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ABSTRACT
The Semantic Web is a distributed model for publishing,
utilizing and extending structured information using Web
protocols. One of the main goals of this technology is to
automate the retrieval and integration of data and to en-
able the inference of interesting results. This automation re-
quires logics and rule languages that make inferences, choose
courses of action, and answer questions. The openness of the
Web, however, leads to several issues including the handling
of inconsistencies, integration of diverse information, and
the determination of the quality and trustworthiness of the
data. AIR is a Semantic Web-based rule language that
provides this functionality while focusing on generating and
tracking explanations for its inferences and actions as well as
conforming to Linked Data principles. AIR supports Linked
Rules, which allow rules to be combined, re-used and ex-
tended in a manner similar to Linked Data. Additionally,
AIR explanations themselves are Semantic Web data so they
can be used for further reasoning. In this paper we present
an overview of AIR, discuss its potential as a Web rule lan-
guage by providing examples of how its features can be lever-
aged for different inference requirements, and describe how
justifications are represented and generated.

1. INTRODUCTION
Though RDF Schema (RDFS) and the Web Ontology

Language (OWL 1 & 2) provide some reasoning capabil-
ity over Resource Description Framework (RDF) data, the
application of Semantic Web technologies to e-government,
business, policy management, workflow systems, and many
other fields requires more expressive rule languages to cap-

∗This material is based upon work supported by the Na-
tional Science Foundation under Award No. CNS-0831442,
by the Air Force Office of Scientific Research under Award
No. FA9550-09-1-0152, and by Intelligence Advanced Re-
search Projects Activity under Award No. FA8750-07-2-
0031.

ture the underlying system logic. Much of the Semantic
Web’s growth today has been in the form of Linked Data,
which means that any Web rule language must be able to
handle highly interconnected and spatially dispersed data.
It must be able to dynamically traverse this web of data to
find additional facts to support the conclusions of its rea-
soner. Furthermore, a Web rule language should expose its
rules as Linked Data as well so that they can be re-used and
combined in a similar manner.

Web rule languages must also be able to cope with the
problems that arise from the inherent openness of the Web.
Reasoning over data on the Web can easily lead to logical
inconsistencies as anyone can assert anything. For example,
a reasoner could infer multiple subjects for the same value of
an Inverse Functional property, foaf:mbox sha1sum1,
caused by the incorrect copying of someone’s Friend of A
Friend (FOAF) page, leading to a logical inconsistency. A
Web rule language must be able to isolate the results of
reasoning [20] to prevent them from causing inconsistencies
in the global state.

Another problem with Web systems involves the trustwor-
thiness of data — what data may be trusted and what crite-
ria may be used for a decision. Different trust levels may be
assigned to Web documents and the facts contained therein.
For example, a hospital may be trusted with information
about a potential virus outbreak but may not be trusted
with respect to its economic inflation predictions. The abil-
ity to access only trusted RDF subgraphs from Web pages
is useful in maintaining the quality of inference results.

The quality of these results also depends on the prove-
nance of the data as well as other rules used to make in-
ferences. In order to evaluate deductions made by others,
deduction traces, or justifications as they are known, are also
required [8, 9]. They provide detailed provenance informa-
tion, including the data sources and rules applied, to allow
applications to evaluate the trustworthiness of a particular
result through automated proof checking [3, 15]. Capturing
and tracking this justification information is another impor-
tant property of Web rule languages.

AIR (Accountability In RDF) is a Semantic Web rule
language that provides for the isolation of reasoning and
management of trust while emphasizing justifications and
Linked Rules. Linked Rules conform to Linked Data
principles2 and enable AIR rules to be combined, re-used

1http://xmlns.com/foaf/spec/#term_mbox_sha1sum
2Linked Data Design Issues,
http://www.w3.org/DesignIssues/LinkedData.html



and extended similar to Linked Data. AIR is represented in
Notation 3 (N3)3, a superset of RDF which includes variable
quantification and graph quoting. AIR extends these fea-
tures to provide named rules, functions to selectively query
SPARQL Query Language for RDF (SPARQL) endpoints
and perform contextualized scoped reasoning. It also sup-
ports functions for retrieving subgraphs from Web resources
and basic cryptographic, string, and math operations. In
addition to returning any deduced triples, the AIR reasoner
returns a justification for these deductions. AIR justifica-
tions are also in N3, making it straightforward to define
AIR rules that reason over the inferences and justifications
of other AIR rules [10].

AIR has been used in various projects to meet differ-
ent rule-based inferencing requirements. It has been used
for controlled information exchange between government
agencies where decisions made by external rules were fre-
quently required making contextualized reasoning very im-
portant [23]. It has been used to secure access to Web re-
sources [17] and SPARQL endpoints [6] based on the creden-
tials of the user. AIR has also been used to analyze database
queries [11] with respect to privacy policies that required
ontology-based reasoning, querying of large knowledge bases
for factual information and expressive non-monotonic rea-
soning. Lastly, AIR has been used in accountability mech-
anisms for processing audit logs and looking for data usage
outside of what was allowed by usage restriction policies [24].
All of the above projects made use of justifications for de-
bugging and accountability purposes.

AIR, as described in [9], was initially proposed as a policy
language that used truth maintenance to generate justifica-
tions. In this paper, we explore and extend the language
with unique capabilities required by Linked Rules, define
a new justification ontology that captures the AIR reasoning
process to allow proof checking and further reasoning, and
broaden the functionality of AIR into a general Web rule
language.

