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Abstract

The physical porosity Φ of a porous material determines most of its properties. Although the optical porosity Φopt can be measured, relating 
this quantity to Φ remains a challenge. Here we derive relationships between the optical porosity, the effective refractive index neff and the physical 
porosity of weakly absorbing porous media. It introduces the absorption enhancement parameter B, which quantifies the asymmetry of photon path 
lengths between the solid material and the pores and can be derived from the absorption coefficient µa of the material. Hence Φ can be derived from 
combined measurements of neff and µa. The theory is validated against laboratory measurements and numerical experiments, thus solving a long-
standing issue in optical porosimetry. This suggests that optical measurements can be used to estimate physical porosity with an accuracy better than 
10%.

1. Introduction

Porosity controls the mechanical [1], radiative [2], thermal [3], chemical [4] and acoustic [5] properties of porous materials. Fast, accurate and 
non-invasive methods to determine porosity are thus useful for a wide range of applications: calibration of pharmaceutical solids [6], monitoring of 
food transformation [7], characterization of sedimentary rocks [8], estimation of snow density [9] and ice cores air content [10], etc. Optical methods 
are very attractive due to their practical implementation, relatively low cost and limited impact. However, previous attempts to retrieve porosity 
from optical measurements of highly scattering porous media have faced the challenge that from an optical point of view, the porosity is generally 
undistinguishable from the scattering phase function of the material. Indeed, although the extinction coefficient µe of a medium only depends on its 
density and specific surface area which are purely geometrical quantities [11], most optical measurements can only provide the absorption coefficient 
µa and reduced scattering coefficient µs's   =  (1– )g µs, with µe = µa + µs, µs being the scattering coefficient. This highlights the contribution of the 
generally unknown phase function of the medium through the asymmetry parameter g [12,13].

An attractive solution to this inherent limitation is to determine the effictive light velocity in the medium, from which the effective refractive 
index neff, or equivalently the optical porosity, can be deduced [14,15]. Indeed, it is expected that the light velocity in a porous medium is a weighted 
average of the velocities in both phases, but the relationship is non trivial, because light preferentially travels in the most refringent phase [6]. In such 
case, the relative distances traveled by a photon in each phase do not scale with the volume fractions of each phase, preventing the easy derivation 
of physical porosity from measurements of neff. As a consequence, simple effective medium models such as volume averaging [16,17], Bruggeman 
approximation, Maxwell-Garnett mixing rule or Looyenga formula have proved inefficient to explain the observed relationship between neff and Φ 
[15–19]. Empirical models have been proposed to overcome the limitations of standard mixing models [14,15], but a general relationship between 
effective refractive index and physical porosity is still lacking. In this study, we show that the lengthening of photon paths in the phase with greater 
refractive index, which results from internal multiple scattering in this phase, is actually directly related to the bulk absorption coefficient µa of the 
medium (the intrinsic radiative property that quantifies its linear rate of light absorption), as long as absorption only occurs in this phase and remains 
weak, which is often the case. In such conditions, the predominant interaction of light with the absorbing phase is quantified by the absorption 
enhancement parameter B of the material, which relates µa to φ and the absorption coefficient γ of the absorbing phase [see Eq. (16)]. B is well 
defined in the snow optics community [20] and has been recently determined using an optical method [21].

The aim of the paper is to propose a relationship between the effective refractive index and the physical porosity, or equivalently between optical 
and physical porosities. Section 2 presents the theoretical framework used to derive an expression of porosity in terms of neff and µa, both parameters 
being measurable with optical methods. This theory is then validated in Section 3 against recent measurements from the literature, and against 
numerical simulations performed in this study with a ray tracing model. Section 4 investigates the accuracy of the retrieval and the application of the 
theory to pore size estimation.
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2.Theory

We consider a two-phase scattering medium, namely a porous material. We assume, for the sake of simplicity, that one phase is vacuum, and the 
other any solid material (glass, ice, mineral, metal, cellulose, etc.). The following can be extended to any two-phase structure but notations would be 
cumbersome. The porosity Φ of this porous medium is defi ned as

where ρ is the bulk density of the porous material, and ρs that of the pure solid phase. We consider random straight lines going through the porous 
medium, made of a succession of vacuum and solid chord lengths. The mean vacuum chord length is called lv, and the mean solid chord length is 
called ls. From stereological considerations [11],

Under the condition that geometrical optics applies to the medium (that is when the photon free-path length is larger than the wavelength [20]), due 
to internal refl ections within the solid phase, whose real refractive index n is assumed larger than 1, the actual mean solid chord length l's, of a photon 
traveling through the porous medium is larger than ls. From now on, the lengthening parameter β is defi ned as:

β thus quantifi es the lengthening of photon paths inside the solid phase with respect to straight lines. Note that surface external Fresnel refl ections 
which result in no internal path are accounted for in β, which is an average of all possible photon internal paths.

