
 

© Jing Wang, 2019 
 

 

Modeling, design and optimization of computer-
generated holograms with binary phases 

Thèse 

Jing Wang 

Doctorat en physique 

Philosophiæ doctor (Ph. D.) 

Québec, Canada 
 



 

 

 

Modeling, design and optimization of computer-
generated holograms with binary phases 

Thè se 

JING WANG 

Sous la direction de : 

 

Yunlong Sheng 

 
 

  



 

III 
 

Résumé  

L’hologramme généré par ordinateur (HGO) a été démontré à jouer un rôle important depuis 

son invention par Lohmann dans les années 1960 dans de nombreuses applications telles que 

l’ingénierie du front d'onde, l’éclairage structuré et l’affichage optique, etc. Dans le travail 

de thèse ci-présent, la modélisation, la conception et l’optimisation d’HGO avec des phases 

binaires sont étudiées. 

Nous avons examiné un système pratique de projection d’image avec certaines spécifications 

de travail, par exemple, une distance de travail de 40 cm, une profondeur de champ de 10 cm 

et un angle de diffraction de 53 degré pour une longueur d’onde de travail de 632 nm, et 

ensuite conçu et optimisé un hologramme de phase binaire en passant par une recherche 

directe binaire pour ce système d’image. L’hologramme a été fabriqué par la lithographie à 

faisceau d’électrons. Pour atteindre l’angle de diffraction requis, nous avons discuté de 

l’architecture optique dans le système de projection d’image holographique. L’HGO conçu 

et le système de projection d’image holographique ont été validés expérimentalement par 

reconstruction optique. 

Étant donné que les pixels finiront par se regrouper pour former des ouvertures polygonales 

en hologramme, qui peut être vu clairement dans le processus de recherche directe binaire, 

nous avons proposé une nouvelle approche pour la conception directe des ouvertures 

polygonales basée sur la disposition triangulaire en HGO de grande taille en pixels. La 

diffraction de l’ouverture a été calculée par la transformation analytique d’Abbe. L’image 

reconstruite peut être exprimée comme une addition cohérente de motifs de diffraction à 

partir de tous les bords droits d’orientations et de longueurs différentes. Une optimisation en 

deux étapes comprenant l’algorithme génétique avec la recherche locale de codage des 

phases binaires des ouvertures, suivie par la recherche directe de co-sommets flottants des 

ouvertures triangulaires élémentaires a été développée. 

Nous avons en outre proposé une disposition d’ouverture quadrilatérale, qui fournit plus de 

degrés de liberté et peut former des ouvertures polygonales plus diverses en hologrammes. 

L’algorithme génétique parallèle avec la recherche locale a été adopté dans une première 

étape pour assigner des phases binaires, et la recherche directe a ensuite été utilisée pour 
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optimiser des emplacements de co-sommets d'ouvertures quadrilatérales lors de la deuxième 

étape. Trois schémas différents pour l'algorithme en deux étapes ont été discutés pour fournir 

des moyens flexibles afin d’équilibrer la performance de l’optimisation et la durée nécessaire. 
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Abstract 

The computer-generated hologram (CGH) has been demonstrated to play an important role, 

since its invention by Lohmann in 1960s, in many applications such as wavefront engineering, 

structured illumination and optical display, etc. In this thesis, the modeling, design and 

optimization of CGH with binary phases are studied. 

We considered a practical projection image system with certain working specification, e.g. 

working distance of 40 cm, depth of field of 10 cm and a diffraction angle of 53 degree for 

632 nm working wavelength, and then designed and optimized a binary-phase hologram by 

direct binary search for this image system. The hologram was fabricated by E-beam 

lithography. To achieve the required diffraction angle, we discussed the optical architecture 

in holographic projection image system. The designed CGH and holographic projection 

image system were validated experimentally by optical reconstruction. 

Since the pixels will eventually cluster to form polygonal apertures in hologram, which can 

be seen clearly during the process of direct binary search, we proposed a new approach to 

directly design polygonal apertures based on triangular layout in CGH of a large number of 

pixels. The diffraction of aperture was calculated by analytical Abbe transform. The 

reconstructed image can be expressed as a coherent addition of diffraction patterns from all 

the straight edges of different orientations and lengths. A two-step optimization including 

genetic algorithm with local search for encoding binary phases of apertures, followed by 

direct search for floating covertices of the elementary triangular apertures was developed. 

We further proposed a quadrilateral aperture layout, which provides more degrees of freedom 

and can form more diverse polygonal apertures in holograms. The parallel genetic algorithm 

with local search was adopted to assign binary phases in the first step, and direct search was 

then used to optimize of locations of covertices of quadrilateral apertures in the second step. 

Three different schemes for the two-step algorithm were discussed to provide flexible ways 

to balance the optimization performance and time cost. 
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General introduction 

Historical events of holography 

The record and storage of objects, especially three-dimensional (3D) objects, had been a 

recurring goal of humankind after the photography was invented in 1830s. It was not really 

achieved until holography was discovered by Denis Gabor in 1948 [1], when he worked to 

address the problem introduced by the spherical aberrations of the electron lenses, which 

limited the resolving ability of electron microscopes [1, 2]. The word “holography” was 

assembled from Greek words “holos” (whole) and “graphein” (to write). Thus, holography 

can be defined as a technique to write or record the whole optical information from an object 

source for the reconstruction of the original object later. “For his invention and development 

of the holographic method”, Denis Gabor was awarded the Nobel Prize in Physics in 1971 

[3]. 

The holographic process basically consists of two steps: record and reconstruction. In the 

first step, a holographically stored image, referred to as hologram, is produced by the 

interference between a wave field scattered from an object and a coherent reference wave. A 

hologram is usually recorded on a two-dimensional (2D) surface, for example, a 

photosensitive film. But it contains the whole information, i.e. both the amplitude and the 

phase, of the 3D object field. The information is encoded in the form of interference fringes 

with high spatial frequencies, which is usually invisible to human eyes. In the second step, 

the hologram is illuminated by original reference wave, and the diffracted light by hologram 

propagates to recover the object wave to form an image of object. 

In Gabor’s original set-up [1], the reference wave was incident normal to the recording 

medium and a predominantly transparent object was in its path. The axes of both the object 

wave and the reference wave were parallel. This is known as on-axis hologram. This set-up 

is simple, but it only works when the object is small enough and sufficiently transparent so 

that it will not disturb the reference wave significantly. Besides, the reconstruction of this 

hologram gives a real image superimposed on the undifffracted part of wave and a so-called 

“twin image” on the same optical axis.  
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In 1956, Lohmann proposed the “single-sideband” holography [4] to handle the twin-image 

problem of Gabor holograms by the combination of communications theoretical and physical 

views of optics.  

With the advent of laser by Theodore H. Maiman in 1960 [5] and the invention of off-axis 

hologram by Leith and Upantnieks in 1962 [6], high quality holograms could be produced 

and began to capture the interest of world. In their set-up, the reference waves with an oblique 

angle respect to normal of the recording medium did not pass through the object, which 

spatially separated the different diffraction orders and allows the capture of opaque objects. 

The development of computer technology makes it possible to transfer the recording process 

and/or the reconstruction process onto the computer platform. In the middle of 1960’s 

Lohmann etc. realized the simulation of optical holograms by digitally generated binary 

transparencies, which is a big step forward in the path towards widespread applications [7-

9]. This new approach was referred to computer-generated holography and the corresponding 

hologram was called computer-generated hologram (CGH). The CGH has the advantage that 

the object could be synthetic or fictitious. Its design can be optimized mathematically rather 

than experimentally.  

Another important progress is the direct recording of holograms with Charged Coupled 

Devices (CCDs) by Schnars etc. in 1990s [10]. This method is known to us today as Digital 

holography (DH). Sometimes, computer-generated holography and digital holography are 

considered as the same concept, which is used to correspond to conventional optical 

holography. 

Computer-generated holography and conventional optical 

holography 

The first computer-generated holograms were binary holograms invented by A. Lohmann [8, 

9]). They were printed on a computer line printer, then they were optically reduced and 

reconstructed in optical set ups using coherent laser illumination. The computer-generated 

holography shares the same basic principle and concept with the conventional optical 

holography. However, some differences [11-15] need to be noted. 
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From what was introduced above, the record process of conventional optical holography is 

by optical interference, and the reconstruction of object is an optical diffraction process. The 

object is usually a real one; the hologram, i.e. the interference pattern is recorded by light-

sensitive medium.  

For the computer-generated holography, the record process is usually numerically 

synthesized by inverse wave propagation theory and then encoded to hologram. The 

reconstruction process can be either optical or numerically diffractions. Sometimes, the 

numerically record and numerically reconstruction is specially referred to as digital 

holography; only the numerically record and optical reconstruction is named as computer-

generated holography. Besides, the object can be anything you may imagine; it is not 

necessary to be limited to the physically existing objects. It also can radiate or be illuminated 

by an external source. More importantly, the hologram can be fabricated or loaded to a spatial 

light modulator (SLM) for dynamically display. 

Categories of CGHs 

Over the years, computer-generated holograms (CGHs) have demonstrated to be important 

components for its broad range of applications [11], such as diagnostic and testing (acoustic 

mapping of the earth, determining particle sizes and scattering properties, analyzing 

vibrations, visualizing aberrations etc.), imaging and display (map displays, artist display, 

3D display, image processing and deblurring, stereoscopic display etc.), structured 

illumination, augmented reality (AR)/virtual reality (VR), imaging system, optical storage, 

sensors and security etc. Many kinds of CGHs have been proposed for these different 

applications. 

In generally, depending on the different display types in time domain, the CGHs can be 

categorized into two groups [12-15]:  

• static CGH. For static CGH, a permanent hologram is produced. After fabricated on 

the substrate, the static hologram is also called as diffractive optical elements (DOEs).  

• dynamic CGH. For dynamic CGH, it is usually loaded onto spatial light modulators 

(SLMs), which are essentially small, television-like display devices. 
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Depending on the material with which the CGH is to be fabricated, there are typically three 

types [12, 13]: 

• Phase-only CGH, where the material modulates only the phase of an incoming 

wavefront, and the transmittance amplitude is unity; 

• Amplitude-only CGH, where the material modulates only the amplitude of an 

incoming wavefront, and the transmittance phase is constant; 

• Complex-amplitude CGH, where such a material modulates both the amplitude and 

phase of the incoming wavefront. 

The CGHs can be grouped as the way they utilize resources [14]: 

• Point-oriented CGHs, in which each pixel is uniform; there is no sub-element. Each 

pixel will be assigned a value of the transmittance which corresponds to pixel value 

in the actual hologram.  

• Cell-oriented CGHs, on the other hand, manipulate the sub-structure in each 

hologram cell so that each cell consisting of pixels controls amplitude and phase in 

some ways. 

Depending on where the image reconstructed is observed, there are several types of CGH 

[14, 15], among which the most important two are: 

• Fourier CGH: the image is reconstructed at back focal-plane of the second lens of 

the 4-F imaging system. 

• Fresnel CGH: the image is reconstructed in at a distance far enough from the CGH 

so that the parabolic (or, Fresnel) approximation can be used. 

Current research of CGHs 

Since one of the main objectives of holography is to record and display of 2D/3D object, 

current research of CGH usually refers to the following 4 topics: object data acquisition, 

object wave representation, hologram encoding and image reconstruction. 

The first research topic is about how to acquire the geometry of the object, especially 3D 

object. One of approaches is to acquire 2D projections of the object from different perspective 

viewpoints using 2D camera array [16] or by moving one single camera [17]. Another one is 
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to adopt 2D-plus-depth cameras [18] to get 2D views and depth information. The acquired 

object data can then be directly used for CGH.  

The second one is to represent the object wave. The point-source approach [15] is one of the 

most commonly used to compute the object wave, which is the sum of spherical waves by 

each object point. Another technique for object wave is wave-field approach, which can be 

based on a layered model [19, 20] or a polygonal model [21] of 3D object. In the former 

model, the 3D object is sliced into a set of layers, which operates as a surface source of light. 

While in the latter one, 3D scenes are described as a set of oriented polygons acting as a 

surface source of light. The associated occlusion processing [22, 23], surface shading [24] 

and computation time reduction [25, 26] are widely studied as well. 

The third topic is how to encode hologram. The object wave computed is usually a complex-

valued field. However, to be displayed on a screen or printed onto a transparency, the real 

positive values of hologram must be quantized to some levels. The previously mentioned 

phase-only hologram [27], amplitude-only hologram [28] and complex-amplitude hologram 

[29] are three encoding types. Another problem related is to use data compression techniques 

[30, 31] to reduce the amount of holographic information to be stored and transmitted since 

it could be very huge. 

The last one is about image reconstruction. Current SLMs have limited resolutions and pixel 

pitches much larger than wavelength used, which prevent SLMs from providing a large 

diffractive angle [32, 33]. 

Design procedures of CGHs 

As mentioned earlier, CGHs are numerically synthesized by inverse wave propagation theory. 

The design procedures of CGHs can basically be divided into three parts [12, 13]: 

First, analysis the design problem and understand the physics behind it. In this part, the main 

task involves calculation of the fields that should be generated on the hologram plane 

produced by the object, i.e. the inverse wave propagation of the desired light pattern. One 

usually need to know if the scalar diffraction is accurate enough to solve the problem and 

may further decide the possible Fresnel or Fourier transform on the object fields. If scalar 

diffraction theory is not valid for some cases, full vector theory needs to be employed. 
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The second part of the design is the choice of encoding way into the hologram plane and then 

define an appropriate optimization algorithm. The fields calculated on the hologram plane in 

the last step are usually complex fields. One should choose the proper modulation method, 

which will be used to encode into hologram to form a desired transparency. The adoption of 

optimization algorithm needs to comprehensively consider the modulation way, the type of 

CGH, optimization speed and performance, computation resources etc. The main goal of the 

optimization is to obtain a hologram that will generate a reconstruction pattern as close as 

possible to the desired pattern. 

The third part is to execute the design and fabricate the hologram. The fabrications of the 

hologram usually bring some extra errors due to the machine tolerance. In fact, the resolution 

of the machine plays on important role on determining the encoding and the optimization 

algorithm, which need to be considered in advance. 

The motivation 

Although great development and success has been made since CGH’s invention, with the 

advancement of modern fabrication technology and emergence of application in new fields, 

some challenges still exist when design the CGHs. This thesis aims to model, design, and 

optimize CGHs regarding the two specific issues below. 

One of the issues is how to design CGH for the practical projection system. Besides 

consideration of reconstruction error, diffraction efficiency of CGH and stray light from 

unwanted high diffraction orders, the specifications of practical projection system usually 

force designers to look upon more factors, typically including working distance, working 

wavelength (range), diffraction angles - field of view (FoV), and depth of field/focus (DoF) 

etc. Meanwhile, the abilities of facility equipment for fabricating CGH should also be 

considered before the design, such as the resolution can be achieved, the maximum capacity 

of data can be read, the speed of wring and sometimes even the financial cost etc. All these 

factors need to be proper treated and weighted, which greatly increase the complexity of 

designing CGH in a practical projection system. 

Another issue concerned is that how to design and optimize CGH of large space bandwidth 

product (SBWP). With the advancement of industrial fabrication technology, the minimum 
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feature size can achieve is far less than the order of visible wavelength. For example, with 

the e-beam lithography, the pixel size can reach to 50 nm, or even 5 nm. With a pixel size of 

50 nm, a CGH with one-inch square size will have 258 gigapixels, which provides a huge 

number of degree of freedom. The conventional optimization algorithm for CGH can not 

well handle. The main challenge is that how to manage such a huge number of degree of 

freedom to achieve the best performance in the scope of scale diffraction theory. 

Organization of thesis 

With respect to the content of the thesis, it will be organized as follows. 

A general introduction on the holography and CGH is given at the beginning, including a 

short review of historical events, basic idea of holography, a list of categories of CGH and 

current research as well. This part also briefly introduces design procedures of CGH and the 

issues that this thesis attempts to answer, i.e. the design and optimization of CGH applied to 

a practical projection imaging system, and CGH with huge number of degree of freedom. 

The organization of thesis is presented in the end of the introduction. 

In Chapter 1, the fundamental of holography and the underlying theory used - scalar 

diffraction theory are detailed.  Besides, several classic algorithms of designing CGHs - DBS，

SA, GA and IFTA, are introduced, together with two industrial technologies - dot matrix 

hologram and holographic prints. Also, four fabrication technologies for CGH are briefly 

presented. 

In Chapter 2, we talked about how to design a CGH for a structured-light projector with 

certain specifications. This projector system has a working distance of 40 cm, and a 10 cm 

depth of field (DoF). The pattern angle is around 53 degree. The wavelength of used optical 

source is 632 nm. The direct binary search (DBS) algorithm is demonstrated first by 

designing a Fourier hologram with binary phases and then further applied to synthesizing 

Fresnel hologram with binary phases, which meet the requirements of the projector. The 

consideration of optical architecture design in the projection system was discussed. The 

fabrication of hologram and experimental results were shown as well. 
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In Chapter 3, we proposed a new approach for designing binary CGH with arbitrary-shaped 

polygonal apertures. With this method, the high number of degrees of freedom available in 

CGH of large space bandwidth product (SBWP) can be fully explored.  The Abbe transform 

was introduced and used to compute the diffraction pattern. A two-step optimization 

algorithm including hybrid GA for assigning binary phase and direct search for floating co-

vertices of the elementary triangular apertures was developed to reconstruct image with high 

performance. 

In Chapter 4, we further investigate to directly design quadrilateral aperture in binary CGHs 

of large SBWP, which exploit higher number of degree of freedom compared with that in 

CGHs based on triangular aperture layout. Coarse grained parallel GA with local search is 

used in the first step to assign phases and direct search is adopted in the second step to 

optimize the positions of vertices. Three schemes of this two-step algorithm were discussed 

to give us a flexible way to balance between the time cost and optimal results. 

Conclusion. A summary of achieved work and future work was presented. 
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Chapter 1 Theory, algorithms and fabrications of 

holograms 

1.1 Fundamental of holography 

The fundamental problem addressed by holography is recording and later reconstructing, 

both the amplitude and the phase of an optical wave from a coherently illuminated object. A 

typical setup is shown in Fig. 1.1. Light with sufficient coherence is split into two waves of 

reduced amplitude by a beam splitter. The first wave illuminates the objects, is scattered at 

the object surface towards the recording medium. The second wave, i.e. the reference wave, 

directly illuminates the light sensitive medium. The waves interfere with each other to 

produce a characteristic interference pattern. In classical photographic holography the 

interference pattern is recorded on a photosensitive material such as silver halide films or 

plates and rendered permanent by wet chemical development of film. In digital holography 

the interference pattern is recorded directly onto an electronic sensor array such as a Charged 

Coupled Devide (CCD) or Complementary Metal Oxide Semiconductor (CMOS). The 

recorded interference pattern is the hologram [13-15]. 

 

Fig.  1.1 A typical setup for holographic recording of an object by interference of two coherent beams  
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The holographic process is described mathematically by the formalism of interference of 

light. If the complex amplitude of the object wave is described by 

 
( ) ( ) ( ), , exp ,O O OE x y A x y i x y =    (1.1 ) 

with real amplitude 
OA  and phase 

O . And the complex amplitude of the reference wave with 

real amplitude 
RA  and phase 

R  is represented by  

 
( ) ( ) ( ), , exp ,R R RE x y A x y i x y =    (1.2 ) 

Both waves interfere at the surface of the recording medium and the resultant intensity is 

calculated by 

 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2

* * * *

2 2

, , ,

, , , , , , , ,

, , , , exp , , exp

O R

O O O R R O R R

O R O R O R O R O R

I x y E x y E x y

E x y E x y E x y E x y E x y E x y E x y E x y

A x y A x y A x y A x y i A x y A x y i   

= +

= + + +

   = + + − + − −   

 (1.3 ) 

while the first two terms of this expression depend only on the intensities of the individual 

waves, the third and fourth depends on their relative phases. Thus, information about both 

the amplitude and phase of 
OE  has been recorded.  

The material used to record the interference pattern will be assumed to provide a linear 

mapping of intensity. For simplicity, suppose ( ) ( ), 1 ,t x y I x y=  . 

Once the amplitude and phase information about the object wave have been recorded, it 

remains to reconstruct that wave. If the coherent reconstruction wave 
CE  is represented by 

 ( ) ( ) ( ), , exp ,C C CE x y A x y i x y =  
 (1.4 ) 

Then the light diffracted by the hologram is evidently 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 2

, , ,

, , , exp , , , , exp

, , , exp

D C

O R C C O R C O C R

O R C R C O

E x y E x y t x y

A x y A x y A x y i x y A x y A x y A x y i

A x y A x y A x y i

   

  

= 

     = + + + −    

 + + − 

 (1.5 ) 
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Fig.  1.2 An illustration for holographic reconstruction of an object 

 

Note that if 
CE  is simply an exact duplication of the original reference wave 

RE , 

 ( ) ( ) ( ) ( ), , , exp ,C R R RE x y E x y A x y i x y = =  
 (1.6 ) 

Then, Eq. (1.5) can be rewriten as  

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 *, , , , , , , exp 2 ,D O R R R O R R OE x y A x y A x y E x y A x y E x y A x y i E x y = + + + 
 (1.7 ) 

The first term on the right side of Eq. (1.7) is the reference wave multiplied by a constant 

factor. It represents the non-diffracted wave passing through the hologram (zero diffraction 

order). The second term is the reconstructed object wave and forms the virtual image, as 

shown in Fig. 1.2. The real factor 2

RA  only influences the brightness of the image. The third 

term generated a distorted real image of the object (with 3D shapes). The reason for the 

distortion of the real image is the spatially varying complex factor ( )exp 2 Ri  , which 

modulates the image forming conjugate object wave *

OE . 
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In a similar fashion, if 
CE  is chosen as the conjugate of the original reference wave 

RE ,  

 ( ) ( ) ( ) ( )*, , , exp ,C R R RE x y E x y A x y i x y = = − 
 (1.8 ) 

Then we have 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 * 2 2 *, , , , , exp 2 , , ,D O R R R R O R OE x y A x y A x y E x y A x y i E x y A x y E x y = + + −  + 
 (1.9 ) 

The third term is proportional to the conjugate of the original object wave *

OE , which 

represents an undistorted real image. 

 

1.2 Scalar diffraction theory 

1.2.1 Wave equation 

According to the differential form of Maxwell’s equations for source-free medium [34, 35], 

 

,

,

0,

0.

B
E

t

D
H

t

D

B


 = −




 =



  =

  =  (1.10 ) 

Taking the curl of Eq. (1.10.1) produces 

 

( ) ,
B H D

E H
t t t t t

  
       

 =  − = −  = −  = −   
         (1.11 ) 

With D=ɛE, after Substituting Eq. (1.10.2) to Eq. (1.11), we get 

 

2

2

E
E

t



 = −

  (1.12 ) 

with the property ( ) 2E E E =  − ,  , we have 

 

2
2

2

E
E

t



 =

  (1.13 ) 
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where 1 =  is the velocity of the wave in the medium. 

Suppose   represent a component 
xE , 

yE  or 
zE  of the electric field E . 

 

2 2 2 2

2 2 2 2 2

1

x y z t

   



   
+ + =

     (1.14 ) 

The solution will be in form of  

 ( ) ( ) ( )0, , , , , exppx y z t x y z i t  =  (1.15 ) 

Substituting Eq. (1.15) into Eq. (1.14) produces the well-known Helmholtz equation [35]: 

 

2 2 2

2

02 2 2
0

p p p

pk
x y z

  


  
+ + + =

    (1.16 ) 

where 0k  is the propagation vector, and 2 2 2 0
0 0 0 0 0x y zk k k k k




= = + + = , is called wave 

number.  

1.2.2 Spatial frequency transfer function 

Denote 
p  to be the Fourier transform of   with respect to the transverse spatial coordinates 

(x, y), as shown in Fig. 1.3. With the Fourier transform we have 

 
2 22

2

02 2 2

0 0

1 0
p yx

p

d kk
k

dz k k




 
+ − − = 

 
 

 (1.17 ) 

, which is a second-order, homogeneous, linear ordinary differential equation with constant 

coefficients. The solution can be written as  

 ( ) ( )
22

0 2 2

0 0

, , , ,0 exp 1
yx

p x y p x y

kk
k k z k k ik z

k k
 

 
 = − − −
 
 

 (1.18 ) 

The spatial frequency transfer function [36] along z direction can be defined as 

 ( )
( )
( )

22

0 2 2

0 0

, ,
, , exp 1

, ,0

p x y yx

x y

p x y

k k z kk
G k k z ik z

k kk k





 
 = = − − −
 
 

 (1.19 ) 
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1.2.3 Fresnel diffraction and Fraunhofer diffraction 

 

Fig.  1.3 Schematic showing the impulse response of propagation between an input and output plane. 

