
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2011-022 April 14, 2011

Partial Reversal Acyclicity
Tsvetomira Radeva and Nancy Lynch

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/4426872?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Partial Reversal Acyclicity

Tsvetomira Radeva, Nancy Lynch
MIT, Cambridge, MA

{radeva, lynch}@csail.mit.edu

Abstract

Partial Reversal (PR) is a link reversal algorithm which ensures that
the underlying graph structure is destination-oriented and acyclic. These
properties of PR make it useful in routing protocols and algorithms for
solving leader election and mutual exclusion. While proofs exist to estab-
lish the acyclicity property of PR, they rely on assigning labels to either
the nodes or the edges in the graph. In this work we present simpler
direct proof of the acyclicity property of partial reversal without using
any external or dynamic labeling mechanism. First, we provide a simple
variant of the PR algorithm, and show that it maintains acyclicity. Next,
we present a binary relation which maps the original PR algorithm to the
new algorithm, and finally, we conclude that the acyclicity proof applies
to the original PR algorithm as well.

1 Introduction

The goal of link reversal algorithms is to ensure that all nodes in a directed
acyclic graph (DAG) have a path to a particular destination node or nodes.
Link reversal algorithms were first introduced by Gafni and Bertsekas in [4] as a
way of providing an efficient graph structure for routing. They are also the main
subject of [6] where Welch and Walter present multiple link reversal algorithms
for solving problems such as routing, leader election and mutual exclusion.

Two particular link reversal algorithms proposed in [4], and also studied
in [6], are Full Reversal (FR) and Partial Reversal (PR). In both algorithms
the initial graph is a DAG with a single destination node, where nodes do not
necessarily have a path to the destination. The goal of the algorithms is to
reverse particular edges in the graph so that each node has a directed path to
the destination. A node executes a step of either algorithm only if it is a sink (all
its incident edges are incoming). The destination node never takes any steps.
In FR when a node is a sink it reverses all of its incident edges. In PR, each
node keeps a list of the edges reversed by its neighbors the previous time they
took a step. When a node is a sink, it reverses only the edges which are not
in the list, and then clears the list. In other words, while in FR nodes always
reverse all their edges, in PR it is possible to reverse fewer edges.

1

Even though PR seems to be much more efficient than FR, the worst case
running time for both algorithms is the same. We measure the efficiency of both
algorithms by comparing the total number of reversals performed by all nodes.
For FR, the authors of [6], following an approach from [1] and [2], prove a tight
bound of Θ(n2

b) worst case total number of reversals, where nb is the number of
nodes that have no path to the destination initially. In [6], they also show that
the same tight bound applies to PR. Since such a conclusion is surprising and
counter-intuitive, Charron-Bost et al. [3] apply a game theoretical approach
in showing that PR is more efficient than FR. The authors conclude that the
strategy of FR is a Nash equilibrium, but it has the largest social cost among all
Nash equilibria, while the strategy of PR is not necessarily a Nash equilibrium,
but if it is, it achieves a global optimum and has the minimum social cost.

One of the key requirements of most link reversal algorithms is to always
preserve the acyclicity of the underlying graph, because the presence of cycles
is not desired in most of the applications (such as routing) of such algorithms.
It is easy to show that FR maintains a graph with no cycles. To do so, suppose
in contradiction that a cycle exists in some state of the execution of FR, and
consider the last node which takes a step before the cycle is created. Since
nodes always reverse all of their incident edges in FR, the last node to take a
step results in having all outgoing edges after it takes that step. However, this
is a contradiction to the assumption that a cycle exists.

In the case of PR, there exist a couple of proofs that the algorithm does
not create any cycles. In the original Gafni and Bertsekas paper [4], each node
is assigned a triple of integers, and each edge is directed from a node with
a lexicographically larger value of the triple to a node with a smaller such
value. They prove such an assignment exists, which forms a total order on
the nodes, and therefore, no cycles exist in the graph. Another proof of the
acyclicity property of PR is presented in [6], which uses a generalized algorithm –
Binary Link Labels (BLL) – and provides conditions under which BLL maintains
acyclicity. The BLL algorithm assumes that each edge in the graph is labeled,
and reverses edges based on these labels. The condition under which BLL
maintains acyclicity involves certain global properties of the number and type
of edges in the graph. Finally, the authors show that PR is a special case of
BLL, in which the acyclicity condition is satisfied.

In this paper we present a new simpler proof of the acyclicity property
of PR, which does not use any mechanism of labeling nodes or edges. First,
we introduce a new version of the original PR algorithm. In the original PR
algorithm, each node keeps a dynamic list of neighbors which determines the
set of edges to be reversed. However, if we observe the sets of edges reversed
at each step, we notice that edges corresponding to the same sets of neighbors
are reversed at every other step. Therefore, our new algorithm uses only the
original sets of incoming and outgoing neighbors of each node, and reverses the
corresponding set of edges, alternating between the two. Having such a simpler
and more static algorithm, it is easier to prove that no cycles exist at any point
of the execution. Our acyclicity proof relies on a few invariants based on the
number of steps nodes have taken, and unlike existing proofs, does not use any

2

labeling of the nodes or edges of the graph.
Finally, since the new algorithm seems to be very similar to the original one,

we provide a simulation relation from the original algorithm to the new one, to
formally show a mapping between the two. The simulation relation establishes a
correspondence between the different lists in the two algorithms, and concludes
that for every step of the original algorithm, there exists a sequence of steps in
the new algorithm, so that both algorithms result in the same directions of the
edges in the graph. Additionally, such a relation shows that our new acyclicity
proof carries over to the original PR algorithm.

The rest of this paper is organized as follows: Section 2 describes how we
model the system; Section 3 presents the original PR algorithm in more detail,
and shows some useful properties of the algorithm; Section 4 describes our new
algorithm and some of its properties, including the acyclicity proof; Section 5
provides a simulation relation between the two algorithms, and presents the
main conclusion that PR maintains acyclicity using our new proof; Section 6
summarizes our results.