Following a photon on its tortuous path through the medium, it travels successively a distance lv in vacuum and βls in the solid. Its average 
velocity along this elementary path is thus:

where c is the speed of light in vacuum. Combining Eqs. (3) and (5) fi nally provides the expression of the effective refractive index neff of the 
medium in terms of its porosity:

The optical porosity is defi ned as in [14]:

Given Eq. (3), optical and physical porosities are related through:
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We now aim at relating β to the absorption coeffi cient µa of the material, which can be optically measured. To this end we fi rst consider a convex 
solid particle in vacuum, uniformally illuminated by a beam of light at wavelength λ. Under weakly absorbing conditions (single scattering albedo ω
« 1), the absorption cross section Cabs of the particle is proportional to its volume V [20]:

where the absorption enhancement parameter B depends on the ratio between the refractive indices of the solid and environment and on the particle 
shape, γ is the spectrally-dependent absorption coeffi cient of the solid phase, related to its imaginary refractive index m through  γ = 4πm / λ. Like β, 
B accounts for the surface external Fresnel refl ections. The absorption effi ciency Qabs of one particle is the ratio of Cabs to the average projected area 
of the particle Σ = V/ls [11]. Therefore,

Alternatively,  Qabs can be defi ned as the proportion of photons impacting the particle which are absorbed along the mean internal solid chord l's. 
Light extinction in the absorbing phase follows Beer-Lambert law, such that Qabs = 1 e−γl's , which at weakly absorbing wavelengths (γl's « 1) can be 
approximated by γl's,  [22], so that,

which formally shows that for a single particle

In the case of a collection of such non-sticky identical particles, the particles number concentration N reads:

Using Eqs. (10) and (14), B is related to the bulk absorption coeffi cient µa of the medium [23]:

This relation assumes that mutual interferences can be neglected, which proved to remain valid even at porosities larger than 50% [24]. In the 
following, we further assume that Eq. (13) holds for any porous medium, as long as B is defi ned according to Eq. (16). This will be verifi ed in Section 
3. As B does not depend on the particle sizes, but solely on their shape, Eq. (9) comforts the conclusions of [14] and [15] that Φopt is independent of 
the granules sizes.

The combination of Eqs. (6), (13) and (16) fi nally shows that the porosity of a medium can be derived from the measurement of neff and µa:

Notably, for the particular case of a statistically random mixture – a random mixture is such that along a straight line, the positions of the successive 
interfaces follows a Markov process, which means that any next intersection is independent of the positions of the previous ones, resulting in 
exponential distributions of vacuum and solid chord lengths – it was shown that B = n2 [Eqs. (9) and (25) of [11]]. In this case, Φ can be derived 
directly from neff using Eq. (6), even if µa or γ are poorly known:
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Equations (18) and (19) were derived for the case where the host medium has refractive index 1. However they can be generalized to the case of two 
phases with refractive indices n1 and n2, where absorption only occurs in phase 2 such that n2>n1. In this case,

In addition, as β only depends on Snell and Fresnel equations which are invariant to the ratio
n2/n1, it equals (n2/n1)2 for the random mixture. In this case, Eq. (19) becomes:

3. Applications

The formulae derived in the previous section are meaningful because both neff and µa can be measured with optical methods. These formula 
are fi rst validated with experimental data from the literature, then with dedicated numerical simulations performed with a ray tracing model. Once 
validated, the proposed theoretical framework can be applied to the retrieval of Φ [Eq. (18)].

3.1. Experimental data from the literature

The theory derived in Section 2 is applied to the experimental studies of [14] and [15] that lie in the framework of the proposed model. In [14], 
gas in scattering media absorption spectroscopy (GASMAS, e.g. [25]) and photon time of fl ight spectroscopy (PTOFS) are used to determine lv and 
l's, respectively, of a ceramic material (n = 1.75) and of 12 granulated pharmaceutical tablets (n = 1.5) with various porosities. Two sets of tablets 
were manufactured from the compression of two sieve fractions (150 µm granules sizes for group A and 150-400 µm for group B). The physical 
porosity of these porous materials was measured using mercury intrusion and the optical porosity was computed after Eq. (7). For the ceramic 
material, the measured physical porosity was 0.34 and the measured optical porosity was 0.149. Application of Eq. (9) (assuming a random mixture 
because µa was negligible) gives an optical porosity of 0.144, very close to the measured value. The results for the pharmaceutical tablets are shown 
in Fig. 1. It shows that the theory explains very successfully the observed relationship between optical and physical porosities (mean absolute relative 
error of 6.3%), whatever the granules size. It also suggests that Eq. (9) remains valid at low porosities.

