to do with
the “approximation factors” considered in, for instance, works that study computing equilibria
approximately.)

3 Auctions in the Approximate-Valuation Model

As for any game, an auction can be thought as consisting of two parts, a context and a mechanism.
Since our solution concepts are strong enough, the players’ beliefs need not be part of our contexts.
We only consider auctions of a single good.

Contexts. A δ-approximate auction context, where δ ∈ [0, 1), consists of the following components.
• N = {1, 2, . . . , n}, the set of players.
• {0, 1, . . . , B}, the set of possible valuations for any player. B is the valuation bound.
• tv, the true-valuation profile, where each tvi ∈ {0, 1, . . . , B}.

1“ρ fair share” is a property such that each player i has at least ρ success rate if all other players share the same
distribution as his li.
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• Ω = (N ∪ {⊥})× RN , the set of outcomes. If (a, P ) ∈ Ω, then a ∈ N indicates that player a
wins the good,and a = ⊥ that the good remains unallocated; P is the price profile.
• U , the profile of utility functions. Each Ui maps any outcome (a, P ) to tvi − Pi if a = i, and

to −Pi otherwise.
• K, the δ-approximate valuation profile, where each Ki is a non-empty subset of [(1−δ)vi, (1+
δ)vi] ∩ {0, 1, . . . , B} for some real number vi.

Notice that an approximate auction context C is fully specified by n, B, δ, tv, and K: C =
(n,B, δ, tv,K).

Knowledge. In an approximate auction context C = (n,B, δ, tv,K), each player i knows Ki and
that tvi ∈ Ki, but has no information beyond that. The approximation accuracy δ is typically
assumed to be known to the designer. (In a sense, the designer “chooses δ large enough so as to
ensure that he is dealing with a δ-approximate context”.) However, δ needs not be explicitly known
to the players. Indeed, if —say— Ki = {90, 91, . . . , 110}, then Ki is both a 0.1-approximate and a
0.2-approximate valuation.

Notation. By C δ
n,B we denote the set of all δ-approximate auction contexts with n players and

valuation bound B. For any x ∈ R, we denote by intδ(x) the “δ-integer-interval centered around
x”, that is, the set of all integers in

[
(1− δ)x, (1 + δ)x

]
. Finally the social welfare (function) SW

is defined as follows: SW(tv, (a, P )) def= tva for every true-valuation profile tv and outcome (a, P ).

Mechanisms. While our contexts have a new component, our mechanisms are totally ordinary.
Indeed a mechanism M specifies the players’ strategies and a (possibly probabilistic) outcome
function. Formally, M = (Σ, F ) where
• Σ = Σ1 × · · · × Σn where each Σi is a finite set, the set of player i’s pure strategies; and
• F : Σ→ (N ∪ {⊥})×RN is the outcome function, which maps each strategy profile v ∈ Σ to

an outcome (a, P ) (which may be a random variable if F is probabilistic).

Notation. We denote pure strategies by Latin letters, and possibly mixed strategies by Greek
ones. If s ∈ Σ is a pure strategy profile, then we also denote by FAi (s) and FPi (s) respectively
the probability that the good is assigned to player i and the price paid by i under s. We also call
FA the winning-probability function of M . If instead σ ∈ ∆(Σ), then FAi (σ) and FPi (σ) are the
corresponding distributions over winning probabilities and prices for player i. More generally, a
winning-probability function is a function f : Σ → [0, 1]N mapping a strategy s ∈ Σ profile to a
profile of probabilities, corresponding to the winning probability of each player under strategy s;
in particular,

∑
i∈N fi ≤ 1.

4 Dominance in the Approximate-Valuation Model

We need to extend to our approximate valuation setting four classical notions: very weak domi-
nance, weak dominance, dominant strategies, and undominated strategies. The obvious constraint
of this extension is that when each approximate valuation Ki consists of a single element, then all
extended notions must collapse to the original ones. It should be appreciated that with this single
constraint, there are many ways of extending the above notions. Yet, once one keeps “meaningful-
ness” into account, one really does not have much choice except for the second notion, the weak
dominance, where some attention has to be paid in order to maintain the original intuitive meaning
that the weakly dominated strategies should not be rationally played (in absence of special beliefs).

Definition 4.1 ([FT91, Definition 1.1]). Fix a player i ∈ N with approximate valuation Ki. For a
(possibly mixed) strategy σi ∈ ∆(Σi) and a pure strategy si ∈ Σi, we say that
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• σi very-weakly dominates si, in symbols σi
vw�
i,Ki

si, if

∀ tvi ∈ Ki , ∀ t−i ∈ Σ−i : EUi(tvi, F (σi t t−i)) ≥ EUi(tvi, F (si t t−i)) .

• σi weakly dominates si, in symbols σi
w�
i,Ki

si, if σi very-weakly dominates si and

∃ tvi ∈ Ki , ∃ t−i ∈ Σ−i : EUi(tvi, F (σi t t−i)) > EUi(tvi, F (si t t−i)) .

For Ki, the set of very-weakly-dominant and undominated strategies are

Dnti(Ki)
def=
{
si : ∀ ti ∈ Σi , si

vw�
i,Ki

ti

}
and UDedi(Ki)

def=
{
si : @σi ∈ ∆(Σi) s.t. σi

w�
i,Ki

si

}
.

Finally we set

{
Dnt(K) def= Dnt1(K1)× · · · × Dntn(Kn)

UDed(K) def= UDed1(K1)× · · · × UDedn(Kn)
.

Remark 4.2.
• Note that, we could have defined “σi weakly dominates si” using three other quantifications

in the additional condition for weak dominance: (1) ∀tvi∀t−i, (2) ∃tvi∀t−i, or (3) ∀tvi∃t−i.
None of them, however, is really meaningful: the first two because they do not coincide with
the classical notion of weak dominance when Ki is singleton, and the third because it does not
capture the “weakest condition” for which a strategy si should be discarded in favor of σi. To
see the latter, notice that we already know that σi very-weakly dominates si, for player i to
discard strategy si in favor of σi, it should suffice that si is strictly worse than σi for even one
of his possible valuation tvi ∈ Ki, and we should not insist that this is true for all possible
tvi’s.
• We choose to analyze only very-weak dominance in dominant strategies because, while re-

quiring weak dominance is safer, it is unrealistic to hope for such a strong guarantee. (For
instance, when players know their valuations exactly, the celebrated second-price mechanism
only guarantees that reporting the truth is a very-weakly dominant strategy.)
Furthermore, we choose to analyze only weak dominance in undominated strategies because,
when considering very-weak dominance, two equivalent strategies may eliminate each other
and the set UDed may become empty.2

Let us now state without proof a basic relationship between the above two sets of strategies.

Lemma 4.3. Dnti(Ki) 6= ∅ implies Dnti(Ki) = UDedi(Ki).

5 Implementation in the Approximate-Valuation Model

We now extend the basic notions of implementation in dominant strategies and in undominated
strategies to the approximate-valuation model. For simplicity, in this paper we shall define them
for the problem of maximization of social welfare rather than for a general social choice function.

Definition 5.1. For every ε ∈ (0, 1], we define εMSW to be the function mapping any true-
valuation profile tv to ε ·maxi∈N tvi.

2And, of course, all the mechanism that we will consider are bounded, to ensure that implementations in UDed are
meaningful [Jac92].
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Definition 5.2. We say that a mechanism M = (Σ, F ) partially implements εMSW in very-
weakly-dominant strategies, over a class of contexts C , if for all contexts (n,B, δ, tv,K) ∈ C :

∃σ ∈ Dnt(K) ,
∑
i∈N

FAi (σ)tvi ≥ εMSW(tv) .

We say that M fully implements εMSW in undominated strategies, over a class of
contexts C , if for all contexts (n,B, δ, tv,K) ∈ C :

∀σ ∈ UDed(K) ,
∑
i∈N

FAi (σ)tvi ≥ εMSW(tv) .

Remark 5.3.

• We could have also defined full implementation of εMSW in very-weakly-dominant strategies,
where the social welfare guarantee is required to hold for all (rather than for at least one)
strategy profile σ ∈ Dnt(K). However, because Dnt(K) might be empty, a mechanismM could
“vacuously” implement εMSW. On the other hand, if a mechanism M ensures that Dnt(K)
is not empty, then Lemma 4.3 implies that full implementation in very-weakly-dominant
strategies becomes equivalent to the notion of full implementation in undominated strategies.