2 System Model

We model the system as an undirected graph G = (V,E) where V is the set
of nodes and E is the set of edges. The graph has a single predetermined
destination node D ∈ V . The set of neighbors of a particular node u in G is
defined as nbrsu. Since no nodes and edges are added or removed from the
graph, G is constant throughout the execution of the algorithm. Let a directed
version of G be denoted as G′ = (V,E′), such that for a given edge {u, v} ∈ E
either (u, v) ∈ E′ or (v, u) ∈ E′, but not both. We also define an initial graph
G′init which represents the initial directed graph. Assuming G′init is fixed, let
in-nbrsu and out-nbrsu be the sets of nodes corresponding to incoming and
outgoing edges of any node u in G′init. Note that nbrsu is defined as the set of
neighbors of u in G (the undirected graph), while in-nbrsu and out-nbrsu are
defined with respect to G′init (the initial directed graph). None of the sets nbrsu,
in-nbrsu, and out-nbrsu changes throughout the execution of the algorithm, and
so nbrsu = in-nbrsu ∪ out-nbrsu at any state of the system.

3 Original Algorithm

3.1 Algorithm Description

In this section we present the original PR algorithm [4] and express it as an I/O
automaton (PR).

The entire system is modeled as a single I/O Automaton (as described in
[5]) with a single set of actions – reverse(S). The set S represents all nodes
that are taking a step together, where each one of these nodes reverses a set
of edges to its neighbors. The destination node D does not reverse its incident
edges, and so it is never in S. For each node u, PR has a state variable list[u]

3

which contains all the neighbors of u which took a step since the last time u
took a step. Initially list[u] is empty. Additionally, the PR automaton has a
state variable, dir[u, v], one for each ordered pair (u, v), which represents the
direction of the edge between u and v from u’s perspective.

Algorithm 1 PR automaton
Signature:
reverse(S), S ⊆ V , S 6= ∅, D /∈ S

States:
for each u, v where {u, v} ∈ E:
dir[u, v] ∈ {in, out}, initially in if v ∈ in-nbrsu or

out if v ∈ out-nbrsu
dir[v, u] ∈ {in, out}, initially in if u ∈ in-nbrsv or

out if u ∈ out-nbrsv
for each u, list[u], a set of nodes W ⊆ nbrsu, initially empty

Transitions:
reverse(S)

Precondition:
for each u ∈ S

for each v ∈ nbrsu, dir[u, v] = in
Effect:

for each u ∈ S
if list[u] 6= nbrsu then

for each v ∈ nbrsu \ list[u]
dir[u, v] := out
dir[v, u] := in
list[v] := list[v] ∪ {u}

else
for each v ∈ nbrsu
dir[u, v] := out
dir[v, u] := in
list[v] := list[v] ∪ {u}

list[u] := ∅
Tasks:
{reverse(S), S ⊆ V , S 6= ∅, D /∈ S}

The only precondition for the reverse(S) action is that all nodes in S are
sinks. The effect of the reversal is that the edge between u and each neighbor
of u not in list[u] is reversed (from in to out). However, if list[u] contains all
neighbors of u, then the edges to all neighbors are reversed. Also, each neighbor
v of u that has its edge to u reversed, adds u to list[v]. Finally, after reversing
the particular edges, u empties list[u].

4

3.2 Properties

The following invariants establish some basic properties of the algorithm above.
Invariant 3.1 ensures the consistency of edge directions with respect to both
endpoints of the edge. Invariant 3.2 shows the possible contents of list[u] for
any node u. Corollary 3.3 follows directly from Invariant 3.2 concluding that if
u is not a sink, then list[u] is a subset of either in-nbrsu or out-nbrsu. Corollary
3.4 states that list[u] must be equal to either the set of in-nbrsu or the set of
out-nbrsu, whenever u is a sink.

Invariant 3.1 In every reachable state of PR, for each u and v where {u, v} ∈
E, dir[u, v] = in iff dir[v, u] = out.

Proof Initially, each dir[u, v] variable is set according to in-nbrsu, out-nbrsu,
in-nbrsv, and out-nbrsv, so if the edge {u, v} is directed from v to u, then
dir[u, v] = in, and dir[v, u] = out.

Assuming this property is true in some state s, we now show that it remains
true in any state s′ that is reachable from s in a single step of the algorithm.
If neither u nor v reverses the edge between them, then dir[u, v] and dir[v, u]
remain the same, so the invariant remains correct in s′. If u takes a step and
reverses its edge to v, then s.dir[u, v] = in because u is a sink in s. Therefore,
s.dir[v, u] = out. When u executes a step of the algorithm, it sets s′.dir[u, v] =
out and s′.dir[v, u] = in. Therefore, the property remains true in s′. If v
takes a step in s, then s.dir[v, u] = in. When v reverses the edge, it sets
s′.dir[v, u] = out and s′.dir[u, v] = in, and the property remains true.

The following invariant states that at any state of the system list[u] consists
of either only in-nbrsu or out-nbrsu. Also, since all nodes in the list already
reversed their edges back to u, all edges corresponding to nodes in the list are
incoming. We also show that if the list consists of in-nbrsu (out-nbrsu), then
all out-nbrsu (in-nbrsu) have incoming edges to u.

Invariant 3.2 In every reachable state of PR, for each node u, exactly one of
the following is true:

1. For each w ∈ out-nbrsu, dir[u,w] = in and
list[u] = {v|v ∈ in-nbrsu and dir[u, v] = in}.

2. For each w ∈ in-nbrsu, dir[u,w] = in and
list[u] = {v|v ∈ out-nbrsu and dir[u, v] = in}.

Proof (by induction on the number r of completed steps)
Initially, the list is empty. Part 2 is true because all in-nbrsu initially have

incoming edges to u, and also because no out-nbrsu initially have incoming edges
to u. We also need to show that part 1 is false. If u is a source, part 1 does
not hold because the direction of the edges to all out-nbrsu is out. If u is not a
source, part 1 is false because list[u] is empty initially.

5

Assuming the property is true after r steps, we now show that it is true after
r + 1 steps. Let the state of the system after r steps be s, and the state of the
system after r + 1 steps be s′.

Case 1: The r + 1’st step of the execution includes a step of u.
Case 1.1: s.list[u] 6= nbrsu and part 1 is true in s.
We show that part 2 is true in s′, and part 1 is false in s′.
Since part 1 is true in s, by the inductive hypothesis s.list[u] = {v|v ∈ in-

nbrsu and dir[u, v] = in}. Also, u is a sink in s, so all edges to nodes in in-nbrsu
are incoming. Therefore, s.list[u] = in-nbrsu. Because s.list[u] 6= nbrsu, when
u takes a step, it reverses nbrsu \ in-nbrsu = out-nbrsu, and so all nodes in
in-nbrsu still have incoming edges to u in s′. Also, s′.list[u] = ∅, and part 2 is
true because no out-nbrsu have incoming edges to u in s′. Moreover, part 1 is
not true in s′ because u has outgoing edges to all nodes in out-nbrsu, and since
s.list[u] 6= nbrsu and s.list[u] = in-nbrsu, it follows that that out-nbrsu 6= ∅.