 

When propagating waves make small angles, i.e. under the so-called paraxial approximation, 

we have 2 2 2

0x yk k k+  and then 
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 (1.20 ) 

The impulse response of propagation ( ), ,g x y z  can be obtained by performing the inverse 

Fourier transform of G , 

 

( ) ( )

( )

1

2 2

0

0 0

, , , ,

exp exp
2 2

x yg x y z F G k k z

ik x y
ik z ik

z z
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 

  +
= − −  

   

 (1.21 ) 

Perform inverse Fourier transform to revert to space domain, 

 
( ) ( ) ( ) ( )

( ) ( )

1 1, , , , , ,0 , ,
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=
 (1.22 ) 

then, 

 ( ) ( ) ( ) ( ) ( )
2 20 0
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z z
 


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This is called the Fresnel diffraction formula [36]. The range of applicability of the Fresnel 

diffraction formula spans the near field of the object to the far field. 

 

If only the far-field diffraction pattern is of interest, another approximation can be made to 

yield the Fraunhofer diffraction formula [36]. 
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 (1.24 ) 

For Fraunhofer approximation, the term ( )2 2x y  +  is like the maximum area of the source 

and if this area divided by the wavelength is much less than the distance z under consideration, 

the term ( )2 20exp
2

ik
x y

z

 
 − + 

 
 inside the integrand can be considered as unity, so 
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 (1.25 ) 

 

Fresnel diffraction formula and Fraunhofer diffraction formula can also be obtained based on 

Rayleigh-Sommerfeld diffraction model of the well-known Huygens-Fresnel principle. From 

the standpoint of object wavefront reconstruction, Fresnel holograms differ from Fourier 

holograms in that they have focusing properties and are capable of reproducing the finite 

distance from the observation surface to the object. 

 

1.3 Conventional algorithms for CGHs design 

According to the optical propagation model from the CGH plane to reconstruction plane, the 

algorithms for CGHs design can usually be divided into two groups: unidirectional algorithm 
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and bidirectional algorithm. For unidirectional algorithm, the optical propagation will only 

be calculated in the forward direction. Typical examples of unidirectional algorithms are 

Direct Binary Search (DBS) [37, 38], Simulated Annealing (SA) [14, 39, 40] and Genetic 

algorithm (GA) [41, 42]. While for the bidirectional algorithm, the inverse propagation from 

the image plane to CGH plane will also be calculated. the classic Iterative Fourier Transform 

Algorithm (IFTA) [43] and IFTA-based phase retrieval algorithm [44, 45] belong to this 

group.  

1.3.1 Direct Binary Search 

The basic idea of DBS is to begin with a random CGH with binary phases and flip the value 

in a pixel-by-pixel order till all the pixels are scanned. After each change of the value encoded 

into a pixel, the impact of such change on the image reconstructed is evaluated. If the image 

is improved, then the flipping is accepted, otherwise rejected. Such process is repeated until 

no more single pixel changes to produce a better image within given iteration number.  

This can ensure the DBS results in a solution with a simple implementation way, however, 

at the expense of a huge number of flip trials. The main drawback of DBS is that it often 

converges to a local optimum instead of a globe one. 

1.3.2 Simulated Annealing 

Simulated Annealing is a probabilistic technique for approximating the global optimum of a 

given function in a large search space. The name and inspiration come from annealing in 

metallurgy – a technique involving heating and controlled cooling of a materials to increase 

the size of its crystals and reduce their defects. One of implementation of SA is quite similar 

with DBS. As before, changes that lead to a better image quality will be accepted 

unconditionally. However, it will also probabilistically accept the value inversions of 

hologram pixels that increase the error of image reconstruction. The probability of accepting 

these inversions is relatively large, and as the iteration goes, the probability decreases. In this 

way, SA can avoid stopping when a local optimum is reached, as that in DBS. It will usually 

give a better result than DBS, but with a slower convergence. 
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1.3.3 Genetic algorithm 

Genetic algorithm is a method based on natural selection, the process that drives biological 

evolution. It repeatedly modifies a population of individual solutions randomly generated by 

selecting individuals from the current population to be parents and uses them to produce the 

children for the next generation via crossover. Mutation is then applied some random change 

to maintain the genetic diversity of the genes in the children. Over successive generations, 

the population evolves toward an optimal solution. The selection, crossover and mutation are 

three main operations in classic GA. For each operation, there are many different ways to 

implement. Sometimes, elitism strategy will also be introduced, which means the best 

individual in a population is transmitted to the next generation without crossover and 

mutation. GA can be also used together with other conventional algorithms, such as direct 

search, gradient search etc., which was named as hybrid genetic algorithm (HGA). In some 

cases, HGA can converge much faster than classic GA. 

Compared with DBS and SA, which are essentially serial optimization algorithms, parallel 

genetic algorithm (PGA) can be easily developed to take advantage of modern computer 

technology. 

1.3.4 Iterative Fourier Transform Algorithm 

The IFTA was first proposed by Hirsch et al. Gerchberg and Saxton independently dealt with 

the phase-retrieval problem using a similar algorithm, and thus the IFTA is also called the 

Gerchberg-Saxton (G-S) algorithm. Fig. 1.4 shows a general flowchart of the IFTA for 

generating a Fourier hologram. The algorithm consists of the following four simple steps: (1) 

Fourier transform an estimate of the object; (2) replace the modulus of the resulting computed 

Fourier transform with the measured Fourier modulus to form an estimate of the Fourier 

transform; (3) inverse Fourier transform the estimate of the Fourier transform; and (4) replace 

the modulus of the resulting computed image with the measured object modulus to form a 

new estimate of the object. The generalized Gerchberg-Saxton algorithm can be used for any 

problem in which partial constraints (in the form of measured data or information known a 

priori) are known in each of two domains, usually the object (or image) and Fourier domains. 
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One simply transforms back and forth between the two domains, satisfying the constraints in 

one before returning to the other. 

 

Fig.  1.4 A flowchart of phase retrieval by iterations for generating a Fourier hologram 

 

1.4 Industrial schemes for CGH design 

For many industrial applications, holograms have relatively large sizes, i.e. space bandwidth 

product (SBWP). Meanwhile, the low fabrication cost of hologram is very important for mass 

manufacture. Therefore, those conventional optimization algorithms listed above are usually 

inappropriate for design of industrial holograms. Herein, as two widely used industrial 

schemes, the dot matrix technology (dot matrix hologram) [46-53] and holographic printer 

[54-64] are introduced. 

1.4.1 Dot matrix hologram 

Dot matrix hologram [46-53], as shown in Fig. 1.5, is a type of hologram that is composed 

of thousands of fine diffraction grating dots with different grating constants and orientation, 

which can be controlled by computer according to the pattern design. These diffraction 

grating dots can be exposed onto a photoresist plate forming a relief hologram that is used 

for mass production with embossing technique. Controlling the angle, exposure, size, shape, 
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and spacing of every grating in the hologram, allows the end-user a wide range of visual 

effects. When illuminated with white light the gratings split the light into a spectrum of colors 

and redirect the light at various angles to form a kinetic hologram image. Because of large 

visual angle, high diffraction efficiency and kinetic visual effect of dot matrix holograms, 

they are widely used in security printing and anti-counterfeiting. 

 

Fig.  1.5 A dot matrix hologram consisting of fine diffraction grating dots with different grating constants and 

orientation 

Electron beam writers, pattern copiers, and two-beam writers can be used to create dot-matrix 

holograms. For brightness of dot-matrix holograms, holograms created by e-beam writers are 

brightest and those created by pattern copiers are darkest. For mastering speeds, pattern 

copiers are fastest and e-beam writers are slowest. For machine prices and running costs, e-

beam writers are very expensive, but two-beam writers and pattern copiers are cheap. 

Because the performance of two-beam writers is always at the balance position for all the 

above-mentioned features, two-beam writers are more popular than e-beam writers and 

pattern copiers.  

1.4.2 Holographic printer 

Holographic printing technology has been largely reported recently [54-64]. A common 

feature of all holographic printers is division of the printed hologram into a 2D array of 
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holographic elements (hogels). Information to be recorded in a hogel is displayed on a SLM. 

Recording of the whole hologram is done by successive exposure of all hogels using a 

motorized X-Y translation stage, as shown in Fig. 1.6. 

Holographic printers can be basically classified into two categories. One is “holographic 

stereogram printer”. It can be only used for the holographic stereograms, which are 

synthesized from sequences of closely spaced two-dimensional (2D) perspective views and 

not faithfully reconstructs wavefront of the recorded object. These series of 2D perspective 

images are stored in hogels. With an appropriate illumination, each hogel in the holographic 

stereogram diffracts a fraction of perspective images within a certain viewing angle. The 

diffracted lights are fractions of the perspective image recorded on the hogels in the 

holographic stereogram. On the observing plane, relatively large numbers of viewing points 

are formed by the merged lights diffracted from the hogels. An observer can see a 3D image 

from these perspective views at the corresponding viewing point. When the observer’s left 

and right eyes are located at different viewing points, the observer sees stereoscopic images 

and perceives 3D images. 

 

Fig.  1.6 Schematic diagram of a holographic printer 
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The other one is “holographic printer for CGH”, which can print the hologram that 

reconstructs wavefront from any kind of CGH and also the computer-generated holographic 

stereogram. The holographic fringe printer transfers the input CGH into a holographic 

emulsion forming a thin hologram and thus this printing method lacks color selectivity. The 

holographic volume printer decodes the 3D object wavefront from the CGH and records it as 

an analogue volume hologram. Since its wavelength selectivity, it is suitable for while-light 

reconstruction hologram, particularly for a full-color hologram.  

1.5 Fabrication technologies of holograms 

1.5.1 Diamond machining 

One of the first techniques for fabrication of holograms is diamond machining [65-67], which 

can generate diffractive microstructures directly through mechanical removal of optical 

material. It is a process of mechanical machining of precision elements using lathes or 

derivative machine tools (e.g., turn-mills, rotary transfers) equipped with natural or synthetic 

diamond-tipped tool bits, as shown in Fig. 1.7.  

Diamond machining is a multi-stage process. Initial stages of machining are carried out using 

a series of computer numerical control (CNC) lathes of increasing accuracy. A diamond-

tipped lathe tool is used in the final stages of the manufacturing process to achieve sub-

nanometer level surface finishes and sub-micrometer form accuracies. The surface finish 

quality is measured as the peak-to-valley distance of the grooves left by the lathe. 

 

Fig.  1.7 Diamond machining of a micro-lens. 
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1.5.2 Photolithography 

Photolithography, also termed optical lithography or UV lithography, is a process used in 

microfabrication to pattern parts of a thin film or the bulk of a substrate [68, 69]. It uses light 

to transfer a geometric pattern from a photomask to a light-sensitive chemical "photoresist" 

on the substrate. A series of chemical treatments then either engraves the exposure pattern 

into or enables deposition of a new material in the desired pattern upon the material 

underneath the photo resist. The process is illustrated in Fig. 1.8. 

Firstly, a photoresist layer is deposited on a substrate by spin coating. The thickness of the 

photoresist layer depends on the viscosity and the spin coating speed. Secondly, a binary 

mask of alternating transparent and opaque areas is fabricated using some type of pattern 

generator. The mask is laid on a substrate coated with a thin layer of photoresist, which is 

exposed to ultraviolet light through the mask. After the resist is developed, a pattern is created 

in the photoresist layer. The substrate is then etched until the required depth is reached. The 

photoresist pattern is then removed, resulting in a binary element. 

 

Fig.  1.8 Experimental steps of photolithography: spin coating, exposure, development, etching and removal. 

 

1.5.3 Direct laser writing 
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Direct laser writing (DLW), also known as Multiphoton lithography, is a three-dimensional 

(3D) printing technology which allows the construction of readily assembled structures with 

sub-100 nm resolution [70-72]. Similar to standard photolithography techniques, structuring 

is accomplished by illuminating photoresists via light of a well-defined wavelength. The 

fundamental difference, however, is that this method relies on nonlinear photon absorption 

by photopolymers. The beam of an ultra-fast laser is tightly focused inside the volume of a 

transparent material, causing it to absorb two or more photons and polymerize locally. 

Moving the beam according to a path representing a Computer Aided Design (CAD) model, 

one can fabricate a realistic micromodel of this design. 

The experimental procedure for fabricating a 3D structure by DLW is shown in Fig. 1.9. (I) 

The laser beam is tightly focused into the volume of the material. (II) Either the focused beam 

or the sample move following a computer-generated pattern. (III) After the laser writing of 

the structure, the sample is immersed into an appropriate developer. (IV) The freestanding 

structure is revealed. 

 

Fig.  1.9 Experimental procedure: (I) beam focusing, (II) laser writing, (III) development, (IV) completed 

structure. 

1.5.4 Electron beam lithography 

Electron beam lithography (EBL) is a powerful technique [73, 74] for creating nanostructures 

that are too small to fabricate with conventional photolithography. State of the art EBL 
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systems can achieve resolutions of a few nanometres. The technique works by moving a 

highly focussed electron beam over a sample to write out a pattern designed with suitable 

CAD tools. 

The pattern is recorded in an electron sensitive film (or resist) deposited on the sample before 

exposure by spin coating. The electron beam induces a change in the molecular structure and 

solubility of the resist film. Following exposure to the electron beam, the resist is developed 

in a suitable solvent to selectively dissolve either the exposed or unexposed areas of the resist. 

After exposing and developing, the resist layer on top of the sample can be used as a mask 

or template for transferring the pattern into a more useful medium, as shown in Fig. 1.10.  

The advantage of e-beam lithography stems from the shorter wavelength of accelerated 

electrons compared to the wavelength of ultraviolet (UV) light used in photolithography, 

while the main drawbacks are the high cost and the slow exposure process of EBL system, 

resulting in a long writing time (several hours) for relatively small areas (usually a few mm2). 

 

Fig.  1.10 Electron beam lithography 
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Chapter 2 Design of holograms by direct binary search 

for structured-light projection system 

 

2.1 Introduction 

Three-dimensional (3D) surface imaging [75], as one of the fundamental topics in computer 

vision, have made tremendous progresses in research, development and commercialization 

in the recent decades because of its great application demands in a variety of market segments. 

Some typical examples include industrial inspection, cultural heritage, dental health care or 

object recognition. One of the most widely used techniques is based on the projection of 

structured light [76, 77], which is active illumination of the scene with specially designed 2D 

spatially varying intensity pattern.  

As illustrated in Fig. 2.1, a spatially varying 2D structured illumination is generated by a 

projector. The intensity of each pixel on the structured-light pattern is represented by the 

digital signal. An imaging sensor, for instance, a camera is used to acquire a 2D image of the 

scene under the structured-light illumination. If the scene is a planar surface without any 2D 

surface variation, the pattern shown in the acquired image is similar to that of the projected 

structured-light pattern. However, when the surface in the scene is nonplanar, the geometric 

shape of the surface distorts the projected structured-light pattern, as seen from the camera. 

The principle of structured light 3D surface imaging techniques is to extract the 3D surface 

shape based on the information from the distortion of the projected structured pattern. As 

shown in Fig. 2.1, the geometric relationship between an imaging sensor, a structured-light 

projector and an object surface point can be expressed by the triangulation principle [75]. 

There are many kinds of structured-light patterns [75, 78] for the surface imaging technique, 

among which, the binary pattern [79-81] is one of the reliable and simple structured patterns. 

In a variety of projection imaging system [82-84], computer-generated holograms (CGHs) 

are widely used. Such devices can be realized as static structures etched, which are sometimes 

called diffractive optical elements (DOEs), or displayed on dynamically micro-display 

devices such as liquid crystal on silicon (LCOS). In both cases, the CGHs can perform the 
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entire functionality associated with optical assembly containing many components like lens, 

in the imaging system, leading to more compact, convenient, reliable and low-cost scheme. 

The diffraction property of CGH potentially allows for projection angles much larger than 

the conventional projection system which are limited by the necessity for a relatively large 

projection lens. Although being able to enlarge image, the lens assembly may bring severe 

aberrations, which can only be handled by the corporation of highly complex and expensive 

lens system. The conventional lens assembly is not a good choice for projection, particularly 

in the miniaturized projector [84].  

 

Fig.  2.1 Illustration of structured light. 

Moreover, compared with the amplitude modulating (AM) technique used in conventional 

projector, which selectively block incident light to form the desired image, a holographic 

projector employing a phase modulating (PM) CGH has a transmission of unity, in which the 

improvement of diffraction efficiency can be expected. A phase-only holographic projector 

is also able to exert control over the imaging system with a wide projection angle, so that the 

project system can be built without residual optical aberrations. Besides, extended depth-of-

field in holographic projectors is reported as an advantage as well compared with that in 

conventional projectors [86]. Basically, the pixel size of CGH employed in a holographic 

projection system should be as small as possible, so that subsequent lens power in the system 

to achieve the desired projection angle is minimized [84]. Nevertheless, due to the resolution 

of lithography usually used, design of CGH, fabrication of DOE and construction of a 

practical projection system with certain specifications need to be comprehensively 

considered. 
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In this chapter, we will design a binary-phase hologram for a structured-light projector with 

certain specifications, for example, the typical work distance can be ~40 cm, and the depth 

of field is ±10 cm; the laser wavelength is 632 nm and the pattern angle is around 53 degree. 

The direct binary search is adopted to optimize the binary CGH first based on the Fourier 

imaging system. Furthermore, the Fresnel hologram with a reasonable depth of focus (DoF) 

is synthesized by the DBS for Fresnel imaging system. The projection system with a ~ 53 

degree field of view (FoV) is discussed as well. The fabrication process of binary hologram 

and its diffraction patterns are presented.  

 

2.2 Fourier hologram and efficient DBS 

The synthesis problem for CGHs amounts to choosing a binary transmittance for the 

addressable cells that performs the desired wavefront reconstruction. In this part, we mainly 

focused on the implementation of an efficient DBS algorithm [37, 38] by considering an 

optical configuration in which propagation between the hologram and the observation plane 

is described by a 2D Fourier transform.  

2.2.1 Fourier hologram 

Herein, the hologram is placed at the front focal plane of a thin positive lens and illuminated 

with a plane monochromatic wave. The resulting wavefront at the back focal plane of the 

lens is the 2D Fourier transform of the spatial distribution of the light just behind the 

hologram. If we let H(u, v) represent the transmittance of the hologram, and h(x, y) represent 

the complex amplitude of the wavefront at the back focal plane, then with an appropriate 

definition of coordinates, we can write 

 
( ) ( ) ( ), , exp[ 2 ]h x y H i x y dxdy    = − +  (2.1 ) 

The CGH is defined as a MxN array of rectangular cells of dimension R by S with binary 

transmittance Hkl, -M/2<k<M/2 and –N/2<l<N/2 (M and N are even). Therefore, 
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Fig.  2.2 Schematic of wavefront reconstruction by computer-generated hologram 

where 
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The observed complex amplitude h(x,y) is then given by 
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where ( ) ( ) ( ) ( )2sin , sin sin /c a b a b ab  = . Sampling this diffraction pattern at the points (x, y) 

= (mX, nY) corresponding to the Nyquist interval x=1/MR and Y=1/NS yields 
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where hmn is the inverse discrete Fourier transform (DFT) of Hkl, 
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2.2.2 DBS and its efficient implementation 

Since the above equation is a discrete summation, a trial (ith + 1) reconstruction of hmn can 

be expressed as a recursive relation consisting of the present (ith) reconstruction plus the 
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amount of change. At each trial inversion, we alter only a single cell Hk’l’ in the binary CGH. 

Rather than performing an MxN point fast Fourier transform (FFT) in order to compute the 

new reconstruction h’, we express it in terms of the reconstruction h before the trial inversion: 

 

1
exp 2mn mn

mk nl
h h i

M NMN


   
 =  +  

    (2.7 ) 

If the trail inversion at (k’, l’), e.g. Hk’l’=1, take “+”, if Hk’l’=-1, take “-”. This expression need 

be evaluated only at the AxB sample points within R, whereas the MxN point DFT would 

yield the new reconstruction at all MN points in the observation plane. 

Assume the target image have AxB addressable points, define the mean squared error e 

between the object and reconstructed image as 
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where fmn be the object scaled to have a peak spectral amplitude of unity, the parameter λ is 

a complex factor that scales the reconstruction for a minimum mean squared error fit to the 

original object, expressed as 
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 (2.9 ) 

The * is the complex conjugate operation. 

The DBS algorithm is a search -oriented technique that seeks to directly minimize the mean 

-squared error between the reconstructed and desired wavefronts. The DBS algorithm is 

initialized by generating a random binary hologram. The reconstructed image gmn is 

calculated via the inverse FFT. The hologram is then scanned in lexicographic order. For 

each hologram point, we invert the binary value of its transmittance and compute the resultant 

reconstructed image. The error between the new reconstruction and the object is then 

calculated and compared to the previous error. If the error decreases, the altered hologram 

configuration and the new error value are retained. Otherwise, the hologram point is restored 

to its original value. Once every addressable point in the hologram has been considered, an 
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iteration is said to be completed. The algorithm terminates when no inversions are kept during 

an entire iteration.  

The DBS algorithm is demanding computationally for computing 2 x (M x N) FFTs in one 

round of scan, where (M, N) is the size of the hologram. The computational requirement for 

the DBS may be substantially reduced by recursively computing h after each trial inversion, 

and it may be reduced still further by recursively computing the error. However, even for 

moderate space-bandwidth products, this method is still too computationally intensive for a 

DBS to be practical. Rather than updating the reconstruction after each inversion and using 

this for re-computing the mean-squared error, it is possible to evaluate the effect of a trial 

inversion on the mean-squared error without directly re-computing the reconstruction. 

Substitute Eq. (2.9) to Eq. (2.8), we have 
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 (2.10 ) 

Since the first term is a constant for a given object f, we only compute the remaining terms 

in order to determine the new mean-squared error resulting from a trial inversion. Assume h 

is present reconstruction and h’ is the trial reconstruction with the inversion of Hk’l’, 
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Fk’l’ can be computed and stored, the <f, h> may be updated after each trial inversion with a 

single addition. 

For the term ||h||2 due to the trial inversion of Hk’l’, we have 
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In contrast to Fk’l’, Hkl will change each time an inversion is accepted. For the acceleration of 

computation, we update Hkl by using the FFT at less frequent intervals, which is an accepted 

approximation. 
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2.3 Binary holograms by DBS 

We first computed a part (512 x 512 pixels) of the target pattern with the fast DBS based on 

Fourier holography. For providing enough degree of freedom, the 512 x 515 image is zero-

padded to a window of 2048 x 2048 pixels. The computation of errors is restricted to the 512 

x 512 region in which the object is located, usually, the center of the window. The synthesized 

binary hologram is of 2048 x 2048 pixels shown in Fig. 2.3 (a). Fig. 2.3 (b) shows its 

reconstructed image, where the target pattern is embedded in a 2048 x 2048 pixels matrix. 

Fig. 2.3 (c) shows the reconstructed pattern of 512 x 512 pixels. We evaluated the contrast 

of the reconstructed pattern by  

 1 0 1 0( ) ( )C I I I I= − +
 (2.13 ) 

Where 1I  represents the average intensity in the dark regions of the target pattern and 0I
 

represents the average intensity in the bright regions of the target pattern. The contrast was 

87%, with the average intensity of 1.12 in the dark regions and of 16.3 in the bright regions 

of the target pattern.  
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(b)                                                                (c) 

Fig.  2.3 (a) binary hologram designed, (b) reconstructed image by hologram shown in (a), (c) reconstructed 

target pattern 

 

Unlike reconstruction of image on the focal plane for the case of Fourier holography, for 

Fresnel holography, the wavefront is specified at some distance behind the CGH, referred to 

here as the plane of observation, and it must be back propagated numerically to the plane of 

the CGH. With Fresnel approximations mentioned in Chapter 1, the back propagation may 

be computed by multiplying the desired wavefront by a quadratic phase function, calculating 

the discrete Fourier transform and then multiplying the result by an additional quadratic phase 

function. The fast DBS was applied to synthesize the Fresnel holograms as well. The 

hologram is of 512 x 512 pixels with pixel size of 2 m, wavelength  = 632.8 m and the 

propagation distance from the hologram to image was z = 40 cm. The synthesized hologram 

is shown in Fig. 2.4 (a), and its entire reconstructed image at a distance of 40 cm is presented 

in Fig. 2.4 (b). The reconstructed target images from Fresnel hologram are also shown at a 

distance of 30 cm, 40 cm, 50 cm and 1 km, such as in Fig. 2.5. In fact, the size of the hologram 

is very small compared with the working distance of 400 mm. Although the designed 

projector has a high field of view of 53°, the numerical aperture of the hologram is very small. 