This paper is structured as follows: we start by describing
a motivating scenario in Section 2. We then discuss the
concept of Linked Rules in more detail in Section 3 before
providing an overview of the AIR language in Section 4. In
section 5, we discuss AIR’s support for justifications — how
they are generated and the representation schema. This is
followed by a comparison to related work in Section 6. We
conclude the paper with a summary and directions for future
work in Section 7.

2. MOTIVATING USE CASE
To better understand how AIR’s features may be used to

solve complex problems, consider the following scenario:
Alice, Bob, and Carol are graduate students who all at-

tended the ESWC conference in 2010. Bob, being an am-
ateur photographer, decided to bring along a camera and
take pictures of the conference. When he got home, Bob de-
cided to post all of the pictures he had taken on MITBook, a
decentralized social network that Alice, Bob, and Carol are
all members of, which features advanced privacy controls.
MITBook uses FOAF+SSL4, a decentralization authentica-
tion mechanism that associates FOAF pages with users.

Alice is rather picky about who can see her personal pic-

3Notation 3 (N3), http://www.w3.org/DesignIssues/Notation3
4FOAF+SSL, http://esw.w3.org/Foaf+ssl

tures. Bob, knowing that Alice would probably not like the
rather incriminating photos taken of her at a dinner follow-
ing the conference to become widespread, would prefer that
his pictures that feature Alice abide by her preferred image
policy, even if those preferences change.

Bob’s co-worker Carol, on the other hand, maintains a
meticulously detailed ruleset that ultimately calculates a de-
gree of trustworthiness of every person she knows, so that
she can selectively reveal information only to certain trusted
people. Bob, knowing the care that Carol puts into this
metric, would like to use it for the people Carol knows, but
would prefer to not actually use Carol’s rules about which
photos should be shown to them. Instead, he would like to
ensure that only people with a trust-rating of more than 70
can see the photos he posts.

For all other pictures taken at the ESWC conference, Bob
would prefer to share them only with attendees of ESWC
from MIT and RPI, where his friends are located. As infor-
mation about all attendees of ESWC and their affiliation are
available on a SPARQL server, Bob would like to query that
SPARQL endpoint5 to determine whether an individual was
from MIT or RPI, rather than relying on loading the entire
dataset before reasoning.

These example policies, resultant inferences and justifi-
cations are available at http://dig.csail.mit.edu/2011/

Papers/WWW-AIR/example/.

3. LINKED RULES
Most rules, whether laws, security policies, business rules,

or workflow plans, are rarely defined by a single entity or
exist in a single document. They usually comprise of sev-
eral interdependent rules that are defined and maintained by
different entities. Additionally, rules may reference exter-
nal rules, including those of other organizations. Consider
Florida’s Sunshine Law, which sets out the rules by which
the public may access the public records of governmental
bodies in Florida.6 As seen in Figure 1, the Sunshine Law
may be modelled as a series of rules and exceptions that link
to external rules of custodians of requested records as well as
those of law enforcement agencies that might be using those
records. AIR models this kind of rule re-use and linkage
through:

• Rule names: AIR rules can be uniquely identified by
Uniform Resource Identifiers (URIs) and are accessi-
ble according to the principles of Linked Open Data.
This allows AIR rules to be treated as first-class ob-
jects and enables them to be spatially dispersed but
combined during reasoning. Annotations about addi-
tional properties of rules such as trust, provenance and
validity period can be made and policies which restrict
access to and the usage of the rules themselves can be
specified.

• Re-use: Rules may be developed modularly by com-
bining, re-using and extending existing rules. Rule
specialization is possible where additional conditions
or effects can be added to existing rules. In our use
case, Bob wants to use Alice’s policy for pictures that
contain her. He may do this by adding a condition

5Semantic Web Dog Food SPARQL endpoint,
http://data.semanticweb.org/sparql
6http://www.myflsunshine.com/sun.nsf/pages/Law



Figure 1: Rule Nesting and Linking in Florida Sun-
shine Law (119.01(1))

which checks that the picture is of Alice before linking
to Alice’s policy.

• Scoped re-use: In certain cases, such as when a rule
or its creator are not completely trusted or when all
inferences of a rule are not of equal quality, executing
a rule in its entirety and accepting all its inferences is
not feasible. AIR allows for the recursive execution of
rules against a certain context and its conclusions to
be selectively queried.

This conformance of AIR rules to Linked Data principles
forms the basis of Linked Rules which provides a more
natural way to think about and model real world rules, laws
and policies on the Web.

3.1 Rule Re-use
One method for rule reuse is currently offered by the Rule

Interchange Format (RIF) [14] and Web Ontology Language
(OWL), namely that of rule and ontology importing. In
doing so, however, all the rules of the imported document
become part of the ruleset. In AIR, individual rules can be
imported and used as a nested rule. These rules can also be
specialized through the addition of conditions or effects.

When rule authors create rules, not all assumptions may
be made explicit; often the data to which the rules are ap-
plied respect certain implicit assumptions. When these rules
are to be used in a different context, these assumptions must
be made explicit. In AIR, rules may be reused as “nested
rules” that may fire only after “parent rules” which explic-
itly enforce these implicit assumptions. This allows for the
extension or specialization of external rules. Nesting rules
in this fashion will necessarily expose the current state of
the reasoning (such as currently bound variables) to the ex-
ternal rule being nested. Likewise, the external rule being
nested may assert triples which are irrelevant to the policy
reusing the rule.

An alternative approach for rule reuse provided by AIR
is the use of scoped contextualized reasoning over external
rules. This permits external rules to be referenced with-
out giving them access to the current state of bindings or
allowing them to assert triples or change the state. Their
processing is restricted through the creation of an additional
context and scope. Certain trusted inferences can then be
extracted and used for reasoning in the original scope.

