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ABSTRACT 
The oxidation of a carbon anode with air and CO2 occurs during the electrolysis of alumina in Hall-
Héroult cells, resulting in a significant overconsumption of carbon and dusting. Boron is well known 
to decrease the rate of this reaction for graphite. In this work, the application of boron oxide has been 
investigated to evaluate its inhibition effect on the air oxidation reaction, and to provide an effective 
protection for anodes. Different methods of impregnation coating have been explored. Impregnated 
anode samples were gasified under air at 525oC according to the standard measurement methods. 
X-ray tomography was used to obtain the microstructural information of the samples before and after 
air-burning tests. The impregnated samples showed a very low oxidation reaction rate and dust 
generation. 
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1 INTRODUCTION 
 

Carbon anodes are consumed in the conventional process of aluminum production using Hall-
Héroult cells in which the overall reaction may be written as Equation (1) [1]. One of the main factors 
causing excess anode consumption is oxidation of the anode surface exposed to air during 
electrolysis. The temperature of the anode exposed to air is between 400 and 600oC [2]. In this 
range, the oxygen in the air can react with the carbon anode, according to Equations (2) and (3). 
Both reactions are undesirable since the carbon anode is consumed without producing metal. 
 
2𝐴𝑙!𝑂"(𝑑𝑖𝑠𝑠) + 3𝐶(𝑠) → 4𝐴𝑙(𝑚) + 3𝐶𝑂!(𝑔), Δ𝐺# = −339	𝑘𝐽	(𝑎𝑡	977°𝐶)                                       (1) 

𝐶(𝑠𝑜𝑙𝑖𝑑, 𝑎𝑛𝑜𝑑𝑒) + 𝑂!(𝑔) → 𝐶𝑂!(𝑔), Δ𝐺# = −395	𝑘𝐽	(𝑎𝑡	500°𝐶)                                                     (2) 



 

𝐶(𝑠𝑜𝑙𝑖𝑑, 𝑎𝑛𝑜𝑑𝑒) → $
!
𝑂!(𝑔) + 𝐶𝑂(𝑔), Δ𝐺# = −185	𝑘𝐽	(𝑎𝑡	500°𝐶)                                                     (3) 

 
Air reactivity is one of the most important, variable characteristics of carbon anodes, and together 

with CO2 reactivity counts as the highest contribution to carbon overconsumption. The anode is 
composed of calcined petroleum coke, recycled anodes (butts), and coal tar pitch. The effects of 
raw materials, process parameters, and the physical characteristics of the baked anode on its 
resistance against air reactivity have been widely discussed in the literature [3–8]. There is 
consensus that the burning rate of the binder matrix (pitch + fine) is higher than that of the large 
coke grains [8,9]. This may result in early removal of the binder matrix and detachment of the 
unburned coke grains from the anode surface, contributing in part to the dusting phenomenon [10–
12]. Any protection strategy should therefore focus on providing an impermeable physical barrier on 
the anode external surface or decreasing the intrinsic reaction rate of carbon, especially that of the 
binder matrix. 

Several attempts have been made to provide a physical barrier on the anode. As an example, 
the Commonwealth Scientific and Industrial Research Organisation (CSIRO) claimed to provide  a 
cost-effective coating on anodes, which maintains its integrity throughout the life of the anode [13]. 
The coating seems to be an alumina-based material, which is sprayed on baked anodes. Although 
this announcement was made several years ago, the authors are not aware of any further 
development or industrial deployment of this coating. In the same context, covering the anode by 
alumina powder is practiced in almost all smelting plants. In addition, some plants practice a simple 
way to cover anodes by spreading liquid bath (cryolite) on a fresh anode just after it is changed. The 
liquid bath solidifies immediately on the cold anode surface providing a coating, which seems to 
decrease its air-burning rate. Both the alumina powder and solidified bath are porous media and 
cannot protect the anode efficiently. However, they may reduce the air-burning rate by generating 
an oxygen diffusion barrier around the anode and protect it to some extent. 