The size of hologram contains only a slightly larger area than one Fresnel zone. This is in 

fact the plane wave approximately. Thus, the Fourier hologram can be designed in the 

projector, and the depth of focus will be good when adjust power and position of lens used 

behind hologram. 
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(a)                                                                 (b) 

Fig.  2.4 (a) Binary Fresnel hologram of 512 x 512 pixels, (b) Reconstructed image from the binary hologram 

shown in (a) 

 

 
Fig.  2.5 Reconstructed pattern from Fresnel hologram shown in Fig. 2.4 (a) at distance from the hologram 

(clockwise) : 30 cm, 40 cm, 50 cm and 1 km 
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2.4 Projection imaging system 

The pixel size is usually chosen, in conventional projection system, to represent a 

compromise between maintaining an adequate aperture ratio whilst minimizing diffractive 

effects. However, such a restriction does not apply for a projection system which exploits 

diffraction of CGH. The diffraction angle from a hologram pattern of pixel size Δ placed 

behind a lens and illuminated with coherent collimated light of wavelength λ, is given [85] 

by 

 arctan
2




 
 
 

=


 (2.14 ) 

This inverse relationship between diffraction angle and feature size suggests that the pixel 

size employed in a holographic projection system should be as small as possible, so that 

subsequent lens power to achieve the desired projection angle is minimized. 

For a typical projector, suppose a diffraction pattern of size 40 cm x 40 cm (or 50 cm x 50 

cm) is required at a distance of 40 cm (or 50 cm), which indicates the diffraction angle is 

around 53.1 degree.  According to the Eq. (2.14), the pixel size will be 0.237 micron for 

wavelength of 632 nm. However, the resolution of lithography we will use can only achieve 

to 2 micron. The optical architecture proposed by Buckley [84] can be adopted to overcome 

this problem, as shown in Fig. 2.6. The lens pair of L1 and L2 form a telescope, which 

expands the laser beam to capture the entire hologram pattern. The reverse arrangement is 

used for the lens pair of L3 and L4, which acts to demagnify the hologram pixels and 

consequently increase the diffraction angle. The demagnification D is set by the ratio of focal 

lengths f3 to f4 and, due to the properties of Fraunhofer diffraction, the images remain in 

focus at all distances from L4. The demagnification D is: 

 
3

4

2
8.4

0.237

f
D

f
= =   (2.15 ) 

Therefore, the required demagnification by lens pair L3 and L4 to obtain a diffraction angle 

of 53.1 ° must be 8.43X. 
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Fig.  2.6 Optical design for a holographic projector, in which beam expansion is performed by lenses L1 and 

L2, and demagnification by lenses L3 and L4. 

 

2.5 Experimental results 

The final desired object window is of 2048x2048 pixels and placed in the centre of a window 

of 4096x4096 pixels after "zero-padding", which can provide more degrees of freedom to 

reduce reconstruction errors in the optimization of the phase mask and can also increase the 

contrast in the final diffraction pattern. The resulting diffraction pattern is shown in Fig 2.7.  

 

Fig.  2.7 Reconstructed image of 4096x4096 pixels. 
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The diffractive optical element has been manufactured by photolithography. This method 

requires the use of a chromed "photomask" whose pattern composed of pixels with or without 

chromium and will be reproduced in a photoresist by UV exposure. Once developed, the 

photoresist remains where there has been exposure to UV in the case of a positive photoresist. 

The fused silica substrate (fused silica) is then etched by reactive ion etching (RIE) where 

there is no photoresist, as shown in Fig. 2.8. This gives a two-level glass pattern. 

The photomask was fabricated by electron beam (e-beam) etching by the Laboratory of Micro 

and Nanofabrication INRS-Varennes. In this method, the pattern is etched directly on a resin 

and once it developed, chromium is removed chemically. The pixel size of the photomask 

and therefore the phase mask is limited to 2x2 microns because it is the minimum pixel size 

reproducible with the COPL photolithography apparatus. The pattern is of 4096x4096 pixels, 

therefor, the etched portion of the phase mask is around 8.2x8.2 mm on a 4x4 inch silica 

substrate. 

 

Fig.  2.8 Microscopic image of etched chrome photomask 

 

A fiber laser diode (Blue Sky Research FIBERTEC II, 25mW, 658 ± 5nm) was used to 

project the pattern. Its light was collimated by an achromatic lens of 50mm focal length. We 
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tested the magnification system to increase the diffraction angle of the pattern. Our tests have 

shown that the diffraction angle can be increased in proportion to the inverse of the 

magnification factor of the zoom system placed at the exit of the diffractive element. 

    

(a) (b) 

 

(c) 

Fig.  2.9 (a) Projection of the final pattern with the phase mask reproduced on a fused sillica substrate, (b) 

Enlarged part of left-top part of projection image (a), (c) the side orders of projection diffraction. 

 

As shown in Fig. 2.9 (a), the target pattern was reproduced with a good enough contrast. An 

enlarged part of left-top corner of projection image in Fig 2.9 (a) was present in Fig. 2.9 (b). 

However, since the reproduction of the photomask pattern is never perfectly reproduced on 

the silica substrate, it introduces additional noise as well as higher diffraction orders as shown 

in Fig. 2.9 (c). These secondary orders, however, was much smaller in intensity than the 

central order. This replication also caused the appearance of the undiffracted zero order in 
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the center of the pattern. The fabrication of DOE and optical reconstruction of pattern were 

done by Prof. Simon Thibault’s group at Ulaval. 

 

2.6 Conclusion 

We considered a practical projection image system with certain working specification, e.g. 

working distance of 40 cm, depth of field of 10 cm and a diffraction angle of 53 degree for 

632 nm working wavelength, and then designed and optimized a binary-phase hologram with 

2048x2048 pixels by direct binary search for this image system. The hologram was fabricated 

by E-beam lithography with the resolution of 2 μm. To achieve the required diffraction angle, 

we discussed the optical architecture in holographic projection image system. The designed 

CGH and holographic projection image system were validated experimentally by optical 

reconstruction. 
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Chapter 3 Computer-generated binary hologram of very 

large space-bandwidth product for laser projector 

 

3.1 Résumé 

Une nouvelle approche pour concevoir l'hologramme à phase binaire avec des ouvertures 

polygonales de forme arbitraire est proposée. La diffraction de l'ouverture est calculée avec 

la transformation analytique d’Abbe. Explorer le très grand nombre de degrés de liberté 

disponibles dans l'hologramme généré par ordinateur (HGO) de très grand nombre de pixels, 

une optimisation en deux étapes comprenant l'algorithme génétique avec la recherche locale 

de codage des phases binaires des ouvertures suivie par la recherche directe de co-sommets 

flottants des ouvertures triangulaires élémentaires, est développé pour des performances 

élevées et une faible erreur de reconstruction d'image du HGO binaire. 

 

3.2 Abstract 

A new approach for designing the binary phase hologram with arbitrary-shaped polygonal 

apertures is proposed. The diffraction of the aperture is computed with the analytical Abbe 

transform. To explore the very high number of degrees of freedom available in the computer-

generated hologram (CGH) of very large pixel count, a two-step optimization, including the 

genetic algorithm with local search for encoding binary phases of apertures followed by the 

direct search for floating covertices of the elementary triangular apertures, is developed for 

high performance and low image-reconstruction error of the binary CGH. 

 

3.3 Introduction 

Optical projector is one of the major products for optical display. The holographic laser 

projectors are currently under active development because of its advantages for wide color 

gamut, compact size, light weight, low power consumption, low cost and potential for 3D 
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display [83].  Commercial holographic laser projectors are widely used for laser show, stage 

lighting and immersive environment in virtual reality [87-88]. One active application is the 

virtual keyboard and touch screen, where the holographic laser projector produces a keyboard 

image on the desk and a trackpad senses the finger’s position. The computer-generated 

hologram (CGH) is also used for generating structural illuminating patterns for 3-D object 

profile sensing and optical gesture sensing in the Microsoft KinectTM system [89, 90]. Recent 

development includes zoomable portable holographic multiple projector [91] and high 

optical efficiency holographic laser projector for automotive head up displays [92]. 

In the dynamic holographic laser projector, the key device is the spatial light modulators 

(SLM) of various types [93]. The phase-only modulation SLM is available [27] and full-

range complex amplitude modulation has been implemented by two conjugated couple–mode 

SLMs [29]. The complex modulation was achieved also by synthesizing two phase functions 

masked by two complementary checkboard patterns displayed on a single phase-only SLM 

[94], or two position-shifted amplitude functions displayed on an amplitude SLM and 

coupled via a sinusoidal grating in the Fourier plane [95]. SLMs usually provide binary 

amplitude or binary phase modulation, such as the digital micromirror devices (DMD) and 

the ferroelectric liquid crystal device. Most current SLMs have a resolution of 1920x1080 

pixels (HDTV) or 1280x768 pixels (WXGA), which are high resolutions for the image 

display. However, such a space-bandwidth product (SBWP), e.g. pixel count, is much too 

small for encoding the interference fringes. Most CGHs are oversampled to provide a 

sufficient number of degrees of freedom in the CGH design. Many efforts have been devoted 

to improving the reconstruction quality of the binary CGH in the SLMs. Techniques as the 

shape adaptive down-sampling, the block truncation coding [96, 97], the breaking down 

object structure into typical elements [98], the phase shifting [99] and the binary CGH 

converted from the optical scanning holograms [100] have been proposed recently. 

Static CGH is widely useful in the holographic laser projector for 3D display and structured 

illumination [101]. In contrast with the dynamic CGH using the SLM, the static CGH has a 

very large pixel count. For instance, with the industrial e-beam lithography the minimum 

feature size of the e-beam writing can reach to 50 nm, and a hologram of one square inch size 

can be written within 6-8 hours [102]. With a pixel size of 50 nm, a CGH of 8 x 8 mm (1/3 x 
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1/3 inch) typical physical size for the laser projector can have 160,000 x 160,000 = 25.6 

gigapixels. The number of degrees of freedom can be higher by a factor of 6.25 when defining 

the e-beam focal spot size of 2 nm size, blurred by photoresist diffusion to 20 nm as the pixel 

size. In this chapter, we focused on the design of binary CGHs, which are easy to fabricate 

and duplicate. The binary amplitude (0,1) and binary phase (-1,1) CGHs consist of binary 

apertures. Within the scalar diffraction limit, the apertures of subwavelength size must be 

excluded in the CGH, so that the very high pixel count of the CGH will serve for the high 

number of degrees of freedom in the CGH design and for the high definition of the aperture 

shapes. With the conventional laser lithography, a typical CGH can be of 65,000 x 65,000 = 

4.3 gigapixels with 1 m  pixel size [103], which is also a large pixel count. Therefore, the 

challenge is how to manage such a high number of degrees of freedom in the CGH design 

for image reconstruction of high quality with low error. 

The CGH technology has made important progress recently in industrial scale with the dot 

matrix hologram and holographic prints. The former consists of arrays of local gratings of 

different specific pitches, orientations and modulation depths with one local grating 

recording and reconstructing one image point [104]. The latter consists of array of hogels, 

which is based on a spatial and spectral discretization of computed fringe pattern of the 

hologram [105]. With the advantages for easy design, low request for the coherence of 

illuminating light and possibility of colorful display, the dot matrix holograms and 

holographic prints are widely used for 3-D display and security applications. However, the 

discrete sampling in the object and hologram domains creates blurring and loss of fidelity in 

the image. The dot matrix hologram and the holographic prints are not capable of wavefront 

reconstruction. Moreover, in the fabrication, the local gratings and hogels are displayed on 

the SLM and recorded optically as grayscale fringes, so that the dot matrix hologram and 

holographic prints are not binary CGHs. 

This chapter is involved with the binary CGHs to explore their very high SBWP for the best 

performance. Conventional design of the binary hologram with the Gerchberg-Saxton 

iterative algorithm does not produce satisfactory result as the hard-cut of the continuous 

phase CGH to binary phase CGH after the iterative design can result in high reconstruction 

error, while the hard-cut within the iteration loops can lead to stagnation of the iterations. 
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The binary CGHs are better designed with the Direct Binary Search (DBS) method. The DBS 

applies the metropolis process to scan the CGH. Starting from a random binary matrix the 

sign of the bit in a pixel is inverted one-by- one. The inversion, which reduces the error, is 

retained. Otherwise, the inversion is rejected. The DBS is essentially a local search approach. 

The genetic algorithm (GA) has a higher probability to achieve a global optimization. In 

addition, the digital halftone and error diffusion techniques are also useful in the design of 

the binary CGH.  However, all the above methods become unpractical for the computation 

of the CGH of high pixel count.  

As the binary CGH consists of binary polygonal apertures of arbitrary shapes, the latter may 

be designed and optimized directly. The analytical Abbe transform is used to compute the 

apertures diffraction as a coherent addition of the diffracted fields from all the straight edges 

of the polygonal apertures. The two-step optimization algorithm consisting of the hybrid 

genetic algorithm (GA) for encoding the binary phases of the apertures, followed by the direct 

search for optimizing positions of the floating co-vertices of the apertures was developed. An 

example design for a binary CGH of 7744 x 7744 pixel size reconstructing a grayscale level 

image with the reconstruction error of 2% is shown. 

 

3.4 Abbe transform 

In this section, we briefly introduce the Abbe transform, which was used for computing the 

diffraction fields of 2D objects, as stated by Straubel in his 1888 dissertation and, more 

recently, by Komrska in 1982, who applied the Abbe transform to the diffraction of polygonal 

apertures [106].  

The Fraunhofer diffraction of an aperture can be computed by the Abbe transform. When an 

aperture 1 2( , )   of unit transmission is illuminated by a plane wave, the complex- valued 

diffracted field is computed as 

 
( ) exp( 2 )U p i p d  


= −   (3.1 ) 
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where 1 2( , )    and ( , )p m n  is the position vector in the aperture and the Fraunhofer diffraction 

plane, respectively. Eq. (3.1) represents the Fourier transform of the aperture 1 2( , )  . If the 

aperture is periodically repeated in the plane 1 2( , )  , the diffraction pattern consists of 

punctual diffraction orders located by the integer coordinates (m, n). 

The integrand ( ) exp( 2 )i p   = −   are the plane waves satisfies the Helmholtz equation 

2 2 0k  + =  with the wave vector 2k p= , so by using of the 2D Gauss theorem, the Eq. 

(3.1) can be rewritten as 

 2

2 2

1 1
ˆ( )

(2 ) (2 ) C
U p d ndl

p p
  

 

− −
=  =     (3.2 ) 

where C is the boundary of the aperture , n̂  donates the outer normal to the contour, and 

dl  is a vector of differential length along C. Since 2i p  = − , the 2D Abbe transform of 

the surface integral in Eq. (3.2) is a contour integral computed as 

 
2

ˆ( ) exp( 2 )
2 C

i
U p i p p ndl

p
 


= −  

 (3.3 ) 

The transformation of the surface integral in Eq. (3.1) into the contour integral along the 

boundary C of the aperture is referred as the 2D Abbe transform.  

Furthermore, if the boundary C is polygonal, the contour integration in Eq. (3.3) becomes a 

summation of the contributions from its straight edges as 

  (3.4 ) 

where Q  is the number of the straight edges in the polygon, with  denoting 

position vector of the vertex, and qM denoting the midpoint of the edge q , which has the 

length qL
, the unit external normal vector 

ˆ
qn
 and the unit tangent vector 

ˆ /q q qt L L=
, as shown 

in Fig. 3.1, and 
( ) ( ) ( )sin sinc x x x =

. From Eq. (3.4), the diffraction of a straight edge q, 

shows maximum amplitude on a line normal to the edge and passing through the midpoint of 

the edge. On this line
ˆp n  is maximum and 

ˆsin ( ) 1q qc p t L =
. The diffraction amplitude 
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decreases fast from the midpoint when the position vector p  leaves the direction of the edge 

normal. The phase of the diffraction pattern of edge q is expressed as
exp( 2 )

qMi p 
. The 

diffraction pattern of the polygonal aperture is then the coherent summation of the diffraction 

patterns of all its edges. 

 

Fig.  3.1 Schematic diagram of polygonal aperture Ω with Q=5 straight edges. 

 

3.5 Design of binary CGH 

The binary amplitude-only CGH was first invented by Lohmann in 1967. The design of the 

binary CGH using the iterative phase retrieval algorithm does not result in good performance. 

Moreover, the iterations with the fast Fourier transform (FFT) of the CGH of 8,000 x 8,000 

pixel size is not effective, and the FFT of the potential CGH of 160,000 x 160,000 pixels 

could be prohibited by the high computational cost. The direct binary search (DBS) in general 

results in a good performance [37]. The DBS can be accelerated by using the analytical 

expressions with some acceptable approximations to compute the cost function directly 

without computing the reconstructed image with the FFT at each inversion of the bit [38]. As 

the search progresses, the pixels assigned with the same binary values are clustered to form 

polygonal apertures of arbitrary shapes. In the DBS after the first round of scanning the 

apertures in the CGH are basically formed. The subsequent rounds by the DBS can reduce 

the error further. However, for binary CGH with very high SBWP the conventional design 

methods would fail by the prohibited computational cost. 

 

 3.5.1 Triangle-based layout 
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As we mentioned earlier, the binary CGH consists of polygonal apertures. Since any 

arbitrary-shaped polygonal aperture can be divided into arbitrary-shaped elementary 

triangular apertures, the design for the binary CGH can be based on the component triangles. 

Each period of the binary CGH is divided into MxN rectangular cells. Each cell of PxQ pixels 

is further divided into four triangles, labeled with the index s = 1-4. The co-vertex of the 4 

triangles in each cell is not fixed at the center of the cell but can be floating within a 

predefined region, so that the component triangles can have arbitrary shapes, as shown in Fig. 

3.2. After the triangles are assigned with binary values, the neighbouring triangles of the 

same binary value are clustered to form polygonal apertures in the CGH. In the proposed 

design, the number MxN of the cells are equal to the number of pixels in the reconstructed 

image. The size PxQ of the cells is decided by the available SBWP of the CGH with 

consideration of two facts: First, the size PxQ does not affect the computational cost, as the 

diffractions are computed with the analytical Abbe transform. Second, the physical size of 

the cell must be larger than the wavelength, as the design uses the scalar diffraction theory. 

3.5.2 Diffraction of binary CGH 

Consider now a binary CGH with the period divided into MxN rectangular cells. Each cell of 

PxQ pixels is divided into four triangles. In all the cell (j, r) with j=0, 1, 2, …, M-1 and r=0, 

1, 2, …, N-1, the 4 triangles are indexed by s=1…4 in the same manner, as shown in Fig. 3.2. 

The co-vertex of the 4 triangles in each cell is at an arbitrary location in the cell. Referring to 

Fig. 3.2 (a) and applying the Abbe transform Eq. (3.4) to a particular triangular aperture of 

index s located in the cell (j, r), carefully writing down the position vector ( , )p m n  and the 

normal, tangent and midpoint position vectors, 
ˆˆˆ, , Mn t 

 for each edge q, we obtained the 

diffracted field of the aperture s, as a coherent summation of the contributions from its three 

edges as  

 ( ) ( )  , , , , , , exp 2 exp ( , )s s s

m n
U m n j r m n j r i j r i j r

M N
 

   
=  − +    

   
 (3.5 ) 

where ( , )s j r  is the binary phase value of the aperture s, and   ( , , , )s m n j r  is from the Abbe 

transform.  
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Fig.  3.2 CGH layout (a) One period of CGH with rectangular cells divided to four triangular apertures; (b) 

arbitrary-shaped triangles in a cell. 

For a triangular aperture s =1 in cell (j, r), 1( , , , )m n j r is expressed as 

 

( )
( ) ( )

( ) ( ) ( ) ( )

1 2 2

, ,
, , , sin exp 1

2 ( )

, , , ,
sin 1 exp 1

c c

c c c c

y j r x j ri n m m m n
m n j r c i

M M M N Q M Pm n

x j r y j r x j r y j rm n m n
c i

M P N Q M P N Q

m






        
 = − − +  +  −            +           

       
 − +   −  + +                   

+
( ) ( ) ( ) ( )

( ) ( )

, , , ,
sin

, ,
exp

c c c c

c c

y j r x j r x j r y j rn m n
c

N Q M P M P N Q

x j r y j rm n
i

M P N Q


        
 − +    − +  −            

         

   
−  +      

     (3.6 ) 

 
(a) 

 
(b) 
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which depends only on the coordinates of the 3 vertices: two vertices are at the two corners 

of the cell, and the third one at (xc, yc) is the co-vertex of the 4 triangles in the cell (j, r).  

In the same way, the complex-valued function 2 ( , , , )m n j r  is given by 

 

( )

( ) ( ) ( ) ( )

( ) ( )

2 2 2

2
, , , sin exp

2 (m n )

, , , ,
1 1 sin 1 1

, ,
exp 1 1

c c c c

c c

i m n m n
m n j r c i

N N M N

y j r x j r x j r y j rm n m n
c

N Q M P M P N Q

x j r y j rm n
i

M P N Q






       
 = − +      

+       

          
+  − +  −  − +  −             

          

    
−  + +  +   

   

( ) ( )

( ) ( ) ( ) ( )

, ,
1

, , , ,
sin 1 exp 1

c c

c c c c

y j r x j rm n

N Q M P

x j r y j r x j r y j rm n m n
c i

M P N Q M P N Q


      
+  − +  −           

       

          
 − +  − −  + +               
          

 (3.7 ) 

Also, 3 ( , , , )m n j r and 4 ( , , , )m n j r  are expressed respectively as 

 

( )

( ) ( ) ( ) ( )

( ) ( )

3 2 2
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


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          
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          

   
−  +  +    
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y j r x j rm n

N Q M P

x j r y j r x j r y j rm n m n
c i

M P N Q M P N Q


     
+  − +  −       

    
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            

 (3.8 ) 
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 (3.9 ) 

If the co-vertices are in the middle of the cells, for the Equations above, we will know that 

3 1( , , , ) ( , , , )m n j r m n j r =  , 4 2( , , , ) ( , , , )m n j r m n j r =  , which is understandable since the 

triangle s=3 (s=4) is centrosymmetric to the triangle s=1 (s=2) with respect to the center of 

the cell (j, r). 
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The complex amplitude of the diffraction pattern of the entire CGH is a coherent addition of 

all the diffracted fields from all the triangular apertures, which is given by 

 

( ) ( )

( ) ( )
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   

  

  

 (3.10 ) 

Note that when two neighboring triangles assigned with the same binary value were merged 

in a polygon, the contributions of their shared edge to the diffraction pattern will be computed 

twice on the same line but in the opposite directions and will be therefore canceled. 

If the locations of the co-vertices in each cell are the same: 
( ) ( ), , y ,c cx j r x j r y 

, it also can 

be seen that, ( , , , ) ( , )s sm n j r m n =   is independent of the cell location (j, r) and the phase value 

( , )s j r  of the aperture. In contrast to ( , )s m n , the remaining factor in Eq. (3.10) depend only 

on the cell position (j, r) and phase value ( , )s j r  of the aperture and are independent of the 

aperture layout in the cell. In such a case, the whole diffraction pattern could be rewritten as 
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 (3.11 ) 

For the Eq. (3.11), two factors contribute to the diffraction patterns of triangle-based CGH: 

the position (xc, yc) of the co-vertex in each cell and the phase value φs of each triangular 

aperture, which provide a large number of degree of freedom to be exploited. Basically, the 

position (xc, yc) of the co-vertex could be take any values as long as 1<xc<P and 1<yc<Q. For 

the binary CGH, the phase value φs could only be 0 or π. 

Form the Abbe transform, we know that the diffraction of a polygonal aperture with straight 

edges may be computed by the analytical expressions, which depend only on the positions of 

its vertices. This conclusion could also be understood by Sommerfeld’s qualitative discussion 

[107]: a straight edge of the diffracting object can act as an infinitely narrow slit, which sends 

a light fan in the direction perpendicular to the edge, and the fan width is inversely 

proportional to the edge length. The diffraction pattern is a coherent summation of all the 
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light fans from all the edges of different orientations and lengths in the CGH. Thus, the basic 

physical elements in the binary CGH for the diffraction are the straight edges of the apertures. 

Optimization of the binary CGH by varying the orientations and length of all the straight 

edges, i.e. the arbitrary shapes of the apertures, could be efficient, as will be shown later. 

 

3.6 Design algorithms 

To manage the high number of degrees of freedom, the proposed design for the binary CGH 

is performed in two steps. The first step is to assign the binary phase values to the triangular 

apertures. This step uses the hybrid GA. The second step is to optimize the positions of the 

floating co-vertices of the 4 triangles in the cells. That optimizes the aperture shapes and the 

lengths and orientations of the edges. The second step uses the direct local search algorithm. 

3.6.1 Hybrid genetic algorithm for assigning binary phases 

The CGH consists of MxN rectangular cells with each cell of PxQ pixels divided into 4 

triangular apertures. In the first step, the binary phase values in the component triangular 

apertures are assigned with the hybrid GA. All the co-vertices of the 4 triangles in the cells 

are at the cell centers, such that a square cell consists of 4 right isosceles triangles at different 

positions associated with the index s = 1- 4. The shapes of the triangles will not be altered in 

the first step. The chromosomes are the vectors of 4MxN bits. Each bit is encoded with values 

1 or -1, representing the binary phase value of the corresponding triangle in the binary CGH. 