• It would not be meaningful to define partial implementation for undominated strategies,
because one can trivially engineer a mechanism for which (i) every strategy profile consists of
undominated strategies, and (ii) every outcome —and including the outcome that maximizes
the social welfare— corresponds to at least one strategy profile.

Remark 5.4 (Revelation Principle). We shall rely on the following version of the revelation
principle [Mye81], which, as it is easy to verify, continues to hold in the approximate-valuation
model. Namely, if a mechanism M = (Σ, F ) partially implements εMSW in very-weakly-dominant
strategies, then there is a “direct” (very-weakly) dominant-strategy truthful mechanism M ′ =
(Σ′, F ′) for which Σ′ is the set of all δ-approximate valuation profiles, and reporting the true
approximate-valuation profile K ∈ Σ′ is a very-weakly-dominant strategy profile and guarantees
εMSW.

6 Formal Statements of Our Results

Theorem 1. ∀n, ∀δ, and ∀B > 3−δ
2δ , if M partially implements εMSW in very-weakly-dominant

strategies over C δ
n,B, then

ε ≤ 1
n

+
b3−δ2δ c+ 1

B
.

The proof of Theorem 1 can be found in Appendix C.

Theorem 2. The following two statements hold:

1. ∀n, ∀δ, and ∀B, the second-price mechanism fully implements εMSW in undominated strate-
gies over C δ

n,B with

ε
def=
(

1− δ
1 + δ

)2

− (1− δ)
(1 + δ)

2
MSW

if ties are broken deterministically, and

ε
def=
(

1− δ
1 + δ

)2

if ties are broken at random (giving positive probability to each tie).

9



2. ∀n, ∀δ, and ∀B ≥ 1
δ , if a deterministic M fully implements εMSW in undominated strate-

gies over C δ
n,B then

ε ≤ (1− δ)2
(1 + δ)2

+
4
B

.

The proof of Theorem 2 can be found in Appendix D.

Theorem 3. The following two statements hold:

1. For every n, δ ∈ (0, 1), and B, there exists a mechanism Mopt fully implementing εMSW in
undominated strategies over C δ

n,B with

ε
def=

(1− δ)2 + 4δ
n

(1 + δ)2
.

2. For every n, δ ∈ (0, 1), and B ≥ 1
δ , if M is a (deterministic or probabilistic) mechanism fully

implementing εMSW in undominated strategies over C δ
n,B then

ε ≤ (1− δ)2 + 4δ
n

(1 + δ)2
+

4
B

.

The proof of Theorem 3 can be found in Appendix E. This theorem actually is the techni-
cally hardest of our results. However, our optimal mechanism Mopt is quite simple to play. For
convenience, its concise description is given in Appendix A.
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Appendix

A The Optimal Mechanism Mopt

Consider an approximate auction of a single good with n players and valuation bound B.

A.1 The Strategy Sets of Mopt

For every player i ∈ N , we set Σi
def= {0, . . . , B}.

A.2 The Outcome Function of Mopt

First consider the following winning-probability function:

Definition A.1. For every δ ∈ (0, 1), and let Dδ
def=
(

1+δ
1−δ
)2 − 1 > 0. We define the function

f (δ) : [0, B]N → [0, 1]N as follows:
• for every z = (z1, . . . , zn) ∈ [0, B]N such that z1 ≥ z2 ≥ · · · ≥ zn, let n∗ be the least index in
N such that

∀ i ∈ {1, . . . , n∗}, zi ≤
∑n∗

j=1 zj

n∗ +Dδ
,

call players 1, . . . , n∗ the winners and players n∗ + 1, . . . , n the losers, and then set

f
(δ)
i (z) def=

{
1
n · n+Dδ

n∗+Dδ ·
zi(n

∗+Dδ)−
∑n∗
j=1 zj

ziDδ
, if i ≤ n∗,

0, if i > n∗;

• for other z, define f (δ) by extending it symmetrically.

The (code for the) outcome function Ff (δ) of our mechanism Mopt = ({0, 1, . . . , B}N , Ff (δ)) is:

Code for outcome function of Mopt

public parameter: δ ∈ (0, 1)

inputs: v1, . . . , vn ∈ {0, 1, . . . , B}
output: (i, P ), where i ∈ N ∪ {⊥} is the winning player and P ∈ RN is the price profile

pseudocode:

Ff(δ)(v1, . . . , vn) def=
1. Draw r uniformly at random in [0, 1].
2. Define f (δ)

0
def= 0.

3. If there exists i ∈ N such that
∑i−1
j=0 f

(δ)
i (v) < r ≤∑i

j=0 f
(δ)
i (v):

– Compute Pi
def= vi −

∫ vi
0 f

(δ)
i (ztv−i) dz
f
(δ)
i (v)

, and Pj = 0 for j 6= i, and output (i, P ).

4. Otherwise, output (⊥, (0, . . . , 0)). (No player is assigned the good.)

We note that our mechanism can be tweaked to make sure that the good is always assigned to
some player. But the proof is more involved than it already is, and we leave it to a future version
of this paper.
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B Two Structural Lemmas

In this section we establish two basic lemmas. The first crucial to our “negative” results, the second
crucial to our “positive” ones.

B.1 The Undominated Intersection Lemma

To prove that a given social choice function cannot be implemented in undominated strategies
in the approximate-valuation model, we need to establish some basic structural properties about
undominated strategies. If two possible approximate-valuation sets of the same player i, Ki and K̃i,
intersected and any possible valuation were a strategy available to i, then there would be a simple
relationship between their corresponding seta of pure undominated strategies: namely, Ki ∩ K̃i 6=
∅ → UDedi(Ki) ∩ UDedi(K̃i) 6= ∅. However, a mechanism can choose the strategies available
to each player in a totally arbitrary manner, and thus such an attractively simple relationship
may not hold at all: as soon as Ki and K̃i are even slightly different, their corresponding sets
of undominated strategies may be totally unrelated. We prove however that, no matter what the
available strategies may be, whenever Ki and K̃i have at least two values in common, there exist two
“almost payoff-equivalent” strategies σi and σ̃i respectively in ∆(UDedi(Ki)) and ∆(UDedi(K̃i)).
This relationship will be sufficient to prove all of our impossibility results for implementation in
undominated strategies.

Lemma B.1 (Undominated Intersection Lemma). Fix a mechanism M . For every player i ∈ N ,
if Ki and K̃i intersect in at least two points, then, for every ε > 0, there exists some mixed strategy
σi ∈ ∆(UDedi(Ki)) and σ̃i ∈ ∆(UDedi(K̃i)) such that

∀ s−i ∈ Σ−i ,
∣∣FAi (σi t s−i)− FAi (σ̃i t s−i)

∣∣ < ε∣∣FPi (σi t s−i)− FPi (σ̃i t s−i)
∣∣ < ε

Proof. Let i be a player; let Ki and K̃i be two approximate-valuation sets of i; let xi and yi be two
distinct elements in Ki ∩ K̃i; and, without loss of generality, let xi > yi. Note that both UDedi(Ki)
and UDedi(K̃i) are nonempty.

If there exists a common (pure) strategy si ∈ UDedi(Ki) ∩ UDedi(K̃i), then we can simply
set σi

def= σ̃i
def= si and we are done. Therefore, we now consider the case where UDedi(Ki) and

UWDi(K̃i) are disjoint.
Let si be any strategy in UDedi(Ki), so that si is not in UDedi(K̃i) and thus, by definition, we

know that σ̃i
w�
i,K̃i

si for some σ̃i ∈ ∆(UDedi(K̃i)).3 We now argue that

∃ τi ∈ ∆(UDedi(Ki)) such that τi
w�
i,Ki

σ̃i . (B.1)

Note that, while we have only defined what it means for a pure strategy to be dominated by
a possibly mixed one, the definition trivially extends to the case of dominated strategies that are
mixed, as is the case in “τi

w�
i,Ki

σ̃i” in Equation B.1. Writing σ̃i =
∑

j α
(j)s

(j)
i (where the summation

is over a finite set) and invoking again the disjointness of the two undominated strategy sets, we
3This is because in our definition a mechanism M can only provide finite number of strategies. This implies

that M is bounded (see [Jac92]), i.e., if a strategy is weakly dominated, it is also weakly dominated by some mixed
strategy within ∆(UDedi).
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obtain, for each j, a τ (j)
i ∈ ∆(UDedi(Ki)) such that τ (j)

i

w�
i,Ki

s̃
(j)
i ; we can then set τ =

∑
j α

(j)τ
(j)
i

and deduce that τi
w�
i,Ki

σ̃i.

