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Résumé

Ce document examine différentes méthodes pour calculer des chemins optimaux sur des
graphes dynamiques. Deux grandes approches sont comparées: l’approche déterministe et
l’approche probabiliste. L’approche déterministe prend pour acquise une certaine connais-
sance préalable des changements à venir dans l’environnement. L’approche probabiliste tente
de modéliser et traiter l’incertitude. Une variante dynamique de l’algorithme de Dijkstra
est détaillée dans le contexte déterministe. Les paradigmes desMarkov Decision Processes
(MDP) et Partially Observable Markov Decision Processessont explorés dans le cadre du
problème probabiliste. Des applications et mesures sont présentées pour chaque approche.
On constate une relation inverse entre la calculabilité des approches proposées et leur po-
tentiel d’application pratique. L’approche déterministe représente une solution très efficace
à une version simplifiée du problème. Les POMDP s’avèrent un moyen théorique puissant
dont l’implantation est impossible pour des problèmes de grande taille. Une alternative est
proposée dans ce mémoire à l’aide des MDP.



Abstract

This document examines different methods to compute optimal paths on dynamic graphs.
Two general approaches are compared: deterministic and probabilistic. The deterministic ap-
proach takes for granted knowledge of the environment’s future behaviour. The probabilistic
approach attempts to model and manage uncertainty. A dynamic version of Dijkstra’s algo-
rithm is presented for the deterministic solution. Markov Decision Processes and Partially
Observable Markov Decision Processes are analysed for the probabilistic context. Applica-
tions and measures of performance are given for each approach. We observe a reverse rela-
tionship between computability and applicability of the different approaches. Deterministic
approaches prove a fast and efficient way to solve simpler versions of the problem. POMDPs
are a powerful theoretical model that offers little potential of application. An alternative is
described through the use of MDPs.
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Introduction

The objective of this research is to explore novel ways to compute optimal paths on road
networks. The goal is simple: find a path from point A to point B. However, it gets trickier
when we start to take into account the fact that the graph, or the environment in which we
evolve, may change more or less unexpectedly. In a stable, fully predictable context, finding
an optimal path is a simple problem. If we want to take into account future modifications
to the environment, the problem quickly gets harder. Finally, if one wishes to consider the
fact that not everything is known about the environment, and what changes may occur in the
future, the problems gets even more complicated.

We will discuss different approaches to solve the three level of problems discussed above.
We will see that there are efficient ways of finding solutions for the simpler, fully observable,
deterministic problems. We will propose techniques to address the more complex problems,
trying to find the best possible solution while dealing with a partially uncertain future in a
reasonable amount of time.

Chapters1 and2 detail how the deterministic problem was approached and how it was
implemented in an actual path finding application. Chapter3 shows how the probabilis-
tic aspects of the problem can be addressed using the Markov Decision Processes (MDP)
framework. Chapter4 discusses the use of Partially Observable Markov Decision Processes
(POMDP) as a way to deal with uncertainty. Each approach will be described in detail: a
theoretical background will be provided and the implementation of the approach will be dis-
cussed. Finally, the obtained results and limitations of every approach are detailed in order to
identify solutions better suited to our problem.



Chapter 1

Deterministic Environment

This chapter explains how we model the environment to be able to compute shortest paths in
a stable, predictable, deterministic context. The term deterministic means that although not
everything may be known about the environment, the elements present in it have a location
and behavior that is fully known.

This type of problem is somewhat similar to the one a military convoy faces when it has to
pick a particular route in a city. At every intersection, the convoy will have to decide on which
road segment to use. The available information about the road network (location of elements
potentially impacting movement) will help the path planner to make a better decision. The
more that is known about the road network, and how it will change in time, the better the
chances are of planning a path correctly.

We start by describing a static environment, and detail an efficient solution for it. We will
then explore ways to transform this basic static environment into a dynamic one, taking time
into consideration. A solution for the dynamic version of the problem is also given.

1.1 Static Context

1.1.1 Environment

We start by representing the environment as a directed weighted multigraph where the weights
of edges do not change in time. The graph isdirected, meaning each edge goes from on ver-
tex to another in an ordered fashion. The termmultigraph indicates that multiple edges are
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allowed from one vertex to another. In this graph, the edges represent road segments and the
vertices represent the intersections, where the decision of which road segment to take will be
made.

Définition 1. The basic static environment is comprised of aDirected Weighted Multigraph,

a triplet{V,
y
E, W} where:

• V = {vi | i ∈ I} is the set of the graph’svertices;

•
y
E is the set of the graph’sedgessuch that

{(v, v) | v ∈ V } ⊆
y
E ⊆ V × V ;

• W :
y
E → R+ ∪ {∞} is thecost function, meaning,W (

y
e ) is theweightassociated to

edge
y
e .

W (
y
e ) =∞ means the edge

y
e is unusable.

This is the staring point that will allow us to compute initial solutions, and refine them. As
we progress along this process, additions will be made to the basic environment, representing
new concepts or refining existing ones.

1.1.2 Problem

Having a basic version of our environment, we are able to tackle a first version of the problem.

Let us then considerG = {V,
y
E, W} a directed weighted multigraph. We consider vertexvs

as the “starting position”and vertexvg, as the “goal position” we intend to reach. In graph G,
we are looking for a path

P = 〈vs = v0,
y
e1, v1,

y
e2, v2 . . . , vm−1,

y
em, vm = vg〉

for which the total weight of traversed edges is minimal. In other words, we wish to minimize

W
(
P

)
def
= W

(
y
e1

)
+ W

(
y
e2

)
+ · · ·+ W

(
y
em

)
(1.1)

We are looking for a path, going fromvs to vg at a minimal cost. There are numerous
existing solutions [7] [3] [12] for the static version of this problem.
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1.1.3 Dijkstra’s Shortest Path Algorithm

Let us consider Dijkstra’s shortest path algorithm (Algorithm1) to solve this static version of
the initial problem. Dijkstra’s algorithm computes the shortest path from a source vertex to a
destination vertex on a directed weighted graph.

Algorithm 1 Dijkstra’s Shortest Path Algorithm
function Dijkstra (G, vs, vg)
G = (V, E) a directed weighted graph
V be the set of all vertices
w(ei,j) ∈ R+ the weight associated with edgeei,j = (vi, vj)

for all v ∈ V do
cost(v) := infinity{Total cost to reachv from vs}
previous(v) := undefined

end for
cost(source) := 0 {Cost fromvs to vs}
Q := V {Q is the priority queue of non optimized vertices }
while Q is not emptydo

u := extract_min(Q) {Remove vertex from priority queue}
for all v neighbour ofu do

alt_cost := cost(u) + w(u, v)

if alt_cost < cost(v) then
cost(v) := alt_cost

previous(v) := u

end if
end for

end while
{Building the shortest path forvs to vg}
P := ∅ {Empty path}
u := vg

while u existsdo
insertu at the end ofP
u := previous(u)

end while
return P

A typical implementation of Dijkstra’s algorithm will have a worst-case running time of
O(V 2 + E) on a directed weighted multigraphG of V vertices andE edges. The costly part
is the selection of the next vertex which takesO(V 2)[17] [5].
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We now have an initial solution which provides an optimal path for a static environment.
We have to modify this solution to take into account the time variable.

1.2 Dynamic Context

In this section we propose a generalization of the model described in Section1.1to a situation
where the weights of the edges evolve in time.

1.2.1 Environment

In order for the algorithm to take time into account, we have to modify the environment as
follows.

Définition 2. The dynamic environment in comprised of aDirected Weighted Multigraph,

now a quatruplet{V,
y
E, T,W} where:

• V = {vi | i ∈ I} is the set of the graph’svertices;

•
y
E is the set of the graph’sedgessuch that

{(v, v) | v ∈ V } ⊆
y
E ⊆ V × V ;

• T := R+ is the time variablet;

• W :
y
E × T → R+ ∪ {∞} is thecost function, meaning,W (

y
e , t) is theweightassoci-

ated to edge
y
e at timet for (

y
e , t) ∈

y
E × T .

W (
y
e , t) =∞ means the edge

y
e is unusable at timet.

We have modified theW function to take time into account. Doing so means being
able to access a structure capable of providing weight evaluations for particular edges at
current and future times. Obviously the size of the new structure would largely depend on
the granularity of the time variable we wish to consider. If we choose to consider a context
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dealing in minutes over a period of one hour, the original structure will grow 60 fold. If the
dynamism’s precision is such that we get weight updates every 1/10th of second over a day,
the initial structure would get 864000 times larger. These figures are arbitrary, but illustrate
that the granularity of the time variable used has to be carefully calibrated. The problem
becomes even more complex if one wishes to consider many possibilities, where the edge’s
weights would evolve differently through time (see figure1.1). The details pertaining to the
construction of such a structure are out of the scope of this research. We will suppose that
such a structure is available to us.

Figure 1.1: Evolving weight structure (A) Static (B) Dynamic (C) Dynamic with many pos-
sibilities

1.2.2 Problem

Now that our environment has been modified, we must modify the definition of our problem
in order to take into account the time variable. We are still looking for a path

P = 〈vs = v0,
y
e1, v1,

y
e2, v2 . . . , vm−1,

y
em, vm = vg〉

but, we wish to minimize the time taken to go fromvs to vg. It will be beneficial to consider
the result of our weight function as the time taken to traverse a particular edge at a particular
time. Now that the weight is time based, we can consider the total weight, or time, to reach
a particular vertex as the time it takes to reach the vertex preceding it plus that vertex’s
traversal time. Thus, we end up with an augmented version of Equation1.1. We are looking
to minimize:

W
(
P, t0

)
def
= W

(
y
e1, t0

)
+W

(
y
e2, t0 +W (

y
e1, t0)

)
+ · · ·+W

(
y
em, t0 +

m−1∑
i=1

W (
y
ei, ti)

)
(1.2)
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Remains to see the implications of these modifications to algorithm1.

1.2.3 Dijkstra with a Time Constraint

In order for the algorithm to be able to use the newW (
y
E, T ) function, it will be necessary

to keep track of how much time the traversal of each edge takes. While the first call to the
function will be made at timet0, all subsequent calls will have to be made for the specific time
ti at which the particular edgeei will be reached. Algorithm2 illustrates the actual changes
made to the original algorithm.