Another strategy to protect carbon is to decrease its intrinsic reactivity. The oxidation inhibition is 
achieved by doping carbon with phosphorus and boron [14,15]. However, phosphorus is prohibited 
in the electrolysis bath due to its negative effect on the current efficiency, thus leaving only boron 
doping as a suitable strategy. Basically, three mechanisms are proposed to explain the effect of 
boron on the carbon oxidation reaction: 

(a) Inhibition of the reaction by re-distribution of electron densities on graphite, hence reducing 
its intrinsic reactivity [16–19]. 

(b) Effect of boron on enhancing the graphitization process [17,19–21]. 
(c) Formation of the boron oxide film and blockage of active sites [16,22,23]. 
The two first mechanism (a and b) could not contribute to anode protection. The main reasons 

are: 
(1) In most experimental works conducted on composite materials reinforced by carbon fiber, 

the boron addition level is too high (from 1000 ppm up to several at. %) [24]. This high level of boron 
addition is not allowed in the anode, keeping in mind that all boron will most likely reduce in the bath 
and enter the aluminum. 

(2) The change in electron density is basically due to the fact that boron is substituted in the 
graphite structure. Since the anode baking temperature is much lower than the graphitization 
temperature, no significant graphitization occurs during baking. Thus, the boron effect on carbon 
graphitization is not conceivable. 

(3) In boron-doped graphite, boron is always added in the form of elemental boron under inert 
atmosphere prior to graphitization. Considering the cost of elemental boron, such a high level of 
addition is justified only for very high-value products, which is not the case for carbon anodes. 

The formation of the boron oxide film and its effect on active site blockage is, however, worth 
investigation. 



 

Boron oxide is soluble in water, thus making it possible to be coated by impregnation via  an 
aqueous solution. In this context, Moltech published four patents [25–28] about the impregnation 
coating of boron oxide to protect the anode. In these patents, the addition of other functional 
compounds into the impregnation solution was also claimed. The experiments conducted by Moltech 
in the laboratory seem to confirm the beneficial effect of this impregnation. Such a beneficial effect 
has also been confirmed by our own experiments, as well as by other authors [29]. However, the 
reasons why this technique has not been deployed in smelters, despite the good laboratory results, 
are unknown to the authors of this paper. 

Alcan has also published a patent on the protection of anodes and cathodes by boron-containing 
compounds with different additives such as AlF3 and refractory compounds [30]. The coating 
comprises “preparing a liquid suspension of a boron compound, aluminum fluoride and  a 
lignosulfonate binder and applying the liquid suspension as a protective coating at least to the portion 
of the anode which is exposed to the atmosphere during cell operation, followed by drying the 
coating” [31]. They applied a thick coating layer using a spray gun followed by drying. They claimed 
a good protection of anodes and cathodes at the laboratory scale. 

The laboratory tests are usually performed on small samples, referring to the standard test of R 
& D Carbon, typically 50 mm in diameter and 100 mm in length. The mass before and after the 
reaction is measured and the mass loss is reported as the indication of reactivity. Therefore, no 
information is obtained regarding the reaction kinetics or the evolution of the reaction over time. In 
addition, if the impregnation efficiency depends on the sample size, its protection capability will be 
overestimated for the small samples. It is thus important to understand the protection mechanism in 
order to adjust the process parameters for optimum performance. 

This work aims at developing a protective coating to decrease the air reactivity of anodes. The 
focus is on determining the impregnation parameters that affect the efficiency of the process. During 
the reactivity tests, the mass loss is recorded continuously in order to follow the reaction rate at any 
time. The samples were also characterized using X-ray tomography in order to obtain the 
microstructural information before and after the air-burning tests. This information helped to 
understand the carbon gasification process inside the anode samples. 
 
2 MATERIALS AND METHODS 
 
2.1 Materials 

 
In this study, all samples were taken from an industrial baked anode. The anode consisted of 

65% calcined petroleum coke, 22% recycled anode and 13% pitch, and baked at 1200oC. The 
samples were cored from different parts of the anode. Most of the samples were taken from the 
positions that are normally exposed to air attack in an industrial electrolysis cell. 