The decoding procedure from the bits of a chromosome to the binary value of a CGH is: For 

a randomly generated chromosome X with 4MN genes represented by 1 or -1, the first four 

value X1, X2, X3, X4 of the genes in a chromosome X is assigned to the four triangular s=1, 

2, 3, 4 in the cell (j=0, r=0), and then the second four value X5, X6, X7, X8 to the four triangular 

s=1, 2, 3, 4 in the (j=1, r=0), and so on, till the last four value  X4MN-3, X4MN-2, X4MN-1, X4MN 

to these in the cell (j=M-1, r=N-1).  In the GA, an initial population of N0+2 chromosomes 

are generated by a random bit generator with a uniform probability distribution at the 

beginning. The value of N is usually between 60~120. A large number of population would 

cost too much time to convergence while a small number would make it hard to convergence 
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a good enough solution. In the classical GA, we use the rank-based selection, the nonlinear 

cumulative normal distribution fitness, the multiple point crossover and the elitism. 

Moreover, a local search is applied in the process of GA, which could accelerate the speed 

of convergence. The CGHs represented by the chromosomes are evaluated by the cost 

function, e.g. root-mean-square (RMS) errors of their reconstructed images, which defined 

as 

 
( ) ( )( )

/ 2 /2 2
2 2

/2 /2

, ,
M N

t

a M b N

e f a b f a b
=− =−

= − 
 (3.12 ) 

where the integers a and b define the locations of pixels, f(a, b) and ft(a, b) are the diffracted 

amplitude of the reconstructed image and the ideal diffracted amplitude of the target image, 

respectively. 

The selection based on the error values often leads to a premature convergence. Thus, the 

chromosomes in the population are first ranked according to their errors in an ascending order. 

The best chromosomes with the least errors are ranked at the top rank and the worst one is 

ranked at the bottom. Moreover, the two worst chromosomes are discarded from the 

population for the reproduction. A roulette wheel selection is performed N0 times for matting 

the chromosomes, based on the fitness, which is in fact the the selection probability defined 

as 
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 (3.13 ) 

which is then normalized as 

 
( ) ( ) ( )0

/
N

p
p p p


   =  
 

 (3.14 ) 

where Cg(p) is the cumulative normal distribution, p is the rank of the chromosomes, and 

μ=N0/2 is the mean value and σ= N0/6 is the standard deviation of the normal distribution, 

respectively.  
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Fig.  3.3 The selection probability and cumulative selection probability distribution for all ranked 

chromosome. 

In the roulette wheel process, a random number r ranged from 0 to 1 is generated by the 

random number generator with the uniform probability distribution. If '( 1)p −   '( )r p , 

then the chromosome at rank p is selected. For example, in Fig. 3.4, if r=0.84, the 

chromosome ranked at p=37 has been selection. With this high nonlinear fitness function, 

the better individuals with lower errors have higher probability to survive and to produce the 

offspring of next generations. 
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Fig.  3.4 The selection probability and cumulative selection probability distribution for all ranked 

chromosome. 
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After N0 times selection, a mating population is formed, then two genetic operators, crossover 

and mutation, are applied to the chromosomes in the mating population. In the double-point 

crossover, the position of the first exchange point was randomly chosen between 1 to 4MN-

1. The position of the second exchange point was randomly chosen between the first point 

position and 4MN. For randomly two paired chromosomes, the bits between these two points 

are exchanged and thus two new chromosomes are produced. The double-point crossover is 

performed with a high probability Pc>0.6 and If the crossover does not occur, the paired 

chromosomes enter the population directly for mutation.  

 

Fig.  3.5 Schematic diagram of two-point crossover 

After the crossover, the mutation for maintaining the genetic diversity of the genes is 

performed, which flips each bit in all the chromosome with an exponentially decreasing 

mutation probability Pm defined as Pm(k+1) = αPm(k) = αkPm(1) with 1  . Thus Pm(k) 

decreases with the generation number k. For every bit in the chromosomes a random number 

R ranged in (0, 1) is generated. If R < Pm(k), then the bit is flipped. Otherwise it is not flipped. 

At the begin of the mutation, a relatively large number of bits are inversed, while close to the 

end of the mutation, only a few number of bits are flipped as Pm(k) decreases with k. 

Furthermore, the elitism was applied to prevent the best 2 individuals in the family from 

deterioration. The elites were directly entered to the next generation without crossover and 

mutation. In the same time, the 2 worst members are discarded in each generation. 

The hybrid GA is a combination of the GA with the local search. As the classical GA 

performs long jumps in the solution space to look for the global minimum, introduction of 

the local search process within the GA can improve the optimization significantly [15]. 

Before sending the population to next generation, a local search is performed. The direct 

binary search (DBS) is applied to a randomly chosen chromosome in the population by 

scanning and flipping the binary phase value of every bit in the chromosome and retained 
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Fig.  3.6 Flowchart of the hybrid GA for designing CGH of polygonal apertures. 
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only the change which reduces the error. The new diffraction pattern T’(m, n) after flipping 

phase value of triangle s in cell (j,r) could be computed as 

 
( ) ( ) ( ) ( ), , , , , , , ,s sT m n T m n U m n j r U m n j r = − +

 (3.15 ) 

, where U and U’ is the diffraction pattern of the triangular aperture s in cell (j,r) before and 

after flipping the phase value, respectively. The hybrid GA is iterated until the convergence 

to a final solution.  Fig. 3.6 shows the flowchart of the hybrid GA with the local search 

including the elitism.  

 

3.6.2 Direct search for optimization of the floating co-vertices 

After the hybrid GA for optimizing the binary phase values of all the triangular apertures, the 

best individual in the population is selected for further optimization. In the first step of design 

all the triangular apertures are right isosceles triangles.  In the second step of the design, the 

orientation of the straight edges and the shape of the polygonal apertures are optimized by 

optimizing the position of the floating co-vertex of the 4 triangles in each cell using the direct 

search method, resulting in immediate changes of the lengths and orientations of 4 straight 

edges and the shape of the 4 triangles. The floating of the co-vertices of the 4 triangles creates 

additional degrees of freedom and can optimize the binary CGH efficiently. The direct search 

algorithm moves each co-vertex step-by-step within a window around the center of the cell. 

The move that reduces the cost function was retained. Otherwise, the move is rejected. The 

relative small window located in the middle of the cell was used to prevent the potential large 

digitization error since the co-vertex move too close to edges of the cell. The new diffraction 

pattern T’(m, n) after move the co-vertex in the cell (j, r) could be computed as 

 
( ) ( ) ( ) ( )

4 4

1 1
, , , , , , , ,

s s

s ss s
T m n T m n U m n j r U m n j r

= =

= =
 = − +   (3.16 ) 

where U and U’ is the diffraction pattern of the triangular aperture (j, r, s) before and after 

moving the position (xc, yc), respectively. For sake of computation time, the move of the co-

vertex was stepwise with a discrete step of 4 pixels. The window, in which the co-vertex was 

floated, was located in the middle of the cell to prevent from the co-vertex too close to 

boundary of the cell, resulting in the too narrow triangular apertures. The direct search scans 
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the CGH cell-by-cell in several rounds. The direct search for optimal co-vertex positions 

could also be performed within the hybrid GA loops for improving the best chromosome in 

each generation. However, this algorithm can take too much time but did not always produce 

better performance. 

 

3.7 Experimental results 

The binary CGHs with arbitrary-shaped polygonal apertures were designed by the hybrid GA 

followed by the optimization of the co-vertex positions. A design example was for a grayscale 

image of the notepad keyboard. The image size was of 242 x 242 pixels with an object 

window of 240 x 240 pixels. The number of the cells per period in the CGH was set as M = 

N= 242. Each cell was chosen to have a size of PxQ = 32x32 pixels. Assume a pixel size of 

50 nm by the e-beam lithography, the cells of 32x32 pixels have a physical size of 1.6 x 1.6 

m , which is larger than the illuminating wavelength. The CGH was of 7744 x7744 pixels 

with the physical dimension of 0.4 x 0.4 mm. 

3.7.1 First step of hybrid GA 

In the first step of design with the hybrid GA, the initial population of 80+2 chromosomes 

were generated at random. Each chromosome was a vector of 4MN = 234,256 bit long. After 

evaluating the image reconstruction errors and discarding the two worst solutions, the 80 

chromosomes were selected with a roulette wheel game for reproduction of next generation. 

The selection probability was based on the rank of the chromosomes as given in Eq. (3.14). 

The roulette wheel games were performed 80 times, mating 40 pairs of parent chromosomes. 

Each pair generated 2 descendants with the double-point crossover, in which the crossover 

probability was Pc=0.9. The mutation with the exponentially decreasing probability Pm(k+1) 

= αPm(k) = αkPm(1) was performed  with Pm(1) = 0.1 and α=0.985 and k is the number of 

generation. 

After the mutation, 80 new offspring chromosomes were produced in addition to the 2 elite 

chromosomes, which were transmitted directly without crossover and mutation. Then the 

local search was performed for one chromosome randomly chosen in the new population. 
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The local search scanned and flipped the binary phase value of every bit in the chosen 

chromosome and retained only the changes which reduced the error. Finally, the new 

population of 82 chromosomes went to the same process for the next population. 

The minimum normalized RMS error of the best chromosome in the population and the mean 

error of the population are plotted in Fig. 3.7 (a) as a function of the number of generations.  

The mean error of the whole population showed some fluctuations before converged to 0.12 

after 300 generations. The reason is that the random selection and crossover can not guarantee                
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Fig.  3.7 Results from the hybrid GA for assigning binary phases: (a) Normalized RMS errors as a function of 

generation; (b) Grayscale image of keyboard reconstructed by the CGH. 

 

the chromosomes get better after each generation. But the whole population was well evolved 

in general as the generation goes. The minimum error of the best solution dropped drastically 

in few first generations. This can attribute to the local search incorporated in the GA. After 

the first generation of hybrid GA the error was decreased to 0.3. At this level, the binary 

apertures in the CGH were basically formed. Then, the minimum error decreased 

monotonically thank to the elitism, as can be seen in Fig. 3.7 (a). The minimum error was 

reduced to 0.14 after the first 50 generations and reached 0.1 after 300 generations. In the 

last 100 generations, the minimum error decreased from 0.11 to 0.10. This was still a good 

convergence. The reconstructed image with the normalized RMS error of 0.10 from the best 

chromosome after 300 generations is shown in Fig. 3.7 (b), in which the noise on the image 

is still visible. 

3.7.2 Second Step of floating co-vertices 

In the hybrid GA the binary phase values were assigned to all the right isosceles triangular 

apertures. Then, the best chromosome in the population was chosen for further optimization. 

In this step all the co-vertices in the cells were permitted to float and a direct position search 

for the optimal co-vertex positions was performed. This step changed the shapes of all the 

triangles, and also changed the lengths and orientations of all the straight edges of the 

apertures. This step was critical to improve the quality of the reconstructed images, according 

the qualitative description by Sommerfeld for the Abbe transform.  

The co-vertex was floating in a window of 8 x 8 pixels located at the center of the cell of 

32x32 pixels size to avoid the generations of too small triangles. The co-vertex in each cell 

was floated step-by-step with a discrete step of 4 pixels in row and column, respectively, 

resulting in 9 possible positions to be chosen. The co-vertex position which reduces the error 

was kept, otherwise it was reject. The direct search was performed within a cell and then cell-

by-cell and scanned the CGH for 10 rounds. 
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The error was decreased from 0.10 by the hybrid GA to 0.051 after first round of direct 

position search. It was further reduced to 0.02 after 10 rounds, as shown in Fig. 3.8 (a). 

Although only 9 positions in each cell could be chosen for a co-vertex, the direct search 

showed a good performance. The reconstructed image with the normalized RMS error of 

2.03% is shown in Fig. 3.8 (b).  The random noise level in Fig. 3.8 (b) was reduced 

significantly, compared with that shown in Fig. 3.7 (b).                   

                  

Fig.  3.8 Results by Direct Search for optimal co-vertex positions. (a) Normalized RMS errors after each 

round of the search, which converges to 2%; (b) Grayscale image of keyboard reconstructed from the 

designed CGH. 
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The designed binary CGH to give the reconstructed image in Fig. 3.8 (a) is shown in Fig. 3.9 

(a) and an enlarged part of the CGH is shown in Fig. 3.9 (b), in which we can see clearly the 

irregular polygonal apertures formed by the optimized binary valued triangles. As the design 

used the Abbe transform to compute the reconstructed image, and the resulting Fig. 3.8(b) 

was computed with the Abbe transform. 

                 

Fig.  3.9 (a) Designed binary CGH; (b) 8X enlarged part of CGH 
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For the experimental validation, the reconstructed image was computed with the fast Fourier 

transform (FFT) of the binary CGH of 7744 x7744 pixel size, but not with the Abbe transform. 

This FFT simulation is widely accepted as reliably close to optical demonstration. A central 

part of the 8X enlarged image is shown in Fig. 3.10, where the noise was dispersed to the 

surrounding of the object window. The error in the reconstructed image computed by the 

FFT was 15.12%. The main source of the error in the FFT results might come from the fact 

that the aperture edges, which are not parallel to horizontal and vertical axes, were discretized 

to the stepwise forms in the FFT, while they were all straight lines in the Abbe transform.  

This error may diminish with the fabrication process, which could smooth out the 

subwavelength stepwise features in the CGH. 

 

Fig.  3.10 8X enlarged part of the image reconstructed by FFT from the designed CGH. 

It took 50 hours for the total design and simulation, based on a Matlab script by a desk 

computer with a processor of intel (R) Core (TM) i7-4770 CPU operated on a 64-bit Window 

7 system. The hybrid GA took 32 hours for the 300 generations. The direct search took 18 

hours for the 10 rounds. This computation cost for design a static CGH was acceptable, 

compared with its fabrication cost. 
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3.8 Conclusion 

The static computer-generated hologram (CGH) has a very high space bandwidth product 

(SBWP), which can be explored for the high performance of the CGH. For the binary CGH 

the arbitrary-shaped polygonal apertures were optimized with the hybrid genetic algorithm 

for the binary phase values of the apertures and the direct search algorithm for the shapes of 

the apertures. The Abbe transform permits to express the diffraction pattern of a binary CGH 

of polygonal apertures with the analytic expressions, which can be computed independently 

of the size of the CGH. The reconstructed image can be expressed as a coherence addition of 

the diffraction patterns from all the straight edges of different orientations and lengths. The 

proposed design strategy permitted handling the binary CGH of very high SBWP and 

resulting in high performance with low reconstruction error of 2% for a grayscale image. The 

nanometer scale resolution of the e-beam writing has been used for providing the very high 

number of degrees of freedom in the CGH design for the high performance.  

Due to the limitation of the computation time, the present design example showed a CGH of 

a physical size of 0.4 x 0.4 mm only. For a realistic CGH of 8 x 8 mm size (1/3 inch) in the 

laser projectors, a binary CGH of 154,800 x 154,800 pixels would be computed for a 

reconstructed image of 5,120 x 5,120 pixel size. The research is still under ways for designing 

large size binary CGH using the parallel computation technology on the supercomputers. 
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Chapter 4 Design quadrilateral apertures in binary 

computer-generated holograms of large space bandwidth 

product 

 

4.1 Résumé 

Une nouvelle approche pour concevoir l'hologramme binaire généré par ordinateur d’un très 

grand nombre de pixels est proposée. La diffraction des ouvertures HGO est calculée par la 

transformation analytique d’Abbe et en considérant les bords de l'ouverture comme les 

éléments de diffraction de base. Le coût de calcul est indépendant de la taille de HGO. Les 

ouvertures polygonales de forme arbitraire dans le CGH se composent d'ouvertures 

quadrilatérales, qui sont conçus en assignant les phases binaires en utilisant l'algorithme 

génétique parallèle avec une recherche locale, suivi de l'optimisation des emplacements des 

co-sommets avec une recherche directe. La conception se traduit par des performances 

élevées avec une faible erreur de reconstruction d'image. 

 

4.2 Abstract 

A new approach for designing the binary computer-generated hologram of a very large 

number of pixels is proposed. Diffraction of the CGH apertures is computed by the analytical 

Abbe transform and by considering the aperture edges as the basic diffracting elements. The 

computation cost is independent of the CGH size. The arbitrary-shaped polygonal apertures 

in the CGH consist of quadrilateral apertures, which are designed by assigning the binary 

phases using the parallel genetic algorithm with a local search, followed by optimizing the 

locations of the co-vertices with a direct search. The design results in high performance with 

low image reconstruction error. 

 

4.3 Introduction 
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Computer-generated hologram (CGH) has gained great development and success since its 

invention by Lohmann and Paris in 1967 [8] for the applications in wavefront engineering, 

structured illumination, 3D display, immersion entertainment etc. The dynamic CGH 

encoded on the spatial light modulators (SLM) can have a resolution of 1920 x 1080 pixel, 

as that for the high definition television (HDTV) images. However, such a space bandwidth 

product (SBWP) is still too low for encoding a CGH. The research in the design of dynamic 

CGH mainly focuses on the fast synthesizing of CGHs in real time. On the other hand, the 

static CGH can have a very high SBWP, thanks to the advanced fabrication technology. For 

instance, with the industrial e-beam lithography, the minimum feature size of the e-beam 

writing can reach to 50 nm, and a static CGH of 1-inch square (25.4 x 25.4 mm2) size can be 

written within 6-8 hours. With a pixel size of 50 nm, a small CGH of 1-inch square size can 

have 508,000 x 508,000 = 258 gigapixels. This SBWP can be still 6.25 times higher when 

using the e-beam of 20 nm resolution.  The challenge in the design of static CGH is then how 

to manage such a large number of degrees of freedom to achieve the best performance. 

In the practical holography industry, the static holograms can have a size much larger than 

25.4 x 25.4 mm2. The very high SBWP is beneficial for the techniques such as the dot matrix 

hologram [104] and the holographic print [105], which are widely used in the security, anti-

counterfeiting applications and in the 3D display. The holograms consist, respectively, of a 

large 2D array of local diffraction gratings with different grating orientations, pitches and 

depth, or of “hogels”, which are the spatially and spectrally discretized computed local fringe 

patterns. A wide range of visual effects can be achieved by controlling the angles, exposure, 

size, shape, and spacing of the local gratings, or hogles. In the dot matrix hologram and the 

holographic print, one local grating, or one hogel generates one image spot of a given 

intensity. However, the discrete segmentation in the hologram and/or object domain causes 

blurring and loss of fidelity in the image.  

In this chapter, we focused on the binary CGH, which is easy to fabricate and duplicate on 

the substrate. For the binary CGH with high SBWP, the conventional Gerchberg-Saxton 

iterative algorithm [43] becomes inefficient since the fast Fourier transform (FFT) is slow 

for the CGH with a huge number of pixels. Moreover, the hard banalization leads to high 

errors and stagnation of the iterations. The direct binary search (DBS), which invert the sign 
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of each bit scanned, and thus retains the inversion if the error reduced, or rejects it otherwise, 

can generate acceptable performance. It can be accelerated by computing the image 

reconstruction error with analytical expressions directly without performing FFT after each 

inversion of the bit [38]. However, these methods become unpractical due to the huge 

computational burden for CGH with high SBWP. 

A direct design of the polygonal apertures of arbitrary shapes in the binary CGH was 

demonstrated. The Abbe transform [106] was used to compute the diffraction of a polygonal 

aperture of arbitrary shape, as a coherent addition of the diffracted fields from its edges with 

analytical expressions. The computation time of the analytical Abbe transform is independent 

of the size of the CGHs. In this paper, we design the CGH with binary phases and arbitrary-

shaped apertures composed of elementary quadrilateral apertures with floating vertices. The 

quadrilateral apertures layout provides more degrees of freedom for optimizing the aperture 

shapes than that in the triangle aperture layout presented in Chapter 3. In the former layout 

up to 12 edges in a cell can be modified, while in the latter layout, only the co-vertices of the 

4 triangles is floating and only 4 edges can be modified in a cell. 

There is recently a large body of research works on the so-called polygon-based methods for 

synthesizing the CGH in the holographic 3D display applications [108, 109]. This technique 

models the 3D object surface by plural triangular mesh facets, as that used in computer 

graphics, and computes the angular spectrum of the elementary facet, which is the 2D facet 

but at an arbitrary orientation in the 3D space, to synthesize the CGH. Thus, the diffraction 

is computed for the triangular facets on the object. However, the CGH of polygonal aperture 

in this paper is designed by computing the diffraction of the elementary arbitrary quadrilateral 

apertures on the CGH. In this paper, the CGH with arbitrary polygonal apertures are 

optimized with a two-step optimization algorithm, which is the parallel Genetic Algorithm 

(GA) with local search for encoding the binary phases of the apertures, followed by the direct 

search for optimizing positions of the floating vertices of the apertures. An example design 

for a binary CGH of 8192 x 8192 pixel size reconstructing a grayscale level image with the 

reconstruction error of 3.8% is shown. 
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4.4 Diffractions of binary CGH 

In the proposed CGH layout one period of the CGH is divided into M x N rectangular cells 

of the same size of P x Q pixels. For a cell (j, r) with the 4 corners at A(j/M, r/N), B((j+1)/M, 

r/N),  C((j+1)/M, (r+1)/N), and D(j/M, (r+1)/N),  there are 4 vertices G1, G2, G3, G4 floating 

along the corresponding straight edges. The 4 vertices with a co-vertex G0 floating in the 

internal of the cell divide the cell into 4 quadrilateral apertures, indexed by s = 1-4, as shown 

in Fig. 4.1(a). In the local coordinate system (x, y) with the origin at the corner A of the cell 

(j,r), the coordinates of the vertices are G1(x’(j, r)/P, 0), G2(1, y’(j, r)/Q), G3(x’’(j, r)/P, 1), 

G4(0, y’’(j, r)/Q) and G0(xc(j, r)/P, yc(j, r)/Q), as shown in Fig. 4.1(b). 

 

Fig.  4.1  CGH layout, (a) One period of CGH with rectangular cells divided to four quadrilateral apertures; 

(b) arbitrary-shaped quadrilateral in a cell. 

 
(a) 

 
(b) 
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In Chapter 3, the CGH’s polygonal apertures of arbitrary shapes were composed of 

elementary triangular apertures. The cell was divided into 4 triangles whose shapes were 

optimized by moving the central co-vertex G0 with the 4 vertices G1, G2, G3, G4 fixed at the 

corners of the cell. The new layout, proposed in this Chapter, provides a greater number of 

degrees of freedom, as the 4 vertices of the 4 quadrilateral apertures can move independently 

along the respective edges of the cell. In the triangle aperture layout, only the co-vertices G0 

in the cell is floating, while in the quadrilateral aperture layout, up to 12 edges could be 

modified by moving the G0, G1, G2, G3, G4 respectively. Arbitrary shapes of the apertures 

could be achieved by moving the co-vertices of the quadrilateral apertures. 

The Fraunhofer diffraction of the quadrilateral apertures can be computed by the Abbe 

transform, which reduces the surface integral over an aperture to a line integral along the 

closed boundary of the aperture.  In the case of polygonal aperture, the line integral along the 

boundary becomes an algebraic summation as 
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 (4.1 ) 

where Q  is the number of the edges in the polygon, 1 2( , )    and 
( , )p m n

denote the position 

vector in the aperture plane and the Fraunhofer diffraction plane, respectively, and qM

denotes the midpoint of the q-th edge, which has the length qL , the unit external normal 

vector 
ˆ

qn
 and the unit tangent vector 

ˆ /q q qt L L=
.  Eq. (4.1) is deduced in Chapter 3. Thus, the 

complex-valued diffraction pattern of a quadrilateral aperture of index s in the cell (j, r) with 

a phase value  
( , )s j r

 as shown in Fig. 4.1(b), can be written as 

 ( ) ( ) ( ), , , , , , exp 2 exp ,s s s

m n
U m n j r m n j r i j r i j r

M N
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   
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   
 (4.2 ) 

where 
( , , , )s m n j r

 is the diffraction pattern of the aperture s in the cell (j, r) as computed from 

Eq. (4.1). With the vertices defined in the local coordinate system in a given cell (j, r), 

( , , , )s m n j r
depends only on the shape of the aperture and the local coordinates of its vertices. 
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Thus, the diffraction pattern of the cell is a summation of Us with s = 1 – 4. The complex 

amplitude of the diffraction pattern of the entire CGH is a coherent summation of the 

diffracted patterns of all the cells for j = 0, 1, 2, … M-1 and r = 0, 1, 2, … N-1.  For the 4 

quadrilateral apertures in the cell, 
( , , , )s m n j r

 can be expressed as 
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where 1 12H H  denote the line integrals along the cell edges AG1, G1B, BG2, G2C, CG3, G3D, 

DG4, G4A, and the lines within the cell G1G0, G2G0, G3G0 and G4G0, respectively. For 

instance, 1
are computed with 
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The line integrals on the apertures’ boundaries are all in the clockwise direction, so that when 

the two neighboring apertures are encoded with the same binary phase value and are therefore 

merged into a larger polygonal aperture, the contributions of their shared edge to the 

diffraction pattern will be computed twice on the same segment, but in the opposite directions 

and will be canceled. For instance, if the apertures s=1 and s=2 in Fig. 4.1(b) are assigned to 
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same binary phase value, and therefore merged to the polygonal aperture ABG2G0G4, the 

diffraction from the shared edge G1G0 actually vanishes because of the line integrals 9H+   in 

1
 and  9H−  in 2

 in the summation  for s = 1 – 4, as shown Eq. (4.3). 