Algorithm 2 Dijkstra’s Shortest Path Algorithm - Dynamic Version
function DynamicDijkstra (G, vs, vg, t0)
G = (V, E, T ) a directed weighted graph
T = {ti} the time variable
V the set of all vertices
w(ei,j, tk) ∈ R+ the weight associated with edgeei,j = (vi, vj) at timetk
for all v ∈ V do

cost(v) := infinity{Total cost to reachv from vs starting att0}
previous(v) := undefined

end for
cost(source) := 0 {Cost fromvs to vs}
Q := V {Q is the priority queue of non optimized vertices }
while Q is not emptydo

u := extract_min(Q) {Remove vertex from priority queue}
for all v neighbour ofu do

alt_cost := cost(u) + w(u, v, cost(u))

if alt_cost < cost(v) then
cost(v) := alt_cost

previous(v) := u

end if
end for

end while{Building the shortest path forvs to vg}
P := ∅ {Empty path}
u := vg

while u existsdo
insertu at the end ofP
u := previous(u)

end while
return P
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1.2.4 On the Usability of the Dynamic Algorithm

The deterministic assumption guarantees that, if all is known of the environment, the func-
tion cost(vi) will return the exact time it takes to travel fromvs to vi. However, if there exists
unknown elements that would impact the cost of a particular path, there is a chance that the
computation ofcost(vi) might be inaccurate∀i. This has a big impact when using the com-
puted path in a practical situation. What this actually means is that from the moment when
we reachvi at timeti andcost(vi) 6= ti − t0, we must restart our computation from scratch
usingvi as the start vertex. This consideration is paramount, since in practice, depending on
the granularity of our time variable, the chances ofcost(vi) being exactly the same asti − t0
may be relatively slim. If we assume that our computation ofcost is still of decent quality, the
algorithm remains usable if it can run quickly. By quickly, we mean fast enough that it can
yield a result well under the smallest traversal time of an edge. Actual use of the algorithm
has shown that it does perform well inside this condition as we will see in the next chapter.

Intelligent Transportation Systems

Interesting vehicle routing results were obtained by Kim et al.[11]. In this work, the urban
environment is modeled as a graph in a fashion similar to the one described in this chapter. In
this case, the researchers were interested in measuring the impact of historical and real-time
traffic data on vehicle routing. They put a particular focus on evaluating the impact of traffic
data on the likelihood of reaching a destination on time. Their goal is to minimize the idle
“buffer time” often added to a planned route in order to reach a destination on time. Two
algorithms are detailed to determine the optimal departure time using traffic data. The first
algorithm focuses on minimizing the total cost, the second trying to minimize vehicle usage.
More study of this work would be of interest. Although it is not the focus the work described
in this document, accurate parameterization of departure time would be a great addition to
the implementation discussed in Chapter2. As such, efforts to integrate this research in our
work would be relevant.

Chapter2 will give more details on this solution by showing how it was implemented as
a path finding solution in an actual application. Implementation will be further discussed and
measures of performance will be given.



Chapter 2

Implementation of the Deterministic
Solution

In this chapter, we describe an actual implementation of the deterministic approach. This was
accomplished at the Defense Research & Development Canada - Valcartier research center,
as part of the SCIPIO research project. The SCIPIO research project aims at providing army
commanders with a slew of capabilities, among which the ability to capture the commander’s
wishes; to dispatch resources; to fuse data; and to provide optimal path calculations in an
evolving urban context. Path calculations are made by the Optipath module, which computes
optimal paths in real time from two locations in a city, trying to avoid elements which would
impede movement. This work has been integrated as a part of the SCIPIO - Optipath module.
It was but a steppingstone toward a very complex and elaborated solution, but is, nonethe-
less, still used and validated in that context. We will discuss how it performs, and how its
performance compares to an implementation of a standard Dijkstra algorithm.

We will focus on the performance of the system. Performance will be assessed both from
an algorithmic, and a “real life” or benchmark perspective. The benchmark analysis will be
made on the implemented algorithm as well as on the communication mechanism used for
client-server communication: Javaspace/Jini.

2.1 Algorithmic Complexity Analysis

We refer to the algorithm described inalgorithm 2 as the Optipath algorithm. As seen before,
the Optipath algorithm is a modification of the well known Dijkstra algorithm. While a lot
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of additions and customizations have been made, algorithmically, a lot remains the same. A
typical implementation of Dijkstra’s algorithm runs inO(V 2 + E) on a directed weighted
multigraphG of V vertices andE edges. The costly part is the selection of the next vertex
which takesO(V 2). Our implementation takes advantage of the fact that our graph actually
represents a road network. Such a graph generally has between 2 and 4 edges to every vertex
(4 to 8 when using unidirectional edges) making it a rather sparse graph. WhileO(n2) is the
best possible complexity for dense graphs, it can be significantly improved upon for sparse
graphs[9].

Fibonacci heaps support the arbitrary deletion from a n-item heap inO(logn) amortized
time and all other standard heap operations inO(1) amortized time [8]. Implementing vertex
selection with a priority queue using a Fibonacci heap makes the time complexity of our
algorithmO(V logV + E)[5].

2.2 Execution Analysis

To start our analysis of the algorithm’s execution we begin by comparing the performance
of Optipath with Dijkstra’s algorithm. We’ll continue by analyzing the response time of the
algorithm on instances of different sizes.

All the tests were conducted on a Intel Pentium 4 HT, with a 3,20GHz CPU, 1,00GB of
RAM and 512MB of cache. The same setup has been used for all the measures presented
thereafter.

2.2.1 Optipath vs. Dijkstra’s Algorithm

We compared the two algorithms on a graph representing the region of Quebec. This graph
covers the entire region north of the St-Lawrence river and in comprised of 15422 vertices
and 28294 edges. Each vertex is the equivalent of an intersection on the road network and
each edge is the road segment between them. We did 1000 calls to both algorithms searching
for shortest paths between 2 random vertices on the graph.

In table2.1, we see the average runtime on instances of about 15000 vertices with about
1,83 edges to a vertex. Both runtimes are pretty close to one another. Actually, the observed
standard deviation (both around 120% of the average) tells us that the variation on observed
runtime was such, that both values can be considered equivalent. Moreover, the average
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Dijkstra Optipath
Average 102.33 ms 90.71 ms
Variance 15242.37 11218.06

Standard Deviation 123.46 105.91

Table 2.1: Dijkstra and Optipath Runtimes

response time (about 1/10th of a second) is near real-time execution, and the differences ob-
served between the two algorithms can be attributed more to the external factors affecting the
execution (Java’s memory management, CPU resources allocation) than to actual differences
in the algorithms performances.

2.2.2 Optipath Performance on Various Size Graphs

In order to generalize our analysis of Optipath’s performance, we had to be able to run it on
graphs of different sizes. To do so, we generated artificial graphs that were representative of
a generic urban environment. We built square shaped graphs of nodes that are linked with
all neighbour nodes that share the same line or column. Each edge was assigned a random
weight between 1 and 100. Figure2.1 illustrates this artificial graph structure.

We, once again, made 1000 calls to the Optipath algorithm on graphs of roughly 10k,
25k, 50k and 100k nodes (table2.2). The configuration of the test machine did not allow us
to go any higher (a 100k node generated graph took all but the totality of the memory).

Vertices Edges Avg. Runtime Std. Deviation SD / AR
10000 39600 30.735 ms 19.50824 0.63472393
24964 99224 91.502 ms 62.85347 0.686908155
49729 198024 208.513 ms 137.1862 0.657926364
99856 398160 509.669 ms 349.5637 0.685864159

Table 2.2: Optipath Runtimes on Different Sized Graphs

Once again, the standard deviation shows that the execution was affected by external fac-
tors (Java’s memory management, CPU resources allocation). However, on 1000 iterations,
the deviation/average runtime ratio was nearly the same for every sized graph. Since our av-
erage number of edge per vertex (close to 4) was higher than in the case of the Quebec City
map (1,83), our runtimes are slightly higher. It makes sense since the algorithm had more
edges to explore. At half a second for a graph of 100 000 vertices, the algorithm is drifting
away from real-time execution. However a comparison of the runtime with the asymptotic
time complexity analysis of the algorithm provides us with interesting information.
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Figure 2.1: Illustration of the structure used to analyse algorithmic performance on different
sizes graphs

Vertices Edges Avg. Runtime (E + V logV ) TC / AR
10000 39600 30.735 ms 79000 2589.881243
24964 99224 91.502 ms 208998.551 2284.087244
49729 198024 208.513 ms 431581.7051 2069.807183
99856 398160 509.669 ms 897377.50666 1760.706472

Table 2.3: Optipath Runtimes and Time Complexity Graphs

We see that as the size of the instance grows, the time complexity(E + V logV )/Runtime
ratio slowly decreases (table2.3). While the ratio is still linear, the slight decrease may
indicate that to every execution of the algorithm is linked a certain extra runtime that is
dependant of the instance size. As the size of the problem grows, this extra independent
runtime gains impact. This extra runtime could become an issue on large scale problems.
However, large scale urban scenarios graphs could hardly become larger than 350k vertices
with less than 4 edges per vertex.1 Since this runtime is directly related to CPU and memory
performance, it can be drastically reduced with the use of a more powerful computer.

1The graph representing the entire Toronto region spanning from Niagara Falls and comprising the entire
West bank of Lake Ontario has less than 350k vertices.
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2.2.3 Optipath Performance When Adding Threats

In this practical use of the algorithm, the changes in edges traversal costs in timew(ei, tj) is
dictated by the presence of threats in the system. The term threat can designate any factor
that will have an impact on the time it takes to traverse a particular road segment. For this
implementation of the algorithm, we considered two types of threats: static, and dynamic.
Static threats refer to elements which have the same effect on traversal cost over time, for
instance, a roadblock. Dynamic threats refer to elements whose effect on edge traversal costs
will change over time, for instance mobile threats (vehicles) or evolving threats (gas cloud).
We will discuss the impact of these two types of threats on performance.

When threats are present on the graph, the current implementation allows to get updated
weights for all edges in timeO(1). It is basically just a matter of querying a multi-dimensional
array for the current weight of a particular edge, which takes just about no time. Therefore,
the execution of the algorithm is not affected by the addition of threats. Data analysis confirms
that fact. However, the issue lies is the creation of a threat: the actual building of the multi-
dimensional matrix.

In the case of a static threat, time doesn’t affect the threat, since it does not move or change
in time. In this case, we are left with a vector of edge weights (E × 1 matrix). Obviously,
the building of such an array can be done inO(E). For dynamic threats, the matrix becomes
larger as the threat lasts. We end up with a matrix which can be built inO(E×T ) whereT is
the actual number of time units the threat is computed for. We’ll see how this translates into
performance in the actual implementation.

Static Threats

Let’s first examine the time needed to build a static threat. The data shows the time taken to
instantiate the matrix, to assign values to it, and the combined value of both (table2.4). Note
that the times mentioned in this analysis are obtained using the System.currentTimeMillis()
method of the Java API. Values of zero are cited when returned by the method. This does not
mean that the runtime is zero, but simply that it is lower then computable by the the method.
It is obvious that in the case of a single data vector (single column matrix), the building of the
threat can be done almost instantly. When we reach threat sizes of over 100k edges, we start
to see computation times emerge. They are however, a non factor since their creation time
remains very low, and threats of those sizes stand little chances of being created (they would
span a larger portion of a gigantic graph (remember that the Quebec city graph has about
28k edges, and the city of Toronto/Ontario Lake west bank graph has under 350k). However,
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things become a little more complicated in the case of a dynamic threat.

