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ADbstract

Motivated by the large-scale circulation of the atmospleard ocean, we develop a system that uses
observations from a laboratory analog to constrain, in réiahe, a numerical simulation of the lab-
oratory flow. This system provides a tool to rapidly prot@ypew methods for state and parameter
estimation, and facilitates the study of prediction, potalility, and transport of geophysical fluids
where observations or numerical simulations would not petelently suffice.

A computer vision system is used to extract measuremertie phiysical simulation. Observations
are used to constrain the model-state of the MIT General(Catton Model in a probabilistic, ensemble-
based assimilation approach. Using a combination of pataim, domain decomposition and an effi-
cient scheme to select ensembles of model-states, we shisgtimates that effectively track the fluid-
state can be produced. To the best of our knowledge this ifirftesuch observatory for laboratory
analogs of planetary circulation that functions in real #m

1. Introduction

Laboratory experiments have been extensively used to staohet the properties of fluids [2, 23, 9,
14, 8, 19]. Of particular focus here is the large-scale tatoon of the atmosphere, for which a well-
known laboratory analog is a thermally-driven rotating fli@yv 19, 10, 3, 2, 14]. In this experiment,
a rotating annulus with a cold center (core) and warm peripfexterior) develops a circulation that

has dynamical similarity to the mid-latitude circulationthe atmosphere, as shown in Figure 1. Itis

*This research in this paper is funded by NSF Grant CNS 0540248
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a robust experiment, easily conducted in the laboratoryastbeen used to study a variety of physical
phenomena including geostrophic turbulence [14], comwed8], baroclinic instability [9, 23, 18], and
chaos [19, 10], and as a test-bed for evaluating the utifiyuonerical models [20, 6].

We present an automated real-time observatory for thisrédbry experiment. By observatory, we
mean a coupled physical-numerical system with the follgngomponents: sensors to take measure-
ments of the evolving physical system, a numerical modeh@ryo forecast the system, and inference
algorithms that constrain the model with observations twpce an evolving state that is closer to the
laboratory flow than either observations and model alone.

We contend that a number of exciting possibilities open ugedhe observatory operates in real-time.
Properties of the fluid that cannot easily be observed (seffi@ight, pressure fields, vertical velocities,
radial heat transport etc.) can be studied using the modedtli€s in tracer transport can be conducted
using the observatory in real-time. New algorithms thatrassl prediction and predictability issues of
state and parameter estimation, model error and targedindpe rapidly validated. Across disciplines,
the platform provides application to new distributed commmy visualization and augmented reality
applications. Whilst it is not possible, in one paper, tolesg each and every application, a large
number of potential applications will require the coupleshnerical-physical system to track the fluid’s
state in real-time. Therefore, we focus here on the desidheobbservatory, including a procedure to
estimate model-states in real-time.

Tracking, when formulated as a state and parameter estim@atoblem, is known to be fundamentally
challenging in weather forecasting [11]. In the contextcéan state estimation or weather forecasting,
predictions are typically made using general circulatioodels (GCMs), which implement the dis-
cretized governing equations. GCMs typically have unaefarameters and crude parameterizations,
uncertain initial and boundary conditions, and their nuoaischemes are approximate. Thus, not only

will the error between physical truth and simulation evolvea complex manner, but the PDF of the



evolving model state’s uncertainty is unlikely to retaire ttiue state within it. A way forward is to
constrain the model with observations of the physical spg&4].

We posit that studying the estimation problem in the lalwgats convenient and useful. Firstly,
repeatable experiments with real data can be performed @eirsimpler logistics than the operational
setting. Secondly, the following key challenges demandedhk large-scale problem must also be

addressed in the laboratory setting:

1. Nonlinearity — the laboratory analog is nonlinear andrthenerical model is the same used in

planetary simulations

2. Dimensionality — the size of the state of the numerical elasl of the same order as planetary

simulations

3. Uncertainty — the initial conditions are unknown, andtiedel is imperfect relative to the phys-

ical system
4. Realtime — forecasts must be produced in better thanmealt

These are all interesting problems in their own right anditsmhs found in a laboratory setting can
accelerate acceptance of new methods in operationalgetimd could be useful in many other coupled
numerical-physical systems.

