

An Optogenetic Headstage for Optical Stimulation and
Neural Recording in Life Science Applications

Mémoire

Reza Ameli

Maîtrise en génie électrique

Maître ès sciences (M.Sc.)

Québec, Canada

© Reza Ameli, 2015

III

Résumé

L'optogénétique est une nouvelle méthode de contrôle de l’activité neuronale dans laquelle la lumière est

employée pour activer ou arrêter certains neurones. Dans le cadre de ce travail, un dispositif permettant

l’acquisition de signaux neuronaux et conduisant à une stimulation optogénétique de façon multicanale et

temps-réel a été conçu. Cet outil est muni de deux canaux de stimulation optogénétique et de deux canaux de

lecture des signaux neuronaux. La source de lumière est une DEL qui peut consommer jusqu’à 150

milliampères. Les signaux neuronaux acquis sont transmis à un ordinateur par une radio. Les dimensions sont

d’environ 20×20×15 mm3 et le poids est de moins de 7 grammes, rendant l’appareil utile pour les expériences

sur les petits animaux libres. Selon nos connaissances actuelles, le résultat de ce projet constitue le premier

appareil de recherche optogénétique sans-fil, compact offrant la capture de signaux cérébraux et la stimulation

optique simultanée.

V

Abstract

Optogenetics is a new method for controlling the neural activity where light is used to activate or silence, with

high spatial and temporal resolution, genetically light-sensitized neurons. In optogenetics, a light source such

as a LED, targets light-sensitized neurons. In this work, a light-weight wireless animal optogenetic headstage

has been designed that allows multi-channel simultaneous real-time optical stimulation and neural recording.

This system has two optogenetic stimulation channels and two electrophysiological reading channels. The

optogenetic stimulation channels benefit from high-power LEDs (sinking 150 milliamps) with flexible stimulation

patterns and the recorded neural data is wirelessly sent to a computer. The dimensions of the headstage are

almost 20×20×15 mm3 and it weighs less than 7 grams. This headstage is suitable for tests on small freely-

moving rodents. To the best of our knowledge, this is the first reported fully wireless headstage to offer

simultaneous multichannel optical stimulation along with multichannel neural recording capability.

VII

Table of Contents
Résumé .. III

Abstract ... V

List of Tables .. XI

List of Figures ... XIII

List of Acronyms ... XV

List of Symbols ... XVII

Acknowledgement ... XIX

1 Introduction ... 1

1.1 Neural Recording and Stimulation ... 2

1.2 The Need for Freely-Behaving Animal Test Subjects .. 3

1.3 Goal of This Thesis .. 3

1.4 Contributions .. 4

1.5 Structure of This Thesis ... 5

2 Literature Review on Neural Signal Recording and Headstages .. 7

2.1 Introduction .. 7

2.2 Physiological Aspects of Action Potentials .. 7

2.3 Electrochemical Process of Creating Action Potentials ... 8

2.4 Creation of Action Potentials.. 9

2.5 Action Potentials and their Mathematical Characteristics .. 10

2.5.1 Time-Domain Characteristics of Action Potentials... 10

2.5.2 Amplitude and Noise Characteristics of Action Potentials ... 12

2.5.3 Frequency-Domain Characteristics of Action Potentials .. 13

2.6 Optogenetics .. 14

2.7 State of the Art Wireless Neural Headstages and Brain Interfacing Systems 14

2.7.1 Neural Interfacing Systems Based on ASICs .. 15

2.7.2 Neural Interfacing Systems Based on Discrete Components .. 15

3 An Introduction to Digital Signal Processing of Neural Signals... 19

3.1 Introduction .. 19

3.2 Overview of Steps in Spike Sorting Algorithms .. 20

3.3 Spike Detection .. 21

3.3.1 Direct Comparison with Threshold .. 22

3.3.2 Absolute Value .. 22

VIII

3.3.3 Teager Energy Operator (TEO) ... 23

3.3.4 Comparison of Spike Detection Algorithms ... 24

3.4 Spike Alignment ... 24

3.5 Feature Extraction .. 25

3.5.1 Principal Component Analysis ... 26

3.5.2 Discrete Wavelet Transform .. 26

3.5.3 Discrete Derivatives ... 27

3.5.4 Integral Transform ... 27

3.5.5 Comparison of Feature Extraction Algorithms ... 27

3.6 Data Clustering Algorithms .. 27

3.6.1 K-Means Algorithm .. 28

3.6.2 Valley Seeking Algorithm ... 28

3.6.3 Superparamagnetic Clustering .. 28

3.6.4 Osort .. 29

3.6.5 Comparison of Clustering Algorithms .. 29

3.7 Some Notes on Implementing DSP Algorithms.. 29

3.8 Conclusion ... 30

4 System Design of the Optogenetic Headstage ... 33

4.1 Introduction .. 33

4.2 Design Methodology .. 34

4.2.1 Proof of Concept .. 36

4.2.2 Issues, Solutions and Design Approach .. 37

4.3 The Design of the Multichannel Wireless Optogenetic Headstage .. 40

4.4 Analog Front-End (AFE) ... 42

4.4.1 RFI Filter and Preamplifier ... 43

4.4.2 Mid-Supply Reference ... 43

4.4.3 Low-Pass Filter .. 44

4.4.4 Second Stage Amplifier ... 44

4.4.5 AFE Power Supply Rails and References ... 44

4.5 Optical Stimulation Circuitry ... 44

4.5.1 LED Current and Sharp Transitions ... 45

4.6 Power Management Unit (PMU) .. 45

4.6.1 Power Supply Filters .. 46

IX

4.7 Microcontroller Unit (MCU) .. 48

4.8 Digital Wireless Transceiver .. 49

4.9 Electromagnetic Compatibility Considerations ... 50

4.9.1 EMC/EMI and Self-Interference Problems Associated with the Headstage System 50

4.9.2 Solutions to EMC/EMI Problems ... 51

4.9.3 Headstage PCB Design .. 52

5 Results and Discussions .. 53

5.1 Introduction .. 53

5.2 Headstage PCBs and Their Specifications .. 53

5.2.1 Prototype PCB ... 53

5.2.2 Final Headstage PCB .. 57

5.3 Measured Performance of the AFE ... 60

5.4 Measured Performance of the Optical Stimulation Circuitry .. 61

5.5 Power Consumption Measurements .. 62

5.6 Headstage Outputs with Synthetic Action Potentials as Input ... 63

5.7 Effectiveness of the Power Supply Filter ... 65

5.8 Conclusion ... 66

5.8.1 Two Optogenetic Stimulation and Recording Channels .. 67

5.8.2 Battery as the Power Source ... 67

5.8.3 Optical Stimulation Patterns .. 67

5.8.4 Weight and Size Requirements ... 67

Conclusion and Future Works ... 69

References .. 73

Appendix A. Headstage Prototype Firmware Code ... 79

Appendix B. Baseband Prototype Firmware Code .. 105

Appendix C. Headstage Prototype Schematics and PCB Layout .. 121

XI

List of Tables

Table 1. Action potential duration in the literature. .. 11

Table 2. Average Firing Rate of Action Potentials. .. 11

Table 3. Inactivity Interval of Neurons. .. 12

Table 4. Action Potential Amplitude in the Literature. .. 12

Table 5. Spectral Content of Action Potentials. ... 13

Table 6. Comparison of ASIC-Based Brain Interfacing Systems. ... 15

Table 7. Comparison of COTS-based Optogenetic and Non-optogenetic Headstages. 17

Table 8. Comparison of clustering algorithms. .. 29

Table 9. Summary of the performance of the first wireless optogenetic headstage. ... 36

Table 10. Headstage prototype PCB layer stack... 54

Table 11. Final headstage PCB layer stack. ... 57

Table 12. Measured AFE characteristics. ... 60

Table 13. Measured characteristics of the optical stimulation circuitry. ... 61

Table 14. Power consumption of headstage subsystems. .. 62

XIII

List of Figures

Figure 1. Block diagram of a typical BCI device with optogenetic and electrical stimulations. 2

Figure 2. Sketch of a neuron (derived from [28]). .. 8

Figure 3. Connection of one neuron to another (derived from [30]). ... 9

Figure 4. Inner potential of a neuron during creation of an action potential (derived from [31]). 10

Figure 5. Overview of neural signal processing for spike sorting. ... 19

Figure 6. Time-window required to process an action potential. ... 20

Figure 7. Typical band-pass-filtered neural signal. .. 22

Figure 8. Neural signal passed through TEO. ... 23

Figure 9. Spike alignment using maximum value. ... 25

Figure 10. Spike alignment using the maximum slope. ... 25

Figure 11. First version of the optogenetic headstage: stacked PCBs, power-receiving coil and the optical fiber.

 .. 37

Figure 12. 3D models of the headstage: Side view with the power-receiving coil (top). Complete model with

optical fiber (bottom).. 37

Figure 13. Headstage block diagram. ... 42

Figure 14. Analog Front End block diagram. ... 43

Figure 15. Optical stimulation circuitry block diagram. .. 45

Figure 16. Power management unit block diagram. .. 46

Figure 17. Power supply filter topology. .. 47

Figure 18. Power supply filter frequency response. .. 47

Figure 19. MSP430F5328 firmware flowchart. .. 49

Figure 20. Fabricated headstage prototype PCB. ... 54

Figure 21. Headstage prototype PCB (2D view). .. 55

Figure 22. Headstage prototype PCB, front view (3D). ... 55

Figure 23. Headstage prototype PCB, back view (3D). ... 56

Figure 24. Final headstage PCB unrolled 2D view. ... 58

Figure 25. Left: final PCB headstage rolled (top view). Right: final PCB headstage rolled (bottom view). 58

Figure 26. Final PCB headstage unrolled. .. 58

Figure 27. Left: complete headstage system connected to the non-removable part. Right: cross-section view of

the complete headstage system. ... 59

Figure 28. Left: complete headstage system in package. Right: cross-section view of the complete headstage

system in package. ... 59

Figure 29. Bode plot of the AFE transfer function. .. 61

Figure 30. LED voltage during stimulation. ... 62

Figure 31. Power consumption of headstage subsystems. ... 63

Figure 32. Action potential train acquired by the headstage system. .. 64

Figure 33. Action potential train acquired by the headstage system (zoomed in). .. 64

Figure 34. Action potential train acquired by the headstage system along with the stimulation pattern. 64

Figure 35. 500 detected, realigned and clustered spikes from a neuronal signal with maximum peak-to-peak

voltage of 150 µV. ... 65

Figure 36. Battery voltage fluctuations when LEDs are blinking at maximum current. 66

Figure 37. Headstage (signal chain) output without the power supply filter. ... 66

XV

List of Acronyms

A/D Analog-to-Digital Converter

AC Alternating Current

ADC Analog-to-Digital Converter

AFE Analog Front End

ASIC Application-Specific Integrated Circuit

BCI Brain-Computer Interface

BMI Brain-Machine Interface

BNC Bayonet Neill–Concelman

CMRR Common-Mode Rejection Ratio

COTS Commercial Off-the-Shelf

CPU Central Processing Unit

DAC Digital-to-Analog Converter

DD Discrete Derivatives

DMA Direct Memory Access

DSP Digital Signal Processing

DSP Digital Signal Processor

DWT Discrete Wavelet Transform

EMC Electromagnetic Compatibility

EMI Electromagnetic Interference

FM Frequency Modulation

FPGA Field-Programmable Gate Array

FSK Frequency-Shift Keying

GFSK Gaussian Frequency-Shift Keying

GND Ground

IO Input Output

ISI Inter-Spike Interval

ISM Industrial, Scientific and Medical

IT Integral Transform

LDO Low-Dropout (regulator)

LED Light-Emitting Diode

LFP Local Field Potential

MCU Microcontroller Unit

NA Not Available

NDD Normalized Density Derivatives

PCA Principal Component Analysis

PCB Printed Circuit Board

PMU Power Management Unit

PSRR Power Supply Rejection Ratio

PWM Pulse-Width Modulation

QFN Quad-Flat No-Leads (package)

RF Radio Frequency

XVI

RFI Radio Frequency Interference

RMS Root Mean Square

ROC Receiver Operating Characteristic (curve)

RTOS Real-Time Operating System

RX Reception

SMD Surface-Mount Device

SPC Superparamagnetic Clustering

SPI Serial Peripheral Interface

TEO Teager Energy Operator

TX Transmission

VDD Positive Supply Voltage

VLSI Very-Large-Scale Integration

XVII

List of Symbols

𝑃𝐶𝑖 𝑖𝑡ℎ principal component

𝑐𝑖 Weight of a certain vector on the 𝑖𝑡ℎ principal component of the dataset

𝑠(𝑛) Action potential waveform/vector

𝐷𝑊𝑇(𝑢, 𝑗) (𝑢, 𝑗)𝑡ℎ coefficient of the discrete wavelet transform

Ψ(.) Mother wavelet function

𝐷𝐷𝑑(𝑛) Discrete derivatives of order 𝑑 of signal 𝑥(𝑛)

𝐼𝑇𝑃 Average of the nonnegative phase of an action potential signal

𝐼𝑇𝑁 Average of the negative phase of an action potential signal

𝑁𝑃 Number of nonnegative samples in an action potential waveform

𝑁𝑁 Number of negative samples in an action potential waveform

VRef Reference (mid-supply) voltage for instrumentation amplifiers and op-amps

µV(RMS) Root mean square value of an electrical signal expressed in microvolts

XIX

Acknowledgement

I would like to sincerely thank my supervisors, Dr. Benoit Gosselin and Dr. Paul Fortier, at Laval University for

their endless support during the past two years. Dr. Gosselin gave me freedom in my work and research. He

allowed me to test and realize my ideas without any obstacles; he provided me with all resources he had and

let me build my own experience. He is always bringing new ideas and challenges to his research group, that’s

how he keeps his lab such a lively place to study, to research and to grow. Dr. Fortier was always there to help

me and had time for me to have pleasant scientific discussions with him. Every single time I met him, I learnt a

new way of thinking about mathematics. I would like to thank him for all his support. I learnt a lot from him… I

would also like to express my gratitude to Dr. Amine Miled who accepted to be part of the jury that evaluates

my thesis.

During my studies at Laval University, I had the chance to work with many great colleagues without whom this

thesis would have never been as it is today. I would like to specially thank Gabriel Gagnon-Turcotte and

Alireza Avakh Kisomi, my friends and colleagues that directly helped me with my M.Sc. project. I also would

like to thank Hadi Bahrami and Abdollah Mirbozorgi who helped me with not only their experience and

knowledge but with other aspects of my life as true friends. I would also use this opportunity to thank my good

friend Carl Poirier for his friendship.

I can never be thankful enough to my dear mother, my beloved father and to my lovely sister for their sincere

love. I would have been never able to be the person that I am now without you. All of you supported me

wholeheartedly during all phases of my life. I love you all…

It would be impossible to finish this page without mentioning that since last year there was a guardian angel

that has been taking care of me. I am grateful for every beautiful moment that you allowed me to have and for

your infinite support. Kelly, whenever I remember you I have a smile on my face.

Reza Ameli,

3 Mar, 2015

1

1 Introduction

In virtually all animals, the control of the body and all the decision-making process is carried out by the brain -

the center of the nervous system. Brain’s functionality itself is based on the concurrent activity of billions of

neurons. These neurons, although similar, are divided into smaller functional groups where each group takes

care of a specific task associated with the brain [1].

When the brain (or in general the body) needs to function in a specific way or perform certain tasks, i.e. the

heart needs to beat or an arm needs to be moved vertically, the corresponding functional group of neurons

(cells of the nervous system) start functioning by sending electrical messages between themselves (in the

group) and to other parts of the nervous system [2]. To a large extent, most of the functionality of the brain is

coded in how and when these messages are transmitted.

Decoding the messages sourced from the neurons plays a crucially important role in understanding the

functionality of the brain. The messages sent from and received by the neurons have an electrical nature and

are in the form of electrical pulses with small amplitudes (between a few hundred microvolts to almost a

hundred millivolts depending on where the measurement is done) [2] [3] [4]. These pulses can be captured

using small sensors [4] [5]. The messages that need to be sent by the neurons are, among others, encoded in

the presence/absence and also the temporal rate of these electrical pulses [6].

As mentioned before, billions of neurons constituting the brain are, from a functional point of view, divided in

smaller groups where each group takes care of a certain task. Thus, when the body (hence the brain)

functions in a specific way, it is expected that the corresponding group of neuron becomes more active. As an

example, the primary motor cortex is a region in the brain that controls the several voluntary movements of

different body parts [2]. Different regions in the primary motor cortex are mapped (by experiment) to the

movement of different body parts. As a result, when a specific body parts like an arm or a leg is moving, we

can expect that certain groups of neurons in the primary motor cortex are more active than others where

activity means more transmission and reception of electrical pulses.

If, by some means, one can accurately control and study the electrical pulses that circulate between the

neurons, we have in fact decoded the functionality of those neurons i.e. we have discovered the probable

patterns of message transmission when the brain is functioning in a specific manner. We can take advantage

of this understanding of the brain inner-working to create electronic devices that directly interact with the brain

at a cellular level – brain-machine interfaces.

2

Brain-machine interfaces (BMI) or brain-computer interfaces (BCI), are devices that interact with the brain at

the neural level. Figure 1 shows a high-level block diagram of such system. It can be seen that both neural

stimulation and recording play an important role in this system. One of the most important goals in the field of

brain-machine interfacing is the advent and development of neuroprosthetics. Neuroprosthetics aim to

enhance or restore the functionality of certain impairments in the body by directly interacting with the nervous

system. Examples of the most famous neuroprosthetics are cochlear implants [7], retinal implants [8] [9], and

other artificial limbs [10] [11].

Figure 1. Block diagram of a typical BCI device with optogenetic and electrical stimulations.

Alongside with the need for neural signal acquisition, the need for neural stimulation manifests itself in the field

of brain-machine interfacing as interacting with the nervous system requires both reception and transmission

of electrical signals [12] [13]. The need for neural stimulation specially shows itself when the BCI is interacting

with the sensory cortex [12] [13]. For example, if a brain-machine interface acts as an artificial robotic hand,

the hand needs to receive its movement commands from the motor cortex and to send back the touch sense

information back to the sensory cortex by stimulating the appropriate neurons.

1.1 Neural Recording and Stimulation

In general, acquiring neural signals is carried out via special electrodes and interfacing electrical circuitry, i.e.

low-noise amplifiers and signal conditioning circuits [3] [4] [5]. Although the type, material and many other

characteristics of neural sensors/electrodes are different, all electrodes will eventually be connected to some

sort of amplifier and then to an analog-to-digital converter [3] [4]. On the other hand, neural stimulation is

carried out traditionally in two inherently different ways: electrical or optical.

3

Electrical stimulation is carried out by placing microelectrodes in proximity of tissues that are receptive of

electrical currents. This method of neural stimulation has been widely used in hearing aids, artificial limbs,

epilepsy treatment and cluster headache treatment. The common factor of all these BCI devices is that

electrical current, in a specific pattern, is generated by the microelectrodes [14]. Although electrical stimulation

has been widely used, it has some inherent limitations too, including low spatial precision and possibility of

inflammation and/or necrosis at the electrodes [15].

Optical stimulation, on the other hand, aims to induce neural activity via targeting neurons with light. The light

source can be high-power LEDs or lasers [16] [17] [18]. Different therapeutic methods based on optical

stimulation have been studied. However in this work, we focus on a specific method called optogenetics which

is a new method for stimulating the brain functionality [19] [20] [21].

In optogenetics, light beams, emitted from LEDs or lasers, target light-sensitized neurons to activate or silence

them [22] [23] [17]. One of the most important characteristics of optogenetics is high spatial and temporal

accuracy, which is crucial to understanding action potential patterns [15]. Similar to electrical stimulation,

optogenetics has also contributed to the understanding of different brain and cell functions and also to the

understanding and treatment of certain diseases [19] [20] [21].

1.2 The Need for Freely-Behaving Animal Test Subjects

Similar to many other fields of science involving study on living bodies, understanding the inner-working of the

brain requires test subjects. Test subjects in many fields are small rodents (for their availability and price) and

optogenetics is not an exception [17] [24]. In this work, we aim to build an optogenetics headstage (research

device mounted on the head of animals) suitable for tests on freely-behaving small rodents. The reason behind

the focus on freely-moving animals is that when animals are freely behaving, certain neural activity patterns of

interest will be present that so a broader spectrum of activity can be measured from or induced to the animal

brain [25] [26].

1.3 Goal of This Thesis

In this thesis, we try to design and build a research tool for neuroscientists that can be used in the framework

of optogenetic experiments. Basically, we aim to design a wireless optogenetic headstage that is capable of,

simultaneously, stimulating the neurons using light and recording the electrophysiological responses (in terms

of neural activity). By the term “wireless headstage”, we mean a light-weight device that can be mounted on

the head of small rodents and that is not tethered to any other devices. The headstage will have embedded

optical stimulation and neural recording circuitry and is capable of sending the recording neural responses

back to a base station computer in real-time.

4

As mentioned in the previous sections, optogenetics is a powerful method for analyzing the neural circuits and

as a result, taking advantage of this method requires specific tools designed for this purpose. Using research

tools similar to what has been designed in this thesis, researchers can use optogenetic methods to study

different disciplines such as neural circuits and neurodegenerative disorders.

We have tried to make this optogenetic research tool as close as possible to the real needs of neuroscientists.

In order to do so, along with a complete literature review on the subject, we worked with a local company†

specializing in optogenetic research tools. Thanks to this collaboration we gathered a set of realistic criteria

that were deemed desirable for this type of research tool in the neuroscience community.

The mentioned characteristics include being wireless, begin light-weight and having multiple stimulation and

recording channels. These characteristics make the optogenetic research tools suitable for a vast variety of

optogenetic experiments where freely-moving animals can be studied in different scenarios. Chapter 0

discusses the headstage design in detail.

1.4 Contributions

The contribution of this work is a wireless optogenetic research tool that allows simultaneous multichannel

recording and stimulation. This research tool is a small animal headstage that has integrated neural recording

and optical stimulation and is completely wireless. In this headstage, a light-weight and small foldable PCB

implements the interconnect between the (COTS) headstage components and is also the carrier of the system.

Optical stimulation sources are discrete LEDs that can carry currents up to 150 mA and stimulation patterns

are flexible PWM signals. Furthermore, the lifetime of experiments using this headstage is more than 3 hours.

To our knowledge and at the time of this writing, this work is the first reported wireless optogenetic headstage

having the mentioned capabilities.

The design of the wireless optogenetic headstage (this work) is based on the experience acquired during the

design of proof-of-concept version with limited capabilities (refer to section 4.2). At the beginning stages of the

design process of the new headstage, Reza Ameli (author of this thesis) worked alone on the project.

However, as he approached the end of the project, two other M.Sc. students at Laval University were involved

in the project. These two students were Gabriel Gagnon-Turcotte and Alireza Avakh Kisomi and they both

have contributions to different parts of this project.

Gabriel Gagnon-Turcotte mostly worked on the digital, software and firmware aspects of the project. The

microcontroller firmware codes (in the appendices) and the PC software that controls the headstage have

† Doric Lenses Inc., Québec, Canada.

5

been designed and/or improved by him based on the previous work of Reza Ameli. He also worked on the

prototype PCB (printed circuit board) of the headstage (along with Reza Ameli and Alireza Avakh Kisomi).

Besides the mentioned contributions, he worked on the Optical Stimulation Circuitry and the Analog Front End.

Finally, some of the charts, plots and photos that have been used in Chapter 1 in this thesis have been

designed by Gabriel. These contributions in Chapter 1 are identified in the appropriate page footer.

Alireza Avakh Kisomi worked mostly on the analog circuitry of this project. He has contributions to the Analog

Front End (AFE), Power Management Unit and the Optical Stimulation circuitry. He designed different PCBs

for the AFE, designed low-noise signal generators for them and characterized them. He also contributed to the

design of the prototype PCB and tested the system prototype (with Reza Ameli and Gabriel Gagnon-Turcotte).

Reza Ameli worked on both the old and the new versions of the wireless headstage. He designed the first

versions of the microcontroller firmware and the PC program that controls the headstage. The new firmware

and the PC GUI (graphical user interface) are based on the code and/or libraries that were designed by Reza

Ameli. In terms of the analog circuitry, Reza Ameli (along with Alireza Avakh Kisomi and Gabriel Gagnon-

Turcotte) worked on the Analog Front End and made sure it worked properly with low levels of input signal and

high levels of noise. Along with Alireza Avakh Kisomi, he also designed the Power Management Unit and its

passive filter. Finally, he contributed to the design of the prototype PCB and also designed the six-layer PCB of

the final headstage with EMC/EMI (electromagnetic compatibility/electromagnetic interference) considerations.

Besides the mentioned contributions, Reza Ameli also worked on the specifications of the system and on how

they should be realized.

1.5 Structure of This Thesis

This work presents the design process of an optogenetic headstage that is capable of stimulating neurons

using light and recording the neural activity in the brain of freely moving-animals.

Chapter 1 of this thesis is dedicated to literature review and understanding the neural activity. In this chapter,

action potentials being the carriers of information between neurons are introduced and discussed. Then, action

potentials are treated and characterized as time series and their mathematical properties are discussed. At the

end of this chapter, an overview on basics of the optogenetic technique and also a review of state of the art

headstages are presented.

Chapter 0 presents an introduction to the digital signal processing of neural signals suitable for implantable

devices. Topics such as detection of action potentials, feature extraction and spike sorting are discussed.

6

Chapter 0 has two main parts. The first part of this chapter discusses different design requirements of an

optogenetic headstage system including the signal acquisition and optical stimulation requirements. These

requirements include those guaranteeing signal acquisition fidelity and optical stimulation accuracy

requirements. Issues that one might encounter when designing such headstage systems are also discussed in

this chapter. These issues include electromagnetic compatibility (EMC), electromagnetic interference (EMI)

and also low-power design issues. In the second part of Chapter 4, the details of the headstage that has been

designed and the rationale behind the design are elaborated. All subsystems of the proposed headstage are

discussed in detail in this chapter.

Chapter 1 presents the measured results of this research project, discusses the system performance and

shows the realized headstage in detail. Physical design of the headstage is also discussed in this chapter.

And finally, the conclusion of this thesis is presented along with the appendices.

7

2 Literature Review on Neural Signal Recording

and Headstages

2.1 Introduction

As mentioned in the previous chapter, one of the most important functionalities of neural headstages is

recording the neural signals in the brain and since this recording is carried out via electrical circuits, the

electrical characteristics of neural signals prove crucial in the design and test of the circuitry that amplifies and

conditions the acquired signals. This chapter is devoted to understanding the neural signals as electrical

signals. Of course, neural signals can be studied from different points of view. However, we are interested in

certain of their characteristics, which allow us to design and build neural headstages.

In the first two sections of this chapter, neural signals and their electrical properties are introduced and in the

third section we will briefly introduce the technique of optogenetics that is a new method for optical neural

stimulation. Finally, in the last section, we will present a literature review on the state of art headstages.

One of the most important aspects of neural headstages (especially the ones that operate wirelessly) is their

signal processing capabilities. Without digital signal processing, wireless neural headstages will have to

transmit all digitized samples of the acquired signals to a base station, which means higher energy

consumption in the headstage, higher bandwidth requirements and the need for high speed radio transceivers

[27]. The mentioned characteristics are not desirable for wireless neural headstage as the limits of the energy

source and the transmission rate of the RF (radio frequency) system are design bottlenecks.

Since digital signal processing capabilities (soft capabilities of headstage) can be treated separately from the

actual hardware and physical features of headstages, we have dedicated a whole chapter of the thesis to

neural signal processing.

2.2 Physiological Aspects of Action Potentials

Neurons are cells that constitute the nervous system. Using the nervous system, humans, among many other

species, are capable of acting as intelligent entities i.e., they are able to interact with the world and think and

decide. The human brain consists of approximately 1011 neurons and these neurons are supported by the glial

cells [2]. The glial cells support the neurons in different ways including but not limited to: 1) nutrition of

neurons, 2) deactivation of some neurotransmitters, 3) integration with the blood-brain barrier, 4) facilitating the

action potential transmission and 5) removing cellular debris during neuronal death [2]. The complex

functionality of a brain is based on neurons capability of sending and receiving messages. These messages

have an electrical nature and are created in an electrochemical process that takes place in close proximity and

8

inside the neurons [2]. As a result of this mechanism, the neurons are capable of sending messages in a

wave-like manner to each other. These waves of messages will eventually result into some action commanded

by the brain [2]. The resulting command might be received in the brain itself or by the peripheral nervous

system, which connects different components of the body to the central nervous system [2].

In the next sections of this chapter, we will describe the physiological origins and also the mathematical

characteristics of action potentials. These mathematical characteristics are interesting from an electrical

engineering point of view when designing headstages.

2.3 Electrochemical Process of Creating Action Potentials

As mentioned before, neurons are able to send electrical messages to each other and these electrical

messages are called action potentials. It should be noted that neurons are similar to other cells (in terms of

internal components), but they are also able to send electrical messages [2]. Also, it should be noted that there

are different types of neurons; some of them act as connections between other neurons and some are able to

interact with other types of cells like muscle cells. There is also one type of neuron that is able to be stimulated

by different non-neural stimuli. The headstage system introduced in this work focuses mostly on the neurons

that are found in the brain and transfer messages between other neurons.

A neuron as a cell has, among others, a cell body (also called the soma), a number of dendrites and an axon.

Dendrites and axons are extensions of the cell, which receive and transmit electrical signals, respectively.

Most neurons have only one axon but they can have many dendrites. Axons are the transmission medium of

the action potential and tend to be long, depending on the type of the neuron. Figure 2 (derived from [28])

shows a drawing of a neuron where it can be seen that the axon is a long extension of the cell. The many

dendrites of the same cell can also be seen.

Figure 2. Sketch of a neuron (derived from [28]).