According to the Abbe transform, the basic physical elements for the diffraction in the binary 

CGHs are the straight edges of the apertures. As described by Sommerfeld, a straight edge 

diffracts as an infinitely narrow slit, which sends a light fan in the direction perpendicular to 

the edge with the fan width inversely proportional to the edge length. The diffraction pattern 

of a binary CGH is a coherent summation of that from all the edges of all possible locations, 

orientations and lengths. 

If the locations of points G1, G2, G3, G4, G0 are the same in each cell, all the quadrilateral 

apertures with the same s in all the cells have the same shape and area and the same
( , , , )s m n j r

, 

independently on the location of the cell (j, r), so that the diffraction pattern of the CGH can 

be computed as 
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 (4.5 ) 

where DFT denotes the Discrete Fourier Transform. 

 

4.5 Design algorithms 

To take advantage of the high number of degrees of freedom, the proposed design for the 

binary CGH is performed in two steps. The first step is to assign the binary phase values to 

the quadrilateral apertures, which is implemented by the coarse-grained parallel GA with 

local search [110]. The second step is to optimize the positions of the points G1, G2, G3, G4 

along the boundaries of the cells which is achieved by the direct search algorithm. 
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4.5.1 Coarse-grained parallel GA with a local search for optimizing 

binary phases 

The CGH consists of M x N rectangular cells with each cell of P x Q pixels divided into 4 

quadrilateral apertures. The initial locations of the vertices on the boundaries of the cell are 

the same for all the cells in this step. In the local coordinate system (x, y) with the origin at 

the corner A, the initial setting for G1(x’/P, 0), G2(1, y’/Q), G3(x’’/P, 1), G4(0, y’’/Q) and 

G0(xc/P, yc/Q) was x’=P/4, y’=Q/4, x’’=3P/4, y’’=3Q/4, xc=P/2, yc=Q/2. All the quadrilateral 

apertures with the same s in all the cells have the same shape and area. By using Eq. (4.5) to 

compute the diffraction pattern, the size of the reconstructed image is limited to be equal to 

the number of the cells M x N in the CGH.  

Parallel genetic algorithm (PGA) with a local search is used to assign binary phase to each 

aperture. Parallel genetic algorithm (PGA) can be classified into three different models: 

master-slave PGA, coarse-grained PGA and fine-grained PGA. Coarse-grained PGA is also 

called distributed model or island-based model, which divides the whole population into 

several subpopulations to be computed on separate processors. Each processor executes GA 

on its own subpopulation, meanwhile, the processors would occasionally exchange 

chromosomes with a certain probability so that the good genes could spread to other 

subpopulations.  

The procedures using coarse-grained parallel genetic algorithm to assign the binary phases 

are outlined below: 

1. Initialization 

The binary phase values for all the 4 x M x N quadrilateral apertures of a CGH are encoded 

as an individual chromosome, which is a string of 4 x M x N bits. An initial subpopulation 

of Nsub+1 chromosomes is generated randomly for each processor with a uniform probability 

distribution. The extra one chromosome, as a transit chromosome for replacing the worst one 

by the best one in each generation, will be discarded later. 

2. Evaluation 
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The Nsub+1 chromosomes in each subpopulation are evaluated by the cost function, e.g. mean 

squared errors of the image reconstructed from the CGH presented by corresponding 

chromosome, which defined as 

 

( ) ( )( )
/ 2 /2 2

2 2
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e f m n f m n
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= − 
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where the integers m and n define the locations of pixels, f(m, n) and ft(m, n) are the amplitude 

of the reconstructed image and the target image, respectively. The term of diffraction 

efficiency is not included in Eq. (4.6) for keeping the computational cost low in the 

optimization steps by computing the reconstructed image only within the range 

2 2M m M−  
and 

2 2N n N−  
 instead of in the window of full size. Since in this step, 

the locations of points G1, G2, G3, G4, G0 are the same in each cell, the image reconstructed 

from the CGH could be obtained by Eq. (4.5). 

3. Ranking & Elitism 

The Nsub+1 chromosomes in each subpopulation are ranked according to their ascending 

errors. The best individuals with the least errors are ranked at the top and the worst ones are 

ranked at the bottom. In this step, the worst one will be discarded, meanwhile, the best one 

will be kept as the elite, and entered directly to the pool for local search later without any 

crossover and mutation. The elitism thus prevents the best individual in the subpopulation 

from deterioration. 

4. Selection 

A stochastic universal sampling selection is performed in each subpopulation to produce a 

mating pool, based on the fitness values for the chromosomes. The fitness is defined for the 

chromosome of rank p as  
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The normalized fitness values are then 
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Fig.  4.2 Illustration of stochastic universal sampling selection. 

 

In the selection process for mating, a random number 0 (0,1 )subr N  is generated, then we 

define a number r 

 ( ) 0

1s

s

sub

N
r N r

N

−
= +  (4.9 ) 

where Ns = 1, 2, … Nsub is the index of the selection for mating, as shown in Fig. 4.2.  In each 

selection Ns, if
( 1) ( ) ( )sC p r N C p −  

, where 
( )C p is the cumulative probability of

( )p
, 

then the chromosome at rank p is selected. With the stochastic universal sampling selection, 

the better individuals have a higher probability to survive, while the worse ones would 

disappear eventually. Especially, the chromosome at top rank p=1 is always selected for 

mating with N1=1. While in the conventional roulette wheel selection, it is probable that the 

best chromosomes p = 1, 2 could be not selected.  

5. Crossover 

The genes of the randomly paired chromosomes after the selection are exchanged so that 

offsprings could be produced. The exchanges of genes are implemented by a uniform 

crossover, also known as scattering crossover, enabling the parent chromosomes to 

contribute on the gene level rather than on the segment level as that done in conventional 

single/double point crossover.  

For each pair of chromosomes, a random binary crossover mask of the same length is 

generated first. Where there is a 1 in the mask, the gene of the 1st offspring is copied from 
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the 1st parent, and the gene of the 2nd offspring is copied from the 2nd parent. If there is a 0 

in the mask, the gene from the 2nd parent is assigned to the 1st offspring, and the gene from 

the 1st parent is assigned to the 2nd offspring, as shown in Fig. 4.3. The offspring has 

approximately half of the genes from each parent, although cross over points are randomly 

chosen. Uniform crossover usually occurs with a given high crossover probability Pc > 0.6. 

 

 
Fig.  4.3 Illustration of uniform crossover with a random binary mask. 

 

6. Mutation 

After the crossover, the mutation for maintaining the genetic diversity of the genes is 

performed, which flips each bit in each chromosome with an exponentially decreasing 

mutation probability Pm defined as Pm(k+1) = αPm(k) = αkPm(1) with 1  . Thus Pm(k) 

decreases with the generation number k. For every bit in the chromosomes a random number 

R ranged in (0, 1) is generated. If R < Pm(k), then the bit is flipped. Otherwise it is not flipped. 

At the begin of the mutation, a relative large number of bits are inversed, while close to the 

end of the mutation, only a few number of bits are flipped as Pm(k) decreases with k. 

7. Local search 

Introduction of the local search within a GA can significantly improve the GA convergence. 

Before sending the subpopulation to the next generation, the direct binary search (DBS) is 

performed as the local search and applied to a randomly chosen chromosome from the 

subpopulation by scanning and flipping the binary phase value of every bit in the 

chromosome. The flip, which reduces the error, is retained. Otherwise, the flip is rejected. 

The new diffraction pattern T’(m,n) after flipping phase value of quadrilateral apertures s in 

cell (j,r ) can be computed as 
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( ) ( ) ( ) ( ), , , , , , , ,s sT m n T m n U m n j r U m n j r = − +

 (4.10 ) 

where Us and U’s is the diffraction pattern of aperture s in cell (j,r) before and after flipping 

the binary phase value, respectively. The GA with local search for each subpopulation is 

iterated on each processor till the convergence is achieved. 

8. Migration 

Basically, each subpopulation evolves independently following the steps above on separating 

computing processor, which would result in the low diversity of the population since there is 

no genes exchanging between different subpopulations. Introduction of migration operation 

in coarse grained PGA could increase the diversity by exchanging the chromosomes between 

different processors. There are two key parameters: migration rate, which indicates the 

execution frequency of the migration, and migration number, which determine the 

chromosome number for migration. The migration topology used is the one-way ring 

structure as shown in Fig. 4.4, which indicates that, for instance, on one hand, the best 

chromosomes in subpopulation SP2 is chosen to migrate to replace the worst chromosome 

in subpopulation SP3, on another hand, the worst chromosome in subpopulation SP2 is taken 

the place by the best chromosome migrated from subpopulation SP1. 

 

 

Fig.  4.4  Migration topology for 4 subpopulations: one-way ring structure. 
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Fig.  4.5 Flowchart of the PGA with local search on each processor for designing CGH of polygonal 

apertures. 
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9. Iteration and output 

The coarse-grained parallel GA with local search is executed in an iteration till the solution 

achieve to convergence. In each subpopulation, a best chromosome is obtained on each 

processor as the output. The best chromosome in the whole population is the best one among 

all the output chromosomes from all the processors. Fig. 4.5 shows the flowchart of the 

coarse-grained parallel GA with local search on each processor for designing CGHs. 

 

4.5.2 Direct search for optimal aperture shapes 

After optimization of the binary phase values for all the quadrilateral apertures by parallel 

GA with local search, the best individual in the whole population is selected for further 

optimization. Unlike in the first step of design, where the 4 quadrilateral apertures in all the 

cells are identical, in the second design step, the shape of the polygonal apertures are 

optimized by moving the positions of the vertices G1, G2, G3, G4 in the cells along their 

respective boundary using the direct search method, which results in immediate changes of 

the lengths of the edges on the boundary and the orientations and lengths of the straight edges 

in the internal of the cells, and thus, the shape of all the quadrilateral apertures. The move of 

the co-vertices creates additional degrees of freedom and can improve the performance of 

the binary CGH efficiently. As according to the Abbe transform the diffraction pattern of a 

binary CGH is the coherent summation of all the diffraction patterns of all the edges of 

different orientations and lengths in the CGH. 

In the direct search point G1 first moves along the cell boundary AB, and then point G2, G3, 

G4 moves along the corresponding cell boundary BC, CD, DA in sequence. One move of the 

vertex G1 changes the shapes of both quadrilateral apertures, s1 and s2, the whole diffraction 

pattern could then be computed as 
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where Us and U’s are the diffraction patterns of the quadrilateral apertures (j, r, s) before and 

after moving of the vertex G1. The diffraction patterns after the moves of vertices G2, G3 and 

G4 are computed similarly. One move of vertices G2, G3 and G4 gives, respectively, the whole 

diffraction pattern 
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For the sake of computation time, the moves of G1, G2, G3, G4 are stepwise with given step 

sizes. The moves which reduce the cost function are retained, and otherwise rejected. The 

direct search scans the CGH cell by cell in several rounds. The G0 located at the center of the 

cell can also be floating for further optimization. However, the moves of G0 are restrained to 

prevent it from being too close to the cell boundary and resulting in too small quadrilateral 

apertures. 

 

4.6 Experimental design 

The proposed approach was adopted to synthesize binary CGHs of arbitrary-shaped 

polygonal apertures. A grayscale LOGO image of “International year of light 2015” with 256 

x 256 pixels was used as the target image for reconstruction. The number of the cells per 

period in the CGH was set as M = N = 256. Each cell was chosen to have a size of PxQ = 

32x32 pixels. Assume a pixel size of 50 nm by the e-beam lithography, the cells of 32x32 

pixels have a physical size of 1.6 x 1.6 m , which is larger than the illuminating wavelength. 

Thus the CGH was of 8192 x 8192 pixels with the physical dimension of 0.41 x 0.41 mm for 

one period. The design was performed on a desk computer with Intel (R) Core (TM) i7-4770 

CPU, which provides 4 Cores facilitating for the implementation of the parallel GA. 

4.6.1 PGA with a local search for assigning binary phases 
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In the first step, parallel GA with local search was used for assigning binary phases to each 

quadrilateral aperture. A randomly generated population of 80 chromosomes was divided 

into 4 subpopulations operated on the 4 different Cores. The initial subpopulation of 20+1 

chromosomes was generated at random for each Core. The chromosome was a string of 4MN 

= 262,144 bit long. After evaluating the image reconstruction errors and discarding the worst 

solution, the 20 chromosomes were selected with a stochastic universal sampling method for 

reproduction of next generation. The selection process for mating was based on the rank of 

the chromosomes with the linear fitness value given by Eq. (4.8). The stochastic universal 

sampling was run 20 times for mating 10 pairs of parent chromosomes in each subpopulation. 

Each pair of the parent chromosomes generated 2 descendants with the uniform crossover, 

in which the crossover probability was Pc = 0.8. Then, the mutation with the exponentially 

decreasing probability Pm(k+1) = αPm(k) = αkPm(1) was performed with Pm(1) = 0.1 and 

α=0.97, where k is the number of generation. After the mutation, 20 new offspring 

chromosomes were produced in addition to the 1 elite chromosome, which was transmitted 

directly without crossover and mutation. The migration is executed in every 5 generations. 

The elite was sent to the subpopulation on a different Core, and meanwhile, an elite from 

subpopulation on another Core was received, as shown in Fig. 4.4. Then, the local search was 

performed for one chromosome randomly chosen in the new subpopulation of 20+1 

chromosomes. Finally, the new population of 21 chromosomes went to the same process for 

the next population. In each subpopulation, there was a best chromosome. After evaluation 

of the 4 best chromosomes on 4 different Cores, the optimized one in the whole population 

was obtained in each generation.  

After 100 generations of parallel GA in the first step, the normalized root mean square (RMS) 

errors of the best chromosome in the whole population are plotted in Fig. 4.6(a) as a function 

of the number of generations.  The minimum error dropped to 0.32 only after one generation 

in the parallel GA. This attributes to the local search for one randomly selected chromosome 

in each subpopulation. Only after 10 generations, the error decreased to 0.18. Furthermore, 

it reduced to 0.12 after 50 generations and reach to 0.09 after 100 generations, as shown in 

Fig.4.6 (a). The minimum error of the best chromosome in the whole population decreased 

monotonically thanks to the elitism. The RMS errors of the best chromosome in each 
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subpopulation are also plotted in four different colors in the subsection of Fig. 4.6 (a) as a 

function of the number of generations.  

 

Fig.  4.6 Results from the parallel GA with local search for assigning binary phases: (a) Normalized RMS 

errors as a function of generation; (b) Grayscale image reconstructed by the CGH. 
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It can be seen that, minimum errors of the best chromosome in each subpopulation didn’t 

decrease monotonically due to the migration of the elites between subpopulations every 5 

generations. Although minimum errors in each subpopulation show some fluctuations, the 

best chromosome in the whole population evolved well. The reconstructed image with the 

normalized RMS error of 0.09 for the best chromosome in the whole population after 100 

generations is shown in Fig. 4.6 (b), in which the noise on the image is still visible. 

4.6.2 Direct search for optimized shapes of apertures 

In the second step, further optimization for the best chromosome in the whole population is 

performed by changing the position of the vertex one-by-one along each straight edge 

boundary of the cell. This created additional number of degrees of freedom and arbitrary 

shapes of apertures as well. Considering that the sizes of apertures should be larger than the 

wavelength in the scope of scalar diffraction theory, the co-vertex G0 was kept still in the 

center of the cell, and only 2 possible positions of the vertices were chosen (P/4, 3P/4 for G1, 

G3, or Q/4, 3Q/4 for G2, G4) for each point of G1, G2, G3, G4 along each boundary of the cell. 

The vertex position which reduces the error was kept, otherwise rejected. The direct search 

was performed within a cell and then cell-by-cell. The direct search process was run for 20 

rounds. The RMS error was decreased from 0.088 by the parallel GA to 0.07 after the first 

round of direct position search. It was further reduced to 0.038 after 20 rounds, as shown in 

Fig. 4.7(a). The reconstructed image with the error of 0.038 is shown in Fig. 4.7(b), which 

was of much better quality than that in Fig. 4.6(b). 

A part of the binary CGH designed by the two-step approach to give the reconstructed image 

in Fig. 4.7(b) is shown in Fig. 4.8, in which the irregular polygonal apertures were clearly 

presented. The image reconstructed in Fig. 4.6(b) and 4.7(b) were computed with the Abbe 

transform. Finally, for the validation of the design the fast Fourier transform of the 8192 x 

8192 pixels binary CGH was performed, which produced the expected target image. The 8X 

central part of the reconstructed image by direct FFT was shown in Fig. 4.9, from which we 

can see the expected target image in the 256 x 256 pixel window with the noise mainly 

diffused around the object window. The error of the reconstruction image by FFT was 
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13.63%, which was higher than the designed error value, probably because the apertures 

edges were considered as straight lines when computing the diffraction in the Abbe transform, 

while in the FFT the aperture edges were the staircase lines. Note that when this CGH will 

be fabricated with the e-beam machine, the aperture edges would be in between the straight 

lines and the clearly cut staircase lines. 

 

Fig.  4.7 Results by Direct Search for optimal co-vertex positions. (a) Normalized RMS errors after each 

round of the search; (b) Grayscale image reconstructed from the designed CGH. 
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Fig.  4.8 Sixteen times enlarged part of the designed polygonal CGH 

 

Fig.  4.9 Part of enlarged image reconstructed by FFT from the designed CGH 
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The parallel GA with local search produced good results in the first step for assigning the 

binary phase values of the CGH apertures, but at high computational cost.  As can be seen 

from Tab. 4.1, it took 2657 minutes for the parallel GA with 100 generations in the first step, 

and 983 minutes for direct search of 20 rounds in the second step to achieve the final error 

of 0.038. This is the Scheme 1 of optimization.  

As the second step optimization for the shapes of the CGH apertures by the direct search was 

effective, we tested Scheme 2 with only 10 generations of parallel GA in the first step for 

optimizing the binary phase values of the apertures, which took 269 minutes for the error 

reaching around 0.18, followed by 20 rounds of direct search for optimizing the aperture 

shapes for the error reduced to 0.044, as shown in Fig. 4.10. The Scheme 2 generated an error 

slightly higher than 0.038, but needed only 1253 minutes of computation time, which is 3 

times less than scheme 1.  

In the other extremity, we performed scheme 3, in which only one local search optimization 

for a randomly selected chromosome, instead of PGA, was performed. It only took 9 minutes 

for the error to be reduced to 0.35. Then, the error was decreased to 0.047 after 20 rounds of 

direct search in the second step, as shown in Fig. 4.11. This scheme took a total time of 992 

minutes for the computation. 

Scheme 1 (100 generations of PGA with local search + 20 rounds of direct search) provided 

the best solution with the error of 0.038 with the highest time cost; scheme 3 (1 local search 

+ 20 rounds of direct search) achieved a good solution with the error of 0.047 in the shortest 

time; and scheme 2 (10 generations of PGA with local search + 20 rounds of direct search) 

reached the error of 0.044 at an accepted time cost. This two-step approach gives us a flexible 

way to balance between the time cost and optimal results. 

 
Tab. 4.1  The time cost and normalized error after step 1 and then step 2 for three different schemes 

 Scheme 1 Scheme 2 Scheme 3 

Step 1: 

100 

generations 

Step 2: 

20 rounds 

Step 1: 

10 

generations 

Step 2: 

20 rounds 

Step 1: 

1 DBS 

Step 2: 

20 rounds 

Time (min.) 2657 983 269 931 9 897 

Normalized 

error 

8.8% 3.8% 18.2% 4.2% 35% 4.7% 
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Fig.  4.10 Results by scheme 2: (a) image reconstructed after 10 generations of PGA with local search in step 

1 (b) Normalized RMS errors after each round of direct search; (c) Grayscale image reconstructed by the 

CGH after step 2. 
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Fig.  4.11 Results by scheme 3: (a) image reconstructed after one local search in step 1 (b) Normalized RMS 

errors after each round of direct search; (c) Grayscale image reconstructed by the CGH after step 2. 
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4.7 Conclusion 

The computer-generated hologram (CGH) has a very high space bandwidth product (SBWP), 

which can be explored for the high performance of the CGH. The Abbe transform expresses 

the diffraction pattern of a binary CGH of polygonal apertures as a coherence addition of the 

diffraction patterns from all the straight edges of different orientations and lengths. In the 

binary CGH, the arbitrary-shaped polygonal apertures were composed with the elementary 

quadrilateral apertures. This layout provides a high degree of freedom for the design 

optimization. The binary CGH was designed directly by parallel genetic algorithm with local 

search and then the direct search algorithm. The proposed design strategy permitted handling 

the binary CGH of very high SBWP and resulting in high performance with low 

reconstruction error of 3.8% for a grayscale image.   
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Conclusion 

Computer-generated holograms (CGHs) are increasingly being used for a broad range of 

applications, such as beam shapers/splitters, optical disc read-heads, pattern generators and 

anti-fraud protection, optical display and imaging, etc. The objective of this thesis, as stated 

in the General Introduction, was to investigate on modelling, design and optimization of 

CGHs applied for practical projection system, and of CGHs with large space bandwidth 

product provided by advanced fabrication technology. This chapter summarizes main results 

and contributions of our research work presented in this thesis, and indicates several potential 

improvements and future work as well. 

Achieved work 

We considered certain working specification of a typical projection image system, e.g. 

working distance of 40 cm, depth of field of 10 cm and diffraction angle of ~50 degree with 

632 nm working wavelength, and affordable fabrication ability, on which based, the Fourier 

type CGH with 2048 x 2048 pixels was designed and optimized by direct binary search (DBS) 

and then fabricated by E-beam lithography with the resolution of 2 um. The reconstrued 

image of 512 x 512 pixels showed a contrast of 87%. We also designed and discussed Fresnel 

type CGH. To achieve the required diffraction angle – 53 degree, we further discussed the 

optical architecture in holographic projection image system to “demagnify” the hologram 

pixels. The designed CGH and holographic projection image system were validated by 

optical reconstruction in the lab.  

During the process of DBS, it had been noticed that pixels would eventually cluster to form 

polygonal apertures in hologram. Meanwhile, due to advancement of fabrication technology, 

CGHs of large space bandwidth product can contain huge number of pixels. So, we proposed 

to directly design arbitrary-shaped polygonal aperture based on triangular layout, and then 

performed a two-step optimization algorithm to fully exploit high number of degrees of 

freedom available. During the design, the diffraction of aperture was calculated by analytical 

Abbe transform, which can avoid of huge number of Fourier transforms over matrix with 

tremendous pixels in conventional algorithms. The reconstructed image can be expressed as 

a coherence addition of the diffraction patterns from all the straight edges of different 
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orientations and lengths. In the first step of optimization, the binary phases to triangular 

apertures was encoded by serial hybrid genetic algorithm (HGA) – genetic algorithm (GA) 

with a local search. Roulette wheel selection, double-point crossover, mutation with 

exponentially decreasing probability and elitism strategy are adopted in GA. Then direct 

search for floating covertices of elementary triangular apertures was used to further improve 

the results. A binary CGH of ~8000 x 8000 pixels was designed by our approach to 

reconstruct a gray-scale image with 2% reconstruction error. 

We further analyzed the CGHs based on triangular layout and proposed quadrilateral 

aperture-based layout, which provides more degrees of freedom and forms more diverse 

polygonal aperture in CGHs. As the same manner, the diffraction of the quadrilateral aperture 

and the whole CGH was computed by Abbe transform. Although we still used two-step 

algorithm for optimization of binary phases in the first step and then orientation and lengths 

of edges in the second step, the parallel genetic algorithm (PGA) was developed, on a desk 

computer, based on a migration topology of one-way ring structure. Compared with those for 

the triangular aperture-based layout previously, more advanced selection and crossover 

operations are implemented, i.e. stochastic universal sampling selection and uniform 

crossover. Furthermore, we discussed three different schemes for this two-step algorithm, 

which provide a flexible way to balance the optimization performance and time cost: scheme 

1 (100 generations of PGA with local search + 20 rounds of direct search) achieved the best 

solution with error of 3.8% in 3640 minutes; scheme 2 (10 generations of PGA with local 

search + 20 rounds of direct search) reached the error of 4.2% in 1200 minutes; scheme 3 (1 

local search + 20 rounds of direct search) gave the error of 4.7% in 906 minutes. 

Future work 

As described in General Introduction, current research of CGH usually refers to the following 

4 topics: object data acquisition, object wave representation, hologram encoding and image 

reconstruction. We made some progressive results on these two specific issues, i.e. modelling, 

design and optimization of CGHs applied for practical projection system, and of CGHs with 

large space bandwidth product. The first issue is related to the 4th topic and the second issue 

can be regarded as one in the 3rd topic. However, there are some limitations which can be 

further improved and studied in future work. 