4. AIR OVERVIEW
AIR is an extension to N3Logic [4] and has been struc-

tured to meet the justification and rule reusability require-
ments of Web information systems. It has a production rule
structure7 that has been found to be useful in expressing
different forms of rules. Along with including the N3Logic
features of scoped negation, scoped contextualized reason-
ing, nested graphs, and built-in functions, AIR also supports
Linked Rules and is focused on generating useful justifi-
cations for all actions made by the reasoner. Like N3Logic,
AIR is written in N3, which provides a human-readable syn-
tax for a superset of RDF. N3Logic extends the RDF data
model by allowing for the quantification of variables as URIs
with the @forAll and @forSome directives. It also permits
the inclusion of nested graphs by using curly braces to quote
subgraphs.

AIR consists of a set of built-in functions and two inde-
pendent ontologies — one is for the specification of AIR
rules, and another for describing justifications of the infer-
ences made by AIR rules. The built-in functions allow rules
to access Web resources, query SPARQL endpoints, and per-
form scoped contextualized reasoning, as well as basic math,
string and cryptographic operations. While developing the
rule ontology, we focused on capturing how real world rules
and laws are written to allow them to be represented natu-
rally in AIR. For the justification ontology, our focus was on
re-usability of justifications and on automated proof check-
ing. When given some AIR rules as input, defined using the
AIR rules ontology, and some Semantic Web data, the AIR
reasoner produces a set of inferences that are annotated with
justifications, described in the justification ontology.

All the examples in the paper are in N3. Please refer to
http://www.w3.org/2000/10/swap/Primer for an overview
of N3 and to Figure 2 for the list of namespaces used in the
paper.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix log: <http://www.w3.org/2000/10/swap/log#> .
@prefix math: <http://www.w3.org/2000/10/swap/math#> .
@prefix str: <http://www.w3.org/2000/10/swap/string#> .
@prefix air: <http://dig.csail.mit.edu/TAMI/2007/amord/air#> .
@prefix airj:

<http://dig.csail.mit.edu/2009/AIR/airjustification#> .
@prefix sparql: <http://www.w3.org/2000/10/swap/sparqlCwm#> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix sioc: <http://rdfs.org/sioc/ns#> .
@prefix tags:

<http://www.holygoat.co.uk/owl/redwood/0.1/tags/tags#> .
@prefix swrc: <http://swrc.ontoware.org/ontology#> .
@prefix req:

<http://dig.csail.mit.edu/2011/Papers/WWW-AIR/example/req#> .

Figure 2: Namespaces

7Production rules, http://en.wikipedia.org/wiki/Production system



Figure 3: AIR Rule Ontology

4.1 AIR Rules
As illustrated in Figure 3, AIR rules are defined us-

ing the following properties: air:if , air:then , air:else,
air:description , air:rule and air:assert . Every rule is
named with a URI, and rules are grouped into air:RuleSets
or nested under other rules. This nesting can happen either
under the air:then property or the air:else property. The
rules nested directly under the RuleSet are referred to as
the top rules of the ruleset. A chain of rules is defined as
a sequence of rules, such that every rule, barring the first
in the chain, is nested under either the then or the else of
the preceding rule. Figure 4 provides an example of nested
rules. In this case, alice:MyImgPolicy only becomes active
if the air:if of the parent rule, :ViewImageRule1, matches
a pattern in the knowledge base.

There are three kinds of rules in AIR — air:Belief-
rule, air:Hidden-rule and air:Elided-rule. All rules
are, by default, Belief-rules. The descriptions and condi-
tions of Belief-rules contribute to the overall justification.
:ViewImageRule1 in Figure 4 is an example of a Belief-
rule. In contrast, Hidden-rules and Elided-rules are used
to modify the default justification. (Please refer to Sec-
tion 5.2 for more information about justification generation
and modification).

The conditions of a rule (for example, :REQUESTER a
req:Requester. in Figure 4) are defined as graph patterns
which are matched against RDF graphs, much like the Basic
Graph Pattern (BGP) of SPARQL queries8. If the condition
matches the current state of the world, defined as the facts
known or inferred to be true so far, then all the actions
under then (then-actions) are fired, otherwise all the actions
under else (else-actions) are fired. The condition matches
the current state if there is a subgraph of known facts that
matches the graph pattern. This subgraph is referred to as
the matched graph.

Existentially quantified variables may be declared within
graph patterns by using the @forSome directive. Any uni-

8http://www.w3.org/TR/rdf-sparql-query/
#BasicGraphPatterns

versally quantified variables, quantified using @forAll, are
declared outside of the rule. The scope of a existentially
quantified variable is the graph pattern in which it is de-
clared, whereas that of a universally quantified variable is
any chain of nested rules. The URIs that are universally
quantified, existentially quantified and those that are not
quantified (resources) are assumed to be disjoint. When
rules are imported and there is a clash, the behavior is un-
defined and resolution depends on the implementation. Fur-
thermore, the same URI should be used to share variable
bindings with nested rules.

Rules with conditions where some graph pattern must
match the current state and others should not match the cur-
rent state can be specified through the nesting of rules. The
actions under then and else (together referred to as actions)
are defined by an assertion pattern using the air:assert
property, or a rule reference, using the air:rule property.
All actions may be annotated with the natural-language
description of the rule or action through the use of the
air:description property that can also contain variables.