9

The axon of one neuron is connected to the dendrites of one or many other target cells (either neurons or

other types of target tissues like muscle) [29]. So, these target cells can receive the action potentials

transmitted by the first neuron. Between the axon of one neuron and the dendrites of another neuron, there is

a small gap called the synapse where neurotransmitters travel from the axons to the dendrites and transfer the

message carried by the action potential. Figure 3 (derived from [30]) shows the connection of one axon to the

dendrites of another neuron.

Figure 3. Connection of one neuron to another (derived from [30]).

2.4 Creation of Action Potentials

A neuron can be either at rest or can be in the process of creating an action potential. When a neuron is at rest

there is a negative potential difference between the inside of its cell body and the outside of the cell where the

outside of the cell has a more positive voltage. This voltage difference is due to the concentration (and also

type) of ions that are present inside and outside the neuron body. The resting potential (voltage difference

between inside and outside of a neuron at rest) is around -70 to -80 mV [2].

When a neuron is stimulated by an action potential, it opens its ion channels for the positive sodium ions to

rush in the cell body. These ions increase the inner potential of the neuron from almost -70 mV to almost +20

mV [2]. After some time, the sodium ion channel closes and another type of ion channel opens that lets the

positive potassium ion leave the neuron body; as a result, the inner potential decreases until it reaches the

resting potential. This process in which the inner potential of the neuron depolarizes results in the creation of

an action potential. With similar mechanisms, this sudden change in the inner potential travels through the

axons and reaches another neuron where another action potential might or might not be created depending on

many factors [2]. Figure 4 (derived from [31]) shows the neuron inner potential during creation of an action

potential.

10

Figure 4. Inner potential of a neuron during creation of an action potential (derived from [31]).

2.5 Action Potentials and their Mathematical Characteristics

When sampled, action potentials are discrete-time signals so many mathematical properties can be attributed

to them. In this section, we will introduce different mathematical characteristics of the neural signals.

2.5.1 Time-Domain Characteristics of Action Potentials

Temporal characteristics of neural signals are of significant importance as they will directly affect the design

process of the brain-machine-interfaces. Although many different (statistical) time-domain characteristics can

be defined for discrete-time signals, only the following temporal characteristics are mostly used for processing

neural spike-trains [32] [33] [34] [27]:

1) Temporal duration (minimum, maximum and average) of individual action potentials

2) Number of action potential per second (rate)

3) Average duration of inactivity between two action potentials

2.5.1.1 Temporal Duration

In general, temporal duration of action potentials, although very close, is different for each species [29].

Different research papers have also reported average and minimum/maximum durations of action potentials

for specific species based on many recordings [35].

When it comes to designing signal processing systems and algorithms, the temporal duration plays an

important role since a system which is not flexible enough (in the time domain) might partially or completely

lose information carried by the action potentials. Different research papers have tried to find minimum and

optimum requirements for neural signal processing and also to find reasonable assumptions about the

incoming action potentials trains [36]. Specifically, some papers have tried to regenerate action potential trains

in a realistic way [32] [37] [38]; using these artificial but realistic spike trains, researchers can develop new

11

signal processing algorithms. The following table summarizes the action potential duration found in different

literature.

Table 1. Action potential duration in the literature.

Publication
Average Duration

(milliseconds)

[33] 2.5

[34] 2.6-3.6

[27] 1.025

[39] 2

[35] 1.46

It can be seen that the average duration of an action potential is almost 2 milliseconds and the maximum and

minimum are 3.6 and 1 milliseconds.

2.5.1.2 Number of Action Potentials per Second

As the temporal duration of action potentials affects the short-term memory requirements (i.e., small buffers

that only hold the data of one spike) of neural signal processing systems, the number of action potentials per

second manifests its effect in the long-term memory requirements or transmission speed of such systems.

Unlike the temporal duration, the frequency (number of spikes per second) can vary considerably according to

the conditions and stimulations of a neuron [35]. In fact, the frequency of occurrence of action potentials is a

key factor in designing the architecture of neural signal processing systems that are low on computation and/or

energy resources, especially when such systems have multiple input channels. The following table

summarizes the average action potential firing rate found in different publications.

Table 2. Average Firing Rate of Action Potentials.

Publication
Average Firing Rate

(Hz)

[32] 20

[33] 20

[34] 75

[40] 20-160

[39] 100

[41] 10-100

2.5.1.3 Inactive Time between Action Potentials

The third parameter that poses certain difficulties in designing low-power neural signal processing systems is

the time interval in which there will be definitely no action potentials fired from a neuron. This time interval

affects the data buffers in the first stages of signal processing and can be problematic in system in which the

data transfer in the memory is not fast or there is not much memory. In extracellular neural recording

12

scenarios, there is the possibility that multiple neurons be close to the recording electrode so multiple action

potentials might be captured by the electrode at the same time. In this case, it is required to separate the

overlapped action potentials and some research papers are dedicated to this subject [42] [43].

The following table summarizes the average ISI (inter-spike interval) of neurons in the literature.

Table 3. Inactivity Interval of Neurons.

Publication
Average ISI

(milliseconds)

[32] 2

[33] 2

2.5.2 Amplitude and Noise Characteristics of Action Potentials

Amplitude and the signal-to-noise ratio of the captured action potentials is another determining factor in

designing the amplifier in the animal headstage. As mentioned before, there are different ways of obtaining

neural signals from neurons [4]. However, one of the methods that is widely used and allows the researchers

to carry out long experiments on the animal is extracellular recording [4]. In this method, the electrodes are

placed in close proximity of the neurons(s) but not inside the neuron. Since the neuron stays intact, it does not

die and the experiment can last longer compared to the intracellular recording where the electrodes are placed

inside the neurons.

In extracellular recording scenarios, the amplitude of the captured action potentials is reported to be between

50 microvolts to a few millivolts. The following table summarizes the reported amplitude of action potentials in

extracellular recordings.

Table 4. Action Potential Amplitude in the Literature.

Publication
Average Action Potential
Amplitude (microvolts)

[44] < 500

[27] < 200

[45] 50-150

[3] 50-200

[4] 50-500

2.5.2.1 Sources of Noise in Neural Signals

Different sources of noise affect the quality of recorded action potentials [32]. However, unlike other signal

acquisition scenarios occurring in other domains of electrical engineering, these noise sources are not all white

and/or Gaussian.

In general it can be said that four different sources of noise affect the quality of a captured action potential [32]:

13

1) Background noise: activity of neurons that are very far from the electrode. This neural activity (action

potentials) shows itself as a low-amplitude thick cloud of noise in neural recordings.

2) Activity of nearby neurons: this kind of noise is actually action potentials from relatively far neurons

with amplitudes so small that it is not possible to determine the source neuron creating the action

potential. The difference between this type of noise and the previous one is that, this type of noise is

mostly recognizable action potentials interfering with the neural recording processing while the first

type of noise is not distinguishable from random noise.

3) Thermal noise and inherent noises of electronics and the electrodes involved in the system

4) Power-line noise: 50 Hz or 60 Hz power line noise.

One of the most important aspects of the first and second sources of noise is that they share the same

frequency content as the signals (action potentials) of interest. The reason is simply that these noise sources

are also neurons similar to the neurons from which we would like to capture signals [32].

2.5.3 Frequency-Domain Characteristics of Action Potentials

So far we have discussed the different characteristics of action potentials in the time domain. However, the

spectral content of action potentials also plays an important role in the design and quality of a headstage

system.

In extracellular capturing scenarios, typically two spectrally separate signals are captured: 1) the low frequency

local field potentials (LFPs) and 2) the action potentials [46] [4]. The LFPs usually occupy a bandwidth from a

few Hz to almost 300 Hz [4] [32] [33], while the action potentials occupy a larger bandwidth starting from 300

Hz to almost 3000 Hz or more [4] [32] [33]. The following table summarizes the reported action potential

bandwidth in the literature.

Table 5. Spectral Content of Action Potentials.

Publication Lower Limit (Hz) Upper Limit (Hz)

[32] 300 3000

[33] 300 6000

[34] 300 N/A

[47] 300 3000

[48] 250 5000

[49] 300 10000

[35] 300 3000

Another point worth mentioning is that the amplitude of the LFPs is much larger than that of the action

potentials [4]. As a result, care must be taken when designing analog or mixed-signal systems that process the

LFPs and the action potentials because the LFPs might saturate the signal processing block. As an example,

an amplifier with a gain of 5000 V/V would amplify the action potentials to less than 2 volts. However, the LFPs

having amplitudes in the millivolt range would saturate the amplifier when the power rail is not large enough.

14

In this project, we focus on capturing and processing only the action potentials. So the LFPs are filtered out in

the early stages of the signal chain.

2.6 Optogenetics

Optogenetics is a neural activity control method in which light controls the activity (or lack) of genetically light-

sensitized neurons [50] [22] [23] [17] [51]. In this method, different techniques in genetics, electronics and

optics are combined to provide neuroscientists with a neural stimulation tool with high temporal and spatial

resolution. As mentioned in the introduction, the field of optogenetics has made great contributions to the

understanding of the neural circuits in the brain and also to the treatment of different diseases [50] [19] [20]

[21].

In optogenetics, light-sensitized proteins (for example ChR2, ChR1, VChR1, SFOs and NpHR) are used to

make neurons respond to light quickly. For example, ChR2 causes the neuron to depolarize (activate) in

response to blue light and NphR causes the neuron to silence in response to yellow light [51] [50] [52]. The

light source can be high-power LEDs or lasers tuned to specific wavelengths [16] [17] [18].

Optogenetic tools provide the researcher with stimulation temporal accuracies in the order of milliseconds.

Researchers also need to track the effects of the stimulation by some means. One way of carrying out such

readings is to monitor the neural activity using microelectrodes connected to signal-recording electronics.

In this project, an animal headstage that is capable of delivering light to light-sensitized neurons has been

designed. This headstage is also capable of electrically recording the neural activity resulting from the

stimulation. Optogenetic experiments can be carried out on small animal test subjects using this headstage as

it has a small footprint and low weight. This headstage has two LED-based optical stimulation channels and

has also two electrophysiological reading channels.

2.7 State of the Art Wireless Neural Headstages and Brain

Interfacing Systems

In this section, an overview of currently available wireless animal neural research systems is presented. We

focus, in particular, on the part of these systems that interfaces the brain and that are wireless. Both

commercial and research headstages are presented. In general, we can divide the brain-interfacing systems

into two groups: 1) systems that are based on an ASIC (application-specific integrated circuit), and 2) systems

that are based on discrete electronic components.

15

2.7.1 Neural Interfacing Systems Based on ASICs

These systems are specifically designed to be extremely low-power, compact and efficient. A high number of

neural recording/stimulation channels are also of great importance. Although this type of neural interfacing

systems is not the focus of this work, a short overview of available systems is presented in Table 6.

Table 6. Comparison of ASIC-Based Brain Interfacing Systems.

Work
No. of

Recording
Channels

Ch. Sampling Rate
(KSamples/sec.)

Bits/Sample (Stim.
or Rec.)

Power
Consumption

(mW)

[27] 128 40 9 6

[49] 256 20 5 5.4

[44] 12 40 10 12

[41] 100 15 10 13.5

[3] 16 30 8 2.21

[53] 64 62 8 14.4

[46] 96 31 10 6.4

As can be seen in Table 6, the power consumption of ASIC-based systems is low relative to the discrete

system (presented in the next section) and the number of recording/stimulation channels is relatively higher.

Although ASIC-based systems can have a much superior performance compared to the discrete systems, their

fabrication costs are also much higher. Furthermore, there is a clear trade-off between the system

configurability, cost, complexity and time-to-market.

In the next section, we present an overview of research and commercial headstages (neural interfacing

systems) that are based on discrete components.

2.7.2 Neural Interfacing Systems Based on Discrete Components

Compared to ASIC-based neural systems, headstages that are based on discrete components tend to occupy

a bigger volume and to be less power-efficient. However, the configurability of these systems (in terms of

upgrading the functionality) and their much lower cost make these devices much more common and desirable

in the industry as well as in practical neuron-research labs.

The higher configurability of discrete headstages comes from the fact that they usually incorporate some sort

of available processor (or other types of configurable devices like FPGAs) which is easy to program. Also, the

manufacturing time and complexity of these headstages is lower since only discrete components need to be

bought and soldered on some sort of carrier, usually a PCB in a biocompatible package. From this point on

16

and for brevity, the term headstage means an animal headstage based on COTS (commercial off-the-shelf)

components.

In our research to identify (COTS-based) headstages we encountered some headstages that supported only

one channel of data acquisition and they would transmit the acquired data using continuous FM (frequency

modulation) modulation [54] [55]. However, there were other publications that would time-multiplex multiple

channels of analog neural signals into one broadband channel and would then FM-modulate that channel [56].

One problem with FM modulation is that the quality of the signal that is finally received by the base station

depends on the quality of the FM transmitter, the analog time-multiplexer (if any), antennas and all other

parameters that affect analog modulation quality [54] [55] [56].

On the other hand, there are many wireless headstages that use digital modulations to transmit the acquired

data back to the base station. For example, [57] and [58] use Bluetooth technology to transmit the data back to

the base station and have 1 and 16 data acquisition channels, respectively. There are also headstages that

use raw-data transmitters (no protocol stacks) to transmit data [17].

Recently, there has been a tendency to build light-weight and compact optical stimulation tools for

optogenetics. In [59], researchers have developed a 4-by-4 array of LEDs fused with electrodes for

optogenetics stimulation and neural recording. In [60], a wireless headstage with an array of optrodes and

micro-LEDs has been presented. In [61], authors have designed an implantable optogenetic interface with 4

optical stimulators while in [62], a 64-channel optrode array with light-delivery system has been deign for

optogenetic stimulation. Finally, in [17], the design of a wirelessly powered optogenetic headstage with a high-

power LED and two recording channels has been discussed. There are also some optogenetic headstages

without recording capabilities where the optical power delivered to neurons is supplied by a wireless power-

delivery link [63].

Table 7 presents a comparison between currently available COTS-based headstages. In this table, some

optogenetic stimulators are also shown that are not complete headstage systems but can be connected to

wireless transmitters.

Different types of optogenetic and non-optogenetic headstages were presented in this review. One of the

common features of all (except for [17]) optogenetic stimulators in Table 7 is their lack of high-power optical

stimulation. In [63], however, high-power stimulation is possible but there is no means for neural signal

recording.

17

Besides the research headstages that were mentioned in this section, there are also commercial headstages

available for optogenetic and non-optogenetic experiments [64] [65] [66]. However, at the time of this writing,

these commercial solutions did not have an equivalent for the headstage design that is presented in this work.

Table 7. Comparison of COTS-based Optogenetic and Non-optogenetic Headstages.

Work
No. of

Recording
Channels

No. of
Stimulation
Channels

Sampling Rate per
Recording Channel

(Samples/Sec.)

Bits/Sample
(Stimulation

or Recording)

Stimulation
Power

Consumption

Total Power
Consumption

[54] 1 N/A N/A N/A

No Stimulation

≈3.8 mW1

[67] 1 1 11,7 N/A 40-120 mW

[68] 1 1 10,000 N/A N/A

[57] 1 1 12,000 12 ≈220 mW2

[58] 16 N/A 25,000 10 N/A

[56] 15 N/A 20,000 12 30.8 mW

[69] 32 N/A 30,000 12 142 mW

[17] 2 1 (opt. fiber) 20,000 8 20 – 380 mW 115-475 mW

[59] 16 16 (surface LED) N/A N/A
Minimum 3.4
mW per LED

21 mW (LEDs)

[60] 32 32 (surface LED) N/A N/A

Average
irradiance of 1.4

mW/mm2 per
optrode tip

N/A

[61] N/A 4 (surface LED) N/A N/A

No Stimulation

N/A

[62] 64 N/A 32,000 14 N/A

[63] 16 N/A N/A N/A up to 2 W

1 This value has not been mentioned in the paper but has been deduced using calculation made by author of this thesis.
2 This value has not been mentioned in the paper but has been deduced using calculation made by author of this thesis.

19

3 An Introduction to Digital Signal Processing of

Neural Signals

3.1 Introduction

In this chapter, we will present a short introduction to digital signal processing techniques related to neural

signals that are suitable for implantable devices and neural recording embedded systems. These techniques,

being basic processing methods, are related to finding action potentials in neural signals and classifying them

according to their signal shape.

As discussed in Chapter 0, after finding the firing patterns in neural signals, we will be able to translate the

neural activity (firing rate of each individual neuron) to a meaningful action, for example, moving a robotic arm.

In general, an action that is intended by the brain is realized via changes in firing rates of different neurons. As

a result, finding firing patterns of many neurons, can result in inferring the intended action [2]. In order to find

firing patterns of many neurons, the fired action potential must first be detected. Then, the detected action

potential must be associated with a nearby neuron according to its signal shape [36] [70]. After these two

steps, the firing rate of a neuron, at a certain point in time, can be described in firings/second. In this chapter,

terms spike and action potential are used interchangeably.

Figure 5. Overview of neural signal processing for spike sorting.

As mentioned in the previous chapter, action potentials can be recorded using electrodes. The electrodes can

be placed inside the brain at proper locations to pick up the action potentials fired by one or more neurons.

The (signal) shape of the action potential picked up by an electrode, depends on different parameters including

20

the distance between the electrode and the neuron, and also the type/shape/size of the neuron. So if there are

multiple neurons in close proximity of an electrode, it can be predicted that action potentials fired by each

neuron will have a similar shape that is different from the action potentials from the other neurons [36] [70].

The difference in action potential shapes is the basis of action potential classification, a process that is also

called spike sorting. Figure 5 shows an overview of the required actions to sort (classify) action potentials.

Spike sorting algorithms use the shape of each action potential to relate it to one neuron in the proximity of the

recording electrode [36] [70].

In this chapter, we will present different steps of typical spike sorting algorithms. The algorithms reviewed in

this chapter are mostly designed for small neural recording embedded systems. These systems, either based

on discrete components or VLSI (very-large-scale integration) technology, usually have a limited processing

power i.e., they are not high-speed as desktop computers and they have limited memory resources. The need

for neural signal processing in (low-power) embedded systems and/or implantable devices comes from the fact

that a real-time brain-machine interface (connected to the brain) cannot rely on offline signal processing and

needs to react to neural activities in real-time.

3.2 Overview of Steps in Spike Sorting Algorithms

In order to classify (sort) the spikes according to their shapes (in the time domain), we first need to detect and

extract the spikes i.e., the time-window containing the spike must be pinpointed in the neural signal [36] [3] [33]

[70]. Figure 6 shows such time-window around a typical action potential. It is assumed that the neural signal is

already bandpass-filtered as discussed in section 2.5.3. This bandpass-filtering removes the LFP (local field

potential) component of the neural signal.

Figure 6. Time-window required to process an action potential.

21

After detection, spikes are usually aligned with respect to a certain point in their waveform. For example,

spikes can be aligned in a way that their largest samples (the maximum in the waveform) would be placed at

the same point if all detected spikes are overlapped [36] [70]. More details about spike detection and alignment

will be provided in the subsequent sections of this chapter.

In the next step of spike sorting, the prepared (detected and aligned) spikes must be passed through a feature

extraction algorithm where prominent characteristics of each spike are extracted. The extracted features are

usually in the form of multidimensional vectors. There are various ways of extracting such vectors. The most

widely used methods are reviewed in this chapter.

Finally, in the last step of spike sorting, the extracted feature vectors pointing to different points in a

multidimensional space, must be clustered together i.e., the points that are in close proximity of each other

must be assigned to the same group (i.e., the same neuron) as it is expected that they are fired from the same

neuron [36] [70]. Sometimes the length of the features vectors is too long, resulting in complicated clustering

(in terms of required time and memory). As a result, a dimensionality reduction step might precede the

clustering step.

In the following sections of this chapter, different methods of spike detection, alignment and clustering are

discussed in more detail.

3.3 Spike Detection

Spike detection is the process of discriminating action potentials from the background noise in a neural signal.

Figure 7 shows a typical neural signal that is passed through a band-pass filter. It can be seen that the spikes

can be evident as the noise level is low compared to the signal level; this is the basis of different spike

detection methods [32] [36] [70].

Spike detection methods usually consist of two steps. In the first step, the neural signal is passed through

some sort of mathematical operator that makes the spikes more prominent and in the second step, the output

of the first step is compared with one or two thresholds [36]. In the second step, when the output of the first

step is passes through the threshold(s), a recording mechanism is activated that stores the digitized samples

of the action potential in some sort of memory. The number of recorded samples (i.e., the length of the time

window that is saved) is usually constant [36] [70] [3] [71].

The most widely used mathematical operators for implantable devices (used in the first step of spike detection)

are the absolute value and the Teager Energy Operator [72] [70]. However, the neural signal can be detected

22

via comparison with a threshold without any pre-emphasis on the spikes. In the following subsection, we will

introduce the mentioned spike detection methods.

Figure 7. Typical band-pass-filtered neural signal.

3.3.1 Direct Comparison with Threshold

In this technique, the neural signal is directly compared with one or two thresholds [3] [36] [70]. This method is

the simplest method of spike detection and, depending on the noise level of the recorded signal, can be the

most efficient method too.

The threshold used in this method can be chosen manually or can be derived from the signal statistics [36]

[70]. A widely used threshold for raw neural signals is derived from the median of the signal [33] [36] [70]:

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 4 ∗ 𝑚𝑒𝑑𝑖𝑎𝑛 {
|𝑥(𝑛)|

0.6745
}

This threshold can only be valid when all or most of the bandpass-filtered neural signal is available; as a result,

real-time systems that employ this threshold should have a separate memory for storing the signal calculating

the thresholds.

3.3.2 Absolute Value

As can be seen in Figure 7, depending on the relative position of the electrodes in the tissue, the action

potentials might have a larger positive or negative peak. So it is more appropriate to compare the absolute

value of the neural signal with a threshold [36] [73] [70]. This technique has been proven to have a better

quality for spike detection than comparing the raw neural signal with a threshold [73]. The threshold used in

this method can be the same threshold used for raw neural signals [36] [70].

23

3.3.3 Teager Energy Operator (TEO)

TEO (also known as the Nonlinear Energy Operator) is a nonlinear mathematical operator that has been

devised for tone detection and FM demodulation [72] [70].

It is defined as

𝑇𝐸𝑂{𝑥(𝑛)} = 𝑥(𝑛)2 − 𝑥(𝑛 + 1) × 𝑥(𝑛 − 1)

TEO has the property of amplifying the high-frequency components of the signal. So, action potentials having

higher frequency components than the background noise can result in higher values at the output of the TEO

[36] [70].

Figure 8. Neural signal passed through TEO.

Figure 8 shows a typical bandpass-filtered neural signal fed into the TEO and the output of the TEO. It can be

seen that TEO emphasizes action potentials. Similar to previous methods, in order to detect spikes, the

outputs of the TEO are compared with a threshold. This threshold can be derived from the average value of

the TEO output because TEO emphasizes the spikes and deemphasizes the background noise—making their

weight in averaging almost negligible [36] [70]. More formally, the TEO threshold can be stated as:

𝑇𝐸𝑂 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 𝐶 ×
1

𝑁
∑𝑇𝐸𝑂{𝑥(𝑛)}

𝑁

𝑖=1

24

where C is constant.

The fact that TEO threshold can be derived from averaging rather than calculating a median, makes threshold

calculation much easier than the case of absolute value as calculating the mean value does not need large

memories.

Besides the classical TEO, there is also a variant of the TEO called the k-TEO [74]. This operator is similar to

the TEO, however, instead of delays of one sample, delays of k samples are used. K-TEO is defined as:

𝑘˗𝑇𝐸𝑂{𝑥(𝑛)} = 𝑥(𝑛)2 − 𝑥(𝑛 + 𝑘) × 𝑥(𝑛 − 𝑘)

It can be shown that k-TEO can be tuned, using the value of k, to detect action potentials that are wider. Also,

[74] shows the application of a bank of k-TEO operators for spike detection.

3.3.4 Comparison of Spike Detection Algorithms

Different spike detection algorithms have been introduced in the previous subsections. Since these algorithms

can be considered as binary classification tests, we can measure their performance using ROC (receiver

operating characteristic) curves [36] [70]. The ROC curve shows the true positive rate as a function of false

positive rate [75]. In general, it is desirable to have more true positive rate and less false positive rate. A

comparison presented in [36] shows that the absolute value and the TEO have very close characteristics in the

ROC curve. However the authors of this paper mention that, by considering the choice probabilities and the

resilience to noise, TEO outperforms the absolute value. It should also be mentioned that the implementation

cost in terms of operations or chip area of TEO is higher than the absolute value method [36] [70].

3.4 Spike Alignment

After detection, the spikes need to be aligned in a way that their differences/similarities would be as prominent

as possible. This task is called alignment and it is assumed that all detected spikes occupy a constant number

of samples i.e., constant temporal length.

Two spike alignment methods are mostly used [36] [70]:

1) Alignment with respect to sample with the maximum value: in this method, all spike waveforms are

arranged in a way that their sample, having the maximum value, is at a certain point in time when all

spike waveforms are overlapped.

2) Alignment with respect to the maximum derivative: in this method, all spike waveforms are arranged

in a way that their sample, having the maximum slope (with respect to the previous sample), is at a

constant point in time when all spike waveforms are overlapped.

25

Figure 9 and Figure 10 show spike alignment using the maximum value and maximum slope, respectively. In

Figure 9, there are two different spike groups (having different shapes) and it can be seen that all spikes are

pinned at the maximum value. On the other hand in Figure 10, three different groups of spikes are pinned at

the point where they have the maximum slope (positive or negative).

Figure 9. Spike alignment using maximum value.

Figure 10. Spike alignment using the maximum slope.

3.5 Feature Extraction

As evident in Figure 9 and Figure 10, spike alignment maximizes the differences between the action potentials.

After alignment, a feature extraction algorithm is needed to convert the shape of each spike to an n-

dimensional vector. It should be noted that action potentials, being vectors of real numbers, can be already

Point of

maximum

derivative

Point of maximum

value

26

considered as points in the space. However feature extraction algorithms tends to elaborate the prominent

spike features using less number of samples.

The most widely used feature extraction methods are Principal Component Analysis (PCA), Discrete Wavelet

Transform (DWT), Discrete Derivatives (DD) and Integral Transform (IT) [36] [70]. In the following sections,

each feature extraction method is elaborated.

3.5.1 Principal Component Analysis

PCA is a widely used method that has been used numerous times in spike sorting applications. PCA tries to

find an orthogonal basis for the data (set of all detected spikes) whose variations are maximal. This orthogonal

basis can be derived via eigenvalue decomposition of the covariance matrix [36] [70] [76].

After finding the principal components, each spike can be expressed in the new basis as a set a values ci:

𝑐𝑖 = ∑𝑃𝐶𝑖(𝑛) × 𝑠(𝑛)

𝑁

𝑛=1

where 𝑠(𝑛), the spike, is a vector, 𝑃𝐶𝑖(𝑛) is the 𝑖𝑡ℎ principal component and 𝑁 is the number of elements in

the spike vector [70].

The 𝑐𝑖 vector or a subset of its elements can be used for clustering as most of the data variations are

represented in the first few principal components [36] [70].

Although PCA has been widely used as a feature extraction method, it has the disadvantage that it requires

relatively many multiplications and additions making it inappropriate for real-time feature extraction in

embedded systems with limits on computation power.

3.5.2 Discrete Wavelet Transform

DWT, similar to PCA, is used to derive a set of coefficients from the data that represent the differences in the

data more clearly [36] [70]. DWT coefficients are derived using

𝐷𝑊𝑇(𝑢, 𝑗) = ∑ 𝑠(𝑛) ×
Ψ(
𝑛 − 𝑢
2𝑗

)

2𝑗/2

+∞

𝑛=−∞

where 𝑢 is the translation parameter and 2𝑗 is the scaling parameter with 𝑗 an integer.

27

The Ψ function is the mother wavelet function that is different depending on the wavelet family used for the

transform. The DWT operation can be implemented as a filter bank and depending on the wavelet family, the

DWT might involve many multiplication/addition operations.

3.5.3 Discrete Derivatives

Discrete Derivatives (DD) is a low-complexity method similar to a simplified version of DWT [36] [70]. It

calculates the slope between the 𝑛𝑡ℎ samples and the (𝑛 − 𝑑)𝑡ℎ sample:

𝐷𝐷𝑑(𝑛) = 𝑥(𝑛) − 𝑥(𝑛 − 𝑑)

3.5.4 Integral Transform

The Integral Transform (IT) is another low-complexity method useful for real-time feature extraction that

produces a feature vector of two elements. It calculates the average nonnegative phase and the average

negative phase of the action potential waveform:

{

 𝐼𝑇𝑃 =
1

𝑁𝑃
∑𝑠(𝑛) where 𝑠(𝑛) ≥ 0

𝐼𝑇𝑁 =
1

𝑁𝑁
∑𝑠(𝑛) where 𝑠(𝑛) < 0

where 𝑁𝑃 and 𝑁𝑁 are the number of nonnegative and negative samples of the action potential.

The feature vector will be [𝐼𝑇𝑃 𝐼𝑇𝑁], resulting in simple two-dimensional clustering.

3.5.5 Comparison of Feature Extraction Algorithms

In terms of implementation costs, the PCA and DWT methods are an order of magnitude more complex than

the IT and DD methods. This is due to their memory and computation (multiplications and additions)

requirements [36]. In [36] and [70], the accuracy of these feature extraction algorithms has been plotted versus

their computational cost and it has been deduced that since the DD algorithm lies at the knee point of the

curve it has the best accuracy-complexity tradeoff for small embedded or implantable systems.

3.6 Data Clustering Algorithms

The last step of spike sorting, also being the most complex one, is clustering the feature vectors. It should be

noted that the clustering algorithms presented in this section consider the feature vectors as points in a multi-

dimensional space.