 
2.2 Air Reactivity Test 

 
The air reactivity measurements were conducted using a muffle furnace. In the first series of 

experiments, a small sample of approximately 6–7 g was tested, while in the second and third series 
a larger sample size (60–100 g) was used. The samples were impregnated with boron solution under 
different conditions. The reactivity experiments were performed under isothermal conditions in 
flowing air of 4–5 L/min. The samples were protected from oxidation during the heating period by 
high purity nitrogen. When the target temperature was reached, the sample was held at this 
temperature for 10 min. Then, air was introduced into the reaction chamber. The sample was 
maintained at the target temperature before being cooled. During the cooling period, the sample was 
also protected from oxidation using a nitrogen flow. The anode-air reaction was measured over a 
range of temperatures from 400 to 600oC. This temperature range corresponds to the conditions in 
which the anode reacts with the air atmosphere during the aluminum smelting process. 



 

2.3 X-ray Computed Tomography 
 

X-ray computed tomography has been used for decades in science to reveal the internal 
structures of objects, from living beings to engineering materials (e.g., [31–34]) including the carbon 
materials used in the aluminum production industry [35–39]. Its main advantage is that it is a non-
destructive technique. Thus, it can preserve object integrity such as porosity distribution. Hence, 
carbon anode images have been obtained by scanning anode cores before and after air reactivity 
tests using computed tomography (Siemens Somatom Sensation 64, Figure 1). This method is also 
capable of revealing the spatial density distribution in the sample. Considering the anode core 
dimension (50 mm in diameter), the voxel resolution obtained is 0.1x 0.1 x 0.6 mm3 which is very 
close to the maximum resolution of the X-ray tomography used in this study (0.09 x 0.09 x 0.4 mm3). 

Figure 1. Siemens Somatom Sensation 64 designed for the human body but adapted for material 
research. Courtesy of INRS-ETE, Quebec, QC, Canada. 
 
3 RESULTS AND DISCUSSION 
 
3.1 Anode Impregnation 
 

A series of small samples (6–7 g) were cut from an industrial anode core and impregnated under 
different conditions. The cored samples had a diameter of 19 mm and a length of 14 mm. The 
solution concentration and impregnation temperature were varied. The samples were dipped in the 
solution for 30 min, and then dried in air at 100oC overnight. Samples 1, 2, 3, 4 and 6 were 
impregnated for a second time under the same condition. Tables 1 and 2 summarize the treatment 
conditions of the 13 samples, including the references (untreated). 
 
 
 
 
 
 
 
 



 

 
Table 1. Impregnation conditions of the samples. 

 
 

Table 2. Impregnation (2) conditions of the samples. 

 
 

The air reactivity tests were performed in a muffle furnace with an airflow of about 5 L/min. The 
samples were put in the furnace, heated to 525oC and maintained at this temperature for 2 h. The 
temperature was then decreased to 500oC over 1 h and maintained at this temperature for 2 h. The 
temperature was then decreased to 450oC and maintained until the end of the test. Samples were 
then withdrawn from the furnace and weighed. The residue was calculated according to the following 
equation: 
 
𝐴𝑖𝑟	𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦	𝑟𝑒𝑠𝑖𝑑𝑢𝑒 = %!

%"
× 100                                                                                                   (4) 

 
where Mf and Mi are the final and initial mass of the sample, respectively. 

 
Figure 2 shows the air reactivity residue of the treated (1–10) and the untreated samples (A, B 

and C). The results confirmed that the boron treatment has a significant effect on the air reactivity of 
the anode samples. The untreated samples showed a high reactivity with a mass loss ranging 
between 52% and 75%. The impregnated samples showed much smaller mass loss between 4.5% 
and 11%. The best results were in general obtained for the samples impregnated in hot solution (7 
and 9), although all of the treated samples seemed to be efficiently protected. Sample 1, 2, 3, 4 and 



 

6 did not show any difference compared to the others, even with the double impregnation. Therefore, 
it seems that the anode surface was saturated with boron oxide during the first impregnation. 
 

Figure 2. Air reactivity of the samples coated by impregnation. 
 