Case 1.2: s.list[u] 6= nbrsu and part 2 is true in s.
We show that part 1 is true in s′, and part 2 is false in s′.
Since part 2 is true in s, by the inductive hypothesis s.list[u] = {v|v ∈ out-

nbrsu and dir[u, v] = in}. Also, u is a sink in s, so all edges to nodes in out-nbrsu
are incoming. Therefore, s.list[u] = out-nbrsu. Because s.list[u] 6= nbrsu, when
u takes a step, it reverses nbrsu \ out-nbrsu = in-nbrsu, and so all nodes in
out-nbrsu still have incoming edges to u in s′. Also, s′.list[u] = ∅, and part 1
is true because no in-nbrsu have incoming edges to u in s′. Moreover, part 2 is
not true in s′ because u has outgoing edges to all nodes in in-nbrsu, and since
s.list[u] 6= nbrsu and s.list[u] = out-nbrsu, it follows that that in-nbrsu 6= ∅.

Case 1.3 s.list[u] = nbrsu and part 1 is true in s.
We show that part 1 true in s′, and part 2 is false in s′.
Since part 1 is true in s, by the inductive hypothesis s.list[u] = {v|v ∈ in-

nbrsu and dir[u, v] = in}. Also, u is a sink in s, so all edges to nodes in in-nbrsu
are incoming Therefore, s.list[u] = in-nbrsu. Because s.list[u] = nbrsu, when
u takes a step, it reverses in-nbrsu, so that all nodes in in-nbrsu have outgoing
edges from u in s′. Therefore, part 2 is false because its first condition is
false. Moreover, the first condition of part 1 is satisfied because out-nbrsu = ∅.
Additionally, no in-nbrsu have incoming edges to u, so s′.list[u] = ∅, and thus
part 1 is true.

Case 1.4 s.list[u] = nbrsu and part 2 is true in s.
We show that part 2 is true in s′, and part 1 is false in s′.
Since part 2 is true in s, by the inductive hypothesis s.list[u] = {v|v ∈ out-

nbrsu and dir[u, v] = in}. Also, u is a sink in s, so all edges to nodes in out-
nbrsu are incoming. Therefore, s.list[u] = out-nbrsu. Because s.list[u] = nbrsu,
when u takes a step, it reverses out-nbrsu, so that all nodes in out-nbrsu have
outgoing edges from u in s′. Therefore, part 1 is false because its first condition
is false. Moreover, the first condition of part 2 is satisfied because in-nbrsu = ∅.
Additionally, no out-nbrsu have incoming edges to u, so s′.list[u] = ∅, and thus
part 2 is true.

Case 2: The r + 1’st step of the execution includes a step of some node
v ∈ nbrsu.

6

Note that Case 2 is disjoint from Case 1 because no two neighboring nodes
can be sinks at the same time. Let T = nbrsu ∩ S, that is, T is the set of
neighbors v of u such that the r + 1’st step of the execution includes a step of
v. By the definition of the case, T 6= ∅.

All neighbors of u that take a step in s (all nodes in T) are added to s′.list[u].
Let v be an arbitrary neighbor of u in T . In s, the edge between u and v must
be from u to v, while in s′ the direction of the edge must be from v to u.

Case 2.1: Part 1 is true in s.
We show that part 1 is true in s′, and part 2 is false in s′.
By part 1, s.list[u] ⊆ in-nbrsu and all nodes in out-nbrsu have incoming

edges to u. Therefore, v /∈ out-nbrsu, and so v ∈ in-nbrsu. When v is added to
list[u], it is true that s′.list[u] = {v|v ∈ in-nbrsu and dir[u, v] = in}. No edges
to out-nbrsu are reversed in this step, so part 1 is satisfied. Part 2 is not true
in s′ because s′.list[u] contains at least one node, v ∈ in-nbrsu, which was just
added to s′.list[u] in step r + 1.

Case 2.2: Part 2 is true in s.
We show that part 2 is true in s′, and part 1 is false in s′.
By part 2, s.list[u] ⊆ out-nbrsu and all nodes in in-nbrsu have incoming

edges to u. Therefore, v /∈ in-nbrsu, and so v ∈ out-nbrsu. When v is added to
list[u], it is true that s′.list[u] = {v|v ∈ out-nbrsu and dir[u, v] = in}. No edges
to in-nbrsu are reversed in this step, so part 2 is satisfied. Part 1 is not true in
s′ because s′.list[u] contains at least one node, v ∈ out-nbrsu, which was just
added to s′.list[u] in step r + 1.

Case 3: Neither u nor any v ∈ nbrsu takes a step during the r + 1’st step
of the execution.

Since only u or its neighbors can change list[u], in this case s.list[u] =
s′.list[u]. Moreover, none of u’s incident edges are reversed during this step, so
the property remains true.

Corollary 3.3 In any reachable state of PR, for any node u, list[u] ⊆ in-nbrsu
or list[u] ⊆ out-nbrsu (or both if list[u] = ∅).

Corollary 3.4 In any reachable state of PR, if u is a sink, then list[u] = in-
nbrsu or list[u] = out-nbrsu.

4 New Algorithm

4.1 Algorithm Description

In this algorithm, nodes use only the initial in-nbrs and out-nbrs sets to deter-
mine which edges to reverse in each step. Whenever a node is a sink, it reverses
the edges corresponding to either its in-nbrs or out-nbrs set, alternating be-
tween the two. In order to determine which set is about to be reversed, each
node keeps track of the parity of the number of steps taken so far. If the node
has taken an even number of steps, then it reverses the set of in-nbrs; if it has

7

taken an odd number of steps then the set of out-nbrs is reversed. Initially,
nodes have taken zero steps, so they reverse their in-nbrs the first time they
take a step.