28

Before talking about the details of clustering algorithms, it should be mentioned that there is another step,

usually taken in spike sorting algorithms, that is not introduced in this chapter. This step consists of reducing

the number of elements in feature vectors also known as dimensionality reduction [36] [70]. There are various

ways to reduce the number of elements in features vectors [70] including uniform resampling, Lilliefors Test

[77] and Hartigan’s Dip Test [78].

Uniform resampling consists of keeping only one element out of each k elements in the feature vectors.

However, the other two tests try to find multimodality in the elements of the feature vectors and as a result,

they are more efficient. Uniform resampling can be easily implemented in low-resource embedded systems.

However, the two other tests require large memories and high processing speeds, which is not suitable for

low-power neural recording applications.

In the following subsections, we will present the most widely-used data clustering algorithms. It should be

noted that these algorithms are more power/memory-hungry than the algorithms involved in spike detection,

alignment and feature extraction. Also, they are usually iterative algorithms with an unknown number of

iterations.

3.6.1 K-Means Algorithm

The k-Means algorithm [79] classifies the data points into k different groups where k is provided by the user.

So, it is a supervised method (i.e., it requires manually selected parameters). This algorithm starts by randomly

defining k cluster centroids and then, through many iterations, it recalculates the centroids by measuring the

Euclidean distance between the centroids and the data points.

3.6.2 Valley Seeking Algorithm

This algorithm is based on calculating the normalized density derivatives (NDD) and finding the peaks of these

functions [80]. It has the advantage of being nonparametric and unsupervised. However, its disadvantage is

requiring relatively large processing power making it unsuitable for implantable applications [70].

3.6.3 Superparamagnetic Clustering

Superparamagnetic Clustering (SPC) is a clustering method inspired from the physical properties of the

inhomogeneous ferromagnetic model [33] [81]. This clustering method, being unsupervised and accurate, has

been used by [33] along with DWT for spike sorting. However, similar to many other clustering algorithms, this

algorithm requires a large processing power.

29

3.6.4 Osort

This method [82], devised by neuroscientists, is both unsupervised and can be implemented on relatively small

embedded systems. In Osort, the first data point (the first spike waveform) becomes its own cluster. For the

following spikes, the distance (usually Euclidean) to all cluster centroids is computed and the minimum

distance is considered. If this minimum distance is less than the merging threshold, the spike is added to the

nearest cluster and the cluster centroid is recalculated, otherwise a new cluster is generated. While processing

the incoming spikes, if the distance between two clusters becomes less than a certain value, the two clusters

are merged.

3.6.5 Comparison of Clustering Algorithms

Table 8 (derived from [70]) shows the tradeoffs between different clustering algorithms. It can be seen that

Osort provides the best tradeoff between implementation complexity, speed and need for supervision.

In this chapter, only the clustering algorithms were discussed. However, it should be mentioned that manual

spike sorting, based on the visual feedback from the extracted features, can also be a viable solution. But,

manual clustering cannot be real-time, hence not implantable in neural recording embedded systems.

Table 8. Comparison of clustering algorithms.

Manual k-Means

Valley
Seeking

SPC Osort

Nonparametric NO NO YES YES NO

Unsupervised NO NO YES YES YES

Real-Time NO NO NO NO YES

Adaptive NO NO NO NO YES

Complexity - LOW HIGH HIGH LOW

3.7 Some Notes on Implementing DSP Algorithms

Some of the algorithms that were introduced in this chapter can be easily ported to low-power microcontrollers

or FPGAs for real-time implementations. In order to implement such algorithms in digital systems the following

methodology is suggested:

1) A suitable algorithm targeting low-power applications must be chosen. This choice can be affected by

many factors including the digital processor (i.e., an FPGA or a microcontroller) that is going to be

used, the available clock frequencies, the power budget, etc… Not all algorithms can be implemented

in all signal processing systems.

30

2) The algorithm must be implemented and tested using floating-point calculations (for example in

MATLAB) on signal obtained from signal banks. This allows the designer to verify the correctness of

the algorithms rather than the implementation. Also, testing algorithms in environments like MATLAB

gives the designer some insight into the inner-working of the algorithm. At this stage, the designer

must make sure that the chosen algorithm is capable of processing the signal as desired on many

different signals of the same family (for example on many different ECG signals from different test

subjects).

3) Based on the architecture of the processor or the limitations of the FPGA that is going to be used, the

designer must now simulate the algorithm with limited precision i.e., in fixed-point. This allows the

designer to investigate the effects of limited precision on the algorithm. The effects of fixed-point

calculations can show themselves in many different ways including the frequency response of filters

or the quality of the signal after processing. This step can also be done in MATLAB.

4) After making sure that the algorithm work perfectly in fixed-point simulations, one can obtain real-life

signals from the system (that is going to be designed) and test them using the fixed-point algorithms

that were developed. For example, if ECG signals are to be compressed in the target systems, the

designer can obtain real ECG signals using the same A/D that is going to be used later and test the

compression algorithm using fixed-point calculations in MATLAB.

5) After the mentioned tests, the designer must implemented the algorithm in real-time in the target

system. The way this step is done can vary from one system to another. Basically, the engineer must

make sure that the delays caused by processing the signals/samples are lower than the required

system response times. In the case of microcontroller, DMAs and interrupts can help a lot with

reducing the delays of signal processing and in the case of FPGAs, pipelined architectures can be

used.

In [83] authors present an implementation of a spike detection algorithm based on the absolute value on the

hardware that has been developed in this project. This paper is an example of the methodology that is

mentioned above.

3.8 Conclusion

In this chapter, a short review on one class of signal processing techniques for neural signals was presented.

This class of neural signal processing is about detecting action potentials and associating them to neurons

when multiple neurons are in close proximity of a recording electrode.

31

Other types of signal processing can also be carried on recorded neural signals, most notably action potential

compression. Action potential compression allows the neural headstage or the implantable device to postpone

the spike sorting to a later time in a high-speed computer while keeping the spike waveform. This results in

relatively less complexity in the headstage firmware. However, even in the case of action potential

compression, the need for spike detection exists.

In the next chapter, we will present the details of the headstage design.

33

4 System Design of the Optogenetic Headstage

4.1 Introduction

In optogenetic stimulation, the light source is usually tuned to a specific wavelength — usually blue at 473 nm

[16] [17] [18] . A headstage system requires small size and weight, long life time and physical robustness. High

wireless range and high number of stimulation/recording channels are also desirable characteristics as they

allow carrying out optogenetic experiments on freely-moving small rodents, conveniently. Having simultaneous

optical stimulation and bioelectrical recording at the same headstage would greatly enhance research

capability in this area. Also, having the option to support multiple wavelengths would be a plus. However,

currently there are no wireless systems available to optically stimulate the brain cells and record the neural

response in real-time in multiple independent channels. Thus, the goal of this work is to realize such a

research tool.

As research objectives, this project aims to design and fabricate a wireless optogenetic headstage that

provides simultaneous optical stimulation and bioelectrical recording inside a wireless device operating in real-

time. Moreover, it is desired that a multichannel wireless optogenetic headstage with simultaneous stimulation

and neural recording be designed that allows optogenetic experiments on small freely moving animals. It is

also highly beneficial that multiple stimulation wavelengths be supported and the size and volume of the device

be as small as possible.

In general, wireless headstages are installed on the head of an animal (usually a small rodent) in a surgery

procedure and then the headstage will be controlled from a base station where the neuroscientist can

determine the stimulation patterns and visualize the acquired signals. In experiment scenarios where animals

are freely moving, the animal is usually kept in a cage and its physical behavior is also monitored. Another

approach to monitor an animal’s neural response to stimulation is to keep the animal still while the experiment

is taking place. Wireless headstages are especially useful for experiments on freely-moving animals.

Neural signal acquisition is carried out by placing microelectrodes inside the brain of an animal; then the

acquired signal is amplified and filtered using specialized electronics. This analog signal chain, also called the

analog front end (AFE), must be as low-noise as possible because the neural signal that is picked up by the

electrodes has a low amplitude, comparable to the noise RMS (root mean square) value. The AFE must also

be able to separate the high-frequency content of the neural signal (action potentials) from the low-frequency

component.

34

After analog signal processing and digitization, some sort of digital signal processor will process the neural

signal samples. This processing can be either 1) directly delivering the digitized samples to the radio

transmitter or 2) performing a specific signal processing algorithm on the data prior to transmission. Different

types of processing can be performed on the acquired signals, like action potential (spike) detection with or

without spike sorting and signal compression.

As discussed in previous chapters, neural stimulation can have either an electrical or an optical nature. For

electrical stimulation, microelectrodes can be used while for optical stimulation (including optogenetics), small

optical fibers can be placed inside the brain of the animal. The optical fibers or the microelectrodes are

connected to their appropriate drivers where the stimulation waveforms are generated.

Headstages that perform different tasks, especially signal processing, require some sort of signal processing

unit to control the activity of different hardware and software components. This control unit can be a

microcontroller, a DSP (digital signal processor), an FPGA (field-programmable gate array) or a combination of

these. Low power consumption and real-time responses are necessary for such processing units. Finally, in

cooperation with some analog circuitry, the processing unit is also usually responsible for generating the

stimulation patterns.

For wireless headstages, there is also a need for wireless data transceivers that are used to transfer acquired

neural signals back to a base station where the data can be viewed or analyzed. In recent headstages where

multiple neural signal acquisitions are present (refer to Chapter 2), digital modulation schemes such as FSK

(frequency-shift keying) or GFSK (Gaussian frequency-shift keying) are very popular for their ease of

implementation [17] [69] [84].

Last but not least, the power supply circuitry of the wireless headstage can be a challenge in some scenarios

where power is limited. Since headstages are mixed-signal systems, multiple low-noise power rails might be

required. On the other hand, depending on the neural stimulation type, some of these power rails might

experience heavy current discharge in short time intervals which leads to presence/conduction of noise on

other power rails.

4.2 Design Methodology

As mentioned previously, the wireless optogenetic headstage is a research tool that helps neuroscientists to

study the brain behavior in different experiments and our goal in this thesis is to design a novel wireless

headstage that allows simultaneous real-time multichannel optogenetic stimulation and neural recording, which

is not available so far. The focus on real-time and multichannel stimulation and recording comes from the fact

35

that real-time neural recording is required to investigate the effects of millisecond-scale optical stimulation and,

multiple channels of recording and stimulation allow simultaneous monitoring of multiple brain regions.

In order to design this research tool, we initially designed a proof-of-concept wireless headstage and based on

the experience gained during the design process, we designed the (final) multichannel wireless optogenetic

headstage.

In both headstages, we opted for the following innovative approach to design and fabricate the devices:

 Providing means for electrophysiological recording and optical stimulation in the same device: it is

necessary that both stimulation and recording be present in the same headstage as it is required to

investigate the effects of stimulation using real-time recording (refer to sections 2.2, 2.5.1 and 2.6).

 Using inexpensive, miniature and light-weight COTS components to design a headstage suitable for

small rodents: this allows having a low-cost light-weight headstage that can be easily used by

neuroscientists.

 Using PCBs as component carrier and chassis for the headstage: this removes the need to have

bulky containers to encapsulate the components of the headstage and results in lighter devices

suitable for experiments on small rodents (refer to section 1.2).

 Incorporating high-current discrete LEDs as the optogenetic light source: high-current LEDs allow

deeper optogenetic stimulation as the optical loss in the brain tissues decreases the received optical

power in deeper layers (refer to section 2.6).

 Designing the analog amplifiers based on low-noise COTS to acquire neural signals: as mentioned in

previous chapters, neural signals are in order of tens of microvolts and require very low-noise analog

recovery (refer to section 2.5). High-quality analog recovery is crucial to further steps of the analysis

of neural signals.

 Using wireless transceivers to transfer the acquired neural data to the base station: when a

headstage is untethered, it can be easily used in experiments involving freely-moving animals which

is the goal of this work (refer to section 1.2).

 Using low-power microcontrollers to control the headstage subsystems.

 Using reliable power sources to supply the stimulation LED and the rest of the system with energy.

In the next two subsections, we will present the proof-of-concept headstage and the final design in more detail.

36

4.2.1 Proof of Concept

The headstage that has been designed as the proof of concept was based on one stimulation LED and two

neural recording channels [17]. This headstage was wirelessly powered using inductive links† [85] and

required power-delivery chambers to operate. Also, its physical design was based on 3 (rigid) PCBs that were

stacked using board-to-board connectors. The following list summarizes the characteristics of this headstage:

 Fabrication based on COTS components

 Light-weight, small and wireless headstage based on three stacked rigid PCBs

 One 100 mA optogenetic stimulation LED

 Two low-noise neural recording channels

 Microcontroller with integrated RF transceiver to control the system and transmit the data to the base

station

 Inductive power chamber as power source

Different details about this headstage can be found in [17] and are also summarized in Table 9.

Table 9. Summary of the performance of the first wireless optogenetic headstage.

Parameter Value

Weight 7.4 grams

Dimensions 15×25×17 mm

Supply Voltage 3.3 V

Readout circuitry Power Consumption 3.73 mW

PMU Power Consumption 16.54 mW

RF Microcontroller Power Consumption 74.25 mW

LED Power Consumption (Constant Mode) (20 - 380) mW

Total power consumption (Constant Mode) (114.52 – 474.52) mW

RF Operating Frequency 868 MHz

RF Output Power 0 dBm

Data Rate 320 kb/sec

Power Delivery Architecture 4-Coil Inductive Link

Power carrier Frequency 1 MHz

Power Transmission Range < 7 cm

Number of Recording Channels 2

Input-Referred Noise 1 µVrms

Sampling Frequency (per Channel) 20,000 Sample/Second

ADC Precision 8 bits

Readout Interface Gain 40 to 60 dB

Readout Interface CMRR > 100 dB

Readout Interface Bandwidth 100 Hz to 10 KHz

† The work on the inductive power delivery link (and some parts of the analog circuitry) has been done by Abdollah
Mirbozorgi, PhD student at Laval University, 2013.

37

Figure 11 and Figure 12 show the physical design of this headstage. It can be seen that the three stacked

PCBs are connected together using board-to-board connectors and that the electrodes are wires alongside the

optical fiber. The power receiving coil is also sandwiched between two of the PCBs.

Figure 11. First version of the optogenetic headstage: stacked
PCBs, power-receiving coil and the optical fiber.

Figure 12. 3D models of the headstage: Side view with the power-
receiving coil (top). Complete model with optical fiber (bottom).

4.2.2 Issues, Solutions and Design Approach

Although the proof-of-concept version of the optogenetic headstage satisfied many different requirements of

optogenetic experiments, it had shortcomings such as a large size and large weight, and a lack of multichannel

capability, which are essential characteristics for conducting practical experiments with freely moving animals.

As a result, we have devised an original approach, which will be detailed in the following paragraphs, to design

an advanced wireless headstage (detailed in Section 4.3) addressing the mentioned shortcomings. The

following list contains different shortcomings and issues of the proof of concept as well as the improvements

that were made in the new headstage. The solutions to the mentioned issues comprise our approach to the

design of the new headstage:

1) Issue: The batteryless nature of the headstage and the fact that the power delivery distance (see

[17]) was almost 7 cm resulted in certain limitations in some experiments. For example, if a relatively

large rodent decides to stand on its feet it was possible that the headstage did not receive enough

power to continue working.

Solution: In the new design, a battery is used instead of wireless power delivery link. The system is

able to work (using the battery) more than 3 hours.

38

2) Issue: The design of the proof-of-concept headstage was based on three stacked PCBs. The non-

monolithic design of the first headstage resulted in higher volume and more difficulty in debugging

and maintenance.

Solution: The new design benefits from the rigid-flex PCB fabrication technology. This means that

different rigid PCBs are connected to each other using flexible PCBs. Taking this approach,

completely eliminates the need for board-to-board connectors and saves space and results in a

robust monolithic PCB design. Also, the new headstage’s dimensions will be less than 20×20×20

mm3 and its weight will be less than 7 grams. The size and the weight of this headstage address the

fact that a laboratory mouse (test subject for many different types of experiments) does not usually

weigh more than 30 grams [86]. As a result, in order for the mouse to be able to freely move, the

headstage weight/size must be as low as possible.

3) Issue: There was only one stimulation LED in the proof-of-concept headstage, which resulted in

experiments with less degrees of freedom. Furthermore, the maximum current in the LED was limited

to 100 mA.

Solution: The new headstage benefits from two optical stimulation channels where each of these

channels is a high-power LED (LB G6SP [87] or LY G6SP [88] by OSRAM Opto Semiconductors [89])

that will be driven by up to 150 milliamps of electrical current. At any given time only one of the LEDs

will be active and the optical power generated in the LED will be delivered to neurons via optical

fibers.

Similar to the previous headstage, there will be two neural recording channels where each of these

recording channels is connected to a low-noise amplifier and is properly filtered. The filtering that is

done in the analog circuitry is bandpass and allows frequency content between almost 300 Hz to

6000 Hz to pass. After amplification and filtering, each channel is digitized at a rate of 20,000

samples/second. The analog front is low-noise enough to be able to extract action potentials with

amplitudes as low as 10 microvolts.

Being equipped with two reading channels as well as two stimulation channels allows simultaneous

excitation and monitoring of multiple brain regions. This results in more flexible optogenetic

experiments as there will be less need for changing the electrodes and/or optical fiber sites. As

mentioned in chapters 0 and 1, different brain regions are dedicated to different tasks so multiple

stimulation/reading channels results in more flexibility in studying the brain activity.

The high current through the LED compensates for the losses of optical fibers and their connections.

Depending on the nature of the experiment, this current flow and the resulting optical power might be

39

too much [59]. However, the high irradiance that flows out of the optical fiber allows stimulation of

deeper brain areas.

4) Issue: The RF center frequency of the transmitter was 868 MHz in the proof-of-concept headstage.

Optimum antennas at this frequency are usually much larger than the largest dimensions of the

headstage. Since large antennas cannot be used with the headstage, the transmission distance of

the headstage decreases.

Solution: The RF transceiver in the new headstage has a center frequency of 2.4 GHz, which results

in much smaller and more efficient antennas compared to the previous headstage. Also, the new RF

transceiver is capable of transmitting data up to 720 kb/sec. This bit rate allows transmitting other

information as well as the neural data. For example, the outputs of temperature sensors or

accelerometers can be sent alongside with the neural data.

5) Issue: The proof-of-concept headstage had optical stimulation patterns in the form of PWM (pulse

width modulation) waves. However, the transitions between the high and the low states were not fast

enough compared to the time scales of the waveforms.

Solution: The stimulation patterns that were opted for this headstage as well as the previous one are

PWM signals. Since the optogenetic stimulations and responses happen in millisecond scales (see

chapters 0 and 1), the stimulation and the recording of these events must be real-time enough to

capture all information. Particularly for the stimulation, the state transition in the PWM signal must be

much faster than the width of the pulse. This requirement is addressed in the new design of the

headstage. In essence, the optical stimulation pattern of the LEDs will be a PWM signal with a

frequency between 1 Hz to 100 Hz and the duty cycle will be between 0.1 % and 10 %. When the

pulse is active, a current of 150 milliamps will flow into the active LED.

As mentioned above, the experience that was gained while designing the proof of concept, was leveraged to

implement an advanced multichannel optogenetic headstage. The following list summarizes the approach to

design the new multichannel optogenetic headstage being the subject of this project:

 Foldable rigid-flex PCB carrier with light-weight COTS components: the foldable PCB alleviates the

need for board-to-board connectors and results in lower weight and size of the system which is

necessary for experiments on freely moving small animals.

 Two 150 mA optogenetic stimulation LEDs: having two stimulation LEDs allow neuroscientists to

monitor two brain regions simultaneously. This results not only in simultaneous study of two brain

40

regions but removes the need of performing two surgeries to implant the optical fibers into two brain

regions of two different animals.

 Two low-noise neural recording channels: as mentioned previously, very low-noise amplifiers are

required to extract the microvolt-scale neural signals from the environment noise and the quality of

analog signal acquisitions affects the rest of the signal processing and analysis steps.

 Low power MSP430 microcontroller to control the system: this microcontroller has all the required

capabilities to control the system, digitize the neural signals and send the data to the base station. It

is also very low-power.

 Separate high-bit-rate RF transceiver capable of using small chip antennas: using an RF transceiver

operating at 2.4 GHz results in more flexibility in PCB layout design as smaller antennas are used.

Also the higher bit-rate of this transceiver allows transmission of different data from different sensors

simultaneously, dynamically changing the stimulation pattern and results in lower power consumption.

 Small Li-Ion battery as power source: this battery allows continuous work for more than three hours

without need to change batteries. Also the small form factor of the battery does not add considerable

weight to the system.

 Circuitry to generate sharp optical stimulation patterns: as action potentials occur in millisecond time

scales, the corresponding stimulation must also have a fine time resolution (refer to section 2.6).

4.3 The Design of the Multichannel Wireless Optogenetic

Headstage

In this section, the details of the advanced headstage design are presented. At first, a short overview of the

design is presented and then each component of the headstage is discussed in detail. The main novelty of this

work is gathering multiple stimulations and recording channels in a small and robust wireless headstage that

can be used in optogenetic experiments involving small freely moving rodents. In the next section, we will

present the design details of the multichannel optogenetic headstage.

The proposed headstage system includes the following main blocks (subsystems):

1) Analog Front-End (AFE)

2) Optical Stimulation Circuitry

3) Power Management Unit (PMU)

4) Microcontroller Unit (MCU)

5) Digital Wireless Transceiver

41

In the AFE, bandpass filters keep the useful frequency content between almost 300 Hz to 6600 Hz; this band

contains the action potentials and the LFPs. The AFE benefits from high common-mode rejection ratio

(CMRR) and power supply rejection ratio (PSRR); both of these characteristics are necessary for the AFE

operation in the presence of different types of noise. The high CMRR removes the 50/60 Hz power-line noise

and other types of common-mode noise while the high PSRR removes the power supply fluctuations that can

be conducted to the AFE inputs.

The optical stimulation circuitry generates the required PWM waveforms that will be applied to the stimulation

LED terminals. This subsystem receives a digital PWM signal from the MCU and converts it to electrical

current in the LED.

The PMU is responsible for providing other subsystems with appropriate power rails. These power rails are

required to be as low-noise as possible because any noise on the power rails directly affects the quality of the

acquired signals. In order to remove the high-frequency noise on the power rails, the PMU incorporates a low-

pass power supply filter. Details of this filter are provided in the following sections.

The MCU is a low-power microcontroller from the MSP430 family of microcontroller from Texas Instruments.

This microcontroller is responsible for delivering the data to the radio transceiver and providing the stimulation

LED drivers (optical drivers) with appropriate PWM signals. Furthermore, at the beginning of an experiment,

the MCU receives the experiment parameters such as stimulation patterns and the stimulation duration from

the base station.

Figure 13 shows the block diagram of the system. It can be seen that the MCU controls all other subsystems

of the headstage. Four microelectrode will be connected to the brain tissue; one of them brings the brain

tissues to an appropriate common-mode voltage and the three other microelectrodes are the inputs of the

AFE.

42

Chip
Antenna

RF

TX/RX

Module

MSP430F5328

MSP430

Core

SPI

Optical

Stimulation

Circuitry

3.7 V

Battery

V3.3v

VAFE

VBattery

PMU

C
u
rr

en
t
M

e
a
s
u

re
m

e
n

t
1
2
-b

it

A
D

C

PWM

Signal

LED 2

LED 1

VBattery

Band-Pass
Filters

RFI
Filters

Low-noise
Amplifiers

Vsignal

V-

Electrodes

1
2
-b

it

A
D

C

1
2
-b

it

A
D

C

Microcontroller Subsystem

Analog Front End

P
W

M

VBody

LDO

Regulator

LDO

Regulator

Power

Supply Filter

V- V1+ V2+

Power

Supply Filter

VBattery

nRF24L01+

Figure 13. Headstage block diagram.

In the following sections of this chapter we will discuss each subsystem in detail.

4.4 Analog Front-End (AFE)

The AFE, being designed for extracellular signal acquisition, is able to amplify low-amplitude action potentials

with minimal distortion. The action potentials are assumed to have worst-case amplitudes between 10

microvolts to 150 microvolts and their frequency content is assumed to be between 300 Hz to 6600 Hz.

Changing the lower cut-off frequency can be conveniently done by changing the value of one

resistor/capacitor. Figure 14 shows the block diagram of the AFE. The complete schematics of the AFE (and

other system components) are available in the appendices.

43

AFE Output 1
Vsignal 1

V-

INA118

Ref PinVRef

VRef

AD8607

AD8609

AD8609

VRef

AFE Channel 1

RFI Filter

1.25 V
Reference
(LM4140)

VBody

VRef

AFE Output 2

V-

INA118

Ref PinVRef

VRef

AD8607

AD8609

AD8609

VRef

AFE Channel 2

RFI Filter

Vsignal 1

Analog Front End (AFE)

Figure 14. Analog Front End block diagram.

4.4.1 RFI Filter and Preamplifier

The most critical part of the AFE is the preamplifier since it must be as low-noise as possible. In this design, a

low-noise low-power instrumentation amplifier from Texas Instruments, INA118 [90], has been used which

provides the desired noise characteristics. The INA118 is AC-coupled to the input signals and this is done via

another op-amp in a feedback configuration. This feedback adds a high-pass pole to the preamplifier and the

cut-off frequency of this pole is determined via the values of one resistor and one capacitor.

This preamplifier is preceded by a passive network, which acts as a radio-frequency interference (RFI) filter

[91]. This passive filter is intended to remove the high-frequency signals as the instrumentation amplifiers have

very poor CMRR at high frequencies [91].

4.4.2 Mid-Supply Reference

The RFI filter, preamplifier and other parts of the AFE require a stable and low-noise mid-supply reference (a

reference voltage equal to almost half the AFE supply voltage). Any noise on this reference voltage will directly

affect the low-amplitude signals at the preamplifier terminals. To overcome this issue, a low-noise voltage

44

reference with high PSRR, LM4140 [92], from Texas Instruments has been used. The mid-supply reference is

VRef in the AFE block diagram. The main reason behind choosing a voltage reference rather than a simple but

accurate resistive voltage divider is that the resistive voltage dividers tend to have very poor PSRR

characteristics.

4.4.3 Low-Pass Filter

After the pre-amplification, the neural signals are passed through a 2nd-order Sallen-Key filter. This filter and

the RFI filter, together, provide the AFE with a low-pass cut-off frequency of almost 6000 Hz.

4.4.4 Second Stage Amplifier

The outputs of the low-pass filters are fed to non-inverting op-amp-based amplifiers where these signals are

amplified again to a level that is appropriate for the analog-to-digital converter (ADC).

4.4.5 AFE Power Supply Rails and References

The AFE has a 3.0 volt supply voltage that is provided by the PMU and the reference voltage (generated by

the LM4140) is 1.25 volts. The 1.25 volt reference voltage biases the input signals at a point where the

preamplifier and other op-amps have the best CMRR. The AFE power supply rail has been chosen to be 3.0

volts so a reliable distance between the battery voltage (~3.6 volts) and the LDO (low-dropout regulator) output

voltage is kept. As a result, the LDO PSRR is maximized while the absolute minimum working voltage of all

AFE parts is respected.

4.5 Optical Stimulation Circuitry

The optical stimulation circuitry is responsible for generating stimulation current waveforms in the stimulation

LED terminals. This system consists basically of a current source, based on an op-amp. Figure 15 shows the

optical stimulation circuitry block diagram.

The PWM waveform, being the stimulation waveform, is provided by the MCU (microcontroller unit) and it has

the same voltage level as the MCU logic outputs i.e., 0 volts and +3.3 volts.

The current source is implemented using an op-amp with negative feedback. The LED anode is directly

connected to the battery voltage (~3.6 volts) and its cathode is connected to the current course. The feedback

mechanism uses a precision ±1% 0.5 Ω resistor to tune the LED current. Since the resistance of 0.5 Ω is

comparable to the resistance of a PCB tracks (even short tracks), in the PCB layout of the headstage, the

resistor, the op-amp and Q2 are placed as close as possible; also a ground plane provides a low-impedance

ground for all the components of the PCB.

45

VLED

LED 1

Channel

2 PWM

Q1

Q2

10K Ω

1K Ω

100K Ω

2.4K Ω

0.5 Ω
To A/D

Channel

Optical Stimulation Circuitry

VLED

LED 2
Q1

Q2

10K Ω

1K Ω

100K Ω

2.4K Ω

0.5 Ω
To A/D

Channel

Channel

1 PWM

Figure 15. Optical stimulation circuitry block diagram.

In order to control the current and also be informed about the stimulation instances, i.e., when the current is

flowing through the LED, the voltage on the 0.5 Ω resistor is monitor by the MCU via one of the A/D (analog-

to-digital converter) channels.

4.5.1 LED Current and Sharp Transitions

Since a high amount of current passes though the LED and it needs to be depleted as fast as possible (for the

stimulation pattern to have fast rise-/fall-times), Q1 assures that when the PWM is at low state (logical zero),

the voltage across the LED is much lower than the conduction voltage (~ 3.3 volts). This allows the LED

current waveforms to be sharp i.e., very low rise- and fall-times.

Since the LED current is 150 milliamps when the LED is active, a considerable amount of switching noise can

be seen on the battery voltage. This switching noise can be conducted to other components of the headstage.

This problem is fully solved by incorporation of high PSRR components and also a power supply filter. More

details are available in the PMU section.

4.6 Power Management Unit (PMU)

The PMU is responsible for providing other subsystems of the headstage with stable power supply rails. It

consists of two LDOs (Low-Dropout Regulators) with high PSRR and two power supply filters, which remove

the high-frequency noise of the power rails. Figure 16 shows the block diagram of the PMU.

46

100µH

1µF 220µF

47µF

220µF

1µF 1Ω
3.7 V

Battery

LDO
Regulator
TLV70233

3.3V Power Rail

Power Management Unit

100µH

1µF 220µF

47µF

220µF

1µF 1Ω

LDO
Regulator
TLV70230

AFE Power Rail

Figure 16. Power management unit block diagram.