Before going on it should be noted that the rotating annulgseement has already been used to
explore the utility of numerical models. Read et al. [20] tise annulus to study how well numerical
transport schemes compare to real observations and repbEtlerian schemes, such as used in this pa-
per, have skill. In more recent work Read [18] combines nurakstudies with laboratory experiments
in the study of heat transport and effort has been afoot wyghwediction and predictability problems
using the laboratory setting [25, 26, 16, 17]. To the bestwflmowledge, however, this is the first

coupled observation/numerical system of a laboratory exy@at to operate in realtime [17].
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Figure 1. Image (a) shows the 500hPa heights for 11/27/062&ver the northern hemisphere centered at the
north pole. Winds flow along the pressure contours. Imagst{byvs a tracer (dye) in a laboratory analog. The
tank is spinning and the camera is in the rotating frame. éfrdmplets initially inserted at the periphery (red dye,

warm region) and around the central chilled can (green dyie, region) has evolved to form this pattern. The

laboratory analog and the planetary system are dynamie&lty to one-another. We study the state-estimation
problem for planetary flows using the laboratory analog.

The observatory operates by continually taking measurenténhe physical system and uses a prob-
abilistic, ensemble-based estimation method to constr@model-states of a numerical model. Our
system does this using off-the-shelf components for therktbry experiments, commercially available
software to extract observations, the publicly availabl&@¥&CM, and a new hybrid filter that combines
deterministic and probabilistic filtering. The probaliitscomponent is related to the Local Ensemble
Kalman Filter [15], which is derived from the ensemble Kainfdter [4, 5].

Our coupled system can operate in a variety of dynamicahmegi For the experiments presented
here, an assimilation cycle (forecast-observe-assie)ifatist be completed within roughly seconds,

a typical rotation period. Our system accomplishes thisgidomain decomposition, spectral-reduction,
distributed computation, and a new way to generate andtsalsembles. It is now in routine use and

data-sets are readily available to other researéhers

lvideos are enclosed as supplementary information withptaeer. They depict the operational use of our observatory.



2. The Observatory

The observatory, illustrated in Figure 2, has a physical@rdputational component. The physical
component consists of a perspex annulus of inner raglius and outer radius o23cm, filled with
15e¢m of water and situated rigidly on a rotating table. A robotimay its side moves a mirror up and
down to position a horizontal sheet of laser light at any deptthe fluid. Fluorescent particles (Dantec
Dynamics’ pliolite particles sd.03¢/cc) are homogenized in saline water of equal density and respon
to incident laser illumination. They appear as a plane dited dots in thé2—bit quantized] K x 1K
images (see Figure 4) of an Imperx camera. These imagesasgdrred out of the rotating frame using

a Hitachi fiber-optic rotary joint (FORJ or slip-ring).

Camera Robotic
scanner

Observations

Cold-core
Fluid with

particles

Simulated System

Physical System

Figure 2. The laboratory observatory consists of a physgatem: a rotating table on which a tank, camera
and control system for illumination are mounted. The corafomal part consists of a measurement system for
velocimetry, a numerical model, and an assimilation systslescribed more fully in the text.

The actual configuration of these elements is shown in a ghapd of our rig in Figure 3. The
observation rig is carefully mounted and tested for vilomadi To see this, consider that particles can
move at up t®cm/s. The camera scale factor is approximat@lymm/pizel and it is positioned0cm
away from the annulus. At a sampling ratelgfis, the camera must shake by less tiiatf to have
less thanl0% motion noise. Therefore, one must be very careful to eliteingbrations. We center

the rig and hold the FORJ-assembly using four bungee chetdsh have the appropriate stiffness (see



Figure 3) to damp vibrations and moments.

