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Résumé 
Les cuves d'electrolyse utilisées pour la production aluminium sont soumises à des 

variations de la qualité des matières premières, à des perturbations diverses encourues en 

cours de production ou en cours de démarrage. Il est connu que ces perturbations ont un 

impact sur la durée de vie des cuves ainsi que sur l'efficacité de production, métallurgique 

et énergétique. L'amélioration des performances passe nécessairement par une meilleure 

compréhension des sources de variations. Plusieurs travaux ont été présentés jusqu'à 

présent par le biais d'études univariées entre les différents facteurs et les performances. 

Cependant, dans ces études, le comportement des cuves n'est pas étudié de manière 

multivariée, ce qui ne permet pas d'étudier les interactions entre les différentes variables. 

Cette thèse propose d'étudier les facteurs affectant les performances des cuves 

d'electrolyse, précisément la duré de vie, le rendement Faraday et la consommation 

énergétique, par le biais de méthodes statistiques multivariées (PCA et PLS). 

Premièrement, il est démontré que la durée de vie des cuves est expliquée à 72% en 

utilisant l'information provenant des préchauffages, des démarrages et de l'opération 

transitoire, démontrant ainsi l'effet de ces étapes sur la durée de vie des cuves. Cette étude 

est suivie d'une analyse des facteurs affectant l'efficacité de courant et la consommation 

énergétique des cuves. L'effet de la qualité de l'alumine, des anodes, des variables 

manipulées, et des variables d'états des cuves permet d'expliquer 50% des variations des 

performances. Cette étude démontre l'importance du contrôle de la hauteur de bain. Ainsi, 

une étude approfondie des facteurs affectant la hauteur de bain est effectuée. La 

composition du produit de recouvrement des anodes a un impact majeur sur la hauteur de 

bain. Malheureusement, il est présentement impossible de bien effectuer le suivi et le 

contrôle de cette composition puisque seulement quelques échantillons sont analysés 

quotidiennement. Afin de palier à ce manque, cette thèse présente une nouvelle approche, 

basée sur l'analyse d'image, pour prédire la composition du produit de recouvrement. Cette 

application faciliterait le suivi et le contrôle de la composition, ce qui améliorerait le 

contrôle de la hauteur de bain permettant ainsi d'améliorer les performances des cuves. 



11 

Abstract 
Aluminum reduction cells are submitted to raw materials quality variations and process 

upsets, from the operation or from deficient control strategies, different preheating, start-up 

and early operation behaviour. It is known that these factors have an impact on cells potlife, 

current efficiency and energy consumption. However, improving these performance 

indicators requires a good understanding of the variables affecting them. So far, many 

authors have reported the impact of individual variables on performance instead of 

considering the cell behaviour as a whole multivariate process. In this thesis, an attempt is 

made at finding the combinations of raw material properties and process variables having 

an impact on potlife, current efficiency and energy consumption using different 

multivariate statistical analysis techniques (PCA and PLS), in order to gain a better 

understanding of variables interactions. First, the impact of preheating, start-up and early 

operation on potlife is investigated. It is demonstrated that these steps account for about 

72% of the potlife variance, thus highlighting their great impact. An investigation of the 

factors affecting current efficiency and energy consumption is then presented. Alumina and 

anode quality are combined with pot manipulated and state variables in order to develop a 

multivariate regression model between these variables and current efficiency and energy 

consumption. From this study, only 50% of current efficiency and energy consumption is 

explained highlighting the fact that some pieces of the puzzle are missing and that more 

information has to be measured to better understand performance variations. An in-depth 

study of bath level control is therefore presented as it was previously highlighted important 

for current efficiency and energy consumption variations. The variable having the greatest 

effect on bath level is anode cover product composition, which unfortunately is measured 

on a limited number of samples, thus not known on a pot-to-pot basis. Finally, this thesis 

presents a novel machine vision solution to predict anode cover product composition within 

errors compatible with process application. Such a device would enable a better control of 

anode cover product composition, which in turn would facilitate bath level control and thus 

improve pot performance. 



Forewords 
The work presented in this thesis was performed at the Alcoa Deschambault smelter 

(Deschambault, QC, Canada) and at the Alcoa Technical Center (Alcoa Center, PA, USA). 

All results were generated using industrial data. 

Following the introduction and two background chapters, the core of this thesis consists of 

four chapters: one paper submitted to Metallurgical and Materials Transactions B, one 

manuscript in preparation, one consisting of unpublished material and one paper published 

in Chemical Engineering Science. The candidate performed data collection and analysis, 

wrote the various computer codes and all publication materials under the supervision of his 

supervisor. The work performed through this thesis also led to four conference papers and 

one patent. These are presented next with their contribution to the discipline of aluminum 

reduction. 

The first part of this thesis consists of using the information hidden in industrial aluminum 

smelter databases to highlight and investigate possible causes of variations leading to 

performance fluctuations. 

o At a plant level, variables interactions were investigated to highlight how anodes 

and alumina quality and pot manipulated variables behaviour combined together led 

to a performance drop in the potroom area. This paper showed that this particular 

performance drift was related to the simultaneous degradation of some alumina and 

anode quality variables concurrently happening with a decrease in bath level. 

[1] Tessier, J., Duchesne, C , Tarcy, G.P., Gauthier, C , Dufour, G., Analysis of a 

potroom performance drift, from a multivariate point of view, Proceedings of 

TMS 2008, Light Metals 2008 Volume 2: Aluminum Reduction Technology, New 

Orleans, LA, USA, March 2008, pp 319-324. 

o Reduction cells have a limited lifespan due to the degradation of their materials 

from continuous operation in a highly aggressive environment. The impact of 

reduction cells preheating, start-up and early operation quality was investigated with 

respect to cells operating time. This work showed that after only 60 days of 
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operation, enough information is available to predict potlife within 84 days. 

Considering that these cells are operated for more than 2000 days, this paper 

demonstrated that preheating, start-up and early operation have a strong impact on 

potlife. Therefore, key variables are identified and multivariate statistical process 

monitoring and control strategies are presented to better monitor them. 

[2] Tessier, J., Duchesne, C , Tarcy, G.P., Gauthier, C , Dufour, G., Increasing 

potlife of Hall-Héroult reduction cells through multivariate on-line monitoring of 

preheating, start-up and early operation, submitted to Metallurgical and 

Materials Transactions B (Manuscript E-TP-09-195-B, June 23rd, 2009). 

[3] Tessier, J., Duchesne, C , Tarcy, G.P., Gauthier, C , Dufour, G., Investigation 

of the impact of pre-heating, start-up and early operation on potlife Proceedings 

of TMS 2010, Light Metals 2010: Electrode Technology, Submitted on 

September 15th, 2009. 

o Finally, the influence of alumina and anode quality, as well as pot state and 

manipulated variables were studied with respect to current efficiency and energy 

consumption variations over complete pot life cycles, from start-up to death. This 

paper builds on the findings of the paper presented at TMS 2008 [1], but covers 

them more deeply while focusing on a pot basis instead of a plant basis. It is shown 

that many variables have an impact on performance and the relative importance of 

these variables is also highlighted. Again, a multivariate statistical monitoring 

strategy is presented in order to efficiently monitor the process variables affecting 

current efficiency and energy consumption. 

[4] Tessier, J., Duchesne, C , Tarcy, G.P., Gauthier, C , Dufour, G., Multivariate 

analysis and monitoring of the performance of aluminum reduction cells, 

submitted to Metallurgical and Materials Transactions B (E-TP-09-335-B, 

November 24th, 2009) 



Tessier, J., Duchesne, C , Tarcy, G.P., Gauthier, C , Dufour, G., 2009, 

Multivariate Analysis and Monitoring of the Performance of Aluminum 

Reduction Cells, Metallurgical and Materials Transactions B, Soumis le 24 

novembre 2009. 

Some of these studies have pointed out the fact that bath level control had an important 

impact on current efficiency and energy consumption. Hence, a chapter investigates the 

variables contributing the most to bath level variations, which in turns lead to different 

operational problems negatively affecting pot performance. It is demonstrated that bath 

level is heavily affected by anode cover material composition, which is not properly 

controlled. This is presented in a chapter of unpublished materials. 

In the second part of this work, the use of image analysis to predict anode cover material 

composition is presented. 

o At first, different image analysis algorithms were investigated on hand-made anode 

cover material samples covering a wide alumina composition range. Different color 

and textural image analysis algorithms were investigated. Results demonstrated that 

it is possible to predict anode cover material composition based on textural features 

extracted from images captured by a conventional off-the-shelf color (RGB) digital 

camera. 

[5] Tessier, J., Duchesne, C , Gauthier, C , Dufour, G., 2008, Estimation of 

alumina content of anode cover material using multivariate image analysis 

technique, Chemical Engineering Science, Vol. 63, March 2008, pp. 1370-1380 

o Following this study, an image acquisition set-up was constructed, using a better 

camera and lightning set-up to ensure constant lightning conditions. This set-up was 

used to fine-tune the image analysis algorithm based on hand-made and industrial 

samples of anode cover material. Industrial samples were grabbed from 12 

reductions cells over a period of three months. Using the industrial samples, it was 

shown that it is possible to predict anode cover material composition with a root 
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mean squared error of prediction of 0.9 % AI2O3 and that 83.3% of the predictions 

fall within the laboratory confidence interval. 

[6] Tessier, J., Duchesne, C , Gauthier, C , Dufour, G., Anode cover material 

estimation using image analysis in primary aluminum production, Preprints of 

the 12th IFAC Symposium on Automation in Mining, Mineral and Metal 

Processing, Quebec City, QC, Canada, August, 2007. pp. 483-489. 

[7] Tessier, J., Duchesne, C , Gauthier, C , Dufour, G., Image analysis for the 

estimation of anode cover material composition, Proceedings of TMS 2008, Light 

Metals 2008 Volume 2: Aluminum Reduction Technology, New Orleans, LA, 

USA, March 2008, pp. 293-298 

[8] Tessier, J., Duchesne, C , Gauthier, C , Dufour, G., Methods, Systems and 

Apparatus for Determining Composition of Feed Material of Metal Electrolysis 

Cells, U.S. Patent Application publication No. 2009/0107840 Al, filed on 

October 24th, 2008, published on April 30th, 2009. 



Acknowledgements 
Over the past few years, I spend a lot of time working on this thesis. During this time, I 

have been blessed to be surrounded by many good people who have played a role in this 

work. This work was made possible through the funding of Alcoa, the Natural Sciences and 

Engineering Research Council of Canada Industrial Postgraduate Scholarships (NSERC 

IPS) and the REGAL aluminum research centre. 

First, many thanks to Prof. Carl Duchesne. At any time during this work, Carl took the time 

to wisely step-back and think about the problems I was facing. Thanks for your guidance, 

support and dedication. A special thanks to Gilles Dufour at Alcoa. In fall 2005,1 presented 

him what I wanted to do for my Ph.D. and he stepped in, fortunately, and directed me to the 

right folks within the Alcoa network. Without his enthusiasm, this work would not have 

been possible. 

I have been lucky to work during the past four years, and before as an undergrad student, 

with great people. I would like to thanks the Alcoa Deschambault Potroom, Electrode and 

Laboratory technical staff. I asked a lot of questions and some of your time and you never 

said no. A special thanks also to Patrice Doiron for many technical and non-technical 

discussions and to Claude Gauthier, for his support, time spent during coffee breaks and 

technical discussions. The time spent traveling with Claude was always a blast. I also 

travelled to different Alcoa smelters around the world and I spent summer 2007 at the 

Alcoa Technical Center. Thanks to Gary P. Tarcy, Jay N. Bruggeman, the Hall Process 

Improvement folks and other Alcoans met during my many trips for sharing their time and 

knowledge with me. 

I would like to express my deepest gratitude to my Mom and Dad, Lorraine and Yves. You 

two never stopped me from doing what I wanted to do and always stick around no matter 

what was going on. Thank you for all your help, support and encouragement. 

Finally, thanks to Lorrie, my wife, for her endless support, encouragement, dedication, and 

understanding. Thank you for taking care of Kimi and Axelle when I was away from home 

for a day or two or for some weeks. I love you all... 



V l l l 

To Lorrie, Kimi, Axelle and David 



Table of contents 
1 Introduction 1 

2 Aluminum Reduction Background .....8 

2.1 The Reactor 8 

2.2 The Electrolyte 10 

2.3 The Alumina 12 

2.4 The Anodes 14 

2.5 The Cathode 15 

2.6 ThePotlines 16 

2.7 The Pot Life Cycle 17 

2.7.1 Preheating, start-up and early operation 18 
2.7.2 Normal operation 19 

2.8 Pot Performance 20 

2.8.1 Introduction 20 
2.8.2 Potlife 20 
2.8.3 Current efficiency 20 
2.8.4 Energy consumption 22 

2.9 Thesis Scope 23 

3 Background on Multivariate Statistical Methods 25 

3.1 Principal Component Analysis (PCA) 26 

3.2 Partial Least Squares Regression (PLS) 30 

3.3 Data Scaling and Selection of the Number of Latent Variables 32 

3.3.1 Data scaling 32 
3.3.2 Selecting the number of components 34 

4 Increasing Potlife of Hall-Héroult Reduction Cells through Multivariate On-line 

Monitoring of Preheating, Start-up and Early Operation 36 

4.1 Résumé 36 

4.2 Abstract ■. 37 

4.3 Introduction 38 

4.4 Nature of Preheating, Start-up and Operation Data 41 

4.5 Latent Variable Models 43 

4.6 Earliest Potlife Prediction Time and Most Influential Variables 47 

4.6.1 Earliest meaningful potlife prediction time 48 
4.6.2 Influence of the variables on potlife 51 



4.6.3 Interpretation of the latent variable model 53 
4.7 On-line Multivariate Statistical Monitoring of Preheating, Start-up and Early 

Operation 56 

4.8 Development of MSPC Charts for Early Operation 57 

4.9 Online Monitoring Results 60 

4.10 Conclusion 66 

4.11 Acknowledgements 67 

5 Multivariate Analysis and Monitoring of the Performance of Aluminum Reduction 

Cells 68 

5.1 Résumé 68 

5.2 Abstract 69 

5.3 Introduction 70 

5.4 Dataset 74 

5.4.1 Alumina quality 74 
5.4.2 Anode quality 75 
5.4.3 Preheating, start-up an early operation data 75 
5.4.4 Pot manipulated and state variables 76 
5.4.5 Potroom location variables 76 
5.4.6 Data treatment and averaging 78 

5.5 Latent Variables Modeling 80 
5.5.1 Partial least squares (PLS) 80 
5.5.2 Multi-blocks partial least squares (MBPLS) 81 

5.6 Performance Prediction Results 83 

5.7 Analysis of Month-to-Month Performance Variations 95 

5.8 Conclusions 103 

5.9 Acknowledgements 104 

6 Investigation of Factors Affecting Bath Level Control 105 

6.1 Importance of Bath Level Control 105 

6.2 Datasets 108 

6.3 Investigation of Bath Level Variations 110 

6.4 Issues with Anode Cover Material Composition 114 

7 Estimation of Alumina Content of Anode Cover Materials Using Multivariate Image 

Analysis Techniques 118 

7.1 Résumé 118 



XI 

7.2 Abstract 119 

7.3 Introduction 120 

7.4 Experimental 122 

7.5 Methods for Extraction of Color and Textural Features 124 

7.5.1 Extraction of color features 125 
7.5.2 Extraction of textural features 127 
7.5.3 Regression Models for Predicting Alumina Content Based on Image Features 

133 
7.6 Alumina Content Prediction Results 134 

7.7 Conclusions 140 

7.8 Acknowledgements 141 

8 General Conclusion 142 

8.1 Conclusion 142 

8.2 Recommendations and Future Work 144 

References 147 



Table list 
Table 4.1: Good and false alarm rates for the three data filling methods 60 
Table 5.1: Blocks of variables included in the analysis 77 
Table 5.2: Importance of each data block in the MBPLS model 90 
Table 5.3: Highest variables VLP, for CE, from each block computed through the MBPLS 

model 91 
Table 5.4: Variables with highest occurrence with respect to CE variations 102 
Table 6.1: Variables included in the investigation of bath level variations 109 
Table 6.2: PLS model results for YBLA and one for YBLS 111 
Table 6.3: The ten most important variables for YBLA and YBLS 112 
Table 7.1: Mean and standard-deviations from laboratory analyses of the eleven mixtures 

from the designed experiment 123 
Table 7.2: Combinations of color and/or textural features in each of the 15 PLS models. 135 
Table 7.3: Comparison of the predictive power of the 15 PLS models investigated 136 



Figure list 
Figure 1.1: Drawing of Hall's original electrolytic cells 3 
Figure 1.2: World primary aluminum production. Sources: Aluminum Association of 

Canada www.aia.aluminum.qc.ca (1886-2005) and Alcoa annual reports (2006-2009). 
4 

Figure 1.3: Organisation of the thesis 7 
Figure 2.1: Evolution of aluminum reduction cells prebaked technology over the last 

hundred years. (a,b) at Massena, NY in 1914; (c,d) Alcoa's P-255 at Massena in 1977 
and (e,f) Aluminum Pechiney's AP-30 at Deschambault, QC in 2005. Courtesy of 
Alcoa 9 

Figure 2.2: Cross-section view of a prebaked Hall-Héroult reactor. Courtesy of Alcoa 10 
Figure 2.3: Variation of cell resistance with alumina concentration at constant ACD 13 
Figure 2.4: Baked carbon anode assembly 15 
Figure 2.5: Typical pot life cycle 18 
Figure 2.6: Typical prebaked cell heat loss distribution 22 
Figure 2.7: Variables interactions within the aluminum reduction process. Courtesy 

Giuseppe Lazzaro (formerly Alcoa Portovesme, Italy) 24 
Figure 3.1: Geometrical interpretation of PCA 28 
Figure 3.2: NIP ALS algorithm for PCA and its arrow scheme 29 
Figure 3.3: NIP ALS for PLS regression and its arrow scheme 31 
Figure 3.4: Effect of mean-centering and autoscaling. Left, original data; middle, mean-

centered data and right, auto-scaled data 32 
Figure 3.5: Effect of block scaling. Left, original data; middle, mean-centered data and 

right, block scaled data 33 
Figure 4.1 : Nature of the data available during preheating, start-up and operation of 

reduction cells 43 
Figure 4.2: (a) Autoscaled potlife distribution for the 31 pots and (b) Normal probability 

distribution 43 
Figure 4.3: Pot-wise unfolding of a three-dimensional array 46 
Figure 4.4: Data arrangements studied for the earliest potlife prediction, (a) method 1 and 

(b) method 2 48 
Figure 4.5: Potlife prediction errors as a function of months after start-up for the two data 

arrangement methods 50 
Figure 4.6: Predicted potlife as a function of truly achieved (i.e. measured) potlife 51 
Figure 4.7: (a) VLP and (b) regression coefficients for the PLS model achieving the earliest 

potlife prediction. The gray area identifies the preheating and start-up variables 52 
Figure 4.8: Bi-plot of the potlife PLS model 54 
Figure 4.9: Zoomed version of the potlife PLS model bi-plot 55 
Figure 4.10: Data structure after pot-wise unfolding and concatenation of X, S and Z. Also 

shown is trajectory data for a newly started pot (vnew) 58 
Figure 4.11: MSPC charts showing T2 and Q statistics and their 95% limits for pots A037, 

Bl 17 and A003 61 
Figure 4.12: T2 and Q contribution plots for pots A037, Bl 17 and A003 63 
Figure 4.13: Pot Bl 17: Contribution of early operation variables to T2 and Q statistics at 

time intervals 37 and 52 64 

http://www.aia.aluminum.qc.ca


XIV 

Figure 4.14: Pot A003: contribution of early operation variables on T and Q at time 
intervals 56 and 57 65 

Figure 5.1: Linear relations between (a) CE and EC, (b) CE and potlife and (c) EC and 
potlife 73 

Figure 5.3: A typical metal height tapping table (D = difference between the measured 
metal level and its target) 79 

Figure 5.4: Data arrangement for (a) the regular PLS and (b) the MBPLS methods. All 
vectors are shown for a single component 83 

Figure 5.5: Data structure used in the analysis 84 
Figure 5.6: Predicted against measured values for (a) CE and (b) EC. Explained variance is 

54.21% for CE and 50.87% for EC 86 
Figure 5.7: Breakdown of the MBPLS model predictive ability for each of the 31 pots used 

in the analysis. Explained variance in cross-validation (a) for CE and for EC and 
RMSECV (b) for CE and EC 87 

Figure 5.8: Autoscaled CE values for pots A003, A096, B102 and A023. Solid lines are for 
real measured CE and dots for predicted CE 88 

Figure 5.9: Bi-plot of the first two latent variables of the CE and EC PLS model 94 
Figure 5.10: Zoomed version of the first two latent variables of the CE and EC PLS model 

bi-plot 94 
Figure 5.11: Monitoring of CE for pot A003 and detection of an upset (dotted lines) at the 

super level of the MBPLS model. The time series of the five super scores are shown, 
as well as the measured and predicted CE 96 

Figure 5.12: Contribution of each block to the CE drift (dotted line) occurring in pot A003. 
The Hotelling's T2 statistics is shown for each block of the MBPLS model 98 

Figure 5.13: Contributions of the variables for all blocks to the CE drift between 
observations 26 and 27 for pot A003: (a) raw contribution plot and (b) filtered based 
on approximate confidence limits 100 

Figure 6.1 : Autoscaled bath level averages (YBLA) and standard deviations (YBLS) for the 
185 weeks investigated in this study 110 

Figure 6.2: Prediction results of the PLS models for (a) average bath level YBLA and (b) 
bath level standard deviation YBLS 111 

Figure 6.3: Importance of all the variables in the PLS models for (a) YBLA and (b) YBLS- 112 
Figure 6.4: Loading bi-plot of the first two principal components of the bath level PLS 

model 114 
Figure 6.5: Autoscaled daily anode cover material composition for six pots and daily 

monitoring results (a) over 90 days and (b) over 15 days (zoom-in of figure a) 116 
Figure 7.1: Images of cover material for different AI2O3 weight composition, (a) 19% 

AI2O3, (b) 48 % AI2O3 and (c) 93 % A1203 124 
Figure 7.2: Digitized RGB image is a 3-way array of data 125 
Figure 7.3: A schematic description of the MPCA decomposition 126 
Figure 7.4: Four different GLCM for an image (I) of four gray-levels 129 
Figure 7.5: Brick wall images: (a) the original image, (b) one brick zoomed 400% 130 
Figure 7.6: Schematic of WTA decomposition 133 
Figure 7.7: Predictions of AI2O3 content vs. laboratory analysis for models 1,12, and 15. 

137 
Figure 7.8: The presence of waves within an image 139 



XV 

Figure 7.9: (a) Original cover product image displayed in a color map and its WTA for 
three levels of decomposition; (b) Level one, (c) level 2 and (d) level 3 140 



1 Introduction 
Although, it makes up to only about 8% of the Earth's solid weight (Encyclopoedia 

Britannica (a)) aluminum (Al) is the third most abundant element on Earth, after oxygen 

(O) and silicon (Si). It is now widely used across the world in many day-to-day 

applications: 

• Transportation : cars, aircrafts, trains, trucks and bicycles parts 

• Construction : doors, windows, sidings and electrical wires 

• Packaging : cans, containers and wrapping foils 

• Electrical transmission lines : cables and towers components 

• Powder aluminum : paints, pyrotechnics and rocket fuels 

However, aluminum is too chemically reactive to occur in nature as native metal and is 

found combined in different minerals including bauxite, which is the most common mineral 

used to extract aluminum. Bauxite contains 40 to 60% alumina (AI2O3), mainly under 

gibbsite, bôhmite and/or diaspore forms. Hence, aluminum has to be dissociated and as it is 

not found in native state. Aluminum is a young metal when compared to; gold (6000 B.C.), 

copper (4200 B.C.), silver (4000 B.C.), lead (3500 B.C.), tin (1750 B.C.) or iron (1500 

B.C.) used by the Mesopotamians, Egyptians, Greeks and the Romans during the Metal 

Age. Nevertheless, back in the late 1700, Antoine Laurent de Lavoisier (1743-1794), a 

French chemist, started to study alumina and noted the affinity of aluminum, a yet 

undiscovered metal, to oxygen is so strong that it cannot be reduced by carbon or any 

known reducing agent. In 1825, a Danish chemist, Hans Christian 0rsted (1777-1851) 

produced small amounts of aluminum from aluminum chloride (AICI3). Later in 1855, at 

the Universal Exposition in Paris, the French chemist Henri Etienne Sainte-Claire Deville 

(1818-1881) presented aluminum plates produced from clay. Deville's researches were 

financially supported by Napoleon III (1808-1873), emperor of France, who saw a potential 

for aluminum as a light weight armor material for the French troops. However, the 

extraction process used by Deville was so expensive and unpromising that aluminum was 



considered as a precious metal with more value than gold. Napoleon III once gave a 

banquet at which the members of the Royal family and the most honoured guests had the 

privilege to eat with aluminum utensils, while the other ordinary guests had to use gold 

ones (Venetski, 1969). 

However, aluminum was downgraded from precious metal to light metal around the 

beginning of the 20th century when Charles Martin Hall (1863-1914), an American engineer 

and Louis-Paul Toussaint Hérault (1863-1914), a French scientist, both independently and 

almost simultaneously filed a patent for a cheaper way of producing aluminum through an 

electrolytic process, now known as the Hall-Héroult process. Hérault filed a French patent 

on April 23rd, 1886 and in the United States on May 22nd, 1886, while Hall submitted his 

documents to the Unites States Patent Office on July 9th, 1886 (Edwards, 1955). Hall later 

founded the Pittsburgh Reduction Company, now Alcoa, while Hérault created the 

backbones of Aluminum Pechiney, latter bought by Alcan, now Rio Tinto Alcan. 

More than a century later, the Hall-Héroult process is still the only economically viable 

industrial process for producing aluminum even though scientists and aluminum 

companies' have worked on major process upgrade like the inert anodes (Welch, 2009), 

wetted and drained cathodes (Welch, 1999; Keniry, 2001; Thonstad et al., 2001; Li et a i , 

2008), or on totally different processes like the Alcoa Smelting Process involving AICI3 

production and electrolysis (Thonstad et al., 2001) or the carbothermic process (Bruno, 

2003; Choate and Green, 2006; Liu et a i , 2009). This latter process should have energy, 

capital and operating costs below those of Hall-Héroult. However, no industrial plants have 

been built and aluminum producers are still building and planning for greenfield aluminum 

reduction smelters for the years to come. 

In the Hall-Héroult process, alumina powder, obtained from bauxite through the Bayer 

process (Grjotheim and Kvande, 1993) named after the Austrian chemist Karl Josef Bayer 

(1847-1904), is dissolved in molten cryolite (NasAlFô), known as bath, and is 

electrochemically dissociated into aluminum and oxygen using a dissociation voltage of 

2.21 V (Grjotheim and Kvande, 1993). However, in order to save on electrical energy, the 

Hall-Héroult process uses carbon anode, thus lowering the dissociation voltage to 1.2 V 

(Thonstad et al., 2001). Therefore, the global reaction is: 



2 Al203(diss) + 3 C(s) = 4 Aid, + 3 C02(g) [LI] 

A drawing of Hall's metallurgical reactors used to produce aluminum is presented in Figure 

1.1, courtesy of Alcoa. This drawing presents the electrolytic cells, called pots, set-up in the 

Pittsburgh Reduction Company plant, now Alcoa, on Smallman Street in Pittsburgh, 

Pennsylvania. This was the first large-scale aluminum production plant. It shows the cast 

iron pots and the carbon anodes suspended by copper rods and some ingot moulds are also 

drawn on the plant's floor between the cells. In January 1889, the plant was operated in the 

1700-1800 amperes (A) range and the start-up of a second cell boosted the production 

capacity to 50 pounds a day at a market price of $8.00 a pound. 

Figure 1.1: Drawing of Hall's original electrolytic cells. 

Since then, many primary aluminum smelters have been built and closed around the world. 

Active smelters now produce between 14 000 to 950 000 metric tons of molten aluminum 

per annum and their combined output was close to 38 000 000 metric tons in 2008. Figure 

1.2 presents the world primary aluminum production for the period of 1886 to 2008. 



40 

35 

30 

o 25 

20 

15 

10 

0 « 
1880 

n t . 
X 

1900 1920 1940 1960 1980 
Year 

2000 2020 

Figure 1.2: World primary aluminum production. Sources: Aluminum Association of 
Canada www.aia.aluminum.qc.ca (1886-2005) and Alcoa annual reports (2006-2009). 

However, modem pots are quite different than those of the Pittsburgh Reduction Company 

plant; pots and anodes are bigger, electrolytic bath chemistry is optimized to maximize 

production and applied electrical current could be as high as 500 kA (Benkhala et al., 2008, 

2009). Pot design, once made by intuition, trials and errors, is now carefully performed 

using finite element modelling to select the best materials specifications and configuration 

in order to achieve high current efficiency, low electrical consumption and high pot life. 