Algorithm 2 NewPR automaton
Signature:

reverse(u), u ∈ V , u 6= D
States:

for each u, v where {u, v} ∈ E:
dir[u, v] ∈ {in, out}, initially in if v ∈ in-nbrsu or

out if v ∈ out-nbrsu
dir[v, u] ∈ {in, out}, initially in if u ∈ in-nbrsv or

out if u ∈ out-nbrsv
for each node u, count[u], integer, initially 0

Derived State:
for each node u, parity[u] ∈ {even, odd}, even if count[u] is even

odd if count[u] is odd
Transitions:
reverse(u)

Precondition:
for each v ∈ nbrsu, dir[u, v] = in

Effect:
if parity[u] = even then

for each v ∈ in-nbrsu
dir[u, v] := out
dir[v, u] := in

else
for each v ∈ out-nbrsu
dir[u, v] := out
dir[v, u] := in

count[u] := count[u] + 1
Tasks:
{reverse(u), u ∈ V , u 6= D}

The entire system is modeled as a single I/O Automaton with a single set of
actions – reverse(u) – where u is any node in V , which is currently a sink. The
destination node never reverses any of its incident edges, so u 6= D. Moreover,
associated with each node are two variables: dir[u, v] which represents the di-
rection of the edge between nodes u and v, and history variable count[u] which
keeps track of the number of steps u has taken so far. There is also has a derived
variable parity[u], which is a function of count[u] that represents its parity; it
is used to keep track of which set of neighbors is to be reversed next.

The precondition for a node u to perform a reverse(u) action is that it is

8

a sink. The effect of the reversal is that depending on the value of parity[u],
either the edges corresponding to nodes in in-nbrsu or out-nbrsu are reversed.
Also, count[u] is incremented, which results in flipping the parity bit.

Note that it is possible that in the reverse(u) action u does not reverse any
edges because either in-nbrsu = ∅ or out-nbrsu = ∅. This case occurs only
when nodes are initially sinks or sources. When such an action is performed, all
u does is increment the step counter (flip the parity bit) without reversing any
edges. In this case u remains a sink but now the parity has the correct value,
so u can perform a regular reverse(u) action the next time it takes a step.

It is important to notice the main differences between PR and NewPR:

• In PR, each node keeps one list of neighbors which changes as edges are
reversed, while in NewPR nodes have two constant lists, in-nbrs and
out-nbrs, and a parity bit to alternate between the lists.

• In PR, there are two possible ways nodes reverse their edges (depending
on whether all neighbors are in the list or not), and so whenever a node is
a sink it reverses some edges and empties the list. In NewPR, however, it
is possible that a node is a sink but the parity does not have the right value
to reverse the corresponding set of edges. This happens to nodes that are
originally sinks or sources. During this “dummy” step, a node does not
reverse any edges but only increments its step count, so the next time it
takes a step, the parity corresponds to the list of edges to be reversed.
This extra step in NewPR causes it to incur a greater cost in certain
situations, compared to PR.

• In PR, a set of nodes takes a step at once, while in NewPR only one node
at a time can take a step.

It is important to note that PR keeps a dynamic list of nodes in order to
determine which edges to reverse, while NewPR is a lot more static because it
always reverses one of two constant sets. We believe that describing the algo-
rithm in such a way simplifies it and makes it easier to understand. Moreover,
the dummy step in NewPR helps treat all nodes equivalently and thus makes it
possible to state nice invariants based on the number of steps nodes have taken.
On the other hand, the increased number of steps, and the restriction of only
one node taking a step at a time, affect the complexity of the algorithm, but we
are not concerned with this issue in this paper.

4.2 Acyclicity Property

The proof of the acyclicity property of NewPR consists of Invariant 4.1 and
Invariant 4.2, which are then combined into Theorem 4.3 concluding that PR
maintains acyclicity.

Since the input to the PR algorithm is a DAG, we can embed it in a plane,
ensuring all edges are initially directed from left to right. Therefore, for each
node u all edges associated with nodes in in-nbrsu are to the left of u, and all
nodes associated with edges in out-nbrsu are to the right of u.

9

Invariant 4.1 states that if the parity of two neighboring nodes is the same,
then we can determine whether the edge between them is directed from left to
right, or right to left.

Invariant 4.1 In any reachable state, if u and v are neighbors, then:

(a) If parity[u] = parity[v] = even, then the edge {u, v} is directed from left to
right.

(b) If parity[u] = parity[v] = odd, then the edge {u, v} is directed from right to
left.

Proof (by induction on the number r of total number of steps taken by all
nodes)

In the initial state parity[u] = parity[v] = even. Part (b) is vacuously true,
and part (a) is true because initially all edges are directed from left to right.

Assume both properties are true after r steps. Let the state of the system
after r steps be s. We need to show that the properties are true after r + 1
steps. Let the state of the system after r + 1 steps be s′.

Note that an arbitrary node can take the r + 1’st step. If neither u nor v
takes a step, then both properties remain true. Therefore, we are concerned
only with cases in which either u or v takes a step. Since the two properties
are symmetric with respect to u and v, without loss of generality, assume u is
taking the r + 1’st step.

If s′.parity[u] = s′.parity[v] = even, part (b) is vacuously true, so we show
part (a). Since u takes a step, then it must be a sink in s, so the edge {u, v} is
directed from v to u in s. Since u takes the r+1’st step, then s.parity[u] = odd.

Since s.parity[u] = odd, by the second case of the code of the reverse(u)
action, the edges corresponding to out-nbrsu (to the right of u) are reversed. If
v is to the right of u, then the edge {u, v} is reversed and is now directed from
left to right in s′. If v is to the left of u, the edge {u, v} is not reversed and
remains directed from left to right.

Similarly, for the proof of part (b), we assume s′.parity[u] = s′.parity[v] =
odd, which implies that part (a) is vacuous, and we use the same arguments to
show that part (b) is satisfied.

Invariant 4.2 has four parts, establishing different properties of the number
of steps that nodes have taken. Part (a) gives a range of the possible number
of steps of a node v, given the number of steps its neighbor, node u, has taken.
Parts (b) and (c) show two possible cases in which it can be concluded that two
neighboring nodes have taken the same number of steps. Part (d) states that if
one node has taken strictly more steps that its neighbor, then the edge between
them is directed from the node which has taken more steps to the node which
has taken fewer steps. Combined together the invariants 4.1 and 4.2 give us a
way of using the number of steps and directions of edges to show that it is not
possible to create a cycle in the graph.

Invariant 4.2 In any reachable state, if u and v are neighbors, then:

10

(a) If count[u] = n, then count[v] ∈ {n− 1, n, n+ 1}.
(b) If count[u] = n, where n is odd, and v is to the right of u, then count[v] = n.