 

88 
 

For the first issue, the wide diffractive angle was achieved by using two lenses after 

CGH/DOE in imaging system, and the CGH/DOE used was designed with paraxial 

approximation in the scope of scalar diffraction theory. A possible alternative is to directly 

design wide diffractive angle CGH/DOE, without using lenses after CGH/DOE to get 

desirable angles in imaging system. To model and design CGH/DOE with wide diffractive 

angles, non-paraxial scalar diffraction theory [111-113] may be used. In ref. [113], by 

presenting a projection step in combination with the Harvey model [111], the scalar 

diffraction theory is applied to estimate the non-paraxial diffraction pattern of a DOE at an 

observation plane in the far field. Vector diffraction theory can also be used instead in this 

case. Related electromagnetic algorithms usually refer to Finite-Difference Time-Domain 

(FDTD), Rigorous Coupled Wave Analysis (RCWA), etc. RCWA is usually limited to 

periodic structures, while FDTD can be used for almost all kinds of structures. Since it is 

computationally expensive for 3D FDTD simulations, the near field information is usually 

obtained by FDTD and far fields are then calculated by so-called “near-field to far-field 

transformation” [114]. 

As for the second issue, in our layout, CGH was divided to many cells and then each cell was 

further divided to four triangular or quadrilateral apertures, which would then merge into 

polygonal apertures later. Essentially, it is not a necessity to predefine these cells. Although 

provides simpler calculation, it reduces degree of freedom since the orientations of cell 

boundaries are fixed. One way to improve is to optimize vertices’ positions of cells as well 

in the second step. This is straightforward and easy to implement. While, ideally, we just 

directly generate all kind of triangular or quadrilateral apertures in the first step without any 

predefined cells, which, however, will greatly enhance the complexity of diffraction 

computation by Abbe transform and optimization algorithms followed. Secondly, it will be 

interesting to implement parallel genetic algorithm using CUDA in graphical processing unit 

(GPU) in the first step, especially after complexity of computation and optimization are 

enhanced. Moreover, it is also worthy to adopt a more powerful algorithm in the second step 

since the used direct search of position is neither a global search nor a parallel algorithm. 

Lastly, although worked well in our design, the two-step algorithm is not the best choice from 

the perspective of optimization. How to optimize binary phases and edges’ orientation and 



 

89 
 

lengths simultaneously can be further studied. Those potential improvements mentioned 

above are mainly for the approach itself.   

From a more general perspective, synthesis of polygon-based CGH for 3D object/display 

(especially, in real-time) by the approach proposed in Chapter 3 and 4 can be studied. This 

may involve all the 4 research topics mentioned in Introduction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

90 
 

Bibliography 

[1] D. Gabor, “A New Microscopic Principle,” Nature, Vol. 161, pp. 777-778, (1948). 

[2] D. Gabor, “Microscopy by Reconstructed Wave-Fronts," Proceedings of the Royal 

Society A: Mathematical, Physical and Engineering Sciences, Vol. 197, pp. 454-487, (1949). 

[3] https://www.nobelprize.org/nobel_prizes/physics/laureates/1971/ 

[4] A. Lohmann, “Optical single-sideband transmission applied to the Gabor microscope,” 

Opt. Acta, Vol. 3, pp. 97-99 (1956). 

[5] Maiman, T. H. “Stimulated optical radiation in ruby”. Nature. Vol. 187, pp. 493-494, 

(1960). 

[6] E. N. Leith and J. Upatnieks, “Reconstructed wavefronts and communication theory,” 

Journal of the Optical Society of America, Vol. 52, pp. 1123-1130, (1962). 

[7] B. R. Brown and A. W. Lohmann, “Complex spatial filtering with binary masks,” Applied 

optics, vol. 5, pp. 967-969, (1966). 

[8] A. W. Lohmann and D. P. Paris, “Binary fraunhofer holograms, generated by computer,” 

Applied optics, vol. 6, pp. 1739-1748, (1967). 

[9] B. R. Brown and A. W. Lohmann, “Computer-generated Binary Holograms," IBM 

Journal of Research and Development, vol. 13, pp. 160-168, (1969). 

[10] U. Schnars and W. Jüptner, "Direct recording of holograms by a CCD target and 

numerical reconstruction," Appl. Opt. Vol. 33, pp. 179-181 (1994) 

[11] G. Tricoles, "Computer generated holograms: an historical review," Appl. Opt. Vol. 26, 

pp. 4351-4360 (1987) 

[12] G. A. Cirino etc. “Digital Holography: Computer-Generated Holograms and Diffractive 

Optics in Scalar Diffraction Domain”, NTECH Open Access Publisher, (2011) 

[13] G. T. Nehmetallah etc. “Analog and digital holography with MATLAB”, SPIE Press, 

(2016) 



 

91 
 

[14] T. Poon, “Digital Holography and Three-Dimensional Display: Principles and 

Applications,” Springer US, (2016) 

[15] T. Poon and J. Liu, “Introduction to Modern Digital Holography: With Matlab”, 

Cambridge University Press, (2014) 

[16] R. V. Pole, “3-D imagery and holograms of objects illuminated in white light,” Appl. 

Phys. Lett. 10(1), 20–22 (1967). 

[17] D. J. DeBitetto, “Holographic panoramic stereograms synthesized from white light 

recordings,” Appl. Opt. 8(8), 1740–1741 (1969). 

[18] S.-C. Kim, etc., “Computer-generated holograms of a real three-dimensional object 

based on stereoscopic video images,” Appl. Opt. 45, 5669–5676 (2006). 

[19] M. Bayraktar and M. Özcan. Method to calculate the far field of three-dimensional 

objects for computer-generated holography. Applied Optics, 49(24):4647–4654, Aug. 2010. 

[20] Y. Zhao, L. Cao, H. Zhang, D. Kong, and G. Jin. Accurate calculation of computer 

generated holograms using angular-spectrum layer-oriented method. Optics Express, 

23(20):25440, Oct. 2015. 

[21] D. Leseberg and C. Frère. Computer-generated holograms of 3-D objects composed of 

tilted planar segments. Applied Optics, 27(14):3020–3024, July 1988. 

[22] A. W. Lohmann. Three-dimensional properties of wave-fields. Optik, 51:105–107, 1978. 

[23] K. Matsushima, M. Nakamura, and S. Nakahara. Silhouette method for hidden surface 

removal in computer holography and its acceleration using the switch-back technique. Optics 

Express, 22(20):24450–24465, Oct. 2014. 

[24] B. T. Phong. Illumination for Computer Generated Pictures. Communications of the 

ACM, 18(6):311–317, June 1975. 

[25] H. Sakata and Y. Sakamoto. Fast computation method for a Fresnel hologram using 

three-dimensional affine transformations in real space. Applied Optics, 48(34):H212– H221, 

Dec. 2009. 



 

92 
 

[26] H. Yoshikawa, T. Yamaguchi, and R. Kitayama. Real-Time Generation of Full Color 

Image Hologram with Compact Distance Look-up Table. In Advances in Imaging, OSA 

Technical Digest, page DWC4, Apr. 2009. 

[27] N. Collings, J. L. Christmas, D. Masiyano, and W. A. Crossland, “Realtime phase-only 

spatial light modulators for 2D holographic display,” J. Disp. Technol. vol. 11, no. 3, pp. 

278–284, Mar. 2015. 

[28] M. E. Lucente. Interactive computation of holograms using a look-up table. Journal of 

Electronic Imaging, 2(1):28–34, Jan. 1993. 

[29] L. G. Neto, D. Roberge, and Y. Sheng, “Programmable optical phasemostly holograms 

with coupled-mode modulation liquid crystal television,” Appl. Opt., vol. 34, no. 11, pp. 

1944–1950, 1995. 

[30] F. Dufaux, Y. Xing, B. Pesquet-Popescu, and P. Schelkens. Compression of digital 

holographic data: an overview. In Applications of Digital Image Processing XXXVIII, 

volume Proc. SPIE 9599, pages 95990I–95990I–11, Sept. 2015. 

[31] Y. Xing, M. Kaaniche, B. Pesquet-Popescu, and F. Dufaux. Digital Holographic Data 

Representation and Compression. Academic Press, Oct. 2015. 

[32] K. Yamamoto, T. Senoh, R. Oi, and T. Kurita. 8k4k-size computer generated hologram 

for 3-D visual system using rendering technology. In Universal Communication Symposium 

(IUCS), 2010 4th International, pages 193–196, Oct. 2010. 

[33] F. Yaras, H. Kang, and L. Onural. State of the Art in Holographic Displays: A Survey. 

Journal of Display Technology, 6(10):443–454, Oct. 2010. 

[34] J. D. Johnson, Classical Electrodynamics Third Edition, Wiley, (1998) 

[35] M. Born and E. Wolf, Principles of Optics, 7th Edition, Cambridge University Press, 

1999 

[36] J. Goodman, Introduction to Fourier optics, Third Edition, Roberts and Company 

Publishers, 2004 



 

93 
 

[37] Michael A. Seldowitz, Jan P. Allebach, and Donald W. Sweeney, "Synthesis of digital 

holograms by direct binary search," Appl. Opt. 26, 2788-2798 (1987) 

[38] Brian K. Jennison, Jan P. Allebach, and Donald W. Sweeney, "Efficient design of direct-

binary-search computer-generated holograms," J. Opt. Soc. Am. A 8, 652-660 (1991) 

[39] Andrew G.KirkTrevor J.Hall, Design of binary computer generated holograms by 

simulated annealing: coding density and reconstruction error, Optics Communications, Vol. 

94, pp. 491-496 (1992) 

[40] Masaki Taniguchi, Katsunori Matsuoka, and Yoshiki Ichioka, "Computer-generated 

multiple-object discriminant correlation filters: design by simulated annealing," Appl. Opt. 

34, 1379-1385 (1995) 

[41] Nobukazu Yoshikawa, Masahide Itoh, Toyohiko Yatagai, "Use of generic algorithm for 

computer-generated holograms", Proc. SPIE 2577, International Conference on Applications 

of Optical Holography, (27 July 1995); 

[42] J.-N. Gillet and Y. Sheng, “Multiplexed computer-generated holograms with polygonal-

aperture layouts optimized by genetic algorithm,” Appl. Opt. 42(20), 4156–4165 (2003). 

[43] R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of 

phase from image and diffraction plane pictures,” Optik 35(2), 237–246 (1972). 

[44] J. R. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt. 21(15), 2758–2769 

(1982). 

[45] J. R. Fienup, “Phase retrieval algorithms: a personal tour,” Appl. Opt. 52(1), 45–56 

(2013). 

[46] Ying Tsung Lu, Huang Yen Lin, Sien Chi, "Nonoptical method for making dot-matrix 

hologram", Proc. SPIE 3956, Practical Holography XIV and Holographic Materials VI, (17 

March 2000) 

[47] S. L. Yeh and S. T. Lin, “Anticounterfeiting method for a dot-matrix hologram 

composed of grating dots with different fringe orientations,” Opt. Eng. 54(11), 113106 

(2015). 



 

94 
 

[48] Craig D. Newswanger, "Dot matrix technique for generating diffraction grating patterns", 

Proc. SPIE 2333, Fifth International Symposium on Display Holography, (17 February 1995); 

[49] S. L. Yeh, Shyh Tsong Lin, "Dot-matrix hologram with hidden image," Optical 

Engineering 41(2), (1 February 2002). 

[50] S. L. Yeh, "Hiding techniques to enhance anticounterfeiting capacity of dot-matrix 

holograms," Optical Engineering 44(8), 087001 (1 August 2005) 

[51] B. Zarkov, D. Gruji´c, and D. Panteli´c, “High-resolution dot-matrix hologram 

generation,” Phys. Scr., vol. T149, p. 014021, 2012. 

[52] Yaotang Li, Tianji Wang, Shining Yang, Shichao Zhang, Shaowu Fan, Huanrong Wen, 

"Theoretical and experimental study of dot matrix hologram", Proc. SPIE 3559, Holographic 

Displays and Optical Elements II, (4 August 1998); 

[53] Sheng Lih Yeh, "Using random features of dot-matrix holograms for anticounterfeiting," 

Appl. Opt. 45, 3698-3703 (2006) 

[54] Alexander V. Morozov, Andrey N. Putilin, Sergey S. Kopenkin, Yuriy P. Borodin, 

Vladislav V. Druzhin, Sergey E. Dubynin, and German B. Dubinin, "3D holographic printer: 

Fast printing approach," Opt. Express 22, 2193-2206 (2014) 

[55] H. Kang etc. Color Holographic Wavefront Printing Technique for Realistic 

Representation, IEEE Transactions on Industrial Informatics, Vol. 12, pp. 1590-1598 (2016) 

[56] Fei Yang, Yuri Murakami, and Masahiro Yamaguchi, "Digital color management in 

full-color holographic three-dimensional printer," Appl. Opt. 51, 4343-4352 (2012) 

[57] Masahiro Yamaguchi, Nagaaki Ohyama, and Toshio Honda, "Holographic three-

dimensional printer: new method," Appl. Opt. 31, 217-222 (1992) 

[58] Hao Zhang, Yan Zhao, Liangcai Cao, and Guofan Jin, "Layered holographic stereogram 

based on inverse Fresnel diffraction," Appl. Opt. 55, A154-A159 (2016) 

[59] Changwon Jang, Chang-Kun Lee, Jinsoo Jeong, Gang Li, Seungjae Lee, Jiwoon Yeom, 

Keehoon Hong, and Byoungho Lee, "Recent progress in see-through three-dimensional 

displays using holographic optical elements [Invited]," Appl. Opt. 55, A71-A85 (2016) 



 

95 
 

[60] Keehoon Hong, Soon-gi Park, Jiwoon Yeom, Jonghyun Kim, Ni Chen, Kyungsuk Pyun, 

Chilsung Choi, Sunil Kim, Jungkwuen An, Hong-Seok Lee, U-in Chung, and Byoungho Lee, 

"Resolution enhancement of holographic printer using a hogel overlapping method," Opt. 

Express 21, 14047-14055 (2013) 

[61] Hiroshi Yoshikawa and Takeshi Yamaguchi, Review of Holographic Printers for 

Computer-Generated Holograms, IEEE Transactions on Industrial Informatics, Vol. 12, pp. 

1584-1589 (2016) 

[62] Youngmin Kim, Elena Stoykova, Hoonjong Kang, Sunghee Hong, Joosup Park, Jiyong 

Park, and Jisoo Hong, "Seamless full color holographic printing method based on spatial 

partitioning of SLM," Opt. Express 23, 172-182 (2015) 

[63] Gang Li, Jinsoo Jeong, Dukho Lee, Jiwoon Yeom, Changwon Jang, Seungjae Lee, and 

Byoungho Lee, "Space bandwidth product enhancement of holographic display using high-

order diffraction guided by holographic optical element," Opt. Express 23, 33170-33183 

(2015) 

[64] Liangcai Cao, Zheng Wang, Hao Zhang, Guofan Jin, and Claire Gu, "Volume 

holographic printing using unconventional angular multiplexing for three-dimensional 

display," Appl. Opt. 55, 6046-6051 (2016) 

[65] B. C. Kress and P. Meyrueis, Applied Digital Optics: From Micro-optics to 

Nanophotonics. Chichester, UK: John Wiley & Sons, Ltd, Oct. 2009. 

[66] D. C. O'Shea, T. J. Suleski, A. D. Kathman, and D. W. Prather, Diffractive Optics: 

Design, Fabrication, and Test. SPIE Press, 2004. 

[67] P. P. Clark and C. Londono, “Production of kinoforms by single point diamond 

machining,” Optics News, vol. 15, p. 39 1, Dec. 1989. 

[68] Lin, B. J., "Optical Lithography", SPIE Press, Bellingham, WA, 2009 

[69] K. Jain ; C.G. Willson ; B.J. Lin, Ultrafast deep UV Lithography with excimer lasers, 

IEEE Electron Device Letters, Vol. 3, pp. 53-55, (1982) 



 

96 
 

[70] Michael T. Gale, Karl Knop, "The Fabrication Of Fine Lens Arrays By Laser Beam 

Writing", Proc. SPIE 0398, Industrial Applications of Laser Technology, (26 October 1983); 

[71] M. V. Kessels, M. El Bouz, R. Pagan, and K. Heggarty, “Versatile stepper based 

maskless microlithography using a liquid crystal display for direct write of binary and 

multilevel microstructures,” Journal of Micro/Nanolithography, MEMS and MOEMS, vol. 

6, p. 033002, July 2007. 

[72] Selimis A, Mironov V, Farsari M. “Direct laser writing: principles and materials for 

scaffold 3D printing,” Microelectron. Eng. 2015; 132:83–9. 

[73] S. M. Arnold, “Electron Beam Fabrication of Computer-Generated Holograms," Optical 

Engineering,” vol. 24, p. 245803, Aug. 1985. 

[74] Yifang Chen, “Nanofabrication by electron beam lithography and its applications: A 

review,” Microelectronic Engineering, Volume 135, Pages 57-72, 5 March 2015 

[75] Jason Geng, "Structured-light 3D surface imaging: a tutorial," Adv. Opt. Photon. 3, 128-

160 (2011) 

[76] I. Ishii, K. Yamamoto, K. Doi, and T. Tsuji, “High-speed 3D image acquisition using 

coded structured light projection,” in IEEE/RSJ International Conference on Intelligent 

Robots and Systems, 2007. IROS 2007 (IEEE, 2007), pp. 925–930. 

[77] J. L. Posdamer and M. D. Altschuler, “Surface measurement by space-encoded projected 

beam systems,” Comput. Graph. Image Processing 18(1), 1–17 (1982). 

[78] Ralf Vandenhouten, Andreas Hermerschmidt, Richard Fiebelkorn, "Design and quality 

metrics of point patterns for coded structured light illumination with diffractive optical 

elements in optical 3D sensors", Proc. SPIE 10335, Digital Optical Technologies 2017, 

1033518 (26 June 2017) 

[79] K. Sato and S. Inokuchi, “Range-imaging system utilizing nematic liquid crystal mask,” 

in Proceedings of International Conference on Computer Vision (IEEE Computer Society 

Press, 1987), pp. 657–661. 



 

97 
 

[80] R. J. Valkenburg and A. M. McIvor, “Accurate 3D measurement using a structured light 

system,” Image Vision Comput. 16(2), 99–110 (1998). 

[81] A. Wiegmann, H. Wagner, and R. Kowarschik, "Human face measurement by projecting 

bandlimited random patterns," Opt. Express 14, 7692-7698 (2006) 

[82] Edward Buckley, Adrian J. Cable, Timothy D. Wilkinson, "Precision measurement 

system using binary phase computer-generated holograms," Optical Engineering 50(9), 

091308 (1 September 2011). 

[83] Edward Buckley, "Holographic Laser Projection," J. Display Technol. 7, 135-140 (2011) 

[84] E. Buckley, “Computer generated holograms for real-time image display and sensor 

applications,” Ph.D. dissertation, Dept. Elect. Eng., Cambridge Univ., Cambridge, United 

Kingdom (2006). 

[85] Hecht, E. (1998). Optics, 3rd edition, Addison-Wesley, San Francisco, California. 

[86] P. W. M. Tsang ， T-C Poon ， J-P Liu, “Three-dimensional displays: a review and 

applications analysis,” Appl. Sci. 2018, 8(5), 830 

[87] N. S. Holliman, N. A. Dodgson, G. E. Favalora, and L. Pockett, “Three-dimensional 

displays: a review and applications analysis,” IEEE Trans. on broadcasting, Vol. 57, No. 2, 

June, 362-371 (2011) 

[88] K. V. Chellappan, E. Erden, and H. Urey, “Laser-based displays: a review,” Appl. Opt. 

Vol. 49, No. 25, F70-F98 (2010) 

[89] R. A. Clark , Y. H. Pua, K. Fortin,  C. Ritchie,  K. E. Webster,  L. Denehy, and A. L. 

Bryant, “Validity of the Microsoft Kinect for assessment of postural control,” Gait & Posture, 

36, 372–377 (2012). 

[90] Kress and J. Lee, “Optical gesture sensing and depth mapping technologies for head-

mounted displays: an overview,” Proceeding of SPIE, Vol. 8720, paper  87200C-2 (2013). 

[91] T. Shimobaba, T. Kakue, and T. Ito, “Real-time and low speckle holographic projection,” 

in Proc. IEEE 13th Int. Conf. Ind. Informat. (INDIN’15), 2015, pp. 732–741. 



 

98 
 

[92] D. Masiyano, N. Collings and  J. Christmas, “Lasers for Phase Only Holographic 

Projection and Head Up Display Applications,”  IEEE High Power Diode Laser and System 

Conference, 20-21, (2013). 

[93] J. Rosen and R. Kelner, “Three-dimensional imaging by self-reference single-channel 

digital incoherent holography,” IEEE Trans. Ind. Informat., Volume: 12, pp. 1571-1583, 

2016 

[94] M. Y. Omel, M. V. Gladys, and L. Jesús, “Encoding complex fields by using a phase-

only optical element,” Opt. Lett., vol. 39, pp. 1740–1743, 2014. 

[95] J. P. Liu,W. Y. Hsieh, T. -C. Poon, and P.W.M. Tsang, “Complex Fresnel hologram 

display using a single SLM,” Appl. Opt., vol. 50, pp. H128–H135, 2011. 

[96] P. W. M. Tsang, Y. Pan and T. C. Poon, “Binary hologram generation based on shape 

adaptive sampling,” Opt. Communication. Vol 319. 8–13, (2014). 

[97] P. W. M. Tsang, T. C. Poon, A. S. M. Jiao, “Embedding intensity image in grid-cross 

down-sampling (GCD) binary holograms based on block truncation coding,” Opt. Commu. 

Vol 304. 62-70, (2013). 

[98] S. N. Koreshev, O. V. Nikanorov, and A. D. Gromov, “Method of synthesizing hologram 

projectors based on breaking down the structure of an object into typical elements, and a 

software package for implementing it,” J. Opt. Technol. Vol. 79, No. 12, 769-774, (2012). 

[99] R. Horisaki, and T. Tahara, “Phase-shift binary digital holography,” Opt. Letters, Vol. 

39, No. 22, 6375-6378 (2014). 

[100] T. Leportier, M. C. Park, Y. S. Kim  and T, Kim, “Converting optical scanning 

holograms of real objects to binary Fourier holograms using an iterative direct binary search 

algorithm,” Opt. Express, Vol. 23, No. 3, 3403-3411 (2015). 

[101] L. Schermelleh, P. M. Carlton, A. Haase, L. Shao, L. Winoto, P. Kner, B. Burke, M. 

C. Caroso, D. A. Agard, M. G. L. Gustafsson, H. Leonhardt and J. W. Sedat, “Subdiffraction 

multicolor imaging of the nuclear periphery with 3D structured illumination microscopy,” 

Science. Vol. 320 no. 5881, 6 June,  1332-1336 (2008) .  



 

99 
 

[102] A. Firsov, A. Firsov, B. Loechel, A. Erko, A. Svintsov and S. Zaitsev, “Fabrication of 

digital rainbow holograms and 3- D imaging using SEM based e-beam lithography,” Opt. 

Express, Vol. 22, No. 23 28756-28770 (2014). 

[103] Kyoji Matsushima, and Sumio Nakahara, “Extremely high-definition full-parallax 

computer-generated hologram created by the polygon-based method,” Appl. Opt. Vol. 48, 

No. 34, H54-H63 (2009) 

[104] C. Newswanger, “Holographic diffraction grating patterns and method for creating the 

same,” U.S. patent 5,291,317 (March 1994). 

[105] M. Lucente, “Diffraction-Specific Fringe Computation for Electro- Holography,” Ph.D. 

thesis dissertation, Massachusetts Institute of Technology, (1994) 

[106] J. Komrska, “Simple derivation of formulas for Fraunhofer diffraction at polygonal 

apertures,” J. Opt. Soc. Amer., vol. 72, pp. 1382–1384, 1982. 

[107] A. Sommerfeld, Optics (Academic, New York, 1954), p. 233ff. 

[108] D. Im, E. Moon, Y. Park, D. Lee, J. Hahn, and H. Kim, “Phase regularized polygon 

computer-generated Holograms,” Opt. Lett. 39, 3642–3645 (2014). 

[109] H. Kim, J. Hahn, and B. Lee, “Mathematical modeling of triangle mesh-modeled three-

dimensional surface objects for digital holography,” Appl. Opt. 47, D117–D127 (2008). 

[110] S. N. Sivanandam and S. N. Deepa, Introduction to Genetic Algorithms (Springer-

Verlag, 2008). 

[111] J. E. Harvey, D. Bogunovic, and A. Krywonos, “Aberrations of Diffracted Wave Fields: 

Distortion,” Applied Optics, vol. 42, p. 1167, Mar. 2003. 

[112] D. C. Cole, E. Barouch, U. Hollerbach, and S. A. Orszag, “Derivation and Simulation 

of Higher Numerical Aperture Scalar Aerial Images,” Japanese Journal of Applied Physics, 

vol. 31, pp. 4110-4119, Dec. 1992. 