Haupin (2003) reported that the plant operated at Smallman Street performed at around 31 

kWh/kg and 80% current efficiency, significantly less efficient compared to the 

performances achieved presently by modern smelters in the 13 to 15 kWh/kg and 95% 

current efficiency. These improvements also came through the development of process 

control, which were fine tuned and optimized over time (Bearne, 1999; Homsi et al., 2000; 

Moore at al., 2001; Yurkov et al., 2004; Stevens McFadden et al., 2006), better pot designs 

and also from the use of pot computer simulators to help predict pot behaviour after set 

point changes (Tabsh et a i , 1996, 1997; Yurkov and Mann, 2005). 

http://www.aia.aluminum.qc.ca


As a consequence of these improvements, most of nowadays pots are operated well above 

their nominal production capacity, thus boosting up smelters production using already 

existing assets. Major research and investments programs helped producing more and more 

metal with the same equipments. Therefore, many smelters performed load creeps, close to 

20% (Proulx et a i , 2006) through better pot designs, improved magnetic compensation and 

advanced pot control algorithms. Nevertheless, these pots are operated within a smaller 

operational window and the margin left for error shrunk over time as pot robustness is often 

compromised. For example, at a plant start-up say 20 years ago, a well designed pot 

technology that was very robust to operational upsets is now operated over its nominal 

design and might now heavily be affected by these operational upsets. Unfortunately, it is 

known that some coke and alumina quality properties, the Hall-Héroult raw materials, are 

degrading (Lindsay, 2005; Adams et a i , 2009; Baron et al., 2009; Wilkening, 2009). As a 

result, keeping good performance becomes an issue faced by many plant operators around 

the world. 

This thesis aims at identifying and understanding the different sources of variations having 

an impact on pot performance. Here, pot performance is defined as current efficiency (CE), 

energy efficiency (EC) and potlife. Identifying parameters having the greatest impact on 

performance should help develop, implement and perform a good monitoring and control of 

these few variables therefore ensuring and sustaining good pot performance. Over the 

years, many authors have investigated pot performance and many studies have been 

published in the open literature. Several of these have been presented at the TMS annual 

conference (The Minerals, Metals and Materials Society) or at the Australasian Aluminum 

Smelter Technology Conference and Workshop held every three years. So far, many 

studies were performed in laboratory cells, investigating parameters using the one at the 

time approach. Some other works were based on industrial cells, but again often carried-out 

in a piece-wise fashion, as parameters were studied one after the other, without fully 

investigating cells as multivariate processes. As proposed in this thesis, it is advantageous 

to study this process as a whole and to take into account, simultaneously, all available 

information to better understand performances variations. To achieve this goal, multivariate 

statistical methods are used throughout this thesis to better understand aluminum reduction 

cell performance variations, but also to obtain new information or measurements that could 



be useful to better control aluminum reduction cells through multivariate process 

monitoring tools. 

This thesis consists of eight chapters, including this introduction. The links between the 

chapters are illustrated in Figure 1.3. Chapters in light blue have been submitted or 

accepted in scientific journals while the others correspond to manuscripts in preparation. 

Background on aluminum reduction and Multivariate Statistical Methods, also known as 

Latent Variable Methods, are found in chapter 2 and 3, respectively. Chapter 4 presents the 

investigation of factors having an impact on potlife variations, while factors having an 

impact on pot current efficiency and energy consumption are presented in chapter 5. From 

the discussions arising in both of these chapters, it is demonstrated that controlling bath 

level is important. Therefore, the most important variables influencing bath level are 

presented in chapter 6, where it is demonstrated that the current bath level monitoring 

strategy is insufficient for control purposes. In chapter 7, a novel machine vision approach 

is proposed to estimate alumina content within the anode cover material, the variable 

contributing the most to bath level variations. Finally, conclusions are drawn and future 

works are discussed in chapter 8. 
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Figure 1.3: Organisation of the thesis. 



2 Aluminum Reduction Background 
The Hall-Héroult process takes place in metallurgical reactors called pots or cells. In such a 

reactor, alumina is fed and dissolved in a hot molten electrolytic bath consisting mainly of 

cryolite (NaaAIFô), aluminum fluoride (AIF3) and calcium fluoride (CaF2). Other additives 

such as lithium fluoride (LiF), magnesium fluoride (MgF2) or potassium fluoride (KF) are 

sometimes added to modify the bath electrophysical properties (Haupin and Kvande, 1993; 

Kvande, 1994; Thonstad et a l , 2001). The bath is kept at a temperature of 940 to 970°C by 

the heat generated by the resistance to the passage of a high continuous electric current and 

alumina is electrochemically dissociated into aluminum and oxygen through Eq. [1.1]. 

Oxygen further reacts with carbon anodes to produce gaseous carbon dioxide (CO2) and 

liquid aluminum settles at the bottom of the pot. This chapter presents the basis of the Hall-

Héroult process and the problems covered through this thesis. The reader is referred to the 

books of Grjotheim and Kvande (1993) and Thonstad et al. (2001), and to the paper of 

Haupin (1995) for more information on the Hall-Héroult process. 

2.1 The Reactor 
Two types of Hall-Héroult reactors are used for industrial production of aluminum. Pictures 

of different pot technologies are presented in Figure 2.1 to illustrate their evolution over the 

last century. 

The first type of pot is the Sôderberg, named after a Norwegian engineer, CW. Sôderberg 

(1876-1955). It uses a continuous self baking carbon anode. The extra heat added to the 

pot, discussed later in this chapter, is used to pyrolyze the coke and pitch mixture placed on 

top of the pot. As the lower part of the anode is consumed by the reaction (Eq. [1.1]), more 

material is added on top of the anode. As coke and pitch mixture travel down in the pot, its 

temperature increases, thus baking the mixture and converting it to solid carbon. 

The second type of reactor, commonly used in modem smelters, uses prebaked carbon 

anodes. Tabereaux (2000) reported that over 50 types of prebaked pot technology were in 

used in year 2000. In prebaked technology pots, melted pitch and coke aggregates are 

mixed together and moulded into blocks called green anodes. These blocks are baked in a 



furnace, cooled down and fixed to an aluminum or copper rod. This forms an anode 

assembly. Prebaked pots are equipped with many anode assemblies, together forming a 

single operational anode and the lower part of the carbon blocks is dipped in the molten 

electrolyte. The bottom surface of the anode part, immersed a few centimetres in bath, takes 

part of the reaction (Eq. [1.1]). 

Figure 2.1 : Evolution of aluminum reduction cells prebaked technology over the last 
hundred years. (a,b) at Massena, NY in 1914; (c,d) Alcoa's P-255 at Massena in 1977 and 

(e,f) Aluminum Pechiney's AP-30 at Deschambault, QC in 2005. Courtesy of Alcoa. 
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This thesis focuses on prebaked pots, but many of the issues investigated in this thesis are 

also encountered in Sôderberg pots. Most contributions made in this thesis could easily be 

extended to Sôderberg pots. A cross-section view of a Hall-Héroult reactor, using prebaked 

anodes, is presented in Figure 2.2. 

Point 
feeder 

Positive 
riser 

Anode 

Ramming 
paste 

Collect 
bar 

Shell Cathode Bricks Bus bar 

Figure 2.2: Cross-section view of a prebaked Hall-Héroult reactor. Courtesy of Alcoa. 

2.2 The Electrolyte 
Alumina has a melting point of over 2072°C (Patnaik, 2002) and operating the process at 

this temperature would require a lot of energy. Back in the late 19th century, Hall searched 

for a solvent for alumina while Hérault was looking for additives to lower the melting point 

of alumina. This is how they both end up using molten cryolite as a primary bath 

constituent, due to its capacity to dissolve alumina, but also since this binary system 

(Na3AlF6-Al203) has an eutectic point at 965.9°C and 10.07 wt % A1203 (Thonstad et a l , 

2001). However, by increasing the aluminum fluoride content, it is possible to operate the 

process in the 940 to 970°C range, at 2-4 weight % AI2O3. Even if the electrolyte is not 

consumed by the reaction, some losses occur through vaporisation and hydrolysis (Haupin 

and Kvande, 1993) or by penetration into the pot lining (Sorlie and 0ye, 1989). Different 

additives like A1F3, CaF2, LiF, MgF2 or KF are also added in order to optimize the 
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electrolyte physicochemical properties. These additives have an impact on the electrolyte 

properties such as: 

Liquidus temperature, 

Aluminum solubility, 

Electrical conductivity, 

Density, 

Interfacial tension, 

Vapour pressure, 

Viscosity, 

Etc... 

All these additives have the advantage of lowering the electrolyte melting point, which 

reduces the energy consumption. Unfortunately, they also reduce the alumina solubility and 

hence, their addition must be carefully controlled through bath chemistry control strategies 

in order to obtain and maintain the desired physicochemical properties. Typically, bath 

chemistry is controlled by addition of AIF3 and Na2C03 (Entner, 1992; Vanvoren, 2001; 

Rieck, et a l , 2003; Paulino et a l , 2006; Kolas and St0re, 2009). A1F3 is added to increase 

the excess of AIF3, while Na2C03 might be added to lower the excess. However, some 

smelters also control LiF and MgF2 content. 

The electrolyte basically plays three roles in the Hall-Héroult cell. First, it is used as a 

solvent for alumina. Second, it acts as an electrical resistance that makes the pot to be self 

heated. However, bath electrical resistivity varies with temperature and chemistry. Hence, 

the amount of heat generated in a pot is controlled through heat balance control strategies 

manipulating bath chemistry and anode-cathode distance (ACD), which is the distance the 

electrical current has to flow in the bath. Finally, the electrolyte also acts as a self container. 

The electrolytic bath, a hot mixture of fluoride salts, has the capacity of dissolving almost 

any materials suitable for pot construction. However, if heat balance is well controlled (i.e. 
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chemistry and ACD are in control), it is possible to freeze a layer of bath over the cell's 

internal walls, preventing molten bath to chemically attack pot materials. 

Industrial modem prebaked cells contain between 4 and 7 tons of bath which gives bath 

levels in the range of 13-20 cm and a frozen layer thickness of a few centimetres on the 

sidewalls of the pot. However, strategies used to increase production often involve 

increasing the anode dimensions, leading to a greater anode bottom surface, allowing for 

nearly constant anode current density. As the reactor dimensions remain constant, this has 

the negative impact of lowering the volume of molten bath available to dissolve alumina. 

2.3 The Alumina 
Modem pots are equipped with 1 to 5 automatic point feeders (Figure 2.2) used to supply 

small dumps of 1-2 kg of alumina. Together with heat balance, alumina concentration is an 

important parameter to control for maintaining pot performance. Unfortunately, no device 

is yet available to monitor alumina concentration in bath during normal operation. 

Nevertheless, it is known that bath resistivity changes with alumina concentration. Figure 

2.3 presents typical curves of total cell resistance against alumina composition obtained 

from three industrial pots with different bath chemistries and temperatures. The three 

curves follow the same shape and their differences are mostly driven by bath properties. 

Still, independently of the exact location of the curve, it can be used to determine if a pot is 

running too rich or too lean in alumina. For a defined period of time, the alumina feeders 

are stopped, the ACD is kept constant and the pot control system tracks the derivative of 

the pot resistance over time. The resistance variation is hence only associated to the 

alumina depletion rate in the bath. This procedure computes the slope of the resistance with 

respect to time ( — ) and, based on the value and the sign of the slope, the feeders feed 

frequency are set to a new value. Basically, these feeding frequencies are called over-feed, 

theoretical-feed or under-feed, meaning that the feeders deliver more, equal or less than the 

theoretical alumina consumption, depending upon whether the pot is lean, on target or rich 

in alumina. 
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Alumina Concentration 

Figure 2.3: Variation of cell resistance with alumina concentration at constant ACD. 

In the past, large doses of alumina were added to the pots of older technology every few 

hour's intervals, creating important upset in pot behaviour induced by large variations in 

alumina concentration. However, in modem cells, the use of point feeders enable the 

addition of smaller doses of alumina which increases its mixing and dissolution rates in the 

bath and also ensure smaller composition variations. Dissolved alumina composition is kept 

in the range of 1.5-3.0 wt % through complex alumina feeding strategies, which are 

different for each company. This minimizes the electrical consumption since this range 

gives the lowest bath resistivity (i.e. the minima of the curves in Figure 2.3) if all other 

parameters are kept constant. 

Fine tuning of the feeding strategies is one of the keys to improve pot performance. Over

feeding a pot for a long period of time can generate excessive amount of undissolved 

alumina that settles at the bottom of the pot. This will further create sludge or muck 

lowering pot performance through the generation of horizontal magnetic fields inside the 

pot. On the other hand, under-feeding a pot for an extended period of time may lead to an 

anode effect and, in turn, to a very high cell voltage of up to 30-40 V (Metson et a l , 2002; 

Tabereaux, 2007). Anode effects have a negative impact on pot performance since they 
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disturb the thermal balance of the pot, but also generate perfluorocarbons compounds 

(gaseous CF4 and C2F6) involved in global warming (Dando et a l , 2008). 

Smelter grade alumina is generally not directly fed to the pot. Since it has the ability to 

capture fluoride gases, alumina is used in pot gas scrubbing systems, called dry scrubbers, 

to capture most of fluoride gases coming out of the pots through evaporation and 

entrainment (Haupin and Kvande, 1993). By capturing fluoride gases emitted from the pots, 

dry scrubbers charge the smelter grade alumina with fluoride, producing the so-called 

enriched or secondary alumina used to feed the pots. Therefore, fluoride is reintroduced in 

the pot, thus lowering the AIF3 consumption and protecting the environment by lowering 

the amount of fluoride gases escaping aluminum reduction plants. Secondary alumina is 

generally fed to most of the pots unless a plant has a high purity potline where smelter 

grade alumina is preferred in order to reduce metallic impurities coming from pot gases 

flowing in the gas treatment systems. In such cases, pot gases can be treated with wet 

scrubbers. 

2.4 The Anodes 
Prebaked anodes are a mixture of petroleum coke aggregate and coal tar pitch binder. The 

mixture is moulded in blocks, called green anodes, weighting from 500 to 1000 kg and 

baked in a furnace at temperatures in the range of 1050-1200°C (Fisher et a l , 1995). The 

final baking temperature is extremely important as it directly affects air and CO2 anode 

reactivity. An anode assembly is presented in Figure 2.4. This picture presents the different 

parts of the assembly. An anode rod, made of aluminum or copper, is used to connect the 

anode to the pot superstructure anode beam and is linked to the steel stubs by a metal clad. 

The connection between the carbon block and the steel stub is made with cast iron. 

Modem prebaked pots have between 16 and 40 anodes. These are consumed in the process 

(Eq. [1.1]) and must be replaced at regular interval, typically on a 20 to 30 days cycle, 

before being completely consumed. Hence, by changing some of the anodes on a daily 

basis, it is possible to change all anodes within the anode cycle. The spent anodes, called 

butts, are removed from the pots, then air cooled, cleaned from bath particles, dismantled 

from the anode rod, crushed and reused in the green anode recipe with coke and pitch. 
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Anode Clamps 

Anode Beam 

Figure 2.4: Baked carbon anode assembly. 

Once a new anode is introduced in the pot, it is covered with a particulate mixture of 

secondary alumina and/or crushed solid bath, called the anode cover material. This mixture 

hardens with pot heat losses and forms a crust (Figure 2.2) over the anodes. This crust plays 

different roles related to pot performance and are discussed in chapter 7. 

2.5 The Cathode 
Typically, a pot is made of an outer steel shell in which different layers of thermal 

insulating and refractory bricks are placed on its bottom (Figure 2.2). The cathode consists 

of many prebaked carbon blocks (graphitized, semi-graphitized, semi-graphitic or 

amorphous), sealed together with a carbonaceous seam mix, placed over the bottom brick 

layers. Steel collectors bars are embedded in grooves formed at the bottom of the blocks 

and are fixed by cast iron or a carbon paste (type of glue). The steel shell inner sidewalls 

are also protected with different layers of thermal insulating and refractory bricks and a 

carbon-based paste joint, often called ramming paste, is used to fill the gaps between 

sidewalls and cathode blocks. The refractory bricks layers are used in order to contain the 

hot electrolytic bath and the molten aluminum. However, no material is known to resist the 

aggressive conditions inside a pot. Hence thermal insulating bricks layers are designed so 
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that a defined thickness of protective layer of frozen electrolyte can forms over the 

sidewalls refractory materials. Pots are thermally designed to insure that the right thickness 

of frozen bath covers the sidewalls while preventing the bath from freezing over the 

cathode surface. As it is the case with alumina over-feeding, frozen bath over the cathode 

surface, called bottom ridge, would generate horizontal magnetic fields in the pot 

(Grjotheim and Kvande, 1993) and would also deteriorate the electrical contact between the 

aluminum pad and the cathode blocks (Thonstad et a l , 2001). In fact, even if the carbon 

blocks are called cathodes, the operational cathode is actually the liquid aluminum pool 

surface laying on the cathode blocks. 

2.6 ThePotlines 
In an aluminum reduction plant, several pots are electrically connected in series to form a 

potline, with the cathode of an upstream pot connected to the anodes of its downstream pot. 

For example, the Alcoa Deschambault smelter (ADQ) operates 264 AP-30 pots. In order to 

close the electric circuit, the potline is divided in two potrooms each containing 132 pots. 

Figure 2.1(f) presents a picture of ADQ's potroom B. 

For a single pot, the current enters through the positive risers (Figure 2.2) and flows 

through the anode beam and the anode assemblies which are connected in parallel to the 

anode beam using clamps (Figure 2.4). The current leaves the anodes and passes through 

the electrolytic bath, the aluminum pad and the cathodes blocks. Finally, the current exits 

the pot through the collector bars and is directed to the next pot through a bus bar system. 

Some modem smelters operate in the 350-370 kA electrical current range (Martin et a l , 

2006; Proulx et a l , 2006; Benkahla et al,'2008) and the side-by-side pot arrangement helps 

reducing the magnetic fields induced by the high electrical current flowing inside the 

potline. The bus bar system is designed in order to compensate magnetic fields imbalance 

and thus lowering the magnetic stirring of liquid aluminum. However, even with the best 

magnetic compensation arrangement, pots often experience periods of magnetic fields 

imbalance called instability or pot noise. In general, these periods are characterized by a 

lower metallurgical output and actions must be quickly taken to bring noisy pots back to 

good operational performance. 
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Each pot is controlled using one or many levels of pot controllers aiming at rejecting 

disturbances and stabilising pot operation during various manual operations. The main sub-

processes controlled by pot controllers are alumina feeding, bath chemistry, heat balance, 

noise control, anode effect suppression, metal tapping and anode setting. Due to the 

proprietary information enclosed in the control logics, few details are given in the open 

literature and no further details will be given here. 

2.7 The Pot Life Cycle 
The aluminum reduction reaction (Eq. [1.1]) is carried out at high temperature in the 

presence of different fluoride compounds. Hence, the combined effect yields extremely 

aggressive conditions deteriorating pot materials. Even if the pot lining is protected by a 

layer of frozen bath, pot materials have a limited lifespan due to exposure to the aggressive 

conditions. For example, repeated high temperature excursions can attack the brick layers 

by degrading their insulating and refractory performance to the point where the outer steel 

shell can deform, exfoliate or even melt. Cathode blocks can even crack if mechanical 

stresses are above their mechanical limits. These cracks could enable liquid aluminum or 

molten bath to penetrate and infiltrate through the brick layers, which is harmful to pot life 

and performance since it disturbs the heat balance as it may create a heat sinks. Hence, 

material deterioration from many repeated events, or even from one single, but important 

event, can eventually end pot service life. 

End of a pot life can happen in many ways. A pot can stop operating due to a metal leak, 

where liquid aluminum penetrates the cathode blocks and attacks the bricks or the collector 

bars. In the worst case scenario, liquid aluminum reaches and melts the steel collector bars 

and liquid aluminum can flows out of a pot. A pot life can also end as a result of a side 

failure which happens when molten bath flows through the sidewalls bricks, and attacks 

and melts the steel shell sides. In this case, molten bath flows out of the pots. In the event 

of damage to the upper sidewalls, it may be possible to lower the pot liquids levels (bath 

and metal level) and operate this pot for an extended period of time. However, if the attack 

affects the lower part of the sidewalls or is too severe, the pot life ends from the molten 

bath attack. These two types of failures are highly undesirable, but are encountered quite 

often. The other way pot life can ends is due to weak metallurgical performance or high 
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metal contamination, resulting from pot materials deterioration. For example, if the 

materials deterioration is too advanced to keep the pot in control or if the metallurgical 

efficiency becomes too low, potline operators can decide to stop a pot. It is better to stop a 

pot before molten bath or liquid aluminum tap out of the pot since both leak types can 

destroy the bus bar system and break the electrical circuit, jeopardizing plant operation. In 

general, potlife ranges from 4 to 7 years, depending on pot technologies. However, early 

failures are an important issue, and Maharaj et a l , (1991) reported losing 15% of their pots 

at an average age of 400 days, which is catastrophic for a smelter economical performance. 

Unfortunately, such early failures are generally not common in modem smelters. A typical 

pot life cycle is illustrated in Figure 2.5 and will serve as a basis for discussions. 
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Figure 2.5: Typical pot life cycle. 

2.7.1 Preheating, start-up and early operation 

Following its construction, a new pot must be preheated. The preheating stage slowly raises 

pot materials from room temperature of 20-30°C to their operating temperature of 800-

950°C. This step gives times to the steel shell, cathode blocks and collector bars to expand 

due to thermal expansion but also to properly bake the different carbonaceous pastes used 

to seal the cathodes blocks together. Once baked, this paste should mechanically behave 

like cathode blocks (Richard, 2004). Preheating objectives are discussed later in this thesis 

(i.e. chapter 4), but the main objectives are (Zangiacomi et a l , 2005, 2006): 

To generate a smooth transition to high pot operating temperature, 

To smoothly bake ramming paste and prevent its pyrolysis, 
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• To obtain cathode final temperature high enough to prevent bath freezing 
during start-up. 

Following the preheating period, a defined quantity of molten bath is added to the new pot. 

This initiates the start-up period. This bath fills the cracks within cathode blocks and paste 

voids to prevent metal and bath infiltration in the brick layers during operation. A few 

hours later, a defined quantity of liquid metal is added to the pot. It is added to stabilize pot 

operation since it is designed to operate with a certain level of liquid aluminum (i.e. 

magnetic and heat balance design). Molten bath and liquid metal is coming from nearby 

pots located inside the potline. 

From there, the early operation period aims at bringing pot parameters (bath chemistry, 

temperature, resistance, e t c . ) to their designed set-point control bands. This has to be 

performed very smoothly in order to prevent further operational problems or performance 

issues and obtain a long pot life (Sorlie and 0ye, 1989). 

2.7.2 Normal operation 

In modem potrooms, the two most important manual operations are metal tapping and 

anode replacement. As seen in Figure 2.1(f), potrooms are equipped with overhead cranes 

that allow manual operations on the pots. Two types of cranes are typically used; the 

tapping cranes, as presented in Figure 2.1(f), are used to tap metal out of the pots whereas 

the pot tending machines (PTM) cranes are used to replace and cover the anodes and 

perform anode beam raising operation. Pot control systems are designed to reduce 

disturbances induced by both of these manual operations. The first two operations are 

generally performed daily or every other day on a pot basis. 

Anode beam raising is also performed manually on the pots. As the anodes are consumed 

by the reaction (Eq. [1.1]), the anode beam is lowered down relative to the superstructure to 

keep a fairly constant ACD or resistance. After a few days, the beam becomes too close to 

its bottom stopper and must be raised so it can be moved downward again. The PTM is 

hence equipped with a special tool, known as the spider or the octopus, which releases the 

anodes from the anode beam, by loosening the clamps, while keeping them electrically 

connected at a constant ACD. Meanwhile, the anode beam is raised close to its higher 
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stopper. Anodes are then clamped again to the anode beam and the spider travels and 

performs this operation on another pot. This operation is done every 10 to 20 days. 

2.8 Pot Performance 

2.8.1 Introduction 

Different metrics are used to quantify pot, potroom, and potlines performance. However, 

potlife, current efficiency (CE) and energy consumption (EC) are the three mostly used by 

process engineers and plant managers to describe and compare performance. 

2.8.2 Potlife 

Potlife is used to report how long pots are operated. Basically, potlife refers to the period of 

time between start-up and shutdown (Figure 2.5) and is generally expressed in days or 

years. A large amount of potlife variations are explained by pot technology and cathode 

type (graphitized, semi-graphitized, semi-graphitic or amorphous). However, for the same 

pot technology and cathode type, potlife can greatly vary within a smelter. These variations 

are caused by problems occurring during construction, preheating, start-up and/or normal 

operation or by pot materials properties variations. 

2.8.3 Current efficiency 

Like any other technical process, the Hall-Héroult process experiences production losses. In 

the aluminum reduction industry, this is measured using current efficiency. That is the ratio 

of the actual weight of aluminum produced by electrolysis per unit of time, to the 

theoretical amount computed from Faraday's laws over the same time period. 

The flow of current from the carbon anode to a cathode through the electrolytic bath, 

containing the dissolved AI2O3, is used to compute theoretical aluminum production by 

Faraday's laws (Grjotheim and Kvande, 1993): 

• The amount of product formed at each electrode (Al at the cathode and CO2 at the 

anode) is proportional to the number of coulombs passing through the cell. 
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• The amount of each electrode product is proportional to the equivalent mass of the 

product. 

Using Faraday's laws, it is possible to determine the amount of aluminum that can 

theoretically settles at the bottom of a reduction cell during a defined period of time: 

MP= [Mw/(z * F)] * I * t [2.1] 

where MP is the theoretical mass of aluminum produced at the cathode, Mw is the 

molecular weight of aluminum, z is the number of electrons involved in the electrode 

reaction, F is Faraday's constant, I is the current flowing through the cell and t is the time 

window associated with the production of MP. 

Using aluminum data, it is possible to rearrange Eq. [2.1] to determine the daily current 

efficiency of a pot using the correct units: 

CE = MAI / (I * 0.0080538) [2.2] 

where MAi is the metal tap from the pot on a 24 hours basis. 

Theoretically, a pot operated at 370 kA could produce 2980 kg of aluminum over a 24 

hours basis. However, as mentioned before, production losses lead to current efficiencies 

lower than 100%. The back reaction is the main reason for current efficiency losses (~ 3 to 

5 % CE). In this reaction (Eq. [2.3]), aluminum dissolved in the electrolyte, and in close 

contact with the CO2 gas formed at the anode, is reoxidized very quickly (assumed to be 

instantaneous) (Grjotheim and Kvande, 1993). It is thus necessary to keep the amount of 

metal in solution as low as possible by ensuring good and steady pot operations and 

control. 

2 Al(diss) + 3 C02(diss) = Al203(diSS) + 3 CO(g) [2.3] 

Some factors increasing aluminum solubility in the bath and thus increasing the back 

reaction rate are discussed in chapter 5. 
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For normal operating pots, CE should be around 88-92 % for Sôderberg pots and up to 95-

96% for modem prebaked cells. There is presently no direct way of measuring current 

efficiency for process monitoring. In practice, this is computed by dividing the metal 

tapped from a pot by its theoretical production. However, it is possible to determine the 

current efficiency over a short period of time using a metal tracer with a quantometer or by 

potential coulometry (Tarcy and DeCapite, 1990; Tarcy and Sorensen, 1991; Thonstad et 

a l , 2001). 

2.8.4 Energy consumption 

The theoretical energy requirement to carry out the reduction reaction is ~ 6.5 kWh/kg of 

Al. Operational energy consumption is computed as follows: 

EC = 2.9806 * U/CE [2.4] 

Where, U is the pot voltage (volts), CE is the current efficiency (fraction) and EC is the 

energy consumption (kWh/kg Al). 

However, the benchmark energy consumption is around 13 kWh/kg which leads to 50% 

energy efficiency. Hence, the remaining energy (6.5 kWh/kg) supplied to the cell is 

dissipated as heat losses distributed all around the cell. Figure 2.6 presents a typical heat 

loss distribution for a prebaked cell (Haupin, 1991). 

Stubs 8% 

Anodes 
25% 

Crust 10% 
Deckplate 7% 

Sidewalls 35% 

Collector bars 
8% 

Bottom 7% 

Figure 2.6: Typical prebaked cell heat loss distribution. 



23 

2.9 Thesis Scope 
Pot life cycle can be compared to the human life cycle. The construction and the preheating 

stages are similar to the foetal development while the start-up period can be seen as a child 

birth. A child experiencing problems during its foetal development or at birth may have 

problems during its entire life. Accordingly, a pot experiencing problems during its 

preheating stage or having trouble during its start-up period may suffers problems leading 

to low current efficiency, high energy consumption and/or short potlife. The early operation 

period is similar to the childhood or to the teenage year's period. A young pot needs to 

mature enough before being operated to its optimal performance, like a child learning how 

to read and count. During normal operation, a pot is in the productive stage of its life, like 

most humans during their adult life. Finally, a pot life cycle ends with death just like human 

life. The performance of mature pots often diminishes slowly before death as many humans 

physical and mental capacity do. 

As mentioned in the Introduction section, the scope of this thesis is to identify sources of 

variations having an impact on pot performance and to propose efficient monitoring 

strategies for early detection and, eventually, for implementing appropriate remedial 

actions. Pot performance is defined jointly by current efficiency, energy consumption and 

potlife. However, performing such a study is not straightforward since reduction cells are 

complex multivariate systems. Some of these complex interactions are illustrated in 

Giuseppe Lazzaro's (formerly at Alcoa Portovesme, Italy) Pot Flower, shown in Figure 

2.7. 

As discussed in the present chapter, reduction cells are a collection of many complex 

components (i.e. alumina, reactor, electrolyte, etc..) and each of them plays a role with 

respect to performance. In order to investigate factors having an impact on it, one has to 

take each of these parts together and cannot study them independently. However, most of 

the studies performed in the past were carried out in such a way, studying each part, and 

sometimes just few variables within each part, one at a time. 
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Figure 2.7: Variables interactions within the aluminum reduction process. Courtesy 
Giuseppe Lazzaro (formerly Alcoa Portovesme, Italy). 