When the action is executed, the variables in an asser-
tion pattern (for example, the variable :REQUESTER in Fig-
ure 4) are substituted with their bindings, and the pat-
tern is asserted. If a rule reference is defined instead, an
instance of that rule, created by substituting the variable
bindings acquired so far, is activated. The variables in any
air:description property are also instantiated, and the de-
scription is maintained by the reasoner. Please refer to Sec-
tion 4.3 for more information on the order in which rules are
fired.

Any asserted graph pattern cannot contain blank nodes or
existentially quantified variables. When a rule containing an
air:else property is activated, its condition cannot contain
unbounded universally quantified variables.

Since AIR supports Linked Rules, AIR rules may be
identified by their URIs which allow them to be easily reused
and developed modularly. For instance, alice:MyImgPolicy
in Figure 4 is more fully defined outside of Bob’s rules docu-
ment, and AIR semantics cause them to be included during
the reasoning of their parent rule, :ViewImageRule1. The



@forAll :REQUESTER, :PIC .

:ViewImageRule1 a air:BeliefRule;
air:if {:REQUESTER a req:Requester ;

req:requestedImg :PIC.
:PIC sioc:topic
<http://dig.csail.mit.edu/2008/02/rmp/alice-foaf#me>.

};
air:then [ air:description (

"If the picture requested contains "
"Alice then execute Alice’s policy "
"about image access");

air:rule alice:MyImgPolicy
].

alice:MyImgPolicy
air:then [ air:description(

"Alice’s policy has executed");
air:assert {

:REQUESTER req:compliant-with :BobRuleSet }
];
air:else [ air:assert {

:REQUESTER req:non-compliant-with :BobRuleSet } ].

Figure 4: Example AIR RuleSet: Following from
the motivating use case, this rule uses Alice’s policy
to determine whether access to a picture should be
granted.

effect of reusing a rule is that all the rule chains starting
with that rule are also reused.

Note, however, that we may still extend the actions
that fire as a result of matching (or failing to match) al-

ice:MyImgPolicy. In Figure 4, we extend the rule to ad-
ditionally assert that it is (or is not) compliant with :Bo-

bRuleSet when alice:MyImgPolicy completes (or fails) its
match.

4.2 AIR Built-ins
AIR supports most N3Logic built-ins including those for

cryptographic, math, string, list and time functions. AIR
also supports the N3Logic built-ins provided within the log:
namespace. This allows for rules to access Web documents
using the built-in function log:semantics, and utilize sub-
graph matching with the log:includes property.

As seen in Figure 5, AIR further extends the set of
N3Logic built-in functions to support the execution of re-
mote SPARQL queries using sparql built-ins. SPARQL
CONSTRUCT queries may be sent to SPARQL endpoints
using the sparql:queryEndpoint property assertion, and
subgraph patterns may retrieved from the graph returned
by the endpoint.

The introduction of sparql:queryEndpoint is unique
among rule systems in that it enables the dynamic con-
struction and use of queries against remote knowledge bases
rather than relying on a local knowledge base. This is par-
ticularly useful as it means that large sets of Linked Data
need not be loaded into the knowledge-base prior to reason-
ing over some rules. Instead, it is possible to write rules
that use queries to only extract relevant information from a
SPARQL endpoint. This defers the maintenance and query-
ing of this data to external hosts more capable of doing so.

AIR’s ability to incorporate the contents of SPARQL
queries meets the third requirement of the motivating use
case; Bob may only allow access to images from members of
MIT and RPI who, according to the SPARQL endpoint, at-
tended ESWC2010. The rule in Figure 5 includes a SPARQL

@forAll :REQUESTER, :PIC .

:ViewImageRule3 a air:BeliefRule;
air:if {

:REQUESTER a req:Requester.
:PIC a req:RequestedImg;

tags:taggedWith [ tags:tagName "ESWC2010" ].
};
air:then [ air:description (

"If the picture was taken at ESWC2010, "
"allow access to MIT and RPI "
"organizers");

air:rule :QueryEndpointForAffiliations
] .

:QueryEndpointForAffiliations a air:BeliefRule;
air:if {

@forSome :SPARQL, :RESULTS .
("""

PREFIX swc:<http://data.semanticweb.org/ns/swc/ontology#> .
PREFIX swrc:<http://swrc.ontoware.org/ontology#> .
PREFIX req:
<http://dig.csail.mit.edu/2011/Papers/WWW-AIR/example/req#> .

PREFIX rdfs:<http://www.w3.org/2000/01/rdf-schema#> .
CONSTRUCT { """ :REQUESTER """ swrc:affiliation req:MITorRPI .}
WHERE { ?ROLE swc:heldBy ?PERSON.

?PERSON rdfs:seeAlso """ :REQUESTER """.
?ROLE swc:isRoleAt

<http://data.semanticweb.org/conference/eswc/2010>.
{

{ ?PERSON swrc:affiliation
<http://data.semanticweb.org/organization/rpi> }

UNION
{ ?PERSON swrc:affiliation
<http://data.semanticweb.org/organization/mit> }

}
}""") str:concatenation :SPARQL .

( <http://data.semanticweb.org/sparql/> :SPARQL )
sparql:queryEndpoint :RESULTS .

:RESULTS log:includes {
@forSome :R .
:R swrc:affiliation req:MITorRPI .

}
} ;
air:then [ air:description(

"The requester," :REQUESTER ", was "
"an organizer of ESWC2010 and is a "
"member of MIT or RPI, so I will "
"allow access");

air:assert{
:REQUESTER req:compliant-with

:BobRuleSet } ] .

