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Abstract

Motivated by the large-scale circulation of the atmosphereand ocean, we develop a system that uses
observations from a laboratory analog to constrain, in realtime, a numerical simulation of the lab-
oratory flow. This system provides a tool to rapidly prototype new methods for state and parameter
estimation, and facilitates the study of prediction, predictability, and transport of geophysical fluids
where observations or numerical simulations would not independently suffice.

A computer vision system is used to extract measurements of the physical simulation. Observations
are used to constrain the model-state of the MIT General Circulation Model in a probabilistic, ensemble-
based assimilation approach. Using a combination of parallelism, domain decomposition and an effi-
cient scheme to select ensembles of model-states, we show that estimates that effectively track the fluid-
state can be produced. To the best of our knowledge this is thefirst such observatory for laboratory
analogs of planetary circulation that functions in real time.

1. Introduction

Laboratory experiments have been extensively used to understand the properties of fluids [2, 23, 9,

14, 8, 19]. Of particular focus here is the large-scale circulation of the atmosphere, for which a well-

known laboratory analog is a thermally-driven rotating flow[8, 19, 10, 3, 2, 14]. In this experiment,

a rotating annulus with a cold center (core) and warm periphery (exterior) develops a circulation that

has dynamical similarity to the mid-latitude circulation in the atmosphere, as shown in Figure 1. It is
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a robust experiment, easily conducted in the laboratory. Ithas been used to study a variety of physical

phenomena including geostrophic turbulence [14], convection [8], baroclinic instability [9, 23, 18], and

chaos [19, 10], and as a test-bed for evaluating the utility of numerical models [20, 6].

We present an automated real-time observatory for this laboratory experiment. By observatory, we

mean a coupled physical-numerical system with the following components: sensors to take measure-

ments of the evolving physical system, a numerical model trying to forecast the system, and inference

algorithms that constrain the model with observations to produce an evolving state that is closer to the

laboratory flow than either observations and model alone.

We contend that a number of exciting possibilities open up once the observatory operates in real-time.

Properties of the fluid that cannot easily be observed (surface height, pressure fields, vertical velocities,

radial heat transport etc.) can be studied using the model. Studies in tracer transport can be conducted

using the observatory in real-time. New algorithms that address prediction and predictability issues of

state and parameter estimation, model error and targeting can be rapidly validated. Across disciplines,

the platform provides application to new distributed computing, visualization and augmented reality

applications. Whilst it is not possible, in one paper, to explore each and every application, a large

number of potential applications will require the coupled numerical-physical system to track the fluid’s

state in real-time. Therefore, we focus here on the design ofthe observatory, including a procedure to

estimate model-states in real-time.

Tracking, when formulated as a state and parameter estimation problem, is known to be fundamentally

challenging in weather forecasting [11]. In the context of ocean state estimation or weather forecasting,

predictions are typically made using general circulation models (GCMs), which implement the dis-

cretized governing equations. GCMs typically have uncertain parameters and crude parameterizations,

uncertain initial and boundary conditions, and their numerical schemes are approximate. Thus, not only

will the error between physical truth and simulation evolvein a complex manner, but the PDF of the
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evolving model state’s uncertainty is unlikely to retain the true state within it. A way forward is to

constrain the model with observations of the physical system [24].

We posit that studying the estimation problem in the laboratory is convenient and useful. Firstly,

repeatable experiments with real data can be performed using far simpler logistics than the operational

setting. Secondly, the following key challenges demanded by the large-scale problem must also be

addressed in the laboratory setting:

1. Nonlinearity — the laboratory analog is nonlinear and thenumerical model is the same used in

planetary simulations

2. Dimensionality — the size of the state of the numerical model is of the same order as planetary

simulations

3. Uncertainty — the initial conditions are unknown, and themodel is imperfect relative to the phys-

ical system

4. Realtime — forecasts must be produced in better than realtime.

These are all interesting problems in their own right and solutions found in a laboratory setting can

accelerate acceptance of new methods in operational settings and could be useful in many other coupled

numerical-physical systems.