Edges Init (ms) Assign (ms) Total (ms)
1 0 0 0

10 0 0 0
100 0 0 0
500 0 0 0

1000 0 0 0
5000 0 15 15

10000 0 0 0
25000 0 16 16
50000 0 0 0

100000 62 0 62
250000 141 0 141
500000 312 16 328

Table 2.4: Time to Build a Single Time Slot Threat

Dynamic Threats

We will examine the performance in the same way we did before. We will have initialization,
assignment, and total runtimes for threats of sizes 10 to 500000 edges. However, we will
have such a table for different amounts of time slots. Starting with 10 we will try to go up to
25k slots for every size threat. Detailed tables for every amount of time slots are detailed in
AppendixA. We will look at the combined result in the form of charts. We will see that when
the size of our 2D matrix (E × T ) nears 250M units, we reach the memory limit (1024MB),
and are unable to obtain results, in which case, no more results are displayed on the chart.
Let us quickly go over, and describe each chart.

Figure2.2 shows the time required to initialize the matrices for every sized threats. The
size of the threat is on the X axis, and the time required is on the Y axis. Each line on the
graph represents a different amount of time slots, ranging from 10 to 25k.
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Figure 2.2: Time Required to Initialize a Threat

Figure2.2shows the time required to assign values to the matrices for every sized threats.

Figure 2.3: Time Required to Assign Values for a Threat

Figure2.2 shows the total time required to assign values to the matrices for every sized
threats.
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Figure 2.4: Total Time Required to Create a Threat

Several interesting facts emerge from all this data. First, we can confirm that the execution
time is a direct function of the number of edges and the amount of time slots (O(E × T ).
Roughly, the time to instantiate a matrix cell is1.5×10−5ms. It follows that instantiating huge
threats spanning several hundreds of thousands of edges can be done inside a few seconds
(125M edges takes roughly 1.6 seconds) even on a modest computer.

Building larger threats would only be a matter of upgrading the hardware. Since threat
creation is linear, double the memory and you can double the size of your largest threat. In this
case, memory limitations appear when (E × T ) passes 125M. This figure is affected by both
the size of the threat and the number of time slots it has. This means that the larger the threat,
the larger the threat matrix. Moreover, it means that the more often we update the threat
status the larger the threat matrix gets. Even though current implementation yields decent
performance on more than large and precise enough threats, there are ways to circumvent
potential problems.

Let us consider a threat that would exceed our current system’s capabilities. If we had for
instance a threat spanning 10k edges with 25k time slots (E × T = 250M ). Such a threat
would cover over a third of the Quebec City region, and could be updated every second for
almost 7 hours. In practice, receiving threat updates every second would be less than likely.
Threat updates with a frequency of less than a second would be even less likely. This means
that we could relax the frequency of updates to, let’s say every 2 seconds. This would result
in having freed half the memory, which could then be used to compute a larger scale threat
(20k edges). Suffice to say, the implementation is very efficient for our current needs, and
could easily be scaled to accommodate larger scaled contexts.
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Transfer Rates

We now have a better understanding of the way things work on the server side and from the
algorithmic perspective. However, when the system is in use, not everything happens on the
server. Users actually interface with the system through a client that is remote from the server.
Even on the server side, not all components of the system are necessarily located on the same
machine. This means that a number of different computers have to interact together. The
speed at which they are able to communicate the information is key to the overall execution
speed of the system.

System communication is accomplished with the help of Javaspaces/Jini technology.
Whether they be path requests, path answers, threats or the graph itself, everything passes
through Javaspaces. We will look at a few sample transfer times in order to get a grasp of the
possible impact the transfer rates have on system performance.

Obviously, transfer rates are largely dependant on the network system used to carry the
information. From the physical support (wired, wireless), to the transport and network pro-
tocols (TCP/IP). These considerations are beyond the scope of our research, and so network
testing and optimization will not be done here. However, it is possible to configure the soft-
ware used to implement client-server communication (Javaspaces/Jini). We will test our ac-
tual implementation/configuration with all components on a single machine to abstract the
network related components.

Various types of information are transferred across the system. This information can be
divided in two main categories: initialization information, and execution information. Ba-
sically, initialization information is the preliminary information the system needs to be able
to work. We mainly think of the information as regarding the road network (the graph), and
the threats present on the graph. Initialization information can be rather large, however it is
mostly only transferred once at the start of the application. Execution information is essen-
tially composed of path requests (sent from the client to the server), and shortest path itinerary
(returned by the server to the client). Execution information is small, and is sent back and
forth throughout the execution. We will examine performance for both types of information.

We can characterize Javaspaces/Jini’s communication scheme by dividing it in two main
steps: serialization of the information, and communication/transaction. Simply put, first we
package the information (serialization), then we send it (communication/transaction). For
the purpose of this experimentation, we have generated different sized graphs, and serialized
them to disk. As seen on table2.5, the sizes of the serialized graphs grow in direct proportion
with the size of the graph, which makes perfect sense. There is a minimal, negligible, amount
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Size of Graph Number of Vertex Size on Disk
0× 0 0 2KB

10× 10 100 214KB
100× 10 1000 2172KB

100× 100 10000 22236KB
100× 1000 100000 222966KB

Table 2.5: Sizes of Serialized Graphs on Disk

Size on Disk Time to Serialize Time to Transfer T. to T.− T. to S.
2KB 0ms 813ms 813ms

214KB 237ms 1218ms 981ms
2172KB 2053ms 3125ms 1072ms

22236KB 20678ms 21654ms 976ms
222966KB 216031ms 217254ms 1223ms

Table 2.6: Time Needed to Transfer Different Sizes of Files with Javaspaces/Jini

of size (2KB)which is taken up by information relevant to the serialization itself. We can
safely conclude that a serialized graph roughly takes up 2,2KB per vertex. The graphs used
for the serialization tests had an average of about3.6 edges per vertex which is above what is
encountered in urban contexts, and more than sufficient to be representative data.

Let us then examine the time required to communicate these different sized graphs through
our Javaspaces/Jini implementation. Here, we basically timed ten transfers of every sized
graph to present an average transfer time. Once again, we communicated through Javas-
paces/Jini, but on a local machine, without the use of the network. On table2.6, we also
present the time required to serialize the object before actually beginning the transfer. We
finally show the difference between transfer time and serialization time.

We first observe that the time taken to transfer the files is, once again, in direct proportion
with the size of the file. When we cross reference this information with the serialization times
we discussed earlier, we quickly realize that most of the time goes to the serialization of the
object. The difference between the time to transfer and the time to serialize indicates that
the transaction for every sized graph takes roughly 1 second. The rest of the time is taken to
serialize the object.

This is a very interesting piece of information. While a 1 second overhead on every
transfer is of little importance for the larger initialization data, it may be more of an issue for
the smaller sized execution information. It has a small overall impact if, at the launch of the
application, the use of Javaspace/Jini adds a few seconds to allow the transfer of all necessary
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data. However, when the software is in use, the 1 second overhead is added on every time we
send or receive path information. The information contained in a path request is rather small
(< 10KB), and the path result closer to 100KB. We are talking about serialization times of
less than 150ms. The addition of a 1 second transfer overhead multiplies this time by a factor
of almost 10.

Applicability

The results detailed in this chapter show that the deterministic approach is very efficient in
addressing problems in an environment which provides a somewhat accurate prediction of
future edge weights. The small execution times make it a viable solution for real-time exe-
cution, allowing for very fast recalculations when encountering unforeseen events. However,
this approach remains strictly deterministic, taking knowledge of the environment for granted.
We will now discuss approaches which provide a better representation of uncertainty.



Chapter 3

Dynamic Path Finding in a Stochastic
Environment

In the previous chapters, we have considered solutions based on a deterministic assumption.
More precisely, we considered every element present in the system to be fully predictable.
Changes in weight of every edge could be anticipated in time. Even though this approach
yields interesting results, we want to try and generalize our problem in such a way that we
are still able to efficiently compute shortest paths, even if the changes in edge weights are
not completely known in advance. We want to move from a deterministic environment to a
stochastic one. To do so, we will examine a mathematical framework called Markov Decision
Processes (MDP). In this chapter, we will define the MDP model, detailing the problems it
solves, and possible solutions for them. We will then see to what extent it can be applied to
our path finding problem.

3.1 Markov Decision Processes

Markov Decision Processes (MDP) is a mathematical framework which allows decision-
making in contexts where the decision outcomes are not fully known in advance, but nev-
ertheless quantified by probabilities. Figure3.1 illustrates the MDP agent-environment dy-
namic. In a MDP, an agent (the decision maker) is located in a state of the environment it
interacts with. Being in a specific state, the agent will take an action. Following that action,
the agent will find itself in a new state of the environment and will receive a reward. The
agent must learn to reach a desired state, or goal state, while maximizing the rewards it col-
lects along the way. Learning will occur by trying different possible actions for each state
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Figure 3.1: The agent-environment interaction

over many episodes, or iterations on the problem.

3.1.1 MDP Definition

Définition 3. Formally, a MDP is a tuple:(S, A, P, r) where:

• S is the set of states;

• A is the set of possible actions;

• P a
s,s′ = Pr(st+1 = s′|st = s, at = a) is the transition probability of reaching states′

when taking actiona in states;

• ra(s, s
′) is the immediate reward received for reaching states′;

st, andst+1 represent particular statess ∈ S encountered in a specific, discrete time step
t = 0, 1, 2, 3, .... The objective of the MDP is to maximize the expected cumulative rewards
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over a potentially infinite horizon:

∞∑
t=0

γtrat(st, st+1). (3.1)

0 < γ ≤ 1 is called the discount-factor. It determines the value of future rewards. If
γ = 0 the agent will only consider immediate rewards. The closerγ is to 1 the more the
agent considers rewards received later. Withγ = 1, the agent will consider rewards received
at every time step as being equally desirable or important [19].

3.1.2 MDP Solutions

The solution of a MDP consists of a policyπ(s, a), a function that maps each states ∈ S, and
actiona ∈ A to a probability of taking actiona in states. A policy is said to bedeterministic
if at each states there is always an action that has probability 1 of being chosen (all the others
having probability 0). The objective here is to find a policy that maximizes at each states,
the expected cumulative rewards received, when starting ins, and followingπ1.

The value function, the value of a states, under a policyπ is the expected cumulative
discounted reward an agent can receive when starting at state s and acting followingπ. It can
be defined as:

V π(s) = Eπ{
∞∑

k=0

γkrt+k+1|st = s} (3.2)

Note that, in an MDP, optimal policies always exists, and at least one of them is deter-
ministic (see [19]). A property of the value function is that it satisfies a particular recursive
relationship:

V π(s) = Eπ{
∞∑

k=0

γkrt+k+1|st = s}

= Eπ{rt+1 + γ
∞∑

k=0

γkrt+k+2|st = s}

=
∑

a

π(s, a)
∑

s′

P a
ss′ [R

a
ss′ + γEπ{

∞∑
k=0

γkrt+k+2|st+1 = s′}]

1If the agent “followsπ”, when in states, it will choose actionai according to the probability distribution
π(s,−).
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=
∑

a

π(s, a)
∑

s′

P a
ss′ [R

a
ss′ + γV π(s′)] (3.3)

whereRa
ss′ = E{rt+1|st = s, at = a, st+1 = s′} is the expected value of the next reward.