Figure 3. The apparatus consists of (a) the rotating platfdb) the motorized mirror, (c) the tank, (d) electronics,
(e) a rig on which a camera is mounted, (g). Laser light coma® Mdirection (f) and bounces off two mirrors
before entering the tank. The fiber optic rotary joint (FO))allows images to leave the rotating frame and is
held stably by bungee chords (i).

_

Figure 4. The camera’s view of the rotating annulus in vesilyht is shown on the left. The corresponding view
in laser light depicts the embedded particles and is showmeimiddle image. A picture of the laser illuminating
the tank is shown on the right. Notice the shadow due to thikeclm the middle. The square tank is used to
prevent the laser light from bending at the annulus intexfac

The computational aspects of the observatory are also shofigure 2. A server acquires particle
images and ships them to two processors that compute opticiil parallel (Figure 2, labeled OBS).

Flow vectors are passed to an assimilation program (Figuteb2led DA) that combines them with



model forecasts to estimate new states. These estimatesibaww initial conditions for the models.

We now go on to discuss individual components of this system.

2.1. Laboratory experiment and Visual Observation

We homogenize the fluid with neutrally buoyant particles apth up the rotating platform at the
desired period (betweeds and12s). After twenty minutes or so the fluid comes into solid bodatmn.
The inner core is then cooled using a chiller (see Figure 4thiwminutes the water near the core cools
and becomes dense. It sinks to the bottom to be replenishedivg waters from the periphery of the
annulus, thus setting up a circulation. At high enough rotatates eddies form (see Figure 1) and
baroclinic instability sets in.

Once cooling commences, we turn off the lights and turn orctminuous wave W 532nm laser,
which emits a horizontal sheet of light that doubles backugh a periscope to illuminate a sheet of the
fluid volume (see Figure 4). An imaging system in the rotafnagne observes the developing particle
optic-flow using a camera looking down at the annulus.

The ultra-small pliolite particles move with the flow. We ebge the horizontal component and com-
pute optical flow from image pairs acquiré®s — 250ms apart using LaVision’s DaVis software. Flow
is computed ir82 x 32 windows with al6 pixel uniform pitch across the image. It takes one second to
acquire and compute the flow of a singl& x 1K image pair by distributing the computation across
two 2.8G H z processors. An example is shown in Figure 5.

Observations are gathered over several levels on a repeatale. The mirror moves to a prepro-
grammed level, the system captures images, flow is compatetithe mirror moves to the next pre-
programmed level and so on, scanning the fluid volume in $ew&ke typically observe the fluid at five
different levels and so observations of the whole fluid aedlalile every 5 seconds and used to constrain

the numerical model of the laboratory experiment.



Figure 5. A snapshot of our interface sho ing observed bota velocities (en) a0 mm above the bottom
of the tank after circulation has formed. Maximum flow speaasof the order ofcms—!.

3. Numerical Modd

We use the MIT General Circulation Model developed by Madlisétaal. [13, 12] to numerically
simulate the laboratory experiment. The MIT-GCM is freelpitable software and can be configured
for a variety of simulations of atmosphere, ocean or lalmoyetows. Here the model is used to solve the

equations that govern the evolution of an incompressiblesBmesq fluid in hydrostatic balance. The



governing equations are:
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Here, the three-dimensional velocity is denoteddby- [v),; w] wherew, is the horizontal velocity,

w is the vertical velocity and’/, is the horizontal gradient operaterjs the pressure, assumed to be in
hydrostatic balance with the mass figjds the acceleration due to gravigy= p(#) is the density withp,

a constant reference value aht the temperature. The terf,, in the horizontal momentum equation
includes inertial, Coriolis and frictional termsj, is the corresponding term in the thermodynamic
equation and includes advection and thermal diffusion.liExorms of the G’s are discussed in detall
in Marshall et al. [13, 12].

No-slip boundary conditions are assumed on all solid boueslaand a linearized free surface is
adopted. The temperature at the outer wall of the tank is ¢tmhdtant; at the inner core it is set to an
observed vertical profile taken from a separate experinss=d Figure 6(b)). The bottom boundary is
assumed to be thermally-insulating.