The contribution of this thesis is twofold. First, the investigation of factors having an 

impact on pot performance is presented: (1) the impact of pot preheating, start-up and early 

operation on potlife variations (Chapter 4), (2) the impact of alumina and anode quality, pot 

manipulated and state variables and pot preaheating, start-up and early operation on current 

efficiency and energy consumption throughout a complete pot life cycle (Chapter 5). These 

studies are performed using multivariate statistical analysis techniques. How to monitor and 

diagnose performance upsets in a multivariate fashion, as opposed to the traditional 

univariate methods widely used in the aluminum reduction industry, is also presented. The 

third study leads to the conclusion that bath level is an important variable in pot 

performance and hence, factors leading to bath level variations discussed in Chapter 6. 

Finally, in chapter 7, a new method for estimating anode cover material composition is 

proposed in order to better monitor and eventually control this leading indicator for bath 

level variations. 



3 Background on Multivariate Statistical Methods 
Statistics is a mathematical science pertaining to the collection, analysis, interpretation or 

explanation and presentation of data. It arose, no later than the 17th century, from the need 

of states to collect data on their people and economies, in order to better administer them 

(Encyclopoedia Britannica (b)). Its meaning broadened in the early 19th century to include 

the collection and analysis of data in general. 

In the present thesis, statistical methods are used in order to gain a better understanding of 

process behaviour, or more precisely, for investigating the causes of pot performance 

variations. Multivariate statistical techniques are used because aluminum reduction is a 

complex process in which many correlated variables need to be investigated 

simultaneously. These techniques originate from a particular field of statistics known as 

chemometrics. This discipline emerged in the 1970's with the better availability and power 

of computers, although principal component analysis was formulated in 1901 by Karl 

Pearson (1857-1936), an English mathematician (Wold et a l , 1987). Since then, 

chemometrics methods have been used in different scientific and engineering fields from 

psychology to chemistry, to process monitoring and control, to image analysis, and in many 

other areas. 

In order to better understand the work presented in following chapters, the basic 

Chemometrics methods, namely Principal Component Analysis (PCA) and Partial Least 

Squares (PLS), also known as Projection to Latent Structures, are presented together with 

additional references for the interested reader. This chapter also discusses the data pre

processing strategies typically used in the field as well as the criteria for selecting the 

number of principal components in latent variable models. Various extensions to PCA and 

PLS are also used in this thesis, such as multi-way and multi-block methods, which usage is 

adapted for specific data structures. These will be presented in sections 4.6, 4.8, 4.9 and 

5.5. 

Throughout the thesis, vectors are shown using bold lowercase characters (lowercase), bold 

capital characters are used for matrices (CAPITAL) and three-dimensional arrays are 
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similar to matrices but are underlined (UNDERLINED CAPITAL). The transpose 

operator is denoted using uppercase capital T (XT or tT). 

Results presented here were obtained using custom codes developed with Matlab® 

R2006A (The Mathworks Inc., Natick, MA) and the associated Statistics Toolbox V5.3. 

Moreover, the PLS Toolbox (Eigenvector Research Inc, Wenatchee, WA) was also used in 

codes development. It is understood here that these codes were developed for the particular 

problems investigated here and that some modifications may need to be done if one wants 

to use it for other applications. 

3.1 Principal Component Analysis (PCA) 
Principal Component Analysis is a method used for exploring and modeling multivariate 

datasets. Detailed mathematical descriptions and tutorials are provided by Wold et al. 

(1987) and Kourti (2002, 2005). Consider X, a data table consisting of / observations 

obtained from J process variables. If happenstance data is collected in this matrix (i.e. not 

gathered under orthogonal designs of experiments) and both / and J are very large (i.e. 

hundreds to thousands), as it is the case with most datasets obtained from industrial 

processes, then X is not full rank (i.e. X is highly collinear). PCA can be used to study the 

relationships between the variables and to visualise the information contained in X (i.e. 

clusters and patterns) through projecting the data onto a lower dimensional space defined 

by a small number of principal components or latent variables. In fact, it makes a 

decomposition of X, of rank R, as a sum of R matrices of rank 1 which are orthogonal to 

each other (Geladi and Kowalski, 1986). These matrices (M, to Mr) can also be expressed 

as the outer product of two vectors: 

X = Mx + M2 + M3 + - + MR + E [3.1] 

X = tip]" + t 2 p j + t 3 p j + - + tRpT
R + E [3.2] 

X = TPT + E [3.3] 

where the Mr (r=l,2,...R) are the rank 1 matrices, the tr (/xl) are called the score vectors, 

and the p r (7x1) are known as the loading vectors. The score and loading vectors are all 

orthogonal vectors and are collected in the following matrices T (IxR) and P (JxR). The 
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residuals of this decomposition are stored in matrix E (7x7). The scores are just the 

projection of each sample or observation onto the lower dimensional space which 

orientation in 9îy is given by the loading vectors pr. The latter also provide information 

about how variables are correlated to each other. Through the interpretation of different 

plots like the score plots or loading plots (Geladi et a l , 2003), it is possible to visualise and 

interpret the information contained in the very large process dataset X. For example, 

plotting t2 vs. ti gives the projection of the / observations on the plane formed by P2 and pi. 

Therefore, observations having similar variables patterns, would lie close to each other in 

the plot of t2 vs. ti. 

Geometrically, PCA is equivalent to finding a vector, a plane or a hyperplane (i.e. a lower 

dimensional space) explaining the greatest amount of variance, or the best fit, of the high 

dimensional dataset X. To allow visual interpretation, consider that X as three columns or 

variables (7=3) xi, x2 and x3, as illustrated in Figure 3.1. It can be seen that the observations 

(light blue dots) do not fill the entire 9Î3 space but, due to collinearity, rather follow a 

smaller number of specific directions. The direction of the first principal component (pi) is 

that explaining the greatest amount of variance in the data X (i.e. least squares fit through 

the swarm of points). The projection of X along this first principal direction yields the first 

score vector ti. The direction of the second component p2 is that explaining the greatest 

amount of residual variance unexplained by the first component. That is, p2 is orthogonal to 

Pi. The second score vector t2 is again obtained by projecting X along p2. Taken together, 

the first two components form a plane on which the data is projected. The loading vectors 

Pi and p2 define the orientation of that plane in 9Î3 space whereas the score vectors ti and t2 

provide the new coordinates of each observation on the plane. Finally, a third direction (p3) 

could be computed but it would only capture the smallest amount of variance in X, perhaps 

associated with noise, and could be left as residuals E (i.e. perpendicular distance of each 

observation off the plane). Also note that when the number of components equals the 

number of variables, no dimensional reduction is obtained (i.e. E=0) and the set of principal 

directions correspond to a rotation of the original set of axes. How to decide on the number 

of components to use will be discussed later in section 3.3.2. 
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X2 

Figure 3.1: Geometrical interpretation of PCA. 

Mathematically, the objective function of the first PCA component can be described as 

follows: 

m£{pTXTXPl} T « _ subject to Pi Pi = 1 [3.4] 

This direction, labelled pi, is in fact a linear combination of the 7 process variables in X, 

each variable having its specific weight. This direction is shown in Figure 3.1. Projecting X 

in the direction of pi yields the latent variable ti capturing the greatest amount of variability 

inX: 

t i = X P l [3.5] 

Projection residuals Ei, contain the variance of X unexplained by the first component: 

Ei = X - t l P J [3.6] 

The model construction continues with the computation of p2, using Eq. [3.4], explaining 

the highest amount of unexplained variance in X. This direction is also depicted in Figure 

3.1. This is achieved by substituting pi by P2 and X by Ei in Eq. [3.4]. However, an 
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orthogonality constraint is also imposed on Eq. [3.4], to force P2 to be orthogonal or 

uncorrelated topi: 

PÎP2 = 0 [3.7] 

This procedure is repeated until the desired number of directions (A) is computed. The PCA 

model could then be written using matrices product: 

X = TPT + E, [3.8] 

PCA is in fact nothing more than the eigenvector decomposition of X, where the p vectors 

are the eigenvectors of XTX and the t vectors are the eigenvectors of XXT. 

An approach for computing the p and t vectors sequentially was proposed by Wold et a l , 

(1987) and is referred to as the Nonlinear Iterative Partial Least Squares (NIPALS) 

algorithm This algorithm is detailed in Figure 3.2. 

1: Set t to any column of X 

2: Start convergence loop J 
2.1: p = XTt/(tTt) 2 J ^ - 
2.2:p = p/(pTp) 

2.3:t = Xp/(pTp) 2.3_x^> 
2.4: Check convergence of t and p. Go to 

step 3 if converged. / ( ^^^^T^ 3:E = X - t p T p T 

4: Store p and t as new columns in P and T, respectively 

5: Return to step 1 and compute the next direction, replacing X by E 

Figure 3.2: NIP ALS algorithm for PCA and its arrow scheme. 

This approach is advantageous when 7 is large since eigenvector decomposition (or 

Singular Value Decomposition-SVD) computes all 7 components simultaneously when, 

very often in practice, 3-5 components are sufficient to capture the relevant information in 

X. 
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3.2 Partial Least Squares Regression (PLS) 
When a second data matrix Y (7x77) is available, perhaps containing 77 quality or 

productivity data for / samples or observations, one may wish to explore the information 

contained in both X and Y and build a relationship between them. This is accomplished 

using PLS regression, which can be seen as an extension of PCA for the case of two data 

matrices. Let X contain process data and Y some quality or productivity data or whatever 

data depending ori the problem at hand. The basic assumption behind PLS is that variations 

in X and Y are both driven by a common set of A latent variables T (IxA). It essentially 

performs the decomposition of the covariance structure between X and Y. The reader is 

referred to Burnham et al. (1996), Wold et al. (2001), Martens (2001) and Kourti (2002, 

2005) for more detailed mathematical descriptions of PLS and for tutorials. 

Mathematically, this is achieved by computing the directions in the X space that maximize 

the covariance between X and Y. These directions, called the weight vectors wa (a = I,...A) 

are linear combination of the X variables and are the solution of the following problem: 

m^{wjXTYYTXwT} subject to wTwÉ = 1 [3.9] 

subject to wTw ; = 0 for i * j 

The structure of the PLS model is given below: 

X = T P T + E [3.10] 

Y = T Q T + F [3.11] 

T = XW* W* = W(PTW)- 1 [3.12] 

where T (IxA) is the common latent variable space defined by the weight matrix W* (JxA) 

and capturing the information in X that is the most highly correlated with Y. The P (JxA) 

and Q (HxA) matrices contain the orthogonal loading vectors mapping the common latent 

variable space in the space of X and Y (models of these blocks). The PLS model residuals 

for both blocks are stored in E (7x7) and F (7x77). Since PLS is a regression technique, it is 

possible, for prediction purposes, to reorganize the model structure (Eqs. [3.10 - 3.12]) and 
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express it in a simpler form Y = X B+F, where B (7x77) is a set of pseudo regression 

coefficients: 

* r»T B = W*Q [3.13] 

A NIP ALS iterative algorithm was also proposed for PLS as described below (Wold et a l , 

2001), leading to sequential computation of the w, q, t and u vectors (Figure 3.3). 

Alternatively, these vectors could be extracted simultaneously for all dimensions by an 

eigenvalue-eigenvector decomposition since it was shown by Hôskuldsson (1998) that w, 

q, t and u are eigenvectors of XTYYTX, YTXXTY, XXTYYT and YYTXXT, respectively. 

J t 

1: Set u to any column of Y 

2: Start convergence loop 

2.1: w = XTu/(uTu) 
2.2: w = w/(wTw) 
2.3: t = Xw/(wTw) 

2.4: q = YTt/(tTt) 

2.5:u = Yq/(qTq) 
2.6: Check convergence o f t 

or u. Go to step 3 if 
converged. 

3:p = XTt/(tTt) 

4:E = X- tp T andF = Y - t q T 

5: Store w, p, t and u as new columns in W, P, T and U, respectively 

6: Return to step 1 and compute the next direction, replacing X by E and Y by F 

Figure 3.3: NIP ALS for PLS regression and its arrow scheme. 
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3.3 Data Scaling and Selection of the Number of Latent 
Variables 

3.3.1 Data scaling 
Like other projection methods, the results obtained from PCA and PLS decompositions are 

scale dependent. It is therefore necessary to scale the data (i.e. X and Y) appropriately 

before model building. When no prior information is available on the relative importance of 

the variables in a given problem, a common practice is to mean-center and autoscaling the 

variables (i.e. columns of X and Y) to unit variance. This approach was used in the thesis 

unless otherwise stated. 

Mean-centering allow PCA and PLS to capture variations about the mean of the variables 

whereas scaling to unit variance gives equal importance to each variable in the analysis. 

This is important, for example, when variables in a dataset are measured in different 

engineering units (i.e. ppm, %, kg), as it is the case for aluminum reduction process 

variables. The pre-processing procedure is schematically shown in Figure 3.4 for nine 

variables (Geladi and Kowalski, 1986). 

STD 

Mean i = > M'l \c=> 

v 1 v2 v3 v4 v5 v6 v7 v8 v9 Vlv2v3v4v5v6v7v8v9 v1 v2 v3 v4 v5 v6 v7 v8 v9 

Figure 3.4: Effect of mean-centering and autoscaling. Left, original data; middle, mean-
centered data and right, auto-scaled data. 

Assuming a row vector of different variables (x) and row vectors of variables mean values 

(xm) and standard deviations (xsta), the autoscaled version of x (x*) is obtained by 
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substracting the mean from x and by dividing each of its element by its corresponding 

standard deviation, as follows: 

x* = 
(____> 

xstd 
[3.14] 

On the other hand, when process knowledge suggests that the variables can be grouped into 

conceptually meaningful blocks, with a different number of variables in each block, then it 

is possible to perform block scaling instead of autoscaling. This will give equal importance 

(i.e. variance) to each block in PCA or PLS models. For example, if 15 temperature and 3 

pressure measurements are available in X, and PCA is applied to X after autoscaling, the 

PCA model might extract more information from temperatures simply because the are in 

greater number (i.e. more variance in that block). Block scaling will remove difference 

owing to differences in the number of variable within each block. Block scaling is 

schematically shown in Figure 3.5, again for nine variables grouped in 4 blocks of 3, 4, 1 

and 1 variables, respectively. . 

Block 1 Block 2 

STD' 

Mean 

I 
c=> 

I 
v1 v2 v3 v4 v5 v6 v7 v8 v9 

. . WW 

v1 v2 v3 v4 v5 v6 v7 v8 v9 v1 v2 v3 v4 v5 v6 v7 v8 v9 

Figure 3.5: Effect of block scaling. Left, original data; middle, mean-centered data and 
right, block scaled data. 

Block scaling is performed by dividing each columns of x* (i.e. autoscaled x) by the 

corresponding element of a vector containing the information on the number of variables in 

each block (Westerhuis et a l , 1998): 
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.+ - «J xJ=—!—. [3.15] 
' Xsqrt-; 

In the case of Figure 3.5, Xsqrt is [ 3* 3* 3* 4* 4* 4* 4W 1* 1*]. 

3.3.2 Selecting the number of components 

Using PCA and PLS, it is possible to compute as many principal components as there are 

variables in X or Y, whichever has most. However, doing so only rearranges the 

information contained in the matrices since the resulting latent variable model is a rotation 

of the original variable space. Still, process variables are generally driven by a much fewer 

number of underlying events, or latent variables. These latent variables generally cause 

some of the measured variables to move together in a correlated way, depending on the 

event, and thus are hidden in the original dataset. Nevertheless, the number of latent 

variables is generally much lesser than the number of measured variables, which suggests 

that studying only the first few latent variables is enough to capture most of the variations 

enclosed in X and/or Y. Moreover, as it is often the case with industrial data, X and/or Y 

are corrupted by noise and one is interested in studying only the systematic part of the 

information and leaving the irrelevant information out of the analysis. This is achieved by 

carefully selecting the number of principal components (A). Hence, the systematic 

variations, captured by the loadings vectors (P, W and Q) are kept in the model and 

irrelevant variations are left in the residuals E and/or F. Different methods exists for 

selecting the number of latent variables to keep in a model (Nomikos and MacGregor, 

1995), but the most widely used strategy is cross-validation (Wold, 1978). This approach 

was used in the thesis. 

In cross-validation, the 7 observations in X and Y are divided into g sub-groups of q 

observations (7 = gq). Each sub-group is removed from the data matrices one at a time and 

a one latent variable (A = 1) PCA or PLS model is built on the remaining g-l sub-groups. 

The model in then used to predict the data from the group left out and the prediction error 

sum of squares (PRESS) is computed for this sub-group. This is repeated for every other g-

1 sub-groups and the sum of the PRESS values across all g cross-validation loops is 

computed. This procedure is then repeated with two latent variables and so on. The number 

of principal components or latent variables (A) to keep in the model is selected as the one 
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achieving the lowest overall PRESS across all g sub-groups (i.e. best predictive ability). 

Selecting a lower number of latent variables would leave relevant information out of the 

model, thus not capturing all systematic variations. Selecting additional components may 

lead to overfitting and/or incorporation of irrelevant information in the model. 



4 Increasing Potlife of Hall-Héroult Reduction Cells 
through Multivariate On-line Monitoring of 
Preheating, Start-up and Early Operation 

4.1 Résumé 
Cet article présente l'étude de différents facteurs affectant la durée de vie des cuves 

d'électrolyse. Avant d'entrer en production, les cuves sont préchauffées, démarrées et 

opérées avec des points d'opération différents des cuves en opération normale. Cependant, 

différents problèmes d'opération peuvent survenir durant ces étapes et il est démontré que 

ces derniers ont un impact direct sur la durée de vie des cuves. En effet, en utilisant un 

modèle de régression de type PLS, il est possible de prédire la durée de vie des cuves, avec 

une erreur de prédiction inférieur à 90 jours et ce, 60 jours seulement après leur démarrage. 

Cette erreur de prédiction est satisfaisante compte tenu des critères décisionnels entourant 

le moment exact de l'arrêt d'une cuve. Finalement, des chartes de contrôle statistique 

multivariée des procédés sont proposées afin de suivre correctement ces trois étapes, dans 

le but de minimiser les effets des variations ayant un impact sur la durée de vie des cuves. 

Tessier, J., Duchesne, C , Tarcy, G.P., Gauthier, C , Dufour, G., Submitted to Metallurgical 

and Materials Transactions B (Manuscript E-TP-09-195-B, June 23rd, 2009). 
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4.2 Abstract 
Aluminum is produced inside metallurgical reactors known as pots that are replaced at the 

end of their service life. New pots are preheated, started and then enter a period known as 

early operation where different control strategies are used before entering regular operation. 

It is known that how preheating, start-up and early operation are performed can damage a 

well designed pot and lead to shorter service life. However, the impact of these phases with 

respect to potlife is not well documented quantitatively. In this paper, multivariate 

statistical analysis techniques are used to investigate the impact of pot-to-pot variations 

during the three phases. A PLS regression model is first proposed for predicting potlife, 

within an error of 90 days, using process data gathered until the end of early operation. This 

model is also used to identify those variables having the greatest influence on potlife. 

Finally, multivariate statistical process control charts are proposed to efficiently monitor 

the three steps. These charts have a low false alarm rate and can help find the root cause of 

abnormal operation occurring during the early phases. A few examples are used to illustrate 

how operators and engineers could use the charts to maintain consistent early operation and 

help improve mean potlife. 
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4.3 Introduction 

In the Hall-Héroult process, aluminum (AI) is obtained by the electrochemical dissociation 

of smelter grade alumina powder (AI2O3) inside metallurgical reactors commonly called 

reduction cells or pots (Figure 2.2). 

This reduction reaction is described using the following overall reaction: 

2 Al203(d i s s ) + 3 C(s) = 4 Al(1) + 3 C02(g) [4.1] 

Based on this mechanism, the theoretical dissociation voltage of alumina is approximately 

1.2 V (Grjotheim and Kvande, 1993). However, in practice, a much higher voltage in the 

range of 4.0-4.6 V (Grjotheim and Kvande, 1993) is required to overcome a number of 

operational issues such as anode and cathode overvoltage and gas bubble resistance. It is 

also partly driven by the pot heat balance requirement (Grjotheim and Kvande, 1993). The 

pot production rate approximately follows Faraday's law (Thonstad et a l , 2001) with 

Faradaic efficiency typically between 90 and 96%. To be economically attractive, 

aluminum smelters typically operate hundreds of pots in the 100 to 500 kA range. 

A typical Hall-Héroult cell (Figure 2.2) is made of an outer steel shell container, the 

internal surface of which (i.e. bottom and sidewalls) are covered with different layers of 

thermal insulating and refractory materials. Carbon cathode blocks are then placed on the 

bottom brick layers. Different carbonaceous pastes are finally used to fill the gaps between 

the carbon cathode blocks and the sidewalls. An electric current flowing from the carbon 

anodes to the electrolytic bath, a molten mixture of cryolite (Na3AlFô) and additives, 

dissociates alumina as described by Eq. [4.1]. Current then flows through the liquid metal 

pad located between the bath and the carbon cathode blocks, and exits the pot by the carbon 

cathodes connected to the collector bars. Since the cells are electrically connected in series, 

the current exiting one pot is directed to the next downstream pot through a busbar 

network. 

Over time during normal production, the integrity and the behaviour of the shell, the 

cathode blocks, the bottom and the side brick layers deteriorate due to the combined effects 
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of high temperature, sodium infiltration and aggressive corrosive attacks of the fluoride 

bath and molten aluminum (Sorlie et 0ye, 1989). The materials deterioration is such that 

reduction cells are either preventively stopped or die in operation and, in either cases, the 

cells are rebuilt with new materials. In the former case, the cell is typically shutdown due to 

low production efficiency, metal purity problems or when prolonging operation may lead to 

safety hazards. In the latter case, the cell dies from a metal or bath tap-out from the side or 

the bottom of the cell. 

Once in place, the new cell must be preheated before start-up. The preheating stage slowly 

raises pot materials from the 20 to 30°C range to their operating temperature of 800 to 

950°C. This step is essential to avoid as much as possible cracks due to thermal stresses, 

but also to properly bake the carbonaceous pastes used to seal the cathode blocks and the 

brick sidewalls together. Once baked, the paste materials should behave similarly as the 

carbon cathode blocks (Richard et a l , 2005). The main preheating objectives are (Sorlie 

and 0ye, 1989; Zangiacomi et a l , 2005): (1) to generate a smooth transition from room 

temperature to high pot operating temperature, (2) to smoothly bake the ramming paste and 

prevent its pyrolysis and (3) to obtain a high enough cathode final temperature to avoid 

excessive bath freezing during the cell start-up. Different preheating techniques are used 

throughout the industry and are overviewed in details in the literature (Sorlie and 0ye, 

1989). 

Following the preheating period, a few tons of hot liquid bath and metal, coming from 

nearby cells, are poured in the newly preheated cell. Once again, different techniques and 

recipes are used throughout the industry (Sorlie and 0ye, 1989) but the main steps are 

shared by most primary aluminum smelters. 

The new cell then enters production or operation. During the first few weeks after start-up, 

the set points and control strategies used to operate the pot are different than those used in 

normal operation. This period is referred to as the early operation. This special extra care 

period helps the new pot reaching its designed set points with minimal detrimental impact 

on the properties of the various materials. In this period, close monitoring is performed to 

detect any abnormal deviations or operational issues, and prompt control actions are 

applied when needed. Tight control of the molten bath chemistry is also required since 
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sodium (Na), mainly introduced by Na20 impurity from alumina and Na2CÛ3 additions to 

maintain bath chemistry, migrates in the carbon cathode blocks and brick layers and cause 

undesired mechanical expansion of these materials. Indeed, expansion due to sodium 

infiltration can reach up to 10 times the dilation caused by thermal expansion (Sorlie and 

0ye, 1989). The pot heat balance also has to be well controlled during early operation in 

order to keep the frozen ledge to a defined thickness. This ledge is in fact a layer of frozen 

bath and plays a crucial role by protecting the cell materials (i.e. sidewalls) from 

deterioration (Sorlie and 0ye, 1989). 

Over the years, research and development efforts have been oriented towards the 

development of better cells and understanding the thermo-electro-mechanical behaviour of 

the materials during preheating. The thermo-mechanical behaviour of carbon cathode 

blocks and that of non-carbonaceous materials during preheating have been investigated by 

D'Amours et a l (2003) and Richard (2004), respectively. Modeling of the behaviour of 

carbonaceous pastes during preheating was also proposed by Richard et al. (2005). These 

studies contributed to a better understanding of the phenomena occurring during the 

preheating phase which, in turn, could be used to improve pot design and construction, and 

to compute optimal preheating policies for heat input and temperature profiles. However, 

the models developed in these investigations do not account for the pot-to-pot deterministic 

and stochastic variations encountered in practice in industrial smelters. Indeed, the potential 

benefits of additional efforts invested in cell design and construction can be significantly 

reduced or completely lost if abnormal operation occurs during preheating, start-up and 

early operation. Permanent damage caused to the various materials during these periods 

may adversely affect pot life and overall production performance. 

A few authors have investigated the impact of pot-to-pot preheating variations, but the 

literature is very scarce since; (1) quantifying the impact of preheating, start-up and early 

operation on potlife requires a good data infrastructure for collecting measurements from a 

large number of pots over their lifespan (i.e. many years), (2) such data is not easily 

reproduced in laboratory, (3) most of these data follow some multivariate dynamic trends 

which are not straightforward to analyze. Still, some authors have reported different works 

on industrial pot preheating. For instance, the impact of preheating duration and final 
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cathode blocks temperature were investigated with respect to thermal gradients across 

cathode blocks and early pot noise (Zangiacomi et a l , 2005, 2006). Dunn and Galadari 

(1997) have presented results on the electrical resistance evolution of different pot materials 

during preheating. Nevertheless, the impact of pot-to-pot preheating variations has not been 

investigated systematically even if these variations could be accountable for some early pot 

failures or deaths. 

This paper presents the analysis of pot-to-pot variations encountered during preheating, 

start-up and early operation phases with respect to potlife. The objectives are: (1) to 

identify key variables from the preheating, start-up and early operation that have 

meaningful statistical effects on potlife (2) to determine how much data (i.e. time since 

beginning of preheating) are required to obtain a statistically reliable potlife prediction for a 

new started cell and (3) to propose advanced statistical monitoring charts, based on 

Multiway Partial Least Squares (MPLS), to help achieve consistent high quality preheating, 

start-up and early operation and, eventually, longer potlife. 

This paper is arranged as follows. First, the nature of the data used in this study is 

presented. Then, the multivariate statistical methods used throughout this work are briefly 

described. Potlife prediction results are presented and the key variables having meaningful 

statistical influence on potlife are identified. Finally, the development of multivariate 

statistical process control charts (MSPC) to monitor pot behavior during preheating, start

up and operation is presented and illustrated using industrial pot data. 

4.4 Nature of Preheating, Start-up and Operation Data 

The data used throughout this paper were collected from 31 pots started at the Alcoa 

Deschambault smelter (Quebec, Canada), all of them sharing a similar design. For each of 

these pots, the data was collected during their preheating, start-up and operation, from the 

very beginning to the end of their service life. Preheating and start-up data were retrieved 

from log books. Operation data were extracted from the plant historical database. The data 

structure available for this study is shown in Figure 4.1. It mainly consists of three blocks 

of regressor (or input) variables (X, S, and Z), corresponding to preheating, start-up and 
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operation, respectively, and one response block Y containing potlife data. The nature of the 

data collected within each of these blocks is described below: 

■ X (IxJxK): this block contains the trajectories of J variables measured K times 

(samples) during the preheating of 7 pots (i.e. temperature profiles, duration of 

preheating, etc.). A three-way array structure is therefore obtained similarly as for the 

data collected from batch processes (Nomikos and MacGregor, 1995). Each horizontal 

slice (i = 1, 2, ..., 7) is a (7x70 matrix containing the trajectories of all preheating 

variables for a given pot. In this work, 10 variables were sampled 18 times during the 

preheating of the 31 pots (i.e. 7=31,7=10, and K=IS). 

" S (7x7?): contains snapshot measurements of R start-up conditions for each of the 7 pots 

(i.e. bath/metal quantities, anode effect duration etc.). These variables (7?=9 in this 

work) characterize the state of the pot after the preheating period, and before entering 

operation. 

" Z (IxMxN): a second array containing the trajectories of the M variables (i.e. electrical, 

temperatures, frequency of alumina shots, etc.) measured at N sampling instants for 

each of the 7 pots, from the beginning of the early operation to end of service life. In 

total, N=3000 daily averages of Af=60 variables were available for describing the pots 

lifespan. 

■ Y (7x77): represents a collection of 77 response variables measured for each of the 7 pots. 

In the present study, a single response is used (i.e. potlife measured in days). Hence, Y 

is a vector. Note that other variables describing the overall pot performance could also 

be included in this analysis with no change in the approach. 

The autoscaled potlife distribution of the 31 pots available in this study is shown in Figure 

4.2. It was obtained by subtracting each element of Y by the mean potlife and then dividing 

by potlife variance. An autoscaled potlife value above -0.5 is considered to be a good 

potlife duration for the cell design considered in this work. Hence, from these 31 pots, 22 

were classified as "high potlife" pots and 9 were considered as "low potlife" pots. 
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Figure 4.1 : Nature of the data available during preheating, start-up and operation of 
reduction cells. 
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Figure 4.2: (a) Autoscaled potlife distribution for the 31 pots and (b) Normal probability 
distribution. 