Equation3.3is called the Bellman equation forV π. It expresses a relation between the value
of a state and the value of its successor states. This equation forms the basis for different
techniques that allow the computation ofV π including the Q-Learning algorithms which we
will see in detail later.

Among the various solutions that allow the computation of the optimal policyπ∗, we
find the Policy Iteration and Value Iteration approaches. Both are members of the Dynamic
Programming family of algorithms and are based on the Generalized Policy Iteration (GPI)
principle. In this approach, algorithms move alternatively between policy evaluation and
policy improvement. Policy evaluation involves a computation of the expected value of states,
when following a particular policyV π(s). Policy improvement uses the values computed in
order to find an improved policy by selecting actions yielding higher expected values. If
a better policy is found, new values can be recomputed and the process starts again. The
Policy Iteration algorithm involves exact value computation for every states ∈ S which is
very computationally expensive, and would make it a poor choice in practice. The Value
Iteration algorithm is similar to Policy Iteration, however it limits policy evaluation to a given
amount of steps. This approach is less costly, and would be a better choice for our problem.
That being said, we have opted to implement Q-Learning algorithms. Q-Learning algorithms
are members of the Temporal Difference (TD) learning algorithms, which are the flagship
algorithms of the Reinforcement Learning world. TD Learning is a combination of Dynamic
Programming and Monte Carlo Methods. This means that, as a member of the TD Learning
algorithm family, Q-Learning will execute policy evaluation by looking at a limited number of
states, like the Value Iteration algorithm. Q-Learning algorithms will also have the power to
learn from episodes (raw experience), without looking at the entire environment, like Monte
Carlo methods. On top of that, we will see that the Q-Learning algorithm works directly on
state/action(s, a) pairs, which makes the extraction of paths from the computed policy a little
faster. We detail two versions of the Q-Learning algorithm in the next section.

3.1.3 Q-Learning

Q-Learning algorithms try to find an optimal policyπ∗, which maps each states ∈ S and
actiona ∈ A to a probability of taking actiona in states, that maximizes the cumulative re-
wards obtained when reaching the goal state. The optimal policyπ∗ is obtained by evaluating
action-value functions, also calledQ-values. For every pair(st, a) we associate aQ-value,
Qπ(st, a), which represents the potential payoff from statest, of taking actiona and then
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acting according to the policyπ. A deterministic policyπ, can easily be derived fromQπ by
choosing the actiona that yields the highestQ-value as the single possible one for every state
s.

To find an optimal policyπ∗, we need to compute the optimal value functionV ∗ for every
state:

V ∗(s) = max
π

V π(s)

Optimal policies also imply optimalQ-values for alls ∈ S anda ∈ A:

Q∗(s, a) = max
π

Qπ(s, a)

We can writeQ∗ usingV ∗:

Q∗(s, a) = E{rt+1 + γV ∗(st+1)|st = s, at = a}

We know from Equation3.3 that V π satisfies the Bellman equation. ForV ∗, this equation
can be rewritten:

V ∗(s) = max
a∈A(s)

Qπ∗
(s, a)

= max
a

Eπ∗{Rt|st = s, at = a}

= max
a

Eπ∗{
∞∑

k=0

γkrt+k+1|st = s, at = a}

= max
a

Eπ∗{rt+1 + γ
∞∑

k=0

γkrt+k+2|st = s, at = a}

= max
a

E{rt+1 + γV ∗(st+1)|st = s, at = a} (3.4)

= max
a∈A(s)

∑
s′

P a
ss′ [R

a
ss′ + γV ∗(s′)] (3.5)

Equations3.4 and3.5 correspond to the only fixed point of the Bellman Equation. ForQ∗,
the Bellman equation is:

Q∗(s, a) = E{rt+1 + γ max
a′

Q∗(st+1, a
′)|st = s, at = a} (3.6)

=
∑

s′

P a
ss′

[
Ra

ss′ + γ max
a′

Q∗(s′, a′)
]

(3.7)

By repeating iterations on the problem, we refine theQ-values, slowly converging towards
Q∗, the optimal state-action function. The closer we get toQ∗, the closer we are to finding
π∗ since we can directly obtain an optimal policy fromQ-values by simply choosing the
action with the highestQ-value in every state. Equations3.6and3.7are the basis for the two
algorithmic approaches which are described next: one-stepQ-Learning andQ(λ).
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One-stepQ-learning

Algorithm 3 shows theQ-learning algorithm in procedural form:

Algorithm 3 Q-learning algorithm
InitialiseQ(s, a) arbitrarily
for each episodedo

Initialize s

for all steps in the episodedo
Choosea from s using policy derived from Q
Take actiona, observer,s′

Q(st, a)← Q(st, a) + α[rt+1 + γ maxa Q(st+1, a)−Q(st, a)]

s← s′

end for
end for

After taking a particular action, this algorithm will try to update theQ-value by adding
the observed immediate rewardrt+1 and the difference between the best observableQ-value
atst+1 and the currentQ-value.

Q(st, a)← Q(st, a) + α[rt+1 + γ max
a

Q(st+1, a)−Q(st, a)]

The α parameter is called thestep-size parameter, which basically affects the rate of
learning. It takes into account the number of episodes, or iterations, the algorithm has made.
If we considern to be the number of the current iteration, settingα = 1/n will ensure that
the earlier iteration will have a stronger impact on the learning process. If we setα = 1,
the agent will continue its learning process at the same rate. It has been shown ([6] [10]) that
given particular values ofα, γ, and the specifics of the action selection method (which will be
discussed later),Q-values will iteratively converge towards optimalQ∗(s, a) and the optimal
policy.

This first version of theQ-learning algorithm is interesting, but somehow limited by the
fact that it only updates oneQ-value for every step it takes into the solution space. In-
deed, one-stepQ-Learning, updates the value forst when it reachesst+1. As a result, a
large number of episodes will be necessary in order to updateQ-values for everyst. It
might be interesting to update more than the singleQ-value forst. Instinctively, getting a
betterQ-value for statest could also lead to betterQ-values for states used earlier in the
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episode(st−1, st−2, st−3, ...). Updating manyQ-values in a single step may lead to conver-
gence in a smaller amount of episodes. However, since updating manyQ-values at a time
takes longer, each episode will take longer to compute [19]. This is the general idea which
lead to the algorithm we will describe next:Q(λ).

Q(λ) algorithm

In this section we describe theQ(λ) algorithm, as described by Watkins [20]. In this ap-
proach, we try to update manyQ-values as we go deeper into the episode. To do so, we
evaluate an action by looking at the immediate reward and the potential reward of the next
state and modify theQ-values of several states encountered before. Algorithm4 gives the
Q(λ) pseudocode:

Algorithm 4 Q(λ) algorithm
InitialiseQ(s, a) arbitrarily ande(s, a) = 0, for all s, a.
for each episodedo

Initialize s, a

for all steps in the episodedo
Take actiona, observer,s′

Choosea′ from s′

a∗ ← argmaxbQ(s′, b) (if a′ ties for the max, thena∗ ← a′)

δ ← r + γQ(s′, a∗)−Q(s, a)

e(s, a)← e(s, a) + 1

for all s, a do
Q(s, a)← Q(s, a) + αδe(s, a)

if a′ = a∗ then
e(s, a)← γλe(s, a)

else
e(s, a)← 0

end if
s← s′;a← a′

end for
end for

end for

e(s, a) represents the eligibility trace of the state-action pair(s, a). An eligibility trace
is a record of the amount of times a state-action pair has been encountered. As we can see
at the start of Algorithm4, the eligibility traces are initialized at0 for every state-action
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pair, meaning that none of them has been encountered yet. As we progress through an
episode, every time a state-action(s, a) pair is encountered, its eligibility trace is incremented
e(s, a) = e(s, a) + 1. This mechanism helps identify the state-action pairs which were partly
responsible for the cumulative reward obtained. The “eligible” state-action pairs, are as-
signed proper credit (or blame) depending on the outcome of the episode when theQ-values
are updatedQ(s, a)← Q(s, a) + αδe(s, a).

Results obtained using this approach will be discussed in the following sections.

3.2 Application of the MDP Model

We will refer to Definition3, and see how it maps to the path finding problem. LetS be the
set of states, representing our decision making points. On a road network, we consider the
intersections as decision points, where we choose which way to go, or action to take. We then
fix A as the set of possible actions, representing every road segment one can choose to take at
any intersection. The transition probability,P a

ss′, still represents the probability of reaching
states′ when taking actiona in states. In the context of our problem, this would translate as
the probability of reachingintersection2from intersection1, when taking the road that goes
from intersection1to intersection2. The immediate rewards,ra(s, s

′), are given for reaching
states′ from s by taking actiona. We chose to reflect the traveling time in the rewards using
negative values. This means that actions that take a lesser amount of time will yield the better
rewards (less negative rewards). We use discrete time units (t = 0, 1, 2, 3, ...), so if we were
to take actiona, and reach states′ from s in 4 time steps, our rewardr would be -4. The
actions that lead to the goal statesg will yield large positive rewards. This works well with
the maximization objective of the MDP (Equation3.1). In the case of our problem, if we
were to reach the goal statesg in n time steps, the objective would be to go from the starting
states0 to the goal statesg and to maximize:

n∑
t=0

γtrat(st, st+1) (3.8)

Obviously, the presence affecting factors will impact both transition probabilities and
rewards. By affecting factor, we designate any element that could impact our normal move-
ment speed. Such a factor could be a traffic jam, the presence of construction, a roadblock,
the presence of a crowd, or an enemy vehicle.

We are trying to reach the goal statesg, in the least possible amount of time. The presence
of affecting factors has to be reflected on the rewards. If an affecting factor is present in state
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s′, then the rewardsra(s, s
′), a ∈ A, s ∈ S should reflect it by yielding a negative reward

lower than the one reflecting normal travel time. For instance, if an affecting factor was to
slow traffic down by50% on a given road segment (s, s′) which normally would take 5 time
steps to cross (ra(s, s

′) = −5) , then the affected reward should bera(s, s
′) = −10. We

have chosen to have the transition probabilities be fully deterministic (P a
ss′ = 1, if a=going

from s to s′). Thus, the stochastic aspect of the problem is solely reflected on the rewards.
If an affecting factor is present in the environment with a particular probability, it will be
reflected on the model by modifying particular rewards in the model according to the affecting
factor’s probability of occurrence.2

We end up with a single MDP, modeling the environment. Affecting factors are reflected
on the rewards, and we can use the algorithms of Sections3.1.3and3.1.3to obtain a policy
reflecting an optimal path. If new events (affecting factors) occur unexpectedly in the envi-
ronment during the execution of a policy, a new MDP model will be built, taking the new
elements into account, and a new policy will be computed. This makes MDP a valid choice
in the planning phase, before the actual execution of the computed path. However, in the next
section, we will see that MDP results can also be used for decision support during execution.