The PMU is powered via a 3.7 volt Lithium-Ion rechargeable battery. The battery voltage is high enough so two

LDOs can be turned and these two LDOs provide the power for the rest of the components in the headstage

system. However, the anodes of the stimulation LEDs are directly connected to the battery’s positive terminal

rather than any voltage regulator.

It can be seen that one LDO and its power supply filter provides a 3.0 volt power rail for the AFE while the

other one provides a 3.3 volt supply for the MCU and the radio transceiver. The reason behind separating the

LDOs is 1) minimum noise conduction between the AFE and other components, and 2) a 3.0 volt LDO

provides better PSRR than a 3.3 volt LDO when the battery voltage is ~3.6 volts.

4.6.1 Power Supply Filters

The power supply network (Figure 17), being a combination of passive components, provides a very robust

removal of high-frequency noise on the LDO outputs. The LDOs that have been chosen (TLV70233 and

TLV70230 from Texas Instruments) provide almost 51 dB of PSRR at 100 KHz. The PSRR drops rapidly for

higher frequencies. In other words, the PSRR characteristics of these LDOs is very poor at high frequencies.

On the other hand, the power supply network is a low-pass network that has a high attenuation at high

frequencies. As a result the ensemble PSRR characteristics of the LDOs and the power supply filter provides a

high net PSRR at all frequencies. The structure of the power supply filter has been adopted from [93] and its

frequency response, after choosing component values, is depicted in Figure 18.

47

Figure 17. Power supply filter topology.

Figure 18. Power supply filter frequency response.

In the headstage system, the noise that the PSRR of LDOs and the power supply filters are targeting to

remove is mostly the switching noise of the power supply caused by the LED switching. When incorporating

the power supply filters, this noise is significantly reduced and what remains from this noise is taken care of by

the high PSRR of the instrumentation amplifiers. This has been proved by measurements and is available in

the results in the following chapter.

Finally, it should be mentioned that the power supply filter component values have been chosen for the filter to

have the minimum cut-off frequency (the filter has a low-pass behavior). However, lower cut-off frequencies

result in bigger electronic components (capacitors, inductors). As a result, there was limitations on the

achievable cut-off frequency as the headstage requires small components. The final component values have

been chosen as a result of simulations and measurements.

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

0,0 5,0 10,0 15,0 20,0 25,0

V
o

lt
ag

e
(v

)

Frequency (KHz)

Power Supply Filter Frequency Response

48

4.7 Microcontroller Unit (MCU)

In this headstage system, a low-power microcontroller, MSP430F5328 from Texas Instruments [94], controls

the operation of the headstage. The tasks of this microcontroller include controlling the RF communications,

digitizing the output of the AFE and generating the stimulation patterns. This microcontroller, besides

occupying a small area on the PCB, has all the necessary peripherals required for the headstage system

including the required number of A/D channels and SPI (serial peripheral interface) peripherals. The operating

voltage of this microcontroller and its IO (input/output) voltages is 3.3 volts. In order to maximize the power

efficiency of this microcontroller an RTOS (real-time operating system) has been used to control the

peripherals.

FunkOS [95] has been chosen as the RTOS for its low latency and low memory footprint. Also, FunkOS’s

programming language, C, its compatibility with MSO430 interrupts and the ease of porting this RTOS to

MSP430F5328 have been the driving forces for choosing this RTOS.

During the development phase, the context switching latency of FunkOS has been measured to be almost 35

microseconds, at an operating frequency of 8 MHz, which is the lowest compared to other RTOS like

SYS/BIOS, the FreeRTOS and BRTOS. The low context switching latency allows any RTOS task to be

interrupted when the A/D buffer is filled. When the A/D buffer is full, the MSP430 DMA (direct memory access)

transfers the data to the memory and the microcontroller can send the data to the wireless transceiver.

The firmware running in the MSP430 has the following tasks:

1) One task for receiving commands and configuration from the base station (highest priority).

2) One task for switching the radio transceiver from receiving mode to idle mode. This task also

synchronizes the beginning of a series of transmission with the base station.

3) One task for transmitting the acquired neural data to the base station when the DMA has finished

transferring the data to the pack buffer.

4) One task for putting the microcontroller in sleep mode when no other tasks are being executed.

Figure 19 shows the flowchart of the firmware operation. The complete source code of the firmware is

available in the appendices.

When the microcontroller is not executing any task, it is put in sleep mode. In transmitting mode, the

microcontroller is awoken every ~800 microseconds, when a 32-byte packet is ready to be transmitted, and

the following tasks must be finished before the next packet is ready:

49

- Context switching (almost 35 microseconds);

- Switching the transceiver mode from Idle to TX (almost 70 microseconds);

- Transferring the 32-byte packet to the transceiver (almost 42 microseconds).

 As a result, the MCU can be put to sleep mode for almost 653 microseconds, which equals to 80% of the CPU

(central processing unit) time. However, after measuring the sleep time, it has been seen that the MCU is in

sleep mode for almost 73% of the time. The reason behind this difference, which translates to less than 7

instructions in MSP430, can be attributed to the overhead added by the execution of some instructions that

have not been accounted for.

Figure 19. MSP430F5328 firmware flowchart.

4.8 Digital Wireless Transceiver

In order to transmit the received data back to the base station and to receive the stimulation parameters, a

modular low-power digital wireless transceiver (nRF24L01+ from Nordic Semiconductor [96]) has been used.

This transceiver is a low-power GFSK radio module operating in the 2.4 GHz ISM (industrial, scientific and

medical) band. The raw data of this module can be as high as 2 Mbits per second and the net data rate can be

50

up to almost 700 kbits per second [96]. An SPI interface is available to control the radio and the chip package

is QFN (quad flat no-leads) and measures 4×4 mm2.

This radio module requires an antenna tuned to the 2.4 GHz band and an antenna matching network

consisting of capacitors and inductors. In this project, a chip antenna has been used to decrease the system

footprint.

Finally, in order to control the radio module, a C library has been developed that is available in the appendices.

4.9 Electromagnetic Compatibility Considerations

Electromagnetic compatibility (EMC) and electromagnetic interference (EMI) problems can happen in almost

all electronic systems except for the most trivial ones. Basically, EMC is about the robustness of a system

against incoming noise and interference imposed from the environment while EMI focuses on electromagnetic

emissions (radiated and conducted) of a system.

In mixed-signal systems where there are fast high-power high-amplitude digital signals in close proximity of

low-amplitude analog signals, close attention must be paid to the EMC and EMI of the system. The headstage

that is being discussed in this work is a good example of such mixed signal systems. In this headstage, there

are microvolt-scale analog signals, fast digital signals, RF signals and also high-current PWM signals.

4.9.1 EMC/EMI and Self-Interference Problems Associated with the Headstage

System

The mentioned digital and high-current signals can have a devastating effect on the low-amplitude analog

signals in the following ways:

1) First and most importantly, the high-current LED signals can disturb the battery voltage considerably

as the anodes of the LEDs are directly connected to the battery. The imposed (switching) disturbance

on the battery voltage can be conducted to the outputs of the LDOs, op-amps and instrumentation

amplifiers resulting in very poor signal acquisition in the AFE. This type of disturbance on the AFE

power rails can totally distort the signal as the fluctuations on the power rails are much larger than the

action potentials. This interference can be grouped as conducted emissions.

2) Since the frequency of the stimulation signals (PWM stimulation pattern) is comparable to the

frequency content of the action potentials, if the LED stimulation currents and the action potentials

share the same ground plane, the return current of the stimulation pattern will heavily distort the

action potentials [97]. This type of interference can also be categorized as conducted emission.

51

3) Any conductor carrying electrical current can be considered as an antenna [97] and the radiated

energy can be picked up by other conductors. The amplitude of the radiated energy depends on the

different parameters. However two of them are of crucial importance: the frequency and the

amplitude. In the headstage, the digital signals have high-speed harmonics and the LED stimulation

currents have high amplitudes. As a result, care must be taken when designing the high PCB to

minimize the pickup current on the analog signals [97]. This type of interference can be grouped as

radiated emissions.

4) Finally, similar to the return currents of the stimulation currents, the return current path of the digital

signals may interfere with the analog signals if the current return paths are the same [97].

Besides the mentioned sources of interference, there might be other sources of interference in the

environment with potential to affect the operation of the headstage system.

4.9.2 Solutions to EMC/EMI Problems

In the previous subsection, we described different types of interference and their sources. In this subsection,

we will present solutions to these problems. These solutions are all PCB design techniques that can be found

in different resources talking about EMC/EMI like [97].

The following techniques can alleviate different problems associated with EMC/EMI [97]:

1) The problem of power rails fluctuations can be solved in mainly two different ways: by using

components with high power supply rejection ratio and by using proper bypassing [93].

2) The problem of shared current return path can arise in PCBs with power/ground planes as well as

PCBs without power planes. One way to solve this problem is to separate the power/ground planes of

different system components [97] [98].

3) The problem of radiated emissions can be solved by using ground and/or power planes in the PCB

design [97]. When a ground plane is available under high-speed PCB traces, most of the return

current passes beneath the track in the opposite direction. As a result, the electromagnetic fields

created by these currents will cancel out. This means minimum radiation pickup by other traces. In

the case of low-frequency but high-current traces, a return path for the current can be drawn (as a

PCB trace) beneath the current-carrying trace.

4) Last but not least, PCBs with ground and power planes tend to be much more robust against

environment radiations [97] [98].

52

4.9.3 Headstage PCB Design

In this work, two PCBs have been design for the headstage system. One PCB is a 4-layer PCB with one

ground plane, one power plane and two signal layers. This PCB serves as the system prototype. The other

PCB is a 6-layer PCB with the required form factor of the headstage. The 6-layer PCB has 4 signal layers, one

power plane and one ground plane.

In both PCB designs, the 4 design techniques as well as other PCB design considerations have been used. In

the results chapter, we will present the details of the realized PCBs and their performances.

53

5 Results and Discussions

5.1 Introduction

In this chapter, we present the results of this project. More specifically, we will present the fabricated devices

and their measured performance.

As mentioned in the introduction chapter, the wireless headstages are usually mounted on the animal head in

a surgery procedure. In our case, the final headstage consists of two parts: a removable part and a non-

removable part. The non-removable part will be mounted on the animal head permanently while the removable

part can be placed on or removed from the non-removable part using a board-to-board connector from Molex

Inc. [99].

The non-removable part of the headstage is not the goal of this project and is provided by other research

groups. It has the appropriate physical shape to be mounted on the animal head and it consists of the LEDs

and the electrodes that will be placed in the animal head. The terminals of these LEDs and electrodes will be

connected to the board-to-board connector of the non-removable part. The removable part will have a

matching connector that will interface to the LEDs/electrodes terminals.

In order to realize the removable part of the headstage system, two PCBs have been designed which can

carry the headstage components. One PCB has been designed as a prototype and has larger dimensions than

the headstage requirements. The other PCB has the required dimensions of the headstage and is fabricated

using the rigid-flex PCB manufacturing technology. The rigid-flex characteristics of the (final) headstage PCB

results in low volume and higher robustness to EMC/EMI issues.

Only the prototype PCB has been fabricated and tested at the time of this writing, and the other PCB has been

sent for fabrication. All tests that are mentioned in this chapter have been carried out on the prototype PCB.

From this point, we will refer to the removable part of the headstage, as headstage.

5.2 Headstage PCBs and Their Specifications

In this section, we present the two designed PCBs and their specifications.

5.2.1 Prototype PCB

The fabricated prototype PCB† is a 4-layer PCB having 2 signal layers and 2 power planes. It has all the

components that will be mounted on the PCB including the LEDs and the electrodes but its size is intentionally

† This PCB has been mainly designed by Gabriel Gagnon-Turcotte and was edited by Reza Ameli and Alireza Avakh
Kisomi.

54

more than the targeted headstage size so it would be easy to debug. This PCB measures 102×54.2 mm2 and

it has 485 pads, 2573 tracks and 114 vias. The minimum track width/spacing is 0.2 mm and the minimum hole

diameter is 0.4 mm. The layer stacking of this PCB is shown in Table 10.

Table 10. Headstage prototype PCB layer stack.

Layer Type

1 Signal

2 VDD 3.3 v

3 GND

4 Signal

This PCB has been designed larger than the headstage size requirements so it would be easier to solder SMD

components and debug. Figure 20 shows the fabricated prototype PCB, Figure 21 shows the 2D PCB layout,

Figure 22 shows the front view of the 3D PCB layout and Figure 23 shows the back view of the 3D PCB layout.

Figure 20. Fabricated headstage prototype PCB.

55

Figure 21. Headstage prototype PCB (2D view).

Figure 22. Headstage prototype PCB, front view (3D).

RF Transceiver

MSP430

AFE (Channel 1)

PMU and Optical

Drivers

56

Figure 23. Headstage prototype PCB, back view (3D).

As mentioned before, the prototype PCB has been designed to help with testing and debugging the headstage

circuits. It has one BNC connector that can be used to inject signals to the system with minimal added noise.

We have tried to use the electronic components that will be used for the final version of the headstage on the

prototype as much as possible.

5.2.1.1 EMC/EMI Considerations

In order to ensure the correct functionality of this prototype system, the following EMC/EMI techniques have

been used:

1) The power plane and the ground plane are divided into two sections. One section is dedicated to the

AFE while the other section is dedicated to all other subsystems of the headstage. This technique

ensures that the current return paths of the signals that are not analog will not share the

power/ground plane with the AFE. It should be noted that separating power/ground planes means

that the plane is divided in two sections that are connected to each other only at a small connection

point [97].

2) All digital high-speed traces have ground plane beneath them. This technique assures that the

electromagnetic emissions of the high-speed digital signals will be cancelled out by the

electromagnetic emissions of their return currents. As a result, the noise that will be picked up by

other conductors will be minimum.

3) All traces have power/ground planes. This results into minimum noise picked up by any conductor.

AFE (Channel 2)

57

4) Components with high CMRR/PSRR have been used. Also, power supply filters have been

incorporated. For more details please refer to Chapter 4.

The prototype PCB has been fully tested and satisfies all the design requirements. All the measured results

are presented in the results section in this chapter.

5.2.2 Final Headstage PCB

The final headstage PCB, being the removable part of the headstage system, has been design on a rigid-flex

PCB with 6 layers. However this PCB has not been fabricated yet. This PCB will carry the same parts that are

mounted on the prototype PCB (expect for the LEDs and the electrodes) but has the required form factor of the

final headstage. As mentioned in the introduction of this chapter, the final headstage PCB is fabricated using

the rigid-flex technology resulting in less occupied volume and better EMC/EMI robustness.

The final headstage PCB measures 65×20.9 mm2 when unrolled, has minimum trace width/spacing of 0.2 mm

and the minimum hole diameter is 0.2 mm. Table 11 shows the layer stacking of this PCB.

Table 11. Final headstage PCB layer stack.

Layer Type

1 Signal

2 Power

3 Signal

4 Signal

5 GND

6 Signal

The rationale behind this stacking is that most PCB manufacturers prefer to have signal layers as the inner

layers when fabricating rigid-flex PCBs.

This rigid-flex PCB has 3 rigid sections that are connected to each other using the flexible sections. This

design strategy eliminates the need for bulky board-to-board connectors. Each rigid section measures 15×21

mm2 and each flexible section measures 10×21 mm2.

When the rigid parts are folded together, as is the goal of designing this rigid-flex PCB, the headstages

measures less than 20×20 mm2 depending on the folding angle, as stated by the design requirements. Figure

24 shows the unrolled PCB in 2D view.

58

Figure 24. Final headstage PCB unrolled 2D view.

It can be seen that the three rigid parts are connected to each other using light blue and yellow traces. The

rigid sections are those populated with components while the flex sections contain only PCB traces. The

board-to-board connector is placed on the back of the rigid section at the right side of Figure 24. In Figure 25

and Figure 26, we can see the top view, bottom view and the unrolled final headstage PCB. More specifically,

on the right-hand side of Figure 25, the white board-to-board connector can be seen.

Figure 25. Left: final PCB headstage rolled (top view). Right: final PCB headstage rolled (bottom view).

Figure 26. Final PCB headstage unrolled.

59

While Figure 25 and Figure 26 show the removable part of the headstage system, Figure 27† and Figure 28

show the complete headstage system that will be mounted on the animal head with and without proper

packaging. The packaging might be required to protect the headstage from damages caused by animal

movements. It can be seen that optical fibers, along with electrodes, will be implemented inside the animal

brain.

Figure 27. Left: complete headstage system connected to the non-removable part. Right: cross-section view of the complete headstage

system.

Figure 28. Left: complete headstage system in package. Right: cross-section view of the complete headstage system in package.

5.2.2.1 EMC/EMI Considerations

The EMC/EMI considerations of the final headstage PCB are similar to those of the prototype headstage.

However, the final headstage PCB benefits from the inherent separation of different rigid sections.

Furthermore, since the rigid section dedicated to the AFE is separate from the other subsystems, more

EMC/EMI robustness is resulted.

† Figure 27 and Figure 28 were created by Doric Lenses Inc., Québec, Canada.

60

5.3 Measured Performance of the AFE

In this section, we present the measured performance of the analog front end (AFE). Three types of test have

been carried out to test the AFE. Using these three tests, almost all characteristics of the AFE can be

measured.

In the first type of test, the AFE differential inputs have been shorted out together and the noise characteristics

of the AFE have been measured. Attention has been paid to the quality of the short circuit as using long wires

will result in higher picked up noise. The input-referred noise can be calculated by dividing the noise at the

AFE output by the overall AFE gain.

In the second type of test, the AFE characteristics including the gain and the cut-off frequencies have been

measured using an Agilent 35670A dynamic signal analyzer.

Finally, in the third type of test, synthesized but realistic action potential signals with realistic amplitudes were

fed to the AFE and the output of the signal chain (AFE and headstage outputs) were measured.

It should be noted that all the measurements were carried out while the system was working i.e., the LEDs

were blinking and the radio was transmitting. In this scenario, all noise sources from other headstage

subsystems are present. It can be verified that the high-current LED signals, fast digital signals and the radio

RF signals do not affect the performance of the AFE.

Table 12 and Figure 29† provide the measurement results provided by the Agilent dynamic signal analyzer. It

can be seen that the input-referred noise of the AFE is low enough for action potentials of 10 microvolts to be

detected. Moreover, the AFE characteristics conform to those of the design requirements. The measurement

results of the synthetic action potentials will be presented in a later subsection in this chapter.

Table 12. Measured AFE characteristics.

Parameter Value

Gain 2851 V/V (69.09 dB)

Low Cut-Off Frequency 285 Hz

High Cut-Off Frequency 6580 Hz

Input-Referred Noise 2.1 µV(RMS)

Power Consumption 1 mA @ 3.0 V (3 mW)

† This graph has been prepared by Alireza Avakh Kisomi, M.Sc. student at Laval University, 2015.

61

Figure 29. Bode plot of the AFE transfer function.

5.4 Measured Performance of the Optical Stimulation Circuitry

The optical stimulation circuitry has been tested by measuring the voltage on the LED terminals and the

current that passes through the LED. The blue LED [87] has been used to carry out the tests. Table 13

summarizes the optical stimulation circuitry performance and Figure 30† shows the voltage on the LED

terminals. It can be verified that the rise-time/fall-time of the LED stimulation pattern is negligible compared to

the pulse length (i.e., when LED is on) and that the pattern is sharp. This fulfills the needs of the optogenetic

experiments having millisecond-scale stimulation patterns.

Table 13. Measured characteristics of the optical stimulation circuitry.

Parameter Value

LED Terminal Voltage when Active 3.275 V

LED Current when Active 150 mA

Stimulation (PWM) Frequency 1 Hz to 100 Hz

Duty Cycle 10%

Rise Time 1.6 µsec

Fall Time 5.1 µsec

LED input power 491.25 mW

† This screenshot from an oscilloscope has been made by Alireza Avakh Kisomi and Gabriel Gagnon-Turcotte, M.Sc.
students at Laval University, 2015.

62

Figure 30. LED voltage during stimulation.

5.5 Power Consumption Measurements

In this section, we present the measured power consumption of all headstage subsystems. The headstage has

been powered by a 110 mAh Li-ion battery (GSP061225D2C, Great Power Battery Co., LTD [100]). This

battery occupies a volume of 5.7×12×28 mm3 and has a maximum continuous discharge current of 200 mA.

We have chosen this battery as it provides a compromise between size and capacity. Table 14 and Figure 31†

provide the power consumption of different headstage subsystems (System LED is a small indication LED

used to show the system operation). In our measurements, we have set the stimulation duty cycle to its

maximum (10%).

Table 14. Power consumption of headstage subsystems.

Component Power Consumption When Active

AFE 0.415 mA (1.54 mW)

MCU 4.53 mA (16.8 mW)

Radio Transceiver 4.52 mA (16.7 mW)

Optical Stimulation Circuitry 4.08 mA (15.1 mW)

Stimulation LEDs 15.0 mA (55.5 mW)

System LED 2 mA (7.4 mW)

Total 30.804 mA (113.97 mW)

† This figure has been made by Gabriel Gagnon-Turcotte, M.Sc. student at Laval University, 2015.

63

Figure 31. Power consumption of headstage subsystems.

The total average current consumption of the headstage system is 30.804 mA which insures more than 3

hours of continuous lifetime when using a 110 mAh battery as is the case in the headstage system.

5.6 Headstage Outputs with Synthetic Action Potentials as Input

As mentioned in the AFE performance section, one of the tests that have been carried out was feeding the

AFE with synthetic but realistic action potentials (these signals have been obtained from the website of authors

of [32]). In this section, we will show the outputs of the signal chain when such synthetic signals are fed to the

AFE inputs.

Similar to previous tests, this test was carried out when the stimulation LEDs were blinking at their maximum

current. In order to realize synthetic action potentials, an arbitrary function generator (Tektronix AFG3101C

[101]) has been used. Since the minimum output voltage of this function generator is much larger than the

action potential amplitudes, a resistive divider has been used. The resistive divider has been placed in a very

close proximity of the AFE input so the picked up noise becomes minimum.

Figure 32† and Figure 33 show the many action potentials acquired by the headstage system. It can be verified

that the headstage system acquires signals with high fidelity. However, to test the signal acquisition fidelity in a

more quantitative manner, a test has been carried out which will be described later in this section. Figure 34

shows the acquired action potentials and a scaled version stimulation pattern (voltage across the 0.5 ohm

resistor in the optical stimulation circuitry) in the same graph. It can be seen that the stimulation pattern,

requiring high levels of current has no impact on the quality of the acquired signals.

† Figure 32, Figure 33 and Figure 34 were created by Gabriel Gagnon-Turcotte, M.Sc. student at Laval University, 2015.

64

Figure 32. Action potential train acquired by the headstage system.

Figure 33. Action potential train acquired by the headstage system (zoomed in).

In order to test the fidelity of the signal acquisition chain, we performed the following test: the 500 action

potentials on a 10-second synthetic neural signal were clustered before and after acquisition by the headstage

system. We expect that same results yield after the signal is passed through the headstage system. We got

the expected results i.e., passing the neural signal through the headstage signal chain has no effect on the

shapes of the action potentials. Figure 35† shows the clustered signals.

Figure 34. Action potential train acquired by the headstage system along with the stimulation pattern.

† This figure was created by Gabriel Gagnon-Turcotte, M.Sc. student at Laval University, 2015.

65

Figure 35. 500 detected, realigned and clustered spikes from a neuronal signal with maximum peak-to-peak voltage of 150 µV.

5.7 Effectiveness of the Power Supply Filter

In the previous sections, we presented the AFE and the complete signal chain outputs. In order to test the

effectiveness of the power supply filter discusses in Section 4.6.1, we carried out a test that was exactly the

same as the AFE/signal chain tests, but without the power supply filter. To do so, the output of the power

supply filter was shorted out to its input so the passive network was ineffective.

Figure 36 shows the fluctuations on battery voltage when the LEDs are blinking at maximum current. It can be

seen that there are very sharp and high-voltage (voltage changes of ~80 mV in ~400 nanoseconds) spikes on

the battery voltage. These spikes can easily affect the recorded signal as evident in Figure 37.

In Figure 37, it can be seen that the AFE is working normally. However, there are abrupt fluctuations in the

output. This proves that, as expected, the power supply filter removes the high-frequency fluctuations of the

power supply rails and is vital to the headstage operation as shown in Section 5.6.

66

Figure 36. Battery voltage fluctuations when LEDs are blinking at maximum current.

Figure 37. Headstage (signal chain) output without the power supply filter.

5.8 Conclusion

In this chapter, different measured performances of the realized headstage were presented. In this section, we

will review the headstage design goals introduced in Chapter 0 and will discuss that these goals have been

reached.

67

5.8.1 Two Optogenetic Stimulation and Recording Channels

In Section 5.4, the voltage waveforms across the LED terminals have been measured and depicted. It can be

seen that, when active, the LED voltage is 3.27. This voltage corresponds to a current of 150 mA in the LED

[87]. Also, it can be seen in the appendices that there are two LEDs in the designed headstage. Similar to the

optical stimulators, the realized headstage has two recording channels and their performance is presented in

Section 5.3.

5.8.2 Battery as the Power Source

As evident in sections 4.6 and 5.5, the headstage design is based on a 150 mAh lithium-ion battery. This

battery powers the whole system so no power cords are needed.

5.8.3 Optical Stimulation Patterns

In sections 4.5 and 5.4, the design and the measured performance of the optical stimulators were presented,

respectively. The high microcontroller clock frequency (compared to the stimulation patterns) and the flexible

timer peripherals in the microcontroller result in very accurate control over the generate PWM signals. This is

due to the fact that high clock frequency means high time resolution in the microcontroller timers. Figure 30 in

Section 5.4 shows the stimulation pattern with the highest frequency. Also, as explained in Section 4.5.1, there

is a mechanism available in the headstage that results in very short rise-/fall-times.

5.8.4 Weight and Size Requirements

As discussed in Section 5.2.2, the size of the final headstage rigid-flex PCB (when folded) is less than

20×20×20 mm3, hence less than the maximum size limit. However, since the final headstage PCB has not

been fabricated yet, it is not possible to weight it at this moment. It should be noted that from our previous

experience in [17], it is expected that the headstage weight will be satisfying.

69

Conclusion and Future Works

In this section, we will present the contributions of this work and possible future works that could improve the

quality of the wireless optogenetic headstage.

Contributions

The contribution of this work is a novel optogenetic research tool, which allows neuroscientists to perform

reliable optogenetic experiments on small rodents. This tool, being a wireless head-mounted device for small

animals, has the ability to carry out multi-channel optogenetic stimulation accompanied with simultaneous

neural recording. More specifically, this wireless optogenetic headstage is able to stimulate the brain cells

using two high-power LEDs and, simultaneously, acquire neural signals from two electrodes samples at 20

kSamples/sec. These features allow researchers to stimulate the brain cell at millisecond scales and

investigate the effects of the stimulation in real-time. The optical stimulation patterns created by the high-power

LEDs are PWM signals with sharp transients, which in turn adds to the accuracy and usefulness of this device.

Also, the analog front end that captures the neural signals has a high robustness against different kinds of

noise. Finally, the long life time, the wireless nature, the small size and the low weight of this device allow

researchers to carry out long experiments on freely-behaving rodents — a field of study that requires more and

more accurate devices to carry more and more sensitive experiments. According to a comprehensive literature

review at the time of the writing this thesis, and to the author’s knowledge, such optogenetic research tool

does not exist in the industry or in the scientific community.

The fact that this headstage fulfills all the requirements is due to experience that was acquired by the author

while working on the first version of this wireless headstage. The goal of the mentioned headstage was to have

a wireless device that would not need any wires or batteries to operate and would have two

electrophysiological recording channels accompanied by one optogenetic stimulation channel. The mentioned

optogenetic headstage was powered by an inductive wireless power-delivery link. Many subtle challenges

were faced while designing this device and the acquired experience allowed the author to work on the second

headstage with confidence.

During the course of this project, the following papers have been published:

1) R. Ameli, A. Mirbozorgi, J.-L. Néron, Y. LeChasseur and B. Gosselin, "A Wireless and

Batteryless Neural Headstage with Optical," in Engineering in Medicine and Biology Society

(EMBC), Osaka, 2013: This paper presents the first version of the wireless optotgenetic heastage

based on which the second headstage was designed. The first version has two recording channels

but only one optical stimulation channel and occupies a larger space than the second version. The

70

power source of this headstage is a wiresless power delivery link which can in some scenarios limit

the movability of the animal test subjects.

2) S. Mirbozorgi, R. Ameli, M. Sawan and B. Gosselin, "Towards a wireless optical stimulation

system for long term in-vivo experiments," in Engineering in Medicine and Biology Society

(EMBC), Chicago, 2014: This paper presents the design of a wireless power delivery chamber where

a small rodent can move with a headstage on its head. The headstage can receive its power from the

magnetic field generated by the chamber. A power delivery chamber similar to this chamber has been

used in the development of the first version of wireless batteryless optogenetic headstage.

3) G. Gagnon-Turcotte, C.-O. Dufresne Camaro, A. Avakh, R. Ameli and B. Gosselin, "A Wireless

Multichannel Optogenetic Headstage with on-the-Fly Spike Detection," in International

Symposium on Circuits and Systems, Lisbon, 2015: This paper presents the implementation of a

light-weigth spike detection algorithm on the wireless headstage that has been developed during this

project. The spike detection mechanism is based on the absolute value operator (see section 3.3.2)

and it is shown that using real-time spike detection results in reduced power consumption in the

wireless transmitter.

4) G. Gagnon-Turcotte, A. Avakh Kisomi, R. Ameli, C.-O. Dufresne Camaro, Y. LeChasseur, J.-L.