Finite difference forms of the above equations are solvedylmdrical coordinates, as shown in
Figure 6(a), the natural geometry for representing flow im@anulus. In the experiments reported here
the domain is divided int@3 bins in radius {.65¢m /bin) and120 bins in azimuth §° bins). The vertical
coordinate is discretized using levels non-uniformly distributed over thi&cm depth of the fluid,

as shown in Figure 6(b). The MIT-GCM discretizes variablasao Arakawa C-grid [1]. Momentum



() g Loy
1 1

ha
&
I |

Core Exterior

iketer
o
o
E

Bottom

Figure 6. (a) The computational domain is represented imastal coordinates. (b) Depth is discretized with
variable resolution to enhance resolution near the botioomdary. The lateral boundary conditions on tem-
perature are obtained by interpolating sparse temperaigesurements on the boundary. The bottom boundary
condition is one of zero heat flux. (¢) Random initial corahs are used for the interior temperature field, shown
here at a given level.

equations are time-stepped using a second-order Adamgdsidistechnique and, in the calculations
presented herd) is advected with an upwind-biased direct space-time teglenusing a Sweby flux-
limiter [22]. The treatment of vertical transport is imptic A 2-d equation for the surface pressure
field is solved at each timestep using a conjugate gradietitodeensuring that the flow remains non-
divergent.

We initialize the model with a uniform temperature field toigéha small random component is added
to initiate hydrodynamical instability. A 2-d horizontdice is shown in Figure 6(c). The model performs
in better than realtime. On one processor of an Altix350 weaary out a 10-second simulation in 8-
seconds. The use of non-uniform discretization of the donoging variable vertical levels enables
economies to be made in model resolution without compramissolution where it matters.

In Figure 7 the model horizontal currents are overlaid orotieerved velocities after suitably register-
ing the domain geometry to the physical tank. We observedégpite an obvious uncertainty in initial
conditions and other approximations, the model is capabdagturing the gross character of flow ob-

served in the physical fluid, such as typical flow speeds aal@scHowever, as is to be expected, many
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Figure 7. The planar velocity of a model forecast (in yeII with observed velocity (green) at a height
of 100mm from the bottom of the tank at the beginning of an assimitaggperiment. Maximum flow speeds are

of order2 ems—1.

flow details are different. We therefore now go on to deschitne we use observations to constrain the

evolving state of the model.

4. State Estimation

At a rotation period of six seconds, fluid parcels can travehe annulus at up tcm/s, leaving
approximatelyl0 seconds to complete an assimilation cycle. Since it tylyitakes8 real-seconds for
a 10s numerical simulation, and seconds to gather observations (in parallel), ther& aeconds left
for communication and computational activities, beforechitihe next forecast must be initiated. Using
sequential filtering, we now describe an estimation methad produces a state estimate within these

two seconds.
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Let X’t = [Uh; 5] be the stateat a discrete time, and measuremenfs be assumed to arise from from
a linear observation equatid?;l — HX, + 7, where the observational noise is normally distributedhwit
zero mean and diagonal covariarReg that isv; ~ N (0, R;). Further, Iet)?tf be the model forecast,

with error covariancé?f . Now the well-known update equation for analysis stﬁfecan be written as:

Xy = X{+PE'EP/H"+R) [V, - HY/] (5)
Xy = X!+, - HX/] (6)

As shown in [7] the Kalman and extended-Kalman filter are givg Equations 5 and 6. A dimen-
sionality issue, however, often arises because computidgpeopagating the covariance explicitly may
be numerically unfeasible even for modest sized domaineréefbre, we seek an approach that produces
effective estimates while ameliorating the dimensiogaitoblem. One way to address the problem is
through domain decomposition.