3.2 Effect of impregnation time  

 
In the second series of experiments, the effect of impregnation time was evaluated. Eight samples 

were cored from the same anode having a diameter of 50 mm and a length of 30 mm. The average 
mass of the samples was around 100 g. Samples were soaked in a boiling solution with a 
concentration of 0.17 g/mL using impregnation times varying between 1 and 20 min. The coating 
conditions of the samples are summarized in Table 3. 
 

Table 3. Impregnation conditions of the samples. 

 
 

The air reactivity tests were performed in a muffle furnace with an airflow rate of 4 L/min. The 
samples were put on an alumina wool, placed on a stainless-steel plate, and introduced in the 
furnace at 500oC. The temperature of the furnace was maintained at 500oC during the entire air 
reactivity test. In order to follow the reaction rate over time, the samples were removed from the 
furnace, cooled down to room temperature, weighed, and put back into the furnace. This operation 
was repeated every 2 h for the first 24 h and every 12 h for the remaining time. The gasification was 
calculated according to the following equation: 



 

 
𝐺𝑎𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 = %#&%$

%%
× 100                                                                                                            (5) 

 
where M0 represents the initial weight of the sample and Mt is the instantaneous weight of the 

sample at time t. 
 
The gasification percentage as a function of reaction time is shown in Figure 3. The results 

revealed a remarkable effect of the impregnation time on the air reactivity of the anode. The 
untreated anode shows high reactivity with a burning rate of about 4%/h. The anode was totally 
consumed after 40 h of reaction. The curves show that the reaction rate decreases by increasing 
the impregnation time. The resistance of the 1 min impregnated sample was almost doubled 
compared to that of the uncoated samples. The samples impregnated for 10 and 20 min showed 
lower reactivity with the same reaction rate (about 0.2%/h) and after 160 h they were consumed only 
by 70% and 60%, respectively. The reaction slightly accelerated for these samples after 20% 
gasification. As can be seen, the sample impregnated for 20 min exhibited a remarkable resistance 
to burning with only 30% mass loss after 100 h of reaction. Its reaction rate was 20 times lower than 
that of the untreated sample. The large standard deviation observed in this experiment could be 
attributed to the inhomogeneity of the anode and the small size of the samples. 

Figure 4 shows a SEM (Scanning Electron Microscopy, JSM-840A, JEOL USA, Inc., Peabody, 
MA, USA) image of the cross section of an impregnated sample. One can observe lamellar boron 
oxide crystallized inside the pores. The protection effect can be explained by this observation, since 
boron blocks the pore surface and limits the access of oxygen. However, the relatively small areas 
covered by boron oxide cannot explain the significant decrease of the reaction rate. Boron oxide is 
likely also present on the other areas but, due to the limited resolution of SEM, it is not observed. 
 

 
 
Figure 3. Gasification vs. reaction time during gasification for a series of samples with different 
impregnation times. 
 



 

 
Figure 4. SEM micrograph of a sample cross-section showing the crystallization of boron oxide 
inside the pores (indicated by arrows). 

 
Figure 5 shows visual aspects of the samples at different reaction times. Figure 5a–c shows the 

fresh samples, after 24 h and after 6 days of reaction, respectively. It can be clearly seen that the 
two reference samples (untreated) are severely reacted after 24 h of exposure, exhibiting a mass 
loss of more than 86%. The entire samples are disintegrated in powder form, which would be 
considered as dust in a real smelting pot. The mass loss measurements were stopped when the 
samples disintegrated. For this reason, the gasification never reached 100% (Figure 2). 

 

 
Figure 5. Visual observation of the samples; (a) before air reactivity test; (b) after 24 h of exposure; 
(c) after 6 days of exposure. The numbers on the samples indicate the impregnation time. 
 

The visual inspection of the samples indicates that after only 24 h of exposure, the untreated 
samples are disintegrated while the sample impregnated for one minute still seems to be intact, 
although it exhibited 20% mass loss. This sample disintegrated after 40 h of exposure, generating a 



 

large quantity of dust. After 6 days of exposure, however, the samples impregnated for 10 and 20 
min kept their initial shape without any apparent dusting, in spite of more than 50% mass loss. This 
observation suggests that these samples essentially react from the inside while the outer surface is 
still resisting. This could mean that longer impregnation times not only decrease the overall reaction 
rate, but also decrease dust emission. 