Before going on it should be noted that the rotating annulus experiment has already been used to

explore the utility of numerical models. Read et al. [20] usethe annulus to study how well numerical

transport schemes compare to real observations and report that Eulerian schemes, such as used in this pa-

per, have skill. In more recent work Read [18] combines numerical studies with laboratory experiments

in the study of heat transport and effort has been afoot to study prediction and predictability problems

using the laboratory setting [25, 26, 16, 17]. To the best of our knowledge, however, this is the first

coupled observation/numerical system of a laboratory experiment to operate in realtime [17].
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Figure 1. Image (a) shows the 500hPa heights for 11/27/06:1800Z over the northern hemisphere centered at the
north pole. Winds flow along the pressure contours. Image (b)shows a tracer (dye) in a laboratory analog. The
tank is spinning and the camera is in the rotating frame. Tracer droplets initially inserted at the periphery (red dye,
warm region) and around the central chilled can (green dye, cold region) has evolved to form this pattern. The
laboratory analog and the planetary system are dynamicallyakin to one-another. We study the state-estimation
problem for planetary flows using the laboratory analog.

The observatory operates by continually taking measurements of the physical system and uses a prob-

abilistic, ensemble-based estimation method to constrainthe model-states of a numerical model. Our

system does this using off-the-shelf components for the laboratory experiments, commercially available

software to extract observations, the publicly available MIT-GCM, and a new hybrid filter that combines

deterministic and probabilistic filtering. The probabilistic component is related to the Local Ensemble

Kalman Filter [15], which is derived from the ensemble Kalman filter [4, 5].

Our coupled system can operate in a variety of dynamical regimes. For the experiments presented

here, an assimilation cycle (forecast-observe-assimilate) must be completed within roughly10 seconds,

a typical rotation period. Our system accomplishes this using domain decomposition, spectral-reduction,

distributed computation, and a new way to generate and select ensembles. It is now in routine use and

data-sets are readily available to other researchers1

1Videos are enclosed as supplementary information with thispaper. They depict the operational use of our observatory.
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2. The Observatory

The observatory, illustrated in Figure 2, has a physical andcomputational component. The physical

component consists of a perspex annulus of inner radius8cm and outer radius of23cm, filled with

15cm of water and situated rigidly on a rotating table. A robotic arm by its side moves a mirror up and

down to position a horizontal sheet of laser light at any depth of the fluid. Fluorescent particles (Dantec

Dynamics’ pliolite particles sg1.03g/cc) are homogenized in saline water of equal density and respond

to incident laser illumination. They appear as a plane of textured dots in the12−bit quantized,1K×1K

images (see Figure 4) of an Imperx camera. These images are transferred out of the rotating frame using

a Hitachi fiber-optic rotary joint (FORJ or slip-ring).

Figure 2. The laboratory observatory consists of a physicalsystem: a rotating table on which a tank, camera
and control system for illumination are mounted. The computational part consists of a measurement system for
velocimetry, a numerical model, and an assimilation system, as described more fully in the text.

The actual configuration of these elements is shown in a photograph of our rig in Figure 3. The

observation rig is carefully mounted and tested for vibrations. To see this, consider that particles can

move at up to2cm/s. The camera scale factor is approximately0.5mm/pixel and it is positioned50cm

away from the annulus. At a sampling rate of1/4s, the camera must shake by less than0.1o to have

less than10% motion noise. Therefore, one must be very careful to eliminate vibrations. We center

the rig and hold the FORJ-assembly using four bungee chords,which have the appropriate stiffness (see
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Figure 3) to damp vibrations and moments.

Figure 3. The apparatus consists of (a) the rotating platform, (b) the motorized mirror, (c) the tank, (d) electronics,
(e) a rig on which a camera is mounted, (g). Laser light comes from direction (f) and bounces off two mirrors
before entering the tank. The fiber optic rotary joint (FORJ)(h) allows images to leave the rotating frame and is
held stably by bungee chords (i).

.
Figure 4. The camera’s view of the rotating annulus in visible light is shown on the left. The corresponding view
in laser light depicts the embedded particles and is shown inthe middle image. A picture of the laser illuminating
the tank is shown on the right. Notice the shadow due to the chiller in the middle. The square tank is used to
prevent the laser light from bending at the annulus interface.