4.5 Latent Variable Models 

Multivariate statistical methods such as Principal Component Analysis (PCA) and Partial 

Least Squares (PLS) belong to a family of latent variable modeling techniques which have 

been shown over the years to be very efficient for analyzing large industrial databases by 

projection onto a lower dimensional space (i.e. latent variable space). Their ability to cope 

with the typical difficulties encountered with large amounts of industrial data (i.e. 

colinearity between variables, low signal/noise ratio, missing data) and their flexibility to 
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be tailored to various problems and data structures (multi-block, multi-way data) makes 

them perfect candidates for analyzing the pot early operation data collected in this research. 

The mathematical foundations of PCA and PLS is described in details in several papers 

(Geladi and Kowalski, 1986; Wold et a l , 1987, 2001; Hôskuldsson, 1988; Jackson, 1991). 

A few good reviews of their applications for solving a number of problems in various 

industrial areas are also available in the literature (Kourti and MacGregor, 1995; Duchesne 

et a l , 2002; Kourti, 2002, 2005; Miletic et a l , 2004, MacGregor et a l , 2005). Only a brief 

overview of PCA and PLS is provided in this section. 

Consider a matrix of process data X (7x7) containing 7 observations on 7 process variables. 

Also assume that both systematic and stochastic variations are present in this data. 

Systematic process variations are, in general, driven by only a few underlying events (latent 

variables), which cause most process measurements to vary in a correlated fashion (i.e. in 

certain directions). Thus, X is typically not full rank. It is therefore possible to lower the 

dimensionality of X by finding the latent variables governing these systematic variations, 

but leaving noise or irrelevant information as residuals. PCA performs this dimensional 

reduction by finding a small set of A orthogonal latent variables (A«J), or the principal 

components (PC), defined as a linear combinations of the original process variables (i.e. X). 

The data is then projected onto this latent variable space- (i.e. plane or hyperplane) for 

visual interpretation. The residuals correspond to the distance of each multivariate 

observation (i.e. row of X) off the plane. Hence, the information explained by the PCA 

model is that part of X that lies on the plane after projection. The part of X orthogonal to 

the plane is unexplained variance. 

Mathematically, the PCA variance-covariance decomposition is expressed as: 

X = ^ = i t a p l + E = T P T + E [4.2] 

where the orthogonal ta (7xA) vectors are those latent variables (also called scores) and 

provide the coordinates of each observation on the plane after projection. The plane is 

defined by a set of A orthonormal loading vectors pa (7x1), which are linear combinations 

of the original variables (i.e. ta = X pa). The projection residuals are collected in the 

residual matrix E (7x7). The loading vectors are found in such a way that ti explains the 
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greatest amount of variance in X, t2 the second greatest amount of variance, not explained 

by the first component, and so on. Mathematically, the solution for the scores and/or 

loadings is formulated as an eigenproblem. These vectors are computed either using 

singular value decomposition (SVD) or sequentially using the Nonlinear Iterative Partial 

Least Squares (NIPALS) algorithm (Geladi and Kowalski, 1986, Kourti and MacGregor, 

1995). The number of components A is typically selected using a leave-n-out cross-

validation procedure (Wold, 1978). 

On the other hand, PLS regression performs a decomposition of the covariance between 

two blocks of data, X and Y. It finds a common set of latent variables T that captures the 

information in X that is the most highly correlated with Y (7x77) while building a model 

also describing both of these data blocks. The structure of the PLS model is given below: 

X = T PT + E [4.3] 

Y = T QT + F [4.4] 

T = XW* W* = W(PTW)-1 [4.5] 

where T (7x4) is the common latent variable space defined by the loading matrix W* (7xA) 

and capturing the information in X that is the most highly correlated with Y. The P (7xA) 

and Q (HxA) matrices contain the orthogonal vectors mapping the common latent variable 

space in the space of X and Y (models of these blocks). The PLS model residuals for both 

blocks are stored in E (7x7) and F (7x77), respectively. Since PLS is a regression technique, 

it is possible, for prediction purposes, to reorganize the model structure (Eqs. [4.3 - 4.5]) to 

express it as Y = X B+F, where B (7x77) is a set of pseudo regression coefficients: 

B = W* QT [4.6] 

Once again, cross-validation is used to find the A number of PC to use in the model and the 

NIP ALS algorithm can be used. 

From these latent variable models, it is possible to interpret the behaviour of the variables 

relative to each other (i.e. their correlation structure) by means of the loading vectors stored 
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in P, Q and W*. On the other hand, the latent variables T can be used to visualize clusters 

and patterns defined by the observations. 

Like many other data analysis methods, PCA and PLS are scale dependent. Therefore, an 

appropriate scaling is applied prior to perform the analysis. A common practice is to 

autoscale the data by removing the mean of each variable and dividing by their standard 

deviation. This gives equal importance to each variable in the model. 

The PCA and PLS techniques are suited for decomposition of two-dimensional matrices. 

However, when the data structure is organized into 3-way arrays, as is the case in this paper 

(see Figure 4.1), this array X (7x7x70 can be rearranged into a matrix X using a so-called 

unfolding operation, which can be performed in six different ways (Westerhuis et a l , 

1999). Throughout this paper, the pot-wise unfolding approach is used for the 3-way arrays 

(X and Z in Figure 4.1): each K vertical slices (7x7) are juxtaposed from left to right, 

resulting in a matrix of dimensions X (IxKJ) as illustrated in Figure 4.3. 
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Figure 4.3: Pot-wise unfolding of a three-dimensional array. 

This approach is equivalent to the batch-wise unfolding approach used in the analysis of 

batch process trajectories (Nomikos and MacGregor, 1995). It will be used in this work to 

investigate the pot-to-pot variability in the preheating and early operation trajectories. 

Autoscaling is also used for these arrays. This removes the mean trajectory and the 
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nonlinear behaviour of each variable allowing PCA and PLS to explain variations about the 

mean trajectories (Nomikos and MacGregor, 1995). 

4.6 Earliest Potlife Prediction Time and Most Influential 
Variables 

The first objective of this study is to determine how much time since the beginning of the 

preheating phase is necessary for obtaining reliable potlife prediction. Alternatively, the 

question to be answered here is how much data is required for making such prediction. As 

described in section 4.4, the available smelter database consists of 31 pots (7 = 31), 5 

preheating variables sampled 18 times (7 = 5, K = 18), 9 start-up variables (R = 9) and 60 

process condition during operation from the start-up until the end of service life (M = 60, N 

= 3000). If both 3-way arrays X and Z are pot-wise unfolded as described earlier and then 

combined with S in a large augmented regressor matrix [X S Z], this would result in a 

matrix of dimensions (31x180189) which is difficult to manage, although not impossible 

with PCA and PLS methods. This motivated the search for the minimal amount of data 

necessary for obtaining potlife predictions within a desired accuracy. 

Two approaches were tested for the earliest potlife prediction as shown in Figure 4.4, each 

involving modifications to the trajectory data contained in X and Z (S was used as is): 

■ Five variables in the original X were computed (i.e. not independently measured) from 

other measurements. These were left out of this first analysis since they did not bring 

new information. Furthermore, it was found that keeping the entire trajectories during 

preheating was not necessary. The trajectories of 3 of the 5 variables were very similar 

and had a simple shape. These trajectories are represented by the averaged slope and 

final value, the standard deviation of their final value, and the total duration of the 

preheating phase. This simpler preheating data matrix X (31x4) explained the same 

amount of potlife variance than when using the full pot-wise unfolded trajectories, 

which would be (31x90) dimensional. The X (31x4) matrix was used in both 

approaches shown in Figure 4.4. 
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The Z array contains the pot operation data from the end of start-up phase to the end of 

service life. One approach (method 1) for testing how much operation data was needed 

for predicting potlife was to average the process data from the end of the start-up phase 

to sometime t during the operation phase (Figure 4.4(a)). Different such time windows 

were tested and used for predicting potlife. In this approach, Z is always a (31x60) 

matrix. In the second approach (method 2) Z rather consists of monthly averaged 

operating conditions juxtaposed from left to right (Figure 4.4(b)). Therefore, the 

number of months used to predict potlife increases, the dimensions of Z increases as 

(3 lxr-60) where t is the number of months used in the analysis. 
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Figure 4.4: Data arrangements studied for the earliest potlife prediction, (a) method 1 and 
(b) method 2. 

4.6.1 Earliest meaningful potlife prediction time 

The two different data arrangement techniques illustrated in Figure 4.4 are compared in 

order to find the earliest meaningful potlife prediction time. To be meaningful for the plant 

operator and engineers, the average potlife prediction error needs to be below 90 days. This 

value is referred to as the lower bound potlife prediction error limit below which decisions 

to end a pot life cycle is not based on poor performance (i.e. predictable using process data) 

but rather based on plant operation logistics. As plant operators aim at having the maximum 



49 

number of pots in operation, a pot decommissioning could be postponed or prompt a few 

days or weeks due to plant operational constraints like job planning. For example a pot 

supposed to be decommissioned might be delayed to minimize extra hours or because 

another pot might have to be stopped in emergency following a tap-out. Unfortunately, 

these slight variations cannot be captured using the data driven modeling approach and 

could therefore be considered as "noise" (i.e. useless to try improving the model below that 

limit). Hence, this work aims at finding a PLS model achieving a potlife Root Mean 

Prediction Squared Error by Cross-Validation (RMSECV) below 90 days. Since X and S 

are the same for both data arrangements (Figure 4.4), the objective is to determine how 

much operation data is required in Z to achieve potlife predictions within the 90 days limit. 

Several PLS models were constructed using data collected during preheating (X), start-up 

(S), and increasing number of months of operational data (Z) organized using the two 

methods described in Figure 4.4. 

Potlife prediction errors (RMSECV) are presented in Figure 4.5 as a function of months 

elapsed after start-up, where each point correspond to the prediction ability of one of the 

PLS models. This figure demonstrates that prediction error increases when data from the 

first month of operation are added to the preheating and start-up data. The two data 

arrangements methods exhibit a similar behaviour due to the high data variability over the 

first month of operation. 

Adding data from the second month of operation yields a significant reduction in the 

prediction error for both data arrangements methods. The prediction error is below 90 days 

for method 1 after two months, and becomes fairly stable over time beyond 4 months of 

data. For method 2, prediction errors decrease steadily and until about ten months of 

operation data are used in the PLS model. However, both arrangements show an increased 

prediction error when using three months of data. This might be caused by the application 

of different operational procedures in this particular month as well as variations arising 

from these procedures. Indeed, it was found that one of the pots contributed largely to this 

prediction error increase. Nevertheless, this behaviour disappears when more operation data 

are added. Had a greater number of pots be available for this study, one could have 
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removed this particular pot from the analysis, although this shows the ability of the method 

to detect outlier pots having a very different behaviour. 
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Figure 4.5: Potlife prediction errors as a function of months after start-up for the two data 

arrangement methods. 

The fact that the prediction error goes down early in a pot life demonstrates that preheating, 

start-up and early operation have a significant impact on aluminum reduction cell life. 

Indeed, using only data from the pre-heating and start-up yields a potlife prediction error of 

117 days (see results at 0 months in Figure 4.5), which is already very close to the 90 days 

limit. This value is the same for both data arrangement methods since they share the same 

preheating and start-up data (i.e. X and S). Using data from the first two months of 

operation, it is possible to provide potlife predictions within 84 and 135 days, respectively, 

for method 1 and 2. Hence, using process data averages over the first two months of 

operation (i.e. method 1) yields the earliest reliable potlife prediction for the data set of 31 

pots. Note that using 4 months of data with method 1 would also be a good choice. 



51 

The autoscaled cross-validated potlife predictions for the 31 pots are presented in Figure 

4.6 as a function of the truly achieved potlife of each reduction cell. These predictions were 

obtained using the PLS model built using preheating, start-up and two months of operation 

data and method 1 (Figure 4.4(a)). This model has two (A=2) cross-validated latent 

variables together explaining 73% of the potlife variance and resulting in a RMSECV of 84 

days. 

Figure 4.6: Predicted potlife as a function of truly achieved (i.e. measured) potlife. 

4.6.2 Influence of the variables on potlife 

Using the PLS model structure, it is also possible to identify variables having the greatest 

importance for potlife predictions. A commonly used statistic in the Chemometrics 

literature, called the variable importance on the projection VD?/r/t, provides a relative 

measure of importance of variable j in predicting Y using a PLS model with A latent 

variables: 

VIR i.A = A | lS_=1wa
2

j (SSYa/SSYtot) [4.7] 

In the above equation, waj is the loading weight of the 7th variable in the 0th PLS component, 

SSYa is the sum of squares of Y explained by the ath PLS component and SSYtot is the sum 

of squares of Y explained by the model. As a rule of thumb (Chong and Jun, 2005; 

Ericksson et a l , 2006), a variable with a VIP value greater than one is considered to have a 
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significant impact on the PLS model and thus on potlife predictions. The VIP scores of the 

best PLS model, using two months of operation data and method 1, are presented in Figure 

4.7. This figure also provides the pseudo-regression coefficients (B) for that model. 

Looking at these coefficients complements the information obtained from the VIP since the 

sign of the coefficient indicate the sign of the correlation between a given variable and Y 

(i.e. potlife). 
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Figure 4.7: (a) VIP and (b) regression coefficients for the PLS model achieving the earliest 
potlife prediction. The gray area identifies the preheating and start-up variables. 

The gray areas in Figure 4.7 identifies the 13 variables associated with the preheating (4) 

and the start-up (9) phases. All other variables are associated with the operation phase. In 

the preheating and start-up phases (i.e. gray region), variables 1, 5, and 7 have the greatest 

VIP scores and therefore have the strongest correlation with potlife amongst the 13 

variables. Plant operators and engineers can combine the information provided by the VIP 

scores and the regression coefficients for improving potlife. For example, variable 1 is the 

preheating duration and has a VIP value of 1.35 and its regression coefficient has a positive 

sign. That is, a longer preheating is positively correlated to potlife. This is consistent with 

process knowledge since a longer preheating phase gives longer soaking time for pot 

materials, thus leading to smaller thermal gradients just before start-up. 
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A similar approach can be used to interpret the impact of the 60 operational variables 

(numbered 14-73 in Figure 4.7). From these, 22 variables seem to have an important impact 

on potlife (VIP > 1). Another example is variable 64, which is the bath superheat or 

temperature over the melting point. This variable has a VIP of 1.15 and a positive 

regression coefficient. Hence, it has a good impact on the model, with a magnitude close to 

preheating time and according to the regression coefficient, increasing the bath superheat 

may help achieving a longer potlife. Again, this result makes sense as supplying enough 

heat to the pot prevents alumina sludge freezing over the cathode blocks which may lead to 

horizontal current fields thus degrading side ledge protection and sidewalls materials, 

leading to a possible shorter potlife. All the other variables having a VIP greater than one 

were investigated and, for most of them, their contributions in explaining potlife variations 

were found consistent with process knowledge. 

4.6.3 Interpretation of the latent variable model 
Although VIPs give the relative importance of each variable in the PLS model, one might 

be interested in understanding how variables interact together with respect to potlife. A way 

of extracting this information from the model is to plot X and Y weights, w* and q together 

on what is known as a loading bi-plot. An analysis of this plot gives information on the 

correlation structure among the X variables and how they influence potlife. 

Figure 4.8 presents the loadings bi-plot of the potlife PLS model. In this case, it is 

straightforward since the model has only two principal components. Therefore, one only 

needs to plot w*q 2 against w*q 1. However, this model includes 73 variables and looking 

at a graph with so many points could be cumbersome. Therefore, this graph only presents 

variables having the highest importance on the model, those with a VIP greater than one 

(i.e. Figure 4.7 (a)). Each dot marks the weight (w*) of a X variable with a VIP greater than 

one while the red star marks the weight of potlife (q). Drawing a line between the potlife 

weight and the plot origins, the green dotted line, helps to determine how variables interact 

together to influence potlife variations. 
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Figure 4.8: Bi-plot of the potlife PLS model. 

This plot illustrates mainly two clusters of variables, one on the left hand of the plot origin 

and the other one on the right hand side. The variables on the right are positively correlated 

to potlife since their w* weights have the same sign as the potlife weight, while those on 

the left hand side are negatively correlated. To determine the actual influence of variables 

on potlife, one needs to perpendicularly project each variable on the green dotted line. The 

farthest a variable is projected from the origin, the greatest is its influence on potlife. A 

zoomed version of this graph is presented in Figure 4.9 for discussion. 

This figure suggests that the first principal component might be driven by power input and 

thermal balance as many variables related to the pot thermal balance are present far from 

the plot origin. As mentioned in the discussion around VIPs, preheating time duration is an 

important variable affecting potlife. This is also seen on the bi-plot as it projects far from 

the origin on the green dotted line. Moreover, it can be said that performing a shorter 

preheating may necessitate a higher voltage during (CJ_UMM) early operation at this 

variable is plotted on the opposite side of the plot. This translates to a higher power input 

(CJ_Power and CJ_CPower) and a higher energy consumption (CJ_EE). These last 
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variables are grouped together on the plot, close to CJ_UMM, meaning that they are 

positively correlated with it and negatively correlated with potlife. This makes sense from 

process knowledge. Assuming a pot preheating is too short, cathodes core might still be 

cold and this may generate some bath to freeze during start-up or early operation. 

Therefore, more power has to be added early during the pot operation and this is achieved 

by increasing the pot voltage. 
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Figure 4.9: Zoomed version of the potlife PLS model bi-plot. 

On the other hand, the second principal component seems to be affected by a different 

factor as metal level (CJ_HM), tap weights (CJ_MMCNO) and the metal iron content 

(CJ_TFE) are variables with the greatest weight on the second latent variable. This 

component seems to be related to the metal inventory during the early operation. 
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4.7 On-line Multivariate Statistical Monitoring of Preheating, 
Start-up and Early Operation 

An on-line monitoring scheme is developed in this section for increasing mean service life 

through reducing the number of shorter potlife pots caused by inappropriate control actions, 

process drifts and upsets (i.e. abnormal operation) occurring during the preheating, start-up, 

and early operation phases. As shown previously, the process data collected in these three 

phases for the 31 pots studied in this paper explain up to 73% of the variations in potlife 

and yields predictions errors within 90 days of the truly achieved pot service life. Since 

process variations in the early phases were found highly correlated with potlife, conducting 

the process more consistently combined with early detection of potential problems may 

help achieve a higher mean service life. 

In the aluminum smelting and in most industries, process operators and engineers typically 

follow the behavior of a few key variables to determine whether the process is in control or 

not. This is typically achieved using univariate statistical process control charts developed 

separately for each of the variables of interest. However, in the process industries, 

measured variables are almost never independent of one another and important information 

might be missed by univariate charts since they do not account for correlation structure 

between the variables (Kourti and MacGregor, 1995; Kourti, 2002, 2005). Hence, the 

operators might think that a pot is in control based on univariate charts when it is in fact 

out-of-control due to a change in the correlation structure of the process variables. 

Multivariate statistical process control charts (MSPC) (Kourti and MacGregor, 1995) will 

therefore be used in this study. 

Multivariate latent variable techniques for monitoring process trajectory data are already 

available in the literature but, to the author's knowledge, were never used for monitoring 

early operation in aluminum smelters. A wealth of literature is available on batch process 

monitoring and fault detection (Nomikos and MacGregor, 1995; Westerhuis et a l , 1999, 

2000; Kourti, 2002, 2005). Monitoring of start-ups and shutdowns of continuous processes 

using a similar approach was also investigated (Duchesne et a l , 2002). Since the smelter 

data structure presented in Figure 4.1 is very similar to that of multi-phase batch processes, 



the batch MSPC techniques are used in this first attempt at monitoring early operation. The 

basic idea behind the approach consists of 1) selecting a reference database of pots which 

had a long service life and for which the early operation went well, 2) building a Multi-

Way PLS model (MPLS) on that reference database to capture the correlation structure of 

the process trajectories associated with longer service life, and 3) after establishing 

statistical limits, compare the data obtained from new pots against the MPLS model of the 

reference database in order to detect abnormal operation that could, eventually, be 

detrimental to potlife. Appropriate corrective actions are then applied when necessary. 

4.8 Development of MSPC Charts for Early Operation 

From the 31 pots, a total of 22 had a scaled potlife value over -0.5 (Figure 4.2) and were 

confirmed as good early operation by plant operators and engineers. Hence, these pots are 

used as the reference database required for building the MSPC charts, which now consists 

of the following data blocks for each of the three phases: preheating X (22x10x18), start-up 

S (22x9), and two months of early operation Z (22x50x60). Note that for on-line 

monitoring, the full trajectory data is used to increase detection sensitivity. It was decided 

to keep all 10 preheating variables and use the first 60 daily averages in Z (i.e. first two 

months). However, 10 variables were left out of the Z block since their variance was very 

small. After pot-wise unfolding of X and Z followed by concatenation with S, the data 

structure shown in Figure 4.10 is obtained. This data is used for building the MPLS model 

describing the natural pot-to-pot variability in the trajectory behavior (i.e. correlation 

structure of the variables over time) amongst the good pots, those for which early operation 

is associated with longer potlife. Using again two cross-validated latent variables (A=2), the 

MPLS model explains 88% of the variance of Y and has a RMSECV of 96 days (i.e. 

consistent with the best PLS prediction model discussed previously). 

57 
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Figure 4.10: Data structure after pot-wise unfolding and concatenation of X, S and Z. Also 

shown is trajectory data for a newly started pot (vnew). 

On-line monitoring of a newly built pot involves two multivariate statistics, namely the 

Hotelling's T and the squared prediction error Q. The former provides a measure of the 

distance (i.e. Mahalanobis) of the new pot from the mean trajectories of the reference pot 

database on the hyperplane defined by the MPLS model. The latter is a measure of how 

well the correlation structure of the trajectories of the new pot agrees with that of the 

reference pots (i.e. measure of the distance of the observations off the plane). These two 

statistics are computed as described below: 

'new,* — V n e w i W 

rpi. t V - 1 f T 

i n e w i - - '■new.t Zjt l n e w , l 
■■2 1 new.i 

Vnew,J ~' v'new.f *-new,l" J \Ynew,l 'new,*" J " *-new,/̂ new,i 

[4.8] 

[4.9] 

[4.10] 

where vnew,/ corresponds to the trajectory data collected up to time instant / for the new pot, 

autoscaled using the mean and standard deviations obtained from the reference data (i.e. 

prior to build the MPLS model). The score vector tnew,/ is the projection of these trajectories 

onto the hyperplane of the MPLS model. The matrices W* and P contain the MPLS 

loading vectors (see Eqs. [4.3 - 4.5]), and Zt, the variance of the score vectors (columns of 

T), which is diagonal due to orthogonality of the score vectors. The W*, P, and Zt matrices 

are obtained from the MPLS model built on the reference trajectories of the good early 

operation pots. The T^w,/ and (?new,/ statistics are computed at each time interval / as the 

preheating, start-up, and early operation progress towards completion. 
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It is important to understand here that the complete trajectory data for the new pot (i.e. VneW) 

is only available at the end of the early operation phase (after about 60 days). At the Z01 time 

instant, only the measurements collected up to this instant (i.e. Vnew,/) are available and the 

rest of the trajectory data need to be filled in order to compute 1 new./ and dew./- Ways to fill 

the trajectory vectors have been explored in the batch process literature (Nomikos and 

MacGregor, 1995). Three of them were tested in this study: 1) assumes that the remaining 

future observations for each variable correspond to their mean trajectory computed from the 

reference dataset, 2) assumes that the present deviation from the reference trajectory will 

remain constant until the early operation is completed, and 3) replacement of missing data 

using PCA (Nomikos and MacGregor, 1995). A comparison between them will be 

discussed later. 

To discriminate "in-control" from "out-of-control" operation (i.e. detect abnormal 

operation), statistical limits for T2/ and Qi were established based on reference distributions 

of these statistics computed using the 22 pots that underwent good early operation. That is, 

for each of the 22 pots, the 7 / and Qi were computed for each time instant /= 1,2,.. .79 using 

the reference MPLS model. Hence, 22 replicates of these statistics were available at each 

instant 1. The limits were established in such ways that at each instant, 95% of the 

replicates were within the bounds. Alternatively, one could use F and % probability 

distributions to establish these limits (Nomikos and MacGregor, 1995; Kourti, 2005). 

The ability of the MPLS model to correctly classify good and bad early operation was then 

tested. This also motivates the choice of one particular data filling method as well as the 

way to establish the 95% statistical limits. A summary of the classification results is 

presented in Table 4.1 for the three data filling approaches identified earlier. The 

percentage of good alarm is the number of "bad" early operation, among the 9 available in 

database, that were detected by the MPLS model after violating one or both of the T2 and Q 

limits, at any time during the preheating, start-up or early operation. A false alarm is when 

a good early operation violates one or both of the T2 and Q limits at any time during the 

three phases (i.e. percentage of the 22 good pots in the database). The first data filling 

approach (i.e. filling with the mean trajectories) was found to be the best suited for the 
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available data since it provided the lowest false alarm rate (good alarm rates are similar for 

all three approaches). This approach was therefore used in the rest of this paper. 

Table 4.1 : Good and false alarm rates for the three data filling methods. 

- . . .« . .= ..---. % of alarms 
ud id l i n i n g m e u i u u good false 

1 
2 
3 

88.9 9.1 
88.9 95.5 
88.9 13.6 

4.9 Online Monitoring Results 

This section illustrates on-line monitoring of the preheating, start-up and early operation 

phases of new pots as it would occur in practice. Three pots were selected, namely pots 

A037 (good), B117 (bad) and A003 (bad). Their corresponding autoscaled potlife were 

0.90, -1.22, and -1.34, respectively. Pot A037 was taken from the reference dataset used to 

build the MPLS model of good early operation. Pots A003 and Bl 17 are considered as bad 

early operation leading to shorter potlife (i.e. below -0.5) and should be detected as 

abnormal using the MSPC charts. Had these three pots been monitored on-line, the T2/ and 

Qi charts presented in Figure 4.11 would have been obtained. 

From these charts, it is possible to observe different behaviour through the preheating, start

up and early operation of these three pots. The preheating phase corresponds to the time 

intervals located on the left of the black vertical line, the start-up phase (a snapshot) is on 

that line, and the early operation trajectories are on the right of the black vertical lines. Pot 

A037 clearly remains within the T2 and the Q limits at any time during the three phases, 

indicating that this pot was in control until regular production was reached. On the other 

hand, pot B117 was barely within limits until time interval 37, or 18 days after start-up, 

when a special event suddenly occurred and caused the Q statistic to rapidly move outside 

the limits. This indicates that the correlation structure between the variables was broken 

compared to normal (good) early operation. Furthermore, at time interval 52 (or 33 days 
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after start-up) the Q statistic again sharply increased, and this was observed a third time at 

interval 77 (58 days after start-up). Since the T2 and Q limits are computed from the MPLS 

model of good early operation, these limits are set to pinpoint on upsets that will likely 

have an impact on potlife. Hence, it seems that three abnormal events occurred during early 

operation of B117. Pot A003 also experienced some Q statistic excursions outside the 

limits. However, as opposed to pot Bl 17, this pot remained in control on the T2 chart, 

indicating that only the correlation structure was broken at time interval 56, or 37 days after 

start-up. Hence, a very important event occurred during early operation of pot A003 which 

might explain shorter potlife. 
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Figure 4.11: MSPC charts showing T2 and Q statistics and their 95% limits for pots A037, 

B117andA003. 

When the T2 and/or Q limits are violated, an alarm should be issued to get operator's 

attention and eventually trigger an effort for finding the root causes of the upset. The 

diagnosis effort is supported by tools such as variable contributions which consists of a bar 

plot of the relative contribution of each variable to a change in the T2 and Q statistics with 

respect to the mean trajectories of the reference pots. Assuming a data vector vnew,/ (IxJL), 
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where L=K+l+N, from a newly started pot containing measured data up to the / time 

instant, and the remainder completed according to a filling approach. The contribution of 

process variable j at time interval /, to the 1 statistic is computed using the following 

expression (Westerhuis et a l , 2000): 

Cf = tLwZr1Wew,;7W,T(WTW)-1]T [4.11] 

Here, Zt is variance-covariance of the score matrix (T) obtained from the reference dataset 

of good pots, and W is the corresponding weight matrix. It basically accounts for the 

magnitude of the deviation of variable j at instant / from the reference trajectory as well as 

the importance of this variable in predicting potlife. The contribution of process variable j 

at time interval /, to the Q statistic is computed according to the following equation 

(Westerhuis et al., 2000) which provides a measure of how well this particular variable is 

projected on the plane of the reference MPLS model: 

C£ = (V„ewj! - Vnew,;ï)2 [4.12] 

The T2 and Q contributions are presented in Figure 4.12 for pots A037, Bl 17 and A003 for 

each variable j at each time interval /. A high contribution means that this variable at this 

specific time interval contributed significantly to a change in T2 and/or Q and hence, did 

behave differently compared to the reference dataset. It is clear that early operation 

trajectories for pot A037 were fairly close to the mean reference trajectories since the 

contributions of all variables at all times are low for both statistics. In contrast, seyeral of 

the T2 and Q contributions were high for pot Bl 17 (jl values around 1000 and 2000), but 

are low at other times, indicating that some variables behaved according to the reference 

trajectories most of the time, but behaved abnormally at defined periods of time. Similarly, 

some QorT2 variables contributions for pot A003 were high at// values around 2000. 
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Figure 4.12: T2 and Q contribution plots for pots A037, B117 and A003. 

The MSPC charts would draw operator's attention on those pots showing a different 

behaviour during the preheating, the start-up and the early operation of newly started cells. 