 
3.3 Boron loading during impregnation 

 
Another series of large-size samples (50 mm in diameter) was prepared in order to obtain 

additional information about boron loading and its effect on air reactivity of the anode. The standard 
core samples of 50 mm diameter were cut into pieces of about 30 mm height. The same protocol of 
impregnation, as described previously, was used to impregnate the samples with two different 
impregnation times of 1 and 15 min. A boron solution at 2% and a temperature of 50oC was used 
for impregnation. 

During the drying step of the impregnated sample, boron oxide is precipitated in the form of boron 
hydroxide. Depending on the drying temperature, boron hydroxide could be partially dehydrated to 
boron oxide. Thus, the evaluation of the exact boron quantity loaded on the sample becomes difficult. 
In order to overcome this difficulty, boron loading was calculated based on the weight of the 
impregnated solution. Knowing the concentration of the solution, it was possible to evaluate the 
exact boron quantity loaded on the sample during impregnation. To do so, the samples were first 
dried in an oven at 140oC for 4 h in order to record their initial dry weight. Then, a solution of a known 
boron concentration was prepared for impregnation. A sample was dipped into the solution and the 
difference between the weight of the solution before and after dipping was recorded. Table 4 
summarizes the experimental conditions of the impregnation process as well as the quantity of boron 
oxide loaded onto each sample. 

 
Two important observations were made at this step. 
 
(1) The boron loading for a given impregnation time is different from one sample to another, 

ranging from 0.072 to 0.144 g for 10-min of impregnation and 0.074–0.157 g for 15 min of 
impregnation. The variation could be attributed to the different levels of porosity in the samples. This 
observation may explain the large variation in the reactivity of the samples, as observed for samples 
10 and 20 in Figure 5, exhibiting different reactivity, in spite of the same impregnation time. Strictly 
speaking, this observation confirms that the boron loading could be different even if the impregnation 
conditions are the same. 

(2) The average value of boron loading on two sets of samples (9–16 and 17–27) increased 
from 0.09 g to 0.13 g, respectively. This suggests that the average boron loading increases 
significantly by increasing the impregnation time. 

Figure 6 shows the mass loss of the samples as a function of reaction time. The air reactivity 
tests were conducted in a muffle furnace with an airflow of 3 L/min at a constant temperature of 500 
oC. To generate each point presented in this figure, several samples were placed in the furnace and, 
at each target exposure time, one sample was withdrawn from the furnace. Boron loading is 
indicated for each data point on the graph. The untreated samples showed the same reaction rate 
as observed previously in Figure 2. Once again, this series of experiments confirmed the positive 
effect of the long impregnation time on the air reactivity of anode samples. 

 
 
 
 
 

 



 

Table 4. Boron loading on impregnated samples. 

 
 
 

 
 

Figure 6. Gasification vs. reaction time during gasification for a series of samples with different boron 
loading. 



 

3.4 Effect of boron-coating on the anode reaction mode  
 

X-ray tomography was used in this study to obtain microstructural information of the samples 
before and after air reactivity tests. Two samples, impregnated and un-impregnated, were selected 
from those of the previous section (50 mm in diameter and a length of 30 mm) and were scanned 
before and after the air burning tests. This technique could show the evolution of the density by 
referring to the initial shape of the sample before and after air burning. 

Figure 7a shows 16 images representing 16 equidistant scanned slices of an un-impregnated 
sample before the air reaction test, where the dark areas represent the pores. Scanning starts from 
the top of the sample (first image in the upper-left corner), and the bottom-right slice represents the 
bottom of the sample. Figure 7b shows the same sample after 6h of exposure, representing 27% 
mass loss. The top of the sample burns faster than the middle because the fresh air was injected 
from the top of the furnace. The bottom of the sample did not react at the same rate as the top 
because the sample was placed on alumina wool in which the air was not freely circulated. 