The computational aspects of the observatory are also shownin Figure 2. A server acquires particle

images and ships them to two processors that compute optic-flow in parallel (Figure 2, labeled OBS).

Flow vectors are passed to an assimilation program (Figure 2, labeled DA) that combines them with
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model forecasts to estimate new states. These estimates become new initial conditions for the models.

We now go on to discuss individual components of this system.

2.1. Laboratory experiment and Visual Observation

We homogenize the fluid with neutrally buoyant particles andspin up the rotating platform at the

desired period (between3s and12s). After twenty minutes or so the fluid comes into solid body rotation.

The inner core is then cooled using a chiller (see Figure 4). Within minutes the water near the core cools

and becomes dense. It sinks to the bottom to be replenished bywarm waters from the periphery of the

annulus, thus setting up a circulation. At high enough rotation rates eddies form (see Figure 1) and

baroclinic instability sets in.

Once cooling commences, we turn off the lights and turn on thecontinuous wave1W 532nm laser,

which emits a horizontal sheet of light that doubles back through a periscope to illuminate a sheet of the

fluid volume (see Figure 4). An imaging system in the rotatingframe observes the developing particle

optic-flow using a camera looking down at the annulus.

The ultra-small pliolite particles move with the flow. We observe the horizontal component and com-

pute optical flow from image pairs acquired125− 250ms apart using LaVision’s DaVis software. Flow

is computed in32 × 32 windows with a16 pixel uniform pitch across the image. It takes one second to

acquire and compute the flow of a single1K × 1K image pair by distributing the computation across

two 2.8GHz processors. An example is shown in Figure 5.

Observations are gathered over several levels on a repeating cycle. The mirror moves to a prepro-

grammed level, the system captures images, flow is computed,and the mirror moves to the next pre-

programmed level and so on, scanning the fluid volume in levels. We typically observe the fluid at five

different levels and so observations of the whole fluid are available every 5 seconds and used to constrain

the numerical model of the laboratory experiment.
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Figure 5. A snapshot of our interface showing observed horizontal velocities (green) at100 mm above the bottom
of the tank after circulation has formed. Maximum flow speedsare of the order of2cms−1.

3. Numerical Model

We use the MIT General Circulation Model developed by Marshall et al. [13, 12] to numerically

simulate the laboratory experiment. The MIT-GCM is freely available software and can be configured

for a variety of simulations of atmosphere, ocean or laboratory flows. Here the model is used to solve the

equations that govern the evolution of an incompressible Boussinesq fluid in hydrostatic balance. The
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governing equations are:

∂~vh

∂t
= Gvh

−
1

ρ0

∇hp horizontal momentum (1)

∇h~vh +
∂w

∂z
= 0 continuity (2)

∂p

∂z
+ gρ = 0 hydrostatic balance (3)

∂θ

∂t
= Gθ thermodynamic (4)

Here, the three-dimensional velocity is denoted by~v = [~vh; w] where~vh is the horizontal velocity,

w is the vertical velocity and∇
h

is the horizontal gradient operator,p is the pressure, assumed to be in

hydrostatic balance with the mass field,g is the acceleration due to gravity,ρ = ρ(θ) is the density withρ0

a constant reference value andθ is the temperature. The termGvh
in the horizontal momentum equation

includes inertial, Coriolis and frictional terms;Gθ is the corresponding term in the thermodynamic

equation and includes advection and thermal diffusion. Explicit forms of the G’s are discussed in detail

in Marshall et al. [13, 12].

No-slip boundary conditions are assumed on all solid boundaries and a linearized free surface is

adopted. The temperature at the outer wall of the tank is heldconstant; at the inner core it is set to an

observed vertical profile taken from a separate experiment (see Figure 6(b)). The bottom boundary is

assumed to be thermally-insulating.