As shown in Figure 4.11, pot A037 would have been found uneventful. However, pot Bl 17 

and A003 went out-of-control at some time instant and would have requested operator's 

attention. When a special event is detected (i.e. T2 and/or Q outside the limits) the operator 

could use the contribution plots at this moment to help identify the variables that 

contributed to this upset. For instance, according to the Q chart in Figure 4.11, pot Bl 17 

went out-of-control for the first time at time interval 37. This time interval corresponds to 

the 18th days of operation. Instead of looking at the complete Q contribution plot, the 

operator would have looked only at the contributions for all early operation variables but at 

this specific time interval. Moreover, what happened on the same pot at time interval 52 

(day 33) is also of interest. Figure 4.13 presents the T2 and Q contributions for pot Bl 17 at 

time intervals 37 and 52. 
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Figure 4.13: Pot Bl 17: Contribution of early operation variables to T2 and Q statistics at 

time intervals 37 and 52. 

These plots indicate that only a few variables contributed to the drift. For example, at time 

interval 37, Q contributions for variables 8, 28, 34 and 35 are higher compared to the other 

variables. Violation of the Q limit means that the correlation of these variables is broken 

compared to the reference dataset of good early operation. At time interval 52, Q 

contributions for variables 17, 28, 30, 37 and 43 are significantly higher compared to other 

variables. Also, T2 contributions for variables 8, 28, 30 and 43 highly contributed to the T2 

statistic. The combined information led to suspect that something different happened during 

the early operation phase for this pot and, if possible, corrective action should be taken to 

avoid affecting potlife. Both of these days happened to be on cold winter days when the 

smelter had to perform power curtailments to lower the electrical consumption and leave 

more energy on the Hydro-Quebec network for household heating. When this occurs, the 

standard policy is to apply the same set of corrective actions to all the pots, regardless of 

their age, in order to reduce the detrimental impact of lower power input. The drift 
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observed in the T2 and Q statistics are related to the reduced power input caused by the 

curtailments as well as the impact of corrective actions. It was found that these actions were 

not strong enough to bring the operation of this pot any closer to the reference trajectories. 

This caused a sustained electrical instability (short term voltage fluctuations) at an early age 

and permanent damage to the pot materials, resulting in shorter service life. Had such a 

monitoring scheme been in place, additional, but more adapted, corrective actions for this 

particular pot could have been rapidly taken to reduce material damage and potential 

impact on potlife. 

The last example involves pot A003. Operators or engineers could have looked at the T2 

and Q contributions at time interval 56 and 57 (37th and 38th days of operation after start

up), that is when the Q statistics began drifting (see Figure 4.11). These contributions are 

shown in Figure 4.14. 
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Figure 4.14: Pot A003: contribution of early operation variables on T2 and Q at time 

intervals 56 and 57. 
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Variables 14, 16, 28, 30, 33 and 37 mainly contributed to the drift in the Q statistic, which 

means that the way they behave relative to one another was much different compared to 

good early operation. The signature left by these variables is associated with both a noisy 

behavior (short term voltage fluctuations) and a sustained anode effect, both occurring at 

time interval 56. When an anode effect is detected, the standard troubleshooting policy does 

not involve an immediate investigation of the anodes, but rather a series of verifications and 

actions are made by the operators. In the following days (time interval 57 for example) this 

pot remained very noisy showing that previous actions did not resolve the problem (i.e. 

detected by the Q statistics which continued to drift in Figure 4.11) requiring further 

investigation. Several days later, a defective anode suspected to be the cause of the high 

noise episode, was pulled out of the pot. Operators tried to fix this anode for a few days 

before finally pulling it out and replacing it with a new one, which seemed to have 

contributed to a more stable operation. On-line monitoring could have help operators 

focusing their attention on the anodes at an earlier stage (i.e. after observing that their initial 

set of actions did not resolve the problem) and therefore, could have reduced detrimental 

impact on service life. 

4.10 Conclusion 

In this paper, it was demonstrated that preheating, start-up and early operation have an 

impact on aluminum reduction cells service life. This was demonstrated through the 

development of a PLS regression model, predicting potlife of newly started pots, using the 

information available from the preheating, start-up and early operation phases. Hence, 60 

days after start-up, the developed regression model is able to predict potlife with a root 

mean squared error of prediction of 84 days, which is small enough to be useful for plant 

operators. Moreover, this model sorted the information from the 73 variables included in 

the model to highlight 25 variables that are highly correlated with potlife. Plant operators 

can then focus their attention on these variables in order to improve potlife. Also, efficient 

MSPC charts were proposed to monitor pots during preheating, start-up and early 

operation, with respect to potlife. Instead of responding to any kind of variations, these 

charts only highlight variations having an impact on potlife. These charts can rapidly flag 
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pots that operate abnormally and also enable engineers to drill down the information and 

utilize the contribution plots to determine variables contributing to the process upset. 

Finally, it is understood that the relatively small number of pots studied in this work do not 

allow an extensive coverage of pot-to-pot variations and of the various events that may 

happen during early operation. Further data need to be collected, and models periodically 

updated, in order to refine the monitoring scheme and increase its robustness. For example, 

there was no very short life pot in this limited dataset. Hence, more data on such pots need 

to be collected in order to accurately predict such events. This could be done by adding 

more pots to the already available dataset and updating the model. However, a proof of 

concept was presented in this paper, and will be further investigated in the future. 
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5 Multivariate Analysis and Monitoring of the 
Performance of Aluminum Reduction Cells 

5.1 Résumé 
Cet article présente l'étude de l'impact des variations de la qualité des matières premières, 

des points de consigne et des variables d'état du procédé, ainsi que des conditions de 

démarrage sur les performances des cuves d'électrolyse. Les alumineries sont opérées au 

dessus de leur capacité nominale de conception, ce qui limite leur flexibilité à accepter 

certaines variations. À l'aide d'un modèle de régression PLS (Projection sur les structures 

latentes) basé sur 31 cuves, il est démontré qu'il est possible d'expliquer 52% de la 

variation de l'efficacité de courant et de la consommation énergétique. Ce modèle permet 

d'investiguer les variables contribuant le plus aux variations des performances des cuves. 

Les effets de ces variables sont discutés et une stratégie de suivi statistique est proposée 

afin de repérer efficacement et rapidement les problèmes éventuels provenant des 

différentes sources de variations affectant l'opération des cuves d'électrolyse. 

Tessier, J., Duchesne, C , Tarcy, G.P., Gauthier, C , Dufour, G., Submitted to Metallurgical 
th and Materials Transactions B (E-TP-09-335-B, November 2 4 , 2009) 
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5.2 Abstract 

Aluminum reduction smelters, as other metallurgical and chemical plants, are now operated 

well above their nominal capacity through different process improvements. However, in the 

case of aluminum smelters, the added production often comes at the cost of lower 

operational window while alumina and coke quality are degrading. Still, smelter operators 

try to maintain their production performance metrics at the highest level but face once in a 

while performances variations. This paper investigates, through the use of multivariate 

multiblock regression tools, how raw materials quality, measured and manipulated 

variables and reduction cell start-up interact together to affect performances. Based on a 

pot-to-pot analysis of 31 industrial pots, the developed model explains about 52% of the 

performance variations, in spite of all uncertainties associated with operational computation 

of current efficiency and energy consumption. Important variables are presented and 

discussed and different month-to-month performance variations are analyzed. This will be 

use in the future for performance monitoring and early detection and diagnosis of abnormal 

operation. 
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5.3 Introduction 
Aluminum (Al) is the third most abundant element on Earth and makes up to 8% of the 

Earth's solid weight. However, it is naturally strongly bonded to oxygen and needs to be 

isolated through a sequence of different processes to be converted into metallic aluminum. 

Industrial aluminum production begins with bauxite which is converted to alumina (AI2O3) 

through the Bayer process (Grjotheim and Kvande, 1993). The latter is then reduced to 

aluminum (Al) using the Hall-Héroult process (Grjotheim and Kvande, 1993; Thonstad et 

a l , 2001). 

In this later process, alumina powder is dissolved in a molten mixture of cryolite and 

fluoride salts and is electrochemically dissociated into aluminum and oxygen. Using carbon 

anodes, the theoretical dissociation voltage is 1.2 V (Grjotheim and Kvande, 1993) and the 

global reaction is: 

2 Al203(diss) + 3 C(s) = 4 Aid) + 3 C02(g) [5.1] 

This reaction takes place in metallurgical reactors called reduction cells or pots. Modem 

aluminum smelters are equipped with hundreds of cells that are operated for a period of 4 

to 10 years depending on cell design, operating conditions and control policies. Throughout 

operation, cell performance is generally quantified using current efficiency (CE) and energy 

consumption (EC). Current efficiency is the ratio of real to theoretical metal production, 

obtained from Faraday's law, and is computed over a defined period of time. On the other 

hand, energy consumption is defined as the amount of electrical energy used to produce one 

kilogram of aluminum. These two metrics are computed for each pot over a 24 hours period 

as follows (Grjotheim and Kvande, 1993): 

CE = MA1/(I * 0.0080538) [5.2] 

EC = 2.9806 * U/CE [5.3] 

where MAI is the real pot production in kg, over 24 hours; I is the current flowing through 

the pot in ampere and U is the operational pot voltage in volt, including all external voltage 

drops. 
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Figure 5.1 presents overall correlations between CE, EC, and potlife for the 31 pots 

investigated in this study. From these charts, it is clear that CE and EC are correlated to 

each other (R = -0.77) while these two metrics seem to be relatively decoupled from potlife 

as shown by the lower correlation coefficients (CE: R = -0.47; EC: R = 0.34). 

Even though these metrics are easily computed, many factors will cause CE and EC to vary 

during the pot service life. Many scientists and plant operators have worked on improving 

understanding of the root causes of these fluctuations, and it is known that alumina and 

anode quality (i.e. process raw materials) are two important sources of disturbances 

introducing variations in pot performance. Moreover, electrolytic bath chemistry, pot 

operating conditions, pot design and start-up conditions (i.e. preheating, start-up and early 

operation) also have an effect on CE and EC. The influence of these variables is briefly 

described below: 

• Alumina quality has an impact on alumina dissolution rate in the electrolyte. 

Unfortunately, as presented by Wang (2009), inconclusive and contradictory 

findings are presented in the literature and there is still no agreement on which of 

the alumina properties really affect alumina dissolution rate. 

• Jentoftsen et a l , (2009) presented the impact of anode quality, mainly CO2 

reactivity, on CE at a plant based level. It is known that an increase in anode air and 

CO2 reactivity may lead to a more severe selective burning of the anode binder mix 

in the pots, thus resulting in carbon dust. Dust floats on top of the bath and finally in 

case of severe dusting, is dispersed within the molten bath. This increases bath 

thermal insulation and contributes to increasing pot temperature. According to 

Wang et a l , (1994), this may increase bath electrical resistivity and, in turn, reduce 

anode-cathode distance (ACD). Both of these factors are associated with a lower CE 

through the back reaction (Grjotheim and Kvande, 1993). A lower ACD may also 

lead to the formation of anode spikes (Rolots and Wai-Poi, 2000), lowering CE 

further through different mechanisms. Many smelters have encountered different 

dust episodes and serious cases can reduce CE by up to 3%. In addition, anode 
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cracking may lead to severe cell disturbances resulting in higher carbon 

consumption and manpower (Meir et a l , 1994). 

• Dewing (1991) investigated the impact of bath chemistry on CE in industrial pots, 

particularly that of aluminum fluoride (AIF3), lithium fluoride (LiF) and superheat 

(i.e. temperature above the electrolyte eutectic). Tarcy (1995) reported the influence 

of .alumina concentration in the electrolyte on CE based on industrial cell 

measurements. It was observed that low alumina content increases CE. Sterten et al. 

(1998) have studied the impact of bath impurities in laboratory cells, highlighting 

the negative impact of polyvalent impurities such as Fe, P, V, S, Zn, Ti, and Ga on 

current efficiency. These impurities are mainly introduced by alumina and carbon 

anodes. 

• Tarcy and Sorensen (1991) studied variations in CE using many industrial pots and 

found that bath temperature could decreases CE by 0.25%/°C. In Tarcy (1995) the 

impact of metal tapping on CE was presented. Clearly, CE drastically drops right 

after metal tapping (typically performed on a 24 or 36 hours basis) demonstrating 

that manual operations also have an impact on pot performance. 

These investigations have deepened our knowledge of the factors affecting CE and EC. 

However, instead of studying the process as a whole, published studies in the open 

literature generally only take into account the effect of a few variables or group of variables 

at a time, thus independently focusing on some particular aspects. Recently, Tessier et al. 

(2008) used a multivariate approach to analyze a potline CE drop taking into account 

alumina and anode quality, as well as some potroom parameters. This study highlighted the 

negative impact of certain combinations of events causing a number of process variables to 

move together in the wrong direction, leading to a lower CE. 
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Figure 5.1: Linear relations between (a) CE and EC, (b) CE and potlife and (c) EC and 
potlife. 
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A multivariate analysis of the factors influencing reduction cell performance (i.e. CE and 

EC) over their entire service life is presented in this paper. It uses all available potroom 

data organized into the following groups: start-up policies, alumina and anode quality 

properties, pot operation set-points, manipulated and state variables. Studying all these data 

blocks together should help identify interactions between different groups of variables, or 

combinations of them, explaining variations in performance over a complete potlife cycle. 

The approach consists of building a latent variable model, using Multiblock Partial Least 

Squares model (MBPLS), on a database collected from several pots. The resulting latent 

variable space is subsequently interpreted to highlight variables statistically contributing to 

CE and EC variations. 

This paper is arranged as follows. First, the nature of the potroom data used in this study is 

presented, followed by a description of the multivariate latent variable modeling method 

(i.e.. MBPLS). Fluctuations in CE and EC performance metrics are then predicted. Finally, 

the contribution of each group of variables in explaining CE and EC variations is discussed, 

and used to investigate and diagnose the possible causes of some short term CE variations 

on a pot basis. 

5.4 Dataset 

This study was performed using data from the Alcoa Deschambault smelter. This smelter 

operates 264 AP-30 pots operated beyond their nominal design. Data were gathered from 

31 pots started between 2002 and 2004 and by the time this study was performed all 31 pots 

were stopped and replaced with new ones. For each pot, preheating, start-up and early 

operation data, as well as alumina and anode quality and pot operating data were retrieved 

for complete pot life cycles. 

5.4.1 Alumina quality 

Since the Deschambault smelter does not have an alumina refinery on site, alumina is 

shipped by boat to the smelter from different refineries. For the time period covered by this 

study, alumina was shipped from six refineries identified as Suppliers A to F. Each 

shipment comes with a certificate of analysis (COA) reporting chemical impurities, particle 
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size distribution and physical properties. The analysis included COA variables, some binary 

variables to indicate alumina supplier and also the % of < 20pm at the outlet of the dust 

collector systems, representative of the real % of < 20pm alumina particles fed to the pots. 

These variables are presented in Table 5.1 and are referred to the A1203 block throughout 

this paper. 

5.4.2 Anode quality 

In the same period of time, prebaked carbon anodes used in the cells were produced using 

blends of seven different cokes identified as Suppliers G to M. In order to minimize anode 

quality variations and ensure the best possible anode quality, depending on the different 

cokes used in the recipe, process engineers have used different set points in the green mill 

and in the baking furnace. Anode quality is assessed on a weekly basis through the analysis 

of few anodes core sample. These are analyzed for chemical impurities, mechanical and 

physical properties and air and CO2 reactivity (i.e. Air Rx and CO2 Rx). An overview of 

anode core samples test methods is presented in Fisher et a l , (1995) and Grjotheim and 

Kvande (1993) and quality variables used in this analysis are presented in Table 5.1 and are 

referred to the Anode block. 

5.4.3 Preheating, start-up an early operation data 

Before entering production, each new pot has to be preheated for a defined period of time 

to bring pot materials from ambient temperature to their operating temperature. This is a 

critical step as uncontrolled variations during this period could be detrimental to potlife 

(chapter 4; Sorlie and 0ye, 1989) and to pot electrical noise (Zangiacomi et a l , 2005, 

2006). Preheating and start-up data were retrieved from pot start-up log books. Preheating 

variables are collected at the end of the preheating step. Start-up variables are snapshot 

values defining start-up conditions. Early operation variables were averaged over the first 

two months of pot operation as discussed in chapter 4. These variables are presented in 

Table 5.1 and are referred to the PSE block. 
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5.4.4 Pot manipulated and state variables 

To assess and monitor pot state, different variables are routinely sampled on each pot, 

analyzed by process engineers and stored in the plant database. These variables are either 

collected by the pot controller, like noise and resistances, or manually by operators, like 

bath level, temperature and chemistry. Following the analysis of these variables, process 

engineers and the pot control system will change different set points to improve pot 

performance. For this particular smelter, this is achieved on a pot-to-pot basis since each 

pot is equipped with a dedicated local controller. Again, these set-points are stored in the 

plant database. Pot state and manipulated variables included in this analysis are presented 

in Table 5.1 and are referred to the SV and MV blocks, respectively. 

5.4.5 Potroom location variables 

Additional variables were selected based on process knowledge in order to take into 

account pot age and location within the potroom. For example, the average trend of CE and 

EC computed from the 31 pots suggest that CE decreases with age after the first few 

months while EC increases. To model these trends, time since start-up was included in the 

database. Furthermore, it is known that different parts of a potroom perform better or worse 

than other due to magnetic fields imbalance or differences in the alumina transport or in the 

dust collection system. Hence, a number of binary variables were used to describe pot 

location within the potroom. These variables are presented in Table 5.1 and are referred to 

the PLV block. 
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Table 5.1 : Blocks of variables included in the analysis. 
A l u m i n a Qual i ty (A l203) Anodes Qual i ty (Anode) Preheat, Star t -up and Early Opera t i on (PSE) Pot State Var iables (SV) 

var iab le Label Van able Label Variable Label Var iab le Label 

J Suppl ie r A 66 % Air Dust 120 Pre-Heabng Time 189 Spikes 

2 Suppl ie r B 67 % Mr lost 121 Cathodes Final Tempera tu re avg 190 S A I F 3 x s a v g 

3 Suppl ie r C 68 % V 122 Cathodes Final Tempera tu re std 191 X C a F 2 a v g 

4 Suppl ie r D 69 Electrical Resist iv i ty 123 Heat-up Rate 192 Bath Level avg 

5 Suppl ie r E 70 R' 124 Meta l A d d e d Dur ing Star t -up 193 N u m b e r of Bath f eeds avg 

6 Suppl ie r F 71 Young's Modu lus 125 Cathodes Curent COV 194 N u m b e r of Anode Effect avg 

7 X A I 2 0 3 Dried 72 Ai r Permeab i l i t y s td 126 Line Amps 195 A n o d e Effect Overvo l tage avg 

S KCaO 73 % Air Rx s td 127 Lowest Amps 196 Bath Tempera tu re avg 

9 X G a 2 0 74 % A l s t d 128 Highest A m p s 197 Noise avg 

10 X K 2 0 75 S C02 Dust s td 129 Anode Effect Dura t ion 198 Superheat avg 

11 ■MHO 76 % C02 Rx std 130 Anode Effect Vol tage 199 % AIF3xs std 

12 S P 2 0 5 77 Therma l Expansion Coef f s td 131 A n o d e Effect Bath Level 200 %CaF2s td 

13 X T Î 0 2 78 Compress ive Strength std 132 Anode Effect Bath Tempera tu re 201 Bath Level s td 

W ran 79 Therma l Conduct iv i ty std 133 KALF3XS 202 Meta l Height s td 

15 K Z n O 80 S C 0 2 Lost s td 134 KALF3XS Last Value 203 N u m b e r of Bath feeds std 

16 Ratio CaO/Na20 81 A p p r e n t Densi ty s td 135 %CAF2 204 N u m b e r of A n o d e Effect s td 

17 % > 1 5 0 u m 82 Real Densi ty s td 136 Purge Durat ion 205 A n o d e Effect Overvo l tage std 

18 N > 1 0 6 u m 83 Flexural Strength std 137 Bath Level 206 Bath Tempera tu re std 

19 % > 7 5 u m 84 Fracture Energy std 138 Bath Level Last Value 207 Noise std 

20 % > 5 3 u m 85 Lcs td 139 Bath Level Target 208 Superheat std 

21 % > 4 5 u m 86 % Ash std 140 Meta l Pad Level 209 P o t r o o m Dust 

22 % < 4 5 u m 87 SCa std 141 Measur ing Pin Height 

23 % < 2 0 u m 88 % Fe std 142 Une Amps 

24 . % < 20pm Norma l i zed 

% < 4 5 p m Norma l i zed 

89 

90 

% Na std 

% Si std 

143 

144 

Feed Mu l t i p l i e r Constant 

Tapped Bath 

Preformances 

25 

. % < 20pm Norma l i zed 

% < 4 5 p m Norma l i zed 

89 

90 

% Na std 

% Si std 

143 

144 

Feed Mu l t i p l i e r Constant 

Tapped Bath Variable Label 

26 % a - A I 2 0 3 91 X S s t d 145 Normal Meta l Tapped CE Current Eff iciency 

27 Repose Angle 92 % Ai r Dust s td 146 Total Meta l Tapped EC Energy Consump t i on 

28 Packed Bulk Densi ty 93 94 Ai r Lost std 147 Number of AI203 f eeds 

29 Loose Bulk Densi ty 94 % V s t d 148 N u m b e r of AIF3 f e e d s 

30 % F e 2 0 3 95 Ele Resist iv i ty std 149 N u m b e r of Bath f e e d s 

31 A t t r i t i o n Index 96 R's td 150 N u m b e r o f Tracks 

32 Lost on Ign i t ion 1000 C 97 Young's M o d u l u s s td 151 N u m b e r of Anode Effect 

33 % S i 0 2 152 N u m b e r of Anode Effect Manua l Kil l 

34 Surface Area (BET) 153 N u m b e r of Anode Effect CPU Kil l 

35 Flow Funnel Time 

% A I 2 0 3 f i r e d 

Po t room Locat ion Var iab les (PLV) 154 

155 

Slope Value 

Personal ized Temporary Resistance 36 

Flow Funnel Time 

% A I 2 0 3 f i r e d Var iab le Label 

154 

155 

Slope Value 

Personal ized Temporary Resistance 

37 % « 20um o u t of DC 100 T ime Since Star t -up 156 Total Resistance Target 

101 Pot Posi t ion 157 Recorded Resistance 

102 Pot DC sys tem 158 Base Resistance Target 

Anodes Qual i t y (Anode) 103 

104 

Room A 

R o o m B 

159 

160 

Stable Pot Resistance 

Anode Effect Overvo l tage Variable Label 

103 

104 

Room A 

R o o m B 

159 

160 

Stable Pot Resistance 

Anode Effect Overvo l tage 

38 Suppl ier G 161 X A I F 3 x s Target 

39 Suppl ie r H 162 Bath Tempera tu re 

40 Suppl ier 1 

Suppl ier J 

Pot Man ipu la ted Var iables (MV) 163 

164 

Bath Tempera tu re Last Value 

Bath Tempera tu re Target 41 

Suppl ier 1 

Suppl ier J Var iab le Label 

163 

164 

Bath Tempera tu re Last Value 

Bath Tempera tu re Target 

42 Suppl ier K 98 Line Amps avg 165 Cu i n meta l 

43 Suppl ie r L 105 Set Cycle 166 % T i m e Mi ld Noise 

44 Suppl ie r M 106 Bath Level Target avg 167 Fe in meta l 

45 Ai r Permeab i l i t y 107 Measur ing Pin Height avg 168 % T ime in Strong Noise 

46 u m 108 Feed M u l t i p l i e r Constant avg 169 Li i n meta l 

47 % A I 109 Tota l Resistance Target avg 170 Na in meta l 

48 S C02 Dust 110 Base Resistance Target avg. 171 Si i n meta l 

49 % C 0 2 R x 111 % AIF3xs Target avg 172 Ti in meta l 

50 Thermal Expansion Coef f i c ien t 112 Bath Tempera tu re Target avg 173 V in meta l 

51 Compress ive Strength 99 Line Amps std 174 Recorded Vol tage 

52 Thermal Conduc t iv i t y 113 Bath Level Target std 175 Noise 

53 H C02 Lost 114 Measur ing Pin Height std 176 Current Eff iciency 

54 Apparen t Density 115 Feed M u l t i p l i e r Constant std 177 Energy Consumpt ion 

55 Real Densi ty 116 Total Resistance Target std 178 Liq u id us Tempera tu re 

56 Flexural Strength 117 Base Resistance Target std 179 Superheat 

57 Fracture Energy 118 % AI F 3xs Target std 180 Hyperheat 

58 Lc 119 Bath Tempera tu re Target std 181 Cumu la ted Hyperheat 

59 « A s h J82 Hyperheat Integral 

60 % C i J83 Power Inpu t 

61 % F e 184 Cumu la ted Anode Effect 

62 X N a 185 Cumu la ted Power Input 

63 % P b I K Cumu la ted Si 

64 %Si 187 Cumu la ted CU 

65 %s 188 Cumula ted Noise 
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5.4.6 Data treatment and averaging 

This study was performed on a pot-to-pot basis to investigate CE and EC variations of each 

cell. To do so, MV and SV were retrieved from the plant database on a daily basis and CE 

and EC were computed on accordingly using the daily metal tap weight, pot average 

voltage and current using Eqs. [5.2 - 5.3]. Unfortunately, some uncertainties are associated 

with the computed values of CE and EC, since the amount of metal tapped from a pot is 

driven by a metal height table. One such table is presented in Figure 5.2, and clearly shows 

that the same amount of metal is tapped for different metal height, until the difference from 

the metal level target is large enough (D = difference between the measured metal level and 

its target) to change to a different tapping weight. Hence, different metal heights yield the 

same operational CE, which certainly does not exactly match the real current efficiency. 

Moreover, since the bath floats on top of the metal pad, the amount of metal tapped may 

include some liquid bath, known as bath carryover, which could not be quantified on a pot 

basis in this study. Hence, if an operator has some problem during a tap, he may generate a 

higher bath carryover, leaving some metal in the pot as he taps bath instead of metal. Over 

time, the metal leftover in the pot may increase the metal height in such a way that the next 

computed metal tap weight will be higher according to the metal height tapping table. If the 

discrepancy between the metal height target and the measured metal level is large enough, 

this will artificially increase CE for the day the leftover metal is tapped. 

The PLV block variables were also arranged on a daily basis. The PSE block arrangement 

was presented earlier and provided an indication of the pot initial condition. However, aside 

from the pot age included in the PLV block these two blocks variables are constant over a 

pot life cycle. 

Unfortunately, raw material properties are difficult to obtain on a daily and a pot-to-pot 

basis. Alumina certificate of analysis (COA) are available for each shipment and this 

smelter typically receives 15 to 20 shipments per year. Alumina shipments are stored in a 

limited number of silos and hence the smelter is generally using a blend from different 

shipments. Alumina quality properties were estimated using the COA of each shipment and 
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silo management policies (i.e. blends). Furthermore, anode quality is available on a weekly 

basis, after lab analysis of anode core samples. 

Figure 5.2: A typical metal height tapping table (D = difference between the measured 
metal level and its target). 

This analysis could have been performed on a weekly basis which is the shortest sampling 

time period imposed by the anode block. However, such an analysis would have been 

meaningless due to the uncertainties in CE and EC (discussed above) and those associated 

with the estimation of which alumina blend entered a pot at a given time. Hence, it was 

decided to average all the data over a four weeks basis (i.e. 28 days). This nearly matches 

the average anode set cycle used at the plant and hence, averaging the anode properties over 

a four week window provides a good estimation of anode quality populating a pot during 

the complete set cycle. Moreover, it also smoothes out some of the uncertainties in the 

estimation of alumina blends and in computing CE and EC. Finally, CE and EC values are 

more meaningful to smelter operators on a monthly basis, which is close to the 28 days 

basis used here. From this point in the paper, the 28 days basis will be referred to months. 
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5.5 Latent Variables Modeling 

As presented in Table 5.1, this analysis involves 209 raw material and process variables, 

available on a monthly basis, to be used for explaining variations in the two key 

performance indicators, CE and EC. Multivariate Latent Variable methods, such as 

Principal Component Analysis (PCA) and Partial Least Squares (PLS), can be used for 

extracting the information contained within the various data blocks taken jointly. These 

methods have shown their ability to cope with problems typically encountered with 

industrial data arising from collinearity, noise and missing values. The mathematical 

foundations of these methods is described in details in several papers (Geladi and 

Kowalski, 1986; Wold et al., 1987, 2001; Hôskuldsson, 1988; Jackson, 1991). A few good 

reviews of their applications for solving a number of problems in various industrial areas 

are also available in the literature (Kourti and MacGregor, 1995; Duchesne et a l , 2002; 

Kourti, 2002, 2005; Miletic et a l , 2004, MacGregor et a l , 2005). Moreover, Tessier et al. 

(2008, 2009) and Majid et al. (2009) have also used some of these methods to investigate 

different aluminum smelting process issues. 

5.5.1 Partial least squares (PLS) 

Consider a matrix of process data X (IxJ) containing / observations on J process variables 

and a second matrix, Y (IxH), containing / observations on H quality or performance 

indicators. Assume that both data blocks contain systematic and stochastic variations (i.e. 

noise) jointly driven by a small number of A underlying events, also called lurking or latent 

variables (i.e. unmeasured). This is typical of industrial process databases collected during 

normal or abnormal production (i.e. in the absence of designed experiments), which results 

in not full rank X and Y data matrices. Latent Variable Methods consist of a family of 

multivariate statistical techniques which aim at finding these underlying process events 

causing both process and quality variables to move together in certain directions. Once this 

lower dimensional latent variable space T (IxA) is identified, the data in X and Y are 

projected onto it allowing for easier visualisation and interpretation of large industrial 

databases. Partial Least Squares (PLS) regression is one such method. 
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The PLS method performs a decomposition of the covariance structure between X and Y, 

by finding a common set of latent variables T that captures the information in X that is the 

most highly correlated with Y while building a model also describing both of these data 

blocks. The structure of the PLS model is given below: 

X = T PT + E [5.4] 

Y = T QT + F [5.5] 

T = X W W* = W(PTW)- 1 [5.6] 

where T (IxA) is the common latent variable space defined by the loading matrix W* (JxA) 

and capturing the information in X that is the most highly correlated with Y. The P (JxA) 

and Q (HxA) matrices contain the orthogonal loading vectors mapping the common latent 

variable space in the original spaces of X and Y (models of these blocks). The PLS model 

residuals for both blocks are stored in E (IxJ) and F (IxH), respectively. 