Neron, P. Brule Bareil, P. Fortier, C. Bories, Y. De Koninck, and B. Gosselin, "A Wireless

Optogenetic Headstage with Multichannel Electrophysiological Recording Capability",

Sensors, 2015 (Pending review): This paper presents the research work that has been done in this

thesis from the point of view of an electronic designer that aims to design a wireless optogenetic

headstage based on COTS components. Desirable characteristics of optogenetic wireless

headstages as well as different issues that might be encountered during the design phase and their

solutions are also presented in this paper.

Challenges

Similar to the first version of this wireless headstage, many design challenges were face during different

design and fabrication phases of this project. The realized wireless headstage consists of analog, digital, RF

and mixed-signal subsystems with different requirements that must work simultaneously together. The mixed-

signal nature of the headstage, its small form factor and the small power source powering the system, made

this project challenging in a multi-disciplinary manner.

The optical stimulation circuitry and the battery had to provide the stimulation LEDs with exactly 150 mA of

current. This requirement necessitated LED terminal voltages very close to the battery voltage, which in turn

71

required a feedback network with very low resistor values — close to the resistance of the PCB tracks. Also

the switching behavior of the LEDs resulted in high-amplitude conducted high-frequency and low-frequency

noise waveforms on the power rails of the other subsystems.

The problem of switching noise on the power rails manifested itself mostly in the operation of the analog front

end — an amplifier with very strict noise characteristics. In order to realize the analog front end with the

required noise characteristics, all noise sources must have been identified and taken care of. Four types of

noise were present in the analog front end circuitry: 1) the inherent noise of the first-stage amplifier, 2) the

common-mode noise at the inputs of the first-stage amplifier, 3) the low-frequency noise on the AFE power

rails and 4) the high-frequency noise of the AFE power rails.

The first and second noise sources, pertaining to the first-stage amplifier, were solved by using a low-noise

instrumentation amplifier with high CMRR. The low-frequency noise present on the AFE power rails was

partially reduced by a passive power supply filter and partially by the high PSRR of the instrumentation and

operation amplifiers. Finally, the high-frequency noise of the AFE power rails was filtered out by the power

supply filter. It should also be mentioned that the PCB design techniques used in the design of the headstage

were also effective in removing different types of noise. Besides the efforts that have been made in the AFE to

reduce noise, the use of low noise high-PSRR linear regulators in the power management unit helped with

noise problems too. The power management unit consists of two linear regulators with different outputs for

different subsystems.

Alongside with the hardware design of the headstage, the firmware design turned out to be challenging too.

More specifically, the use of a RTOS to increase the manageability of the code resulted in less CPU time for

the useful code. At the same time, the requirements of low power consumption meant lower CPU clock rates

so the firmware designer had to make sure that, with the added delays of the RTOS, the code would work

perfectly in real-time without losing any packets or data samples.

Last but not least, the PCB design of the final headstage required very careful component placement and even

floor planning ahead of the placement process as the PCB size had to be small in comparison with a rodent

body. Also, the small form factor of the PCB and the EMC/EMI issues that would exist without careful PCB

design made the design challenging above the challenges of the circuit design. To address all the EMC/ECI

issues, a six-layer flex-rigid PCB technology was adopted and allowed us to find a solution to all design

problems.

The headstage system, after design and fabrication, went through different types of test that covered the

functionality of the AFE, the optical stimulation circuitry, the MPU and the radio transceiver. In these tests the

72

correctness of the functionality of each subsystem was tested while all other subsystems were working. In

order to emulate the real-life signal acquisition, realistic action potential waveforms at realistic microvolt-scale

amplitudes were synthesized and fed to the system. The designed headstage passed all the tests.

Future Works

Similar to all other efforts in the field of engineering and science, this work can be improved. The foreseen

improvements can be mainly categorized as 1) animal tests, 2) improvement in the hardware and 3) adding

signal processing capability to the headstage.

Animal tests: all the tests, carried out on this research tool, have been done through emulated neural

recording scenarios i.e., a signal generator with realistic outputs has been used instead of placing the

electrodes in an animal brain. Carrying out tests on real animals results in more insight into the quality of signal

acquisition. The animal tests should be carried out using the prototype system as well as the final headstage

system.

Improvements in the hardware: in this project, the hardware of all subsystems was designed in a way that

would fulfill all the design requirements perfectly. This practice might have resulted in overengineering in some

areas. The subsystem that is most likely subject to such overengineering is probably the analog front end as

relatively expensive and low-noise components were used. The design of the AFE can probably be less

expensive/robust while still fulfilling all the requirements. Also in the PMU, it might be possible to use less

expensive linear regulators that have inferior noise characteristics but are still fully functional in the headstage.

Adding signal processing capability to the headstage: Chapter 0 discussed different neural signal

processing algorithms suitable for neural recording embedded systems. The possibility of implementing these

algorithms in the realized system must be investigated in the current headstage. It is expected that by

increasing the clock frequency of the MPU, low-overhead spike detection algorithms can be implemented on

this system. Besides, by using more powerful processors and/or FPGAs, many different signal processing

algorithms including spike detection, spike compression and spike sorting can be implemented in real-time in

the headstage. Design and implementation of such algorithms require careful fixed-point simulation using

banks of neural signals. An example of implementation of such algorithms is presented in [83].

73

References

[1] H. Blumenfeld, Neuroanatomy Through Clinical Cases, Sinauer Associates Inc, 2010.

[2] B. J. Sadock and V. A. Sadock, Kaplan and Sadock's Synopsis of Psychiatry: Behavioral

Sciences/Clinical Psychiatry, 10 ed., Lippincott Williams & Wilkins, 2007.

[3] B. Gosselin, A. Ayoub, J.-F. Roy, M. Sawan, F. Lepore, A. Chaudhuri and D. Guitton, "A Mixed-Signal

Multichip Neural Recording Interface With Bandwidth Reduction," IEEE Transactions on Biomedical

Circuits and Systems, vol. 3, pp. 129,141, 2009.

[4] B. Gosselin, "Recent Advances in Neural Recording Microsystems," Sensors, vol. 11, no. 5, pp. 4572-

4597, 2011.

[5] A. Sharma, L. Rieth, P. Tathireddy, R. Harrison and F. Solzbacher, "Long term in vitro stability of fully

integrated wireless neural interfaces based on Utah slant electrode array," Applied Physics Letters, vol.

96, no. 7, pp. 073702,073702-3, 2010.

[6] S. D. Coates, Neural Interfacing: Neural Interfacing: Forging the Human-Machine Connection (Synthesis

Lectures on Biomedical Engineering), 1st ed., Morgan and Claypool Publishers, 2008.

[7] "Cochlear Implants," [Online]. Available: http://www.canadianaudiology.ca/consumer/cochlear-

implants.html. [Accessed 07 10 2014].

[8] "Visual Prosthesis (Retinal Implant & Biohybrid Retinal Implant)," [Online]. Available:

http://www.io.mei.titech.ac.jp/research/retina/. [Accessed 07 10 2014].

[9] "The Boston Retinal Implant Project," [Online]. Available: http://www.bostonretinalimplant.org/. [Accessed

07 10 204].

[10] R. Kwok, "Neuroprosthetics: Once more, with feeling," Nature, vol. 497, no. 7448, 2013.

[11] L. R. Hochberg, D. Bacher, B. Jarosiewicz, N. Y. Masse, J. D. Simeral, J. Vogel, S. Haddadin, J. Liu, S.

S. Cash, P. v. d. Smagt and J. P. Donoghue, "Reach and grasp by people with tetraplegia using a

neurally controlled robotic arm," Nature, vol. 485, no. 7398, p. 372–375, 2012.

[12] A. K. Senapati, P. J. Huntington, S. C. LaGraize, H. D. Wilson, P. N. Fuchs and Y. B. Peng, "Electrical

stimulation of the primary somatosensory cortex inhibits spinal," Brain Research, vol. 1057, no. 1-2, p.

134–140, 2005.

[13] A. R. Houweling and M. Brech, "Behavioural report of single neuron stimulation in somatosensory

cortex," Nature, vol. 451, pp. 65-68, 2008.

[14] M. Halpern and J. Fallon, "Current Waveforms for Neural Stimulation-Charge Delivery With Reduced

Maximum Electrode Voltage," IEEE Transactions on Biomedical Engineering, vol. 57, no. 9, pp.

2304,2312, 2010.

[15] E. S. Boyden, F. Zhang, E. Bamberg, G. Nagel and K. Deisseroth, "Millisecond-timescale, genetically

targeted optical control of neural activity," Nat. Neurosci., pp. 1263 - 1268, 2005.

[16] P. Degenaar, B. McGovern, R. Berlinguer-Palmini, N. Vysokov, N. Grossman, V. Pohrer, E. Drakakis

and M. Neil, "Individually addressable optoelectronic arrays for optogenetic neural stimulation," in

Biomedical Circuits and Systems Conference (BioCAS), Paphos, 2010.

[17] R. Ameli, A. Mirbozorgi, J.-L. Néron, Y. LeChasseur and B. Gosselin, "A Wireless and Batteryless Neural

74

Headstage with Optical," in 35th annual Conf. of EMBC, 2013, pp. 5662-5665.

[18] D. Huber, L. Petreanu, N. Ghitani, S. Ranade, T. Hromadka and S. K. MainenZach, "Sparse optical

microstimulation in barrel cortex drives learned behaviour in freely moving mice," Nature Letters, vol.

451, pp. 61-64, 2008.

[19] H. E. Covington, M. K. Lobo, I. Maze, V. Vialou, H. J. M., S. Zaman, Q. LaPlant, E. Mouzon, S. Ghose,

A. C. Tamminga, R. L. Neve, K. Deisseroth and E. J. Nestler, "Antidepressant Effect of Optogenetic

Stimulation of the Medial Prefrontal Cortex," Journal of Neuroscience, vol. 30, no. 48, p. 16082–16090,

2010.

[20] V. Gradinaru, M. Mogri, K. R. Thompson, J. M. Henderson and K. Deisseroth, "Optical deconstruction of

parkinsonian neural circuitry," Science, vol. 324, no. 5925, pp. 354-359, 2009.

[21] "Optogenetics and Behavior," [Online]. Available:

http://www.openoptogenetics.org/index.php?title=Journal_Articles#Optogenetics_and_Behavior.

[22] "Optogenetics: Method of the Year 2010," Nature Methods, 2010.

[23] A. Fiala, A. Suska and O. M. Schlüter, "Optogenetic approaches in neuroscience," Current Biology, vol.

20, no. 20, p. R897–R903, 2010.

[24] S. K. Arfin, M. A. Long, M. S. Fee and R. Sarpeshkar, "Wireless Neural Stimulation in Freely Behaving

Small Animals," J. Neurophysiol., 2009.

[25] B. Wanga, J. Zhouc, P. Carneya and H. Jiang, "A novel detachable head-mounted device for

simultaneous EEG and photoacoustic monitoring of epilepsy in freely moving rats," Neuroscience

Research, 2014.

[26] Q. Tang, M. Brecht and A. Burgalossi, "Juxtacellular recording and morphological identification of single

neurons in freely moving rats," Nature Protocols, vol. 9, no. 10, p. 2369–2381, 2014.

[27] M. S. Chae, Z. Yang, M. R. Yuce, L. Hoang and W. Liu, "A 128-Channel 6 mW Wireless Neural

Recording IC With Spike Feature Extraction and UWB Transmitter," IEEE Transactions on Neural

Systems & Rehabilitation Engineering, vol. 17, no. 4, pp. 312-321, 2009.

[28] B. C. George, "The Neuron," [Online]. Available: http://webspace.ship.edu/cgboer/theneuron.html.

[29] T. H. Bullock and G. A. Horridge, Structure and Function in the Nervous Systems of Invertebrates, 1965.

[30] "Nervous Energy," [Online]. Available: http://www.helcohi.com/sse/body/nervous.html.

[31] "Lights, Camera, Action Potential," [Online]. Available: https://faculty.washington.edu/chudler/ap.html.

[32] J. Martinez, C. Pedreira, M. J. Ison and R. Quian Quiroga, "Realistic simulation of extracellular

recordings," Journal of Neuroscience Methods, vol. 184, no. 2, p. 285–293, 2009.

[33] R. Quian Quiroga, Z. Nadasdy and Y. Ben-Shaul, "Unsupervised Spike Detection and Sorting with

Wavelets and Superparamagnetic Clustering," Neural Computation, vol. 16, no. 8, pp. 1661-1687, 2004.

[34] S. Shahid, J. Walker and L. S. Smith, "A New Spike Detection Algorithm for Extracellular Neural

Recordings," IEEE Transactions on Biomedical Engineering, vol. 57, no. 4, pp. 853-866, 2010.

[35] D. A. Henze, Z. Borhegyi, J. Csicsvari, A. Mamiya, K. D. Harris and G. Buzsáki, "Intracellular Features

Predicted by Extracellular Recordings in the Hippocampus In Vivo," Journal of Neurophysiology, vol. 84,

no. 1, pp. 390-400, 2000.

[36] S. Gibson, J. W. Judy and D. Markovic, "Technology-Aware Algorithm Design for Neural Spike

Detection, Feature Extraction, and Dimensionality Reduction," IEEE Transactions on Neural Systems &

75

Rehabilitation Engineering, vol. 18, no. 5, pp. 469-478, 2010.

[37] L. A. Camuñas-Mesa and R. Q. Quiroga, "A detailed and fast model of extracellular recordings," Neural

Computation, vol. 25, no. 5, pp. 1191-1212, 2013.

[38] P. T. Thorbergsson, M. Garwicz, J. Schouenborg and A. J. Johansson, "Computationally efficient

simulation of extracellular recordings with multielectrode arrays," Computational Neuroscience, vol. 211,

no. 1, p. 133–144, 2012.

[39] V. Karkare, S. Gibson and D. Markovic, "A 130-W, 64-Channel Neural Spike-Sorting DSP Chip," IEEE

Journal of Solid-State Circuits, vol. 46, no. 5, pp. 1214-1222, 2011.

[40] B. Yu, T. Mak, X. Li, F. Xia, A. Yakovlev, Y. Sun and C.-S. Poon, "Real-Time FPGA-Based Multichannel

Spike Sorting Using Hebbian Eigenfilters," IEEE Journal on Emerging and Selected Topics in Circuits

and Systems, vol. 1, no. 4, pp. 502-515, 2011.

[41] R. Harrison, P. Watkins, R. Kier, R. Lovejoy, D. Black, B. Greger and F. Solzbacher, "A Low-Power

Integrated Circuit for a Wireless 100-Electrode Neural Recording System," Solid-State Circuits, IEEE

Journal of, vol. 42, no. 1, pp. 123-133, 2007.

[42] R. Chandra and L. M. Optican, "Detection, classification, and superposition resolution of action potentials

in multiunit single-channel recordings by an on-line real-time neural network," IEEE Transactions on

Biomedical Engineering, vol. 44, no. 5, p. 403–412, 1997.

[43] V. J. Prochazka and H. H. Kornhuber, "On-line multi-unit sorting with resolution of superposition

potentials," Electroencephalography and Clinical Neurophysiology, vol. 34, no. 1, p. 91–93, 1973.

[44] Y. Perelman and R. Ginosar, "An Integrated System for Multichannel Neuronal Recording With

Spike/LFP Separation, Integrated A/D Conversion and Threshold Detection," Biomedical Engineering,

IEEE Transactions on, vol. 54, no. 1, pp. 130-137, 2007.

[45] B. Gosselin and M. Sawan, "An Ultra Low-Power CMOS Automatic Action Potential Detector," IEEE

Transactions on Neural Systems & Rehabilitation Engineering, vol. 17, no. 4, pp. 246-353, 2009.

[46] H. Gao, R. M. Walker, P. Nuyujukian, K. A. Makinwa, K. V. Shenoy, B. Murmann and T. H. Meng,

"HermesE: A 96-Channel Full Data Rate Direct Neural Interface in 0.13 mCMOS," IEEE Journal of Solid-

State Circuits, vol. 47, no. 4, pp. 1043-1055, 2012.

[47] K. H. Kim and S. J. Kim, "A Wavelet-Based Method for Action Potential Detection From Extracellular

Neural Signal Recording With Low Signal-to-Noise Ratio," IEEE Transactions on Biomedical

Engineering, vol. 50, no. 8, pp. 999-1011, 2003.

[48] R. R. Harrison, R. J. Kier, C. A. Chestek, V. Gilja, P. Nuyujukian, S. Ryu, B. Greger, F. Solzbacher and

K. V. Shenoy, "Wireless Neural Recording With Single Low-Power Integrated Circuit," IEEE Transactions

on Neural Systems & Rehabilitation Engineering, vol. 17, no. 4, pp. 322-329, 2009.

[49] R. H. Olsson and K. D. Wise, "A Three-Dimensional Neural Recording Microsystem With Implantable

Data Compression Circuitry," IEEE Journal of Solid-State Circuits, vol. 40, no. 12, pp. 2796-2804, 2005.

[50] P. Hegemann and S. Sigrist, Optogenetics (Dahlem Workshop Reports), Walter de Gruyter, 2013.

[51] "What is Optogenetics?," [Online]. Available: http://optogenetics.weebly.com/what-is-it.html.

[52] S. Zhao, C. Cunha, F. Zhang, Q. Liu, B. Gloss, K. Deisseroth, G. J. Augustine and G. Feng, "Improved

expression of halorhodopsin for light-induced silencing of neuronal activity," Brain Cell Biol, vol. 36, no.

1-4, pp. 141-154, 2008.

[53] A. M. Sodagar, G. E. Perlin, Y. Yao, K. Najafi and K. Wise, "An Implantable 64-Channel Wireless

76

Microsystem for Single-Unit Neural Recording," Solid-State Circuits, IEEE Journal of, vol. 44, no. 9, pp.

2591-2604, 2009.

[54] D. S. Schregardus, A. W. Pieneman, A. Ter Maat, R. F. Jansen, B. J. F. and M. L. Gahr, "A lightweight

telemetry system for recording neuronal activity in freely behaving small animals," Journal of

Neuroscience Methods, vol. 155, no. 1, pp. 62-71, 2006.

[55] C.-N. Chien and F.-S. Jaw, "Miniature telemetry system for the recording of action and field potentials,"

Journal of Neuroscience Methods, vol. 147, no. 1, pp. 68-73, 2005.

[56] S. Roy and X. Wang, "Wireless multi-channel single unit recording in freely moving and vocalizing

primates," Journal of Neuroscience Methods, vol. 203, no. 1, pp. 28-40, 2012.

[57] X. Ye, P. Wang, J. Liu, S. Zhang, J. Jiang, Q. Wang, W. Chen and X. Zheng, "A portable telemetry

system for brain stimulation and neuronal activity recording in freely behaving small animals," Journal of

Neuroscience Methods, vol. 174, no. 2, pp. 186-193, 2008.

[58] R. E. Hampson, V. Collins and S. A. Deadwyler, "A wireless recording system that utilizes Bluetooth

technology to transmit neural activity in freely moving animals," Journal of Neuroscience Methods, vol.

182, no. 2, pp. 195-204, 2009.

[59] K. Y. Kwon, B. Sirowatka, A. Weber and W. Li, "Opto-uECoG Array: A Hybrid Neural Interface With

Transparent uECoG Electrode Array and Integrated LEDs for Optogenetics," IEEE Transactions on

Biomedical Circuits and Systems, vol. 7, no. 5, pp. 593-600, 2013.

[60] K. Y. Kwon, H.-M. Lee, M. Ghovanloo, A. Weber and W. Li, "A wireless slanted optrode array with

integrated micro leds for optogenetics," in Micro Electro Mechanical Systems (MEMS), San Francisco,

2014.

[61] H.-M. Lee, K.-Y. Kwon, W. Li and M. Ghovanloo, "A Wireless Implantable Switched-Capacitor Based

Optogenetic Stimulating System," in Engineering in Medicine and Biology Society (EMBC), Chicago,

2014.

[62] M. Chamanzar, M. Borysov, M. Maharbiz and T. Blanche, "High-Density Optrodes for Multi-Scale

Electrophysiology and Optogenetic Stimulation," in Engineering in Medicine and Biology Society

(EMBC), Chicago, 2014.

[63] C. T. Wentz, J. G. Bernstein, P. Monahan, A. Guerra, A. Rodriguez and E. S. Boyden, "A wirelessly

powered and controlled device for optical neural control of freely-behaving animals," Journal of Neural

Engineering, vol. 8, no. 4, 2011.

[64] "Triangle BioSystems," [Online]. Available: http://www.trianglebiosystems.com/.

[65] "NeuroNexus," [Online]. Available: http://www.neuronexus.com/products/neural-probes/optogenetics/12-

neuroscience-products.

[66] "Plexon," [Online]. Available: http://www.plexon.com/products/plexon-solutions-neuroscience-research.

[67] J. Mavoori, A. Jackson, C. Diorio and E. Fetz, "An autonomous implantable computer for neural

recording and stimulation in unrestrained primates," Journal of Neuroscience Methods, vol. 148, no. 1,

pp. 71-77, 2005.

[68] T. Ativanichayaphong, J. W. He, C. E. Hagains, Y. B. Peng and J.-C. Chiao, "A combined wireless

neural stimulating and recording system for study of pain processing," J. Neurosci. Methods, vol. 170,

no. 1, pp. 25-34, 2008.

[69] H. Miranda, V. Gilja, C. A. Chestek, K. Shenoy and T. H. Meng, "HermesD: A High-Rate Long-Range

77

Wireless Transmission System for Simultaneous Multichannel Neural Recording Applications," IEEE

Transactions on Biomedical Circuits and Systems, vol. 4, no. 3, pp. 181-191, 2010.

[70] S. P. Gibson, “Neural Spike Sorting in Hardware: From Theory to Practice,” Ph.D. dissertation, Dept.

Elect. Eng., University of California, Los Angeles, 2012.

[71] B. Gosselin, M. Sawan and E. Kerherve, "Linear-Phase Delay Filters for Ultra-Low-Power Signal

Processing in Neural Recording Implants," IEEE Transactions on Biomedical Circuits and Systems, vol.

4, no. 3, pp. 171-180, 2010.

[72] J. Kaiser, "Some useful properties of Teager's energy operators," in Acoustics, Speech, and Signal

Processing, Minneapolis, 1993.

[73] I. Obeid and P. Wolf, "Evaluation of spike-detection algorithms fora brain-machine interface application,"

IEEE Transactions on Biomedical Engineering, vol. 51, no. 6, pp. 905-911, 2004.

[74] J. Choi and T. Kim, "Neural action potential detector using multi-resolution TEO," Electronics Letters, vol.

38, no. 12, pp. 541-543, 2002.

[75] "ROC curve analysis in MedCalc," [Online]. Available: http://www.medcalc.org/manual/roc-curves.php.

[76] M. Abeles and M. J. Goldstein, "Multispike train analysis," Proc. IEEE, vol. 65, no. 5, pp. 762-773, 1977.

[77] H. W. Lilliefors, "On the Kolmogorov-Smirnov Test for Normality with Mean and Variance Unknown,"

Journal of the American Statistical Association, vol. 62, no. 318, p. 399–402, 1967.

[78] J. A. Hartigan and P. M. Hartigan, "The Dip Test of Unimodality," The Annals of Statistics, vol. 13, no. 1,

p. 70–84, 1985.

[79] J. MacQueen, "Some methods for classification and analysis of multivariate observation," in Proceedings

of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, 1967.

[80] C. Zhang, X. Zhang, M. Q. Zhang and Y. Li, "Neighbor number, valley seeking and clustering," Pattern

Recognition Letters, vol. 28, no. 2, p. 173–180, 2007.

[81] M. Blatt, S. Wiseman and E. Domany, "Superparamagnetic clustering of data," Phys Rev Lett., vol. 76,

no. 18, pp. 3251-3254, 1996.

[82] U. Rutishauser, E. M. Schuman and A. N. Mamelak, "Online detection and sorting of extracellularly

recorded action potentials in human medial temporal lobe recordings, in vivo," Journal of Neuroscience

Methods, vol. 154, no. 1-2, p. 204–224, 2006.

[83] G. Gagnon-Turcotte, C.-O. Dufresne Camaro, A. Avakh, R. Ameli and B. Gosselin, "A Wireless

Multichannel Optogenetic Headstage with on-the-Fly Spike Detection," in International Symposium on

Circuits and Systems, Lisbon, 2015.

[84] C. Chestek, V. Gilja, P. Nuyujukian, S. Ryu, K. Shenoy and R. Kier, "HermesC: RF wireless low-power

neural recording system for freely behaving primates," IEEE Transactions on Neural Systems and

Rehabilitation Engineering, vol. 17, no. 4, pp. 1752-1755, 2008.

[85] S. Mirbozorgi, R. Ameli, M. Sawan and B. Gosselin, "Towards a wireless optical stimulation system for

long term in-vivo experiments," in 36th annual Conf. of EMBC, Chicago, 2014, pp. 2024-2027.

[86] "Body weight information," [Online]. Available: http://jaxmice.jax.org/support/weight/000664.html.

[87] "LB G6SP," [Online]. Available: http://www.osram-os.com/osram_os/en/products/product-catalog/led-

light-emitting-diodes/advanced-power-topled/lb-g6sp/index.jsp.

[88] "LY G6SP," [Online]. Available: http://www.osram-os.com/osram_os/en/products/product-catalog/led-

78

light-emitting-diodes/advanced-power-topled/ly-g6sp/index.jsp.

[89] "OSRAM Opto Semiconductor," [Online]. Available: http://www.osram-os.com/osram_os/en/.

[90] "INA118," [Online]. Available: http://www.ti.com/product/ina118.

[91] C. Kitchin and L. Counts, A Designer’s Guide to Instrumentation Amplifiers, Analog Devices, 2006.

[92] "LM4140," [Online]. Available: http://www.ti.com/product/lm4140.

[93] K. Kundert, "Power Supply Noise Reduction," [Online]. Available: http://www.designers-

guide.org/design/bypassing.pdf.

[94] "MSP430F5328," [Online]. Available: http://www.ti.com/product/msp430f5328.

[95] "FunkOS," [Online]. Available: http://funkos.sourceforge.net/.

[96] "nRF24L01+," [Online]. Available: https://www.nordicsemi.com/eng/Products/2.4GHz-RF/nRF24L01P.

[97] H. W. Ott, Electromagnetic Compatibility Engineering, Wiley , 2009.

[98] "Design Considerations for Mixed-Signal," [Online]. Available: http://www.cn-

william.com/uploadfile/Documents/e2v/Application%20Note/Design%20Considerations%20for%20Mixed

-Signal.pdf.

[99] "Molex SlimStack Part Number: 53748-0208," [Online]. Available:

http://www.molex.com/molex/products/datasheet.jsp?part=active/0537480208_PCB_HEADERS.xml.

[100] "Polymer Lithium Ion Battery - 110mAh," [Online]. Available: https://www.sparkfun.com/products/731.

[101] "Tektronix AFG3101C," [Online]. Available: http://www.testequipmentdepot.com/tektronix/function-

generators/afg3101c.htm.

79

Appendix A. Headstage Prototype Firmware Code

Main Program File (main.c)

The code listing bellow and in the next appendix (page 105) has been created by Gabriel Gagnon-Turcotte

based on a code written by Reza Ameli.