For the same reason, we can also find some τ̃i ∈ ∆(UDedi(K̃i)) such that τ̃i
w�
i,K̃i

τi. Continuing

in this fashion, “jumping” back and forth between ∆(UDedi(Ki)) and ∆(UDedi(K̃i)), we obtain
an infinite chain of (possibly recurring) strategies. So consider such a chain {σ(k)

i , σ̃
(k)
i }k∈N; by

construction,
. . .

w�
i,K̃i

σ̃
(2)
i

w�
i,Ki

σ
(2)
i

w�
i,K̃i

σ̃
(1)
i

w�
i,Ki

σ
(1)
i .

By the definition of dominance, we know that, for all s−i ∈ Σ−i:

∀ k ∈ N ∀t̃vi ∈ K̃i, FAi (σ(k)
i )t̃vi − FPi (σ(k)

i ) ≤ FAi (σ̃(k)
i )t̃vi − FPi (σ̃(k)

i )
∀tvi ∈ Ki, FAi (σ̃(k)

i )tvi − FPi (σ̃(k)
i ) ≤ FAi (σ(k+1)

i )tvi − FPi (σ(k+1)
i )

(B.2)

where for instance FAi (σ(k)
i ) is an abbreviation for FAi (σ(k)

i t s−i).
Because we have {xi, yi} ⊂ Ki ∩ K̃i, we can set both tvi and t̃vi to be xi for all k ∈ N. Fixing

any s−i, Equation B.2 can be re-written as follows:

∀ k ∈ N FAi (σ(k)
i )xi − FPi (σ(k)

i ) ≤ FAi (σ̃(k)
i )xi − FPi (σ̃(k)

i )
FAi (σ̃(k)

i )xi − FPi (σ̃(k)
i ) ≤ FAi (σ(k+1)

i )xi − FPi (σ(k+1)
i )

This gives us an infinite sequence of non-decreasing numbers. Notice that the sequence is also upper
bounded because the winning-probability function FA has a value between 0 and 1, and the price
is non-negative; hence each term is upper bounded by B. By the Bolzano-Weierstrass theorem,
there must exist some Hε ∈ N such that

∀ k > Hε FAi (σ(k)
i )xi − FPi (σ(k)

i ) ≤ FAi (σ̃(k)
i )xi − FPi (σ̃(k)

i ) (B.3)

FAi (σ̃(k)
i )xi − FPi (σ̃(k)

i ) ≤ FAi (σ(k+1)
i )xi − FPi (σ(k+1)

i ) (B.4)

FAi (σ(k+1)
i )xi − FPi (σ(k+1)

i ) ≤ FAi (σ(k)
i )xi − FPi (σ(k)

i ) +
ε

3B
(B.5)

While this Hε is defined for a specific choice of s−i ∈ Σ−i, we can take the largest Hε among
all s−i because Σ−i is finite; this makes Equation B.3, Equation B.4 and Equation B.5 hold for all
s−i.

Similarly, we can choose both tvi and t̃vi to be yi, obtaining another Hε (and thus we take
the larger one of the two), so that for all s−i we have not only Equation B.3, Equation B.4 and
Equation B.5 but also

∀k > Hε FAi (σ(k)
i )yi − FPi (σ(k)

i ) ≤ FAi (σ̃(k)
i )yi − FPi (σ̃(k)

i ) (B.6)

FAi (σ̃(k)
i )yi − FPi (σ̃(k)

i ) ≤ FAi (σ(k+1)
i )yi − FPi (σ(k+1)

i ) (B.7)

FAi (σ(k+1)
i )yi − FPi (σ(k+1)

i ) ≤ FAi (σ(k)
i )yi − FPi (σ(k)

i ) +
ε

3B
(B.8)

Next, we pick an arbitrary k > Hε, and will prove that the two strategies σ(k+1)
i and σ̃

(k)
i are

the two strategies that we are looking for.
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We first sum up Equation B.3, Equation B.5 and Equation B.7. The (expected) prices and the
FAi (σ(k)

i )xi term will cancel and we can deduce that

FAi (σ(k+1)
i )(xi − yi) ≤ FAi (σ̃(k)

i )(xi − yi) +
ε

3B
.

We then sum up Equation B.4, Equation B.6 and Equation B.8. The (expected) prices and the
FAi (σ(k)

i )yi term will cancel and we can deduce that

FAi (σ̃(k)
i )(xi − yi) ≤ FAi (σ(k+1)

i )(xi − yi) +
ε

3B
.

Since xi − yi ≥ 1, combining the last two inequalities yields∣∣FAi (σ̃(k)
i )− FAi (σ(k+1)

i )
∣∣ ≤ ε

3B
. (B.9)

We emphasize again that this holds for all s−i and our notion FAi (σ̃(k)
i ) is an abbreviation to

FAi (σ̃(k)
i t s−i), so the first inequality in Lemma B.1 is derived.

We now consider the price terms. Combining Equation B.4 and Equation B.9, we get:

FAi (σ̃(k)
i )xi − FPi (σ̃(k)

i ) ≤ FAi (σ(k+1)
i )xi − FPi (σ(k+1)

i )

≤ (FAi (σ̃(k)
i ) +

ε

3B
)xi − FPi (σ(k+1)

i )

⇒ −FPi (σ̃(k)
i ) ≤ ε

3
− FPi (σ(k+1)

i ) . (B.10)

Summing up Equation B.3 and Equation B.5 and then substituting Equation B.9, we get:

FAi (σ(k+1)
i )xi − FPi (σ(k+1)

i ) ≤ FAi (σ̃(k)
i )xi − FPi (σ̃(k)

i ) +
ε

3B
≤ (FAi (σ(k+1)

i ) +
ε

3B
)xi − FPi (σ̃(k)

i ) +
ε

3B

⇒ −FPi (σ(k+1)
i ) ≤ 2ε

3
− FPi (σ̃(k)

i ) . (B.11)

Combining the last two inequalities Equation B.10 and Equation B.11 we immediately get the
second requirement of Lemma B.1, since this holds for all s−i:∣∣FPi (σ̃(k)

i )− FPi (σ(k+1)
i )

∣∣ ≤ 2ε
3

,

therefore obtaining the second inequality claimed by the lemma, and thus completing the proof of
the lemma.

B.2 The Distinguishable Monotonicity Lemma

To prove that a given social choice function can be implemented in undominated strategies, we
are happy to work with mechanisms using very special strategies and allocation functions. The
important thing is that they ensure that the undominated strategies corresponding to a given
approximate-valuation set are simple to characterize. Specifically, we consider mechanisms in which
any possible valuation is an available strategy, and whose winning-probability functions are restric-
tions (to {0, . . . , B}N ) of integrable functions (over [0, B]N ) satisfying a suitable monotonicity
property. A simple lemma will then guarantee that the undominated strategies of such mechanisms
are easy to work with. (We stress that our setting continues to be discrete, as the analysis over a
continuous domain is only a tool for proving the lemma.)
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Definition B.2. Let f : [0, B]N → [0, 1]N be a winning-probability function. We call a mechanism
M = (Σ, F ) an f-mechanism if Σ = {0, 1, . . . , B}N and:
• f is integrable and monotonic (i.e., each fi is integrable and a non-decreasing function in

player i’s coordinate), and
• FA = f |{0,1,...,B} and, for all i ∈ N and v ∈ Σ, FPi (v) = vi · fi(vi t v−i)−

∫ vi
0 fi(z t v−i) dz.

Notation. For a given winning-probability function f , we will denote by Mf the corresponding
f -mechanism. Note that Mf is deterministic if and only if f(Σ) = FA(Σ) ⊆ {0, 1}N .

In the definition of an f -mechanism we have only required the expected price imposed by the
mechanism to satisfy a certain condition depending on f . The underlying (possibly probabilistic)
price function will not matter for our analysis (and it can be easily chosen to ensure other desirable
properties of the f -mechanism, such as the fact that the opt-out condition is satisfied).

The lemma below shows that, if the winning-probability function of Mf , beyond being non-
decreasing, actually satisfies an additional monotonicity condition, then we can simply characterize
the undominated strategies of Mf associated to a given approximate-valuation sets, so as to enable
us to engineer implementations in undominated strategies.