Figure 5: Querying a SPARQL endpoint Within
AIR Rules: An AIR rule that may be used to query
the SPARQL endpoint to discover if a requester was
an attendee of ESWC2010 from RPI or MIT.

CONSTRUCT query to determine the requester’s affilia-
tion and extract a graph that may be matched using the
log:includes built-in. If this graph contains a desired triple
:R swrc:affiliation req:MITorRPI ., it would allow for
the conclusion that the requester is actually a member of
MIT or RPI who attended ESWC2010.

N3Logic provides scoped contextualized reasoning over
N3Logic rules with its log:conclusion built-in. As the AIR
reasoner uses semantics to represent rules that differ from
those of N3Logic, we introduce the air:justifies built-in
to check if the execution of some external AIR rules (AIR-
closure) against some Semantic Web data produces (RDF-
entails) a certain RDF graph. The results of these exter-
nal rules are not directly included into the current state but
can be queried selectively using log:includes. Together, the
log and air:justifies built-ins provide scoped contextualized



@forAll :REQUESTER, :PIC .

:ViewImageRule2 a air:BeliefRule;
air:if {

@forSome :Person, :S.
:REQUESTER a req:Requester;

req:requestedImg :PIC.
<http://dig.csail.mit.edu/2008/02/rmp/carol-foaf#i>

log:semantics :S.
:S log:includes {

<http://dig.csail.mit.edu/2008/02/rmp/carol-foaf#i>
foaf:knows :REQUESTER }.

};
air:then [ air:description (

"If the requester is a person who "
"Carol knows then use Carol’s "
"inferences about this person’s "
"trust value");

air:rule :ScopedExecutionOfCarolRule
].

:ScopedExecutionOfCarolRule a air:BeliefRule;
air:if {

@forSome :P, :R, :V, :A, :B, :C.
<http://dig.csail.mit.edu/2011/Papers/WWW-AIR/

example/carol-policy.n3>
log:semantics :P.

:REQUESTER log:semantics :R.
( ( :R ) ( :P ) ( req:trustvalue ) )

air:justifies { :B req:trustvalue :V }.
:V math:greaterThan 70;

};
air:then [ air:description(

"Carol trusts the requester, "
:REQUESTER ", more than 70 percent, "
"so I will allow access");

air:assert{ :REQUESTER req:compliant-with
:BobRuleSet}

].

Figure 6: Recursive Execution of AIR Rules:
air:justifies may be used to recursively call rule sets,
as in this example where :CarolTrustRuleSet is exe-
cuted from within :ScopedExecutionOfCarolRule.

reasoning over AIR rules. Figure 6 provides an example of
the use of air:justifies in order to calculate Carol’s trust
value for a friend of Carol, using rules defined in a sepa-
rate file, <http://dig.csail.mit.edu/2011/Papers/WWW-

AIR/example/carol-policy.n3>. AIR thus meets another
need of our use case: that Bob should be able to reuse and
execute Carol’s rules as defined in other documents.

4.3 AIR Semantics
The procedural semantics of AIR [13] describe how AIR

rules fire and how inferences are made. The AIR reasoner
applies forward chained reasoning to compute the closure of
AIR rules and the input data. When AIR rules fire, their
actions, substituted with known variable bindings, are per-
formed. As a result, new rules may be added to the rule
base and/or new facts may be deduced. Initially the rule
base contains only the top rules in the ruleset, and the fact
base is the input facts. The rules in the rule base are said
to be active. The active rules whose conditions match the
current state of the world (fact base) are referred to as suc-
cessful rules, whereas those active rules whose conditions
have no match are called failed rules.

AIR reasoning is performed in stages. In any given stage,
the successful rules are given priority over failed rules and
their then-actions are effected before failed rules fire. When
all successful rules have fired the world is temporarily closed

Figure 7: Example of AIR Rule Nesting

and the else-actions of all the failed rules are fired simulta-
neously with the belief that the conditions of all the failed
rules are false. AIR reasoning enters the next stage once the
failed rules have all fired.

In order to illustrate rule nesting, we consider an arbi-
trary nesting shown in Figure 7. Before entering stage 1,
only RuleA and RuleB are in the rule base. Then, if the
condition of RuleB is satisfied, RuleC would be active in
stage 1. However, if in stage 1 RuleB doesn’t succeed, then
RuleD will be added to the rule base after the world is closed
for stage 1, and will be active from stage 2. Now, in stage
2, if RuleD succeeds then RuleE will become active in stage
2. Otherwise RuleF will be active from stage 3. Note that if
RuleB succeeds in later stages, say stage 3, then RuleC will
also be active (in addition to RuleD) from stage 3 onwards.

The declarative semantics of AIR [13] are defined through
translation of AIR rules to stratified Logic Programs [21].
The AIR-closure computation is polynomially-complete in
data-complexity and exponentially-complete in program-
complexity, where data complexity is the complexity of com-
puting the closure when the program is fixed and the facts
are input and program complexity is the complexity when
the facts are fixed and program is input.

5. AIR JUSTIFICATIONS
Upon finalizing its reasoning results, the AIR reasoner

produces a justification that contains sufficient information
to understand the actions made by the reasoner and to debug
the rules, if needed. We have developed a justification on-
tology based on basic Proof Markup Language (PML) con-
cepts [19] to represent the important operations involved in
the closure computation as defined by the AIR semantics.

As AIR justifications themselves are N3 data, they can
be consumed by other N3 reasoners, including AIR itself, to
evaluate the quality and trustworthiness of the results based
on the rules and data sources used. If rules, data, or their
creators have belief or trust values associated with them,
AIR rules can be written to trace through justifications to
evaluate the inferences based on these values.