The number of latent variables (A) to include in the model can be determined by a leave-n-

out cross-validation procedure [Wold, 1978] and the NIP ALS (Geladi and Kowalski, 1986, 

Kourti and MacGregor, 1995) algorithm is often used to iteratively compute T, P, Q, W 

and W*. 

From these latent variable models, it is possible to interpret the behaviour of the variables 

relative to each other (i.e. their correlation structure) by means of the loading vectors stored 

in P, Q, W and W*. On the other hand, the latent variables T can be used to visualize 

clusters and patterns defined by the observations. 

Like any projection method, PLS is a scale dependent and an appropriate scaling is required 

prior to performing the analysis. To give an equal importance to each variable in the model, 

a common practice is to mean-center and autoscale (i.e. divide by the standard deviation) 

each variable in the X and Y blocks. 

5.5.2 Multi-blocks partial least squares (MBPLS) 

In the present study, the X data could naturally be divided into six blocks as presented in 

Table 5.1. This enables the use of multi-block PLS (MPLS) algorithms, which are modified 
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versions of PLS to enhance interpretability when multiple data blocks are associated with 

separate equipments or sections within a plant. These methods are well described in the 

literature (Westerhuis and Coenengracht, 1997; Westerhuis et a l , 1998, 1999; Smilde, 

Westerhuis, de Jong, 2003; Hôskuldson and Svinning, 2006) and only a brief description is 

given here. 

Consider the process data X presented in Table 5.1, composed of I observations and J 

process variables and Y (IxH), a matrix of performance data related to X. Here, H=2 since 

CE and EC are used as performance metrics. A regular PLS model could be built to relate 

X (i.e. all variables in a single block, see Figure 5.4(a)) and Y. Then, as shown by 

Westerhuis et a l , (1998), the MBPLS results could be obtained from that model after 

applying block scaling to the X matrix. That is (1) autoscale X, then (2) divide each 

variable by the square root of the number of variables within its corresponding block (i.e. 

-\//AL203> V-/Anodes> •••> V/sv)> tnus giving equal importance to each block in the model. As 

shown in Figure 5.4(b), MBPLS yields a hierachical model made of a super level and a 

block level. The scores obtained using PLS and block scaling (t and u's) are equal to the 

MBPLS super scores (tx and u's). The block scores (tM203, tanodes, •••, tsv), block variable 

weights (wAi203, Wanodes, • • •, wsv) and super weight wx of the MBPLS method for each 

block and each latent variable dimension can be calculated as follows: 

wAi203 = X]u2o3 U / - T u t5-7] 

tAl203 = XA]203WA1203 l*'*»] 

X T = [tA1203 tAnodes — *Sv] [5-9] 

W x= X? u / u T u [5.10] 

The main advantage of MBPLS is to allow process monitoring at two levels: 1) the super 

level where the information within all the blocks are jointly related to performance (Y) and 

provide a plantwide monitoring capability, and 2) the block level where individual 

equipments, raw materials or sub-processes can monitored. Breaking down the information 

using such hierachy may help better understand and diagnose process variations leading to 

poorer performance. 
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Figure 5.3: Data arrangement for (a) the regular PLS and (b) the MBPLS methods. All 
vectors are shown for a single component. 

5.6 Performance Prediction Results 

To account for pot dynamics, it was found that using a data history of about 12 weeks (or 3 

months) for certain data blocks improved prediction results for CE and EC. This was 

implemented by the use of moving window averages. Consider X;,t the i* regressor data 

block averaged over a 28 days period as discussed in section 5.4.6, that is, the data were 

averaged over the past 28 days from current time. Also denote XJ,M and Xj,t-2 the same data 

block (i.e. variables) but averaged over the past two periods of 28 days, that is from days -
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29 to -56 and days -57 to -84 from current time, respectively. Such a moving window 

structure was implemented for all the blocks except for the PSE and PLV blocks for which 

dynamics do not apply. This data structure is presented in Figure 5.4, where Yt corresponds 

to CE and EC data averaged over the past 28 days from current time. Using this data 

structure, performance data for the latest 28 days period (Yt) will be regressed on a history 

of about 12 weeks of process data. Accounting for dynamics increases the total number of 

variables, from the 209 original variables listed in Table 5.1 to 479 variables since the 

alumina, the anode, the manipulated variables and the state variables are included three 

times (but averaged over different periods) to account for the 3 months moving window. 

Since the averaging windows move forward each 28 days period, from pot start-up until the 

end of service life, a large number of observations are also obtained. This dynamic model 

structure, for each 28 days period and each pot, was stored row-wise in a large data matrix 

X (see Figure 5.4) Using such a data arrangement, X includes 2271 observations and 479 

variables (/ = 2271 and J = 479) and is used to built a MBPLS model between X and Y 

matrices, as described in section 5.5.2. 

37 74 m 

1 
I A I 2 0 3 Anodt ;s PLV 

Figure 5.4: Data structure used in the analysis. 

A total of 5 components were selected through cross-validation. This model captures 

23.52% and 52.54% of the variance (i.e. information) of X and Y, respectively, and 

achieves root mean squared prediction errors in cross-validation (RMSECV) of 2.26% for 

CE and 0.399 kWh/kg for EC. Autoscaled values of predicted CE and EC, obtained in cross 

validation, are presented in Figure 5.5 against the measured CE and EC values. Moreover, 

the explained variance and RMSECV are presented in Figure 5.6 for each pot included in 

the analysis. 
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Variations in the performance of some pots are better explained than others (ranges from 

25-65% for CE and 10-65% for EC), but the precision of the predictions (i.e. RMSECV) 

seems more consistent among the 31 pots. This might be due to lower systematic variations 

in CE and EC for some pots but with similar level of noise in the data. Overall, the model 

explains 54.21% and 50.87% of the variance of CE and EC, respectively. A considerable 

amount of efforts were made to improve predictive ability using other ways to pre-process 

the data, but with no significant gain. Data quality may help explain some of the difficulties 

in capturing a greater percentage of variations in CE and EC. Alumina and anode quality 

variables are not measured on a pot-to-pot basis. Alumina properties are rather estimated 

from suppliers COA and blending data, and weekly population averages are used to 

describe anode quality based on a limited number of analyzed core samples. A better 

traceability of these raw materials would certainly help explain additional variance. 

Furthermore, the uncertainties involved in computing the CE and EC values due to the 

tapping tables and errors may very well limit the theoretically explainable performance 

fluctuations. 

Measured and predicted autoscaled CE values are presented for four pots in Figure 5.7. Pot 

A003, A096, B102 and A023 correspond to observations 1, 3, 4 and 26 in Figure 5.6, 

respectively. Predicted CE follow the general trend of measured CE, as shown in Figure 

5.7, demonstrating again the relatively good predictive power of the model on a pot basis. 

However, CE exhibits other higher frequency variations. For example, pot A096 displays a 

sharp increase from observations 35 to 38 and then a sudden drop from observations 39 to 

42. The model captured several of these CE peaks and, even it does not predict them 

perfectly, the results indicate that the raw material and process data included in X carry 

relevant information for explaining some of these CE fluctuations. Similar observations can 

be made for the three other pots in Figure 5.7, and of many of the other pots included in this 

analysis (not shown). 
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Figure 5.5: Predicted against measured values for (a) CE and (b) EC. Explained variance is 
54.21% for CE and 50.87% for EC. 
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Figure 5.7: Autoscaled CE values for pots A003, A096, B102 and A023. Solid lines are for 
real measured CE and dots for predicted CE. 

From these plots, it is possible to conclude that the model can follow or describe most of 

the CE variations over the four pots life cycles. For example, the model almost perfectly 

matches some CE peaks for pot B102 at months 13, 50 to 53 and 63 to 66, demonstrating 

good predictive performance, but also indicating that the model structure (P, W, W* and 

Q) reproduces typical pot behaviour. However, the model does not capture all peaks as seen 

for pot A003 at months 6, 12, 17 to 19 and 25, for example. This indicates that either not 

enough information was included in the data to capture these peaks and that they are driven 

by different behaviour not accounted using the analyzed variables or they are arising from 

noise (i.e. tapping tables or measurement errors). 

Studying the model's loadings and weights, P, W and W*, allow interpreting the 

correlation structure within X and Y through the lower dimensional latent variable space T. 
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However, it this case, since many variables (J = 479) and principal components (A = 5) are 

involved in the model, studying the relationships between these variables using the loadings 

and weights might not be straightforward. Nevertheless, the importance of each X-variable 

in explaining variations in Y can be computed from the weights (W) and the fraction of 

variance explained by each principal component relative to the total variance explained by 

the model. The variable importance metric (VIP) for each variable is computed as follows: 

VIPM = JlZ^iwJCSSYa/SSYtrt) [5.11] 

In the above equation, VIP,-,*, provides a relative measure of importance of variable j in 

predicting Y using the developed PLS or MBPLS model with A latent variables. This 

statistic adjusts the loading weight (wfl]/) of the 7th variable in the 0th PLS component, by 

multiplying its value by the ratio of the sum of squares of Y explained by the a,h PLS 

component (SSYa) over the sum of squares of Y explained by the model (SSYtot). Some 

rules of thumb were proposed by Eriksson et al. (2006) for describing the importance of the 

variables based on their VIP values: VIP > 1.0 most influential variables, 0.8 < VIP < 1.0 

moderate influence, and VIP < 0.8 less influential variables. The overall importance of each 

data block can also be computed using Eq. [5.7], but replacing waj by the super weights. 

The importance of each data block in the MBPLS model (i.e. VIP) is provided in Table 5.2. 

To the author's knowledge, this is the first time that the VIP metric is used for quantifying 

the relative importance of data blocks. As expected, the SV and MV block are the most 

important for predicting CE and EC, alumina, anodes and location blocks are moderately 

important, and early operation (PSE) is less important. The fact that the PSE block is less 

important does not mean that no attention from smelter operators should be put on 

preheating, start-up and early operations. These are performed very consistently at 

Deschambault such that little variations in the PSE block are related to CE and EC. 

However, in older smelters where process control and equipments are older, preheating, 

start-up and early operation may have more impact of CE and EC and could even be a 

bottleneck for performance improvement. On the other hand, the VIP presented in Table 

5.2 indicates that the variations in the remaining five blocks are more highly correlated to 

performance variations. It was expected that both the MV and SV blocks would have a 
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greater importance in the model compared to the alumina and anodes blocks, since the MV 

and SV data are available on a pot-to-pot basis. This is not the case for alumina and anodes 

quality, available as bulk or population estimates. Moreover, the SV block also caries all 

process upsets from raw materials variations and variables in the MV block are adjusted to 

respond to SV variations. This also explains why these blocks have higher VIP with respect 

to pot performance. In spite of this, the alumina and anode cannot be removed from the 

model without significantly degrading the model predictive ability. 

Table 5.2: Importance of each data block in the MBPLS model. 

Blocks VIP 
iviouei AI203 Anodes PLV MV PSE SV 
Global 0.950 0.876 0.927 1.278 0.605 1.213 

CE alone 0.937 0.898 1.005 1.310 0.529 1.144 
EC alone 0.963 0.852 0.843 1.246 0.673 1.277 

The importance of each individual variable are also computed using Eq. [5.7]. The highest 

VIPs from each block are presented in Table 5.3. This table also presents the signs of the 

regression coefficients, obtained using Eq. [3.13], which indicate the sign of the correlation 

of the most relevant variables with CE. Only one variable is shown in the PLV block since 

it the VIP of this block is below 1.0. The VIP results for the variables in the other blocks 

indicate that lagged values (t-1 and t-2) of many variables have an impact on pot 

performance. For example, in the alumina block, the % of < 20um out of the dust collection 

system has an impact on pot performance at time t, t-1 and t-2 (i.e. Figure 5.4), which 

demonstrates the importance of this variable, and of considering its dynamic impact on 

performance. 

Based on process knowledge, variables presented in Table 5.3 make sense. As discussed 

earlier, many authors have highlighted the impact of alumina. This is also supported by the 

present study as particles size distribution, flow funnel times, attrition index, repose angle 

and some impurities are ranked high in the VIP list. Basically, these variables are believed 

to have an impact on alumina dissolution. This analysis suggests a negative impact on CE 

when the fines content of alumina increases, in accordance with Jain et a l , (1983) and 

Kvande (1998). On the other hand, Maeda (1985) reported that no correlation exist between 

particle size and dissolution times. Furthermore, Johnson (1981) came to the same 



conclusions and even proposed an increase in dissolution time beyond a certain particle 

size. Hence, the impact of alumina fines on alumina dissolution needs to be verified. 

Table 5.3: Highest variables VIP, for CE, from each block computed through the MBPLS 

model. 

Alumina Quality (AI2Q3) Anodes Quality (Anode) Potroom Location Variables (PLV) 
_ L _ _ Label J _ _ Label ^ a _ Label 
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t-2. M , t %<20un iou to fDC 
t-2, t - 1 , t %<4Sum Normalized 
t-2. M , t Attr i t ion Index 
t-2, t - 1 , t Flow Funnel Time 
t-2, t-1 % < 20pm Normalized 

t-2 Repose Angle 
t-2 % K20 
t-2 % V205 

t-2, t - 1 , t Supplier G 
t-2, t - 1 , t Supplier H 
t-2, t - 1 , t Compressive Strength 
t-2, t - 1 , t Fracture Energy 
t-2, t - 1 , t Electrical Resistivity 
t-2, t - 1 , t R' 
t-2, t - 1 , t %V 

Supplier K 
Supplier I 
Flexural Strength 

Time Since Start-up 

t-2, t - 1 , t 

t-2 
Pot Manipulated Variables (MV ) Preheat, Start-up and Earl y Operatio (PSE) Pot State Variables (SV) 

Lag Label Correlation Lap Label Correlation Lag Label Correlation 
t-2, t - 1 , t Une Amps avg Anode Effect Bath Level + t-2, t - 1 , t Noise avg 
t-2. M , t Bath Level Target avg + Bath Level Target t-2. M , t Noise std 
t-2, t - 1 , t Total Resistance Target avg Slope Value + t - 1 , t Bath Temperature avg + 
t-2. M , t Base Resistance Target avg + % Time Mild Noise t - 1 , t Bath Level avg 

t - l , t Feed Multiplier Constant avg - Nain metal t - 1 , t %AIF3xsavg + 
t %AIF3xs Target avg - Noise + t - 1 , t % CaF2 avg + 
t Bath Temperature Target avg + Current Efficiency Anode Effect Overvoltage avg + 
t Measuring Pin Height avg Power Input + Potroom Dust -

Cumulated Power Input 
Number of AI203 feeds 

As mentioned by Meir et a l , (1994), thermally cracked anodes may lead to a decrease in 

pot performance. Compressive strength and fracture energy are key indicators of anode 

cracking, and are present in Table 5.3. Moreover, coke suppliers also appear among the 

variables that are the most highly correlated to performance. It is known that different 

cokes will lead to different anode properties, even if the best efforts are put in place to 

smooth out the transition between two different cokes. On the other hand, one would have 

expected Air Rx and CO2 Rx to be listed in Table 5.3. However, % V, a catalyst for anode 

air reactivity, is positively correlated with CE. On the other hand, Schmidt-Hatting et al. 

(1986) reported a CE decrease as vanadium increased in the anodes. This opens the door for 

investigation. 

As expected from the fact that CE decreases over time, the variable indicating the time 

since start-up is also important in predicting performance, as it helps the algorithm to 

capture the average trend decrease of CE and the increase of EC over time. 
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Pot manipulated and state variables can be interpreted together since they are strongly 

linked through feedforward/feedback control loops (i.e. the manipulated variables are 

adjusted to compensate for pot state variations). As expected from the results of Tarcy and 

Sorensen (1991) and Tarcy (1995), bath temperature and its target value are listed in the 

VIP table. It is known that the back reaction rate, re-oxidizing dissolved aluminum in bath, 

is favoured by higher bath temperature (Grjotheim and Kvande, 1993) and higher contact 

surface area between bath and metal pad (Grjotheim and Kvande, 1993). Besides increasing 

the surface area, metal waves characterizing the molten metal pad surface may lead to 

direct electrical shorting between anodes and metal pad when anode-cathode distance 

(ACD) is low. This phenomenon creates short term pot voltage variations, increasing the 

so-called noise variable and directly reducing CE. One way to lower this negative 

contribution to CE is to increase the ACD, which is directly related to increasing both the 

base and the total resistance targets. Noise and both resistances are listed in Table 5.3 and 

hence, are in agreement with process knowledge. Bath level and its target were also found 

in the list shown in Table 5.3. Stabilising bath level improves alumina feeding strategies, 

heat balance control, bath chemistry control, and also helps achieving better metal purity. 

For instance, operating a pot with a low bath level may produce alumina muck beneath the 

metal pad and may increase the anode effect rate since less alumina is dissolved within the 

bath. On the opposite, an excessive bath level may increase the iron content in the metal 

and hence reducing its market value, as dictated by LME premiums, while it also increases 

noise since the CO2 gas bubbles (i.e. Eq. [5.1]) travel for a-longer period of time to escape 

the molten bath pad. A few bath chemistry variables (% AIF3XS, its target and % CaF2) as 

well as alumina feed modifier constant, measuring pin height, anode effect overvoltage and 

dust were also found important for explaining performance variations. A good review of 

bath chemistry effects on pot performances is provided by Thonstad et al. (2001). Feed 

modifier is manipulated by process operators to force a pot to perform within a specific 

range of alumina overfeed-underfeed cycles (Grjotheim and Kvande, 1993). The measuring 

pin height is correlated to the real metal pad height and it is known that generally, 

increasing the metal height lowers the metal pad waving as it helps balancing magnetic 

fields, but also may help keeping a lower bath temperature as it increases the surface area 

available for heat losses to the environment. The effect of dusting has been discussed 



93 

earlier in this paper and anode effect overvoltage can be detrimental to process performance 

in two ways. It increases the overall average pot voltage, and hence EC (i.e. Eq. [5.2]), but 

also since high anode effect voltage contribute to increase the bath temperature (Tabereaux, 

2007) and, in turn, increases the back reaction rate. 

On the other hand linking variables from the PSE block to pot performance using process 

knowledge is not straightforward. However, these results may indicate that keeping a pot 

under control during the early operation is helpful to increase pot performance through the 

whole pot life cycle. For example, insufficient or excessive bath levels should be avoided 

and pot electrical power should be kept under control, which is equivalent to carefully 

controlling pot voltage or resistance. 

Again, the loadings bi-plot can help understanding the variables structure affecting CE and 

EC. Figure 5.8 presents a loadings bi-plot of the first two latent variables of the CE and EC 

PLS model and Figure 5.9 presents a zoomed version of the same plot, including only 

variables at time t having a VIP over one. Since this model has five principal components, 

any combinations of the five set of w*q could be investigated. However, by definition, the 

first two explain the greatest amount of variance of Y and hence might be of greatest 

interest. This figure clearly demonstrates the negative correlation between CE and EC as 

they fall on opposite quadrants of the graph. Therefore, based on the data available in this 

study, improving EC with different operational policies would be at the expense of CE and 

vice-versa. Again, according to the available dataset, improving both simultaneously would 

require major changes in operating policies and/or process or technology with respect to 

what has been performed in the past. 
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Figure 5.8: Bi-plot of the first two latent variables of the CE and EC PLS model. 
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From this graph, it seems that the first latent variable focuses on raw materials variations as 

some alumina and coke properties variables are present far from the origin. This 

demonstrates again the importance of raw materials properties to pot performance. On the 

other hand, the second principal component is mainly driven by bath level and the pot 

noise. As seen in this figure, bath level (HB avg) and noise (WRMI avg) are variables with 

the highest weight on the second principal component. 

This should serve as a basis for CE or EC optimisation as it gives the variable structure and 

interactions within this multivariable system. 

5.7 Analysis of Month-to-Month Performance Variations 

It was shown in the last section that the MBPLS model captures about 50% of the 

variations in performance indicators. Moreover, the most important raw material and 

process variables as well as the sign of their correlation to performance were found in 

agreement with primary smelting knowledge. This section examines how process operators 

and engineers could use this model in practice to monitor the process as a whole, and to 

help diagnose drifts and upsets in key performance variables (CE and EC). When an upset 

is detected, for example when CE sharply increases or decreases within two consecutive 

months, the MBPLS model could be interrogated in order to find the root causes of the 

problem. This procedure typically occurs in three steps. First, abnormal operation is usually 

detected at the super level (or plantwide level) of the MBPLS model. Second, attention is 

focused on the block level where one could locate the likely source of the drift, which could 

involve a single block (e.g. sub-section of the plant) or a combination of blocks. Finally, the 

contribution of each variable, within the blocks of interest, to this drift can be computed 

using PLS and MBPLS latent variable models. These contribution plots are central tools for 

narrowing down diagnosis efforts to identify the root cause of abnormal operation. 

To illustrate these concepts, consider the analysis of a sudden CE drop shown in Figure 

5.10. This figure presents the time series of the five super scores (t,i to t,_) of the MBPLS 

model built in the last section as well as that of CE (observed and predicted) for pot A003. 

The current efficiency drop occurs between observations 26 and 27, marked by vertical 

dotted lines. Note that the predicted CE also follows this sudden drop, implying that raw 



material and/or process variables carry information about this upset. This illustrates the 

upset detection step at the super level of the MBPLS model. It is also worth observing the 

signature of the first super scores (txi), which captures the general CE average trend shown 

in Figure 5.10(a). Additional components explain variations around this trend. 
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Figure 5.10: Monitoring of CE for pot A003 and detection of an upset (dotted lines) at the 
super level of the MBPLS model. The time series of the five super scores are shown, as 

well as the measured and predicted CE. 

A closer look at the super scores in Figure 5.10 reveals that the 3rd and 4th principal 

components (i.e. t_t and tX4) capture most of the CE drift. To investigate which of the 6 data 

blocks are associated with this drift, one could look at the super weight vectors for these 

PCs (Wx3 and wX4) and focus on those blocks having the highest weights in absolute value. 
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Alternatively, one could also plot the block scores (tAi203, tAnodes, •••, tsv) directly and 

investigate those blocks which score values show significant deviations. Since the MBPLS 

model has 5 dimensions (i.e. components) and consists of 6 blocks, it was decided to plot 

the Hotelling's T2 statistic which summarizes the information carried by all components 

simultaneously (Kourti and MacGregor, 1995): 

T/i = ( t u t 0 5 ) S,"1 ( t U t 0 5 ) T [5.12] 

Vector t,,ito5 contains the five scores of observation i, within block j , and S, is the variance-

covariance matrix estimate of the five scores of block j . The Hotelling's T2 statistic 

provides the Mahalanobis distance of observation i from origin. This information is shown 

in Figure 5.11 for each block. 

From these plots, it is clear that the PLV and PSE blocks are not involved in the drift. This 

was expected since the variables collected in these two blocks are constant over the entire 

pot life, except pot age (i.e. number of months after start-up). On the other hand, the T2 

values of the A1203 and MV blocks exhibit a significant increase between observations 26 

and 27, suggesting that some variables within these three blocks should be investigated 

further. The Anodes and SV blocks also moved but to a lesser extent. These graphs do not 

provide the exact cause of the upset, but rather help narrowing down the search for possible 

sources. Another advantage of the block level provided by MBPLS is when the data for one 

or a few blocks, or sub-sections of the plant, are available earlier than for others, such as 

when raw material properties are measured before being used in the process. In this 

situation, operators and engineers could detect events that are potentially detrimental to 

performance indicators before they occur and affect the process. When possible, proactive 

actions could be taken at an early stage to alleviate, or at least reduce, the impact of such a 

disturbance. This would be applicable, for example, to the A1203 block as the COA is 

available before the alumina is fed in the pots. Modification to blending operations may 

help attenuating variations in alumina properties. 
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Figure 5.11: Contribution of each block to the CE drift (dotted line) occurring in pot A003. 
The Hotelling's T2 statistics is shown for each block of the MBPLS model. 

The final step in the diagnostic procedure consists of computing the contributions of each 

variable of the blocks of interest in order to interpret possible root causes for the 

performance drift. How to compute these contributions based on several components (5 in 

this case) it described by Kourti (2005). The contribution of variable j , to the overall 

movement between two consecutive observations, i and i-1, in the five latent space is 

computed using the expression below. 

r — YA 

^ i , j ~ i - t a = \ 

\(*i.r *i-i.j)*Kj] 
& 

[5.13] 
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where x,,, and x,./,, are values of the 7th variable for observations i and /'-/; w*aj is the weight 

associated to the/11 variable in the a* latent space and S2_ is the variance of the 0th score. It 

basically consists of the difference between two observations on variable j , weighted by its 

importance in the model (w*). Dividing by the score variance gives equal chance to each 

latent variable to influence the variable contribution. Note that the weights and variances in 

the above expression are taken from the regular PLS model with block scaling as discussed 

in section 5.5.2. To obtain the contribution of the variables in a particular block, one only 

needs to use the appropriate variables within that block (x,/s). 

The contributions of all variables from all blocks to the performance drift are shown in 

Figure 5.12(a). Observations 26 and 27 from pot A003 were used to compute the 

contributions. The plot in Figure 5.12(a) is relatively noisy, especially in the lower range of 

contributions due to normal (common cause) process variations. To help enhance the 

diagnostic procedure Westerhuis et al. (2000) and Conlin et al. (2000) proposed to establish 

approximate confidence limits around the contributions calculated with Eq. [5.14] and then 

show only the contributions falling outside these statistical limits. The resulting "filtered" 

contribution plot is shown in Figure 5.12(b), which provides a clearer picture of those 

variables that are the most highly associated with the drift. 

The approximate confidence intervals for contributions were established as follows. Month-

to-month current efficiency variations had a one standard deviation of 3.24% in the 

available database. This is equivalent to a fluctuation of about 2500 kg in metal production 

for 28 days at 350 kA. Based on smelter operation knowledge, it was assumed that CE 

variations (increase or drop) greater than 3.24% are large enough to justify taking 

corrective actions whereas below that limit, CE variations are likely caused by natural 

process variations (i.e. errors from different sources). Thus, CE differences between two 

consecutive months were calculated from all pots and across their respective lifetime. Pairs 

of consecutive observations for which the CE differences were lower than 3.24% were 

identified, contributions between them for all variables were computed, and those were 

used to establish an approximate 95% limit for contributions. A total of 1579 differences 

were used for that purpose. Many variables in the 425 to 450 range (pot state variables) 
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were set to zero in Figure 5.12(b) since for this particular drift, the contributions of these 

variables were smaller than the limit. 
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Figure 5.12: Contributions of the variables for all blocks to the CE drift between 
observations 26 and 27 for pot A003: (a) raw contribution plot and (b) filtered based on 

approximate confidence limits. 
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Variables significantly contributing to the CE drop between observations 26 and 27 for pot 

A003 are shown in (Figure 5.12(b)). Had such a monitoring and diagnostic scheme been in 

place, smelter operators would have found that various alumina properties and pot state 

variables were strong contributors to the drift. Some of these variables are the alumina 

particle size distribution (> 106pm and < 45u.m), bath height level and its target as well as 

the number of anode effects. These correspond to variables 18, 22, 420, 462 and 464, 

respectively. Basically, the percentage of alumina particles > 106u.m was 10% lower than 

usual, while the percentage of < 45\im was more than 8% higher than usual. This likely 

affected the alumina dissolution rate. Meanwhile, the bath level dropped by more than 

2.2cm, further reducing alumina dissolution capacity due to a smaller bath volume. This 

also increases the frequency of anode effects since less alumina is dissolved in bath. Hence, 

it is easier to deplete alumina below the concentration leading to an anode effect. As a 

matter of fact, the anode effect frequency was three times greater than usual for pot A003 at 

observation 27 (i.e. monthly average corresponding to observation 27). Finally, the CE 

drop was most probably the result of a combination of slow dissolving alumina and low 

bath level. Together, these variables increased anode effect frequency which, in turn, had a 

negative impact on current efficiency. 

Upon reception of the alumina COA, had the MBPLS monitoring scheme been in place, the 

T2 statistic for the alumina block would have raised the attention of process engineers, who 

could have computed the contributions for that block. They could have assessed that the 

fluctuation in alumina size distribution (> 106nm and < 45pm) could possibly reduce the 

alumina dissolution rate even before feeding it in the cells. Engineers could have taken 

preventive actions to increase alumina dissolution capacity by increasing (or avoiding to 

reduce) the bath level target while using this alumina shipment. 

An extensive analysis of the contribution of all the raw material and process variables was 

performed in order to create a Pareto table listing the variables that were the most 

frequently found highly contributing to significant CE deviations. A total of 167 events 

were investigated when measured CE drift was greater than 3.24% and the predicted drift 

was at least 1% and of the same sign. This decision was taken in order to make sure that the 

investigated variables contributed to a meaningful CE variation, and that the model was 
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able to capture and predict these CE variations to a certain extent. On average, the model 

captured 44% of the CE variations in cross-validation for this subset of 167 observations. 

For each of these 167 events, the contribution of each variable was computed using Eq. 