(c) If count[u] = n, where n is even, and v is to the left of u, then count[v] = n.

(d) If count[u] > count[v], then the edge {u, v} is directed from u to v.

Proof (by induction on the number r of total number of steps taken by all
nodes)

In the initial configuration no node has taken any steps yet, so count[u] =
count[v] = 0. Therefore, all four parts are true initially.

Suppose all properties are true after r steps. Let the state of the system
after r steps be s. We need to show that all properties are true after r+1 steps.
Let the state of the system after r + 1 steps be s′.

Note that an arbitrary node can take the r + 1’st step. If neither u nor v
takes a step, then all properties remain true. Therefore, we are concerned only
with cases in which either u or v takes a step.

Assume s′.count[u] = k.
Case 1: u takes the r + 1’st step. Therefore, u is a sink in s and the

edge {u, v} is directed from v to u. Also, s.count[u] = k − 1, and by the
inductive hypothesis part (a), s′.count[v] = s.count[v] ∈ {k − 2, k − 1, k}.
By the inductive hypothesis part (d), s.count[v] ≥ s.count[u], and therefore
s′.count[v] = s.count[v] ∈ {k − 1, k}.

Part (a): s′.count[u] = k, and so it is true that s′.count[v] ∈ {k−1, k, k+1}.
Part (b): Assume k is odd, and v is to the right of u in s′. If s.count[v] =

k − 1, then s.count[u] = s.count[v] = k − 1, which is even, so by Invariant 4.1
(a), the edge {u, v} is directed from u to v, a contradiction. So s.count[v] =
s′.count[v] = k.

Part (c): The proof for part (c) is analogous to that of part (b). By Invariant
4.1 (b), s.count[v] 6= k − 1. Therefore, s′.count[v] = k.

Part (d): Assume s′.count[u] > s′.count[v], so s′.count[v] 6= s′.count[u]. If
k is odd, by part (b) applied to s′, v must be to the left of u. Also, since k is
odd, k − 1 is even, so when u takes a step, it reverses its left edges. Thus, the
edge {u, v} is reversed and is now directed from u to v. Similarly, if k is even,
part (c) applied to s′ implies that v must be to the right of u. Since k − 1 is
odd when u takes a step, it reverses all the edges to its right, and so the edge
{u, v} is now directed from u to v.

Case 2: v takes the r+1’st step. Therefore, v is a sink in s, so the edge {u, v}
is directed from u to v. Also, s.count[u] = s′.count[u] = k, and by the inductive
hypothesis of part (a), s.count[v] ∈ {k− 1, k, k+ 1}. If s.count[v] = k+ 1, then
s.count[v] > s.count[u], and by the inductive hypothesis part (d) the edge {u, v}
is directed from v to u, a contradiction. Therefore, s.count[v] ∈ {k − 1, k}, and
so s′.count[v] ∈ {k, k + 1}.

Part (a): From the facts above it follows that s′.count[v] ∈ {k, k + 1}.
Part (b): Assume k is odd, and v is to the right of u in s′. If s.count[v] = k,

then s.count[u] = s.count[v] = k, which is odd, so by Invariant 4.1 (b), the

11

edge {u, v} is directed from v to u, a contradiction. So, s.count[v] = k− 1, and
therefore s′.count[v] = k.

Part (c): The proof for part (c) is analogous to part (b). By Invariant 4.1
(a), s.count[v] 6= k. Therefore, s.count[v] = k − 1, and s′.count[v] = k.

Part (d): Assume s′.count[u] > s′.count[v]. By part (a) applied to s′,
s′.count[v] ∈ {k − 1, k, k + 1}, so s′.count[v] = k − 1. Since v takes a step
in r, then s.count[v] = k−2. This is a contradiction to the inductive hypothesis
of part (a), and therefore it is not possible for v to take the r+ 1’st step in this
case.

The next theorem uses Invariant 4.1 and part (d) of Invariant 4.2 to show
that nodes in a circuit can never form a cycle because of the relation between
the edge directions and the number of steps the nodes have taken.

Let s.G′ = (V,E′) be the directed graph in state s, where V is the same
set of nodes as in the undirected graph G, and E′ is the set of directed edges
determined using the dir variables as follows. The edge between any pair of
nodes u and v is directed from u to v if and only if dir[u, v] = out.

Theorem 4.3 In any reachable state s of the execution of NewPR the under-
lying directed graph s.G′ is acyclic.

Proof Suppose in contradiction that there exists a cycle in some reachable
state s of the system. Let s.G′ be the directed graph in state s. Therefore,
there is a sequence of nodes: u, v1, v2, . . . , vn, u such that the edges between
these nodes are directed from u to v1, from vn to u, and from vi to vi+1, for
all 1 ≤ i < n. By Invariant 4.2 (d) the number of steps of the nodes in the
sequence is non-increasing: s.count[u] ≥ s.count[v1] ≥ s.count[v2] ≥ . . . ≥
s.count[vn] ≥ s.count[u]. Since node s.count[u] is both in the beginning and
the end of the sequence, it follows that s.count[u] = s.count[v1] = s.count[v2] =
. . . = s.count[vn] = s.count[u].

Let vi be the rightmost node of the cycle. Then there must be some subse-
quence of nodes vi−1, vi, vi+1, such that the edge {vi−1, vi} is directed from left
to right, and the edge {vi, vi+1} is directed from right to left. We also know
that s.count[vi−1] = s.count[vi] = s.count[vi+1]. By the definition of parity[u],
s.parity[vi−1] = s.parity[vi] = s.parity[vi+1] = p. By Invariant 4.1 (b) applied
to vi−1 and vi, it follows that p = even. By Invariant 4.1 (a) applied to vi and
vi+1, it follows that p = odd, a contradiction.

5 Simulation Relation

In this section we show that PR simulates NewPR. First, we introduce a slight
modification of the PR algorithm – instead of allowing a set of nodes to take a
step at the same time, we now require only one node to take a step at a time.
Let this modified version of PR be OneStepPR. We use OneStepPR as an
intermediate step in showing that PR simulates NewPR. To do so, first, we

12

provide a binary relation from PR to OneStepPR, and then another binary
relation from OneStepPR to NewPR. The main guarantee of both relations is
to preserve the same directed version G′ of the graph.