#include <msp430.h>
#include <stdio.h>
#include "F5529_periph_lib.h"
#include "nRF.h"
#include "driverlib.h"
#include "types.h"
#include "rtos_include.h"
#include "rtos_declaration.h"

// RX and TX buffers. RX is filled by DMA
INT ADC_buffer[ADC_BUFFER_LENGTH];
static BYTE RX_data_buffer[nRF_packet_len];
static INT *ADC_buffer_ptr;
static BYTE UTILS_Packet[nRF_packet_len];

// flags
static BYTE SendTestData_flag;
static ULONG TotalPacketsToSend;
static BIT_QUANTIFICATION quantification;

BYTE dma0_second_buffer = 0;
BYTE dma1_second_buffer = 0;

//Functions definition
void init_system(void);
void send_packet(SEND_PACKET_TYPES type);

//Main
int main(void)
{
 init_system();

 LED_off(LED_GREEN + LED_BLUE);

 __delay_cycles(250000);

 nRF_set_STANDBY1_modeRX(); // The transceiver start in stand-by mode

 //---
 // miscellaneous
 //---
 LED_on(LED_GREEN); // IDLE state

 // enable All Interrupts
 __bis_SR_register(GIE);

 //---
 //-----RTOS INIT-----
 //---
 Task_Init();

 // Create the application task
 Task_CreateTask(&(stNullTask.stTask), // Pointer to the task
 "null_task", // Task name
 (void*)(stNullTask.ausStack), // Task stack pointer
 128, // Task Size
 0, // Task Priority

80

 (TASK_FUNC)nullTask); // Task function pointer

 Task_CreateTask(&(stDataTransmissionTask.stTask), // Pointer to the task
 "trans_task", // Task name
 (void*)(stDataTransmissionTask.ausStack), // Task stack pointer
 512, // Task Size
 2, // Task Priority
 (TASK_FUNC)dataTransmissionTask); // Task function pointer

 Task_CreateTask(&(stReceptionTask.stTask), // Pointer to the task
 "idle_task", // Task name
 (void*)(stReceptionTask.ausStack), // Task stack pointer
 512, // Task Size
 3, // Task Priority
 (TASK_FUNC)receptionTask); // Task function pointer

 Task_CreateTask(&(stToogleReceptionStandbyTask.stTask), // Pointer to the task
 "toog_task", // Task name
 (void*)(stToogleReceptionStandbyTask.ausStack), // Task stack pointer
 512, // Task Size
 4, // Task Priority
 (TASK_FUNC)toogleReceptionStandbyTask); // Task function pointer

 Semaphore_Init(&stReceptionSemaphore);
 Semaphore_Init(&stDataTransmissionSemaphore);
 Semaphore_Init(&nRF_IRQ_Semaphore);
 Semaphore_Init(&stTransmitTXBufferSemaphore);
 Semaphore_Init(&stDMASemaphore);

 stReceptionSemaphore.usSem = 1; // Ok to enter IDLE state at starting
 stDataTransmissionSemaphore.usMax = 10;

 Task_Add((TASK_STRUCT*)&stNullTask);
 Task_Add((TASK_STRUCT*)&stReceptionTask);
 Task_Add((TASK_STRUCT*)&stDataTransmissionTask);
 Task_Add((TASK_STRUCT*)&stToogleReceptionStandbyTask);

 Task_Start((TASK_STRUCT*)&stNullTask); // Start the tasks
 Task_Start((TASK_STRUCT*)&stReceptionTask); // Start the tasks
 Task_Start((TASK_STRUCT*)&stDataTransmissionTask); // Start the tasks
 Task_Stop((TASK_STRUCT*)&stToogleReceptionStandbyTask); // Stop the tasks

 KernelSWI_Config();
 KernelSWI_Start();
 KernelTimer_Config();
 KernelTimer_Start();

 //---
 //-----END RTOS INIT-----
 //---

 /*Utils packet header setup*/
 /*Utils packet header*/
 UTILS_Packet[0] = PACKET_UTILS_HEADER_BYTE;
 UTILS_Packet[1] = PACKET_UTILS_HEADER_BYTE;
 UTILS_Packet[2] = PACKET_UTILS_HEADER_BYTE;
 UTILS_Packet[3] = PACKET_UTILS_HEADER_BYTE;
 /*Utils packet tail*/
 UTILS_Packet[28] = PACKET_UTILS_TAIL_BYTE;
 UTILS_Packet[29] = PACKET_UTILS_TAIL_BYTE;
 UTILS_Packet[30] = PACKET_UTILS_TAIL_BYTE;
 UTILS_Packet[31] = PACKET_UTILS_TAIL_BYTE;

 Task_StartTasks(); // Start the RTOS scheduler
}

//---
//-----RTOS TASKS DEFINITION-----

81

//---
void receptionTask(GENERAL_TASK_STRUCT *pstThis_)
{
 UINT PWM_Freq_Divider;
 BYTE PWM_DutyCycle;
 BYTE k;
 while(1)
 {
 Semaphore_Pend(&stReceptionSemaphore, TIME_FOREVER); //Wait to enter reception
the state
 Task_Start((TASK_STRUCT*)&stToogleReceptionStandbyTask); //Start the toggeling
transceiver task
 Semaphore_Pend(&nRF_IRQ_Semaphore, TIME_FOREVER); //Wait for IRQ from the
transceiver
 Task_Stop(&(stToogleReceptionStandbyTask.stTask)); //Stop the toggeling
transceiver task
 nRF_download_RX_payload(RX_data_buffer); // Download the payload
from transceiver
 if(RX_data_buffer[0] == PACKET_ADC_REQUEST)
 {
 __bic_SR_register(GIE); // stop all interrupts
 nRF_ENTER_TRANSMIT_MODE;
 TotalPacketsToSend = ((ULONG)RX_data_buffer[4] << 24) +
 ((ULONG)RX_data_buffer[3] << 16) +
 ((ULONG)RX_data_buffer[2] << 8) +
 ((ULONG)RX_data_buffer[1]);
 // the PWM frequency will be 2MHz divided by this 16-bit value
 PWM_Freq_Divider = ((UINT)RX_data_buffer[6] << 8) + ((UINT)RX_data_buffer[5]);
 // 8-bit number indicating the PWM duty cycle
 PWM_DutyCycle = RX_data_buffer[7];
 if((RX_data_buffer[8] >> 5) & 0x01)
 quantification = BITS_12;
 else
 quantification = BITS_8;
 ADC_setup(quantification);
 // this flag indicates if a know pattern (saw-tooth) should be sent back instead of the real
captured data
 if(RX_data_buffer[8] & 0x0F)
 {
 SendTestData_flag = TRUE;
 for(k = 0 ;k < nRF_packet_len; k++) // dummy data buffer pattern
 RX_data_buffer[k] = k;
 }
 else
 {
 SendTestData_flag = FALSE;
 }
 // Choose the stimulation LED
 if(RX_data_buffer[9] == 1)
 {
 LED1_PWM_setup(PWM_Freq_Divider);
 LED1_PWM_start((UINT)(PWM_DutyCycle*((FLOAT)PWM_Freq_Divider/100)));
 }
 else if (RX_data_buffer[9] == 2)
 {
 LED2_PWM_setup(PWM_Freq_Divider);
 LED2_PWM_start((UINT)(PWM_DutyCycle*((FLOAT)PWM_Freq_Divider/100)));
 }
 LED_off(LED_GREEN);
 LED_on(LED_BLUE); // DATA
TRANSMISSION state
 __bis_SR_register(GIE); // Re-enable
all interrupts
 Task_Sleep_5MS(8); // Wait for
the base station to go to receiving mode
 Semaphore_Post(&stDataTransmissionSemaphore); // Go to
transmission state
 }

82

 else
 {
 Semaphore_Post(&stReceptionSemaphore); // Still in reception state
 }
 }
}

void dataTransmissionTask(GENERAL_TASK_STRUCT *pstThis_)
{
 volatile ULONG NumberofSentPackets;
 while(1)
 {
 Semaphore_Pend(&stDataTransmissionSemaphore, TIME_FOREVER); // Wait to enter
transmission state
 KernelTimer_Stop();
 reset_DMA();
 ADC_timer_start(); // Start the
sampling
 Semaphore_Pend(&stTransmitTXBufferSemaphore, TIME_FOREVER); //Wait for the
buffer to be ready.
 Semaphore_Pend(&stTransmitTXBufferSemaphore, TIME_FOREVER); //Wait for the
buffer to be ready.
 for(NumberofSentPackets = 1; NumberofSentPackets <= TotalPacketsToSend; NumberofSentPackets++)
 {
 Semaphore_Pend(&stTransmitTXBufferSemaphore, TIME_FOREVER); //Wait for the
buffer to be ready.
 if(SendTestData_flag)
 send_packet(SEND_TEST_PACKET); // transmit test
data (saw-tooth pattern)
 else
 send_packet(SEND_ADC_PACKET); // Send ACD raw
data packet
 if(NumberofSentPackets == TotalPacketsToSend) // Is it the last
packet?
 {
 ADC_timer_stop();
 wait_for_empty_tx_fifo(); // Wait until all
packets are sents
 nRF_CE_low;
 __bic_SR_register(GIE); // stop all
interrupts
 nRF_ENTER_RECEIVE_MODE;
 LED1_PWM_stop();
 LED2_PWM_stop();
 LED_on(LED_GREEN);
 LED_off(LED_BLUE); // IDLE state
 __bis_SR_register(GIE); // reactivate all
interrupts
 }
 }
 KernelTimer_Start();
 Semaphore_Post(&stReceptionSemaphore); // Go to
reception state
 }
}

void toogleReceptionStandbyTask(GENERAL_TASK_STRUCT *pstThis_)
{
 while(1)
 {
 nRF_ENTER_TRANSMIT_MODE;
 send_packet(SEND_READY_TO_RECEIVE_PACKET); // Notify the
base station that we enter receive mode
 wait_for_empty_tx_fifo(); // Wait until the
packet is sent
 nRF_ENTER_RECEIVE_MODE; // Start the receive
mode for 50ms
 Task_Sleep_5MS(15);

83

 nRF_set_STANDBY1_modeRX(); // Put the
receiver in stand-by mode for 450ms
 Task_Sleep_5MS(95);
 }
}

/*
 * Task designed to save energy when nothing usefull has to be done by other tasks
 */
void nullTask(LIGHT_TASK_STRUCT *pstThis_)
{
 while(1)
 {
 __bis_SR_register(LPM0_bits + GIE); // Enter LPM0, int enabled
 }
}

//---
//-----END RTOS TASKS DEFINITION-----
//---

//---
//-----UTILITARY FUNCTIONS DEFINITION-----
//---

void send_packet(SEND_PACKET_TYPES type)
{
 static INT packet_send_counter_counter = 0;
 wait_for_place_in_tx_fifo(); //Wait for place in FIFO
 packet_send_counter_counter++;
 switch(type)
 {
 case SEND_ADC_PACKET:
 if(quantification == BITS_8)
 nRF_upload_TX_payload_adc_8(ADC_buffer_ptr);
 else
 {
 nRF_upload_TX_payload_adc_12(ADC_buffer_ptr);
 }
 break;
 case SEND_TEST_PACKET:
 nRF_upload_TX_payload(RX_data_buffer);
 break;
 case SEND_READY_TO_RECEIVE_PACKET:
 UTILS_Packet[4] = PACKET_UTILS_RECEPTION_MODE_BYTE;
 nRF_upload_TX_payload(UTILS_Packet);
 break;
 default:
 break;
 }
 if(packet_send_counter_counter >= 5) //Needs to trigger CE after 4ms, which correspond to 5 packets
 {
 packet_send_counter_counter = 0;
 nRF_CE_low;
 __delay_cycles(200);
 }
 nRF_CE_high;
}

void init_system(void)
{
 WDT_A_hold(WDT_A_BASE); //Stop WDT
 clk_set_8MHz(); // set CPU clock
 PORT_MAP(); // alternate functions port map
 Indication_LED_setup(); // indication LEDs

84

 SPI_setup(); // SPI
 ADC_dma_setup(); // DMA
 ADC_setup(BITS_8); // ADC
 ADC_timer_setup(); // ADC timer, freq = 20,000 Hz
 nRF24L01_pinout_setup(); // Setup the pinout for controling the transceiver
 LED1_PWM_setup(10240); //Stop all PWM outputs (set 100 hz default value)
 LED2_PWM_setup(10240);
 LED1_PWM_start(0);
 LED2_PWM_start(0);
}

//---
//-----END UTILITARY FUNCTIONS DEFINITION-----
//---

//---
//-----INTERRUPTS DEFINITIONS-----
//---

/*
 * nRF24L01+ IRQ
 */
#pragma vector=PORT1_VECTOR
__interrupt void Port_1(void)
{
 volatile BYTE status;
 P1IFG &= ~BIT6; // IFG cleared
 status = nRF_NOP(); // Looks for what caused the IRQ
 nRF_clear_IRQ(); // Reset the IRQ
 if(status & 0x20) //TX interrupt?
 {
 __delay_cycles(1); //Debug point
 }
 else //We received a packet
 {
 if((status & 0x40) != 0)
 {
 Semaphore_Post(&nRF_IRQ_Semaphore); //Unlock the IDLE state
 }
 else
 {
 __delay_cycles(1); // Debug point
 }
 }
}

/*
 * Interrupt called when the ADC buffer is full
 */
#pragma vector=DMA_VECTOR
__interrupt void DMA_ISR (void)
{
 switch(__even_in_range(DMAIV,16))
 {
 case 0: break; // No interrupt
 case 1: break; // No interrupt
 case 2:
 DMA_enableTransfers(DMA_BASE, DMA_CHANNEL_1); // Enable DMA1
 switch(dma0_second_buffer)
 {
 case 0:
 dma0_second_buffer = 1;
 DMA_setDstAddress(DMA_BASE, DMA_CHANNEL_0, (ULONG)&ADC_buffer[32],
DMA_DIRECTION_INCREMENT);
 break;
 case 1:
 dma0_second_buffer = 2;
 DMA_setDstAddress(DMA_BASE, DMA_CHANNEL_0, (ULONG)&ADC_buffer[64],

85

DMA_DIRECTION_INCREMENT);
 break;
 case 2:
 dma0_second_buffer = 3;
 DMA_setDstAddress(DMA_BASE, DMA_CHANNEL_0, (ULONG)&ADC_buffer[96],
DMA_DIRECTION_INCREMENT);
 break;
 case 3:
 dma0_second_buffer = 4;
 DMA_setDstAddress(DMA_BASE, DMA_CHANNEL_0, (ULONG)&ADC_buffer[128],
DMA_DIRECTION_INCREMENT);
 break;
 case 4:
 dma0_second_buffer = 5;
 DMA_setDstAddress(DMA_BASE, DMA_CHANNEL_0, (ULONG)&ADC_buffer[160],
DMA_DIRECTION_INCREMENT);
 break;
 case 5:
 dma0_second_buffer = 0;
 DMA_setDstAddress(DMA_BASE, DMA_CHANNEL_0, (ULONG)&ADC_buffer[0],
DMA_DIRECTION_INCREMENT);
 break;
 default:
 break;
 }
 break;
 case 4:
 DMA_enableTransfers(DMA_BASE, DMA_CHANNEL_0); // Enable DMA0
 switch(dma1_second_buffer)
 {
 case 0:
 dma1_second_buffer = 1;
 DMA_setDstAddress(DMA_BASE, DMA_CHANNEL_1, (ULONG)&ADC_buffer[48],
DMA_DIRECTION_INCREMENT);
 ADC_buffer_ptr = &ADC_buffer[0];
 Semaphore_Post(&stTransmitTXBufferSemaphore);
 break;
 case 1:
 dma1_second_buffer = 2;
 DMA_setDstAddress(DMA_BASE, DMA_CHANNEL_1, (ULONG)&ADC_buffer[80],
DMA_DIRECTION_INCREMENT);
 ADC_buffer_ptr = &ADC_buffer[32];
 Semaphore_Post(&stTransmitTXBufferSemaphore);
 break;
 case 2:
 dma1_second_buffer = 3;
 DMA_setDstAddress(DMA_BASE, DMA_CHANNEL_1, (ULONG)&ADC_buffer[112],
DMA_DIRECTION_INCREMENT);
 ADC_buffer_ptr = &ADC_buffer[64];
 Semaphore_Post(&stTransmitTXBufferSemaphore);
 break;
 case 3:
 dma1_second_buffer = 4;
 DMA_setDstAddress(DMA_BASE, DMA_CHANNEL_1, (ULONG)&ADC_buffer[144],
DMA_DIRECTION_INCREMENT);
 ADC_buffer_ptr = &ADC_buffer[96];
 Semaphore_Post(&stTransmitTXBufferSemaphore);
 break;
 case 4:
 dma1_second_buffer = 5;
 DMA_setDstAddress(DMA_BASE, DMA_CHANNEL_1, (ULONG)&ADC_buffer[176],
DMA_DIRECTION_INCREMENT);
 ADC_buffer_ptr = &ADC_buffer[128];
 Semaphore_Post(&stTransmitTXBufferSemaphore);
 break;
 case 5:
 dma1_second_buffer = 0;
 DMA_setDstAddress(DMA_BASE, DMA_CHANNEL_1, (ULONG)&ADC_buffer[16],

86

DMA_DIRECTION_INCREMENT);
 ADC_buffer_ptr = &ADC_buffer[160];
 Semaphore_Post(&stTransmitTXBufferSemaphore);
 break;
 default:
 break;
 }
 break; // DMA1IFG
 case 6: break; // DMA2IFG
 case 8: break; // Reserved
 case 10: break; // Reserved
 case 12: break; // Reserved
 case 14: break; // Reserved
 case 16: break; // Reserved
 default: break;
 }
}
/*If we get here, there is a huge problem going on*/
#pragma vector=UNMI_VECTOR
__interrupt void NMI_ISR(void)
{
 volatile uint16_t status;
 do {
 // If it still can't clear the oscillator fault flags after the timeout,
 // trap and wait here.
 status = UCS_clearAllOscFlagsWithTimeout(UCS_BASE, 1000);
 } while (status != 0);
}

//---
//-----END INTERRUPTS DEFINITIONS-----
//---

87

Custom Peripheral Control Library Header File (F5529_periph_lib.h)

#ifndef F5132_PERIPH_LIB_H_
#define F5132_PERIPH_LIB_H_

#include <msp430.h>
#include "utils.h"

#define LED_GREEN BIT0
#define LED_BLUE BIT1

void clk_set_8MHz(void);
void UART_setup(void);
void SPI_setup(void);
void nRF24L01_pinout_setup(void);

// Indication LEDs
void Indication_LED_setup(void);
void LED_on(char LED); // LED can be either LED_BLUE or LED_GREEN or both
void LED_off(char LED); // LED can be either LED_BLUE or LED_GREEN or both
void LED_toggle(char LED); // LED can be either LED_BLUE or LED_GREEN or both

// LED PWM
void PORT_MAP(void);
void LED1_PWM_setup(unsigned int clock_prescaler);
void LED2_PWM_setup(unsigned int clock_prescaler);
void LED1_PWM_start(unsigned int duty_cycle);
void LED1_PWM_stop(void);
void LED2_PWM_start(unsigned int duty_cycle);
void LED2_PWM_stop(void);

// Analog-to-digital converter and its timer
void ADC_setup(BIT_QUANTIFICATION quantification);
void ADC_timer_setup();
void ADC_timer_start(void);
void ADC_timer_stop(void);
unsigned char read_first_ADC_Channel(void);
unsigned char read_second_ADC_Channel(void);
void ADC_dma_setup(void);
void ADC_dma_stop(void);
void reset_DMA(void);

#endif /* F5132_PERIPH_LIB_H_ */

88

Custom Peripheral Control Library Implementation File (F5529_periph_lib.c)

#include "F5529_periph_lib.h"
#include "kernelcfg.h"
#include "driverlib.h"
#include "nRF.h"

extern int ADC_buffer[ADC_BUFFER_LENGTH];
extern char dma0_second_buffer;
extern char dma1_second_buffer;

//---
// System clock setup
//---
void clk_set_8MHz(void)
{
 volatile uint32_t clockValue = 0;
 //Set DCO FLL reference = REFO
 UCS_clockSignalInit(UCS_BASE, UCS_FLLREF, UCS_REFOCLK_SELECT, UCS_CLOCK_DIVIDER_1);
 //Set ACLK = REFO
 UCS_clockSignalInit(UCS_BASE, UCS_ACLK, UCS_REFOCLK_SELECT, UCS_CLOCK_DIVIDER_1);
 //Set core configuration
 PMM_setVCore(PMM_BASE, PMM_CORE_LEVEL_3);
 PMM_SvsLDisabledInLPMFastWake(PMM_BASE);
 PMM_SvsHEnabledInLPMFullPerf(PMM_BASE);
 PMM_SvsLEnabledInLPMFastWake(PMM_BASE);
 //Set Ratio and Desired MCLK Frequency and initialize DCO
 UCS_initFLLSettle(UCS_BASE, 8000, 250);
 // Enable global oscillator fault flag
 SFR_clearInterrupt(SFR_BASE, SFR_OSCILLATOR_FAULT_INTERRUPT);
 SFR_enableInterrupt(SFR_BASE,SFR_OSCILLATOR_FAULT_INTERRUPT);
 // Enable global interrupt
 __bis_SR_register(GIE);
 clockValue = UCS_getSMCLK(UCS_BASE); // Debug point
 clockValue = UCS_getMCLK(UCS_BASE); // Debug point
 clockValue = UCS_getACLK(UCS_BASE); // Debug point
}

//---
// UART for system test
//---
void UART_setup(void)
{
 //P3.3, P3.4 = USCI_A0 TXD/RXD
 GPIO_setAsPeripheralModuleFunctionInputPin(
 GPIO_PORT_P3,
 GPIO_PIN3 + GPIO_PIN4
);

 USCI_A_UART_initAdvance(USCI_A0_BASE,
 USCI_A_UART_CLOCKSOURCE_SMCLK,
 8,
 0,
 3,
 USCI_A_UART_NO_PARITY,
 USCI_A_UART_LSB_FIRST,
 USCI_A_UART_ONE_STOP_BIT,
 USCI_A_UART_MODE,
 USCI_A_UART_AUTOMATIC_BAUDRATE_DETECTION_MODE
);

 USCI_A_UART_enable(USCI_A0_BASE);

 //Enable Receive Interrupt
 USCI_A_UART_clearInterruptFlag(USCI_A0_BASE,

89

 USCI_A_UART_RECEIVE_INTERRUPT
);
 USCI_A_UART_enableInterrupt(USCI_A0_BASE,
 USCI_A_UART_RECEIVE_INTERRUPT
);
}
//---
// nRF24L01+ pins configuration. CE, IRQ pins and SS.
//---
void nRF24L01_pinout_setup(void)
{
 //Set P1.5 to output direction, nRF_SS
 GPIO_setAsOutputPin(GPIO_PORT_P1, GPIO_PIN5);
 GPIO_setDriveStrength(GPIO_PORT_P1, GPIO_PIN5, GPIO_REDUCED_OUTPUT_DRIVE_STRENGTH);
 //Set P4.0 to output direction, nRF_CE
 GPIO_setAsOutputPin(GPIO_PORT_P4, GPIO_PIN0);
 //Set P1.6 to input direction, nRF_IRQ
 GPIO_setAsInputPin(GPIO_PORT_P1, GPIO_PIN6);
 // Enable nRF_IRQ interrupt
 GPIO_enableInterrupt(GPIO_PORT_P1, GPIO_PIN6);
 // hi-to-low interrupt
 GPIO_interruptEdgeSelect(GPIO_PORT_P1, GPIO_PIN6, GPIO_HIGH_TO_LOW_TRANSITION);
 // clear nRF_IRQ interrupt
 GPIO_clearInterruptFlag(GPIO_PORT_P1, GPIO_PIN6);
}
//---
// SPI for Nordic transceiver and the PGA
//---
void SPI_setup(void)
{
 // SPI: UCB0
 // Clock freq = SMCLK
 // Idle clock polarity = low
 // Data is captured on the rising (first) clock edge
 // CLK = P1.3, MISO = P1.5, MOSI = P1.4, Nordic Slave-Select = P2.5, AFE Slave-Select = P2.6

 //P4.1, P4.2, P4.3 option select
 GPIO_setAsPeripheralModuleFunctionInputPin(GPIO_PORT_P4, GPIO_PIN2);
 GPIO_setAsPeripheralModuleFunctionOutputPin(GPIO_PORT_P4, GPIO_PIN1 + GPIO_PIN3);
 //Initialize Master
 USCI_B_SPI_masterInit(USCI_B1_BASE,
 USCI_B_SPI_CLOCKSOURCE_SMCLK,
 UCS_getSMCLK(UCS_BASE),
 8192000,
 USCI_B_SPI_MSB_FIRST,
 USCI_B_SPI_PHASE_DATA_CAPTURED_ONFIRST_CHANGED_ON_NEXT,
 USCI_B_SPI_CLOCKPOLARITY_INACTIVITY_LOW
);

 //Enable SPI module
 USCI_B_SPI_enable(USCI_B1_BASE);
}

//---
// Indication LEDs
//---
void Indication_LED_setup(void)
{
 //Set P1.0 to output direction
 GPIO_setAsOutputPin(GPIO_PORT_P2, GPIO_PIN0);

 //Set P4.7 to output direction
 GPIO_setAsOutputPin(GPIO_PORT_P2, GPIO_PIN1);
}

void LED_on(char LED)
{
 if(LED & BIT0)

90

 GPIO_setOutputHighOnPin(GPIO_PORT_P2, GPIO_PIN0);
 if(LED & BIT1)
 GPIO_setOutputHighOnPin(GPIO_PORT_P2, GPIO_PIN1);
}
void LED_off(char LED)
{
 if(LED & BIT0)
 GPIO_setOutputLowOnPin(GPIO_PORT_P2, GPIO_PIN0);
 if(LED & BIT1)
 GPIO_setOutputLowOnPin(GPIO_PORT_P2, GPIO_PIN1);
}
void LED_toggle(char LED)
{
 if(LED & BIT0)
 GPIO_toggleOutputOnPin(GPIO_PORT_P2, GPIO_PIN0);
 if(LED & BIT1)
 GPIO_toggleOutputOnPin(GPIO_PORT_P2, GPIO_PIN1);
}
//---
void PORT_MAP(void)
{
 //Port mapping for the PWM
 const uint8_t port_mapping[] = {
 //Port P4:
 PM_NONE,
 PM_UCB1SIMO,
 PM_UCB1SOMI,
 PM_UCB1CLK,
 PM_NONE,
 PM_NONE,
 PM_TB0CCR1A,
 PM_TB0CCR2A,
 };
 // Reconfigure P4, PWM on P4.1 and P4.2
 PMAP_configurePorts(PMAP_CTRL_BASE,
 (const uint8_t*)port_mapping,
 (uint8_t*)&P4MAP01,
 1,
 PMAP_DISABLE_RECONFIGURATION
);
}
//---
// Optical stimulation LEDs
//---
void LED1_PWM_setup(unsigned int clock_prescaler)
{
 GPIO_setAsPeripheralModuleFunctionOutputPin(GPIO_PORT_P4, GPIO_PIN7);

 //Start Up Timer
 TIMER_B_configureUpMode(TIMER_B0_BASE,
 TIMER_B_CLOCKSOURCE_SMCLK,
 TIMER_B_CLOCKSOURCE_DIVIDER_8,
 clock_prescaler-1,
 TIMER_B_TBIE_INTERRUPT_DISABLE,
 TIMER_B_CCIE_CCR0_INTERRUPT_DISABLE,
 TIMER_B_SKIP_CLEAR
);
}

void LED2_PWM_setup(unsigned int clock_prescaler)
{
 GPIO_setAsPeripheralModuleFunctionOutputPin(GPIO_PORT_P4, GPIO_PIN6);

 //Start Up Down Timer
 TIMER_B_configureUpMode(TIMER_B0_BASE,
 TIMER_B_CLOCKSOURCE_SMCLK,
 TIMER_B_CLOCKSOURCE_DIVIDER_8,
 clock_prescaler-1,

91

 TIMER_B_TBIE_INTERRUPT_DISABLE,
 TIMER_B_CCIE_CCR0_INTERRUPT_DISABLE,
 TIMER_B_DO_CLEAR
);
}

void LED1_PWM_start(unsigned int duty_cycle)
{
 //Generate PWM 1
 TIMER_B_initCompare(TIMER_B0_BASE,
 TIMER_B_CAPTURECOMPARE_REGISTER_1,
 TIMER_B_CAPTURECOMPARE_INTERRUPT_DISABLE,
 TIMER_B_OUTPUTMODE_TOGGLE_SET | TIMER_B_OUTPUTMODE_OUTBITVALUE,
 duty_cycle
);

 TIMER_B_startCounter(TIMER_B0_BASE,
 TIMER_B_UP_MODE
);
}
void LED1_PWM_stop(void)
{
 //Stop PWM 1
 TIMER_B_initCompare(TIMER_B0_BASE,
 TIMER_B_CAPTURECOMPARE_REGISTER_1,
 TIMER_B_CAPTURECOMPARE_INTERRUPT_DISABLE,
 TIMER_B_OUTPUTMODE_OUTBITVALUE,
 0
);
}
void LED2_PWM_start(unsigned int duty_cycle)
{
 //Generate PWM 2
 TIMER_B_initCompare(TIMER_B0_BASE,
 TIMER_B_CAPTURECOMPARE_REGISTER_2,
 TIMER_B_CAPTURECOMPARE_INTERRUPT_DISABLE,
 TIMER_B_OUTPUTMODE_TOGGLE_SET | TIMER_B_OUTPUTMODE_OUTBITVALUE,
 duty_cycle
);

 TIMER_B_startCounter(TIMER_B0_BASE,
 TIMER_B_UP_MODE
);
}
void LED2_PWM_stop(void)
{
 //Stop PWM 2
 TIMER_B_initCompare(TIMER_B0_BASE,
 TIMER_B_CAPTURECOMPARE_REGISTER_2,
 TIMER_B_CAPTURECOMPARE_INTERRUPT_DISABLE,
 TIMER_B_OUTPUTMODE_OUTBITVALUE,
 0
);
}
//==
void ADC_setup(BIT_QUANTIFICATION quantification)
{
 static char ref_set = FALSE;
 if(!ref_set)
 {
 ref_set = TRUE;
 while(REF_isRefGenBusy(REF_BASE));
 REF_setReferenceVoltage(REF_BASE, REF_VREF2_5V);
 REF_enableReferenceVoltage(REF_BASE);
 }

 // Enable A/D channel inputs on P6.0, P6.1, P6.2 and P6.3
 GPIO_setAsPeripheralModuleFunctionInputPin(GPIO_PORT_P6, GPIO_PIN0 + GPIO_PIN1 + GPIO_PIN2 +

92

GPIO_PIN3);

 // ADC12 clock source SMCLK, triggered by timer A0 CCR1
 ADC12_A_init(ADC12_A_BASE,
 ADC12_A_SAMPLEHOLDSOURCE_1,
 ADC12_A_CLOCKSOURCE_SMCLK,
 ADC12_A_CLOCKDIVIDER_2
);

 ADC12_A_setupSamplingTimer(ADC12_A_BASE,
 ADC12_A_CYCLEHOLD_32_CYCLES,
 ADC12_A_CYCLEHOLD_32_CYCLES,
 ADC12_A_MULTIPLESAMPLESDISABLE);

 ADC12_A_disableReferenceBurst(ADC12_A_BASE);
 ADC12_A_setReferenceBufferSamplingRate(ADC12_A_BASE,
 ADC12_A_MAXSAMPLINGRATE_200KSPS);

 if(quantification == BITS_8)
 ADC12_A_setResolution(ADC12_A_BASE, ADC12_A_RESOLUTION_8BIT);
 else
 ADC12_A_setResolution(ADC12_A_BASE, ADC12_A_RESOLUTION_12BIT);