Another way is to use a reduced-rank spectral approximatidhe forecast uncertainty. In the En-
semble Kalman Filter [4] formulation, an ensemble of estenat time — At are forecast to timeusing

the model. Since the filter operates at tim&e will drop the notation’s explicit dependence of time.
Let us call the forecast ensemble’ = [X/ .. .ng], where the columns o¥/ are theS samples of the
ensemble of horizontal velocities at an observed layersTiiuve letV° represent &'-column matrix

of perturbed observations, obtained by perturbing an ohtienY with noise”, V/ be the deviation

from meard V/ of V/ the update equation can be written as:

2The state for assimilation consists of the horizontal viéiles and temperature. Vertical velocity is implicit, psese is
diagnostic and salinity is unrepresented.

_ p _
W= 150 VI
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v* = V/ 4+ P/H'(HP/H" + R)' [V° - HV/] (7)
= v/ +v/@aEVHTEVIEVHT + VovI]-L(ve - HVY) (8)

= VIR (9)

The posterior (or analysis) distribution is representedieanV< and covarianc®® = ﬁVaVaT.
This method is very useful because (a) the model is nevarimed as in an extended Kalman Filter. (b)
Covariance is never propagated explicitly. (c) The updgteagon is a weakly nonlinear combination
of the forecasts. (d) The mixing matriX can be computed very efficiently using square-root represen
tations and will have very low-size (typically x S). For highly nonlinear systems, the large number
of monte-carlo simulations necessary to capture the fetagacertainty are often computationally not
feasible. When only a few ensemble members are used, thea8ireovariance can contain spurious
long-range correlations. Thus, a localized version of theeeble Kalman filter that filters out long-
range correlations is often implemented, which in our papagain based on domain decomposition.

Our estimation method consists of two phases. The first pvasalization, seeks to reduce a large
initial uncertainty in the model state to a level where mestates and observations can be thought of
as arising from similar distributions. Initialization isbed on an engineered forecast error-covariance
and it is not propagated across time. Once initialized, wictvio the second phase, called tracking.
An ensemble method is used for tracking, during which batestand their uncertainties are estimated.
In both phases, domain-decomposition is used. In inia#élbn for addressing dimensionality and in
tracking for removing long-range correlations. Thus, lzeal versions of Equations 6 and 9 will be

implemented. We now go on to discuss these steps in detail.
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4.1. Initialization

We spin up a single model simulation from a random initial pemature field (see Figure 6). After a
transient period has elapsed, the initialization phasententes, and is repeated for a few assimilation
cycles. The initialization phase consists of four stepegcated in sequence:

1. Interpolation in the vertical. An interpolation function of horizontal velocities and tpenature
is estimated from the forecast. Lé,i[i, J, k] be the forecast horizontal velocity at grid node, & in
the radial, azimuthal and vertical directions respecyivélet 17}: [i, 7] be the column-vector of forecast
velocities at allV, = 15 vertical levels corresponding to horizontal grid location and Ietﬁ,{”[z’,j]
be the corresponding vector of horizontal velocities atje= 5 observed vertical levels. Similarly
construct vectorgf[i,j] and «970[1',]'] from the forecast temperatures. Using samples in the feteca
estimate the matrices, and A, by solving equations of the forn [i, j] = A,#°[i, j] and@/[i, j] =
Ag0I°li j].

2. Estimating Horizontal Velocities at observation layers. At each observed layek( € {k; ... ks5}
of the fluid, initialization occurs with a deterministic ghe. Since this step is repeated for each ob-
servation level, it is sufficient to consider the assimdatat any single observed layks. At every
locationz, 7 on the horizontal grid§, = 23 x N, = 120) of an observed layer, we estimate the hor-
izontal velocity from forecasts and observations usingatiapcontext of dimensiona’’ radially and

N/, azimuthally. The estimation is written as:
Ui g ko) = ULli, 4, ko] + PYHE(HyPIH] + Ryy) ™! [ﬁgﬂ’“ — H, i (10)
772[2" j’ kO] = ﬁl{ [i’ j’ kO] + Cij [7727“]% - Hijﬁljj’ijko] (11)

Here,#/"/* is the vector of forecast horizontal velocities inVa x N}, area centeréfdat grid node