Both One-StepQ-Learning andQ(λ) algorithms were implemented in order to solve the
path finding problem. Detailed results, and measures of performance will be given in the next
section.

3.3 Results and Applications

We will go into more detail about implementation of the MDP approach. We will discuss
performance in terms of manageable problem sizes and quality of results, compared with
results obtained with the deterministic approach. We will finally discuss certain potential
applications for the MDP model.

2The choice of having deterministic transition probabilities does not render the MDP approach unusable.
We could have opted to affect the transition probability, as well as the reward function, in which case, the agent
could have found itself in an unexpected state after having taken an action leading towards an affecting factor.
The MDP approach and its guarantees of convergence would still have been valid. One could chose to model a
different type of affecting factor using non-deterministic transition probabilities. After proper parameterization
of the algorithm (see Section3.3.1), it is very likely that the results discussed later in this chapter would still
be valid. Experimentation, and parameterization, using various types of affecting factors would certainly be of
interest for anybody looking at practical application of this theory. The general idea remains to reflect real-world
behavior as accurately as possible.
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3.3.1 Results

The one-stepQ-learning andQ(λ) algorithms were implemented and tested on a square
shaped environment structure similar to the one shown in figure2.1. The algorithms were
implemented as described in sections3.1.3and3.1.3.

Parameters Impacting the Solution

We will first take a look at the algorithms’ performance in terms of the obtained solution’s
quality. It is first necessary to mention that the quality of results obtained using these algo-
rithms is highly dependant on numerous factors. The backup function’s parametersα andγ,
the amount of exploring starts, the rewards attributed to every state, problem size, the number
of iterations executed, and the action selection method all have an impact on the quality of
the solution. The exact study of all these factors and their exact impact on the algorithm is the
object of numerous studies ([1][2]) and is beyond the scope of this research. We will discuss
some of them, trying to highlight the impact they have on the solution.

As mentioned before, the step-size parameter,α regulates the rate of learning of the agent.
If set to1, the agent will consider its early iterations as being just as important as its latter
ones. For our problem, we found that settingα = 1/n, n being the iteration’s number, yielded
acceptable results. This allows for earlier iteration to have a stronger impact on the agent’s
learning. As the agent makes more iterations, and (typically) moves from exploration to
exploitation, the rewards obtained will have a lesser impact on the solution.

For the discount factorγ, we found that setting values closer to1 yielded better results.
High γ values allow for the agent to consider rewards received later in the episode, or itera-
tion, more strongly than it would have with a lowerγ value. A lowγ value would cause the
rewards obtained later in the episode to have a lesser impact on the value of a state. For long
episodes, this would make the “goal” reward have a small impact on the computed value, and
would lead to finding the optimal path much more slowly. Our problem is one of path plan-
ning; the quality of a chosen path is dictated by the overall quality of the choices constituting
it. It is not enough for a particular path to have excellent beginning actions if those actions
lead to negative cumulative rewards in the long run.

It is obvious that rewards have an impact on the results we obtain. “Goal” rewards must
be high enough that the agent will have enough incentive to head towards them. Negative
rewards must be deterring, but not so much that an agent would try and avoid them to a point
where it would be unable to reach its goal. In our experimentation, we found that setting
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a “goal” reward−100 times the amount of the time step negative reward (for example100

and−1) yielded good results. As for the value attributed to negative rewards associated with
affecting factors, they should vary based on the risk relative to that particular affecting factor.
If an affecting factor represents a dangerous element that we want to avoid at all costs, a
very strong negative reward (→ −∞) should be assigned to it, ensuring that the agent will
try to avoid it. For our experimentation the impact of the affecting factor was reflected by
distributing negative rewards ranging from -2 to -5 (regular steps gave rewards of -1) to the
states which were affected.

The action selection method determines if the agent is going to choose exploration or
exploitation. By choosing exploitation, the agent selects the action that yields the best ex-
pected. By choosing exploration, an agent will select an action that may not yield the best
rewards in hope of discovering a new, even better solution in the long run. We considered
3 approaches: greedy,ε-greedy and softmax. In case of the greedy approach, the agent will
always go for the action which yields the highest expected reward, systematically favoring
exploitation. The drawbacks of this approach are obvious. An agent which never looks for
new solutions will have a high chance of being caught in a local optimum, and never con-
verge towards the optimal solution. An initial solution to this problem is to have the agent
choose the greedy (exploitation) action with a certain probabilityε and otherwise trying a
different random action with a probability of1 − ε. This approach, calledε-greedy, seemed
like a much better option than the greedy approach. The major drawback ofε-greedy is that
if it chooses to explore, it will do so by choosing a random action among available ones with
equal probability. It is as likely to choose the worst action as it is to select the second best. A
solution to this problem is to choose an action with a probability based on its expected value.
The greedy action will still have the highest probability of being chosen, and all other ac-
tions will have a probability of being picked reflecting their value. This is called the softmax
action selection method, it chooses actiona at timet with the probability eQt(a)/τ∑n

b=1 eQt(b)/τ . τ is
a positive parameter called the temperature. High temperatures will cause the probabilities
for every action to be closer to one another. Ifτ → 0, the softmax will become similar to
the greedy approach. For this research, all approaches were tested, softmax was ultimately
chosen, having theτ variable move from a high value to 0 provided an efficient way to have
the agent switch from exploration to exploitation.

Exploring starts designate the process of starting an iteration from a state that is not the
designated start position. With a probabilityp, a state is chosen at random as the start state of
an iteration. This could be seen as an alternative way to ensure a certain level of exploration
by the agent, as calculating a path from a different starting point will necessarily lead to the
exploration of new states. This has a very intricate effect on the results observed. Interestingly
enough, we found that keeping exploring starts between0.5 and0.75 (starting from random
state in50% and75% of the cases respectively) tended to aim the agent towards the optimal
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solution faster than by always starting from the same point.

Finally, the different sized problems will be best resolved using different combinations of
parameters. The main idea, is that correctly choosing parameters for a task is complex which
requires knowledge and experience with a problem. Once a particular context of application
is identified, one should take an appropriate amount of time to test out different parameters
and identify favourable ones. As mentioned earlier, a lot of work is being done on the impact
of the various parameters onQ-learning algorithms. Such work would be totally justified in
the case of our problem. For the remainder of the discussion, we will show results obtained
using various algorithm parameters. Obviously, the parameters used will have an impact on
the solution obtained, but this impact is not the center of this research, and will therefore not
be discussed in any more detail.

Solution Quality

We first need to validate the fact that the MDP approach is indeed capable of computing
optimal paths correctly. To do so, we will start by checking if we can obtain the same results
using the MDP approach as we did with the deterministic (Dijkstra) approach. We will see
that the MDP approach is indeed capable of computing shortest paths, but in much slower
times. Later, we will analyze various additional results which can only be obtained with the
MDP approach, and which are of interest. We will see that in the planning phase, before
the execution of the path, the MDP framework can yield results helping decision support
and allowing path fusion. It is important to note that although these results, as well as the
following ones, are shown on a grid type graphical device, it is not meant to reflect the
implementation. Indeed, the MDP approach can be implemented using a graph environment
similar to the one described in earlier chapters. Each vertex would represent a state, and
edgese = (vi, vj) would represent potential actions, for instance, going fromvi to vj. We
have chosen to use grids because they seem to offer a better graphical depiction of our various
results.

To validate the path computed using the MDP approach , we tested theQ(λ) algorithm
against Dijkstra’s algorithm in a simple case, where no affecting factor was present, as shown
in figure 3.2. The figure shows a standard environment where the agent has to move from
the green square on the left, to the state marked with the letter “G” on the right. The optimal
policy is illustrated through the use of arrows. The arrows point in the direction the optimal
policy would dictate. Therefore, by following the arrrows, we follow the policy. We first see,
(A), the optimal policy (straight line) as computed by Dijkstra’s algorithm. (B) shows the
results obtained by 40 iterations of the algorithm. We notice that 40 iterations were enough
to obtain the optimal path from the start to the goal state. Red areas on the figure identify
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states where the computed policy is sub-optimal. Blue areas identify the unexplored states.
We finally see that after 200 iterations, we have generalized the optimal path calculation to
the entire graph.

Figure 3.2: Optimal Policies as computed by (A) Dijkstra’s algorithm and (B)Q(λ) in 40 and
(C) 200 iterations

We can see that the MDP framework is indeed capable of providing optimal paths cal-
culations on a problem of small size (441 states). Remains to see if it can scale to larger
sized-problems efficiently. We have done experiments on problems of 400, 2500, 10000,
22500, 45369, and 100489 states. We first noticed, that the number of iterations required in
order to obtain an accurate optimal path calculation from start to goal state (not generalized
to every state) seemed to grow according to the square root of the number of states under 2
conditions: limited episode size and precomputed shortest path incentive.

In our implementation, we first limited the maximum length of an episode to two times
the length of a precomputed Dijkstra shortest path. This eliminated the chance of having an
episode that would last for a very long time. In such an episode, the agent might explore
useless parts of the environment. The drawback of this solution is that it caused the agent to
often be unable to reach the goal in time, to miss the reward, and therefore not learn properly.
It is somewhat obvious that making the episodes shorter doesn’t make any sense if more
episodes are required to learn the optimal policy.

We therefore added an “incentive” for the agent to look for better solutions from the
start. We used results obtained from our deterministic algorithm as a heuristic for the MDP
algorithm. Instead of initializingQ-values arbitrarily for each state/action pair, we initial-
ize the state/action pairs of the Q-learning algorithm with positive values that reflected the
shortest path computed by the deterministic algorithm. This way, when being greedy, the
agent is likely to explore states closer to the deterministic optimal. The assumption is that
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the deterministic policy will be better than a random one. With these two modifications to
the algorithms, we are able to compute optimal policies in over 90% of cases in a number of
iterations in the vicinity of the square root of the number of states.

Performance

We will quickly take a look at the actual time required to compute a policy using MDP algo-
rithms for an environment without any affecting factors. To do so, we have timed algorithm
iteration on problems of size 400, 2500, 10000, 22500, 45369, and 100489 states. Table
3.1shows the tests results as executed on a 2.16Ghz T7400 processor with 1GB of assigned
memory.

Number of States Average Episode (Iteration) Duration Total Time
400 0.596ms 0.001192sec

2500 137ms 6.85ec
10000 189ms 18.9sec
22500 311ms 46.65sec
45369 819ms 174.447sec (2min54sec)

100489 17809ms 5645.453sec(1h34min6sec)

Table 3.1: Average runtime of an episode

We see the average time it takes to run an episode on different sized environments. Since
we have observed that the required number of iterations to obtain the optimal policy is roughly
equivalent to the square root of the number of states, we are able to provide an approximate
total required runtime of the algorithm in column 3 (

√
|S|∗average episode duration). The

longest time required for the problem of size 100489 may be due to the fact that a problem of
this scale causes the operating system to swap some memory which slows down the process.
The availability of more memory could solve this problem. It is worth mentioning that the
presence of affecting factors would have little impact on the algorithm execution time. In-
deed, the impact of affecting factors on rewards is computed at the instantiation of the MDP
from the environment. During the algorithm execution, it has no measurable impact. This is
why we only provided measures for environments without any affecting factor.