 ADC12_A_memoryConfigure(ADC12_A_BASE,
 ADC12_A_MEMORY_0,
 ADC12_A_INPUT_A0,
 ADC12_A_VREFPOS_INT,
 ADC12_A_VREFNEG_AVSS,
 ADC12_A_NOTENDOFSEQUENCE);
 ADC12_A_memoryConfigure(ADC12_A_BASE,
 ADC12_A_MEMORY_1,
 ADC12_A_INPUT_A1,
 ADC12_A_VREFPOS_INT,
 ADC12_A_VREFNEG_AVSS,
 ADC12_A_NOTENDOFSEQUENCE);
 ADC12_A_memoryConfigure(ADC12_A_BASE,
 ADC12_A_MEMORY_2,
 ADC12_A_INPUT_A2,
 ADC12_A_VREFPOS_INT,
 ADC12_A_VREFNEG_AVSS,
 ADC12_A_NOTENDOFSEQUENCE);
 ADC12_A_memoryConfigure(ADC12_A_BASE,
 ADC12_A_MEMORY_3,
 ADC12_A_INPUT_A3,
 ADC12_A_VREFPOS_INT,
 ADC12_A_VREFNEG_AVSS,
 ADC12_A_NOTENDOFSEQUENCE);
 ADC12_A_memoryConfigure(ADC12_A_BASE,
 ADC12_A_MEMORY_4,
 ADC12_A_INPUT_A0,
 ADC12_A_VREFPOS_INT,
 ADC12_A_VREFNEG_AVSS,
 ADC12_A_NOTENDOFSEQUENCE);
 ADC12_A_memoryConfigure(ADC12_A_BASE,
 ADC12_A_MEMORY_5,
 ADC12_A_INPUT_A1,
 ADC12_A_VREFPOS_INT,
 ADC12_A_VREFNEG_AVSS,
 ADC12_A_NOTENDOFSEQUENCE);
 ADC12_A_memoryConfigure(ADC12_A_BASE,
 ADC12_A_MEMORY_6,
 ADC12_A_INPUT_A2,
 ADC12_A_VREFPOS_INT,
 ADC12_A_VREFNEG_AVSS,
 ADC12_A_NOTENDOFSEQUENCE);
 ADC12_A_memoryConfigure(ADC12_A_BASE,
 ADC12_A_MEMORY_7,
 ADC12_A_INPUT_A3,

93

 ADC12_A_VREFPOS_INT,
 ADC12_A_VREFNEG_AVSS,
 ADC12_A_NOTENDOFSEQUENCE);
 ADC12_A_memoryConfigure(ADC12_A_BASE,
 ADC12_A_MEMORY_8,
 ADC12_A_INPUT_A0,
 ADC12_A_VREFPOS_INT,
 ADC12_A_VREFNEG_AVSS,
 ADC12_A_NOTENDOFSEQUENCE);
 ADC12_A_memoryConfigure(ADC12_A_BASE,
 ADC12_A_MEMORY_9,
 ADC12_A_INPUT_A1,
 ADC12_A_VREFPOS_INT,
 ADC12_A_VREFNEG_AVSS,
 ADC12_A_NOTENDOFSEQUENCE);
 ADC12_A_memoryConfigure(ADC12_A_BASE,
 ADC12_A_MEMORY_10,
 ADC12_A_INPUT_A2,
 ADC12_A_VREFPOS_INT,
 ADC12_A_VREFNEG_AVSS,
 ADC12_A_NOTENDOFSEQUENCE);
 ADC12_A_memoryConfigure(ADC12_A_BASE,
 ADC12_A_MEMORY_11,
 ADC12_A_INPUT_A3,
 ADC12_A_VREFPOS_INT,
 ADC12_A_VREFNEG_AVSS,
 ADC12_A_NOTENDOFSEQUENCE);
 ADC12_A_memoryConfigure(ADC12_A_BASE,
 ADC12_A_MEMORY_12,
 ADC12_A_INPUT_A0,
 ADC12_A_VREFPOS_INT,
 ADC12_A_VREFNEG_AVSS,
 ADC12_A_NOTENDOFSEQUENCE);
 ADC12_A_memoryConfigure(ADC12_A_BASE,
 ADC12_A_MEMORY_13,
 ADC12_A_INPUT_A1,
 ADC12_A_VREFPOS_INT,
 ADC12_A_VREFNEG_AVSS,
 ADC12_A_NOTENDOFSEQUENCE);
 ADC12_A_memoryConfigure(ADC12_A_BASE,
 ADC12_A_MEMORY_14,
 ADC12_A_INPUT_A2,
 ADC12_A_VREFPOS_INT,
 ADC12_A_VREFNEG_AVSS,
 ADC12_A_NOTENDOFSEQUENCE);
 ADC12_A_memoryConfigure(ADC12_A_BASE,
 ADC12_A_MEMORY_15,
 ADC12_A_INPUT_A3,
 ADC12_A_VREFPOS_INT,
 ADC12_A_VREFNEG_AVSS,
 ADC12_A_ENDOFSEQUENCE);

 ADC12_A_enable(ADC12_A_BASE);
}

void ADC_timer_setup(BIT_QUANTIFICATION quantification)
{

 //Configure timer A0. Source SMCLK, CCR0 = SYSTEM_FREQ / SPECIAL_FUNCTION_FREQ
 TIMER_A_configureUpMode(TIMER_A0_BASE,
 TIMER_A_CLOCKSOURCE_SMCLK,
 TIMER_A_CLOCKSOURCE_DIVIDER_1,
 SYSTEM_FREQ / SPECIAL_FUNCTION_FREQ,
 TIMER_A_TAIE_INTERRUPT_DISABLE,
 TIMER_A_CCIE_CCR0_INTERRUPT_DISABLE,
 TIMER_A_DO_CLEAR
);

94

 //Configure timer A0 CCR1 to trigger the ADC12 at CCR1 = SYSTEM_FREQ / SPECIAL_FUNCTION_FREQ
 TIMER_A_initCompare(TIMER_A0_BASE,
 TIMER_A_CAPTURECOMPARE_REGISTER_1,
 TIMER_A_CAPTURECOMPARE_INTERRUPT_DISABLE,
 TIMER_A_OUTPUTMODE_SET_RESET,
 SYSTEM_FREQ / SPECIAL_FUNCTION_FREQ
);
}

void ADC_timer_start(void)
{
 DMA_enableTransfers(DMA_BASE, DMA_CHANNEL_0);
 ADC12_A_enable(ADC12_A_BASE); // Start ADC at the same time
 ADC12_A_startConversion(ADC12_A_BASE,
 ADC12_A_MEMORY_0,
 ADC12_A_REPEATED_SEQOFCHANNELS);
 TIMER_A_startCounter(TIMER_A0_BASE, TIMER_A_UP_MODE);
}

void ADC_timer_stop(void)
{
 DMA_disableTransfers(DMA_BASE, DMA_CHANNEL_0);
 DMA_disableTransfers(DMA_BASE, DMA_CHANNEL_1);
 DMA_setDstAddress(DMA_BASE, DMA_CHANNEL_0, (unsigned long)&ADC_buffer[0], DMA_DIRECTION_INCREMENT);
 DMA_setDstAddress(DMA_BASE, DMA_CHANNEL_1, (unsigned long)&ADC_buffer[16], DMA_DIRECTION_INCREMENT);
 TIMER_A_stop(TIMER_A0_BASE);
}

void ADC_dma_setup(void)
{
 //-----Channel 0 config-----
 DMA_init(DMA_BASE,
 DMA_CHANNEL_0,
 DMA_TRANSFER_BURSTBLOCK,
 16,
 DMA_TRIGGERSOURCE_24,
 DMA_SIZE_SRCWORD_DSTWORD,
 DMA_TRIGGER_RISINGEDGE);

 DMA_setSrcAddress(DMA_BASE, DMA_CHANNEL_0, (unsigned long)&ADC12MEM0, DMA_DIRECTION_INCREMENT);

 DMA_setDstAddress(DMA_BASE, DMA_CHANNEL_0, (unsigned long)&ADC_buffer[16], DMA_DIRECTION_INCREMENT);

 DMA_enableTransfers(DMA_BASE, DMA_CHANNEL_0);

 DMA_enableInterrupt(DMA_BASE, DMA_CHANNEL_0);

 //-----Channel 1 config-----
 DMA_init(DMA_BASE,
 DMA_CHANNEL_1,
 DMA_TRANSFER_BURSTBLOCK,
 16,
 DMA_TRIGGERSOURCE_24,
 DMA_SIZE_SRCWORD_DSTWORD,
 DMA_TRIGGER_RISINGEDGE);

 DMA_setSrcAddress(DMA_BASE, DMA_CHANNEL_1, (unsigned long)&ADC12MEM0, DMA_DIRECTION_INCREMENT);

 DMA_setDstAddress(DMA_BASE, DMA_CHANNEL_1, (unsigned long)&ADC_buffer[16], DMA_DIRECTION_INCREMENT);

 DMA_enableInterrupt(DMA_BASE, DMA_CHANNEL_1);
}

void ADC_dma_stop(void)
{
 DMA_disableTransfers(DMA_BASE, DMA_CHANNEL_0);
 DMA_disableTransfers(DMA_BASE, DMA_CHANNEL_1);
 DMA_disableTransfers(DMA_BASE, DMA_CHANNEL_2);

95

}

void reset_DMA(void)
{
 dma0_second_buffer = 0;
 dma1_second_buffer = 0;
 DMA_setSrcAddress(DMA_BASE, DMA_CHANNEL_0, (unsigned long)&ADC12MEM0, DMA_DIRECTION_INCREMENT);
 DMA_setDstAddress(DMA_BASE, DMA_CHANNEL_0, (unsigned long)&ADC_buffer[0], DMA_DIRECTION_INCREMENT);
 DMA_enableTransfers(DMA_BASE, DMA_CHANNEL_0);

 DMA_setSrcAddress(DMA_BASE, DMA_CHANNEL_1, (unsigned long)&ADC12MEM0, DMA_DIRECTION_INCREMENT);
 DMA_setDstAddress(DMA_BASE, DMA_CHANNEL_1, (unsigned long)&ADC_buffer[16], DMA_DIRECTION_INCREMENT);
 DMA_disableTransfers(DMA_BASE, DMA_CHANNEL_1);
}

96

Custom nRF24L01+ Controller Library Header File (nRF.h)

#include <msp430.h>
#include "F5529_periph_lib.h"
#include "utils.h"

extern void nRF_init(void);
extern void nRF_reg_write(char addr, char *data, unsigned data_length);
extern void nRF_reg_read(char addr, char *data, unsigned data_length);
extern void nRF_upload_TX_payload_adc_8(int *data);
extern void nRF_upload_TX_payload_adc_12(int *data);
extern void nRF_upload_TX_payload(char *data);
extern void nRF_download_RX_payload(char *data);
extern void nRF_FLUSH_TX(void);
extern void nRF_FLUSH_RX(void);
extern char nRF_NOP(void);
extern char nRF_FIFO_STATUS(void);
extern void nRF_clear_IRQ(void);
extern char nRF_read_RX_payload_len(void);
extern void nRF_set_TX_mode(void);
extern void nRF_set_RX_mode(void);
extern void nRF_set_STANDBY1_modeRX(void);
extern void wait_for_place_in_tx_fifo(void);
extern void wait_for_empty_tx_fifo(void);

//---
#define nRF_DESELECT while(UCB1STAT & UCBUSY); P1OUT |= BIT5
#define nRF_SELECT P1OUT &= ~BIT5

#define nRF_CE_high P4OUT |= BIT0
#define nRF_CE_low P4OUT &= ~BIT0

#define PULSE_CE nRF_CE_high; __delay_cycles(200); nRF_CE_low // The delay value must be set according
to the CPU clock frequency and must be at least 10 microseconds

#define nRF_ENTER_RECEIVE_MODE nRF_CE_low; \
 nRF_init(); \
 nRF_set_RX_mode(); \
 nRF_clear_IRQ(); \
 nRF_CE_high

#define nRF_ENTER_TRANSMIT_MODE nRF_CE_low; \
 nRF_init(); \
 nRF_clear_IRQ(); \
 nRF_set_TX_mode()

//---

97

Custom nRF24L01+ Controller Library Implementation File (nRF.c)

#include "driverlib.h"
#include "nRF.h"
//---
char tmp;
void nRF_init(void)
{
 unsigned int i;
 nRF_CE_low;
 for(i = 0 ; i < 65000; i++);
 nRF_SELECT;
 for(i = 0 ; i < 65000; i++);
 nRF_DESELECT;
}
//---
void nRF_reg_write(char addr, char *data, unsigned data_length)
{
 char i;

 addr = addr & 0x1F;
 addr = addr | 0x20;

 nRF_SELECT;

 UCB1TXBUF = addr;

 for(i = 0; i < data_length; i++)
 {
 while(UCB1STAT & UCBUSY);
 UCB1TXBUF = data[i];
 }

 while(UCB1STAT & UCBUSY);
 nRF_DESELECT;

 //SPI_buffer_flush();
}
//---
void nRF_reg_read(char addr, char *data, unsigned data_length)
{
 char i;

 addr = addr & 0x1F;

 //SPI_buffer_flush();

 nRF_SELECT;

 UCB1TXBUF = addr;
 while(UCB1STAT & UCBUSY);
 tmp = UCB1RXBUF;

 for(i = 0; i < data_length; i++)
 {
 UCB1TXBUF = 0xFF;
 while(UCB1STAT & UCBUSY);
 *(data+i) = UCB1RXBUF;
 }

 while(UCB1STAT & UCBUSY);
 nRF_DESELECT;
}
//---
void nRF_upload_TX_payload(char *data)
{
 char i;

98

 __bic_SR_register(GIE); // stop all interrupts

 nRF_SELECT;

 UCB1TXBUF = 0xA0;

 for(i = 0; i < nRF_packet_len; i++)
 {
 while(UCB1STAT & UCBUSY);
 UCB1TXBUF = data[i];
 }

 while(UCB1STAT & UCBUSY);
 nRF_DESELECT;

 __bis_SR_register(GIE); // reactivate all interrupts

 //SPI_buffer_flush();
}
//---
void nRF_upload_TX_payload_adc_8(int *data)
{
 char i;

 __bic_SR_register(GIE); // stop all interrupts

 nRF_SELECT;

 UCB1TXBUF = 0xA0;

 for(i = 0; i < nRF_packet_len; i++)
 {
 while(UCB1STAT & UCBUSY);
 UCB1TXBUF = data[i];
 }

 while(UCB1STAT & UCBUSY);
 nRF_DESELECT;

 __bis_SR_register(GIE); // reactivate all interrupts
}
//---
void nRF_upload_TX_payload_adc_12(int *data)
{
 char i;
 char *ptr = (char*)data;

 __bic_SR_register(GIE); // stop all interrupts

 nRF_SELECT;

 UCB1TXBUF = 0xA0;

 for(i = 0; i < 2*nRF_packet_len; i += 8)
 {
 while(UCB1STAT & UCBUSY);
 UCB1TXBUF = ptr[i];
 while(UCB1STAT & UCBUSY);
 UCB1TXBUF = ptr[i + 1] + (ptr[i + 4] & 0xF0);
 while(UCB1STAT & UCBUSY);
 UCB1TXBUF = ptr[i + 2];
 while(UCB1STAT & UCBUSY);
 UCB1TXBUF = ptr[i + 3] + (ptr[i + 6] & 0xF0);
 }

 while(UCB1STAT & UCBUSY);
 nRF_DESELECT;

99

 __bis_SR_register(GIE); // reactivate all interrupts
}
//---
void nRF_download_RX_payload(char *data)
{
 char i;

 //SPI_buffer_flush();

 nRF_SELECT;

 UCB1TXBUF = 0x61;
 while(UCB1STAT & UCBUSY);
 tmp = UCB1RXBUF;

 for(i = 0; i < nRF_packet_len; i++)
 {
 UCB1TXBUF = 0xFF;
 while(UCB1STAT & UCBUSY);
 *(data+i) = UCB1RXBUF;
 }

 while(UCB1STAT & UCBUSY);
 nRF_DESELECT;
}
//---
void nRF_FLUSH_TX(void)
{
 nRF_SELECT;

 UCB1TXBUF = 0xE1;
 while(UCB1STAT & UCBUSY);
 tmp = UCB1RXBUF;

 nRF_DESELECT;
}
//---
void nRF_FLUSH_RX(void)
{
 nRF_SELECT;

 UCB1TXBUF = 0xE2;
 while(UCB1STAT & UCBUSY);
 tmp = UCB1RXBUF;

 nRF_DESELECT;
}
//---
char nRF_NOP(void)
{
 char status;

 nRF_SELECT;

 UCB1TXBUF = 0xFF;
 while(UCB1STAT & UCBUSY);
 status = UCB1RXBUF;

 nRF_DESELECT;

 return status;
}
//---
char nRF_FIFO_STATUS(void)
{
 char status;

100

 nRF_SELECT;

 UCB1TXBUF = 0x17;
 while(UCB1STAT & UCBUSY);
 tmp = UCB1RXBUF;

 UCB1TXBUF = 0xFF;
 while(UCB1STAT & UCBUSY);
 status = UCB1RXBUF;

 nRF_DESELECT;

 return status;
}
//---
char nRF_read_RX_payload_len(void)
{
 char length;

 nRF_SELECT;

 UCB1TXBUF = 0x60;
 while(UCB1STAT & UCBUSY);
 tmp = UCB1RXBUF;

 UCB1TXBUF = 0xFF;
 while(UCB1STAT & UCBUSY);
 length = UCB1RXBUF;

 nRF_DESELECT;

 return length;
}
//---
void nRF_clear_IRQ(void)
{
 nRF_SELECT;

 UCB1TXBUF = 0x27;
 while(UCB1STAT & UCBUSY);
 tmp = UCB1RXBUF;

 UCB1TXBUF = 0x70;
 while(UCB1STAT & UCBUSY);
 tmp = UCB1RXBUF;

 nRF_DESELECT;
}
//---
void nRF_set_STANDBY1_modeRX(void)
{
 char data =0x19;
 nRF_CE_high;
 nRF_reg_write(0x00, &data, 1);
}
//---
void wait_for_place_in_tx_fifo(void)
{
 volatile char fifo_status;
 fifo_status = nRF_FIFO_STATUS();
 while(fifo_status & 0x20)
 {
 __delay_cycles(100);
 fifo_status = nRF_FIFO_STATUS();
 }
}
//---
void wait_for_empty_tx_fifo(void)

101

{
 volatile char fifo_status;
 fifo_status = nRF_FIFO_STATUS(); // Check the fifo status of the transceiver
 while(!(fifo_status & 0x10))
 {
 __delay_cycles(100);
 fifo_status = nRF_FIFO_STATUS();
 }
}

102

Custom nRF24L01+ Controller Library Implementation File (nRF_config.c)

#include "nRF.h"

//------------------------------------
// nRF24L01+ TX mode settings
void nRF_set_TX_mode(void)
{
 char data[5];
 unsigned int i;
 //++++++++++++++++++++++++++
 // CONFIG : Configuration Register
 data[0] = 0x1A;
 nRF_reg_write(0x00,data,1);
 //++++++++++++++++++++++++++
 for(i = 0 ; i < 65000; i++);
 //++++++++++++++++++++++++++
 // EN_AA : Enhanced ShockBurst
 data[0] = 0x00;
 nRF_reg_write(0x01,data,1);
 //++++++++++++++++++++++++++
 // EN_RXADDR : Enabled RX Addresses
 data[0] = 0x01;
 nRF_reg_write(0x02,data,1);
 //++++++++++++++++++++++++++
 // SETUP_AW : Setup of Address Widths
 data[0] = 0x01;
 nRF_reg_write(0x03,data,1);
 //++++++++++++++++++++++++++
 // SETUP_RETR : Setup of Automatic Retransmission
 data[0] = 0x00;
 nRF_reg_write(0x04,data,1);
 //++++++++++++++++++++++++++
 // RF_CH : RF Channel
 data[0] = 0x65;
 nRF_reg_write(0x05,data,1);
 //++++++++++++++++++++++++++
 // RF_SETUP : RF Setup Register
 data[0] = 0x0F;
 nRF_reg_write(0x06,data,1);
 //++++++++++++++++++++++++++
 // STATUS : Status Register
 //++++++++++++++++++++++++++
 // OBSERVE_TX : Transmit observe register
 //++++++++++++++++++++++++++
 // RPD : Received Power Detector
 //++++++++++++++++++++++++++
 // RX_ADDR_P0 : Receive address data pipe 0
 data[0] = 0x0F;
 data[1] = 0x0E;
 data[2] = 0x0F;
 data[3] = 0x0E;
 data[4] = 0x0F;
 nRF_reg_write(0x0A,data,5);
 //++++++++++++++++++++++++++
 // RX_ADDR_P1 : Receive address data pipe 1
 //++++++++++++++++++++++++++
 // RX_ADDR_P2 : Receive address data pipe 2
 //++++++++++++++++++++++++++
 // RX_ADDR_P3 : Receive address data pipe 3
 //++++++++++++++++++++++++++
 // RX_ADDR_P4 : Receive address data pipe 4
 //++++++++++++++++++++++++++
 // RX_ADDR_P5 : Receive address data pipe 5
 //++++++++++++++++++++++++++
 // TX_ADDR : Transmit address
 data[0] = 0x0F;

103

 data[1] = 0x0E;
 data[2] = 0x0F;
 data[3] = 0x0E;
 data[4] = 0x0F;
 nRF_reg_write(0x10,data,5);
 //++++++++++++++++++++++++++
 // RX_PW_P0 : Number of bytes in RX payload in data pipe 0 ????????????
 data[0] = nRF_packet_len;
 nRF_reg_write(0x11,data,1);
 //++++++++++++++++++++++++++
 // RX_PW_P1 : Number of bytes in RX payload in data pipe 1
 //++++++++++++++++++++++++++
 // RX_PW_P2 : Number of bytes in RX payload in data pipe 2
 //++++++++++++++++++++++++++
 // RX_PW_P3 : Number of bytes in RX payload in data pipe 3
 //++++++++++++++++++++++++++
 // RX_PW_P4 : Number of bytes in RX payload in data pipe 4
 //++++++++++++++++++++++++++
 // RX_PW_P5 : Number of bytes in RX payload in data pipe 5
 //++++++++++++++++++++++++++
 // FIFO_STATUS : FIFO Status Register
 //++++++++++++++++++++++++++
 // DYNPD : Enable dynamic payload length
 data[0] = 0x00;
 nRF_reg_write(0x1C,data,1);
 //++++++++++++++++++++++++++
 // FEATURE : Feature Register
 data[0] = 0x00;
 nRF_reg_write(0x1D,data,1);
 //++++++++++++++++++++++++++
}
//------------------------------------
// nRF24L01+ RX mode settings
void nRF_set_RX_mode(void)
{
 char data[5];
 unsigned int i;
 //++++++++++++++++++++++++++
 // CONFIG : Configuration Register
 data[0] = 0x1B;
 nRF_reg_write(0x00,data,1);
 //++++++++++++++++++++++++++
 for(i = 0 ; i < 65000; i++);
 //++++++++++++++++++++++++++
 // EN_AA : Enhanced ShockBurst
 data[0] = 0x00;
 nRF_reg_write(0x01,data,1);
 //++++++++++++++++++++++++++
 // EN_RXADDR : Enabled RX Addresses
 data[0] = 0x01;
 nRF_reg_write(0x02,data,1);
 //++++++++++++++++++++++++++
 // SETUP_AW : Setup of Address Widths
 data[0] = 0x01;
 nRF_reg_write(0x03,data,1);
 //++++++++++++++++++++++++++
 // SETUP_RETR : Setup of Automatic Retransmission
 data[0] = 0x00;
 nRF_reg_write(0x04,data,1);
 //++++++++++++++++++++++++++
 // RF_CH : RF Channel
 data[0] = 0x0A;
 nRF_reg_write(0x05,data,1);
 //++++++++++++++++++++++++++
 // RF_SETUP : RF Setup Register
 data[0] = 0x0E;
 nRF_reg_write(0x06,data,1);
 //++++++++++++++++++++++++++

104

 // STATUS : Status Register
 //++++++++++++++++++++++++++
 // OBSERVE_TX : Transmit observe register
 //++++++++++++++++++++++++++
 // RPD : Received Power Detector
 //++++++++++++++++++++++++++
 // RX_ADDR_P0 : Receive address data pipe 0
 data[0] = 0x0F;
 data[1] = 0x0E;
 data[2] = 0x0F;
 data[3] = 0x0E;
 data[4] = 0x0F;
 nRF_reg_write(0x0A,data,5);
 //++++++++++++++++++++++++++
 // RX_ADDR_P1 : Receive address data pipe 1
 //++++++++++++++++++++++++++
 // RX_ADDR_P2 : Receive address data pipe 2
 //++++++++++++++++++++++++++
 // RX_ADDR_P3 : Receive address data pipe 3
 //++++++++++++++++++++++++++
 // RX_ADDR_P4 : Receive address data pipe 4
 //++++++++++++++++++++++++++
 // RX_ADDR_P5 : Receive address data pipe 5
 //++++++++++++++++++++++++++
 // TX_ADDR : Transmit address
 data[0] = 0x0F;
 data[1] = 0x0E;
 data[2] = 0x0F;
 data[3] = 0x0E;
 data[4] = 0x0F;
 nRF_reg_write(0x10,data,5);
 //++++++++++++++++++++++++++
 // RX_PW_P0 : Number of bytes in RX payload in data pipe 0 ????????????
 data[0] = nRF_packet_len;
 nRF_reg_write(0x11,data,1);
 //++++++++++++++++++++++++++
 // RX_PW_P1 : Number of bytes in RX payload in data pipe 1
 //++++++++++++++++++++++++++
 // RX_PW_P2 : Number of bytes in RX payload in data pipe 2
 //++++++++++++++++++++++++++
 // RX_PW_P3 : Number of bytes in RX payload in data pipe 3
 //++++++++++++++++++++++++++
 // RX_PW_P4 : Number of bytes in RX payload in data pipe 4
 //++++++++++++++++++++++++++
 // RX_PW_P5 : Number of bytes in RX payload in data pipe 5
 //++++++++++++++++++++++++++
 // FIFO_STATUS : FIFO Status Register
 //++++++++++++++++++++++++++
 // DYNPD : Enable dynamic payload length
 data[0] = 0x00;
 nRF_reg_write(0x1C,data,1);
 //++++++++++++++++++++++++++
 // FEATURE : Feature Register
 data[0] = 0x00;
 nRF_reg_write(0x1D,data,1);
 //++++++++++++++++++++++++++
}
//------------------------------------

105

Appendix B. Baseband Prototype Firmware Code

Main Program Header File (MAIN.h)

#define PART_TM4C1233H6PM
#define rvmdk

#include <stdint.h>
#include <stdbool.h>
#include <stdio.h>
#include <string.h>
#include "inc/hw_ints.h"
#include "inc/hw_memmap.h"
#include "inc/hw_types.h"
#include "driverlib/debug.h"
#include "driverlib/fpu.h"
#include "driverlib/ssi.h"
#include "driverlib/gpio.h"
#include "driverlib/interrupt.h"
#include "driverlib/pin_map.h"
#include "driverlib/sysctl.h"
#include "driverlib/timer.h"
#include "driverlib/systick.h"
#include "driverlib/uart.h"
#include "utils/uartstdio.h"
#include "driverlib/timer.h"
//--
extern void ConfigureGPIO(void);
extern void ConfigureSysClock(void);
extern void ConfigureUART(void);
extern void ConfigureSysTick(uint32_t period);
extern void ConfigureSPI(void);
extern void ConfigureSPI_DAC(void);
extern void Write_DAC(int pData);
extern void ConfigureDAC_Timer(void);
extern void SPI_buffer_flush(void);
//--
extern void LED_blink_red(void);
extern void LED_blink_blue(void);
extern void LED_blink_green(void);
extern void delay(uint32_t val);
//--
extern void SysTick_int_handler(void);
extern void UART1_int_handler(void);
extern void nRF_IRQ_handler(void);
extern void Timer0IntHandler(void);
//--
#define DAC_CH1 0x1000
#define DAC_CH2 0x9000
#define DAC_C_B_Size 256

#define LED_on_red GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_1, GPIO_PIN_1)
#define LED_off_red GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_1, 0)

#define LED_on_blue GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_2, GPIO_PIN_2)
#define LED_off_blue GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_2, 0)

#define LED_on_green GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_3, GPIO_PIN_3)
#define LED_off_green GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_3, 0)

#define SWITCH_RECEIVE_MODE IntMasterDisable();\
 nRF_init();\
 nRF_write_PRX_settings();\
 nRF_clear_IRQ();\
 nRF_CE_high;\

106

 GPIOIntClear(nRF_IRQn_PORT, nRF_IRQn_PIN);\
 IntMasterEnable()

#define SWITCH_TRANSMIT_MODE IntMasterDisable();\
 nRF_init();\
 nRF_write_PTX_settings();\
 nRF_clear_IRQ();\
 nRF_CE_low;\
 GPIOIntClear(nRF_IRQn_PORT, nRF_IRQn_PIN);\
 IntMasterEnable();

#define SET_IDLE_STATE LED_on_blue;\
 LED_off_red;\
 UART_Data_Received = false;\
 Current_State = STATE_IDLE;

#define SET_RECEPTION_STATE LED_off_blue;\
 LED_on_red;\
 Current_State = STATE_Data_Reception;

#define UTILS_PACKET Data_Buffer[0] == 0xCC && Data_Buffer[1] == 0xCC && Data_Buffer[2] == 0xCC \
 && Data_Buffer[3] == 0xCC && Data_Buffer[28] == 0xDD &&
Data_Buffer[29] == 0xDD \
 && Data_Buffer[30] == 0xDD && Data_Buffer[31] == 0xDD
//--
typedef enum
{
 STATE_IDLE,
 STATE_Data_Reception,
 STATE_Switch_to_IDLE
}STATES;

typedef enum
{
 BITS_8,
 BITS_12
}QUANTIFICATION;
//--

107

Main Program File (main.c)