[113] G.-N. Nguyen, K. Heggarty, P. G_erard, B. Serio, and P. Meyrueis, “Computationally 

efficient scalar nonparaxial modeling of optical wave propagation in the far-field,” Applied 

Optics, vol. 53, p. 2196, Mar. 2014. 



 

100 
 

[114] Allen Taflove, “Computational Electrodynamics: The Finite-Difference Time-Domain 

Method,” 3rd edition, June 2005 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

101 
 

Appendix A: MATLAB scripts 

The MATLAB scripts shown below are written to implement the design algorithms (two-

step optimization: hybrid genetic algorithm – genetic algorithm with local search, and direct 

search) and give the reconstructed results presented in Chapter 3. These scripts also give 

some hints on how to implement coarse-grained parallel genetic algorithm used in Chapter 

4, because, for subpopulations on separate processors, genetic algorithm runs parallelly in 

the same manner as that in Chapter 3.  

 

 

clc; 
clear all; 
close all; 

  
target0=imread('E:\CGH\image.png'); 
target1=double(rgb2gray(target0)); 

  
Wa=2*size(target1,1); Wb=size(target1,2); 

  
Mc=242;Nc=242;   
W1=((Mc)/2)-((Wa)/2)+1; W2=((Mc)/2)+((Wa)/2); W3=((Nc)/2)-((Wb)/2)+1; 

W4=((Nc)/2)+((Wb)/2); 
target=zeros(Mc,Nc); 
target(W1:Mc/2-1, W3:W4)=target1(2:end,:); 

  
target=target+imrotate(target,180);  
target=target/sqrt(sum(sum((abs(target)).^2)));  % the amplitude; the 

total power of the target image is normalized to unit; 
 figure; imagesc(target); colormap gray; axis image; 

  
P=32; % the cell number and the pixel number in each cell;  
Ran1=floor(P/2)+1; Ran2=floor(P/2)+1; % the centre point; 

  
PP=1; % the scale of the size 
m=-Mc*PP/2:Mc*PP/2-1; n=-Nc*PP/2:Nc*PP/2-1;  

  
Pattern_tri=zeros(Mc*PP, Nc*PP); Pattern_t(:,:)=zeros(Mc*PP, Nc*PP);  

  
Popul_num=80;   

  

  
%%  

  
Xr=Ran1; Yr=Ran2; 
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delta_Vector=[-1/(2*Nc), -1/(2*Mc)]; 

  
% the first triangle 
tL_ab=[0, 1/Mc]; tL_bo=[(Yr/P)/Nc, (Xr/P-1)/Mc]; tL_oa=[(-Yr/P)/Nc, (-

Xr/P)/Mc]; 
nL_ab=[-1/Mc, 0]; nL_bo=[-(Xr/P-1)/Mc, (Yr/P)/Nc]; nL_oa=[-(-Xr/P)/Mc, (-

Yr/P)/Nc]; 
Mid_ab=[0, 1/Mc]./2+delta_Vector; Mid_bo=[(Yr/P)/Nc, 

(1+Xr/P)/Mc]./2+delta_Vector; Mid_oa=[(Yr/P)/Nc, 

(Xr/P)/Mc]./2+delta_Vector; 

  
% the second triangle 
tL_bc=[1/Nc, 0]; tL_co=[(Yr/P-1)/Nc, (Xr/P-1)/Mc]; tL_ob=[(-Yr/P)/Nc, (1-

Xr/P)/Mc]; 
nL_bc=[0, 1/Nc]; nL_co=[-(Xr/P-1)/Mc, (Yr/P-1)/Nc]; nL_ob=[-(1-Xr/P)/Mc, 

(-Yr/P)/Nc]; 
Mid_bc=[1/Nc, 2/Mc]./2+delta_Vector; Mid_co=[(Yr/P+1)/Nc, 

(Xr/P+1)/Mc]./2+delta_Vector; Mid_ob=Mid_bo; 

  
% the third triangle 
tL_cd=[0, -1/Mc]; tL_do=[(Yr/P-1)/Nc, (Xr/P)/Mc]; tL_oc=[(1-Yr/P)/Nc, (1-

Xr/P)/Mc]; 
nL_cd=[1/Mc, 0]; nL_do=[-(Xr/P)/Mc, (Yr/P-1)/Nc]; nL_oc=[-(1-Xr/P)/Mc, 

(1-Yr/P)/Nc]; 
Mid_cd=[2/Nc, 1/Mc]./2+delta_Vector; Mid_do=[(1+Yr/P)/Nc, 

(Xr/P)/Mc]./2+delta_Vector; Mid_oc=Mid_co; 

         
% the forth triangle 
tL_da=[-1/Nc, 0]; tL_ao=[(Yr/P)/Nc, (Xr/P)/Mc]; tL_od=[(1-Yr/P)/Nc, (-

Xr/P)/Mc]; 
nL_da=[0, -1/Nc]; nL_ao=[-(Xr/P)/Mc, (Yr/P)/Nc]; nL_od=[-(-Xr/P)/Mc, (1-

Yr/P)/Nc]; 
Mid_da=[1/Nc, 0]./2+delta_Vector; Mid_ao=Mid_oa; Mid_od=Mid_do; 

  
tL(:,:,1)=[tL_ab; tL_bo; tL_oa]; 
tL(:,:,2)=[tL_bc; tL_co; tL_ob]; 
tL(:,:,3)=[tL_cd; tL_do; tL_oc]; 
tL(:,:,4)=[tL_da; tL_ao; tL_od]; 

  
nL(:,:,1)=[nL_ab; nL_bo; nL_oa]; 
nL(:,:,2)=[nL_bc; nL_co; nL_ob]; 
nL(:,:,3)=[nL_cd; nL_do; nL_oc]; 
nL(:,:,4)=[nL_da; nL_ao; nL_od]; 

  
Mid(:,:,1)=[Mid_ab; Mid_bo; Mid_oa]; 
Mid(:,:,2)=[Mid_bc; Mid_co; Mid_ob]; 
Mid(:,:,3)=[Mid_cd; Mid_do; Mid_oc]; 
Mid(:,:,4)=[Mid_da; Mid_ao; Mid_od]; 

  

                         

                     
   for S=1:4; 
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        MM_1=m*tL(1,1,S); NN_1=n*tL(1,2,S); 
        DOT_1=MM_1'*ones(1,Nc*PP)+ones(Mc*PP,1)*NN_1; 
        temp_1=DOT_1+(DOT_1==0); 
        Sinc_1=sin(pi*DOT_1)./(pi*temp_1)+(temp_1==1); 

         
        MM_2=m*tL(2,1,S); NN_2=n*tL(2,2,S); 
        DOT_2=MM_2'*ones(1,Nc*PP)+ones(Mc*PP,1)*NN_2; 
        temp_2=DOT_2+(DOT_2==0); 
        Sinc_2=sin(pi*DOT_2)./(pi*temp_2)+(temp_2==1); 

  
        MM_3=m*tL(3,1,S); NN_3=n*tL(3,2,S); 
        DOT_3=MM_3'*ones(1,Nc*PP)+ones(Mc*PP,1)*NN_3; 
        temp_3=DOT_3+(DOT_3==0); 
        Sinc_3=sin(pi*DOT_3)./(pi*temp_3)+(temp_3==1);  

         

         
        MM_4=m*nL(1,1,S); NN_4=n*nL(1,2,S); 
        NormalD_1=MM_4'*ones(1,Nc*PP)+ones(Mc*PP,1)*NN_4; 

         
        MM_5=m*nL(2,1,S); NN_5=n*nL(2,2,S); 
        NormalD_2=MM_5'*ones(1,Nc*PP)+ones(Mc*PP,1)*NN_5;        

  
        MM_6=m*nL(3,1,S); NN_6=n*nL(3,2,S); 
        NormalD_3=MM_6'*ones(1,Nc*PP)+ones(Mc*PP,1)*NN_6; 

         

         
        MM_7=m*Mid(1,1,S); NN_7=n*Mid(1,2,S); 
        MidD_1=exp(-1i*(2*pi)*(MM_7'*ones(1,Nc*PP)+ones(Mc*PP,1)*NN_7)); 

  
        MM_8=m*Mid(2,1,S); NN_8=n*Mid(2,2,S); 
        MidD_2=exp(-1i*(2*pi)*(MM_8'*ones(1,Nc*PP)+ones(Mc*PP,1)*NN_8)); 

         
        MM_9=m*Mid(3,1,S); NN_9=n*Mid(3,2,S); 
        MidD_3=exp(-1i*(2*pi)*(MM_9'*ones(1,Nc*PP)+ones(Mc*PP,1)*NN_9));   

         
        MMNN=2*pi*((m.^2)'*ones(1,Nc*PP)+ones(Mc*PP,1)*(n.^2)); 
        temp_4=MMNN+1i*(MMNN==0); 
        Term=1i./temp_4; 

         
     %   A=exp(-i*2*pi*(m'*ones(1,Nc*PP)*Mi/Mc+ones(Mc*PP,1)*n*Nj/Nc)); % 

the factor related to the cell location; 

         
        

Pattern_tri=Term.*(Sinc_1.*NormalD_1.*MidD_1+Sinc_2.*NormalD_2.*MidD_2+Si

nc_3.*NormalD_3.*MidD_3); % independent of location; 

        
        Pattern_t(:,:,S)=Pattern_tri; % the pattern from the triangle #S; 

  
   end 
   A_pat=Pattern_t(:,:,1); %record the pattern of each triangle; 
   B_pat=Pattern_t(:,:,2); 
   C_pat=Pattern_t(:,:,3); 
   D_pat=Pattern_t(:,:,4); 
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%%          
Popul=zeros(Popul_num+2,4*Mc*Nc); 

Popul_parental=zeros(Popul_num,4*Mc*Nc); 

Popul_parental_c=zeros(Popul_num,4*Mc*Nc); 
EA=zeros(Mc,Nc); EB=zeros(Mc,Nc); EC=zeros(Mc,Nc); ED=zeros(Mc,Nc); 
tic; 
for GA_k=1:300; 

     
    if GA_k==1; 
        Popul=randsrc(Popul_num+2,4*Mc*Nc,[1 0]); % random Popul.; 
    else 
        Popul=Popul_parental_c; 
        Popul(Popul_num+1:Popul_num+2,:)=Elitism(1:2,:); % the last two 

ranks replaced by the elite chromosomes; 
    end 

  
%%  Evaluation and Ranking 

     
for Popul_k=1:Popul_num+2; 

     

     

     
  for Mi=0:Mc-1; 
    for Nj=0:Nc-1; 

         
        EA(Mi+1,Nj+1)=Popul(Popul_k,Mi*4*Nc+4*Nj+1); 

EB(Mi+1,Nj+1)=Popul(Popul_k,Mi*4*Nc+4*Nj+2); 
        EC(Mi+1,Nj+1)=Popul(Popul_k,Mi*4*Nc+4*Nj+3); 

ED(Mi+1,Nj+1)=Popul(Popul_k,Mi*4*Nc+4*Nj+4); 

                  
    end 
  end 

    
  

Chrom_Pattern_C=A_pat.*fftshift(fft2(EA))+B_pat.*fftshift(fft2(EB))+C_pat

.*fftshift(fft2(EC))+D_pat.*fftshift(fft2(ED)); 

   
  Power_total=sum(sum((abs(Chrom_Pattern_C)).^2)); 
  Pattern_Norm=Chrom_Pattern_C/sqrt(Power_total); % the amplitude; the 

total power of the reconstructed image is normalized to unit; 

   
  MSE(Popul_k)=sum(sum((abs((abs(Pattern_Norm(W1:(Mc)/2+1, W3:W4))).^2-

(abs(target(W1:(Mc)/2+1, W3:W4))).^2)).^2)); 

   
end 

  
[Rank_MSE, index]=sort(MSE); % rank as the ascending of MSE; 

  
MSE_eli_min(GA_k)=Rank_MSE(1); % the min MSE; 
MSE_eli_mean(GA_k)=sum(Rank_MSE(1:Popul_num))/Popul_num; % the mean vaule 

of MSE; 
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%% Elitism (the best two chromosomes are kept to the next G without 

crossover and mutation); 

  
Elitism(1,:)=Popul(index(1),:); 
Elitism(2,:)=Popul(index(2),:); 

  

  
%% Rank-based fitness function 
if GA_k==1; 
fitness = 1-cdf('Normal',1:Popul_num,Popul_num/2,Popul_num/6); % the 

distribution of the fitness  
cum_fitness = zeros(1,Popul_num); 

  
for p_rank = 1:Popul_num 
   if p_rank == 1 
      cum_fitness(1) = fitness(1); 
   else 
      cum_fitness(p_rank) = fitness(p_rank) + cum_fitness(p_rank-1); 
   end 
end 
fitness = fitness/cum_fitness(Popul_num); % normalized probability 
cum_fitness = cum_fitness/cum_fitness(Popul_num); % the cumulative 

probability; 
end 

 
%% Roulette game 

        
pair_num = zeros(1,Popul_num); 
for Popul_k1=1:Popul_num; 
        R_temp=rand; 
        pair_num(Popul_k1)=length(find(cum_fitness<R_temp))+1; % roulette 

selection 
      %  MSE_new(Popul_k1)=Rank_MSE(pair_num(Popul_k1)); 
        Popul_parental(Popul_k1,:)=Popul(index(pair_num(Popul_k1)),:); % 

obtain the selected chromosomes; 
end 
% MSE_new_mean(GA_k)=sum(MSE_new)/Popul_num; 
% MSE_new_min(GA_k)=min(MSE_new); 

  
%% Double crossover; 

  
cross_rate=0.9;   
for Popul_k2=1:2:Popul_num; 
    if rand<cross_rate;  
        cross_p1=randi([2,4*Mc*Nc-1],1); % the first point; 
        cross_p2=randi([cross_p1+1,4*Mc*Nc],1); % the second point; 

  
    Popul_parental_c(Popul_k2,:)=Popul_parental(Popul_k2,:); % the 

chromosome with the odd number; 
    Popul_parental_c(Popul_k2,cross_p1:cross_p2)= 

Popul_parental(Popul_k2+1,cross_p1:cross_p2); % obtain the genes between 

the two points 

     
    Popul_parental_c(Popul_k2+1,:)=Popul_parental(Popul_k2+1,:); % the 

chromosome with the odd+1 number; 
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    Popul_parental_c(Popul_k2+1,cross_p1:cross_p2)= 

Popul_parental(Popul_k2,cross_p1:cross_p2); % obtain the genes between 

the two points 

     
    else 
        Popul_parental_c(Popul_k2,:)=Popul_parental(Popul_k2,:); 
        Popul_parental_c(Popul_k2+1,:)=Popul_parental(Popul_k2+1,:); 
    end 

        
end 

  
%% Mutation 

  
mutation_rate=0.01*0.985^(GA_k-1); 
for Popul_k3=1:Popul_num; 
    mutation_p=find(rand(1,4*Mc*Nc)<mutation_rate);  % the positions of 

all the genes for mutation     
    Popul_parental_c(Popul_k3,mutation_p(1:end))=1-

Popul_parental_c(Popul_k3,mutation_p(1:end));     
end 

  
%% Local search 

  
LS_num=1; % the number of Chromosomes selected randomly for LS 
for LS_k=1:LS_num; 
    LS_s=randi([1,Popul_num]); 
    Chrom_LS=Popul_parental_c(LS_s,:); % the Chromosome selected; 
    Chrom_LS_1=Chrom_LS; Chrom_LS_2=Chrom_LS; 

     

         
        for Mi=0:Mc-1; % calculate the whole diffraction pattern from all 

the cells (triangulars) for only one time; 
            for Nj=0:Nc-1; 
                EA(Mi+1,Nj+1)=Chrom_LS_1(1,Mi*4*Nc+4*Nj+1); 

EB(Mi+1,Nj+1)=Chrom_LS_1(1,Mi*4*Nc+4*Nj+2); 
                EC(Mi+1,Nj+1)=Chrom_LS_1(1,Mi*4*Nc+4*Nj+3); 

ED(Mi+1,Nj+1)=Chrom_LS_1(1,Mi*4*Nc+4*Nj+4); 
            end 
        end 
        

Pattern_LS_1=A_pat.*fftshift(fft2(EA))+B_pat.*fftshift(fft2(EB))+C_pat.*f

ftshift(fft2(EC))+D_pat.*fftshift(fft2(ED)); 

     
    for LS_p=1:4*Mc*Nc; % value would change one by one; 

         
        Chrom_LS_2(1,LS_p)=1-Chrom_LS_1(1,LS_p); % inversion; 
        M_index=ceil(LS_p/(4*Nc))-1; N_index=ceil((LS_p-M_index*4*Nc)/4)-

1; % the cell location of the value changed; 

                        
                    A_fourier=exp(-

1i*2*pi*(m'*ones(1,Nc*PP)*M_index/Mc+ones(Mc*PP,1)*n*N_index/Nc)); % the 

factor related with the cell location; 

                     
                    if mod(LS_p,4)==1; 
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                        T_1=A_fourier.*Chrom_LS_1(1,LS_p).*A_pat; % the 

diffraction of the triangular; 
                        T_2=A_fourier.*Chrom_LS_2(1,LS_p).*A_pat; % the 

diffraction of the triangular after the inversion; 
                    elseif mod(LS_p,4)==2; 
                        T_1=A_fourier.*Chrom_LS_1(1,LS_p).*B_pat; 
                        T_2=A_fourier.*Chrom_LS_2(1,LS_p).*B_pat; 
                    elseif mod(LS_p,4)==3; 
                        T_1=A_fourier.*Chrom_LS_1(1,LS_p).*C_pat; 
                        T_2=A_fourier.*Chrom_LS_2(1,LS_p).*C_pat; 
                    else  
                        T_1=A_fourier.*Chrom_LS_1(1,LS_p).*D_pat; 
                        T_2=A_fourier.*Chrom_LS_2(1,LS_p).*D_pat; 
                    end 

                     

                        

                 
        Pattern_LS_2=Pattern_LS_1-T_1+T_2;         

         
        Power_total_1=sum(sum((abs(Pattern_LS_1)).^2)); 
        Pattern_Norm_1=Pattern_LS_1/sqrt(Power_total_1); 
        MSE_LS_1=sum(sum((abs((abs(Pattern_Norm_1(W1:(Mc)/2+1, 

W3:W4))).^2-(abs(target(W1:(Mc)/2+1, W3:W4))).^2)).^2)); 

         
        Power_total_2=sum(sum((abs(Pattern_LS_2)).^2)); 
        Pattern_Norm_2=Pattern_LS_2/sqrt(Power_total_2); 
        MSE_LS_2=sum(sum((abs((abs(Pattern_Norm_2(W1:(Mc)/2+1, 

W3:W4))).^2-(abs(target(W1:(Mc)/2+1, W3:W4))).^2)).^2)); 

         

        if MSE_LS_2<MSE_LS_1; 
            Chrom_LS_1(1,LS_p)=Chrom_LS_2(1,LS_p); % accept the inversion 

and transfer 
            Pattern_LS_1=Pattern_LS_2; 
        else 
            Chrom_LS_2(1,LS_p)=Chrom_LS_1(1,LS_p); % reject the inversion 

and keep the value before inversion 
            Pattern_LS_2=Pattern_LS_1; 
        end 

         
    end 
    Popul_parental_c(LS_s,:)=Chrom_LS_1; 
end 

     

         
fprintf('GA_k=%d\n', GA_k); 

  
end 
toc; 
%%  

  
  for Mi=0:Mc-1; 
    for Nj=0:Nc-1; 
        EA(Mi+1,Nj+1)=Popul(index(1),Mi*4*Nc+4*Nj+1); 

EB(Mi+1,Nj+1)=Popul(index(1),Mi*4*Nc+4*Nj+2); 
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        EC(Mi+1,Nj+1)=Popul(index(1),Mi*4*Nc+4*Nj+3); 

ED(Mi+1,Nj+1)=Popul(index(1),Mi*4*Nc+4*Nj+4); 
    end   
  end 
  

Chrom_Pattern_C=A_pat.*fftshift(fft2(EA))+B_pat.*fftshift(fft2(EB))+C_pat

.*fftshift(fft2(EC))+D_pat.*fftshift(fft2(ED));   
Power_total=sum(sum((abs(Chrom_Pattern_C)).^2)); 
Pattern_Norm=Chrom_Pattern_C/sqrt(Power_total); 
MSE_ga=sum(sum((abs((abs(Pattern_Norm(W1:(Mc)/2+1, W3:W4))).^2-

(abs(target(W1:(Mc)/2+1, W3:W4))).^2)).^2));  
figure; imagesc((abs(Pattern_Norm)));colormap gray; axis image; 

  
figure; plot(1:GA_k,MSE_eli_mean, 1:GA_k, MSE_eli_min); 
 

 

 

 

 

 

 

  
%%  
   A_pat_2=A_pat; 
   B_pat_2=B_pat; 
   C_pat_2=C_pat; 
   D_pat_2=D_pat; 

    
   Chrom_Pattern_C_1=Chrom_Pattern_C; % the total pattern; 
   MSE_1=MSE_ga; 
   Ran3=Ran1.*ones(Mc,Nc); Ran4=Ran2.*ones(Mc,Nc); 
   Counter=0; 
 for N_round=1:10;  % the round number of the scan; 
 for Mi=0:Mc-1; % scan cell by cell; 
    for Nj=0:Nc-1; 

         

  

         
for Xr=3*P/8:P/8:5*P/8; % scan pixel by pixel in each cell; 
    for Yr=3*P/8:P/8:5*P/8; 
    Counter=Counter+1;  

  

  
delta_Vector=[-1/(2*Nc), -1/(2*Mc)]; 

  
% the first triangle 
tL_ab=[0, 1/Mc]; tL_bo=[(Yr/P)/Nc, (Xr/P-1)/Mc]; tL_oa=[(-Yr/P)/Nc, (-

Xr/P)/Mc]; 
nL_ab=[-1/Mc, 0]; nL_bo=[-(Xr/P-1)/Mc, (Yr/P)/Nc]; nL_oa=[-(-Xr/P)/Mc, (-

Yr/P)/Nc]; 
Mid_ab=[0, 1/Mc]./2+delta_Vector; Mid_bo=[(Yr/P)/Nc, 

(1+Xr/P)/Mc]./2+delta_Vector; Mid_oa=[(Yr/P)/Nc, 

(Xr/P)/Mc]./2+delta_Vector; 

  
% the second triangle 
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tL_bc=[1/Nc, 0]; tL_co=[(Yr/P-1)/Nc, (Xr/P-1)/Mc]; tL_ob=[(-Yr/P)/Nc, (1-

Xr/P)/Mc]; 
nL_bc=[0, 1/Nc]; nL_co=[-(Xr/P-1)/Mc, (Yr/P-1)/Nc]; nL_ob=[-(1-Xr/P)/Mc, 

(-Yr/P)/Nc]; 
Mid_bc=[1/Nc, 2/Mc]./2+delta_Vector; Mid_co=[(Yr/P+1)/Nc, 

(Xr/P+1)/Mc]./2+delta_Vector; Mid_ob=Mid_bo; 

  
% the third triangle 
tL_cd=[0, -1/Mc]; tL_do=[(Yr/P-1)/Nc, (Xr/P)/Mc]; tL_oc=[(1-Yr/P)/Nc, (1-

Xr/P)/Mc]; 
nL_cd=[1/Mc, 0]; nL_do=[-(Xr/P)/Mc, (Yr/P-1)/Nc]; nL_oc=[-(1-Xr/P)/Mc, 

(1-Yr/P)/Nc]; 
Mid_cd=[2/Nc, 1/Mc]./2+delta_Vector; Mid_do=[(1+Yr/P)/Nc, 

(Xr/P)/Mc]./2+delta_Vector; Mid_oc=Mid_co; 

         

% the forth triangle 
tL_da=[-1/Nc, 0]; tL_ao=[(Yr/P)/Nc, (Xr/P)/Mc]; tL_od=[(1-Yr/P)/Nc, (-

Xr/P)/Mc]; 
nL_da=[0, -1/Nc]; nL_ao=[-(Xr/P)/Mc, (Yr/P)/Nc]; nL_od=[-(-Xr/P)/Mc, (1-

Yr/P)/Nc]; 
Mid_da=[1/Nc, 0]./2+delta_Vector; Mid_ao=Mid_oa; Mid_od=Mid_do; 

  
tL(:,:,1)=[tL_ab; tL_bo; tL_oa]; 
tL(:,:,2)=[tL_bc; tL_co; tL_ob]; 
tL(:,:,3)=[tL_cd; tL_do; tL_oc]; 
tL(:,:,4)=[tL_da; tL_ao; tL_od]; 

  
nL(:,:,1)=[nL_ab; nL_bo; nL_oa]; 
nL(:,:,2)=[nL_bc; nL_co; nL_ob]; 
nL(:,:,3)=[nL_cd; nL_do; nL_oc]; 
nL(:,:,4)=[nL_da; nL_ao; nL_od]; 