The first conclusion that can be drawn is that the demonstrated runtimes make it impossi-
ble to use this approach in a real-time environment. While Dijkstra’s algorithm yielded results
well inside a second for problems of over 40000 states, we see that it is not the case here.
However, if the displayed times are nowhere close to real-time, they are still short enough that
the computed results could be used in a different context. Indeed, if real-time performance
is needed during the execution of a path, slower times are acceptable in the planning phase.
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In the next section, we will discuss MDP applications for planning, among which are path
fusion and decision aid applications.

3.3.2 Applications

We will now discuss possible new applications of MDPs in the context of our path planning
problem. We will look at the added value of MDP compared to deterministic approaches.
At this point, it is obvious that the MDP framework does not offer the type of performance
necessary to replace deterministic algorithms during path execution. This means that if a user
requires a new path calculation while actually on the field, MDP will not be fast enough.
However, in practice, before a user goes into the field to follow a particular path, there is a
planning phase. It is during that planning phase that the system is setup in order to be able to
provide accurate calculations during execution. MDPs could be of interest during that plan-
ning phase. The added value of using MDPs revolve around two aspects: precomputed policy
generalization and decision aid. For the policy generalization application, we will initialize
theQ-values of theQ-learning algorithm in order to reflect different already computed paths.
As the algorithm iterates, it will generalize the precomputed policies and computeQ-values
reflecting them for states surrounding the precomputed paths. In the case of the decision aid
application, we will use theQ-values computed offline during the planing phase. During the
execution, if an unforeseen event occurs, preventing the user from following the path, using
the precomputedQ-values, an alternative will be available right away. Although these ap-
plications do not represent answers to our original problem, they offer new possibilities, or
functionalities that are of interest.

Generalization of Precomputed Policies

In the previous section, we discussed how precomputed paths could be used as heuristics to
lead the agent in the right way. It turns out this method is not only useful to obtain an optimal
policy faster, but it also provides a way to generalize various precomputed paths’ policies to
the states surrounding them. Indeed, it is possible to precompute a certain number of paths
and modify theQ-values for the related state/action pairs in order to reflect the initial calcula-
tions. For instance, we could use a deterministic approach to compute a simple shortest path
from start to end. We could then initialize theQ-values of the state/action pairs which reflect
that path with positive values (for instance +1), and all the otherQ-values to 0. Obviously,
if we were to follow theQ-values before running the algorithm, we would be following the
policy computed with the deterministic approach. As mentioned in section3.1.3theQ-values
can be initialized arbitrarily and, theoretically, over an infinite number of iterations, the algo-
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rithm would converge towards an optimal solution. However, by the very nature of our action
selection method (in the case of our implementation softmax), action/state pairs with higher
Q-values have a higher probability of being used. This means that the algorithm would start
by exploring states in, and around the precomputed path. Having an agent iterate over such
a modified environment would have the states surrounding the original precomputed paths
explored much more quickly. The precomputed path’s would have an impact on theQ-values
of the states surrounding them and the original paths would be generalized to other surround-
ing states. The same approach could be used with numerous precomputed paths. Obviously,
as the agent iterates over the problem, it gradually moves towards the optimal policy and,
possibly, away from the originally computed path. Therefore, time is of the essence since
the moment at which we decide to stop the iterations will determine the level at which the
precomputed paths will stop being having an impact and the optimal policy will take over.
Stopping early will mean having results closer to precomputations, while stopping late will
mean being closer to the optimal policy. The appropriate number of iterations would vary
from one context to another.

Figure 3.3: Fused Precomputed Paths

Figure3.3 displays a square environment where the agent wants to go from the green
state of Figure3.3 (A) to the state marked with a “G” (on the right). Each white state is
a “regular” state which gives an immediate reward of−1. The goal state gives a reward
of +100. The various colored states (light yellow, yellow and orange) are impacted by an
affecting factor and give rewards of−2,−3 and−5 respectively (from light yellow to orange).
Figure 3.3(A) shows the two paths precomputed using the deterministic approach (trying
to completely, and slightly avoid the affecting factor). A first precomputed path is set to
go around the affected states, while the second precomputed path is only allowed to cross
slightly affected states (light yellow states yielding a rewards of−2). Figure3.3 (B) shows
the generalization result after 50 iterations of theQ-learning algorithm. For every state,
the arrows point in the direction of the highestQ-value. We see that the original paths are
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still present (shown in green) and that most of the states surrounding the paths (we show in
blue the states that are between or surrounding the precomputed paths that either reflect the
optimal or the precomputed policy) have been computed to either head towards one of the
precomputed paths or the optimal policy. Notice that the lower half of the figure has some
unexplored states (white squares), as well as numerous states with a “bad policy” (a policy
heading left or towards the bottom). This shows how the use of precomputed paths can lead to
early exploration of a specific part of the environment, and generalize precomputed policies
to nearby states. After 200 iterations, Figure3.3 (C) shows that the computed policy now
totally ignores the precomputed paths to show the optimal policy in almost every state.3 This
shows the importance of correctly timing the number of iterations in order to reach the desired
goal: local exploration and precomputed path generalization, or optimal path computation.

We just saw how we could use theQ-Learning algorithm to generalize precomputed paths.
We saw that by initializing specific state/action pairs with positive values and by iterating over
the problem, theQ-learning algorithm will gradually generalize the pre-initializedQ-values
and propagate them to surrounding states. We will now see another alternative application of
the MDP framework which deals with decision aid.

Decision Aid: Alternative Action

Another possible application uses the various computedQ-values to provide the user with
more than one potential action for each state. We have seen that theQ-value function reflects
the expected value for a state/action pairQ(s, a). Until now, we have shown the results
of our policies as matrices of arrows pointing in the direction of the action providing the
highest expected reward. However, in some cases, theQ-values of a particular state may be
very close to one another, highlighting the fact that, for that state, two different actions have
very similar expected cumulative rewards. We can take advantage of this information that is
always calculated by the Q-learning algorithm. More specifically, we can specify a certain
threshold within which variousQ-values are considered equally good. If manyQ-values have
a relative difference less than the specified threshold, they will be considered equally good
alternatives and potentially both be suggested to the user.

3In this case, the “optimal policy” evaluated does not to consider the various yellow states and would not be
optimal in reality, however, it helps to show the evolution of the policy over the iterations.
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Figure 3.4: Generalized Policy

Figure3.4 gives a simplistic illustration of this approach. (A) shows a simple policy to
go from start to goal node. This is actually the same problem shown in figure3.2after 10000
iterations. In (B) we considerQ-values that are less than 20% apart from one another. The
result is a generalized policy. The user is now presented with up to two alternatives which
are considered equally good. This could be applied to more than two alternatives. One could
also imagine ranking every action and providing the user with all positive alternatives in
decreasing order.

As explained before, when pre-calculated before the true excursion, this application could
be used during path execution if an unforeseen event occurred. If, for any reason, following
the original policy became impossible, the user could instantly be suggested the precomputed
second best action to take. This would be a useful decision aid tool for situations when an
alternative action has to quickly be chosen. Referring to figure3.4, let’s imagine that, for
some unforeseen reason, during the execution of the path, we realize it is impossible to reach,
or use, the top half of the environment. Following the suggested policy (heading on top of
the yellow area) would then be impossible. Using this approach, a second alternative, leading
under the yellow area, would be presented to the user who could react instantly.

Stochastic Shortest Paths

It is interesting to note that somewhat similar decision aid results were obtained by Bertsekas
et al. [4] studying a different problem they called Stochastic Shortest Paths. The Stochastic
Shortest Path (SSP) problem is described in an environment similar to the one detailed in
definition1. It is a generalization of the standard shortest path problem where, at each vertex,
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one must select a probability distribution over all possible successor vertices out of a given set
of probability distributions. Note that if every probability distribution assigns a probability
of one to a single action (or successor vertex), a single deterministic shortest path solution
is obtained. Bertsakas et al. describe this approach in detail and propose a model based
on Markov Decision Processes. The result is an environment where, for each state, each
potential action is given a probability reflecting its likelihood to lead to the goal state. These
probability distributions are similar to the alternatives obtained using the method described
in the preceding section. However, our decision-aid results are obtained using the results of
a Q-Learning algorithm stopped early in its computation. In their SSP approach, Bertekas
et al. solve the MDP completely, which would, instinctively, possibly require more time.
Further study of this work would be highly relevant. It would be of interest to compare the
decision-aid results obtained using SSP with the results discussed in this chapter. It would
give us a measure of accuracy for our results at different stages of computation as well as a
potential interesting alternative for decision aid.

We have seen the added value of using the MDP framework through various applications,
namely: precomputed path generalization and decision aid. This MDP approach neverthe-
less has a major drawback that follows from the needed Markov assumption. In the MDP
framework, an agent has no memory of past event, its decisions (i.e., its policy) is only based
on the current state of the MDP it is in. Hence, if for example, in the MDP, we identify
various possible locations for a given affecting factor, the fact the agent has encountered it in
some position at the beginning of its excursion will not be taken into account in the future.
The agent will still try to avoid the other possible locations, even if we all know that they
must free of affecting factor. To have an agent which can take into account past events, we
have to enrich our model to what is called a Partially Observable Markov Decision Process
(POMDP). In the next chapter, we will formally defined this new paradigm, and how it would
address the shortfalls of MDPs.



Chapter 4

Model Limitations

We have examined the performance and applicability of MDPs in comparison with determin-
istic approaches. We saw the added value of using the MDP framework. We will now try to
examine where the MDP framework falls short in comparison to a more powerful model: Par-
tially Observable Markov Decision Processes (POMDPs). We will see a quick overview of
POMDPs. We will take a look at the formal POMDP definition and generally discuss avenues
to solve them. We will finally see how a solution obtained with a POMDP would differ from
a solution obtained with a MDP. It will become obvious that, although MDP algorithms can
be used to solve some cases of POMDPs, some problems can only be handled by POMDP
algorithms.

4.1 Partially Observable Markov Decision Process

Typically, POMDPs are used for choosing actions when parts of the environment are un-
known and when the environment is partially observable. An example of POMDP would be
a robot, trying to find its way out of a room without knowing where it is located. If the robot
knows the room to be3 states wide, by3 states high, some reasoning can occur. For instance,
not knowing where it is at first, the robot can choose to try to go up twice, and then go right
twice. If there are no obstacles, it will then be certain to have reached the upper right corner
of the room.