“Except near annulus boundaries, where the window is offecen
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i, j, ko, and %> are available observations in the same area. The Iocalafsirvariancé?f (size
2N/N}, x 2N}N}) is generated using a two-dimensional Gaussian. It onliesaadially (so as to
account for annulus borders) but not in depthor azimuthj. Each local observation operathl;;

selects locations where observations are valid in the sporedingN! x Né) region. The matrixR,;;
is the corresponding observational uncertainty. We tyfyicdooseN! = 5 and Né = 10, therefore

eachC,; is of size2 x 100 and is constructed priori®. The vectori [i, j, k,] is the forecast horizontal
velocity at location, j, k, anddy[i, j, k,| is the corresponding estimated (sometimes called assgdila
or analysis) horizontal velocity.

3. Estimating Temperature at observation layers. Once the horizontal velocitieg!|i, j, k,| are
estimated at each grid node of observed layers, we compupetaturé®[i, j, k,| by solving an elliptic
thermal-windequation at each observed layer. The temperature boundadyjtions are obtained from
climatological measurements, as discussed in Section 3.

4. Estimate Full State. The precomputed vertical interpolation models are appbettie estimated
horizontal velocity and temperature. Thus we estinife j] = A,72[i, j] andd[i, j] = Ay, j],
where these vectors are defined analogously to step 1 (Img the analysis fields).

The estimated fields become the new state= [7; 6%] for the next forecast. We repeat these
four steps process for a few assimilation cycles and thetcbwo a flow-dependent ensemble tracking

method that can both estimate states and their uncersidiscussed next.

4.2. Tracking

Throughout the tracking phase, the stdpd and4 remain the same and thus are not discussed
again. The only difference between initialization and krag is the process of constraining horizontal

velocities at observed layers. For tracking, we use a vanaif the ensemble Kalman filter in the

SA large number of matrice€';; are identical, thus saving storage costs.
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following way:

Creating the Ensemble: The two prominent sources of uncertainty are the thermahtaty con-
dition that drives the numerical system and the flow uncetyailue to time-staggered observations
and numerical integration. To model these, we use the owfipilie initialization step to drive several
simulations, each utilizing a thermal boundary conditientprbed from the climatological profile (see
Section 3). Additionally, motivated by the method of snayistf21], we also save the state every few
time steps in the forward integration of a simulation. Theeéast ensemble is therefore constructed as
a mixture of two distributions, one representing boundary conditiogertainty (multiple simulations)
and the other due to uncertainty in flow (snapshots duringrtbdel integration). Assuming there are
N, snapshots and, simulations, we have an ensemble& N, N, forecast samples. These samples

are used for estimation, discussed next.

Azimuth

Radius
Figure 8. The estimation using the ensemble Kalman filtevdallzed within estimation window®, influenced
by observations from overlapping spatial-context winddéws

Localized estimation. Akin to the localization during deterministic initialigan, we also localize
the ensemble Kalman filter during tracking. Estimation atheabserved horizontal layer of the fluid
k, follows the illustration in Figure 8. Estimates of horizahtelocities are produced for nodes in an
estimation windowt' of size N x N§ indexed by location,, j., k,, using forecasts and observations in
a spatial context window' that is indexed by locatiof, j., k, and of sizeN¢ x N§. Estimates over an

entire layer are produced by tiling it with estimation wing(no overlap). Note, however, that adjacent
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estimation windows share substantial spatial contexthaws in Figure 8.

Let V/icieko pe the2 N7 NG x .S matrix representing forecast horizontal velocitiesSoEnsemble

members coincident with the estimation windéwati., j., k,, andV /et pe the2 NN x Smatrix of
forecast horizontal velocities ¢f ensemble members coincident with the context windoat:., j., k,.
Using the observationg<i<*> and forecasts in the context window to constiict, ., , we may express

the analysis ensembM®i<icke gs:

Va,iejeko — nyiejekON (12)

iCjCkO

In practice only the analysis corresponding to the last sinafpof the current forecast of each simula-
tion is necessary to launch the next forecalst, ,, need only be5' x N, in size, with an appropriately
ordered ensemble.