Definition B.3. Let f : [0, B]N → [0, 1]N be a winning-probability function. For d ∈ {1, 2}, we
say that f is d-distinguishably monotonic (d-DM, for short) if f is integrable and monotonic,
and, in addition, it satisfies the following “distinguishability” condition:

∀ i ∈ N , ∀vi, v′i ∈ Σi s.t. vi ≤ v′i − d, ∃ v−i ∈ Σ−i
∫ v′i

vi

(
fi(z t v−i)− fi(vi t v−i)

)
dz > 0 .

Distinguishable monotonicity is certainly a requirement additional to the traditional one of
non-decreasing monotonicity, but is actually quite mild. (Indeed, the second-price mechanism can
be represented as an f -mechanism where f is 2-DM —and if ties are broken at random, it is even
1-DM.) Nonetheless, it is a quite useful requirement.

Lemma B.4 (Distinguishable Monotonicity Lemma). For all f -mechanisms Mf , players i, and
δ-approximate-valuation profiles K,

UDedi(Ki) ⊆ {minKi, . . . ,maxKi} if f is 1-DM, and
UDedi(Ki) ⊆ {minKi − 1, . . . ,maxKi + 1} if f is 2-DM.

(Above minKi and maxKi respectively denote the minimum and maximum integers in Ki.)

Proof. Suppose f is d-DM, for d ∈ {1, 2}, and define the strategy v∗i
def= minKi. Then,

• v∗i very-weakly dominates every vi ≤ v∗i − d. Fix any (pure) strategy sup-profile v−i ∈ Σ−i
for the other players and any possible true valuation tvi ∈ Ki. Letting v∗ = v∗i t v−i and
v = vi t v−i, we prove that

EUi
(
tvi, F (v∗)

)− EUi
(
tvi, F (v)

)
=
(
fi(v∗)− fi(v)

) · tvi − (FPi (v∗)− FPi (v)
)

=
(
fi(v∗)− fi(v)

) · tvi −(v∗i · fi(v∗)− ∫ v∗i

0
fi(z t v−i) dz − vi · fi(v) +

∫ vi

0
fi(z t v−i) dz

)

=
(
fi(v∗)− fi(v)

) · (tvi − v∗i ) +
∫ v∗i

vi

(
fi(z t v−i)− fi(v)

)
dz .
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Now note that, since tvi ∈ Ki, tvi − v∗i = tvi − minKi ≥ 0; moreover, by the monotonicity
of f , whenever z ≥ vi, it holds that fi(z t v−i) ≥ fi(v). We deduce that EUi

(
tvi, F (v∗)

) ≥
EUi

(
tvi, F (v)

)
. We conclude that v∗i very-weakly dominates vi.

• There is a strategy sub-profile v−i for which v∗i is strictly better than every vi ≤ v∗i − d.
Indeed, since f is d-DM, for every vi ≤ v∗i − d there exists a strategy sub-profile v−i to make∫ v∗i
vi

(
fi(z t v−i) − fi(v)

)
dz strictly positive, so for this v−i playing v∗i is strictly better than

vi.

An analogous argument shows that the strategy v∗i = maxKi weakly dominates every strategy
vi ∈ Σi with vi ≥ v∗i + d. Therefore, the (pure) undominated strategies must lie in the interval
{minKi − (d− 1), . . . ,maxKi + (d− 1)}. This completes the proof of the theorem.

C Proof for Theorem 1

Fix arbitrarily a number of players n, an approximation accuracy δ, and then a valuation bound
B > 3−δ

2δ . In light of the Revelation Principle in the approximate-valuation model (see Remark 5.4),
it suffices to prove that

For every (possibly probabilistic) direct dominant strategy truthful mechanism M = (Σ, F ) over
C δ
n,B, there exists a δ-approximate-valuation profile K and a true-valuation profile tv ∈ K such that

E
[
SW

(
tv, F (K)

)] ≤ ( 1
n

+
b(3− δ)/2δc+ 1

B

)
MSW(tv) .

We start by proving a separate claim: essentially, if a player reports a δ-integer-interval whose
center is sufficiently high, then his winning probability and expected price remain constant.

Claim C.1. For all players i, integers x ∈ (3−δ
2δ , B], and δ-approximate-valuation sub-profiles K−i,

FAi (intδ(x) tK−i) = FAi (intδ(x+ 1) tK−i) and

FPi (intδ(x) tK−i) = FPi (intδ(x+ 1) tK−i) .

Proof. Define Ki
def= intδ(x) and K ′i

def= intδ(x+ 1). Then:

• If player i has approximate-valuation set Ki then reporting Ki very-weakly dominates report-
ing K ′i:

∀ tvi ∈ Ki : FAi (Ki tK−i) · tvi − FPi (Ki tK−i)
≥ FAi (K ′i tK−i) · tvi − FPi (K ′i tK−i) .

• If player i has approximate-valuation set K ′i then reporting K ′i very-weakly dominates report-
ing Ki:

∀ tv′i ∈ K ′i : FAi (K ′i tK−i) · tv′i − FPi (K ′i tK−i)
≥ FAi (Ki tK−i) · tv′i − FPi (Ki tK−i) .
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On one hand, we can choose tvi = x and tv′i = x+1, and sum the two corresponding inequalities.
The FPi price terms cancel, and we get:

FAi (K ′i tK−i) ≥ FAi (Ki tK−i) .

On the other hand, we can choose tvi = bx(1 + δ)c and tv′i = d(x + 1)(1 − δ)e,4 and sum the two
corresponding inequalities to get:(

FAi (Ki tK−i)− FAi (K ′i tK−i)
) · (bx(1 + δ)c − d(x+ 1)(1− δ)e) ≥ 0 .

Therefore, whenever x > 3−δ
2δ , we always have bx(1 + δ)c − d(x+ 1)(1− δ)e > 0 and thus FAi (Ki t

K−i) = FAi (K ′i t K−i). Finally, going back to the two inequalities for very weak dominance, we
also deduce that FPi (Ki tK−i) = FPi (K ′i tK−i), as desired.

We can now go back to the proof of Theorem 1.
Choose the profile of approximate-valuation sets K def= (intδ(c), intδ(c), . . . , intδ(c)), where c def=

b3−δ2δ c + 1. By averaging, because the summation of FAi (K) over i ∈ N cannot be greater
than 1, there must exist a player j such that FAj (K) ≤ 1/n. Without loss of generality, let
such player be player 1. Then, invoking Claim C.1 multiple times with player i = 1, K−i =
(intδ(c), intδ(c), . . . , intδ(c)) of this proof, and x being c, c+ 1, . . . , B, we obtain that

FA1 (intδ(B), intδ(c), . . . , intδ(c)) = FA1 (K) ≤ 1
n
.

Now suppose that the true approximate-valuation profile of the players isK ′ def= (intδ(B), intδ(c), . . . ,
intδ(c)). Then, for the choice of true-valuation profile tv = (B, c, . . . , c) ∈ K ′, we get the following
social welfare:

E
[
SW

(
tv, F (K ′)

)] ≤ 1
n
B +

n− 1
n

c ≤
(

1
n

+
c

B

)
B =

(
1
n

+
c

B

)
·MSW(tv) ,

as desired.

D Proof for Theorem 2

D.1 Proof of Statement 1

Let us first consider the second-price mechanism with a deterministic tie-breaking rule, M2P =
(Σ2P, F2P), and prove that

For every n, δ, B. For every δ-approximate-valuation profile K = (K1, . . . ,Kn), every tv ∈ K,
and every v ∈ UDed(tv), the following inequality holds:

SW
(
tv, F2P(v)

) ≥ (1− δ)2
(1 + δ)2

MSW(tv)− 2 · 1− δ
1 + δ

. (D.1)

By the definition of δ-approximate-valuation set, for each player i, we can assume that Ki ⊂
[xi(1− δ), xi(1 + δ)] ∩ Z for some xi.

4As long as x > 1
2δ

it is guaranteed that, for these choices, tvi ∈ Ki and tv′i ∈ K′i. But later we will choose
x > 3−δ

2δ
, so we are safe.
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We observe that for each player i, the set of undominated strategies

UDedi(x) ⊂ {minKi − 1, . . . ,maxKi + 1} ⊂ [dxi(1− δ)e − 1, bxi(1 + δ)c+ 1
] ∩ Z .

The first inclusion follows from the Distinguishable Monotonicity Lemma (Lemma B.4), combining
the fact that the second-price mechanism M2P is an f -mechanism where f is 2-DM (recall the
explanation after Definition B.3).