  
Mid(:,:,1)=[Mid_ab; Mid_bo; Mid_oa]; 
Mid(:,:,2)=[Mid_bc; Mid_co; Mid_ob]; 
Mid(:,:,3)=[Mid_cd; Mid_do; Mid_oc]; 
Mid(:,:,4)=[Mid_da; Mid_ao; Mid_od]; 

  

                         

                     
   for S=1:4; 

  
        MM_1=m*tL(1,1,S); NN_1=n*tL(1,2,S); 
        DOT_1=MM_1'*ones(1,Nc*PP)+ones(Mc*PP,1)*NN_1; 
        temp_1=DOT_1+(DOT_1==0); 
        Sinc_1=sin(pi*DOT_1)./(pi*temp_1)+(temp_1==1); 

         
        MM_2=m*tL(2,1,S); NN_2=n*tL(2,2,S); 
        DOT_2=MM_2'*ones(1,Nc*PP)+ones(Mc*PP,1)*NN_2; 
        temp_2=DOT_2+(DOT_2==0); 
        Sinc_2=sin(pi*DOT_2)./(pi*temp_2)+(temp_2==1); 

  
        MM_3=m*tL(3,1,S); NN_3=n*tL(3,2,S); 
        DOT_3=MM_3'*ones(1,Nc*PP)+ones(Mc*PP,1)*NN_3; 
        temp_3=DOT_3+(DOT_3==0); 
        Sinc_3=sin(pi*DOT_3)./(pi*temp_3)+(temp_3==1);  
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        MM_4=m*nL(1,1,S); NN_4=n*nL(1,2,S); 
        NormalD_1=MM_4'*ones(1,Nc*PP)+ones(Mc*PP,1)*NN_4; 

         
        MM_5=m*nL(2,1,S); NN_5=n*nL(2,2,S); 
        NormalD_2=MM_5'*ones(1,Nc*PP)+ones(Mc*PP,1)*NN_5;        

  
        MM_6=m*nL(3,1,S); NN_6=n*nL(3,2,S); 
        NormalD_3=MM_6'*ones(1,Nc*PP)+ones(Mc*PP,1)*NN_6; 

         

         
        MM_7=m*Mid(1,1,S); NN_7=n*Mid(1,2,S); 
        MidD_1=exp(-1i*(2*pi)*(MM_7'*ones(1,Nc*PP)+ones(Mc*PP,1)*NN_7)); 

  
        MM_8=m*Mid(2,1,S); NN_8=n*Mid(2,2,S); 
        MidD_2=exp(-1i*(2*pi)*(MM_8'*ones(1,Nc*PP)+ones(Mc*PP,1)*NN_8)); 

         
        MM_9=m*Mid(3,1,S); NN_9=n*Mid(3,2,S); 
        MidD_3=exp(-1i*(2*pi)*(MM_9'*ones(1,Nc*PP)+ones(Mc*PP,1)*NN_9));   

         
        MMNN=2*pi*((m.^2)'*ones(1,Nc*PP)+ones(Mc*PP,1)*(n.^2)); 
        temp_4=MMNN+1i*(MMNN==0); 
        Term=1i./temp_4; 

         

                 
        

Pattern_tri=Term.*(Sinc_1.*NormalD_1.*MidD_1+Sinc_2.*NormalD_2.*MidD_2+Si

nc_3.*NormalD_3.*MidD_3); 

        
        Pattern_t(:,:,S)=Pattern_tri; % the pattern from the triangle #S; 

  
   end 
   A_pat_2=Pattern_t(:,:,1);  
   B_pat_2=Pattern_t(:,:,2); 
   C_pat_2=Pattern_t(:,:,3); 
   D_pat_2=Pattern_t(:,:,4); 

    
   A_fourier=exp(-

1i*2*pi*(m'*ones(1,Nc*PP)*Mi/Mc+ones(Mc*PP,1)*n*Nj/Nc)); 

  

   

 

Chrom_Pattern_oneC_2=A_fourier.*Popul(index(1),Mi*4*Nc+4*Nj+1).*A_pat_2+A

_fourier.*Popul(index(1),Mi*4*Nc+4*Nj+2).*B_pat_2+A_fourier.*Popul(index(

1),Mi*4*Nc+4*Nj+3).*C_pat_2+A_fourier.*Popul(index(1),Mi*4*Nc+4*Nj+4).*D_

pat_2; % the pattern from one cell (four triangles); 
  % the changed cell 

  
 

Chrom_Pattern_oneC_1=A_fourier.*Popul(index(1),Mi*4*Nc+4*Nj+1).*A_pat+A_f

ourier.*Popul(index(1),Mi*4*Nc+4*Nj+2).*B_pat+A_fourier.*Popul(index(1),M
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i*4*Nc+4*Nj+3).*C_pat+A_fourier.*Popul(index(1),Mi*4*Nc+4*Nj+4).*D_pat; % 

the pattern from one cell (four triangles); 
  % the original cell 

  
 Chrom_Pattern_C_2=Chrom_Pattern_C_1-

Chrom_Pattern_oneC_1+Chrom_Pattern_oneC_2; 

  
  Power_total=sum(sum((abs(Chrom_Pattern_C_2)).^2)); 
  Pattern_Norm=Chrom_Pattern_C_2/sqrt(Power_total);  
  MSE_2=sum(sum((abs((abs(Pattern_Norm(W1:(Mc)/2+1, W3:W4))).^2-

(abs(target(W1:(Mc)/2+1, W3:W4))).^2)).^2)); 

   
  if MSE_2<MSE_1; 
      Ran3(Mi+1,Nj+1)=Xr; Ran4(Mi+1,Nj+1)=Yr; % position accepted; 

           
      Chrom_Pattern_C_1=Chrom_Pattern_C_2;  
      MSE_1=MSE_2; 
  else 
      Xr=Ran3(Mi+1,Nj+1); Yr=Ran4(Mi+1,Nj+1);  

       
      Chrom_Pattern_C_2=Chrom_Pattern_C_1; 
  end 

    
  MSE_3(Counter)=MSE_1; 
    end 
end        

        

  
    end 
    fprintf('%d\n', Mi);  
 end 
 end  
figure;plot(MSE_3); 

  
Power_total=sum(sum((abs(Chrom_Pattern_C_1)).^2)); 
Pattern_Norm_1=Chrom_Pattern_C_1/sqrt(Power_total); 

  
figure; imagesc((abs(Pattern_Norm_1)));colormap gray; axis image; 
toc;   
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Appendix B: Thin metal superlens imaging in nano-

lithography1 

 

Abstract 

Superlens imaging system in nano-lithography can be regarded as a cascade of two F-P 

cavities, i.e. a superlens cavity, and a dielectric cavity between superlens and introduced 

mask of high loss, and the transfer function of system are obtained by considering multiple 

reflections inside the two cavities. For the range of wavevector of interest, the typical high 

peak of transmission coefficient of superlens coincides with a local minimum of transmission 

coefficient of dielectric cavity. The peak of transfer function of system corresponds to the 

peak of transmission coefficient of dielectric cavity. Thin superlens imaging system in nano-

lithography is analysed based on transfer function, which can be flattened by simply tuning 

transmission coefficient of dielectric cavity and superlens cavity. The results are further 

validated by Finite Element Method (FEM) simulations. 

Introduction 

The metal planar superlens, with a negative permittivity at optical frequency and a positive 

permeability, was proposed by Pendry in 2000 [1] as an alternative to negative index media 

(NIM) by Veselago in 1967 [2] to break the diffraction limit. The principle of superlens is to 

compensate the exponential decay of the evanescent field away from the object by amplifying 

the evanescent waves through surface plasmons (SP) resonances. Since then, many research 

efforts had been devoted into superlens imaging [3-15], including theoretical models, 

numerical simulations, experimental demonstrations and applications. 

The silver superlens was demonstrated experimentally with the resolution of one-sixth of the 

illumination wavelength by Zhang et al in 2005 [3]. In their experiment, 35 nm thick silver 

slab was used because it gives the optimum transfer function. Thinner sliver slabs show 

                                                           
1 A side project irrelevant to CGH at the beginning of my phd program 
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higher but narrow enhancement bands, and thicker slabs show smaller enhancements in 

reference to zero-order transmission [4]. In order to eliminate the sharp peak of transfer 

function, Sheng et al proposed to design the metallic superlens close to the cutoff condition 

of the long-range SP mode to balance the amplification by the SP resonance and the flatness 

of the transfer function [5, 6]. Moore et al suggested a performance window for superlens 

with total thickness range from 120 nm to 140 nm in order to get a flatter transfer function 

[7]. Those were reported by considering transfer functions of the imaging system with three 

layers structure - a superlens sandwiched by two semi-infinite dielectrics [4-7].  

Normally, when dealing with the imaging system, a perfectly absorbing, thin screen with 

slit(s) has been widely adopted. The transmission of the idealized screen will be 1 in the slit 

or 0 otherwise. While in real nano-lithography applications, there exists a metallic object 

mask. The metallic mask itself exists mainly for constructing a perfect object function in the 

object plane just behind the mask for the imaging system. To obtain a good enough object 

function, which means as close as the ideal case, i.e. 1 in the slit and 0 otherwise, a thick 

mask with intrinsic high loss, such as Chrome (Cr), is usually applied. Due to the introduction 

of mask, a dielectric cavity is naturally formed between the mask and superlens. Blaikie et al 

approximately considered the neglected recursive reflections in the dielectric cavity between 

the superlens and the mask, and modified transfer function by an improved transfer-matrix 

model [8]. Sheng et al further take possible SPR by mask itself in some cases into account 

and give a more general model with its transfer function, which is optimized by genetic 

algorithm (GA) [9]. 

For the superlens imaging system in nano-lithography, we regarded it as two cascaded F-P 

cavities – a superlens cavity, and a dielectric cavity between superlens and introduced mask 

of high loss, and the transfer function of system are obtained by considering multiple 

reflections inside the two cavities [9, 10]. We studied the transfer function of system and the 

transmission coefficient of two cavities, then revealed some relations among them. It is found 

that the peak shown in transmission coefficient of superlens always corresponds to the local 

minimum of transmission coefficient of dielectric cavity. Moreover, the peak of transfer 

function of system coincides with transmission coefficient of dielectric cavity instead of that 

of suprelens. Based on these, we propose to simply tune the transmission coefficient of 



 

114 
 

superlens cavity and dielectric cavity, a very thin metal superlens imaging system shows 

well-balanced transfer function and thus produce improved image, which is validated by 

FEM simulations. 

Metal superlens imaging system 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Metal superlens imaging system for nano-lithography 

Consider an imaging system for nano-lithography with a metal superlens of permittivity s  

and a thick metallic mask of permittivity 
o   with high intrinsic loss to construct an object 

function, as shown in Fig. 1. For the purpose of the image analysis, herein a slit of nano-size 

is perforated through the object mask. A dielectric cavity, with permittivity
d  , is formed 

between the superlens and the mask. The illuminating light of TM polarization is incident 

normally to the object mask from the semi-infinite dielectric medium p  . The image plane 

is placed in a semi-infinite dielectric medium q  at a distance qd from the superlens. The 

incident plane wave of TM polarization was launched in dielectric medium p , and then 

encounter the object mask o . In the case where the lithographic metal mask layer is thick 

and of high intrinsic loss, the incident waves will be dissipated in the mask medium and can 

only pass through the slit. At the exit of the slit, the waves, labelled as source A, will be 

p                  o                d           s           q 

Object plane Image plane 

Mask Superlens 

x 

z 
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scattered in the medium 
d  launching the Surface Plasmon Polaritons (SPPs) along 

interfaces of the superlens. Both the homogeneous propagating waves and inhomogeneous 

SPP waves will reach the image plane and contribute to the image in dielectric medium q . 

The evanescent waves will simply undergo an exponential delay in the semi-infinite 

dielectric medium q .  Therefore, the imaging system for the source A shown in Fig. 1 can 

be regarded as two cascaded Fabry-Perot (F-P) cavities. The first cavity is the dielectric layer 

d  with two metal/dielectric interfaces, /d o   and /d s  , respectively. The second cavity 

is the metal superlens layer with two interfaces, /s d  and /s q  , respectively. The transfer 

function of the imaging system can be computed as the product of transmission coefficients 

of the two cavities, which are obtained by considering multiple reflections inside the two 

cavities. We analyze the mathematical expressions of the transmission coefficients 

corresponding to the two cavities in order to get a flat transfer function of the imaging system.  

a. transmission coefficient of superlens cavity 

The superlens cavity of permittivity 
s   is between two metal/dielectric interfaces of /s d   

and /s q  . Its transmission coefficient can be calculated by considering resonance of 

multiple reflected fields in the superlens cavity as [1, 5] 

 21

s ds sq

s

s sd sq

e t t

e r r
 =

−
， (B. 1) 

where the Fresnel reflection and transmission coefficients from medium i to medium j, with 

sub-indices i, j = o, d, s and q, are ( ) ( )ij j zi i zj j zi i zjr k k k k   = − + , ( )2ij j zi j zi i zjt k k k  = +

with 2 2

0zi i xk k k= − , the propagation factor ( )expi zi ie ik d= , describing the phase change 

of the propagating waves with 
2 2

0x ik k  along the distance id  and the exponent decay in 

amplitude of the evanescent waves
2 2

0x ik k  over id , respectively.  

According to Eq. (B. 1) and for a silver superlens with variable thickness, the amplitude of 

transmission coefficient s  as a function of normalized wavevector ( )0 0x x dk k k=  is 

depicted in Fig. 2(a). Typically for a thin superlens of less than 30 nm thickness a sharp and 

high peak is shown at a low spatial frequency 01xk  slightly larger than 0 1xk =  and a relative 
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broad and low peak is at a high spatial frequency 
02xk . When increasing the thickness only 

one peak will appear at a spatial frequency between spatial frequency 
01xk  and 

02xk . For 

large thickness of superlens, the amplitude of transmission coefficient become low and flat 

due to high loss in the thick metal superlens, as shown in Fig. 3(a).  

According to the Maxwell’s equations and the boundary conditions in the Dielectric – Metal 

– Dielectric (DMD) waveguide structure, the dispersion relation can be obtained and solved 

numerically [5]. The effective indices of waveguide modes are plotted for different thickness 

of Ag superlens in Fig. 2(b). Two modes, long-range surface plasmon (LRSP) mode and 

short-range surface plasmon (SRSP) mode, are supported for DMD waveguide of a thin 

superlens. The two peaks correspond to such two excited SP modes: a LRSP mode associated 

to a narrow peak located at lower spatial frequencies 
01xk   and a SRSP mode associated to a 

broad peak at higher spatial frequencies 
02xk . When the thickness of the metal superlens 

increases, location of the peak at low frequency (LRSP mode) tends to shift to higher 

frequency, and location of the peak at high frequency (SRSP mode) tends to lower frequency. 

At a certain thickness of the superlens, only one mode will be supported which accounts for 

only one peak of the transmission coefficient. 

 

     

                                (a)                                                                                          (b) 

Fig. 2. For Ag superlens of thickness ranging from 5 nm to 120 nm sandwished by two dielectric mediums d

= q =2.34, (a) The amplitude of transmission coefficient, 1s   for propagating waves with 
0 1xk  , while 

for evanescent waves with 
0 1xk  , it can be amplified. (b) mode effective index of DMD waveguide. 
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If the imaging system is considered as a superlens between two semi-infinite dielectrics 

without presence of the metal lithographic mask, as that in ref. [4-7], then the very thin 

superlens is usually inappropriate for imaging due to the existence of sharp peak of s  

resulting from excitation of LRSP mode. The LRSP mode can be cut off [5] if 
2 0ds s sqr e r+   

is met, which means the reflection of metal layer is around 0.  

 

b. transmission coefficient of dielectric cavity 

The dielectric slab of 
d  is sandwiched by the metal superlens and the metal mask, 

constituting a dielectric F-P cavity. Its transmission coefficient can be calculated [9, 10] by 

taking into account the recursive reflections in the cavity as 

 
2 2

2

2 2
1

1 1

d
d

ds s sq do o op

d

s sd sq o op od

e

r e r r e r
e

e r r e r r

 =
  + +

−     − −  

, (B. 2) 

For a thick mask with high loss used in the superlens image system for nano-lithography,

0opr = , then Eq. (B. 2) can be further written as  

 
( )22

2

1 1

1 1

1

d

ds s sq do dds s sq

d do s

d s sd sq d s ds sq

r e r r er e r
e r

e e r r e e t t





= =
  ++

− −  − 

. (B. 3) 

For evanescent waves with 
2 2

0x dk k , ( ) ( )2 2 2 2

0 0exp expd d x d x d de i k k d k k d = − = − −  is 

real. The denominator in Eq. (B. 3) can be evaluated, based on a b a b a b−    +  and 

ab a b= , as 

( ) ( ) ( )2 2 2

1 1 1ds s sq do d ds s sq do d ds s sq do d

s s s

s ds sq d d s ds sq s ds sq d

r e r r e r e r r e r e r r e

e t t e e e t t e t t e
  

+ + +
−  −  + . 

Thus, when the amplitude of transmission coefficient of the superlens s  shows a very high 

peak associated with the excitation of LRSP mode at a low spatial frequency 01xk  slightly 
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larger than
0 1xk = , the amplitude of transmission coefficient of the dielectric cavity d  will 

fall to a local minimum. While, d  will reach to a maximum when the absolute value of 

denominator of Eq. (B. 3) approaches to 0, i. e. 

 
( )2

1
0

ds s sq do d

s

d s ds sq

r e r r e

e e t t


+
− → . (B. 4) 

Besides, it is interesting to notice that, if 
2 0ds s sqr e r+   in Eq. (B. 3), then the transmission 

coefficient 
d de  , implying an exponential decay of the evanescent waves in the dielectric 

cavity, just as that in the free space without any resonances, and is independent of the cavity 

thickness. 

 

c. transfer function of imaging system 

As the imaging system for the source A is a cascade of two F-P cavities, the total transfer 

function  
A  is calculated by 

 
( )2

1

1
A d s

ds s sq do d

d s s ds sq

r e r r e

e e t t

  



=  =
+

−

, (B. 5) 

When the condition (B. 4) is satisfied, A  and d  will both reach to their maximums, 

according Eq. (B. 3) and Eq. (B. 5), at the same spatial frequency
03xk . This reveals that the 

peak of the total transfer function A  for source A in the imaging system corresponds to the 

peak of transmission coefficient of dielectric cavity d  at 
03xk  instead of that of superlens 

s  at 01xk . Actually, the value of A  at 01xk  is always balanced as the transmission 

coefficient of the superlens s  can be supressed by the local minimum of d  at 01xk . The 

transfer function for source A is defined as the transmission coefficients of the system 

described in Eq. (B. 5) as a function of the spatial spectral frequency. According to SPP 

waveguide theory, the LRSP mode is cutoff when the propagation constant   is purely real, 
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which occurs when the nature of the mode changes from attenuating (  Im 0  ) to growing 

(  Im 0  ) with the propagation along the metal layer [5,6]. If the cut-off condition for 

LRSP mode, i.e. 
2 0ds s sqr e r+  , is fulfilled, the transfer function 

A d s d se   =    . In this 

case, a relative flat transfer function can be expected when consider together the well-

controlled, proper amplification of SPP by superlens and an exponential decay of amplitude 

of evanescent waves in dielectric cavity. 

 

Imaging by thin superlens imaging system 

We first consider a Ag superlens imaging system with typical parameters: the metallic mask 

is Chrome with permittivity 8.55 8.96o i = − +    and thickness of 
od = 50nm, the silver slab 

with permittivity 2.6 0.25s i = − +  with incident wavelength 365 nm and thickness 
sd  = 30 

nm, the dielectric layer between superlens and mask has the permittivity
d  = 2.34 and 

thickness of dd  = 40 nm, the dielectric q = 2.34, as shown in Fig. 1. From Fig 3 (a), the 

sharp peak of s  corresponds the local minimum of d  at
01 1.3xk  , which is the effective 

index of LRSP mode excited in DMD waveguide. The broad peak of s  at 
02 3.6xk    is 

shown because of the excitation of SRSP mode. The value of transfer function A  at  

01 1.3xk    is balanced by the multiplication of s  and d , which indicates that we cannot 

judge the imaging system only by transmission coefficient of superlens. The peak of transfer 

function A  locates at 03 1.6xk  , which is the same as that of transmission coefficient of 

dielectric cavity d . We change the thickness of Ag to 
sd = 15 nm and thickness of dielectric 

dd =10 nm, which form a thinner sueprlens imaging system. The transmission coefficient s  

of 15 nm thick superlens has a shaper and higher peak, as shown in Fig. 3 (b), than that of 

superlens of 30 nm thickness in Fig. 3 (a). Still, the peak of s  corresponds the local 

minimum of d  at 01 1.1xk  , and thus the value of A  at 01 1.1xk    is balanced in the same 
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manner. The peak of transfer function A  and transmission coefficient of the dielectric 

cavity d  is obtained around  
03 1.4xk  , as depicted in Fig. 3 (b). The very thin superlens 

imaging system can show a flatter transfer function over a broader range of spatial frequency 

by simply tuning the transmission coefficient of superlens cavity and dielectric cavity. 

 

 

 

 

 

 

Fig. 3. The Amplitude of transmission efficient of superlens, dielectric and transfer function of the system as a 

function of normalized wavevector. (a) 
dd =40nm, 

sd =30 nm, (b) 
dd =10nm, 

sd =15nm. 

For further validations, 2D Finite Element Method (FEM) by commercial software 

package COMSOL was employed to simulate the imaging system in (x, y) plane, as shown 

in Fig. 4. A TM (Ex, Ey, Hz) plane wave with wavelength of 365 nm was launched along y 

direction from the input port on the top boundary in the FEM simulations. A perfectly 

matched layer (PML) was applied at the bottom boundary and Periodical boundary 

conditions (PBC) were imposed on the left and right sides. A chrome mask with two slits of 

40 nm was used. The centre-to-centre distance of two slits was 120 nm. The lateral length 

along x direction of each layer was 1 um. To clearly show the fields after the mask of high 

loss, the incident waves before and in the mask, and the mask itself are removed in Fig. 4 (a) 

and (c). The image of the two spaced slits is recorded at the imaging plane placed at a distance 

of 10 nm away the superlens, as shown in Fig. 4 (b) and (d). Obviously, the image in Fig. 4 

(d) by thin superlens system with transfer function in Fig. 3(b) is better than the one in Fig. 

4 (b) with the transfer function shown in Fig. 3 (a), because the sidelobes of the image in Fig. 
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4 (d) was largely suppressed compared with that in Fig. 4 (b). However, the amplitude of the 

unwanted centre peak is still high, as shown in Fig. 4 (b) and Fig. 4 (d). 

 

Fig. 4. Simulation results of the superlens imaging system by FEM. (a) Field distributions of system with 
dd

=40nm, 
sd =30 nm; (b) image of two-slit object in the imaging plane in (a); (c) Field distributions of system 

with 
dd =10nm, 

sd =15 nm; (d) image of two-slit object in the imaging plane in (c). 

The imaging performance of thin superlens imaging system can be further improved by 

approaching the LRSP mode cut-off condition as we demonstrated. Change the dielectric d  

= 2.34 to 
d = 4.08, and keep all others unchanged as those in Fig. 4(c). The transfer function 

A  and transmission coefficient d  and s  are plotted in Fig. 5 (a), from which, we can 

see that the high peak of s  associated with LRSP mode is mainly removed, and d  

approximately follows an exponential decay for evanescent waves, and thus the transfer 

function A  is balanced to show flatness. The field by a FEM simulation in this superlens 

system is shown in Fig. 5 (b) and the image is notably improved as shown in Fig. 5 (c), in 

which, both the sidelobes and the centre peak are greatly suppressed compared with those in 

Fig. 4 (b) and Fig. 4 (d).  
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Fig. 5. (a) Amplitude of transmission coefficient of superlens, dielectric and transfer function of the system as 

a function of normalized wavevector. (a) LRSP mode cut-off condition is approached with 
dd =10nm, 

sd

=15nm, 
d =4.08, (b) field distributions in superlens imaging system, (c) image of two-slit object in the imaging 

plane in (b). 

 

Conclusions 

We investigated the imaging performance of the metal planar superlens for Nano-

lithography, considering the superlens imaging system as a cascade of two F-P cavity: a 

superlens cavity, and a dielectric cavity between superlens and introduced mask of high loss. 

By analysing of the transmission coefficient of superlens and dielectric cavity, and the 

transfer function of whole system, we found that the peak of the transmission coefficient of 

the superlens always coincides with the local minimum of that of the dielectric cavity, and 

the peak of the whole transfer function of system actually corresponds to that of dielectric 

cavity instead of superlens. Then, we show that very thin superlens imaging system, which 

was usually believed improper for superlens imaging, has an improved imaging performance 

by simply tuning the transmission coefficient of superlens cavity and dielectric cavity. All 

the results are analyzed based on transfer functions and further confirmed by FEM 

simulations. 
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