5.1 Justification Ontology
The AIR justification ontology extends certain PML [19]

concepts as shown in Figure 8. PML is a general proof
language or “proof interlingua” that is used to describe
proof steps generated by different kinds of reasoning en-
gines. We use the PML-Lite vocabulary9 that repre-
sents a subset of PML and is modeled as Events, which
can be conveniently used for representing the AIR rea-

9PML-Lite - http://tw.rpi.edu/proj/tami/PML-Lite



Figure 8: AIR Justification Ontology: All concepts defined without a prefix are in the airj namespace

soning steps. The AIR justification ontology consists of
three main classes — pmll:Event , pmlj:Mapping and
pmll:Operation . The Event class may be categorized into
BuiltinAssertion, BuiltinExtraction, ClosingTheWorld, Clo-
sureComputation, Dereference, Extraction, and RuleAppli-
cation events depending on the operation performed.

The AIR reasoner computes the closure of input
facts with respect to a given AIR ruleset. An
airj:ClosureComputation event captures this operation.
The events of all other types are all part of some Closure-
Computation event.

The input to an AIR ruleset may be contained in N3
or RDF documents on the Web or on a local machine.
They are dereferenced to retrieve their graph representa-
tion. Each dereference is encoded as an airj:Dereference
event. In the example in Figure 9, the document lo-
cated at <http://dig.csail.mit.edu/2011/Papers/WWW-

AIR/example/req> is dereferenced to get the RDF graph
_:g0 in event _:d0, from which it may be determined
whether Carol’s friend Joe is allowed to access an image.

The airj:RuleApplication events _:ra0 and _:ra1 in
Figure 9 represent rule firing events. They are linked to the
rule that fired by the air:rule property. The RuleApplica-
tion event for a nested rule has a special flow dependency,
or airj:nestedDependency , on the RuleApplication event
where this rule was activated. _:ra1 features such a nested-
Dependency on _:ra0, and the input variable bindings of
_:ra1 are the same as the output variable bindings of the
_:ra0. The input and new variable bindings after a rule fires
are declared using the airj:outputVariableMappingList
property. Any asserted triples are declared using the
pmll:outputdata property, and the event may be anno-
tated with a natural language description specified by the
air:description property. The air:branch property states
whether the rule succeeded or failed at matching.

Note that RuleApplication events may have data depen-

dencies on other events. The condition can be satisfied by
triples from more than one input log, or by triples asserted in
prior RuleApplication events. They may also have flow con-
trol dependencies on prior airj:ClosingTheWorld events.

A ClosingTheWorld event, such as that in Figure 10,
refers to a temporary closure of the world before failed
rules are fired. A ClosingTheWorld event has data
and/or flow control dependencies on all prior RuleApplica-
tion events. These dependencies are represented through
airj:dataDependency and airj:flowDependency proper-
ties, respectively.

In Figure 10, an alternate justification beginning simi-
larly to that in Figure 9, a ClosingTheWorld event, _:ctw0,
is used to close the world before deciding :ScopedExecu-

tionOfCarolRule so that it may follow the air:else action.
This allows the reasoner to conclude that the requester, Joe,
is not allowed to access the image given Bob’s ruleset (and
Carol’s rule). Note that the event _:ctw0 has a dataDe-
pendency on all previous BuiltinExtraction and Dereference
events which built the now-closed knowledge base.

Apart from the input triples, there are N3Logic triples
that are tautologically true. Some of these are built-in
assertions. In practice, built-in triples are created dy-
namically. However, we abstract this process and rep-
resent it through a series of airj:BuiltinAssertion and
airj:BuiltinExtraction events. The output of a Builti-
nAssertion event is assumed to be the graph that contains
all the true assertions (potentially unbounded in number)
for the function specified by the airj:builtin property. The
assertions needed to match rule conditions are then ex-
tracted from this output in a BuiltinExtraction event. The
airj:Extraction event from which BuiltinExtraction is de-
rived, is used to encode the step where a subgraph is ob-
tained from a graph. The input to BuiltinExtraction event
is implicit, and may be determined by the BuiltinAssertion
event on which the extraction has a dataDependency.



_:d0 a airj:Dereference ;
airj:source
<http://dig.csail.mit.edu/2011/Papers/WWW-AIR/example/req#> ;

pmll:outputdata _:g0 .
# similar events for carol’s & joe’s foafs & carol’s policy

_:in a airj:BuiltinAssertion ;
airj:builtin log:includes .

# similar events for air:justifies & math:greaterThan

_:be0 a airj:BuiltinExtraction ;
airj:dataDependency _:in ;
pmll:outputdata { _:g1
log:includes {

<http://dig.csail.mit.edu/2008/02/rmp/carol-foaf#i>
foaf:knows
<http://dig.csail.mit.edu/2008/02/rmp/joe-foaf#me> } } .

# similar events for air:justifies & log:includes

_:be3 a airj:BuiltinExtraction ;
#dataDependency on BuiltinExtraction for math:greaterThan
pmll:outputdata { 100 math:greaterThan 70 } .

_:mapping0 a pmlj:Mapping ;
airj:mappingFrom :REQUESTER ;
airj:mappingTo
<http://dig.csail.mit.edu/2008/02/rmp/joe-foaf#me> .