A single assimilation (all four steps) with = 15, runs on &.8G H z processor in under.6s. Note
that our approach is related to LEKF [15], with substantiffedences in how estimation and context

windows are designed and used.

5. Experiments

For the experiments presented here, the reference degsityl037kgm 3, the rotation rate i§) =
1.15rad/s, the annulus widthl = 0.15m, the mean fluid dept® = 0.15m, and the mean temperature
difference of fluid across annulusT’ = 6K (measured separately). The viscosityis- 10-6m?s~!,

the thermal diffusivityx = 10~"m?s~!, and the thermal expansion coefficient= 3 x 10~*K L. Thus,

the Ekman numbeF = = 1.9 x 107°, the thermal Rossby numbé, = 2212 = (.09, the

D07
Prandtl numbe?P, = = = 10.
We cool the core after the fluid attains solid body rotatiorcivkulation is established in abo@0s,

and an example of a well-formed circulation is shown in Fegbiat a layet 00mm high from the bottom
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Figure 9. The assimilated velocity field at a time- 1005.fbr an ensemble member at 100mm above the bottom
of the tank is shown (yellow). Observations at this layersir@wn in (green).

of the tank.

The MIT-GCM s started from a random initial condition withcimatological thermal-boundary
condition shown in Figure 6. Using the parameters describeé8lection 3, the model is integrated
forward for300s to remove transients and establish a circulation, albeibnstrained with observations.
The horizontal velocity field at00mm from the bottom of the tank is shown in Figure 7 along with
corresponding observations. It shares the gross chasieof the circulation but the waves have the
wrong phase and incorrect amplitudes. Over several expetsnwe observe that model velocities can
be as much as twice that of the observed velocities.

We then turn on the assimilation component. The local ofagienval uncertaintyR,;; = o2I. A 0.5
pixel uncertainty in PIV calculations per image pair is as@@able assumption and translates to velocity

uncertainty of approximately, = 1.2mm/s. This uncertainty can arise from representativeness error
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Figure 10. Once the assimilation is terminated the mdﬁ@?@j@s from the observations. Shown here is the model
velocity for an ensemble member at 100mm above the bottohlredaink (yellow) and corresponding observations
(green) at = 300s.
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Figure 11. The RMS-error between forecast and observeditiekat all observed locations as a function of time.

due to size of the PIV window, change of focus with depth, @aisd other factors.
During initialization, the covariand@/ is constructed as an un-normalized two-dimensional Ganssi
with standard deviation of (radially) and2 azimuthally, with extent ob grid nodes (radially) and0

grid nodes (azimuthally). The Gaussian is scaled by an amdgliofo, = o, * 2, to account for the

observation that unconstrained model velocities havedkidisthan the observations. The observation
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operatorH;; admits grid points in the domain outside the shadow regiahvemere observations pass a
simply quality control of being less thaam/s. Doing so excludes impulse noise, seen for example at
the edges of the shadow region in Figure 5.

With these parameters the deterministic assimilationrsehis run till the root mean square error
between observed and forecast horizontal velocities dvebserved locations is less thard « o,,. This
corresponds to approximatedyassimilation cycles.

After the initialization, the system switches to an ensensicheme. We run three different simulations
(N, = 3), each of which start from the model-state estimated duniitiglization, but with temperature
boundary conditions perturbed to have steeper or shallapse rateghan the climatological profile.
Each simulation runs on a separate processor of the Altix@5@ integrates the mod#&ds forward in
approximately8s of clock-time. At every second of the last five seconds ofithtisgration a snapshot of
the model-state (horizontal velocity and temperaturexisaeted from each simulatioN = 5). Thus,
at the end of theé(0 second period, an ensemble withmembers becomes available. The final forecast
(att = 10s) is used to estimate the interpolation functions in theigakseparately for each simulation.
The observations extracted in the immediately precedsgronds are used in the ensemble assimilation
scheme discussed in Section 4. The observational undgrtaidentical to the deterministic case and
we chooseV; = 11, Ng = 21, N7 = 5andNg = 11. Figure 9 shows the estimated horizontal velocities
and observations aftd) assimilation cycles at a height ®00mm from the bottom of the tank. The
estimate depicted here corresponds to the last snapshu sefmhulation with a climatological thermal
boundary condition profile in Figure 6. The final time estiathinodel-states are used to re-initialize it
for the nextl0s forecast.