5.1 Description of OneStepPR

OneStepPR is very similar to PR. It has the same state variables (dir and
list), and a similar set of actions. Instead of allowing a set of nodes S to take
a step together, in OneStepPR, only a single node u performs a reverse(u)
action. The precondition for this action is that u is a sink, and the effect of
the action is that, similarly to PR, u reverses the edges to its neighbors which
are not in list[u]. However, if list[u] = nbrsu, then all edges incident to u are
reversed.

Algorithm 3 OneStepPR automaton
Signature:
reverse(u), u ∈ V , u 6= D

States:
for each u, v where {u, v} ∈ E:
dir[u, v] ∈ {in, out}, initially in if v ∈ in-nbrsu or

out if v ∈ out-nbrsu
dir[v, u] ∈ {in, out}, initially in if u ∈ in-nbrsv or

out if u ∈ out-nbrsv
for each u, list[u], a set of nodes W ⊆ nbrsu, initially empty

Transitions:
reverse(u)

Precondition:
for each v ∈ nbrsu, dir[u, v] = in

Effect:
if list[u] 6= nbrsu then

for each v ∈ nbrsu \ list[u]
dir[u, v] := out
dir[v, u] := in
list[v] := list[v] ∪ {u}

else
for each v ∈ nbrsu
dir[u, v] := out
dir[v, u] := in
list[v] := list[v] ∪ {u}

list[u] := ∅
Tasks:
{reverse(u), u ∈ V , u 6= D}

13

5.2 Relation between PR and OneStepPR

We now define a binary relation R′ from reachable states of PR to reachable
states of OneStepPR, in order to show that both algorithms preserve the same
directed version G′ of the graph. Let s be a reachable state of PR and t be a
reachable state of OneStepPR. We define (s, t) ∈ R′ if:

1. s.G′ = t.G′

2. For each node u, s.list[u] = t.list[u].

Lemma 5.1 (a) For each initial state s of PR, there exists an initial state t
of OneStepPR such that (s, t) ∈ R′.

(b) For each pair of reachable states s of PR, and t of OneStepPR, with (s, t) ∈
R′, and for every step (s, s′) of PR, there exists a finite sequence of steps of
OneStepPR starting with t and ending with some t′ such that (s′, t′) ∈ R′.

Proof Initially, both directed graphs are the same and all nodes’ lists are empty,
so part (a) of the lemma is true.

To show that part (b) is true, assume (s, t) ∈ R where s is a reachable
state of PR, and t is a reachable state of OneStepPR. We need to show that
for each step (s, reverse(S), s′) ∈ trans(PR), there exists a finite sequence
of steps of OneStepPR starting with t and ending with some t′ such that
(s′, t′) ∈ R. Let the corresponding sequence of steps of OneStepPR consist
of a reverse(u) action for each u ∈ S. Let S = {u1, u2, · · · , un}; then the se-
quence of steps in OneStepPR is (reverse(u1), reverse(u2), · · · , reverse(un)),
and (t = t0, t1, t2, · · · , tn−1, tn = t′) is the corresponding sequence of states.

Consider an arbitrary node ui ∈ S. In PR, ui is a sink and reverses a
particular set of incident edges determined by the contents of s.list[ui]. First,
we show that the reverse(ui) action is enabled in state ti−1 by proving that ui
is a sink in ti−1. We know ui is a sink in t, and ui does not take a step until
ti−1. No other node could have reversed ui’s edges from incoming to outgoing
in the interval [t, ti−1], and so ui is a sink in each state in [t, ti−1].

Part 1: Here we show that s′.G′ = t′.G′. To show this, we argue that
the same sets of edges are reversed in both algorithms. The sets of edges to
be reversed depend only on the contents of the list, so we need to show that
s.list[ui] = ti−1.list[ui]. By part (2) of the relation we know that s.list[ui] =
t.list[ui], and we also showed that ui is a sink in each state in [t, ti−1]. Therefore,
no neighbor of ui is a sink in this interval, because no two neighboring nodes can
be sinks at the same time. Since no neighbor of ui is a sink, then no neighbor
of ui takes a step in [t, ti−1]. Therefore, ui’s list remains the same, and so
s.list[ui] = t.list[ui] = ti−1.list[ui]. Because the sets of edges reversed in any
state depend only on the contents of the lists in that state, it follows that the
same sets of edges are reversed in both algorithms. By part (1), s.G′ = t.G′,
so after the same sets of edges are reversed in both graphs, it follows that
s′.G′ = t′.G′. Therefore, part (1) is satisfied.

14

Part 2: Here we show that s′.list[u] = t′.list[u] for all u. Fix an arbitrary
node u. Depending on which nodes take steps in s, there are three possible
cases:

Case 1: If u ∈ S, then we know that in both algorithms the lists are emptied
after each reversal, so s′.list[u] = t′.list[u] = ∅.

Case 2: u /∈ S but some of u’s neighbors are in S. Let T = nbrsu ∩ S,
T 6= ∅, that is, T is the set of neighbors of u which take a step together. In PR,
all nodes in T are added to s′.list[u]. Therefore, s′.list[u] = s.list[u] ∪ T . In
NewPR, all nodes in T take a step one at a time, and are added to list[u] one
at a time. Therefore, for some arbitrary ui ∈ T , ti.list[u] = ti−1.list[u] ∪ {ui}.
Consequently, t′.list[u] = t.list[u] ∪ T . By part (2) we know that s.list[u] =
t.list[u], and therefore, s′.list[u] = t′.list[u].

Case 3: u /∈ S and none of u’s neighbors are in S. Since list[u] can be mod-
ified only by u and its neighbors, and neither u nor any of its neighbors take a
step, it follows that s′.list[u] = s.list[u]. Similarly, t′.list[u] = t.list[u]. There-
fore, by part 2 of the relation, it follows that s′.list[u] = s.list[u] = t.list[u] =
t′.list[u].

Both parts of the relation are satisfied for s′ and t′, so (s′, t′) ∈ R′.

Theorem 5.2 For any reachable state s of PR there exists a reachable state t
of OneStepPR such that (s, t) ∈ R′.

Proof We prove the following statement, which immediately implies the theo-
rem: For any non-negative integer k, and for any state s that is the final state
of a k-step execution of PR, there exists a reachable state t of OneStepPR such
that (s, t) ∈ R′. The proof is by induction on k.

Base Case: In the base case where k = 0, the final state of a k-step
execution is the unique initial state of the PR algorithm. By Lemma 5.1 (a),
for each initial state s of PR, there exists an initial state t of OneStepPR such
that (s, t) ∈ R′. Since t is an initial state of OneStepPR, it is a reachable state.