[5.9] and filtered using the confidence interval discussed earlier. Table 5.4 presents the 

Pareto table showing the 15 variables which were the most often found strong contributors 

to CE fluctuations. The percentage of occurrence is the number of times a variable was 

involved in a CE variation for two successive months, within the 167 analyzed 

observations. Most of the variables presented in this table were also listed in Table 5.3 and 

discussed in section 5.4, and make sense based on process knowledge. However, it is 

interesting to note that the average bath level is the second most encountered variable with 

respect to CE variations in the analyzed dataset. This reinforces the premise that bath level 

control leads to better pot performance as it affects different sub-processes. 

Table 5.4: Variables with highest occurrence with respect to CE variations. 

Variable Block % of occurrence 

Noise std SV 30.9% 
Bath Levelavg SV 30.7% 
Bath Temperature avg SV 29.3% 
Anode Effect Overvoltage avg SV 27.5% 
%AlF3xsavg SV 27.3% 
%CaF2avg SV 27.3% 
Feed Multiplier Constant avg MV 26.9% 
Number of Anode Effect std SV 26.9% 
% AI203 Dried Alumina 26.7% 
Flexural Strength Anodes 26.7% 
Bath Temperature std SV 26.7% 
Surface Area (BET) Alumina 26.3% 
Superheatavg SV 26.3% 
Noise avg SV 25.7% 
Total Resistance Target avg MV 25.5% 
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5.8 Conclusions 

In this paper, a multivariate latent variable regression technique known as multiblock PLS 

was used to investigate how process variables interact with each other to influence current 

efficiency and energy consumption, the two variables describing pot performance from a 

production and energy consumption stand-point. 

Multivariate methods are advantageous over other methods since the model structure can be 

used to compute the importance of each variable in the prediction as well as their relative 

contribution to performance drifts. The developed model generated good current efficiency 

and energy consumption predictions as about 52% of the variations were covered by the 

model in cross-validation. Based on variables importance in the prediction it was concluded 

that performance variations are affected by many variables and as expected, these variables 

are coming from different blocks of data such as; alumina and anode quality, pot 

manipulated and state variables or variables related to pre-heating, start-up and early 

operation. Moreover, important variables highlighted by the model follow known process 

behaviour. Finally, a subset of observations was used to perform a Pareto type of analysis 

to study variables contributing the most to significant month-to-month performance 

variations. 

Most smelters are now operated above their nominal capacity through different process 

improvements, thus, generally reducing the operational window. Meanwhile, alumina and 

coke quality are degrading, thus requiring more robust pots. Based on this study, smelters 

operators should, at least, to sustain actual production performance, monitor variables listed 

as important in the prediction. Moreover, it would be beneficial to monitor and control 

them using multivariate statistical control charts instead of typical univariate charts as the 

process would be fully integrated in the monitoring charts. Through the use of MBPLS, it 

would even be possible to project each block data, as soon as available, onto the model and 

hence highlight possible solutions to prevent CE and EC fluctuations. 
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6 Investigation of Factors Affecting Bath Level Control 

It is well known that bath level control is of great importance to smelter operators. It 

directly affects different key performance indicators related to current efficiency, energy 

consumption and metal purity. The impact of bath level on pot performance was 

demonstrated in chapter 5 where bath level was shown to have high VIP value in the 

MBPLS model built for predicting CE and EC variations (i.e. Table 5.3). Moreover, bath 

level variations were often found associated with sudden fluctuations in CE as presented in 

Table 5.4. Therefore, a tight control of bath level is required to help reduce CE variations. 

Nevertheless, many factors have an impact on bath level control. 

This chapter presents an investigation of the sources of bath level variations, again using 

multivariate latent variable techniques. In the first part of this chapter, the importance of 

bath level control is presented and illustrated. The dataset used for this investigation is later 

presented and the chapter concludes with the results and a discussion. 

6.1 Importance of Bath Level Control 

The electrolytic bath plays different roles in the Hall-Héroult process and affects several 

process conditions such as the alumina feed control, metal purity, heat balance, pot 

stability, bath chemistry and environmental emissions. Bath level fluctuations are caused by 

different mechanisms that can be summarized in two groups. The first group includes 

mechanisms leading to thermal balance disturbances, while the second consists of all direct 

contributors to the actual bath quantity in a pot: 

• Assume a pot had a strong anode effect or had sustained lower amperage for a 

while. Compared to the typical pot voltage in the range of 4 to 4.5 V, the anode 

effect voltage can reach up to 30 to 40 V over the duration of the anode effect. Since 

the current flowing remains the same, since the pots are connected in series, this 

additional voltage greatly increases the power input to the pot for that period 

(P = V x I). On the other hand, a lower current episode would lower the power input 

to the pot for a certain period of time as the plant electrical switchyard in generally 
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limited in voltage. However, the pots are designed to dissipate this power as heat as 

illustrated in Figure 2.6. Nevertheless, these two events disturb the pot thermal 

balance. As a result, the sideledge will melt or freeze depending on whether the 

power input is greater or lower than its nominal value according to pot design. The 

sideledge is made of frozen bath on the brick sidewalls of the cell with a different 

composition than the bulk molten bath. Hence, under a higher heat input, it partially 

or completely melts and generates molten bath which, in turn, increase the liquid 

bath level since molten cryolite takes about 60% more volume than solid cryolite. 

Conversely, a lower heat input freezes a greater quantity of molten bath into 

sideledge and this rapidly reduces liquid bath level. However, the sideledge freezing 

or thawing also create a change in the sideledge profile of the pot and hence 

changes the volume occupied by the molten bath, introducing additional variations 

in molten bath level. 

• The second group of contributors to bath level fluctuations implies real bath 

quantity variations. The bath quantity in the pot increases as Na20 introduced by 

raw materials reacts with bath fluoride to generate NaF, thus neutralizing or 

lowering the excess of AIF3 by forming cryolite. This, in turn, requires adding AIF3 

to maintain its excess on target, again increasing the quantity of molten bath in the 

pot. Anode cover material, a mixture of crushed bath and alumina also plays a role 

in bath level variations since a certain proportion of this material is either spilled in 

the pot or might later melt and fall in the bath, again increasing its bath quantity. 

To overcome these fluctuations, bath level is generally controlled on a pot basis. According 

to a defined schedule, an operator dips a metal rod in the pot for a few seconds and then 

pulls it out. As the molten bath and aluminum freeze on the rod, an interface between the 

two materials becomes clearly visible to the operator, who uses a ruler to measure bath and 

metal levels. These values are later logged in the plant database. The amount of bath to be 

tapped is computed based on similar rules as for metal tapping (i.e. section 5.6). However, 

in this case, if the bath level is too low, operators add molten bath tapped from nearby cells 

already having a too high bath level. The bath level control frequency varies from a plant to 

another but greatly affects its control. Overcorrecting bath level may just introduce 
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additional variations since some of the effects leading to bath level variations almost 

correct themselves within a few hours (i.e. anode setting, anode effect, etc.) . Corrections 

are thus generally performed daily or every other day. 

Operating a pot with high bath level may lead to the following problems: 

• 

• 

Iron contamination. As the bath level gets too high, it reaches the top of older 

anodes, whose top surfaces are closer to the bath surface, and leaches part of the 

cast iron and iron stubs used in the anode assembly (Figure 2.4). Doiron and 

Lindsay (2009) reported that by correcting bath levels on a 24 hours basis, 

compared to a 36 hours basis, resulted in a reduction of 50ppm of iron in the pot 

metal. 

Noisy pot. As the bath level is higher, CO2 gas bubbles have to travel a longer path 

to reach the surface. These bubbles contribute in the high frequency noise part of 

the voltage fluctuations within a reduction cell (Banta et a l , 2003). As a result, this 

added noise may lead operators to take corrective actions, such as increasing pot 

resistance to reduce the noise level and stabilize the pot. However, the negative 

effect of this corrective action on current efficiency and energy consumption may be 

more important than the positive effect of reducing the bubbles traveling distance. 

On the other hand, operating a pot with a low bath level may lead to the following 

problems: 

• Lower alumina dissolution capacity. In chapter 5, it was demonstrated that the 

contribution of bath level to pot performance variations is important (i.e. listed in 

Table 5.3 and 5.4). This was also confirmed by Tessier et a l , (2008), who 

suggested that a combination of low bath level and a possibly slow dissolving 

alumina led to a potroom performance drop. A low bath level reduces the time (or 

volume) necessary for dissolving alumina. Undissolved alumina settles on the 

carbon cathode blocks surface and create muck, leading to horizontal current flows. 

This results in metal pad waves due to vertical magnetic fields, which increase the 

probability of noise and shorting, and eventually reduce current efficiency. 
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• Bath chemistry control. The freezing and thawing of bath lead to fluctuations in 

AIF3 concentration since solid sideledge and molten bath do not have the same 

composition. These variations have an effect on bath properties and are counter 

balanced by additions of AIF3 or Na2C03. This yields a greater bath inventory in the 

pot as described earlier. 

The goal of this study is to identify the variables associated with the variations in bath level 

and to quantify their impact. It is well known that anode cover material, a mixture of 

secondary alumina and crushed solid bath, used to cover newly set anodes, has an impact 

on bath level (Wilkening et a l , 2005). A portion of the particulate materials added on top 

of the new anodes fall in the pot and melts. The alumina within this material dissolves in 

the bath and contributes to increasing bath inventory. As discussed previously, the power 

input to a pot plays a role in bath level variations, as well as anode effects and bath 

temperature as they all affect sideledge thickness and hence, the fraction of bath that is in 

liquid phase. Weather conditions may also affect the operation since in the Quebec region, 

temperatures typically vary between -30°C in winter and 25°C in summer. Since the 

potrooms are not well insulated, seasonal temperature variations change the heat losses 

from the pots and may affect sideledge thickness (i.e. greater in the winter and smaller in 

the summer). Finally, the amount of Na20 present in the alumina also plays a role in bath 

inventory, since it reacts with the excess of A1F3 to generate NaF and hence increase the 

amount of bath through the formation of cryolite (Na3AlF6) (Lindsay, 2005). The variables 

discussed in this section were all included in the analysis. 

6.2 Datasets 

Data used in this chapter are again from the Alcoa Deschambault smelter. A dataset was 

gathered on a daily potroom basis. The data were averaged from the 264 pots. The dataset 

covered the period from January 1st 2006 until July 19th 2009, or 1296 days. During that 

period, the smelter operated under normal conditions, including short and long term load 

variations, different alumina sources and through natural weather cycles. In order to 

account for process dynamics, the data were later averaged on a weekly basis and this also 

enabled computing weekly standard deviations, which were also used in the analysis. 
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Following the comments presented above on possible causes of bath level variations, this 

investigation includes different potroom variables, such as CaO and Na20 impurities from 

alumina, weather data, potline load and anode cover composition, in order to study bath 

level variations. Variables included in the analysis are presented in Table 6.1. Bath level 

was pre-processed in a similar way and both average bath level and standard deviation will 

be studied separately. 

Table 6.1: Variables included in the investigation of bath level variations. 

Variable ID Variable Variable ID Variable Variable ID Variable 

1 Line load 23 Number of bath feeds std 45 Wind Speed 
2 Noise 24 Noise std 46 Wind Direction 
3 Bath Temperature 25 Bath Temperature std 47 Outside Temperature std 
4 Bath Temperature tgt 26 Bath Temperature tgt std 48 Wind Speed std 
5 Bath level tgt 27 Bath level tgt std 49 Wind Direction std 
6 Number of Anode Effect 28 Number of Anode Effect std 50 Line Load Zero Duration 
7 Anode effect overvoltage 29 Anode effect overvoltage std 51 Low Line Load Duration 
8 Purge Duration 30 Purge Duration std 52 Power Curtailment Duration 
9 Metal Pad Level 31 Metal Pad Level std 53 Number of Low Line Load 
10 Number of Tracks 32 Number of Tracks std 54 Number of Line Load Zero 
11 Personalized Temporary Resistance 33 Personalized Temporary Resistance std 55 Number of Power Curtailment 
12 Total Resistance Target 34 Total Resistance Target std 56 Number of Anode Setting 
13 Recorded Resistance 35 Recorded Resistance std 57 %Na20 in Alumina 
14 Base Resistance Target 36 Base Resistance Target std 58 %Ca0 in Alumina 
15 Fe in metal 37 Fe in metal std 59 Ration CaO/Na20 in Alumina 
16 Na in metal 38 Na in metal std 60 %AI203ACM 
17 Si in metal 39 Si in metal std 61 %AI203ACMtgt 
18 Number of AI203 feeds 40 Number of AI203 feeds std 62 Day-to-day ACM % AI203 difference 
19 Number of AI F3 feeds 41 Number of AIF3 feeds std 63 %AI203ACMstd 
20 % ALF3xs 42 % ALF3xs std 64 %AI203ACMtgtstd 
21 %ALF3xstgt 43 %ALF3xstgtstd 65 Day-to-day ACM % AI203 difference std 
22 Line load std 44 Outside Temperature 

The weekly average/standard deviation descriptor variables presented in Table 6.1 are 

collected in X (185x65). Vector YBLA (185x1) contains the weekly bath level averages and 

YBLS (185X1) the weekly bath level standard deviations. These two variables could have 

been analyzed simultaneously in a single model, as performed for CE and EC in chapter 5. 

However, the correlation between YBLA and YBLS is only 0.03, compared to -0.77 between 

CE and EC in section 5.3, indicating that YBLA and YBLS are almost perfectly decoupled 

and hence can be studied independently. Time series of autoscaled bath level averages and 

standard deviations are presented in Figure 6.1 
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Figure 6.1: Autoscaled bath level averages (YBLA) and standard deviations (YBLS) for the 

185 weeks investigated in this study. 

6.3 Investigation of Bath Level Variations 

Using the dataset presented in the last section, two PLS regression models were built, one 

for YBLA and one for YBLS using the NIP ALS algorithm and a leave-one-out cross-

validation (see sections 3.2 and 3.3.2). A few statistics describing the predictive ability of 

these models are presented in Table 6.2, whereas prediction results are shown in Figure 6.2. 

Table 6.2 presents the number of principal components included in the model (PC), the 

variance explained for X and Y (R Xflt and R Yflt) and the root mean squared error of 

prediction (RMSE). 
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Table 6.2: PLS model results for YBLA and one for YBLS. 

Model Description YBLA YBLS 
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Figure 6.2: Prediction results of the PLS models for (a) average bath level YBLA and (b) 
bath level standard deviation YBLS-

The objective here is not to accurately predict bath level averages and standard deviations, 

but to identify the variables that are the most highly correlated with bath level. Hence, 

Figure 6.2 presents predictions obtained in fit only. The PLS models are interrogated using 

their variable importance metric (VIP, Eq. [4.7]), which are presented in Figure 6.3 for all 

the variables included in the analysis. The ten most important variables in each model (i.e. 

highest VIP's) are also listed in Table 6.3. The sign of their correlation with YBLA and YBLS 

is also provided. On the other hand 
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Figure 6.3: Importance of all the variables in the PLS models for (a) YBLA and (b) YBLS-

Table 6.3: The ten most important variables for YBLA and YBLS-

Variable ID Variable 
Corrélation 

sign wi th Y u * 

VIP 

Y»i> Y»is 

Rank 

YgiA YBts 
Variable ID Variable 

Correlation 

sign wi th Ygu 

VIP 

YgiA YBi5 

Ra 

Y.u, 

i k 

YBls 
eo XAI203ACM 3.09 0.92 1 19 32 Number of Tracks std + 0.46 5.34 47 1 
61 %AI 203 ACM tgt - 2.93 0.91 2 20 34 Total Resistance Target std + . 0.51 5.65 43 2 
1 Line Load + 2.85 0.47 3 31 35 Recorded Resistance std + 0.50 5.61 44 3 
18 Number of AI203 feeds + 2.35 0.77 4 21 55 Number of Power Curtailment + 0.60 5.48 40 4 

12 Total Resistance Target + 2.33 0.74 5 23 52 Power Curtailment Duration + 0.73 5.22 36 5 
13 Recorded Resistance + 2.33 0.74 6 22 22 Line Load std + 0.34 3.49 53 6 
14 Base Resistance Target 2.31 1.02 7 17 28 Numberof Anode Effect std + 0.98 3.14 28 7 
5 Bath Level tgt + 2.28 0.64 8 24 23 Number of Bath feeds std + 0.95 2.30 29 8 
15 Fe in metal + 1.88 0.35 9 37 41 Number of AIF3 feeds std + 0.90 1.84 30 9 
25 Bath temperature std 1.78 1.04 10 16 6 Numberof Anode Effect - 1.42 1.77 15 10 

As observed in Table 6.3 and Figure 6.3, the most important variables for bath level 

averages and standard deviations are not the same. For example, the fraction of alumina in 

anode cover material is the most highly correlated to weekly average bath level variations 

with a VIP value of 3.09. However, it ranks the 19th out of 65 in the second model (weekly 

bath level standard deviations), with a VIP of 0.96. This suggests that the actual bath level, 

averaged over a week (YBLA), and its variation during the same week (YBLS) are likely 

driven by different events. 

A closer look at the variables presented in Figure 6.3 and Table 6.3 suggests that bath level 

variations are correlated with short term effects of process disturbances. Most of the 

variables listed as the ten most important for bath level weekly variations (YBLS) are also 

standard deviations of different process variations. Focusing on YBLS, its ten highest VIP 
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make sense based on process knowledge. Moreover, most of these variables are related to 

power input variations (i.e. resistances std's, power curtailment, line load std and anode 

effect). These power input variations necessarily had an impact on sideledge thickness for a 

short period of time (i.e. few days), thus generating variations in the bath level 

measurements during the weekly basis. However, if bath level was low before the 

disturbance and high after, its weekly average might have been on target. On the other 

hand, the number of tracks, bath feeds and A1F3 feeds std's, or number of alumina feed 

decisions std, are probably more a consequence than a cause of bath level weekly 

variations. For example, as the inventory of liquid bath varies, its chemistry also varies 

since sideledge is almost made of pure cryolite and, when it melts, dilutes the AIF3 excess 

resulting in compensation by the process control system through the addition of AIF3. 

Figure 6.4 presents the loading bi-plot of the first two principal components of the bath 

level PLS model for variable shaving a VIP greater than one. Going back to Table 6.3, it 

can be seen that the fraction of alumina in anode cover material and its target value are the 

most important variables to explain bath level weekly variations. A part of this cover 

material falls and dissolves in the pots. Consequently, anode cover material with less 

alumina and hence more bath, will generate higher bath levels than anode cover material 

with more alumina. This is also supported by the loading bi-plot of Figure 6.4, where these 

two variables fall on the opposite quadrant of bath level and are far from the origin. The 

next two important variables are line load and number of alumina shots, which are highly 

correlated together. Increasing the line load creates more aluminum (i.e. Faraday's law) and 

hence consumes more alumina, thus increasing the number of alumina feeds. These two 

variables are also dominant and of the same sign as bath level in Figure 6.4. Note that line 

load and resistances combine together to influence the power input to the pot (P = Rx I2) 

and hence melt of frozen sideledge. Nevertheless, the bath level target is only ranked 8th, 

indicating that all variables ranked higher have a greater correlation with average bath level 

variations. The projection of this variable on the green dotted line is closer to the origin 

than the previously discussed variables. Then comes iron in metal, strongly correlated to 

bath level, as shown in Figure 6.4, a consequence as discussed in section 6.1, since part of 

its variations is caused by bath level variations. 
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Figure 6.4: Loading bi-plot of the first two principal components of the bath level PLS 
model. 

Following these observations, it can be said that bath level weekly averages and variations 

are mainly influenced by power input and anode cover material composition. These effects 

are in fact more important to predict bath levels than the actual bath level target. However, 

one might have also expected to encounter variables linked to outside temperature 

somewhere in the list as the smelter experiences great variations in external temperature 

due to its geographical location. Nevertheless, these variables rank in the 30th to 50th 

position to explain bath level variations and are thus not a role player in bath level 

variations which is in accordance with the findings of Haugland et a l , (2003). 

6.4 Issues with Anode Cover Material Composition 

It was shown that anode cover material composition, the ratio of alumina and crushed bath, 

is one of the most important variables to control bath level within reduction cells. Its VIP 

was much higher compared to all the other variables. Line load is also important, however, 
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controlling bath level by manipulating it would not be a viable option since it would also 

create fluctuations in metal production. 

To control (i.e. manipulated or stabilize) the composition of the anode cover material, one 

must ensure that reliable anode cover material composition measurements are available. If 

you can't measure it, you can't manage it. A few smelters perform anode cover 

composition analysis. In general, a few grabbed samples of anode cover materials are sent 

to the laboratory for analysis (the control sample). Based on the results, decisions are made 

to adjust the mixture composition. However, the number of samples analyzed on a daily 

basis, if not on a weekly or monthly basis is very low, compared to the number of anodes 

changed on a daily basis and to the variability of anode cover material composition. 

The autoscaled daily anode cover material composition from six pots (A028 to A033) is 

presented in Figure 6.5 for two time periods (90 days and 15 days), together with their 

respective composition targets apd control sample (Ctrl). These graphs clearly demonstrate 

that new anodes are not always covered with the same material composition. Also note the 

great variability in anode cover composition with respect to its target value. The variability 

shown in these graphs is not due to the analytical laboratory analysis which is quite 

accurate. For example, composition of anode cover material used for the six pots on 

November 16, was completely different from the monitoring result obtained that day. To 

give an idea, these pots received anode cover materials containing 13 wt % more alumina 

compared to the monitoring result. On the other hand, on November 18, the anode cover 

compositions of five pots were close to the monitoring result. However, anode cover 

compositions of pots A028 to A031 were close to the monitoring sample. Nevertheless, pot 

A032 was covered with an anode cover material containing 5% less alumina, while pot 

A033 anode cover material contained 11% more alumina, when compared to the 

monitoring sample. Hence, these variations certainly played a role in bath level variations, 

without being properly measured. 
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Figure 6.5: Autoscaled daily anode cover material composition for six pots and daily 
monitoring results (a) over 90 days and (b) over 15 days (zoom-in of figure a). 
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From the great variability presented in Figure 6.5, it is obvious that control actions on 

anode cover material composition target cannot be performed efficiently using the actual 

procedure. Plant operators generally wait a few days before changing the conveyor speed to 

remain close to the anode cover material composition target. In the end, this is harmful to 

bath level control, as presented in section 6.3, which finally affects pot performance 

through different processes as demonstrated in sections 5.6 and 5.7. To efficiently perform 

anode cover material composition control, smelter operators would have to grab more 

frequent samples of anode cover materials to increase the confidence on the results. Still, it 

may generate a reliable result if enough samples are grabbed and analyzed on a potroom or 

potline basis. 

The next chapter presents a novel method for estimating anode cover composition which 

would enable the estimation of anode cover material composition used on each pot. This 

would improve the confidence in this measurement and enhance control decisions on a 

potroom or potline basis, while also providing the information on a pot basis since the 

anode cover material composition could be evaluated for each pots, on a daily basis. 



7 Estimation of Alumina Content of Anode Cover 
Materials Using Multivariate Image Analysis 
Techniques 

7.1 Résumé 

Cet article présente l'étude de différentes techniques d'analyse d'images dans le but de 

prédire la composition en alumine du mélange de recouvrement des anodes. En utilisant 

cette approche, il serait possible d'estimer en ligne la composition du mélange de 

recouvrement et ainsi de prendre des actions en modifiant les valeurs de consigne de 

certains paramètres des cuves par l'intermédiaire du système de contrôle. Ainsi, des 

caractéristiques de couleur et de texture sont extraites des images de produit de 

recouvrement et un modèle de régression (PLS) est développé afin de prédire la 

composition. La majorité des prédictions se situent entre +1-2 a de l'analyse de laboratoire 

(fluorescence par rayon-X) bien que les actions des techniciens de procédé soient basés sur 

des variations d'une plus grande amplitude. Les défis découlant de l'analyse d'image pour 

cette application sont aussi discutées. 

Tessier, J., Duchesne, C , Gauthier, C , Dufour, G., Chemical Engineering Science, 63, 

1370-1380(2008) 

Tessier, J., Duchesne, C , Gauthier, C , Dufour, G, Methods, Systems and Apparatus for 

Determining Composition of Feed Material of Metal Electrolysis Cells, U.S. Patent 

Application publication No. 2009/0107840 Al, filed on October 24th, 2008, published 

on April 30th, 2009. 
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7.2 Abstract 

In this paper, the use of different image analysis techniques is investigated for predicting 

alumina content of anode cover materials used in primary aluminum smelters. This 

approach is proposed in order to allow on-line estimation of alumina content for feedback 

control purposes, which is not currently possible due to the long time delays and limited 

number of samples that can be analyzed in the laboratory. Both color and textural features 

of various anode cover materials are extracted from digital RGB images, and Partial Least 

Squares (PLS) regression models are developed for predicting alumina content from these 

features. Most alumina content prediction errors are within +/-2a of the X-ray fluorescence 

laboratory measurements, when larger variations are required by operators to make control 

decisions. Some challenges arising from the use of image analysis techniques for process 

control are also discussed. 
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7.3 Introduction 

Primary aluminum is obtained by electrolysis of alumina through the following reaction, 

carried out in electrolytic reduction cells, also called Hall-Héroult cells (Figure 2.2): 

2 Al203,(diss) + 3 C (s) - 4 Al (1) + 3 C02,(g) Eo = 1.2 V [7.1] 

In this process, small quantities of smelter grade alumina powder (typically 1-2 kg) are 

periodically fed in the reactor. Alumina then dissolves within a high temperature 

electrolytic bath (i.e. 940 to 970°C), typically made of a molten mixture of cryolite 

(NasAlFô), aluminum fluoride (AIF3) and calcium fluoride (CaF2). Carbon is supplied to the 

reaction by the pre-baked anode blocks, which are consumed over time. Anodes are 

typically made of a mixture of coke, pitch and recycled anodes butts. The reduction 

reaction converting alumina (AI2O3) to primary aluminum requires the application of a 

continuous high amperage and low voltage current. Reduction cells continuously operate 

over a lifetime varying from 4-10 years, after which they need to be rebuild almost 

completely. 

Anodes are consumed by reaction (Eq. [7.1]) and need to be replaced every 20 to 30 days. 

However, anode replacement is performed almost every day on each and every reduction 

cell since modem cell designs involve between 20 and 40 anodes per cell. Once replaced, 

new anodes are covered with a mixture of alumina and crushed electrolytic bath particles. 

High temperature converts this mixture of particles into a crust called anode cover. This 

cover plays an important role in keeping a good thermal balance of the reactor, in limiting 

fluoride emissions, in preventing anode oxidation, and in controlling bath height 

(Wilkening et a l , 2005). The thickness and alumina content are the most important 

characteristics controlling cover integrity (Taylor et a l , 2004). For instance, an 

inappropriate dosage of alumina in the mixture may increase heat losses through the crust 

by increasing its thermal conductivity. It may also cause important changes in the 

mechanical properties of the crust to an extent where collapse can occur around the newly 

introduced anodes. This would result in even more severe heat losses and fluoride 

emissions. Maintaining a consistent alumina composition in the anode cover mixture is 
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therefore very important for primary aluminum smelters to achieve stable operation, high 

productivity and good environmental performance for each aluminum reduction cells 

(typical plants can operate up to 1000 cells simultaneously). 

In practice, however, achieving consistent cover integrity for each cell and over time is very 

difficult due to the lack of on-line sensors for measuring alumina content of the anode 

cover mixture. In several primary aluminum smelters, the crushed electrolytic bath particles 

and the alumina powder are both conveyed separately and then fed into loading stations 

located on overhead handling cranes, used to deliver the anode cover mixture to the various 

electrolytic cells. Therefore, products are poorly mixed and prone to segregation during 

transportation. Although process operators can modify the composition of this binary 

mixture by adjusting the relative speed of both conveyors, there is currently no means to 

verify the mixture composition other than sending a grab sample to the laboratory, and wait 

about an hour to get the result. A preliminary sampling campaign performed at Alcoa's 

Deschambault plant showed that important variations occur from cell to cell and over time 

in the alumina content of the cover mixture, and this might explain poorer performance of 

some cells. However, to quantify the impact of these variations one needs to be able to 

reduce this variability and to control mixture composition to desired set-points through 

feedback control. This requires on-line measurement of alumina content of the anode cover 

mixture, which can simply not be performed in the laboratory since several tons of cover 

materials are used every day. 

This paper presents a machine vision approach based on RGB color images for estimating 

alumina content in the anode cover mixture, and to the author's knowledge, this is the very 

first attempt in the area of primary aluminum production. When installed above conveyors, 

such a sensor would provide on-line measurements for composition control purposes 

without physically sampling the powder mixture. Both color and textural features of 

powder mixture images are extracted in this work using different techniques. Then various 

combinations of features are tested and compared in order to develop a robust image based 

predictive model for alumina content. Note that some spectroscopic techniques could also 

be used to measure AI2O3 content of the anode cover materials, such as X-ray fluorescence. 

However, these techniques are difficult to implement on-line for high throughput analyses 
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since they require sample preparation (i.e. grinding of the materials, etc.). They are also 

very expansive to buy and maintain. 