# Similarly Mapping _:mapping1 for :PIC

_:ra1 a airj:RuleApplication ;
air:rule :ScopedExecutionOfCarolRule ;
airj:nestedDependency _:ra0 ;
airj:branch air:then ;
airj:dataDependency _:d0, _:d2, _:d3, _:be1, _:be2, :be3 ;
airj:outputVariableMappingList (_:mapping0 _:mapping1) ;
pmll:outputdata {
<http://dig.csail.mit.edu/2008/02/rmp/joe-foaf#me>

req:compliant-with :BobRuleSet} ;
air:description ("Carol trusts the requester, "

<http://dig.csail.mit.edu/2008/02/rmp/joe-foaf#me>
", more than 70 percent, so I will allow access") .

_:ra0 a airj:RuleApplication ;
air:rule :ViewImageRule2 ;
#... other properties similar to :ra1

Figure 9: An AIR Justification: Part of the justifi-
cation allowing access to the picture to Joe, Carol’s
friend, based on the rules in Figure 6. Note that all
events generated have been assigned to blank nodes
(e.g. _:d0), but this is not a requirement.

In the example in Figure 9, we require that the graph
_:g1, representing Carol’s foaf file, include the triple
<http://dig.csail.mit.edu/carol-foaf#i> foaf:knows
<http://dig.csail.mit.edu/joe-foaf#me>. This is
tested using the log:includes built-in. Using the abstract
event _:in, we get all log:includes triples that can be true,
and extract the one relevant for reasoning in the _:be0 event.
Thus, _:be0 has a data dependency on _:in.

By manually or automatically tracing the output data and
rule dependencies from each BuiltinExtraction, Dereference,
or RuleApplication event, we may determine the order in
which rules were applied and what data was used. This also
allows for the construction of meaningful, human-readable
justification traces and interfaces [9].

5.2 Justification Generation
AIR supports justification generation for every action

taken by the reasoner. The reasoner annotates every ac-
tion — firing of rules, execution of built-ins, and closing
of the world — with relevant information. Furthermore, it

_:ctw0 a airj:ClosingTheWorld ;
airj:dataDependency _:be0 , _:d0 ;
airj:flowDependency _:ra0 ;
# And others in the same way.

_:ra1 a airj:RuleApplication ;
air:rule :ScopedExecutionOfCarolRule ;
airj:branch air:else ;
airj:nestedDependency _:ra0 ;
# ...
airj:dataDependency _:ctw0 ;
airj:outputdata {
<http://dig.csail.mit.edu/2008/02/rmp/joe-foaf#me>
req:non-compliant-with :BobRuleSet . } .

Figure 10: Justifying Joe’s rejection: Closing the
world to assert air:else.

tracks dependencies between the actions and generates the
justification as described in [9]. The default justification for
a conclusion is constructed by recursively taking the union
of descriptions of dependent actions starting with the action
that asserted the conclusion.

Though knowing the rules and facts from which a conclu-
sion is derived is useful, it does not describe what the rule
was attempting to do. In order to provide natural-language
explanations, we allow air:descriptions to be added to
air:actions. These descriptions are English sentences and
can contain variable values. The air:description property
is a list instance, where list items are enclosed in brackets
and separated by commas. Each list item can either be a
string enclosed in quotes or a quantified URI variable. Dur-
ing the reasoning process, each variable is replaced by its cur-
rent value and inserted into the description string. For ex-
ample, the description of :ScopedExecutionOfCarolRule

from Figure 6 is a list consisting of one variable, :REQUESTER,
and two strings — Carol trusts the requester and more than
70 percent, so I will allow access.

Sometimes, the default justification can be unwieldy or
very revealing, and must be modified to hide trivial or sensi-
tive information. AIR provides mechanisms to declaratively
modify justifications. Rules in AIR may be declared to be
air:Hidden-rules or air:Elided-rules to suppress justifi-
cations for certain actions. The detailed justifications for
actions executed when an Elided-rule fires are suppressed,
and only the natural-language description is provided. The
justification for actions executed when a Hidden-rule or its
descendants fire are suppressed completely. This flexibility
to control the level of details, at a rule-based granularity,
helps rule authors to adjust the justification so that sensi-
tive information is not revealed and so explanations are not
overly verbose. Nesting of rules can be used to split a rule’s
conditions across multiple rules when parts of the graph pat-
tern refer to sensitive (or insignificant) information, so that
such rules may be elided or hidden.

From our use case, Bob’s policy for Carol’s friends is to
use Carol’s policy to decide whether or not he trusts them
enough to show a picture to them. However, Carol may
not be comfortable sharing her trust valuations for friends.
For instance in the justification in Figure 9, the trust value
for Joe, is revealed in _:be3 to be greater than 70 . Bob
may choose to hide these details. In this case, :ScopedEx-
ecutionOfCarolRule from Figure 6 could be declared to be
a air:Elided-rule instead of a air:Belief-rule. As illus-
trated in Figure 11, the justification for Joe’s permission



...
@forSome _:ra1 .
_:ra1 a airj:RuleApplication ;
airj:nestedDependency _:ra0 ;
pmll:outputdata {
<http://dig.csail.mit.edu/2008/02/rmp/joe-foaf#me>

req:compliant-with :BobRuleSet} ;
air:description ("Carol trusts the requester, "

<http://dig.csail.mit.edu/2008/02/rmp/joe-foaf#me>
", more than 70 percent, so I will allow access") .

...

Figure 11: Justification of Elided Rule: Justification
for permission to Carol’s friend does not contain the
Elided-rule :ScopedExecutionOfCarolRule

would not contain information about :ScopedExecutionOf-
CarolRule and the trust valuation would not be revealed.