Now we prove the lower bound of the social welfare. Consider a possible true-valuation profile
tv ∈ K, in which player i∗ has the highest valuation tvi∗ = maxi tvi. For an arbitrary possible (pure)
strategy profile v ∈ UDed(K), and consider the winner j∗ with the highest bid vj∗ = maxj vj . We
now bound the difference between tvi∗ and tvj∗ . We only need to consider the case when i∗ 6= j∗.

Our observation suggests that vi∗ ≥ dxi∗(1− δ)e − 1, and vj∗ ≤ bxj∗(1 + δ)c+ 1. The fact that
j∗ is the winner implies vj∗ ≥ vi∗ . Combining them we have xi∗(1− δ) ≤ xj∗(1 + δ) + 2. Since we
also know that tvi∗ ≤ xi∗(1 + δ) and tvj∗ ≥ xj∗(1− δ), all of the above suggests that:

SW(tv, F2P(v)) = tvj∗ ≥ (1− δ)xj∗ ≥ (1− δ)1− δ
1 + δ

xi∗ − 2(1− δ)
(1 + δ)

≥ (1− δ)1− δ
1 + δ

1
1 + δ

tvi∗ − 2(1− δ)
(1 + δ)

=
(1− δ)2
(1 + δ)2

MSW(tv)− 2(1− δ)
(1 + δ)

.

Thus, Statement 1 of Theorem 2 holds if second-price mechanism breaks ties deterministically.
Consider now the case where the second-price mechanism breaks ties at random (assigning a

positive probability to each tie). Then, one can use a proof analogous to the one above, with the
only difference being that M2P is an f -mechanism where f is 1-DM (instead of only 2-DM), and
invoking a stronger result of Lemma B.4, to show the stronger lower bound

SW
(
tv, F2P(v)

) ≥ (1− δ)2
(1 + δ)2

MSW(tv) .

Thus Statement 1 is true in all cases.

D.2 Proof of Statement 2

Fix arbitrarily a number of players n, an approximation accuracy δ ∈ (0, 1), and then a valuation
bound B ≥ 1

δ . We need to prove that:
For every deterministic mechanism M = (Σ, F ) over C δ

n,B, there exists a δ-approximate-
valuation profile K, a strategy profile s ∈ UDed(K) and a true-valuation profile tv ∈ K such
that

SW
(
tv, F (s)

) ≤ ((1− δ)2
(1 + δ)2

+
4
B

)
MSW(tv) .

Define x
def= B and y

def= bx(1−δ)+2
1+δ c. By our choice of B, we know that x ≥ y. Therefore

both x, y ∈ {0, 1, . . . , B}. Furthermore, one can verify that intδ(x) ∩ intδ(y) contains at least two
(integer) points (namely dx(1 − δ)e and dx(1 − δ)e + 1). Invoking the Undominated Intersection
Lemma (Lemma B.1), for any arbitrarily small ε, we can pick σi ∈ ∆(UDedi(intδ(x))) and σ′i ∈
∆(UDedi(intδ(y))) for every player i ∈ N so that σi and σ′i are ε-close in terms of both winning
probability and price for any s−i.

Now consider the outcome distribution F (σ′1, . . . , σ′n). (Note that, while the mechanism is
deterministic, the randomness comes from the mixed strategy profile.) Since the good will be
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assigned with a total probability mass of 1, by averaging, there exists some player j such that
FAj (σ′1, . . . , σ′n) ≤ 1

n , i.e., player j receives the good with no more than 1
n probability. Without loss

of generality, we assume that j = 1.
According to the result of the Undominated Intersection Lemma, we know that FA1 (σ1tσ′−1) ≤

1
n + ε. If ε is small enough such that 1

n + ε < 1, then by the definition of expectation we know
that there exists some pure strategy profile s1 t s′−1 that is in the support of σ1 t σ′−1 such that
FA1 (s1 t s′−1) = 0.

Now consider a “world” with δ-approximate-valuation profile K and true-valuation profile tv as
follows:

K
def=
(
intδ(x), intδ(y), . . . , intδ(y)

)
and

tv
def=
(b(1 + δ)xc, d(1− δ)ye, . . . , d(1− δ)ye) .

We have just shown that there exist some s1 t s′−1 ∈ UDed(K) satisfying FA1 (s1 t s′−1) = 0.
Therefore,

SW
(
tv, F (s1 t s′−1)

)
= d(1− δ)ye ≤ (1− δ)y + 1 ≤ x(1− δ)2

1 + δ
+ 3

≤ (1− δ)2
(1 + δ)2

b(1 + δ)xc+ 4 ≤
(

(1− δ)2
(1 + δ)2

+
4
B

)
b(1 + δ)xc

=
(

(1− δ)2
(1 + δ)2

+
4
B

)
MSW(tv) .

and thus the claimed inequality hods.

E Proof for Theorem 3

E.1 Proof of Statement 1

Looking for an optimal mechanism, we choose to restrict ourselves to consider only f -mechanism
(recall Definition B.2), so as to leverage our Distinguishable Monotonicity Lemma (Lemma B.4) and
simplify considerably our search. Indeed, this choice constrains the available strategies to coincide
with all possible valuations, that is {0, . . . , B}, and our search is reduced to the the problem of
finding a 1-DM winning-probability function f that ensures the desired fraction of the maximum
social welfare at every possible tvi in the integer interval {minKi, . . . ,maxKi} (which, by the
Distinguishable Monotonicity Lemma must contain all the undominated strategy profiles).

More concretely, we articulate the above high-level proof strategy in three conceptual steps.

Step 1

We start by putting forward a set of constraints for the winning-probability functionf , and prove
the they are sufficient for ensuring the target fraction of the maximum social welfare, assuming (for
now) that the set of available strategies coincides with the set of all possible valuation profiles.

For every δ ∈ (0, 1), define Dδ
def=
(

1+δ
1−δ
)2 − 1 = 4δ

(1−δ)2 > 0. We say that a winning-probability
function f is δ-good if it is 1-distinguishably monotonic and:

∀ i ∈ N, ∀ v ∈ {0, 1, . . . , B}N ,
n∑
j=1

fj(v)vj +Dδ · fi(v)vi ≥ 1
n
· vi(n+Dδ) . (E.1)

We prove the following lemma:
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Lemma E.1. If f is δ-good, then the mechanism Mf = (Σ, Ff ) guaranteed by invoking the Distin-
guishable Monotonicity Lemma (Lemma B.4) with f has the following social welfare guarantee in
undominated strategies: for every δ-approximate-valuation profile K = (K1, . . . ,Kn), every tv ∈ K,
and every v ∈ UDed(K):

E
[
SW

(
tv, Ff (v)

)] ≥ ((1− δ)2 + 4δ
n

(1 + δ)2

)
MSW(tv) .

Proof. For every player i ∈ N , let xi ∈ R be such that Ki ⊂ intδ(xi), and let intδ(x) = intδ(x1) ×
· · · × intδ(xn).

Notice that MSW(tv) = tvi for some i, so it suffices to prove the desired inequality by replacing
the MSW(tv) by tvi for each i. Then, re-ordering the four universal quantifiers of the lemma, we
now proceed to show the following:

∀i ∈ N, ∀v ∈ {0, 1, . . . , B}N , ∀δ-approximate K ⊂ intδ(x) s.t. v ∈ UDed(K), ∀tv ∈ K :
n∑
j=1

tvjfj(v) = SW
(
tv, Ff (v)

) ≥ ((1− δ)2 + 4δ
n

(1 + δ)2

)
tvi . (E.2)

Also, for every player i ∈ N : by Lemma B.4, we must have (1−δ)xi ≤ minKi ≤ vi ≤ maxKi ≤ (1+
δ)xi, since f is 1-DM and Ki ⊂ intδ(xi). Moreover, tv ∈ K indicates that (1−δ)xi ≤ tvi ≤ (1+δ)xi;
combining these two we have

1− δ
1 + δ

vi ≤ tvi ≤ 1 + δ

1− δ vi . (E.3)

In order to falsify Equation E.2, for a fixed i and v, we need to choose K and tv adversarially
according to v. By analyzing the two sides of the inequality in Equation E.2, it is clear that choosing
tvj (for j 6= i) to be as small as possible is the “worst case”, because tvj only appears on the left

and with a positive coefficient. However, depending on whether fi(v)− ( (1−δ)2+ 4δ
n

(1+δ)2

)
is non-negative

or negative, the “worst case” choice of tvi may be either as large as possible or as small as possible.
For this purpose, we use the bounds of Equation E.3.