Figure 11 shows the evolving root mean square (RMS) errovdxat the forecast and observation over
30 assimilation cycles in 400 second assimilation experiment. Please note that thidhgtapicts the

likelihood and not the posteriori error between the estimate and truth, because the truttkrsowm.
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Nevertheless, it is a useful measure in that it shows modetites come close to the observations
nearing the inherent uncertainty,(= 1.2mm/s) to which observations are represented. Indeed both
the amplitudes and phase are in good agreement as can ba $eguare 9. After20 assimilation cycles
we turn the assimilation off and simply compute the erromteein forecast velocities and observations.
As expected this error grows, and saturates in around 1@syé€ligure 10 shows the model velocities
and observations at= 300s for the ensemble member corresponding to Figure 9, at 100baveghe
bottom of the tank. The model has once again departed frosydtem trajectory. Similarly configured
experiments suggest that it takes approximately 10 ratgiesiods or six assimilation cycles before the

model adjusts itself to be consistent with the observations

6. Discussion and Conclusions

The coupled physical-numerical system described here éffactive way to study a variety of rotat-
ing flows. In particular, it can accommodate flows with a widege of thermal boundary conditions and
rotation periods. The hybrid assimilation scheme is mogigldoy several considerations. Early analysis
showed that a variational approach [24] would not meetirealheeds and that an ensemble-filter pro-
vided the best prospect, if a large number of numerical satrans is to be avoided. Itisin this sense that
initialization and tracking are synergistic. Initializz helps condition forecast uncertainty, after which
snapshots capture the smaller of the uncertainties witlariracking loop and boundary-condition per-
turbations capture the larger uncertainty of the boundatie fast-evolving flows, the flow uncertainty
starts to dominate, but in slowly evolving flows, the bourydeondition uncertainty dominates. In any
flow situation, the use of the proposed scheme prevents amdxhs collapse by maintaining a justifiable
representation of the uncertainty. Further, the propospresentation require fewer numerical simula-
tions than purely sampling initial conditions and prodused-ranked ensembles during assimilation.

Our system scales to a variety of experiments and flows. TWeaRtl MIT-GCM are parallelizable
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beyond that described here. In our assimilation approacilization not only prevents spurious long-
range correlations but also lends to an easily paralldizalgorithm. Updates in individual windows
can be performed in parallel. Realtime performance is aekli@ere through parallelism (observations),
domain-decomposition (model, estimation), spectralxetidn (estimation) an efficient method to gen-
erate samples and compute updates (estimation). Thusakernrsystem can scale with the addition of
computational resources.

There are also several limitations of the existing systerne domain boundaries are not resolved
at high resolution, which may be essential for certain flodaptive resolution in PIV,the model and
assimilation is a promising direction. Temperature meas@nts have not been used, except to provide
climatological temperature boundary conditions. Newethoeés for whole-field LIF measurements or
sparse measurements for assimilation or verification wbaldseful. Observations are presently gath-
ered in 5 layers in large-part due to the latency associatddphysical motor movement. A newer
periscope design with a rotating mirror and paraboloid imibrove the scan speed many fold. The as-
similation method uses a fixed local context. A multiscakergion and comparisons with contemporary
methods is beyond the scope of this paper but will appearantadoming article.

Even without these improvements, our observatory worksarkably well in its current application.
Moreover the components used are largely off-the-shelfratatively inexpensive. Thus the analog
serves as a new, easy-to-use, testbed to explore annulasmdymand analysis techniques. To the best
of our knowledge a realtime observatory of this kind has m&trbachieved before. Its utility extends to
many problems in prediction and predictability, oceanpgyeand meteorology. Our hope is that other

researchers will be able to make use of this system, the metsed or the data-sets generated.
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