Finite difference forms of the above equations are solved incylindrical coordinates, as shown in

Figure 6(a), the natural geometry for representing flow in anannulus. In the experiments reported here

the domain is divided into23 bins in radius (0.65cm/bin) and120 bins in azimuth (3o bins). The vertical

coordinate is discretized using15 levels non-uniformly distributed over the15cm depth of the fluid,

as shown in Figure 6(b). The MIT-GCM discretizes variables on an Arakawa C-grid [1]. Momentum
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Figure 6. (a) The computational domain is represented in cylindrical coordinates. (b) Depth is discretized with
variable resolution to enhance resolution near the bottom-boundary. The lateral boundary conditions on tem-
perature are obtained by interpolating sparse temperaturemeasurements on the boundary. The bottom boundary
condition is one of zero heat flux. (c) Random initial conditions are used for the interior temperature field, shown
here at a given level.

equations are time-stepped using a second-order Adams Bashforth technique and, in the calculations

presented here,θ is advected with an upwind-biased direct space-time technique using a Sweby flux-

limiter [22]. The treatment of vertical transport is implicit. A 2-d equation for the surface pressure

field is solved at each timestep using a conjugate gradient method ensuring that the flow remains non-

divergent.

We initialize the model with a uniform temperature field to which a small random component is added

to initiate hydrodynamical instability. A 2-d horizontal slice is shown in Figure 6(c). The model performs

in better than realtime. On one processor of an Altix350 we can carry out a 10-second simulation in 8-

seconds. The use of non-uniform discretization of the domain using variable vertical levels enables

economies to be made in model resolution without compromising resolution where it matters.

In Figure 7 the model horizontal currents are overlaid on theobserved velocities after suitably register-

ing the domain geometry to the physical tank. We observe thatdespite an obvious uncertainty in initial

conditions and other approximations, the model is capable of capturing the gross character of flow ob-

served in the physical fluid, such as typical flow speeds and scales. However, as is to be expected, many
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Figure 7. The planar velocity of a model forecast (in yellow)is shown with observed velocity (green) at a height
of 100mm from the bottom of the tank at the beginning of an assimilation experiment. Maximum flow speeds are
of order2 cms−1.

flow details are different. We therefore now go on to describehow we use observations to constrain the

evolving state of the model.

4. State Estimation

At a rotation period of six seconds, fluid parcels can traverse the annulus at up to2cm/s, leaving

approximately10 seconds to complete an assimilation cycle. Since it typically takes8 real-seconds for

a 10s numerical simulation, and5 seconds to gather observations (in parallel), there are2 seconds left

for communication and computational activities, before which the next forecast must be initiated. Using

sequential filtering, we now describe an estimation method that produces a state estimate within these

two seconds.
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Let ~Xt = [~vh; ~θ] be the state2 at a discrete timet, and measurements~Yt be assumed to arise from from

a linear observation equation~Yt = H ~Xt + ~νt, where the observational noise is normally distributed with

zero mean and diagonal covarianceRt, that is~νt ∼ N (0,Rt). Further, let~Xf
t be the model forecast,

with error covariancePf
t . Now the well-known update equation for analysis state~Xa

t can be written as:

~Xa
t = ~Xf

t + P
f
t H

T (HP
f
t H

T + R)−1

[

~Yt − H ~Xf
t

]

(5)

~Xa
t = ~Xf

t + C[~Yt − H ~Xf
t ] (6)

As shown in [7] the Kalman and extended-Kalman filter are given by Equations 5 and 6. A dimen-

sionality issue, however, often arises because computing and propagating the covariance explicitly may

be numerically unfeasible even for modest sized domains. Therefore, we seek an approach that produces

effective estimates while ameliorating the dimensionality problem. One way to address the problem is

through domain decomposition.

Another way is to use a reduced-rank spectral approximationof the forecast uncertainty. In the En-

semble Kalman Filter [4] formulation, an ensemble of estimates at timet−∆t are forecast to timet using

the model. Since the filter operates at timet we will drop the notation’s explicit dependence of time.

Let us call the forecast ensembleV
f = [ ~Xf

1
. . . ~Xf

S ], where the columns ofVf are theS samples of the

ensemble of horizontal velocities at an observed layer. Thus, if we letVo represent aS-column matrix

of perturbed observations, obtained by perturbing an observation ~Y with noise~ν, Ṽ
f be the deviation

from mean3 V̄
f of Vf the update equation can be written as:

2The state for assimilation consists of the horizontal velocities and temperature. Vertical velocity is implicit, pressure is
diagnostic and salinity is unrepresented.