Based on the analysis above, by choosing the “worse case” choices of tv, the following inequalities
become a “sufficient but not necessary” condition for implying the inequality of Equation E.2:

∀ i ∈ N, ∀ v ∈ {0, 1, . . . , B}N ,


∑n

j=1

(
1−δ
1+δ

)
vjfj(v) ≥

(
(1−δ)2+ 4δ

n
(1+δ)2

)(
1−δ
1+δ

)
vi , and∑n

j=1

(
1−δ
1+δ

)
vjfj(v) +

(
1+δ
1−δ − 1−δ

1+δ

)
vifi(v) ≥

(
(1−δ)2+ 4δ

n
(1+δ)2

)(
1+δ
1−δ
)
vi ,

or, equivalently,

∀ i ,∀ v,


∑n

j=1 vjfj(v) ≥
(

(1−δ)2+ 4δ
n

(1+δ)2

)
vi = n+Dδ

n · 1
Dδ+1 · vi , (E.4)∑n

j=1 vjfj(v) +Dδ · vifi(v) ≥((1− δ)2 + 4δ
n

)· 1
(1−δ)2 · vi = n+Dδ

n vi . (E.5)

Note that Equation E.5 is the inequality required by the statement of the lemma; the other in-
equality, Equation E.4, we show is implied by Equation E.5. Indeed:

n∑
j=1

vjfj(v) =
1

1 +Dδ

 n∑
j=1

vjfj(v) +Dδvifi(v)

 ≥ 1
1 +Dδ

n+Dδ

n
vi ,

as desired. In sum, we have proved that as long as Equation E.5 is satisfied for all i ∈ N and for
any v ∈ {0, 1, . . . , B}B, the social welfare guarantees of Equation E.2 hold.
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Step 2

We now must find a suitable δ-good winning-probability function f , letting the Distinguishable
Monotonicity Lemma do “the rest of the work”. Helpful in searching for such a function is the
observation that a mechanism will have the toughest job maximizing social welfare whenever several
players report high bids that are all very close. Because the players’ valuations are only approximate,
the mechanism will not be able to “infer” from such bids who is the player with highest true
valuation. This suggests that assigning the good to a player chosen at random may be reasonable
in such a situation. On the other hand, if players bids are not so clustered, then the mechanism
should give a much higher probability mass to the highest bids, as lower bids are less likely to come
from players with high true valuations. To achieve optimality, however, one must be much more
careful in allocating probability mass, and some complexity should be expected.

We propose a specific winning-probability function f (δ) (which depends on the approximation
accuracy δ, which is indeed known to the mechanism designer), and prove that f (δ) is well-defined,
satisfies the constraints of Step 1, and also is 1-distinguishable monotonic.

Definition E.2. For every δ ∈ (0, 1), and let Dδ
def=
(

1+δ
1−δ
)2 − 1 > 0. We define the function

f (δ) : [0, B]N → [0, 1]N as follows:

• for every z = (z1, . . . , zn) ∈ [0, B]N such that z1 ≥ z2 ≥ · · · ≥ zn, let n∗ be the least index in
N such that

∀ i > n∗, zi ≤
∑n∗

j=1 zj

n∗ +Dδ
, (E.6)

call players 1, . . . , n∗ the winners and players n∗ + 1, . . . , n the losers, and then set

f
(δ)
i (z) def=

{
1
n · n+Dδ

n∗+Dδ ·
zi(n

∗+Dδ)−
∑n∗
j=1 zj

ziDδ
, if i ≤ n∗,

0, if i > n∗;
(E.7)

• for other z, define f (δ) by extending it symmetrically: specifically, letting π be any permutation
over the players such that π(z) = (zπ(1), . . . , zπ(n)) is non-increasing, we define f

(δ)
i (z) def=

f
(δ)
π(i)(π(z)).

The definition of f (δ) seems quite complicated, but the underlying intuition is not that obscure.
Essentially, the first step in coming up for an educated guess for f (δ) is to use symmetry to derive
a candidate satisfying the constraints from Equation E.1. (The most natural such candidate is
simply Equation E.7 with n∗ = n.) Such a guess almost works, in the sense that it possesses all
the properties that we want (the sum of the coordinates is at most 1 and it is 1-distinguishably
monotonic), with the exception that it sometimes takes on negative values — and that is a problem
as probabilities really must be non-negative.

The next step is thus to “patch” the guessed function by forcing non-negativity while main-
taining all the other properties, and this is exactly where the idea of winners and losers comes in.
Roughly, only players with sufficiently low reported valuations are at risk of a “negative proba-
bility” (and they are most likely to have low true valuations), so that we remove them from the
auction altogether, and to preserve the other properties we need to re-weight the function, thereby
obtaining Equation E.7. Thus, at high level, we simply keep removing players until all of the players
are given non-negative probability (by virtue of being in the auction or having been thrown out).
This idea essentially comes from another paper of the third author [CLS+10].
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Having defined (and given some intuition for) our choice of f (δ), we now turn to the task of
proving that it satisfies all the properties that we want. However, the definition of f (δ) is somewhat
hard to work with, and proving properties about f (δ) will require some work. For example, even
establishing the simple property of monotonicity requires lots of care, because as a player’s bid
varies from 0 to B, the number of winners n∗ also varies, thereby changing the expression for f (δ),
and thus it is not clear that the player’s probability of winning does not go down.

Lemma E.3. For f (δ) from Definition E.2 the following properties hold:
1. The number of winners n∗ is well defined.
2. For every z = (z1, . . . , zn) ∈ [0, B]N such that z1 ≥ z2 ≥ · · · ≥ zn, in addition to Equation E.6,

we also have that,

∀ i ≤ n∗, zi >

∑n∗
j=1 zj

n∗ +Dδ
. (E.8)

(And an analogous property holds for other z as f (δ) is extended symmetrically.)
3. The number of winners n∗ is unique.
4. The function f (δ) is a valid winning-probability function.
5. The function f (δ) is monotonic and intergrable.
6. The function f (δ) is 1-distinguishably monotonic.
7. The function f (δ) is δ-good (it satisfies Equation E.1).

Proof. We prove the statements one at a time:

(1) The requirement of Equation E.6 is always satisfied when n∗ = n, so the set of possible n∗’s
is not empty, and thus the smallest element of that set always exists.

(2) As z is assumed to be non-increasing, it suffices to prove Equation E.8 for i = n∗. And,
indeed, by the minimality of n∗ we know that if we attempt to choose n∗ − 1, there exists
some j ≥ n∗ such that

zn∗ ≥ zj >
∑n∗−1

j=1 zj

n∗ − 1 +Dδ
,

which, after rearranging, is equivalent to zn∗ >
∑n∗
j=1 zj

n∗+Dδ . Clearly, an analogous statement
holds for other z, as f (δ) is extended symmetrically, by re-labeling the indices of z to make it
non-increasing.

(3) Suppose by way of contradiction that there exist two n⊥ and n> with 1 ≤ n⊥ < n> ≤ n
satisfying Equation E.6; in particular, we have already established that they also satisfy
Equation E.8. Now define S⊥ def=

∑n⊥
j=1 zj , S

> def=
∑n>

j=1 zj , S
∆ def= S>−S⊥, and n∆ def= n>−n⊥.

By symmetry we only consider z = (z1, . . . , zn) ∈ [0, B]N such that z1 ≥ z2 ≥ · · · ≥ zn. By
Equation E.6 and Equation E.8, for i ∈ {n⊥ + 1, . . . , n>},

S⊥

n⊥ +Dδ
≥ zi > S>

n> +Dδ
=

S⊥ + S∆

n⊥ + n∆ +Dδ
.

Averaging over all zi for i ∈ {n⊥ + 1, . . . , n>}, we get

S⊥

n⊥ +Dδ
≥ S∆

n∆
>

S⊥ + S∆

n⊥ + n∆ +Dδ
.
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The second inequality of this last equation yields a contradiction with the first inequality in
the same equation:

S∆

n∆
>

S⊥ + S∆

n⊥ + n∆ +Dδ
⇔ S∆

n∆
>

S⊥

(n⊥ +Dδ)
.