Chapter 4. Model Limitations 40

4.1.1 POMDP Definition

POMDPs are similar to MDPs, but while the MDP agent knows exactly where it is located,
the POMDP agent has to figure out its exact location as it moves about. Similarly to MPDs,
the general idea is to progress in the environment, adapting the decision making process as the
knowledge of the environment increases. The agent moves in the environment by choosing
an action within a set of possible ones. For each action taken, it receives a reward and some
additional informations (called observation). As information about the environment adds up,
and over numerous iterations on the problem, the agent hopefully develops a better policy
in order to maximize its cumulative reward. In addition, the POMDP agent has to keep
track of the level of uncertainty relative to its location in the environment, making decisions
accordingly. Let us see the formal definition of a POMDP framework.

Définition 4. A Partially Observable Markov Decision Process is a tuple:{S, A, Ω, T, O, R, γ}
where:

• S is the set of states;

• A is the set of possible actions;

• Ω is the set of possible observations;

• T (s, a, s′) is the transition function.T gives the probability of reachings′, having taken
actiona in states;

• O(s′, a, o) is the observation function.O gives the probability of observingo, having
taken actiona and reached states′;

• R(s, a) is the reward function.R specifies the reward associated with performing ac-
tion a in states;

• γ is the discount factor (0 < γ < 1). γ specifies how the learning agent favours imme-
diate rewards over future rewards (covered later);
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The new aspect introduced in POMDPs is the partial knowledge of the environment.
When the agent takes an action, it is rarely completely certain of the actual state it is in. The
agent must take this fact into account as it makes decision. To keep track of this partial knowl-
edge of the environment, the agent uses a belief stateb. A belief state is a|S|-dimensional
vector where theith element represents the probability of being is statesi. B, the belief
space, is the set of all possible belief states. Every time the agent takes an action, it receives
a reward, as well as an observationo. The observation is used to update the belief state.

Application of the POMDP Model

We will refer to the formal definition of a POMDP given in Definition4, and see how we
can map an adapted version of our problem to it. The set of statesS, represents our decision
making points, the intersections of the road network for every possible affecting factors con-
figuration in the environment. More specifically, the set of statesS of the POMDP will be a
set of intersection/affecting factor pairsS = I ×F whereI is the set of intersections, andF
is the set of possible affecting factors in which we add the the elementnothing. Hence, a pair
(i, f) will indicate that affecting factorf is at intersectioni, and (i, nothing) will indicate
that intersectioni is free of any affecting factor. As in the MDP framework,A, the set of
all possible actions, will be every road segment one can choose to take at any intersection.
The transition functionT ((i, f), a, (i′, f ′)) is similar to the transition probability defined for
MDPs, and will only depends oni, a andi′. It represents the probability of reaching intersec-
tion i′ when taking actiona in intersectioni. The transition function will remain deterministic
(T (s, a, s′) = 1, if a =going froms to s′). The reward functionR specifies the immediate
reward associated with performing an actiona to state(i′, f ′). The reward function reflects,
as it did with MDPs, the time required to take a particular action, to go from one state to an-
other. Of course, iff ′ is nothing, the reward function will return -1, otherwise, it will return
a larger negative value. The Observation FunctionO returns the probability of receiving an
observation, having taken an actiona, and reached a state(i′, f ′). In our model, the agent will
be able to observe (receive an observation) an affecting factor if it is in the same intersection,
or in an adjacent position. Thus, the setΩ, given in the POMDP definition, will contain all
such possible observations. Recall that observations are used to update the belief state as dis-
cussed in Section4.1.1. An example of this would be reaching a particular intersection on the
road network and observing an enemy vehicle at the next intersection. Such an observation
would change our belief state, since we would have new information about the location of a
particular affecting factor. In addition, we would also become aware that the given affecting
factor is not located elsewhere. Such an observation will decrease the partial observability of
the system.

On top of affecting the Reward Function, the affecting factors also have an impact on the
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observations. The observations remain unchanged and we are in a totally observable model
(MDP), as long as no affecting factor is added to the environment. If affecting factors are
present in the environment, the agent will likely encounter intersections which will yield ob-
servations allowing to refine the belief state, to gain additional knowledge on the affecting
factors. Thus, such states are either intersection where the affecting factor is present or in-
tersections where the affecting factor was believed to be present. As we saw in the example
given earlier, new observations are used to update our belief state.

At this point we have to analyze this theoretical model to see if it is applicable to the
dynamic path finding problem.

4.1.2 On the Usability of POMDP

We will now go over general solutions for POMDPS, and take a look at their usability for
our path finding problem. We will quickly come to realize that, although the POMDP frame-
work represents a great model for the path finding problem, the performance of the current
algorithms is such that practical use of POMDPs seems impossible.

There exist many algorithms to solve POMDPs. In the context of this research we have
evaluated three of them: Exact Value Iteration (EVI), Point-Based Value Iteration (PBVI)
and Stochastic Search Value Iteration (SSVI). EVI was first presented in the 1970s [18], and
was refined ever since. The general idea of EVI is to use dynamic programming to build the
optimal policy. EVI first builds an optimal policy for an horizon of 1, then uses this policy to
iteratively compute optimal policies for following horizons. This algorithm covers the entire
problem space, computing exact values of for every belief state of the problem. PBVI [15]
is an alternative solution to EVI. This approach computes the values at specific belief points
rather than over the entire belief space, therefore requiring less computation. Finally, SSVI
[13] looks deeper into the solution set and uses an action selection method which allows to
focus exploration only on particular sequences of action.

The main drawback of these algorithmic approaches is their complexity, most approaches
can only solve problems in the order of 10 to 1000 states. It is important to ask ourselves if we
can rely on these approaches to solve our problem in practice. EVI execution has been shown
[15] to grow exponentially based on the number of states (|S|2) at every algorithm iteration,
and POMDP algorithms typically require a exponential number of iterations. PBVI is a more
scalable solution than EVI as it only explores a subset of belief points. However, using PBVI,
it is possible to handle problems in the order of103 states, which is one order of magnitude
larger than problems solved using Exact Value Iteration [16]. To evaluate the applicability
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of SSVI, we can refer to metrics accumulated on a problem counting 12545 states [13]. In
this instance, SSVI yielded results in a time of 796 seconds (over 13 minutes). As discussed
in Chapter2, the number of states present in a real-life size problem range from 50000 to
over 500000. Moreover, these figures don’t even reflect the impact of the various potential
affecting factors, which strongly influence the size of the POMDP state set, and performance
of algorithms. The discussion stops here, as it becomes clear that computing times for real-
life sized problems would become unacceptably high„ even if we want to limit ourselves to
off-lines precalculations. .

Until improved POMDP algorithms are developed, we will have to rely on the determinis-
tic and MDP approaches to solve our path finding problem. Nevertheless, in the next section,
we will see how solutions obtained using the POMDP framework could differ from results
computed using MDPs, highlighting the power of the POMDP approach, and limitations of
the MDP approach. We will also show that some interesting results can sometimes be ob-
tained by partially solving the POMDP (by solving it, without considering its non observable
part).

4.2 MDP and POMDP Solutions

We will examine two examples of POMDPs. In the first one, we have an environment in
which the agent is faced with a choice between two paths, one of which is safer, but longer
than the other. We will see how POMDP would solve the problem. We will also see that in
this particular case, using the MDPQ-Learning algorithm (called QMDP [14] in this context)
could yield interesting results1. The second example is somewhat similar to the first. How-
ever, we will add a third possible path to the agent’s potential choices. This second example
will require the agent to have some memory of the past elements encountered in the episode.
In this second case, we will see that to correctly solve the problem, we have to completely
solve the POMDP, in the sense that the QMDP-Learning algorithm will not lead to the most
suitable solution.

Choosing the Safest Path

In this first example, we want the algorithm to choose between two paths of different lengths.
On one of these paths an affecting factor which has a major impact on the usability of the

1This algorithm, known by the name of QMPD, consists of applying aQ-Learning algorithm without fac-
toring in the non-observability of POMDP. Of course, this approach offers guarantee of convergence
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state (basically renders it unusable, and yields a large negative reward) will randomly appear.
The decision of which path to choose will occur early in the episode and will possibly only
be reversible by backtracking along already explored state. One path will allow to go around
the risky state while the other will only go directly through it. The goal will be to find the
shortest path that offers good chances of being able to avoid the affecting factor.

Figure 4.1: Illustration of the Sample Problem Environment

Figure4.1shows an illustration of such an environment. There are two possible ways of
reaching the goal, usingpath aor b. The shortest path goes straight to the end state (path a),
while the other goes up and around the environment (path b). Obviously, the shortest path is
the straight one. However, we must also consider the orange states (states 1to 5) as having
an equal probability (1/5) of having a strong affecting factor. In this example, the state with
the affecting factor is unusable (impossible to cross). In the absence of risk,path aoffers a
much better reward thanpath b. In the eventstate 1has the affecting factor, going downpath
a means encountering the affecting factor, receiving a high negative reward, and having to
backtrack to usepath b. In the cases wherestates 2to 5 have the affecting factor, going down
path bwill mean encountering the risk with a 0,25 probability, and being able to go around
it in 3 extra actions. The objective is finding an action policy that will lead downpath b. It
is possible to configure and solve this problem POMDP approach. We would have to make a
“copy” of the state set for every possible position of the affecting factor (in this case 5). We
would then add a particular initial state which would branch to every possible “copy” of the
environment.

We could use a deterministic or MDP approach to solve this problem. However, since
the impact of the affecting factor would be equally distributed across the five orange states
for every iteration, they would only selectpath a as the optimal choice (as it is shorter,
and the affecting factor would have the same negative impact on every possible path). A
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POMDP algorithm, on the other hand, would run the different iterations with the affecting
factor impacting a different single orange state every time (chosen randomly) and would
uncover a different solution. Let us examine the expected cumulative value of takingpaths
a or b that a POMDP algorithm will extract after a certain number of iterations. Forpath a,
4/5th of the time, the agent would encounter no threat, and would reach the goal in 48 steps.
In 1 case out of 5, the agent would encounter the risky state, have to backtrack, and reach the
goal in a minimum of 126 steps. Forpath b, 4/5th of the time, the agent would encounter the
threat, and go around in (in 1 to 3 steps) and reach the goal in an average of 63.5 steps. In
1 case out of 5, the agent would encounter no threat, and reach the goal in an average of 62
steps. Forpath awe obtain an expected 63.6 steps(0.8 ∗ 48 + 0.2 ∗ 126 = 63.6). For path
b, we have an expected 62.45 steps (0.8 ∗ 63.5 + 0.2 ∗ 62 = 63.2). The expected number
of steps required would be slightly lower forpath b thanpath a, and this difference would
grow if the amount of states required to turn back increased. A POMDP environment would
allow to iteratively converge towards the smallest expected number of steps, as opposed to a
deterministic or MDP framework.