Comparing the images before and after the air-burning test, it can be seen that the top surface of 
the sample (Figure 7b) was heavily attacked. Furthermore, the sample shrunk, indicating that it was 
basically attacked from its external surface. In order to better visualize the surface attack of the 
sample, the patterns of the burnt slices are superimposed on that of the fresh sample in Figure 8, 
where the shrinkage of the sample is clearly revealed. The level of porosity inside the sample 
remained roughly the same, which could reveal important information regarding the gas 
concentration through the pores. These results suggest that oxygen reacts quickly with carbon and 
that the CO2/CO ratio falls rapidly inside the pores, preventing further reaction of the sample core. 
Such data indicate the importance of diffusion inside the pores in the anode reaction. 
 

  
(a) (b) 

 
Figure 7. X-ray tomography images of uncoated samples; (a) before air burning; (b) after 6 h of 
exposure at 500oC. 
 



 

Figure 8. Superimposed patterns of the fresh (white) and burnt (blue) sample reveal the shrinkage 
of the sample after 6 h of exposure. 
 

The impregnated sample was also scanned using X-ray tomography with the same parameters. 
Figure 9a shows the CT images taken from the sample before the air reactivity test. This sample 
was later impregnated for 15 min and exposed to air for 56 h in the furnace at 500oC. A mass loss 
of 19.3% was recorded after 56 h of exposure. The sample was again CT-scanned after air-burning 
test and the images are shown in Figure 9b. Compared with the uncoated sample, the impregnated 
sample did not shrink during the burning test and its diameter after burning remained the same as 
the fresh sample. Another interesting observation in Figure 9 is that the reaction took place inside 
the sample and only the porosity increased during the air-burning test. 

It can be concluded from the reactivity tests and the CT scan results that the general oxidation 
resistance of an anode increases by boron impregnation and its surface is well protected. 
Localization of the air reaction to the inside of the impregnated sample core can be explained by the 
fact that oxygen diffuses through the pores, providing the reactant for oxidation. This means that the 
reaction will not become diffusion limited. In other words, due to the low intrinsic reactivity of the 
treated carbon, the CO2/CO ratio does not decrease rapidly inside the sample and CO2 (or oxygen) 
can reach the core of the sample. The low reaction rate of an impregnated sample could therefore 
be attributed to two facts: 

(1) The impregnation solution reaches the entire pore network and provides a good protection 
even inside the sample. 

(2) For the impregnated samples the reaction rate is very slow, so that the reaction will not be 
limited by diffusion. For the un-impregnated sample, however, diffusion limitation leads to 
consumption of only the outer surface. 

In addition, the fact that the reacted samples preserve their integrity suggests that an impregnated 
anode will generate far less dust during the oxidation reaction. 
 
 
 
 
 
 



 

 

(a) (b) 
 

Figure 9. Computed tomography (CT) scan images of a sample, (a) fresh; and (b) after impregnation 
for 15 min and exposure for 56 h at 500oC. 
 
4 CONCLUSIONS 
 

In the present study, it was shown that a number of parameters affect the efficiency of the anode 
protection by boron impregnation. For instance, the level of the protection depends on the 
impregnation duration. Fifteen minutes of impregnation in warm solution (2 wt % concentration) 
provides a significant protection level in small samples. Air reactivity results confirm that the 
protection of the anode surface using the impregnation method can decrease the oxidation reaction 
rate from 4%/h to 0.2%/h. CT-Scan results revealed that the inside of the impregnated samples 
seems to react with air, with a much slower rate, and that the surface preserves its initial shape. The 
protected samples generate much less dust as compared to the unprotected samples. 

Although this technique allows us to obtain a very good anode protection and dust reduction, its 
implementation at the industrial scale may be challenging. Indeed, a full impregnation can be 
obtained within a reasonable time for small samples. In an industrial context, a full impregnation of 
an anode with a very large size would be practically impossible within a reasonable time. 
Accordingly, researchers and engineers will have to continue working on this avenue in order to find 
a practical method for in-depth impregnation of the large anode blocks. 
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