(4) Substituting Equation E.8 into the definition of f (δ) (defined in Equation E.7) we immediately
have f (δ)

i (z) ≥ 0 for each player i. Summing the f (δ)
i up over all the players i we get:

n∑
i=1

f
(δ)
i (z) =

1
n
· n+Dδ

n∗ +Dδ
·
n∗∑
i=1

zi(n∗ +Dδ)−
∑n∗

j=1 zj

ziDδ

=
1
n
· n+Dδ

(n∗ +Dδ)Dδ
·
n∗(n∗ +Dδ)−

n∗∑
i=1

n∗∑
j=1

zj
zi


≤ 1
n
· n+Dδ

(n∗ +Dδ)Dδ
· (n∗(n∗ +Dδ)− n∗n∗) =

n+Dδ

n
· n∗

n∗ +Dδ
≤ 1 .

In particular, f (δ)
i (z) ≤ 1 for each player i, as we have already established that f (δ)

i (z) is
non-negative. And thus, after symmetrically extending the above argument to all other z, we
deduce that f (δ) is a valid winning-probability function.

(5) For notational simplicity assume that i = n (so that z−i = z−n) and also assume z1 ≥ z2 ≥
· · · ≥ zn−1. (As usual, the other cases follow by symmetry by appropriate re-labeling.)

– So define n′ to be number of winners when only considering the first (n− 1) values, i.e.,
when only considering z1, . . . , zn−1. We claim that:

zn ≤
∑n′

j=1 zj

n′ +Dδ
−→ f (δ)

n (z) = 0 (i.e., n is a loser) (E.9)

zn >

∑n′
j=1 zj

n′ +Dδ
−→ f (δ)

n (z) > 0 (i.e., n is a winner) (E.10)

The implication of Equation E.9 is clear, because the number of winners when player
n is present is still n′. We now argue that the implication of Equation E.10 also holds,
which is less of obvious.

So assume by way of contradiction that player n is a loser and yet zn >
∑n′
j=1 zj

n′+Dδ . Let
the current number of winners be n∗ (i.e., when player n is present), so we know that

zn ≤
∑n∗
j=1 zj

n∗+Dδ ; in particular, we must have that n′ 6= n∗ (otherwise we are done, as there
is already a contradiction). However, for this choice of n∗, we have that:

∀ i ∈ {n∗ + 1, . . . , n− 1}, zi ≤
∑n∗

j=1 zj

n∗ +Dδ
,

But, this means that both n′ and n∗ are the number of winners when player n is absent,
contradicting the uniqueness from Item 3. Thus, Equation E.10 also holds.
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– Therefore, we only need to prove that given two z⊥n , z
>
n ∈ [0, B]N such that z>n > z⊥n >∑n′

j=1 zj
n′+Dδ we have that f (δ)

i (z−n t z>n ) ≥ f
(δ)
i (z−n t z⊥n ). Assume that when bidding z>n

there are a total of n> + 1 winners (the first n> players and player n), and bidding z⊥n
there are a total of n⊥ + 1 winners (the first n⊥ players and player n). Then we claim
that

n⊥ ≥ n> . (E.11)

Assume by way of contradiction that n⊥ < n> = n⊥ + n∆. As before, let S⊥ =
∑n⊥

j=1 zj

and S> =
∑n>

j=1 zj = S⊥ + S∆. For every player n⊥ ≤ i < n>:

S⊥ + z⊥n
n⊥ + 1 +Dδ

< zi ≤ S> + z>n
n> + 1 +Dδ

=
S⊥ + S∆ + z>n

n⊥ + n∆ + 1 +Dδ

Averaging over all n⊥ ≤ i < n> we get:

S⊥ + z⊥n
n⊥ + 1 +Dδ

<
S∆

n∆
≤ S⊥ + S∆ + z>n
n⊥ + n∆ + 1 +Dδ

but this is already a contradiction:

S∆

n∆
≤ S⊥ + S∆ + z>n
n⊥ + n∆ + 1 +Dδ

⇔ S∆

n∆
≤ S⊥ + z>n
n⊥ + 1 +Dδ

⇒ S∆

n∆
≤ S⊥ + z⊥n
n⊥ + 1 +Dδ

,

and thus Equation E.11 holds.

– Now we have established that n⊥ ≥ n>. If n⊥ = n> then f
(δ)
i (z−n t z>n ) ≥ f

(δ)
i (z−n t

z⊥n ) is immediately implied because they are using the same formula, and recall that
Equation E.7 is non-increasing with respect to zi.

If n⊥ > n>, let n⊥ = n> + n∆, S> =
∑n>

j=1 zj and S⊥ =
∑n⊥

j=1 zj = S> + S∆ as before.
Then we average over all zi for n> < i ≤ n⊥ we get:

S∆

n∆
>

S⊥ + z⊥n
n⊥ + 1 +Dδ

=
S> + S∆ + z⊥n

n> + n∆ + 1 +Dδ
⇔ S∆

n∆
>

S> + z⊥n
n> + 1 +Dδ

(E.12)

Using that, we do the calculating:

f (δ)
n (z−n t z>n )− f (δ)

n (z−n t z⊥n )

= C1 ·
(z>n (n> + 1 +Dδ)− S> − z>n

(n> + 1 +Dδ)z>n
− z⊥n (n⊥ + 1 +Dδ)− S⊥ − z⊥n

(n⊥ + 1 +Dδ)z⊥n

)
= C1 ·

( S⊥ + z⊥n
(n⊥ + 1 +Dδ)z⊥n

− S> + z>n
(n> + 1 +Dδ)z>n

)
= C2 ·

(
(S⊥ + z⊥n )(n> + 1 +Dδ)z>n − (S> + z>n )(n⊥ + 1 +Dδ)z⊥n

)
= C2 ·

(
(S> + S∆ + z⊥n )(n> + 1 +Dδ)z>n − (S> + z>n )(n> + n∆ + 1 +Dδ)z⊥n

)
= C2 ·

(
S>(n> + 1 +Dδ)(z>n − z⊥n ) + S∆(n> + 1 +Dδ)z>n − n∆(S> + z>n )z⊥n

)
≥ C2 ·

(
S>(n> + 1 +Dδ)(z>n − z⊥n ) + S∆(n> + 1 +Dδ)z>n − n∆(S> + z⊥n )z>n

)
≥ 0
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Here we have used the fact of z>n − z⊥n ≥ 0 and S∆(n> + 1 +Dδ)− n∆(S> + z⊥n ) > 0 (by
Equation E.12). This finishes the proof stating that f (δ) is monotonic.
The integrability of f (δ) is obvious, because f (δ) is piecewise continuous, and there
are at most n pieces, as the number of winners decreases when zn increases (recall
Equation E.11).

(6) Fix a player i ∈ N and two distinct valuations vi, v′i ∈ {0, 1, . . . , B}, and assume that vi < v′i.
We have already established the monotonicity and intergrability of f (δ), so that, to prove
that f (δ) is 1-DM, we only need to find a specific v−i to make the integral positive (recall
Definition B.3).

So define v−i
def= (vi, vi, . . . , vi), then:

– f(vi t v−i) = 1
n since there are n winners, all bidding the same valuation.

– f(z t v−i) = 1
nDδ

(Dδ + n− 1− vi
z (n− 1)) > 1

n , when vi < z ≤ (1 +Dδ)vi.

Here the upper bound on z is to make sure that the number of winners is still n. Notice
that f(z t v−i) is a function that is strictly increasing when z increases in such range, and
therefore∫ v′i

vi

(
fi(z t v−i)− fi(vi t v−i)

)
dz ≥

∫ min{v′i,(1+Dδ)vi}

vi

(
fi(z t v−i)− fi(vi t v−i)

)
dz > 0 ,

as desired.

(7) Because f (δ) is 1-DM according to Item 6, in order to prove that f (δ) is δ-good, we only need
to show that Equation E.1 holds. As usual, W.L.O.G. we assume z1 ≥ z2 ≥ · · · ≥ zn.

We first observe that:
n∑
i=1

f
(δ)
i (z)zi =

n∗∑
i=1

f
(δ)
i (z)zi =

1
n
· n+Dδ

n∗ +Dδ
·
n∗∑
i=1

zi(n∗ +Dδ)−
∑n∗

j=1 zj

Dδ

=
1
n
· n+Dδ

n∗ +Dδ
·
(

n∗∑
i=1

zi

)
.

For each loser i (i.e., with i > n∗), we know that
n∑
j=1

f
(δ)
j (z)zj +Dδ · f (δ)

i (z)zi =
n∑
i=1

f
(δ)
i (z)zi =

1
n
· n+Dδ

n∗ +Dδ
·
(

n∗∑
i=1

zi

)
≥ 1
n
· zi · (n+Dδ) ,

as desired, where the last inequality is due to our choice of n∗ (recall Equation E.6).