3
V̄

f = 1

S

∑S

i=1
V

f [:, i]
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V
a = V

f + P
f
H

T (HP
f
H

T + R)−1
[

V
o −HV

f
]

(7)

= V
f + Ṽ

f(HṼ
f)T [HṼ

f(HṼ
f)T + Ṽ

o
Ṽ

oT ]−1(Vo −HV
f ) (8)

= V
fℵ (9)

The posterior (or analysis) distribution is represented bymeanV̄a and covariancePa = 1

S−1
Ṽ

a
Ṽ

a
T
.

This method is very useful because (a) the model is never linearized as in an extended Kalman Filter. (b)

Covariance is never propagated explicitly. (c) The update equation is a weakly nonlinear combination

of the forecasts. (d) The mixing matrixℵ can be computed very efficiently using square-root represen-

tations and will have very low-size (typicallyS × S). For highly nonlinear systems, the large number

of monte-carlo simulations necessary to capture the forecast uncertainty are often computationally not

feasible. When only a few ensemble members are used, the forecast covariance can contain spurious

long-range correlations. Thus, a localized version of the ensemble Kalman filter that filters out long-

range correlations is often implemented, which in our paperis again based on domain decomposition.

Our estimation method consists of two phases. The first phase, initialization, seeks to reduce a large

initial uncertainty in the model state to a level where model-states and observations can be thought of

as arising from similar distributions. Initialization is based on an engineered forecast error-covariance

and it is not propagated across time. Once initialized, we switch to the second phase, called tracking.

An ensemble method is used for tracking, during which both states and their uncertainties are estimated.

In both phases, domain-decomposition is used. In initialization for addressing dimensionality and in

tracking for removing long-range correlations. Thus, localized versions of Equations 6 and 9 will be

implemented. We now go on to discuss these steps in detail.
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4.1. Initialization

We spin up a single model simulation from a random initial temperature field (see Figure 6). After a

transient period has elapsed, the initialization phase commences, and is repeated for a few assimilation

cycles. The initialization phase consists of four steps, executed in sequence:

1. Interpolation in the vertical. An interpolation function of horizontal velocities and temperature

is estimated from the forecast. Let~vf
h [i, j, k] be the forecast horizontal velocity at grid nodei, j, k in

the radial, azimuthal and vertical directions respectively. Let ~vf
h [i, j] be the column-vector of forecast

velocities at allNz = 15 vertical levels corresponding to horizontal grid locationi, j and let~vfo
h [i, j]

be the corresponding vector of horizontal velocities at theNo = 5 observed vertical levels. Similarly

construct vectors~θf [i, j] and~θfo[i, j] from the forecast temperatures. Using samples in the forecast,

estimate the matricesΛv andΛθ by solving equations of the form~vf
h [i, j] = Λv~v

fo
h [i, j] and~θf

h [i, j] =

Λθ
~θfo

h [i, j].

2. Estimating Horizontal Velocities at observation layers. At each observed layer (ko ∈ {k1 . . . k5}

of the fluid, initialization occurs with a deterministic scheme. Since this step is repeated for each ob-

servation level, it is sufficient to consider the assimilation at any single observed layerko. At every

locationi, j on the horizontal grid (Nr = 23 × Nφ = 120) of an observed layer, we estimate the hor-

izontal velocity from forecasts and observations using a spatial context of dimensionsN l
r radially and

N l
φ azimuthally. The estimation is written as:

~va
h[i, j, ko] = ~vf

h [i, j, ko] + P
f
i H

T
ij(HijP

f
i H

T
ij + Rij)

−1

[

~vo,ijko

h −Hij~v
f,ijko

h

]

(10)

~va
h[i, j, ko] = ~vf

h [i, j, ko] + Cij[~v
o,ijko

h −Hij~v
f,ijko

h ] (11)

Here,~vf,ijko

h is the vector of forecast horizontal velocities in aN l
r × N l

φ area centered4 at grid node

4Except near annulus boundaries, where the window is off-center.
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i, j, ko, and~vo,ijko are available observations in the same area. The local forecast covariancePf
i (size