In a way similar to [14], in [15] frequency domain photon migration (FDPM) and GASMAS techniques were combined to derive neff for 
commercial porous alumina ceramics (n = 1.76) of various porosities and pore size around 200 µm. The authors tried to explain the experimental 
relationship between neff and Φ by using a modifi ed Looyenga model. This required the fi tting of a parameter, so that their relationship cannot be 
extended to other materials. Figure 2 shows their experimental results, along with Eq. (6), again assuming a random mixture (because µa = 0 m−1 in 
this experiment). It shows that the match between model and observations is excellent (mean absolute relative error of 0.5%), which again strongly 
supports the theory developed in Section 2 for a wide range of porosities.

3.2. Numerical simulations

The samples investigated in the previous section were assumed to be random mixtures from a statistical point of view, because of the absence 
(to the best of our knowledge) of combined accurate measurements of neff and µa (µa ≠ 0) in the literature. Although this approximation proved very 
effi cient for the two cases mentioned, the validity of Eq. (6) is now investigated for non-random mixtures. To this end, the theory is tested against 
optical simulations performed with the ray tracing software Zemax OpticStudio (www.zemax.com) used in non-sequential mode in order to make 
Monte-Carlo simulations on virtual porous materials made of unsticky spheres and randomly oriented cubes, as well as sticky spheres (Fig. 3). The 
particles are weakly absorbing, their refractive index is n2 and that of the medium is n1. The sample volume has an optical depth of 700 and is 7 
times as wide as it is deep. Photons are launched at the center top of the sample. A given trajectory is terminated when the photon escapes the sample 
volume, and the effective refractive index neff of the medium is computed from the average speed of photons along their trajectories. For this, only 
photon paths larger than the mean path are used to ensure that a suffi ciently large hence representative part of the sample is probed. The experiment is 
repeated for various refractive indices n1 and n2, and various physical porosities, the latter being determined from stereology [Eq. (1)]. To validate Eq. 
(6), the absorption enhancement parameter B of each samples also needs to be computed. The procedure is detailed hereafter.

Simulations are fi rst performed for various collections of randomly organized unsticky and identical (same size) cubes and spheres. The 
absorption enhancement parameter B of each sample equals that of a single particle. The latter is estimated following [23], by launching rays from 
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all directions on a single particle. Figures 4 and 5 show the computed neff as a function of the physical porosity, along with the result from Eq. (6). 
The analytical formula matches well the simulations, for all investigated confi gurations, highlighting the validity of Eq. (6) in the case of independent 
particles.

When the medium is not made of a collection of identical particles, B is not directly related to the B of individual particles but it can nevertheless 
be determined from µa according to Eq. (16), as long as Φ is known. Practically, µa can be determined using combined measurements of refl ectance 
and fl ux exponential decay as a function of depth [23], or from PTOFS [12]. Here the method of [23] is used to estimate B for this medium. Briefl y, 
the semi-infi nite diffuse albedo α and asymptotic fl ux extinction coeffi cient ke of the medium are estimated with Zemax. Analytical expressions of α 
and ke given by [24] allow to compute B as [Eq. (12) of [23]]:

or equivalently:

To estimate α, the sample is illuminated by a diffuse point source at the center, and the photons escaping through the top contribute to the albedo. 
ke is derived from the linear regression of  ln (F (z)) , where the downward fl ux F (z) at any depth is estimated by counting all the photons crossing 
downward the corresponding surface (Fig. 6).

The sticky spheres samples are such that n1 = 1, n2 = 1.5, and γ = 20 m−1. As media with different porosities practically have different 
microstructures, B varies with porosity. Table 1 summarizes the B values obtained from Eq. (23), and compares         , the experimental value 
corresponding to the average speed of photons in the Zemax simulations, to the theoretical value         derived from Eq. (6). The relative difference 
between both is denoted ∆neff. It shows that theoretical and experimental neff agree within less than 0.5 %. This very good agreement extends the 
validity of Eq. (16), hence of the theory, to any porous medium satisfying the conditions enumerated in Section 2: geometrical optics applies, 
absorption is weak and localized in the most refringent phase. Most notably, it formally proves that physical porosity can be obtained from combined 
optical estimations of neff and µa, whatever the microstructure of the medium.