Inductive Step: Assume that for any state s that is the final state of a
k-step execution of PR, there exists a reachable state t of OneStepPR such
that (s, t) ∈ R′. We need to show that for any state s′ that is the final state of
a k + 1-step execution of PR, there exists a reachable state t′ of OneStepPR
such that (s′, t′) ∈ R′.

Fix a state s′ which is the final state of a k + 1-step execution of PR. Let
(s′′, reverse(u), s′) be the final step of this execution. Then s′′ is the final
state of a k-step execution of PR. By the inductive hypothesis, it follows that
there exists a reachable state t′′ of OneStepPR, such that (s′′, t′′) ∈ R′. Now
we apply Lemma 5.1 (b) to (s′′, t′′) ∈ R′ and (s′′, s′) being a step of PR. It
follows that there exists a sequence of steps of OneStepPR starting with t′′

and ending in some state t′ such that (s′, t′) ∈ R′. We append this sequence
of steps to some execution of OneStepPR which ends in t′′. The resulting
execution of OneStepPR ends in state t′, and therefore, t′ is a reachable state
in OneStepPR. We have shown that for state s′, which is the final state of a

15

k+1-step execution of PR, there exists a reachable state t′ of OneStepPR such
that (s′, t′) ∈ R′.

5.3 Relation between OneStepPR and NewPR

We now define a binary relation from states of OneStepPR to states of NewPR,
which satisfies specific properties outlined in Lemma 5.3. The main guarantee
of the relation is to preserve the equivalence of the directed graphs in both
algorithms. Let s be a reachable state of OneStepPR and t be a reachable
state of NewPR. We define (s, t) ∈ R if all of the following conditions hold:

1. s.G′ = t.G′

2. For each node u, if t.parity[u] = even then s.list[u] ⊆ out-nbrsu.

3. For each node u, if t.parity[u] = odd then s.list[u] ⊆ in-nbrsu.

Lemma 5.3 (a) For each initial state s of OneStepPR, there exists an initial
state t of NewPR such that (s, t) ∈ R.

(b) For each pair of reachable states s of OneStepPR, and t of NewPR, with
(s, t) ∈ R, and for every step (s, s′) of OneStepPR, there exists a finite
sequence of steps of NewPR starting with t and ending with some t′ such
that (s′, t′) ∈ R.

Proof Initially, both graphs are the same, so part 1 of the relation is satisfied.
Also initially, list[u] = ∅, which implies that parts 2 and 3 are true. This proves
part (a) of the lemma.

To show that part (b) of the lemma is true, assume (s, t) ∈ R where s is a
state of OneStepPR, and t is a state of NewPR. We need to show that for each
step (s, reverse(w), s′) ∈ trans(OneStepPR), there exists a finite sequence of
steps of NewPR starting with t and ending with some t′ such that (s′, t′) ∈ R.
This sequence consists of either one or two consecutive reverse(w) steps. If
s.list[w] 6= nbrsw, the corresponding sequence of steps of NewPR is a sin-
gle reverse(w) step. Otherwise, NewPR executes two consecutive reverse(w)
steps. The first reverse(w) action is enabled because by part 1 s.G′ = t.G′,
and since w is a sink in s, it is also a sink in t. The second reverse(w) action is
enabled because w did not reverse any edges in the previous step, so it is still a
sink.

We now show that (s′, t′) ∈ R, which involves proving that the three parts
of R hold for s′ and t′.

Part 1: We prove that t.G′ = s.G′.
Case 1: t.parity[w] = even
Since part 2 is true with respect to s and t, s.list[w] ⊆ out-nbrsw. By

Corollary 3.4, because w is a sink, s.list[w] = out-nbrsw.
Case 1.1: s.list[w] 6= nbrsw. The corresponding step in NewPR is a

reverse(w) action.

16

When w takes a step in OneStepPR it reverses the edges to all nodes in
nbrsw \ s.list[w] = in-nbrsw. Node w reverses the same set of edges in NewPR
because t.parity[w] = even. Therefore, since s.G′ = t.G′, and the set of edges
reversed in going from s to s′ is the same as the set of edges reversed in going
from t to t′, it follows that s′.G′ = t′.G′.

Case 1.2: s.list[w] = nbrsw. The corresponding steps in NewPR are two
consecutive reverse(w) actions.

In OneStepPR, w reverses all edges corresponding to nodes in out-nbrsw.
In NewPR, when w executes the first reverse(w) action, since t.parity[w] =
even and in-nbrsw = ∅, w does not reverse any edges to neighbors, but only
increments its step counter. The result of that action is that t.parity[w] is
flipped from even to odd. Next, w performs the second reverse(w) action.
Since parity[w] is odd, w reverses all edges corresponding to nodes in out-nbrsw.
Therefore, since s.G′ = t.G′, and the set of edges reversed in going from s to
s′ is the same as the set of edges reversed in going from t to t′, it follows that
s′.G′ = t′.G′.

Case 2: t.parity[w] = odd
Since part 3 is true with respect to s and t, s.list[w] ⊆ in-nbrsw. By

Corollary 3.4, because w is a sink, s.list[w] = in-nbrsw.
Case 2.1: s.list[w] 6= nbrsw. The corresponding step in NewPR is a

reverse(w) action.
When w takes a step in OneStepPR it reverses the edges to all nodes in

nbrsw \s.list[w] = out-nbrsw. Node w reverses the same set of edges in NewPR
because t.parity[w] = odd. Therefore, since s.G′ = t.G′, and the set of edges
reversed in going from s to s′ is the same as the set of edges reversed in going
from t to t′, it follows that s′.G′ = t′.G′.

Case 2.2: s.list[w] = nbrsw. The corresponding steps in NewPR are two
consecutive reverse(w) actions.

In OneStepPR, w reverses all edges corresponding to nodes in in-nbrsw.
In NewPR, when w executes the first reverse(w) action, since t.parity[w] =
odd and out-nbrsw = ∅, w does not reverse any edges to neighbors, but only
increments its step counter. The result of that action is that t.parity[w] is
flipped from odd to even. Next, w performs the second reverse(w) action.
Since parity[w] is even, w reverses all edges corresponding to nodes in in-nbrsw.
Therefore, since s.G′ = t.G′, and the set of edges reversed in going from s to
s′ is the same as the set of edges reversed in going from t to t′, it follows that
s′.G′ = t′.G′.