2N l
rN

l
φ × 2N l

rN
l
φ) is generated using a two-dimensional Gaussian. It only varies radially (so as to

account for annulus borders) but not in depthko or azimuthj. Each local observation operatorHij

selects locations where observations are valid in the correspondingN l
r × N l

φ region. The matrixRij

is the corresponding observational uncertainty. We typically chooseN l
r = 5 andN l

φ = 10, therefore

eachCij is of size2 × 100 and is constructeda priori5. The vector~vf
h [i, j, ko] is the forecast horizontal

velocity at locationi, j, ko and~va
h[i, j, ko] is the corresponding estimated (sometimes called assimilated

or analysis) horizontal velocity.

3. Estimating Temperature at observation layers. Once the horizontal velocities~va
h[i, j, ko] are

estimated at each grid node of observed layers, we compute temperatureθa[i, j, ko] by solving an elliptic

thermal-windequation at each observed layer. The temperature boundary conditions are obtained from

climatological measurements, as discussed in Section 3.

4. Estimate Full State. The precomputed vertical interpolation models are appliedto the estimated

horizontal velocity and temperature. Thus we estimate~va
h[i, j] = Λv~v

ao
h [i, j] and~θa[i, j] = Λθ

~θao[i, j],

where these vectors are defined analogously to step 1 (but using the analysis fields).

The estimated fields become the new state~Xt = [~va
h;

~θa] for the next forecast. We repeat these

four steps process for a few assimilation cycles and then switch to a flow-dependent ensemble tracking

method that can both estimate states and their uncertainties, discussed next.

4.2. Tracking

Throughout the tracking phase, the steps1,3, and4 remain the same and thus are not discussed

again. The only difference between initialization and tracking is the process of constraining horizontal

velocities at observed layers. For tracking, we use a variation of the ensemble Kalman filter in the

5A large number of matricesCij are identical, thus saving storage costs.
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following way:

Creating the Ensemble: The two prominent sources of uncertainty are the thermal boundary con-

dition that drives the numerical system and the flow uncertainty due to time-staggered observations

and numerical integration. To model these, we use the outputof the initialization step to drive several

simulations, each utilizing a thermal boundary condition perturbed from the climatological profile (see

Section 3). Additionally, motivated by the method of snapshots [21], we also save the state every few

time steps in the forward integration of a simulation. The forecast ensemble is therefore constructed as

a mixtureof two distributions, one representing boundary conditionuncertainty (multiple simulations)

and the other due to uncertainty in flow (snapshots during themodel integration). Assuming there are

Ns snapshots andNb simulations, we have an ensemble ofS = NsNb forecast samples. These samples

are used for estimation, discussed next.

C 

E 

Radius 

A
zi

m
ut

h 

Figure 8. The estimation using the ensemble Kalman filter is localized within estimation windowsE, influenced
by observations from overlapping spatial-context windowsC.

Localized estimation. Akin to the localization during deterministic initialization, we also localize

the ensemble Kalman filter during tracking. Estimation at each observed horizontal layer of the fluid

ko follows the illustration in Figure 8. Estimates of horizontal velocities are produced for nodes in an

estimation windowE of sizeN e
r ×N e

φ indexed by locationie, je, ko, using forecasts and observations in

a spatial context windowC that is indexed by locationic, jc, ko and of sizeN c
r × N c

φ. Estimates over an

entire layer are produced by tiling it with estimation windows (no overlap). Note, however, that adjacent
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estimation windows share substantial spatial context, as shown in Figure 8.

Let V
f,iejeko be the2N e

r N
e
φ × S matrix representing forecast horizontal velocities ofS ensemble

members coincident with the estimation windowE at ie, je, ko, andVf,icjcko be the2N c
rN

c
φ×Smatrix of

forecast horizontal velocities ofS ensemble members coincident with the context windowC at ic, jc, ko.

Using the observationsVo,icjcko and forecasts in the context window to constructℵicjcko
, we may express

the analysis ensembleVa,iejeko as:

V
a,iejeko = V

f,iejekoℵicjcko
(12)

In practice only the analysis corresponding to the last snapshot of the current forecast of each simula-

tion is necessary to launch the next forecast,ℵicjcko
need only beS × Nb in size, with an appropriately

ordered ensemble.