6. RELATED WORK
There are many rule languages and rule systems, and

Liang et. al give a nice overview of popular, and often
advanced, rule systems [16]. Examples of Web rule lan-
guages include N3Logic [4], Networked Graphs (NG) [22]
and SWRL10, and some rule systems are Jena11, Jess12,
Ontobroker 13, SILK [7] and XSB [5]. While AIR, N3Logic,
NG, SWRL and Jena are rule languages/ systems for triples,
others are more generic reasoners which can be used for the
semantic web data as well. A detailed comparison on se-
mantics and expressiveness of AIR with other systems/ lan-
guages is provided in [13].

In AIR, rules can have global unique identifiers, and they
can be reused by direct reference. This feature is unique
to AIR. Likewise only AIR supports rule nesting. AIR and
other systems can retrieve remote Semantic Web data, how-
ever in AIR rule conditions can also be matched against re-
mote SPARQL end-points using the sparql:queryEndpoint
builtin. While most of the systems can provide a trace for
how the inference was drawn, none support customized ex-
planations such as in AIR.

In the past there has been some research in generating
customized explanations using proof traces. The Ontonova
system [1] provides natural-language explanation of proof
trees for conclusions using Ontobroker and meta-inferencing.
Meta-inferencing rules are defined for different rule instan-
tiations and applied over the logs generated by Ontobroker
during the inferencing process.

The defeasible reasoning system, DR-DEVICE, has a sim-
ilar mechanism for generating proofs[2]. Defeasible rules can
be translated to XSB rules, and interpreted by XSB. The
XSB trace is processed and tagged with a proof schema. In
the context of OWL, a subset of the ontology sufficient for
OWL entailment to hold is treated as the justification for
the entailment and algorithms exist to derive the minimal
such subset [8, 12].

In contrast to the above approaches, AIR allows rule au-
thors to specify the natural language explanation of the rule
within the rule definition itself, and allows the details re-
vealed in the justification to be selectively pruned.

10http://www.daml.org/rules/proposal/
11http://jena.sourceforge.net/
12http://www.jessrules.com/
13http://www.ontoprise.de/en/home/products/ontobroker/

The derivation steps leading to a conclusion can be ex-
plained through the Inference Web (IW) explanations [18].
IW explanations are proofs marked up in PML and are
portable. For this the reasoner and inference steps must
be registered with the IWBase. We are investigating the
registration of AIR inference steps with IWBase. However,
we can not hide certain derivation steps using IW as required
by hidden and elided AIR rules.

AIR supports scoped contextualized reasoning through
log:includes, log:notIncludes and air:justifies builtins.
Scoped reasoning is important for Web rule languages be-
cause information on the Web is often assumed to be in-
complete or inconsistent, and its correctness is subject to
the trustworthiness of the source. Other than AIR and
N3Logic, NG, Ontobroker and SILK support contextualized
reasoning. The scope or context, defined by some data
and/ or rules, can be chosen dynamically in AIR, unlike any
other system, to the best of our knowledge.

The Rule Interchange Format (RIF) [14] is an effort to-
wards developing standards to facilitate interoperability of
rules in these disparate rule based systems over the Web.
RIF has two major dialects — Framework for Logic Dialects
and Production Rule Dialect. The semantic differences be-
tween each of these and AIR is discussed in [13]. In addi-
tion, while RIF is meant for general rule interchange, AIR is
explicitly designed to operate on Semantic Web data. Fur-
thermore, the representation of RIF in RDF currently exists
only as a W3C working draft.14 RIF documents are able to
import other RIF documents, but, unlike AIR, rules them-
selves cannot be interlinked. One of the advantages of in-
terlinking rules is that we can add additional conditions to
rules before reuse, i.e. defining specialization of rules. Fur-
thermore, to the best of our knowledge there is no explicit
notion of scoped reasoning in RIF.

The compatibility of rules with semantic web data in var-
ious languages RDF, RDFS, OWL 2 DL and OWL 2 Full is
clearly defined for RIF 15, but remains future work for us to
do in AIR. One of the motivating use cases for defining such
compatibilities is to help rule publishers to extend OWL on-
tologies with rules. Like in RIF, OWL 2 RL 16 reasoning
can be implemented in AIR, and therefore ontologies with
OWL 2 RL semantics can be used with additional AIR rules.

7. SUMMARY AND FUTURE WORK
We have found that AIR’s expressiveness and function-

ality allow it to easily capture real world rules and policies
while leveraging (Semantic) Web data and protocols. It sup-
ports Linked Rules so that rules can be developed and re-
used in a manner similar to Linked Data, provides functions
for scoped contextualized reasoning, provides justification
for its inferences which can be used to evaluate the quality
and trustworthiness of results. Though our use case demon-
strates how AIR can be used in collaborative environments,
AIR has also been used for information sharing for access
control and policy management, to secure SPARQL end-
points, to check the compliance of queries against privacy
policies and as an accountability mechanism for checking
whether audit logs comply with usage restriction policies.

14http://www.w3.org/TR/rif-in-rdf/
15RIF RDF and OWL compatibility-
http://www.w3.org/TR/2009/WD-rif-rdf-owl-20090703/

16http://www.w3.org/TR/owl2-profiles/#OWL 2 RL



Thus far, our focus has been on studying the rule re-
quirements of open Web information systems, designing ap-
propriate features in the rule language, and implementing
AIR-based systems. Moving forward we will work on han-
dling conflicts between rules and on enabling default behav-
ior when none of the conditions of a RuleSet match. We are
also interested in studying the performance and scalability
of AIR and plan to use or extend existing benchmarks [16].
Furthermore, we will define an AIR to RIF translation so
that AIR rules can be exchanged with RIF-aware systems.
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