#include <MAIN.h>
#include <nRF.h>

static char UARTCommand_Index = 0;
static bool UART_Data_Received = false;
static bool UARTCommand_Available = false;
static bool nRF_IRQ = false;
static bool spike_mode;
static uint32_t UARTCommand[32];
static uint32_t Data_Buffer[32];
static uint32_t DAC_Circular_Buffer[DAC_C_B_Size];
static uint32_t DAC_Circular_Buffer_Spike_1[DAC_C_B_Size];
static uint32_t DAC_Circular_Buffer_Spike_2[DAC_C_B_Size];
static uint32_t DAC_C_B_Index_w;
static uint32_t DAC_C_B_Index_r;
static uint32_t DAC_C_B_Index_Spike_1_w;
static uint32_t DAC_C_B_Index_Spike_1_r;
static uint32_t DAC_C_B_Index_Spike_2_w;
static uint32_t DAC_C_B_Index_Spike_2_r;
static uint32_t total_number_of_packets;
static uint32_t number_of_received_packets;
static STATES Current_State = STATE_IDLE;
static QUANTIFICATION Bits_Quantification = BITS_8;

int main(void)
{
 uint32_t i;
 char fifo_status;
 unsigned char uart_data_received;

 //-----System configuration-----
 ConfigureSysClock();
 ConfigureGPIO();
 ConfigureUART();
 ConfigureSPI();
 ConfigureSPI_DAC();
 ConfigureDAC_Timer();
 //-----Ens system configuration-----

 //-----DAC configuration-----
 DAC_C_B_Index_w = 0;
 DAC_C_B_Index_r = 0;
 DAC_C_B_Index_Spike_1_r = 0;
 DAC_C_B_Index_Spike_1_w = 0;
 DAC_C_B_Index_Spike_2_r = 0;
 DAC_C_B_Index_Spike_2_r = 0;
 Write_DAC(0x1C00);
 Write_DAC(0x9C00);
 //-----End DAC configuration-----

 nRF_init();
 nRF_clear_IRQ();
 nRF_write_PTX_settings();
 nRF_CE_low;
 //--
 for(i = 0; i < 32; i++)
 {
 Data_Buffer[i] = 0;
 UARTCommand[i] = 0;
 }

 SET_IDLE_STATE;
 //--
 IntMasterEnable();
 //--

108

 while(1)
 {
 switch(Current_State)
 {
 //--
 case STATE_IDLE:
 if(UART_Data_Received == true)
 {
 UART_Data_Received = false;
 uart_data_received = UARTCharGet(UART1_BASE);
 if(!(UARTCommand_Index == 0 && uart_data_received == 0xDD))
 {
 UARTCommand[UARTCommand_Index++] = uart_data_received;
 if(UARTCommand_Index == 10)
 {
 UARTCommand_Index = 0;
 UARTCommand_Available = true;
 }
 }
 }
 if(UARTCommand_Available == true)
 {
 UARTCommand_Available = false;

 total_number_of_packets = ((unsigned long)UARTCommand[4] << 24) +
 ((unsigned long)UARTCommand[3] << 16) +
 ((unsigned long)UARTCommand[2] << 8) +
 (unsigned long)UARTCommand[1];
 number_of_received_packets = 0;

 if((UARTCommand[8] >> 4) & 0x01)
 spike_mode = true;
 else
 spike_mode = false;

 if((UARTCommand[8] >> 5) & 0x01)
 Bits_Quantification = BITS_12;
 else
 Bits_Quantification = BITS_8;

 /*
 The headstage will notify us when we can send the configuration
packet
 We have to wait for his notification packet
 */
 SWITCH_RECEIVE_MODE;

 while(1)
 {
 while(!nRF_IRQ);
 nRF_clear_IRQ();
 nRF_download_RX_payload(Data_Buffer);
 nRF_IRQ = false;
 nRF_clear_IRQ();
 if(UTILS_PACKET)
 {
 if(Data_Buffer[4] == 0x00)
 {
 break; // Notification packet received,
OK to send the configuration packet
 }
 }
 }

 SWITCH_TRANSMIT_MODE;

 SysCtlDelay(3000000); // Wait for the receiver to go in receive mode

109

 nRF_upload_TX_payload(UARTCommand); // Send the configuration packet
 nRF_CE_high;
 SysCtlDelay(150);
 nRF_CE_low;

 while(!nRF_IRQ);
 nRF_IRQ = false;
 nRF_clear_IRQ();

 SWITCH_RECEIVE_MODE;

 SET_RECEPTION_STATE;
 }
 break;
 //--
 case STATE_Data_Reception:
 fifo_status = nRF_FIFO_STATUS();
 if(!(fifo_status & 0x01))
 {
 nRF_clear_IRQ();
 nRF_download_RX_payload(Data_Buffer);
 nRF_IRQ = false;

 // Verify if the packet received is a utils packet or a
notitication packet
 if(UTILS_PACKET)
 {
 if(Data_Buffer[4] == 0x01)
 {
 UARTCharPut(UART1_BASE, 0xBB); // Send the utils
byte to the base station, notify that the data following data are not from ADC
 }
 else if(Data_Buffer[4] == 0x02)
 {
 SWITCH_TRANSMIT_MODE
 SET_IDLE_STATE;
 continue;
 }
 else if(Data_Buffer[4] == 0x00 &&
number_of_received_packets == 0)
 {
 // We received a ok to send notification packet.
This means that the configuration packet that we send get lost.
 // We need to resend the configuration packet
 UARTCommand_Available = true;
 SET_IDLE_STATE;
 continue;
 }
 else
 {
 continue; // Low probability that we get here,
if so, nothing happens
 }
 }
 else
 {
 number_of_received_packets++;
 if(spike_mode)
 {
 UARTCharPut(UART1_BASE, 0xCC); // Send the data byte
to the base station, notify that the data following are from the ADC of the headstage
 if(Data_Buffer[0] == 0x01)
 {
 for(i = 1; i < 32; i++)
 {

110

DAC_Circular_Buffer_Spike_1[DAC_C_B_Index_Spike_1_w++] = Data_Buffer[i];
 if(DAC_C_B_Index_Spike_1_w >=
DAC_C_B_Size)
 DAC_C_B_Index_Spike_1_w = 0;
 }
 }
 else if (Data_Buffer[0] == 0x02)
 {
 for(i = 1; i < 32; i++)
 {

DAC_Circular_Buffer_Spike_2[DAC_C_B_Index_Spike_2_w++] = Data_Buffer[i];
 if(DAC_C_B_Index_Spike_2_w >=
DAC_C_B_Size)
 DAC_C_B_Index_Spike_2_w = 0;
 }

 }
 }
 else
 {
 if(Bits_Quantification == BITS_8)
 UARTCharPut(UART1_BASE, 0xAA); // Send the data
byte to the base station, notify that the data following are from the ADC of the headstage
 else
 UARTCharPut(UART1_BASE, 0xEE);
 for(i = 0; i < 32; i += 4)
 {
 if(Bits_Quantification == BITS_8)
 {// 8 bits
 DAC_Circular_Buffer[DAC_C_B_Index_w++] =
Data_Buffer[i];
 if(DAC_C_B_Index_w >= DAC_C_B_Size)
 DAC_C_B_Index_w = 0;

 DAC_Circular_Buffer[DAC_C_B_Index_w++] =
Data_Buffer[i + 1];
 if(DAC_C_B_Index_w >= DAC_C_B_Size)
 DAC_C_B_Index_w = 0;
 }
 else
 {// 12 bits

DAC_Circular_Buffer[DAC_C_B_Index_w++] = Data_Buffer[i] + ((uint32_t)(Data_Buffer[i + 1] & 0x0F) << 8);
 if(DAC_C_B_Index_w >= DAC_C_B_Size)
 DAC_C_B_Index_w = 0;

DAC_Circular_Buffer[DAC_C_B_Index_w++] = Data_Buffer[i + 2] + ((uint32_t)(Data_Buffer[i + 3] & 0x0F) <<
8);
 if(DAC_C_B_Index_w >= DAC_C_B_Size)
 DAC_C_B_Index_w = 0;
 }
 }
 }
 }

 for(i = 0; i<32; i++)
 UARTCharPut(UART1_BASE, Data_Buffer[i]);

 if(number_of_received_packets == total_number_of_packets && spike_mode == false)
 {
 Current_State = STATE_Switch_to_IDLE;
 }
 }
 break;
 //--
 case STATE_Switch_to_IDLE:

111

 {
 SWITCH_TRANSMIT_MODE;
 SET_IDLE_STATE;
 }
 break;
 }
 }
}

void SysTick_int_handler(void)
{
}

void nRF_IRQ_handler(void)
{
 GPIOIntClear(nRF_IRQn_PORT, nRF_IRQn_PIN);
 nRF_IRQ = true;
}

void UART1_int_handler(void)
{
 volatile unsigned char header_byte;
 UARTIntClear(UART1_BASE, UART_INT_RX | UART_INT_RT);
 if(Current_State == STATE_Data_Reception)
 {
 // We received new configuration data to send while we were already receiving data from
the headstage
 header_byte = UARTCharGet(UART1_BASE);
 if(header_byte == 0xDE) // New data, switch to IDLE state
 {
 UARTCommand_Index = 1;
 UARTCommand[0] = 0xDE; // Simulate that we were already in IDLE state
 Current_State = STATE_Switch_to_IDLE;
 }
 else if(header_byte == 0xDD) // only switch to IDLE state
 {
 UARTCommand_Index = 0;
 Current_State = STATE_Switch_to_IDLE;
 }
 }
 else if(Current_State == STATE_IDLE)
 UART_Data_Received = true;

}

void Timer0IntHandler(void)
{
 // Clear the timer interrupt.
 TimerIntClear(TIMER0_BASE, TIMER_TIMA_TIMEOUT);
 if(Current_State == STATE_Data_Reception)
 {
 if(spike_mode)
 {
 if(DAC_Circular_Buffer_Spike_1[DAC_C_B_Index_Spike_1_r] != 0x8000)
 {
 Write_DAC(DAC_CH1 | (DAC_Circular_Buffer_Spike_1[DAC_C_B_Index_Spike_1_r] << 2));

 DAC_Circular_Buffer_Spike_1[DAC_C_B_Index_Spike_1_r] = 0x8000;

 DAC_C_B_Index_Spike_1_r += 1;
 if(DAC_C_B_Index_Spike_1_r >= DAC_C_B_Size)
 DAC_C_B_Index_Spike_1_r = 0;
 }
 if(DAC_Circular_Buffer_Spike_2[DAC_C_B_Index_Spike_2_r] != 0x8000)
 {
 Write_DAC(DAC_CH2 | (DAC_Circular_Buffer_Spike_2[DAC_C_B_Index_Spike_2_r] << 2));

 DAC_Circular_Buffer_Spike_2[DAC_C_B_Index_Spike_2_r] = 0x8000;

112

 DAC_C_B_Index_Spike_2_r += 1;
 if(DAC_C_B_Index_Spike_2_r >= DAC_C_B_Size)
 DAC_C_B_Index_Spike_2_r = 0;
 }
 }
 else
 {
 if(DAC_Circular_Buffer[DAC_C_B_Index_r + 1] != 0x8000)
 {
 if(Bits_Quantification == BITS_8)
 {
 Write_DAC(DAC_CH1 | (DAC_Circular_Buffer[DAC_C_B_Index_r] << 4));
 Write_DAC(DAC_CH2 | (DAC_Circular_Buffer[DAC_C_B_Index_r + 1] << 4));
 }
 else
 {
 Write_DAC(DAC_CH1 | (DAC_Circular_Buffer[DAC_C_B_Index_r]));
 Write_DAC(DAC_CH2 | (DAC_Circular_Buffer[DAC_C_B_Index_r + 1]));
 }

 DAC_Circular_Buffer[DAC_C_B_Index_r] = 0x8000;
 DAC_Circular_Buffer[DAC_C_B_Index_r + 1] = 0x8000;

 DAC_C_B_Index_r += 2;
 if(DAC_C_B_Index_r >= DAC_C_B_Size)
 DAC_C_B_Index_r = 0;
 }
 }
 }
 else
 {
 Write_DAC(DAC_CH1 | 0);
 Write_DAC(DAC_CH2 | 0);
 }
}

113

Custom nRF24L01+ Controller Library Header File (nRF.h)

extern void nRF_init(void);

extern void nRF_reg_write(char addr, uint32_t *data, unsigned data_length);
extern void nRF_reg_read(char addr, uint32_t *data, unsigned data_length);

extern void nRF_upload_TX_payload(uint32_t *data);
extern void nRF_download_RX_payload(uint32_t *data);

extern void nRF_FLUSH_TX(void);
extern void nRF_FLUSH_RX(void);

extern char nRF_FIFO_STATUS(void);
extern uint32_t nRF_NOP(void);

extern void nRF_clear_IRQ(void);

extern uint32_t nRF_read_RX_payload_len(void);

extern void nRF_write_PTX_settings(void);
extern void nRF_write_PRX_settings(void);
//---
#define nRF_CE_PORT GPIO_PORTE_BASE
#define nRF_CE_PIN GPIO_PIN_1

#define nRF_CSN_PORT GPIO_PORTE_BASE
#define nRF_CSN_PIN GPIO_PIN_4

#define nRF_IRQn_PORT GPIO_PORTA_BASE
#define nRF_IRQn_PIN GPIO_PIN_7

#define nRF_packet_len 32
//---
#define nRF_DESELECT while(SSIBusy(SSI0_BASE));GPIOPinWrite(nRF_CSN_PORT, nRF_CSN_PIN, nRF_CSN_PIN)
#define nRF_SELECT GPIOPinWrite(GPIO_PORTE_BASE, nRF_CSN_PIN, 0)

#define nRF_CE_high GPIOPinWrite(nRF_CE_PORT, nRF_CE_PIN, nRF_CE_PIN)
#define nRF_CE_low GPIOPinWrite(nRF_CE_PORT, nRF_CE_PIN, 0)
//---

114

Custom nRF24L01+ Controller Library Implementation File (nRF.c)

#include <MAIN.h>
#include <nRF.h>
//---
void nRF_init(void)
{
 nRF_CE_low;
 delay(100000);
 nRF_SELECT;
 delay(100000);
 nRF_DESELECT;
}
//---
void nRF_reg_write(char addr, uint32_t *data, unsigned data_length)
{
 uint32_t i;

 addr = addr & 0x1F;
 addr = addr | 0x20;

 nRF_SELECT;

 SSIDataPut(SSI0_BASE, addr);

 for(i = 0; i < data_length; i++)
 {
 while(SSIBusy(SSI0_BASE));
 SSIDataPut(SSI0_BASE, data[i]);
 }

 while(SSIBusy(SSI0_BASE));
 nRF_DESELECT;

 SPI_buffer_flush();
}
//---
void nRF_reg_read(char addr, uint32_t *data, unsigned data_length)
{
 uint32_t i;

 addr = addr & 0x1F;

 SPI_buffer_flush();

 nRF_SELECT;

 SSIDataPut(SSI0_BASE, addr);
 while(SSIBusy(SSI0_BASE));
 SSIDataGet(SSI0_BASE, NULL);

 for(i = 0; i < data_length; i++)
 {
 SSIDataPut(SSI0_BASE, 0xFF);
 while(SSIBusy(SSI0_BASE));
 SSIDataGet(SSI0_BASE, data+i);
 }

 while(SSIBusy(SSI0_BASE));
 nRF_DESELECT;
}
//---
void nRF_upload_TX_payload(uint32_t *data)
{
 uint32_t i;

 nRF_SELECT;

115

 SSIDataPut(SSI0_BASE, 0xA0);

 for(i = 0; i < nRF_packet_len; i++)
 {
 while(SSIBusy(SSI0_BASE));
 SSIDataPut(SSI0_BASE, data[i]);
 }

 while(SSIBusy(SSI0_BASE));
 nRF_DESELECT;

 SPI_buffer_flush();
}
//---
void nRF_download_RX_payload(uint32_t *data)
{
 uint32_t i;

 SPI_buffer_flush();

 nRF_SELECT;

 SSIDataPut(SSI0_BASE, 0x61);
 while(SSIBusy(SSI0_BASE));
 SSIDataGet(SSI0_BASE, NULL);

 for(i = 0; i < nRF_packet_len; i++)
 {
 SSIDataPut(SSI0_BASE, 0xFF);
 while(SSIBusy(SSI0_BASE));
 SSIDataGet(SSI0_BASE, data+i);
 }

 while(SSIBusy(SSI0_BASE));
 nRF_DESELECT;
}
//---
void nRF_FLUSH_TX(void)
{
 nRF_SELECT;

 SSIDataPut(SSI0_BASE, 0xE1);
 while(SSIBusy(SSI0_BASE));
 SSIDataGet(SSI0_BASE, NULL);

 nRF_DESELECT;
}
//---
void nRF_FLUSH_RX(void)
{
 nRF_SELECT;

 SSIDataPut(SSI0_BASE, 0xE2);
 while(SSIBusy(SSI0_BASE));
 SSIDataGet(SSI0_BASE, NULL);

 nRF_DESELECT;
}
//---
uint32_t nRF_NOP(void)
{
 uint32_t status;

 nRF_SELECT;

 SSIDataPut(SSI0_BASE, 0xFF);
 while(SSIBusy(SSI0_BASE));

116

 SSIDataGet(SSI0_BASE, &status);

 nRF_DESELECT;

 return status;
}
//---
uint32_t nRF_read_RX_payload_len(void)
{
 uint32_t length;

 nRF_SELECT;

 SSIDataPut(SSI0_BASE, 0x60);
 while(SSIBusy(SSI0_BASE));
 SSIDataGet(SSI0_BASE, NULL);

 SSIDataPut(SSI0_BASE, 0xFF);
 while(SSIBusy(SSI0_BASE));
 SSIDataGet(SSI0_BASE, &length);

 nRF_DESELECT;

 return length;
}
//---
void nRF_clear_IRQ(void)
{
 nRF_SELECT;

 SSIDataPut(SSI0_BASE, 0x27);
 while(SSIBusy(SSI0_BASE));
 SSIDataGet(SSI0_BASE, NULL);

 SSIDataPut(SSI0_BASE, 0x70);
 while(SSIBusy(SSI0_BASE));
 SSIDataGet(SSI0_BASE, NULL);

 nRF_DESELECT;
}
//---
char nRF_FIFO_STATUS(void)
{
 volatile uint32_t status;

 nRF_SELECT;

 SSIDataPut(SSI0_BASE, 0x17);
 while(SSIBusy(SSI0_BASE)){}
 SSIDataGet(SSI0_BASE, NULL);

 SSIDataPut(SSI0_BASE, 0xFF);
 while(SSIBusy(SSI0_BASE)){}
 SSIDataGet(SSI0_BASE, (uint32_t*)&status);

 nRF_DESELECT;

 return (char)status;
}

117

Custom nRF24L01+ Controller Library Implementation File (nRF_config.c)

#include <MAIN.h>
#include <nRF.h>

//------------------------------------
// nRF24L01+ PTX register settings
void nRF_write_PTX_settings(void)
{
 uint32_t data[5];

 unsigned int i;
 //++++++++++++++++++++++++++
 // CONFIG : Configuration Register
 data[0] = 0x1A;
 nRF_reg_write(0x00,data,1);
 //++++++++++++++++++++++++++
 for(i = 0 ; i < 65000; i++);
 //++++++++++++++++++++++++++
 // EN_AA : Enhanced ShockBurst
 data[0] = 0x00;
 nRF_reg_write(0x01,data,1);
 //++++++++++++++++++++++++++
 // EN_RXADDR : Enabled RX Addresses
 data[0] = 0x01;
 nRF_reg_write(0x02,data,1);
 //++++++++++++++++++++++++++
 // SETUP_AW : Setup of Address Widths
 data[0] = 0x01;
 nRF_reg_write(0x03,data,1);
 //++++++++++++++++++++++++++
 // SETUP_RETR : Setup of Automatic Retransmission
 data[0] = 0x00;
 nRF_reg_write(0x04,data,1);
 //++++++++++++++++++++++++++
 // RF_CH : RF Channel
 data[0] = 0x0A;
 nRF_reg_write(0x05,data,1);
 //++++++++++++++++++++++++++
 // RF_SETUP : RF Setup Register
 data[0] = 0x0E;
 nRF_reg_write(0x06,data,1);
 //++++++++++++++++++++++++++
 // STATUS : Status Register
 //++++++++++++++++++++++++++
 // OBSERVE_TX : Transmit observe register
 //++++++++++++++++++++++++++
 // RPD : Received Power Detector
 //++++++++++++++++++++++++++
 // RX_ADDR_P0 : Receive address data pipe 0
 data[0] = 0x0F;
 data[1] = 0x0E;
 data[2] = 0x0F;
 data[3] = 0x0E;
 data[4] = 0x0F;
 nRF_reg_write(0x0A,data,5);
 //++++++++++++++++++++++++++
 // RX_ADDR_P1 : Receive address data pipe 1
 //++++++++++++++++++++++++++
 // RX_ADDR_P2 : Receive address data pipe 2
 //++++++++++++++++++++++++++
 // RX_ADDR_P3 : Receive address data pipe 3
 //++++++++++++++++++++++++++
 // RX_ADDR_P4 : Receive address data pipe 4
 //++++++++++++++++++++++++++
 // RX_ADDR_P5 : Receive address data pipe 5
 //++++++++++++++++++++++++++

118

 // TX_ADDR : Transmit address
 data[0] = 0x0F;
 data[1] = 0x0E;
 data[2] = 0x0F;
 data[3] = 0x0E;
 data[4] = 0x0F;
 nRF_reg_write(0x10,data,5);
 //++++++++++++++++++++++++++
 // RX_PW_P0 : Number of bytes in RX payload in data pipe 0 ????????????
 data[0] = nRF_packet_len;
 nRF_reg_write(0x11,data,1);
 //++++++++++++++++++++++++++
 // RX_PW_P1 : Number of bytes in RX payload in data pipe 1
 //++++++++++++++++++++++++++
 // RX_PW_P2 : Number of bytes in RX payload in data pipe 2
 //++++++++++++++++++++++++++
 // RX_PW_P3 : Number of bytes in RX payload in data pipe 3
 //++++++++++++++++++++++++++
 // RX_PW_P4 : Number of bytes in RX payload in data pipe 4
 //++++++++++++++++++++++++++
 // RX_PW_P5 : Number of bytes in RX payload in data pipe 5
 //++++++++++++++++++++++++++
 // FIFO_STATUS : FIFO Status Register
 //++++++++++++++++++++++++++
 // DYNPD : Enable dynamic payload length
 data[0] = 0x00;
 nRF_reg_write(0x1C,data,1);
 //++++++++++++++++++++++++++
 // FEATURE : Feature Register
 data[0] = 0x00;
 nRF_reg_write(0x1D,data,1);
 //++++++++++++++++++++++++++
}
//------------------------------------
// nRF24L01+ PRX register settings
void nRF_write_PRX_settings(void)
{
 uint32_t data[5];

 unsigned int i;
 //++++++++++++++++++++++++++
 // CONFIG : Configuration Register
 data[0] = 0x1B;
 nRF_reg_write(0x00,data,1);
 //++++++++++++++++++++++++++
 for(i = 0 ; i < 65000; i++);
 //++++++++++++++++++++++++++
 // EN_AA : Enhanced ShockBurst
 data[0] = 0x00;
 nRF_reg_write(0x01,data,1);
 //++++++++++++++++++++++++++
 // EN_RXADDR : Enabled RX Addresses
 data[0] = 0x01;
 nRF_reg_write(0x02,data,1);
 //++++++++++++++++++++++++++
 // SETUP_AW : Setup of Address Widths
 data[0] = 0x01;
 nRF_reg_write(0x03,data,1);
 //++++++++++++++++++++++++++
 // SETUP_RETR : Setup of Automatic Retransmission
 data[0] = 0x00;
 nRF_reg_write(0x04,data,1);
 //++++++++++++++++++++++++++
 // RF_CH : RF Channel
 data[0] = 0x65;
 nRF_reg_write(0x05,data,1);
 //++++++++++++++++++++++++++
 // RF_SETUP : RF Setup Register

119

 data[0] = 0x0E;
 nRF_reg_write(0x06,data,1);
 //++++++++++++++++++++++++++
 // STATUS : Status Register
 //++++++++++++++++++++++++++
 // OBSERVE_TX : Transmit observe register
 //++++++++++++++++++++++++++
 // RPD : Received Power Detector
 //++++++++++++++++++++++++++
 // RX_ADDR_P0 : Receive address data pipe 0
 data[0] = 0x0F;
 data[1] = 0x0E;
 data[2] = 0x0F;
 data[3] = 0x0E;
 data[4] = 0x0F;
 nRF_reg_write(0x0A,data,5);
 //++++++++++++++++++++++++++
 // RX_ADDR_P1 : Receive address data pipe 1
 //++++++++++++++++++++++++++
 // RX_ADDR_P2 : Receive address data pipe 2
 //++++++++++++++++++++++++++
 // RX_ADDR_P3 : Receive address data pipe 3
 //++++++++++++++++++++++++++
 // RX_ADDR_P4 : Receive address data pipe 4
 //++++++++++++++++++++++++++
 // RX_ADDR_P5 : Receive address data pipe 5
 //++++++++++++++++++++++++++
 // TX_ADDR : Transmit address
 data[0] = 0x0F;
 data[1] = 0x0E;
 data[2] = 0x0F;
 data[3] = 0x0E;
 data[4] = 0x0F;
 nRF_reg_write(0x10,data,5);
 //++++++++++++++++++++++++++
 // RX_PW_P0 : Number of bytes in RX payload in data pipe 0 ????????????
 data[0] = nRF_packet_len;
 nRF_reg_write(0x11,data,1);
 //++++++++++++++++++++++++++
 // RX_PW_P1 : Number of bytes in RX payload in data pipe 1
 //++++++++++++++++++++++++++
 // RX_PW_P2 : Number of bytes in RX payload in data pipe 2
 //++++++++++++++++++++++++++
 // RX_PW_P3 : Number of bytes in RX payload in data pipe 3
 //++++++++++++++++++++++++++
 // RX_PW_P4 : Number of bytes in RX payload in data pipe 4
 //++++++++++++++++++++++++++
 // RX_PW_P5 : Number of bytes in RX payload in data pipe 5
 //++++++++++++++++++++++++++
 // FIFO_STATUS : FIFO Status Register
 //++++++++++++++++++++++++++
 // DYNPD : Enable dynamic payload length
 data[0] = 0x00;
 nRF_reg_write(0x1C,data,1);
 //++++++++++++++++++++++++++
 // FEATURE : Feature Register
 data[0] = 0x00;
 nRF_reg_write(0x1D,data,1);
 //++++++++++++++++++++++++++
}
//------------------------------------

121

Appendix C. Headstage Prototype Schematics and

PCB Layout

Design Top Module

122

Analog Front End

123

Microcontroller Circuitry

124

Optical Stimulation Circuitry

125

Power Management Unit

126

Radio Transceiver

127

PCB Layout

121

129

Final Headstage Schematics and PCB Layout

Design Top Module

130

Analog Front End

131

Microcontroller Circuitry

132

Optical Stimulation Circuitry

133

Power Management Unit

134

Radio Transceiver

135

PCB Layout

136

Bill of Materials

Designator Footprint Value

C1 0402 0.1uF

C2 0402 1uF
C3 0402 1uF

C4 0402 1nF
C5 0402 0.01uF
C6 0402 0.1uF

C7 0402 1uF
C8 0402 1nF
C9 0402 0.01uF

C10 0402 0.1uF
C11 0402 1uF

C12 0402 1uF
C13 0402 1nF
C14 0402 0.01uF

C15 0402 0.1uF
C16 0402 1uF
C17 0402 1nF

C18 0402 0.01uF
C19 0402 1uF
C20 0402 1uF

C21 0402 1.0uF

C22 C1210 220uF
C23 0402 1.0uF

C24 C1210 220uF
C25 C0805 47uF
C26 0402 1uF

C27 0402 1uF
C28 0402 0.1uF
C29 0402 1uF

C30 0402 0.1uF
C31 0402 0.01uF
C32 0402 10uF

C33 0402 0.1uF
C34 0402 1nF
C35 0402 1uF

C37 0402 470nF
C38 0402 2.2nF
C39 0402 0.1uF

C40 0402 10uF
C41 0402 1.5pF
C42 0402 10uF

C43 0402 10nF

C44 0402 1nF

137

C45 0402 1pF

C46 0402 4.7pF
C47 0402 2.2nF
C48 0402 33nF

C49 0402 8pF

C50 0402 8pF
C53 0402 1.0uF

C54 C1210 220uF
C55 0402 1.0uF
C56 C1210 220uF

C57 C0805 47uF
E1 ANT-2.45-CHP-B
JTAG1 SMH101-LPSE-D05-SP-BK

L1 1608[0603] 100uH
L2 0402 3.9nH
L3 0402 8.2nH

L4 0402 2.7nH
L5 1608[0603] 100uH
P1 TwoSmallPads

P2 Molex_SlimStack_0537480208
P3 TwoSmallPads
Q1 318-08

Q2 SOT23
Q3 318-08
Q4 SOT23

R1 0402 1K
R2 0402 0.1K
R3 0402 39K

R4 0402 39K
R5 0402 0.1K
R6 0402 1K

R7 0402 50K
R8 0402 1K

R9 0402 0.1K
R10 0402 39K
R11 0402 39K

R12 0402 0.1K
R13 0402 1K
R14 0402 50K

R15 0402 1
R16 0402 10K
R17 0402 10K

R18 0402 100K
R22 0402 47K
R23 0402 10K

R24 0402 1M

R25 0402 22K

138

R27 0402 10K

R29 0402 100K
R30 0402 1K
R31 0402 2.4K

R32 0402 0.5

R35 0402 10K
R37 0402 100K

R38 0402 1K
R39 0402 2.4K
R40 0402 0.5

R41 0402 1
U1 TI-D8_N
U2 ADI-RU-14_N

U3 TI-D8_N
U4 TI-DBV5_N
U5 ADI-RM-8_N

U6 M08A_N
U7 TI-ZQE80
U8 QFN50P400X400-20W5M

U9 8Y-16.000MAAV-T
U10 TI-DBV5_N
U12 TI-DBV5_N

U13 TI-DSE6_V