Part 2: Here we show that for each node u, if t.parity[u] = even then
s.list[u] ⊆ out-nbrsu.

Fix an arbitrary node u. Assume t′.parity[u] = even because otherwise part
2 is vacuously true.

Case 1: u = w
Then u is the node that takes the step, so s′.list[u] = ∅, which implies part

2 for s′ and t′.
Case 2: u 6= w and w ∈ nbrsu. Since u does not take a step, it follows that

t.parity[u] = t′.parity[u] = even.

17

Claim 5.4: w ∈ out-nbrsu
Case 2.1: t.parity[w] = even
By Invariant 4.1 (a), the edge between u and w is directed from left to right.

Also, because w is a sink in s and t, the edge is directed from u to w. Therefore,
w is to the right of u, and so w ∈ out-nbrsu.

Case 2.2: t.parity[w] = odd
Since t.parity[u] 6= t.parity[w], then t.count[u] 6= t.count[w]. By Invariant

4.2 (c), w is to the right of u, and so w ∈ out-nbrsu.

So far, in Claim 5.4, we established that w ∈ out-nbrsu. Since w is added to
s′.list[u] in the step of OneStepPR, s′.list[u] = s.list[u] ∪ {w}. By Corollary
3.3, list[u] is always a subset of either in-nbrsu or out-nbrsu. Since w ∈ out-
nbrsu and w ∈ s′.list[u], it has to be the case that s′.list[u] ⊆ out-nbrsu.
Part 2 remains true with respect to s′ and t′ because we have assumed that
t′.parity[u] = even and we just showed that s′.list[u] ⊆ out-nbrsu.

Case 3: u 6= w and w /∈ nbrsu
Since only u and its neighbors can change the contents of the list, and neither

u nor any of its neighbors take a step, s.list[u] = s′.list[u]. Also because u does
not take a step, t.parity[u] = t′.parity[u], and so part 2 remains true for s′ and
t′.

Part 3: We show that for each node u, if t.parity[u] = odd then s.list[u] ⊆
in-nbrsu. The proof is symmetric to the proof of part 2.

Theorem 5.4 For any reachable state s of OneStepPR there exists a reachable
state t of NewPR such that (s, t) ∈ R.

Proof We prove the following statement, which immediately implies the theo-
rem: For any non-negative integer k, and for any state s that is the final state
of a k-step execution of OneStepPR, there exists a reachable state t of NewPR
such that (s, t) ∈ R. The proof is by induction on k.

Base Case: In the base case where k = 0, the final state of a k-step
execution is the unique initial state of the OneStepPR algorithm. By Lemma
5.3 (a), for each initial state s of OneStepPR, there exists an initial state t
of NewPR such that (s, t) ∈ R. Since t is an initial state of NewPR, it is a
reachable state.

Inductive Step: Assume that for any state s that is the final state of a
k-step execution of OneStepPR, there exists a reachable state t of NewPR such
that (s, t) ∈ R. We need to show that for any state s′ that is the final state of a
k+1-step execution of OneStepPR, there exists a reachable state t′ of NewPR
such that (s′, t′) ∈ R.

Fix a state s′ which is the final state of a k+1-step execution of OneStepPR.
Let (s′′, reverse(u), s′) be the final step of this execution. Then s′′ is the final
state of a k-step execution of OneStepPR. By the inductive hypothesis, it
follows that there exists a reachable state t′′ of NewPR, such that (s′′, t′′) ∈

18

R. Now we apply Lemma 5.3 (b) to (s′′, t′′) ∈ R and (s′′, s′) being a step
of OneStepPR. It follows that there exists a sequence of steps of NewPR
starting with t′′ and ending in some state t′ such that (s′, t′) ∈ R. We append
this sequence of steps to some execution of NewPR which ends in t′′. The
resulting execution of NewPR ends in state t′, and therefore, t′ is a reachable
state in NewPR. We have shown that for state s′, which is the final state of a
k+1-step execution of OneStepPR, there exists a reachable state t′ of NewPR
such that (s′, t′) ∈ R.

Theorem 5.5 In any reachable state s of the execution of PR the underlying
directed graph s.G′ is acyclic.

Proof Let s be any reachable state of PR. By Theorem 5.2, there exists a
reachable state r of OneStepPR such that (s, r) ∈ R′. By Theorem 5.4, there
exists a reachable state t of NewPR such that (r, t) ∈ R. By the definition
of R′, s.G′ = r.G′, and by the definition of R, r.G′ = t.G′. It follows that
s.G′ = t.G′. By Theorem 4.3, t.G′ is acyclic, and therefore, s.G′ is acyclic too.

6 Conclusion

We have presented an alternative algorithm for Partial Reversal, and proved
that it does not create any cycles in the graph. Our proof does not assume any
labels on either the nodes or the edges of the graph, and uses only properties
of the PR algorithm to establish the acyclicity property. We have also defined
two binary relation between the original PR algorithm and a modified version
of it, and between the modified version and our new algorithm. These relations
imply that the acyclicity property of our new algorithm applies to the original
PR algorithm.

A possible extension of this result is showing a binary relation in the reverse
direction too (from the new algorithm to the original one). Such a relation
would imply that not only does the acyclicity property apply to the original
algorithm too, but also that the two algorithms are equivalent with respect to
the direction of the edges in the graph.

References

[1] C. Busch, S. Surapaneni, and S. Tirthapura. Analysis of link reversal routing
algorithms for mobile ad hoc networks. In Proceedings of the 15th ACM
Symposium on Parallel Algorithms and Architectures (SPAA), pages 210219,
2003.

[2] C. Busch and S. Tirthapura. Analysis of link reversal routing algorithms.
SIAM Journal on Computing, 35(2):305326, 2005.

19

[3] B. Charron-Bost, J. L. Welch, and J. Widder. Link reversal: How to play
better to work less. In Proceedings of the 5th International Workshop on
Algorithmic Aspects of Wireless Sensor Networks, 2009.

[4] E. Gafni and D. Bertsekas. Distributed algorithms for generating loop-free
routes in networks with frequently changing topology. IEEE Transactions on
Communications, C-29(1):1118, 1981.

[5] N. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, San Ma-
teo, CA, 1996.

[6] J. Welch, J. Walter. Link Reversal Algorithms. Morgan Claypool, Synthesis
Lectures on Distributed Computing Theory (to appear).

20