A single assimilation (all four steps) withS = 15, runs on a2.8GHz processor in under1.6s. Note

that our approach is related to LEKF [15], with substantial differences in how estimation and context

windows are designed and used.

5. Experiments

For the experiments presented here, the reference densityρ0 ≈ 1037kgm−3, the rotation rate isΩ =

1.15rad/s, the annulus widthL = 0.15m, the mean fluid depthD = 0.15m, and the mean temperature

difference of fluid across annulus∆T = 6K (measured separately). The viscosity isν = 10−6m2s−1,

the thermal diffusivityκ = 10−7m2s−1, and the thermal expansion coefficientα = 3× 10−4K−1. Thus,

the Ekman numberE = ν
2ΩD2 = 1.9 × 10−5, the thermal Rossby numberRθ = gα∆TD

Ω2L2 = 0.09, the

Prandtl numberPσ = ν
κ

= 10.

We cool the core after the fluid attains solid body rotation. Acirculation is established in about300s,

and an example of a well-formed circulation is shown in Figure 5 at a layer100mm high from the bottom
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Figure 9. The assimilated velocity field at a timet = 100s for an ensemble member at 100mm above the bottom
of the tank is shown (yellow). Observations at this layer areshown in (green).

of the tank.

The MIT-GCM is started from a random initial condition with aclimatological thermal-boundary

condition shown in Figure 6. Using the parameters describedin Section 3, the model is integrated

forward for300s to remove transients and establish a circulation, albeit unconstrained with observations.

The horizontal velocity field at100mm from the bottom of the tank is shown in Figure 7 along with

corresponding observations. It shares the gross characteristics of the circulation but the waves have the

wrong phase and incorrect amplitudes. Over several experiments, we observe that model velocities can

be as much as twice that of the observed velocities.

We then turn on the assimilation component. The local observational uncertaintyRij = σ2
oI. A 0.5

pixel uncertainty in PIV calculations per image pair is a reasonable assumption and translates to velocity

uncertainty of approximatelyσo = 1.2mm/s. This uncertainty can arise from representativeness error
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Figure 10. Once the assimilation is terminated the model diverges from the observations. Shown here is the model
velocity for an ensemble member at 100mm above the bottom of the tank (yellow) and corresponding observations
(green) att = 300s.
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Figure 11. The RMS-error between forecast and observed velocities at all observed locations as a function of time.

due to size of the PIV window, change of focus with depth, noise and other factors.

During initialization, the covariancePf
i is constructed as an un-normalized two-dimensional Gaussian

with standard deviation of1 (radially) and2 azimuthally, with extent of5 grid nodes (radially) and10

grid nodes (azimuthally). The Gaussian is scaled by an amplitude ofσb = σo ∗ 2, to account for the

observation that unconstrained model velocities have lessskill than the observations. The observation
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operatorHij admits grid points in the domain outside the shadow region and where observations pass a

simply quality control of being less than3cm/s. Doing so excludes impulse noise, seen for example at

the edges of the shadow region in Figure 5.

With these parameters the deterministic assimilation scheme is run till the root mean square error

between observed and forecast horizontal velocities over all observed locations is less than1.5∗σo. This

corresponds to approximately3 assimilation cycles.

After the initialization, the system switches to an ensemble scheme. We run three different simulations

(Nb = 3), each of which start from the model-state estimated duringinitialization, but with temperature

boundary conditions perturbed to have steeper or shallowerlapse ratesthan the climatological profile.

Each simulation runs on a separate processor of the Altix350, and integrates the model10s forward in

approximately8s of clock-time. At every second of the last five seconds of thisintegration a snapshot of

the model-state (horizontal velocity and temperature) is extracted from each simulation(Ns = 5). Thus,

at the end of the10 second period, an ensemble with15 members becomes available. The final forecast

(at t = 10s) is used to estimate the interpolation functions in the vertical separately for each simulation.