It is interesting to note that, here, the QMDP algorithm will give the desired solution.
Hence, in such case, the problem will remain tractable, even if we modelized it as a POMDP.
For simple problems like this one, where only one affecting factor is present and only a
limited number of options are offered to the agent, the QMDP approach could yield interest-
ing results. We briefly tested this theory by using theQMDP -Learning algorithm for this
problem. We had an affecting threat randomly appear on one of the orange states at every
iterations. The algorithm selectedpath bas the optimal in a lot of the cases. We didn’t go
into a lot of effort to correctly parameterize the algorithm or to effectively measure its per-
formance, but more research on the topic would be justified. However, the QMDP algorithm
would be useful only in some very limited particular cases, such as the one described in this
example. For example, as soon as a second affecting factor was added to the environment,
the results became inconclusive. This puts a damper on the potential practical use of QMDP
for our path finding problem in general.

We will now look at a slightly more complex example, in which we clearly see added
vallue of the POMDP framework, and the impossibility to simply use the QMDP algorithm
to solve it.

A Third Possible Path

This new example is similar to the previous one. However, in this new example, we will add
a third path (path c) which connectspath aandb. Because of this third path, the agent will
have an opportunity to switch betweenpath aandb after having made the initial choice. The
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choice to usepath cwill be based on knowledge of the affecting factor and its position. We
will see that, in this context, making the correct decision requires to have some accumulated
information, or memory, of the environment. We will see that only real POMDP algorithms
are fit in such a context.

Figure 4.2: Modified Sample Problem Environment

Figure4.2 illustrates the example environment. An affecting factor is present on one of
the 5 orange states and is yielding a large negative reward, because of that, it is effectively
“‘blocking” the state. An agent can only observe the affecting factor if it is in the same state
as the affecting factor or in an adjacent state. The objective is to go from the green state
(on the left) to the goal state (marked with a “G”). Like in the first example, it is possible to
model this environment, by building a “copy” of the system for each possible affecting factor
position (5 copies in this case) and by adding a new initial state which would branch towards
every “copy”.

The initial choice is to either takepath aor path b. We notice that it is possible to take a
third path,path c, that goes through the single orange state to reach the goal faster. As far as
paths aandb are concerned, the expected cumulative reward is higher forpath bthan it would
be fora, and a QMDP algorithm might, in time, uncover the appropriate policy (usingpath b).
It gets somehow trickier later on, when the agent, having initially chosenpath b, has to pick
between staying onpath bor taking a shortcut withpath c. When executing an episode, if the
agent initially pickspath b, the choice of switching forpath cshould be affected by whether
or not it has encountered the affecting factor. If the agent has encountered the affecting factor
on path b, thenpath aandc are risk free. This means that the agent should choosepath c
after having encountered the affecting factor. The MDP framework (and QMDP algorithm
on the POMDP framework) is not fit to handle such a level of complexity. A MDP algorithm
will consider different alternatives and evaluate their expected values. It will not keep track
of the relationship between them. If encountering a particular state affects the likelihood of
encountering future environment configurations, our standard MDP definition becomes unfit.
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This is referred to as the Markov Property, which all states of the environment must possess
in order for MDPs to be functional. The Markov property is summarized as:

P a
ss′ = Pr{st+1 = s′|st = s, at = a} (4.1)

This means that the next state we reach depends only on the state and action at the current
moment. The fact that we encountered some particular state in the past cannot be taken into
account. In other words, a MDP system is memoryless. It only considers the current state
and action.

POMDPs offer a way to keep track of the past events encountered in the current episode
with the use of the belief function. As seen in this chapter, POMDPs keep track of the level
of knowledge of the environment using belief states. Every time the POMDP agent takes a
step, its belief state is updated based on its observations. This updated belief is then used
to evaluate the expected cumulative reward of states. In the case of our example, in the
beginning the agent has a belief that the affecting factor can be in any of the orange states.
If the agent observes the affecting factor during an iteration, it will update its beliefs, now
knowing exactly where the risk is located. If it encounters the affecting factor onpath b, it
will know path aandc to be risk-free and act accordingly.

MDPs offer the flexibility to deal with uncertainty to a certain extent. However, being
memoryless, MPDs can only successfully tackle environments where the actions taken do
not impact the knowledge of the environment. POMDP solve this problem with the use of
belief states. Unfortunately, the poor scalability of current POMDP algorithms makes them
impossible to apply to our problem.



Conclusion

Three Approaches

We have considered three approaches to take on the problem of path finding in dynamic
environments. We first detailed a deterministic approach, effectively capable of dealing with
predictable dynamism. Probabilistic approaches were also presented under two paradigms:
Markov Decision Processes and Partially Observable Markov Decision Processes.

The deterministic approach proved to be an efficient way to discover single paths in an
accurately predicted environment. Yielding results well within a second on problems of con-
siderable size, this approach is to be favoured when little time is available to make a decision.

MDPs allow dealing with stochastic affecting factors distributed in environments where
the various states do not impact each other: where the Markov Property is respected, thus
with the important drawback that with this model, the agent has no memory of past events.
MPD algorithms take (at least) a few minutes to provide results on problems of practical
sizes. This makes them a bad option for live use. However, they can be useful during the
planning phase, which precedes the execution of a plan. On top of being able to compute
paths, they offer path fusion, decision aid and safest path capabilities, which are of interest.

POMDPs offer the greatest theoretical potential to deal with uncertainty. They can keep
track of many “possible worlds” and compute optimal policies accordingly. Through the
use of belief states, POMDP algorithms will keep track of their actual knowledge of the
environment and plan accurate policies based on it. Unfortunately, at this point, POMDP
algorithms can only manage problems of sizes much smaller than the ones we deal with in
practice. Future research may lead to the discovery of a new algorithm that can solve larger
sized problems and make POMDP the approach of choice.

There seems to be a trade-off between the computability and range of applicability within
the three approaches. Indeed, deterministic approaches offer excellent practical performance
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but few ways to deal with uncertainty. POMDP can theoretically manage unknown envi-
ronments, but are practically unusable. The way we propose to use them, MDPs stand in
between, computing optimal paths and providing results that are usable in the planning phase.

Future work

In order to be able to use MDPs effectively, work remains to be done in order to identify in
which way the MDP algorithm should be parameterized in order to provide the best possible
results. Variants of the algorithms detailed in this work should also be studied and compared.
Having done so, practical experiments could be conducted in order to further validate, and
possibly better tune the MDP approach to the problem.

Obviously, a lot of research is needed to produce a robust, applicable POMDP algorithm.
Using the algorithm on a selected subset of the environment could be an interesting approach.
Uncertainty would be effectively managed in a small part of the environment, and an alternate
approach could be used for the remaining part.
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Appendix A

Detailed Tables of Time Required to
Build Threats

Here, we give detailed tables of the time required to build threats for different amounts of
time slots. Starting with 10 we will try to go up to 25k slots for every size threat. When the
size of our 2D matrix (E × T ) nears 250M units, we reach the memory limit (1024MB), and
are unable to obtain results, which will be indicated by a “-”.

TableA.1 represents a dynamic threat spanning 10 time slots, and affecting from 1 to
500k edges. Initialization, value assignation, and total times are shown.

Edges Init (ms) Assign (ms) Total (ms)
1 0 0 0

10 0 0 0
100 0 0 0
500 0 0 0

1000 0 0 0
5000 0 0 0

10000 0 0 0
25000 31 0 31
50000 32 0 32

100000 78 15 93
250000 204 15 219
500000 313 15 328

Table A.1: Time to Build a 10 Time Slots Threat
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TableA.2 represents a dynamic threat spanning 100 time slots, and affecting from 1 to
500k edges. Initialization, value assignation, and total times are shown.

Edges Init (ms) Assign (ms) Total (ms)
1 0 0 0

10 0 0 0
100 0 0 0
500 0 15 15

1000 0 0 0
5000 16 0 16

10000 31 0 31
25000 94 16 110
50000 125 15 140

100000 203 47 250
250000 578 94 672
500000 1016 187 1203

Table A.2: Time to Build a 100 Time Slots Threat

TableA.3 represents a dynamic threat spanning 250 time slots, and affecting from 1 to
500k edges. Initialization, value assignation, and total times are shown.

Edges Init (ms) Assign (ms) Total (ms)
1 0 0 0

10 0 0 0
100 0 0 0
500 16 0 16

1000 0 0 0
5000 31 15 46

10000 47 16 63
25000 109 16 125
50000 172 47 219

100000 312 94 406
250000 812 219 1031
500000 3938 1015 4953

Table A.3: Time to Build a 250 Time Slots Threat

TableA.4 represents a dynamic threat spanning 500 time slots, and affecting from 1 to
500k edges. Initialization, value assignation, and total times are shown.
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Edges Init (ms) Assign (ms) Total (ms)
1 0 0 0

10 0 0 0
100 0 0 0
500 47 0 47

1000 16 0 16
5000 62 0 62

10000 78 16 94
25000 172 47 219
50000 328 94 422

100000 562 172 734
250000 1500 437 1937
500000 - - -

Table A.4: Time to Build a 500 Time Slots Threat

TableA.5 represents a dynamic threat spanning 1000 time slots, and affecting from 1 to
500k edges. Initialization, value assignation, and total times are shown.

Edges Init (ms) Assign (ms) Total (ms)
1 0 0 0

10 0 0 0
100 0 0 0
500 31 0 31

1000 16 15 31
5000 79 15 94

10000 110 31 141
25000 281 78 359
50000 484 188 672

100000 1000 359 1359
250000 - - -
500000 - - -

Table A.5: Time to Build a 1000 Time Slots Threat

TableA.6 represents a dynamic threat spanning 5000 time slots, and affecting from 1 to
500k edges. Initialization, value assignation, and total times are shown.
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Edges Init (ms) Assign (ms) Total (ms)
1 0 0 0

10 0 0 0
100 15 16 31
500 47 0 47

1000 62 16 78
5000 265 94 359

10000 500 172 672
25000 1250 438 1688
50000 - - -

100000 - - -
250000 - - -
500000 - - -

Table A.6: Time to Build a 5000 Time Slots Threat

TableA.7 represents a dynamic threat spanning 10000 time slots, and affecting from 1 to
500k edges. Initialization, value assignation, and total times are shown.

Edges Init (ms) Assign (ms) Total (ms)
1 0 15 15

10 0 0 0
100 16 0 16
500 78 31 109

1000 109 47 156
5000 469 188 657

10000 859 359 1218
25000 - - -
50000 - - -

100000 - - -
250000 - - -
500000 - - -

Table A.7: Time to Build a 10000 Time Slots Threat

TableA.8 represents a dynamic threat spanning 25000 time slots, and affecting from 1 to
500k edges. Initialization, value assignation, and total times are shown.
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Edges Init (ms) Assign (ms) Total (ms)
1 0 0 0

10 15 0 15
100 63 0 63
500 140 47 187

1000 219 94 313
5000 1218 422 1640

10000 - - -
25000 - - -
50000 - - -

100000 - - -
250000 - - -
500000 - - -

Table A.8: Time to Build a 25000 Time Slots Threat
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