For each winner i (i.e., with i ≤ n∗), we know that
n∑
j=1

f
(δ)
j (z)zj +Dδ · f (δ)

i (z)zi =
1
n
· n+Dδ

n∗ +Dδ
·
(

n∗∑
i=1

zi

)
+Dδ · f (δ)

i (z)zi

=
1
n
· n+Dδ

n∗ +Dδ
zi(n∗ +Dδ) =

1
n
· zi(n+Dδ) ,

again as desired. Notice that this is a generic argument for arbitrary z ∈ [0, B]N , and when
restricting z = v ∈ Σ = {0, 1, . . . , B}N , everything still holds; this finishes the proof that f (δ)

is δ-good.
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Step 3

Finally, we put all the pieces together together. The desired result will follow almost immediately by
invoking Distinguishable Monotonicity Lemma, because it ensures that the undominated strategies
are a subset of the possible valuation profiles.

Claim E.4. For every δ ∈ (0, 1), and consider the f (δ)-mechanism Mf (δ) = (Σ, Ff (δ)). For every
δ-approximate-valuation profile K = (K1, . . . ,Kn), every tv ∈ K, and every v ∈ UDed(K),

E
[
SW

(
tv, Ff (δ)(v)

)] ≥ (1− δ)2 + 4δ
n

(1 + δ)2
·MSW(tv) . (E.13)

Proof. By Lemma E.3, the function f (δ) from Definition E.2 is a (well-defined) winning-probability
function that is also δ-good. Therefore, by invoking Lemma E.1 with f (δ), we deduce that the
f (δ)-mechanism Mf (δ) yields the target guarantee on social welfare in undominated strategies.

Finally, we remark that our proposed optimal probabilistic mechanism can indeed be computed
efficiently (just like the second-price mechanism):

Lemma E.5. The outcome function Ff (δ) of the f (δ)-mechanism Mf (δ) is efficiently computable.

Proof. It suffices to show that both FA
f (δ) = f (δ) (the winning-probability function of the mech-

anism) and FP
f (δ) (the expected price function of the mechanism) are efficiently computable over

{0, 1, . . . , B}N .
First, we note that the winning-probability function f (δ) is indeed efficiently computable, be-

cause the number of winners is between 1 and n and can be determined in linear time.
Next, we argue why the expected price function is also efficiently computable, which may not

be so obvious as it is defined an integral of f (δ) (see Definition B.2). So, without loss of generality,
we show how to compute the expected price for player n as a function of vn, i.e.,

f (δ)
n (v−n t vn) · vn −

∫ vn

0
f (δ)
n (v−n t z) dz .

Indeed, note that f (δ)
n is a function that is piece-wisely defined according to different vn, since

different different values of vn may result in different numbers of winners (i.e., values of n∗). So
assume that v1 ≥ v2 ≥ · · · ≥ vn−1, and let n′ be the number of winners when player n is absent.

When vn ≤
∑n′
j=1 vj

n′+Dδ , the proof of the monotonicity of f (δ) (cf. Item 5 in Lemma E.3) implies

that f (δ)
n = 0, so that integral below this line is zero.

When vn >
∑n′
j=1 vj

n′+Dδ , one can again see from the proof of the monotonicity of f (δ) that the

number of winner players n∗ is non-increasing as a function of vn. Therefore, f (δ)
n contains at most

n different pieces and, for each piece, with n∗ fixed, f (δ)
n (v−n t vn) = a+ b/vn is a function that is

inversely dependent on vn so can be integrated symbolically. Therefore, the only question is how
to calculate the pieces for f (δ)

n .

This is again not hard, by using a simple line sweep method. One can start from vn =
∑n′
j=1 vj

n′+Dδ
and move vn upwards. At any moment, one can calculate the earliest time that Equation E.8 is
violated, and claim that another piece of f (δ)

n is found.
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E.2 Proof of Statement 2

Fix arbitrarily a number of players n, an approximation accuracy δ ∈ (0, 1), and then a valuation
bound B ≥ 1

δ . We need to prove that:
For every (possibly probabilistic) mechanism M = (Σ, F ) over C δ

n,B, there exists a δ-approximate-
valuation profile K, a strategy profile s ∈ UDed(K) and a true-valuation profile tv ∈ K such that

SW
(
tv, F (s)

) ≤ ((1− δ)2 + 4δ
n

(1 + δ)2
+

4
B

)
MSW(tv) .

Define x
def= B and y

def= bx(1−δ)+2
1+δ c. By our choice of B, we know that x ≥ y. Therefore

both x, y ∈ {0, 1, . . . , B}. Furthermore, one can verify that intδ(x) ∩ intδ(y) contains at least two
(integer) points (namely dx(1 − δ)e and dx(1 − δ)e + 1). Invoking the Undominated Intersection
Lemma (Lemma B.1), for any arbitrarily small ε, we can pick σi ∈ ∆(UDedi(intδ(x))) and σ′i ∈
∆(UDedi(intδ(y))) for every player i ∈ N so that σi and σ′i are ε-close in terms of both winning
probability and price for any s−i.

Now consider the outcome distribution F (σ′1, . . . , σ′n). Since the good will be assigned with a
total probability mass of 1, by averaging, there exists some player j such that FAj (σ′1, . . . , σ′n) ≤ 1

n ,
i.e., player j receives the good with no more than 1

n probability. Without loss of generality, we
assume that j = 1.

According to the result of Undominated Intersection Lemma, we know that FA1 (σ1tσ′−1) ≤ 1
n+ε.

Then by the definition of expectation we know that there exists some pure strategy profile s1 t s′−1

that is in the support of σ1 t σ′−1 such that FA1 (s1 t s′−1) ≤ 1
n + ε.

Now consider a “world” with δ-approximate-valuation profile K and true-valuation profile tv as
follows:

K
def=
(
intδ(x), intδ(y), . . . , intδ(y)

)
and

tv
def=
(b(1 + δ)xc, d(1− δ)ye, . . . , d(1− δ)ye) .

We have just shown that there exist some s1 t s′−1 ∈ UDed(K) satisfying FA1 (s1 t s′−1) ≤ 1
n + ε.

Therefore, when choosing ε to be small enough, since we always have d(1− δ)ye < (1− δ)y+ 1, we
can make the following inequality go through:

SW
(
tv, F (s1 t s′−1)

) ≤ (
n− 1
n
− ε) · d(1− δ)ye+ (

1
n

+ ε) · b(1 + δ)xc

<
n− 1
n
· (1− δ)y +

1
n
· b(1 + δ)xc+ 1

We proceed this calculation and show that the social welfare satisfies the claimed inequality:

SW
(
tv, F (s1 t s′−1)

)
<
n− 1
n
· (1− δ)y +

1
n
· b(1 + δ)xc+ 1 ≤ n− 1

n
· (1− δ)2x

1 + δ
+

1
n
· b(1 + δ)xc+ 3

<
n− 1
n
· (1− δ)2

(1 + δ)2
b(1 + δ)xc+

1
n
· b(1 + δ)xc+ 4

<

(
n− 1
n
· (1− δ)2

(1 + δ)2
+

1
n

+
4
B

)
b(1 + δ)xc

=
(
n− 1
n
· (1− δ)2

(1 + δ)2
+

1
n

+
4
B

)
MSW(tv)

=

(
(1− δ)2 + 4δ

n

(1 + δ)2
+

4
B

)
MSW(tv) .
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F Performance Diagrams
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(a) With n = 2 players, the second-price mechanism
performs worse than randomly assigning the good for
δ > 0.18.
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(b) With n = 4 players, the second-price mechanism
performs worse than randomly assigning the good for
δ > 0.34.
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(c) With δ = 0.15, the second-price mechanism al-
ways performs better than randomly assigning the
good.
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(d) With δ = 0.3, the second-price mechanism per-
forms worse than randomly assigning the good for
n = 2, 3.

Figure 1: We compare the social welfare guarantees of randomly assigning the good (ε = 1
n), the

second-price mechanism (ε = (1−δ)2
(1+δ)2

, see Theorem 2), and our optimal mechanism (ε = (1−δ)2+ 4δ
n

(1+δ)2
,

see Theorem 3). In (1a) and (1b) we compare ε versus δ, and in (1c) and (1d) we compare ε versus
n. The green data, our mechanism, is always better (at times significantly) than the other two
mechanisms.
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