The observations extracted in the immediately preceding5 seconds are used in the ensemble assimilation

scheme discussed in Section 4. The observational uncertainty is identical to the deterministic case and

we chooseN c
r = 11, N c

φ = 21, N e
r = 5 andN e

φ = 11. Figure 9 shows the estimated horizontal velocities

and observations after10 assimilation cycles at a height of100mm from the bottom of the tank. The

estimate depicted here corresponds to the last snapshot of the simulation with a climatological thermal

boundary condition profile in Figure 6. The final time estimated model-states are used to re-initialize it

for the next10s forecast.

Figure 11 shows the evolving root mean square (RMS) error between the forecast and observation over

30 assimilation cycles in a300 second assimilation experiment. Please note that this graph depicts the

likelihood and not thea posteriori error between the estimate and truth, because the truth is unknown.
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Nevertheless, it is a useful measure in that it shows model velocities come close to the observations

nearing the inherent uncertainty (σo = 1.2mm/s) to which observations are represented. Indeed both

the amplitudes and phase are in good agreement as can be seen in Figure 9. After20 assimilation cycles

we turn the assimilation off and simply compute the error between forecast velocities and observations.

As expected this error grows, and saturates in around 10 cycles. Figure 10 shows the model velocities

and observations att = 300s for the ensemble member corresponding to Figure 9, at 100mm above the

bottom of the tank. The model has once again departed from thesystem trajectory. Similarly configured

experiments suggest that it takes approximately 10 rotation periods or six assimilation cycles before the

model adjusts itself to be consistent with the observations.

6. Discussion and Conclusions

The coupled physical-numerical system described here is aneffective way to study a variety of rotat-

ing flows. In particular, it can accommodate flows with a wide range of thermal boundary conditions and

rotation periods. The hybrid assimilation scheme is motivated by several considerations. Early analysis

showed that a variational approach [24] would not meet realtime needs and that an ensemble-filter pro-

vided the best prospect, if a large number of numerical simulations is to be avoided. It is in this sense that

initialization and tracking are synergistic. Initialization helps condition forecast uncertainty, after which

snapshots capture the smaller of the uncertainties within the tracking loop and boundary-condition per-

turbations capture the larger uncertainty of the boundaries. In fast-evolving flows, the flow uncertainty

starts to dominate, but in slowly evolving flows, the boundary-condition uncertainty dominates. In any

flow situation, the use of the proposed scheme prevents an ensemble collapse by maintaining a justifiable

representation of the uncertainty. Further, the proposed representation require fewer numerical simula-

tions than purely sampling initial conditions and produceswell-ranked ensembles during assimilation.

Our system scales to a variety of experiments and flows. The PIV and MIT-GCM are parallelizable
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beyond that described here. In our assimilation approach, localization not only prevents spurious long-

range correlations but also lends to an easily parallelizable algorithm. Updates in individual windows

can be performed in parallel. Realtime performance is achieved here through parallelism (observations),

domain-decomposition (model, estimation), spectral-reduction (estimation) an efficient method to gen-

erate samples and compute updates (estimation). Thus the present system can scale with the addition of

computational resources.

There are also several limitations of the existing system. The domain boundaries are not resolved

at high resolution, which may be essential for certain flows.Adaptive resolution in PIV,the model and

assimilation is a promising direction. Temperature measurements have not been used, except to provide

climatological temperature boundary conditions. Newer methods for whole-field LIF measurements or

sparse measurements for assimilation or verification wouldbe useful. Observations are presently gath-

ered in 5 layers in large-part due to the latency associated with physical motor movement. A newer

periscope design with a rotating mirror and paraboloid willimprove the scan speed many fold. The as-

similation method uses a fixed local context. A multiscale extension and comparisons with contemporary

methods is beyond the scope of this paper but will appear in a forthcoming article.

Even without these improvements, our observatory works remarkably well in its current application.

Moreover the components used are largely off-the-shelf andrelatively inexpensive. Thus the analog

serves as a new, easy-to-use, testbed to explore annulus dynamics and analysis techniques. To the best

of our knowledge a realtime observatory of this kind has not been achieved before. Its utility extends to

many problems in prediction and predictability, oceanography and meteorology. Our hope is that other

researchers will be able to make use of this system, the methods used or the data-sets generated.
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