4. Discussion

4.1. Application to Φ retrieval

In the previous section it was shown that the theory developed holds for any geometry of the porous medium, enabling deriving the physical 
porosity of a material from measurements of neff and µa [Eq. (18)]. As an illustration, Fig. 7 shows the successful porosity retrieval for all the sticky 
spheres samples of Section 3.2. Based on these numerical simulations, the retrieval accuracy is 3.7% for n = 1.5 and 5.3% for n = 1.7.

4.2. Precision of Φ retrieval

Although it has been demonstrated that Φ can be retrieved using only optical measurements, the precision of the retrieval must be assessed to 
test the actual potential of this technique. First, a basic error analysis of Eq. (18) shows that

 values obtained from Eq. (23), and compares         , the experimental value 
corresponding to the average speed of photons in the Zemax simulations, to the theoretical value         derived from Eq. (6). The relative difference 

where ∆ indicates a relative error. The error on the porosity is linearly affected by errors in neff and µa. f (n, neff) (hence the error) decreases when n
increases, as expected because the determination of Φ is based on the contrast between light speed in the solid and the air. It is minimum for

which corresponds to a porosity larger than 50 %. In such case, lv = √nl's, which means that photon paths are roughly balanced between both phases. 
Practically, the error on µa is generally larger than that on neff [15,26], so that at fi rst order, ∆Φ ≃ ∆µa. It means that the precision of the µa estimation 
will drive that of the porosity. As an example, in [26] µa is retrieved with an uncertainty of 5.7%. Such a value is similar to uncertainties associated 
with standard porosity measurements [27].
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4.3. The random mixture success

The presented framework can only be used when absorption is suffi cient to be measured, and the absorption coeffi cient of the solid phase γ is 
known, ensuring that neff and Φ are related. The absence of observation data meeting these requirements has limited the experimental validation of 
the theory so far, pointing out the need for further dedicated measurements on appropriate porous media. Despite this lack of appropriate data, the 
random mixture assumption proved very effi cient to explain the results of [14] and [15], for which µa could not be properly estimated. This is of 
uttermost importance and could have strong implications for the optical analysis of porous media. This observation is also consistent with the result 
of [21] for natural snow, where an average B value of 1.6 was found, close to the corresponding random mixture value, n2 = 1.69. More generally this 
suggests that some porous media could be considered as randomly organized from an optical perspective. As a consequence, and similarly to B, the 
asymmetry parameter g of such media could also be strictly dependent on the refractive index n, as described by Eq. (60) of [11].

Such a strong assumption may enable to split the reduced scattering coeffi cient µs’ into its physically relevant components µs and (1 – g). 
Accessing the scattering coeffi cient µs of a highly scattering medium is otherwise challenging. As for a weakly absorbing medium µs ≃ µe, the mean 
pore size of a medium could fi nally be estimated from the reduced scattering coeffi cient using Eq. (9) of [11]:

Here Eq. (27) is tested against the data of [14]. For alumina ceramics (g ~ 0.65), the authors measured µs’ ~ 1300 cm−1, and φ = 0.34, which gives a 
mean pore size of 0.9 µm. For the pharmaceutical tablets (g ~  0.73), taking the average value µs’ ~ 500 cm−1 implies a mean pore  size ranging from 
0.7 to 1.4  µm, depending on porosity. These values are consistent with the reported pore sizes obtained from mercury intrusion, respectively 1-5 µm 
and 1-6 µm. Equation 27 is also tested against the data of [15], who provide µs’ for all investigated porosities. This gives a mean pore size ranging 
from 5 to 55 µm, which is less than the reported 200 µm. A uniform pore size value across samples with very distinct porosities and powder sizes is 
questioning, though, so that this unique claimed value should be taken cautiously. Additional dedicated measurements remain necessary to further 
support the application of the random mixture to pore size determination.

5. Conclusion

We presented a method to determine the porosity of a weakly absorbing porous material using optical measurements. This was made possible 
by making the analogy between the absorption enhancement, well defi ned in the snow optics community, and the lengthening of photon paths 
in the solid phase responsible for the difference between physical and optical porosities. The theory was satisfactorily validated against recently 
published data, and comforted by complementary ray tracing simulations designed for this study. This suggests that combined optical measurements 
(e.g. GASMAS and PTOFS) could allow the non-invasive retrieval of porosity with uncertainty lower than 10 %. In addition the results show that 
some porous materials might be treated as random mixtures from an optical point of view. If confi rmed for a wider variety of materials, this could 
dramatically facilitate the optical characterization of such media, by allowing the determination of the porosity and mean pore size through optical 
methods. In the future, the method shall be applied to glass beads, optical phantoms and snow samples. More generally, the reported fi ndings pave the 
way for new optical methods to characterize porous materials.
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