Machine vision is increasingly used in the process industries for monitoring or process 

control applications since it generally requires low capital investments, and allow to extract 

complex information about a process or a product (both deterministic or stochastic) that are 

difficult to measure otherwise. Some recent examples of machine vision applications 

include froth health monitoring and grade prediction in flotation froth systems used for 

mineral separation (Moolman et a l , 1994; Duchesne et al. 2003; Liu, 2004; Liu et a l , 

2005; Bartolacci et a l ; 2006), real-time monitoring and control of combustion flames in 

boilers and rotary kilns (Yu and MacGregor, 2004; Szatvanyi et a l , 2006), automatic 

grading of steel surfaces (Bharati et a l , 2004), and control of seasoning and organoleptic 

properties of snack food products (Yu et a l , 2003). For particulate mixtures more 

specifically, Chandan et al. (2004) applied image analysis techniques to characterize 

texture, angularity and shape of aggregate particles used in highway construction using 

Wavelet Texture Analysis (WTA). Bonifazi et al. (1999) used both color and textural 

features extracted from images of mineral sands deposits to classify the material in three 

different lithotypes. Color features were obtained by computing 16 moments of the pixels 

intensity distribution whereas textural features were calculated using Gray Levels Co

occurrences Matrices (GLCM) (Haralick, 1979). Some of these color and textural feature 

extraction techniques are also used in this work. Imaging techniques for larger rock 

fragments have also been proposed (Petersen et al. 1998; Tessier et a l , 2006), however the 

machine vision problem for large rock fragments is different than for powder mixtures. 

Finally, Calderon De Anda et al. (2005) and Larsen et al. (2006) used image segmentation 

algorithms to extract and compute different features related to crystals morphology for 

monitoring and control of industrial crystallizers. 

7.4 Experimental 

Anode cover material images were captured using a laboratory setup based on a Hewlett-

Packard Photosmart M23 RGB digital camera. A total of eleven mixtures of secondary 

alumina (i.e. from dry scrubbers) and crashed electrolytic bath have been prepared and 
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homogenized, covering the range of 19 to 93 wt % AI2O3 content as shown in Table 7.1. 

For each of the eleven mixtures, homogenized cover material was dispersed on a tray and 

many different images (smaller than the tray area) were collected in order to capture the 

variability in the visual appearance of the solids. Using this procedure, an image data base 

of 101 pictures of anode cover material was collected. Cover material thickness was about 

1 cm which was enough to avoid capturing tray areas in the image. The camera was 

installed 20 cm above the tray surface and was completely manually operated with constant 

lightning conditions. In this setup, the resolution of the image was 1792 xl312 pixels and 

covers an area of 303.56 cm2 on the sample. 

Three replicate samples of each of the eleven homogenized cover material mixtures were 

analyzed using X-ray spectroscopy to determine their alumina content. These analyses were 

performed by Alcoa Deschambault's personnel using a standard routine procedure. 

Homogenized cover material samples have been crashed during a defined period of time to 

obtain the appropriate size distribution and have then been mixed with a ligand compound 

before X-ray spectroscopy analysis. The results of the laboratory analyses for the eleven 

mixtures are shown in Table 7.1. 

Table 7.1 : Mean and standard-deviations from laboratory analyses of the eleven mixtures 
from the designed experiment. 

Fynprirrïprïtal mivtiirpQ Al203( weight fraction) 
LAjJCT 1 1 1 MCI 1 LOI M I I A I U I C J ~~~' 

Mean Std 
1 0.185 0.009 
2 0.255 0.019 
3 0.307 0.008 
4 0.393 0.003 
5 0.434 0.012 
6 0.495 0.033 
7 0.587 0.028 
8 0.705 0.008 
9 0.732 0.002 
10 0.802 0.014 
11 0.926 0.009 

Images of different alumina mixtures are presented in Figure 7.1. These images show that 

there exist some differences in color and texture between these sample images. The texture 
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is coarser in the first image (a) and is smoother in image (c) whereas color goes from 

brownish (a) to light gray (c). When looking at the entire set of images, it is clear that color 

and textural features evolve monotonically with alumina content of the cover material 

mixtures, and therefore justifies the machine vision approach for predicting alumina 

content of anode cover material. 

Figure 7.1: Images of cover material for different AI2O3 weight composition, (a) 19% 
AI2O3, (b) 48 % AI2O3 and (c) 93 % A1203. 

7.5 Methods for Extraction of Color and Textural Features 

Once digitized, an RGB color image consists of a 3-way array of data as shown in Figure 

7.2. Each pixel is defined by two spatial coordinates (x,y) whereas the third dimension of 

the array corresponds to the light intensity recorded by the camera CCD in the red (R), the 

green (G) and the blue (B) channels. For 8-bits coding cameras, the intensity values of each 

channel can take discrete values ranging from 0 to 255. Alternatively, the digital color 

image can be viewed as a stack of three different gray-level images obtained at different 
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wavelengths of the light spectrum, that is the red, the green and the blue wavelengths (~ 

435, 546, and 700 nm, Lepistô et a l , 2003). Color and textural features for each image of 

anode cover material are computed from these 3-way arrays of data. 
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Figure 7.2: Digitized RGB image is a 3-way array of data. 

7.5.1 Extraction of color features 

Color analysis is often used to extract color features related to process performance or to 

predict product quality in different applications. As shown in Figure 7.1, the overall 

coloration of the images seems to be related to the alumina content, and suggests using 

color features might help predict alumina content. In this paper, three alternative methods 

were used to extract color features from RGB images. The first two are applied directly to 

the RGB color space whereas the third is rather based on a projection of the RGB color 

space into a lower dimensional space define by the few dominant contrasts present in the 

images. 
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7.5.1.1 Full distribution of the RGB color intensities 

As discussed earlier in this paper, the three light intensities (RGB) corresponding to each 

pixel are coded as discrete numbers from 0 to 255, thus leading to 256 possible light 

intensities values for each channel. The first method used for extracting color features is to 

simply use the full RGB color distributions across the images. The distribution of light 

intensities for each color channel (red, green and blue) is a histogram divided in 256 bins, 

thus leading to the extraction of 768 color features per image. These features are stored 

row-wise for each image in a regressor matrix (X) that will be used later for regression 

model building. 

7.5.1.2 Mean and standard-deviation of the RGB channels 

The second method for extracting color features consists of only using the first two 

moments of the full RGB color intensity distributions although higher moments could also 

have been used. This amounts in computing the means and the standard-deviations of the 

intensities of the red, the green and the blue channels across each image. Hence, 6 color 

features are extracted from the images and stored row-wise in a regressor matrix (X). 

7.5.1.3 PCA decomposition of the RGB color space 

The third approach consists in applying Multi-Way Principal Component Analysis (MPCA) 

to the 3-way array of data obtained from each digitized image (Geladi and Grahn, 1996; 

Bharati, 1997). This procedure is shown schematically in Figure 7.3. 

VPi ___ 
1*3 

(y*x)*i 

1*3 

E 

(y*x)*1 y*x 

Figure 7.3: A schematic description of the MPCA decomposition. 



127 

The digital RGB image I is first unfolded into matrix I in such a way that the columns of 

that matrix correspond to the red (R), green (G), and blue (B) color intensities for each 

pixel of the image (each row corresponds to a particular pixel of the image). Principal 

Component Analysis (PCA) is then applied to matrix I, and performs an orthogonal 

decomposition of the covariance matrix of I into its A principal components (Wold, 1987; 

Jackson, 1991): 

I = T P + E = _ ^ t a p a + E [7.2] 

The decomposition of each unfolded image yields a series of A loading vectors pa, which 

correspond to linear combinations of the RGB intensities explaining most of the variance of 

I, and A score vectors ta, resulting from the projection of each row of matrix I onto the 

loading vectors (ta = I pa). Matrix E contains the residuals of this decomposition, and is 

zero when all principal components are used (A = 3 in this case). Since the loading vectors 

pa (a= 1,2,3) are linear combinations of the original RGB intensities of each pixel of the 

image that explain most of the color variations across the image, they can be viewed as 

representing the various color contrast of the multivariate image, and therefore can be used 

directly as color features. Each loading vector contains three elements or weights 

corresponding to the red, green, and blue colors and all three principal components are used 

in this study. Thus nine features are used to describe color variations using this approach. 

Hence, 9 color features are extracted from the images and stored row-wise in regressor 

matrix (X). 

7.5.2 Extraction of textural features 

Image texture analysis is now well covered in the literature. In spite of the widespread use 

of textural information, no official definition exists for image texture. However, it is often 

defined as a function of the spatial variations in the pixels intensities of a gray-level image 

(Bharati and MacGregor, 2001). For example, a gray-level image of a plywood board 

surface is not uniform. Such an image will present different patterns of pixels intensity 

variations. These different patterns can come from physical defects such as knots, pitch 
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pockets, fibre orientations or roughness or even from differences in the way light is 

reflected from the surface. Quantifying the different textures within an image is possible 

through the computation of several features related to these patterns. 

Many approaches have been proposed for image texture analysis. These approaches mainly 

fall in four different categories: Statistical texture analysis techniques describe image 

textures by the computation of high-order moments of grayscale histograms. Structural 

texture analysis techniques can describe regular textures based on the properties and 

placement rules of defined texture elements. Model-based texture analysis techniques use 

empirical models of texture and finally, transform-based texture analysis converts images 

in other coordinates (i.e. frequency) from which different statistical features are computed. 

In this paper, two texture analysis methods are presented. Gray Level Co-occurrence Matrix 

(GLCM) falls in the statistical texture analysis family and Wavelet Texture Analysis 

(WTA) is part of the transform-based texture analysis group. These methods are presented 

in the following two sub-sections. 

7.5.2.1 Gray Levels Co-occurrence Matrices (GLCM) 

The GLCM of an image (I) is an estimate of the second order joint probability of the 

intensity of two pixels (i,j), located at L pixels and at a specified angle (<) from each other 

(Bharati et a l , 2004). This joint probability analysis leads to a square matrix whose 

dimensions are equal to the number of gray-levels of the image (i.e. 256). However, to 

speed-up the analysis, GLCM are quite often computed on 32 gray-levels versions of 

images, without losing too much information, consequently leading to 32x32 GLCM 

matrices. 

To illustrate the methodology, four different GLCM are presented in Figure 7.4 for an 

image containing four gray-levels (Tessier, 2006). Each GLCM has different parameters 

(distance L, and angle <) thus capturing different textural patterns. 
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Figure 7.4: Four different GLCM for an image (I) of four gray-levels. 

From these GLCM matrices, it is possible to compute different statistical descriptors to 

quantify image textures. Contrast, correlation, energy and homogeneity are the four most 

frequently used descriptors (Haralick, 1979; Bharati et a l , 2004). Contrast is a measure of 

the intensity contrast between a pixel and its neighbour, correlation measures the 

correlation between a pixel and its neighbour, energy is the sum of the squared elements of 

the GLCM and homogeneity is related to the closeness of the elements distribution of the 

GLCM to the GLCM diagonal. 

In some applications, it may be useful to perform the analysis using different distances and 

angles (L and <) since strongly oriented textures will manifest themselves in one of the 

analyzed directions (i.e. horizontal, vertical and diagonal). Moreover, fine textures will be 

detected with the analysis of small pixels distances compared to coarser textural patterns 

that will be seen with longer distances. Considering the alumina mixtures shown in Figure 

7.1, it is clear that texture patterns do not follow well defined orientations. There are some 

waves in the images but they are not useful to predict alumina content. Hence, in this paper, 

GLCM are applied in the horizontal direction of the images (< = 0°). However, distances 

between two pixels have to be investigated since particles are of different sizes. In this 

paper, distances of 1, 2, 5 and 10 pixels have been analyzed. These correspond to actual 

distances of 114, 228, 570 and 1140 pm on the scene. GLCM was also used in a multi-

resolution analysis by combining contrast, correlation, energy and homogeneity from the 

four studied distances. It is believed that this combination can produce better results since it 

accounts for the different textures introduced by the differences in the size distribution of 

the two powders (alumina and crushed bath). 
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7.5.2.2 Wavelet texture analysis (WTA) 

Texture can be defined as a function of the spatial variations in pixels intensities. Since 

digital images are gray-levels two-way discrete function (Image = i(m,n)), two-dimensional 

WTA are used to decompose gray-levels images into the space-frequency domain, and 

converts the textural information of an image into a series of so-called wavelet coefficients. 

Different textural features (i.e. statistics) are extracted from these coefficients to 

characterize textures contained within the analyzed image. 

Compared to Fourier Transforms, WTA maintains the spatial information from the image 

signal and this is a clear advantage over other transform-based texture analysis methods 

(Bartolacci et a l , 2006). Another advantage of WTA comes from its ability to analyze 

textures at different frequencies or resolutions. Therefore, this method is also called multi-

resolution since it can be compared to a photographer using a big zoom lens to photograph 

the fine details of a scene, and then removes it to take a global shot of the complete scene 

(Tessier et a l , 2006). Hence, in terms of signal processing, it analyses fine textures at high 

frequencies and coarser textures at lower frequencies. To illustrate this, consider the brick 

wall images of Figure 7.5. In these pictures, WTA would be able to describe different 

textural patterns depending on the resolution of the analysis. At low resolution or 

frequency, WTA would be able to describe the mortar-brick pattern of the wall shown in 

the original image (Figure 7.5(a)). However, from this same image, a WTA of higher 

resolution would give information about textural patterns within a single brick. For 

illustration purposes, these patterns are presented in Figure 7.5(b), which correspond to the 

central brick of the original image zoomed 400%. 

Figure 7.5: Brick wall images: (a) the original image, (b) one brick zoomed 400%. 
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Consider one wants to decompose a continuous signal, f(x), by the mean of wavelet 

analysis. This signal is decomposed in different orthonormal bases (w„(x)) obtained 

through translation and dilatation of a specific mother wavelet y/(x). 

i n W = 2-m/2xb(2-mx - n) [7.3] 

Where m and n are respectively the coefficients of dilatation and translation. 

Similarly as Fourier Transforms, different coefficients are computed. They can be 

computed through the convolution of the signal with the orthonormal bases due to the 

orthonormal property. 

Cm,n= 4 /(x)VVn(*)d* = Wm.m/(*)> [7-4] 

The so-called mother wavelet is linked to the scaling function <p(x) with a certain sequence 

ofh[k] 

xb(x) = V2HfeAi1[fc]0(2x - k) [7.5] 
where 

tp(x)= yl22Zkh0[k](p(2x-k) [7.6] 

and 

h d k ] = - l k h 0 [ l - k ] [7.7] 

The discrete wavelet transform can be applied to a discrete signal with the use of these 

relations. However, the explicit forms of the scaling function and of the mother wavelet are 

not required. Hence, for the decomposition at level 7, 

< p i x = V ' 2 h [ \ k - V \ \ [7.8] 

xpjit= V / 2 h [ [ k - V Ï \ [7.9] 
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The discrete wavelet coefficients are now computed as 

aj[t\ = (f[*l+jM) [7-10] 

and 

dj[l]= (nklxlsj.dk]) [7.11] 

Where; and / are the indices of scale and translation, respectively. The a/[/]'s are called the 

approximation coefficients and the dj[l]'s are the detail coefficients. 

In two-dimensional discrete wavelet analysis, a discrete gray-level image is passed through 

a series of low-pass and high-pass filters as shown in Figure 7.6. The rows of pixels are 

first filtered with both low-pass (Ho) and high-pass (Hi) filters, Eqs. [7.8 - 7.11]. A fit 

coefficient (i.e. wavelet coefficient) with the wavelet function is computed for every pixel 

and a column-wise decimation is then performed on both filtered matrices. A column out of 

two is kept in. These two column-wise decimated matrices of coefficients are again filtered 

using the same two filters, but this time the filtering step is performed on the columns. This 

generates four matrices of coefficients which are then decimated one more time. This last 

decimation is performed row-wise and a row out of two is kept in. The four resulting 

matrices have half the sizes of the original image matrix. 

The coefficient matrix arising from the two low-pass filters is called the approximation 

matrix (aj). This matrix contains the information of all low frequency textures. Based on the 

specific order of filtering, the three remaining decimated matrices of coefficients are called 

details since they contain high frequency textures. One encloses horizontal textural details 

(d h), another one contains the vertical details (dv) and the last one represents the diagonal 

details (d d). If one is interested in the extraction of low frequency textural features, it is 

possible to reintroduce the approximation matrix in the filtering loop. Hence, the first loop 

will give information about high frequency textures (i.e. fine details) and the second loop of 

filtering will give information about textures existing at lower frequencies (i.e. coarse 

details). This can be performed a few times to extract information on coarser textures. 

Figure 7.6 gives an illustration of the filtering process for single loop (first level) 

decomposition. 

http://nklxlsj.dk
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Figure 7.6: Schematic of WTA decomposition. 

Once an image has been filtered to the appropriate level of decomposition, statistics are 

computed based on the elements of the detail matrices (df, dJ and df), the wavelet details 

coefficients. The Froebenius norm (Bharati et a l , 2004; Liu, 2004), often called energy, is 

one of the most frequently used statistics to summarize the textural features extracted using 

WTA and is used in this paper. 

7.5.3 Regression Models for Predicting Alumina Content Based on Image 
Features 

The last step of the proposed methodology consists in building a regression model to 

predict alumina content of the anode cover material based on a sample image of the 

corresponding mixture. In the previous section, various methods were proposed to extract 

color and textural features of the mixture images. For each image, these features are stored 

row-wise in a regressor matrix X (IxJ), where / is the total number of images in the set used 

to build the model, and J is the total number of features (color and/or textural) used in the 

model. As mentioned in section 7.4, for each of the 101 mixture images collected in the 

sampling campaign corresponds a measurement of alumina content obtained using X-ray 

spectroscopy. These measurements can be stored in a response matrix Y (Ixl). One can 

therefore use any appropriate regression method such as Ordinary Least Squares (OLS), 

Partial Least Squares (PLS), etc. to build a predictive model for alumina content. 
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In this paper, PLS regression was used since in most case studied (discussed in next 

section), the color and/or textural features stored in X are highly collinear. Partial Least 

Squares regression is a latent variable (or multivariate projection) method that relates two 

groups of variables (i.e. X and Y) through a set of latent variables T (i.e. score vectors) as 

shown below: 

X = T P + E [7.12] 

Y = TQ + F [7.13] 

T = X W [7.14] 

where the P and Q matrices contain the loading vectors that best represent the X and Y 

spaces respectively, whereas W* contain the loading vectors that define the relationship 

between the X and the Y spaces. The E and F matrices contain the residuals of each space. 

PLS is often seen as an extension of PCA for the analysis of two groups of variables having 

a lower dimensional structure (i.e. colinearity between the columns of X and Y). However, 

in PLS, the loading vectors W* (linear combinations of the columns of X) are chosen to 

maximise the covariance between X and Y instead of maximizing the explained variance of 

each spaces separately as PCA does. The loading and score vectors of each latent 

dimension (or principal components) are usually calculated sequentially using the Non

linear Iterative Partial Least Squares (NIPALS) algorithm (Kresta et a l , 1991). The number 

of components is typically determined using a cross-validation procedure that aims at 

selecting the model order that maximizes the predictive power of the model. 

7.6 Alumina Content Prediction Results 

A total of 15 PLS regression models have been studied in this work as shown in Table 7.2, 

each using a different combination of color and/or textural features extracted from the 

mixture images. The image database described in section 7.4 has been randomly divided 

into two sub-sets: a training set (71 images) and a test set (30 images). The training set was 

used to build the regression models whereas the test set was used to select the number of 

principal components (PCs) and to compare the predictive power of the models. The Root 

Mean Squared Error of Prediction (RMSEP) statistics obtained from predictions of the test 

set was used for both selecting the PCs and comparing predictive powers. The number of 
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PCs of each model was selected to be the one leading to the smallest RMSEP statistics on 

the test set. 

Table 7.2: Combinations of color and/or textural features in each of the 15 PLS models. 

Type of features Description Model ID 

Color RGB means and stds 1 
RGB histograms 2 
PCA loadings 3 

Texture WTA level 1-6 4 
WTA level 1-3 5 
WTA level 2-5 6 
WTA level 2-6 7 
GLCM 1 pixel 8 
GLCM 2 pixel 9 
GLCM 5 pixel 10 
GLCM 10 pixel 11 
GLCM multiresolution 12 

Color and texture WTA 2-6+PCA loadings 13 
GLCM multi + PCA loadings 14 
GLCM multi + mean and std 15 

The predictive power of the models is compared in Table 7.3, where the RMSEP statistics 

are reported for both the training and test sets. The percentage of predictions on the test set 

falling within +/- 1 a and +/- 2 a of the laboratory analysis standard-deviations is also 

shown. These measurement uncertainties were obtained from Alcoa's laboratory personnel. 

Based on current operating policies, operators would not react to variations within +/- 2 o 

of the laboratory analysis, but would follow very closely when approaching that limit. 

Control decisions are made when sustained deviations, significantly beyond +/- 2 a occur. 

Finally, Figure 7.7 shows the prediction results for models 1, 12, and 15, which correspond 

to the best models using color features only, textural features only, and both color and 

textural features, respectively. 
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Table 7.3: Comparison of the predictive power of the 15 PLS models investigated. 

Type of features Model ID Numberof 
features 

Numberof 
PC 

RMSEP (xlO4) % Prédiction 
inside + / - l o 

% Prédiction Type of features Model ID Numberof 
features 

Numberof 
PC Training Test 

% Prédiction 
inside + / - l o inside+/- 2o 

Color 1 6 2 35 40 26.7 56.7 
2 768 3 3 44 23.3 40.0 
3 9 7 163 113 20.0 36.7 

Texture 4 18 11 19 42 56.7 70.0 
5 9 4 22 42 46.7 66.7 
6 12 8 26 33 30.0 66.7 
7 IS 11 25 39 30.0 66.7 
8 4 3 16 32 36.7 56.7 
9 4 2 18 30 36.7 53.3 
10 4 2 19 31 20.0 50.0 
11 4 2 20 34 30.0 53.3 
12 16 10 7 12 63.3 80.0 

Color and texture 13 24 13 20 44 30.0 50.0 
14 25 10 8 11 60.0 76.7 
15 22 12 6 9 63.3 83.3 

The results show that color features alone are not sufficient to adequately predict alumina 

content. Model 1, which is the best model among those using color features only, has a test 

set RMSEP of 0.0040 compared to 0.0012 for the best model using textural features only 

(model 12). Furthermore, most models based on textural features extracted using WTA and 

GLCM (models 4-11) do not perform much better than models using color only (models 1-

3); the RMSEP obtained from the test set is almost double the value obtained from the 

training set. The multi-resolution GLCM algorithm is clearly the best model among those 

tested using textural features only. This supports the assumption that the size distribution of 

the mixture is a good indicator of the proportions of alumina/crushed bath in the mixture. 

Combining both color and textural features only, results in small improvements in model 

predictions (models 13-15). This confirms again that textural features are the most 

important for predicting alumina content. 
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Figure 7.7: Predictions of A1203 content vs. laboratory analysis for models 1,12, and 15. 
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The lower performance of models using color features only might be explained, on one 

hand, by a lack of color contrast at lower alumina concentrations as shown on Figure 

7.7(a). It appears that images of mixtures of less than 40% alumina are more difficult to 

discriminate using color only. On the other hand, another reason for the poorer performance 

of color features is a lack of robustness to irrelevant features present in the images such as 

the waves shown on Figure 7.8. 

These waves have an effect on color distributions by modifying the way light is reflected. 

The top of these waves are lighter and shadows surrounding them are darker. The texture 

algorithms, however, should be more robust to the presence of waves since by selecting the 

number of decomposition levels in WTA, or the distance between pixels (L) in GLCM, one 

is actually filtering the images. An additional smoothing is performed in the GLCM 

algorithm since the images are reduced to 32 gray-levels, thus locally reducing high pixels 

variations and noise. To illustrate how texture algorithms filter out the waves, Figure 7.9 

presents the results of a typical WTA analysis decomposition. Using a colormap to enhance 

contrast, this figure shows an original image of anode cover material and the 

approximations and details images of a three levels decomposition. From these pictures, it 

can be seen that wave patterns are seen in the approximations images and not in the details 

images. Hence, using energy from details images only, major light effects from the 

presence of waves will not be accounted since they will remain in the approximation of the 

image at the higher level of decomposition. However, these waves will start to appear in the 

details at levels four and five. 
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Waves 

Figure 7.8: The presence of waves within an image. 

Finally, in spite of the fact that some authors found that WTA was superior to GLCM for 

image texture classification (Bharati et a l , 2004), it seems that this is very application 

dependent. In this study, multi-resolution GLCM was found to be superior to WTA in 

terms of extracting textural features that are relevant for predicting alumina content. This 

might be due to the greater frequency resolution provided by the GLCM algorithm. In the 

latter method, the user decides on the frequencies by selecting the pixel distances (L) with 

steps of one pixel. In WTA, the analyzed frequencies are constrained to a down sampling 

by a factor of two. Some useful information may be lost in between two frequencies, but 

may be captured by the GLCM algorithm which offers a greater frequency resolution. 
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(a) 

(b) 

(c) 

(d) 

Approximations Horizontal Details Diagonal Details Vertical Details 

Figure 7.9: (a) Original cover product image displayed in a color map and its WTA for 
three levels of decomposition; (b) Level one, (c) level 2 and (d) level 3. 

7.7 Conclusions 

The main objective of this paper was to investigate whether it is possible to predict alumina 

content within anode cover mixtures used in primary aluminum production using a machine 

vision approach. A secondary objective was to compare various ways of extracting 

information from images and to select the most promising approach. In total, fifteen 

diffèrent PLS regression models were built and compared, each using a different 

combination of color and/or textural features to predict alumina content of anode cover 

mixture images. Color features were extracted both in the original RGB space of the images 
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and from a projection space obtained after applying Principal Component Analysis (PCA) 

to the images. Textural features were extracted using two different methods: Wavelet 

Texture Analysis (WTA) and Gray Level Co-ocurrence Matrices (GLCM). Very promising 

results were obtained for the prediction of alumina content. It was also found that multi-

resolution textural features led to the best predictive power since they extract information 

related to the size distribution of the product which, in turn, is monotonically related to the 

percentage of alumina within the binary mixture. Furthermore, it was also shown that 

textural features are more robust to irrelevant information present in the images, such as 

waves. Finally, the multi-resolution GLCM algorithm was found to be superior to WTA in 

this particular application, most probably due to a greater frequency resolution. Color 

features were found to be less robust and there seems to be a lack of color contrast in the 

images of mixtures having less than 40% alumina. 

Future work involves a larger experimental plan covering several weeks of operation to 

simulate on-line application of the machine vision approach. Predictions results will allow 

establishing a relationship between alumina content in the anode cover material and 

reduction cell performance, and to develop effective feedback control strategies to reduce 

variations. Finally, this vision-based sensor will be part of contingency plan in case of 

failure of the X-ray spectroscopy equipment. 
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8 General Conclusion 

8.1 Conclusion 
Aluminum reduction cells are complex multivariate processes which performance is 

affected by many sources of variations. An important part of this thesis is devoted to the 

investigation of sources and variables leading to cell performance variations: 

• The impact of preheating, start-up and early operation was investigated, with 

respect to potlife, in chapter 4. Based on a multiway PLS models, it was 

demonstrated that these three steps alone can explain up to 73% of the potlife 

variance and that potlife can be predicted within 84 days after only 60 days of 

operation. Considering these cells were in operation for more than 2000 days, and 

the uncertainties associated with the decision to stop a pot, these predictions were 

found more than acceptable from an operational point of view. Bearing in mind the 

many sources of disturbances pots sustain during their life cycle, this study 

demonstrates the importance of carefully monitoring and performing preheating, 

start-up and early operation since these steps explain more variance of the potlife 

metric than the variations sustained during normal operation. 

• The effect of variations in alumina and anode properties, as well as pot manipulated 

and state variables and start-up conditions, were studied with respect to current 

efficiency and energy consumption in chapter 5. Based on a multi-block PLS 

model, built using data over complete potlife cycles, it was demonstrated that 

54.21% of the variance of current efficiency and 50.87% of the variance of energy 

consumption can be explained from the available information about the process. 

Considering that alumina and anode properties are not available on a pot basis, but 

rather as population average and standard deviations estimates, these results are 

judged satisfactory. 

• In chapter 5, it was demonstrated that bath level plays an important role in pot 

performance variations. Therefore, an investigation of variables affecting bath level 
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was conducted in chapter 6. The analysis of the root causes of weekly bath level 

averages and standard deviation was performed using two separate PLS models. 

These models explained 69.23% and 66.42% of the variance of bath level averages 

and standard deviations, respectively. Among the variables considered in this 

analysis, anode cover material composition was ranked first in terms of correlation 

with bath level fluctuations. Unfortunately, as demonstrated, this composition is not 

well controlled because grabbed samples sent to laboratory are not necessarily 

representative of the population composition due to the mixture heterogeneity. 

Therefore, there is a need to analyze more samples which would come at increased 

costs and labour from the laboratory department. 

• However, in chapter 7, a novel method for estimating anode cover material 

composition was proposed based on image analysis. Presented results demonstrate 

that it is possible to estimate cover material composition as 83% of the predictions 

fall within +/- 2o of the laboratory confidence intervals. The use of image analysis 

would overcome the limitations from laboratory analysis as many anode cover 

material samples could easily be imaged. Therefore, composition prediction of these 

samples could be used to get a better estimation of the average anode cover 

composition used in the potroom or even on a pot basis. 

Nevertheless, the most important conclusion from the work presented here is that reduction 

cells are truly multivariate processes and that monitoring or investigating performance drop 

should be done using multivariate statistical analysis techniques, as opposed to the 

univariate or bivariate statistical analysis used throughout the industry. These methods are 

better suited for the analysis of these types of processes as; 

• They can simultaneously use all available variables, in spite of the fact of the 

correlations among them, 

They can split the systematic and stochastic variations enclosed in the investigated 

data by carefully selecting the number of principal components to use, 
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• Through the computation of variables importance in the prediction, it is possible to 

assess the model structure, based on process knowledge, 

• Through the computation of variables contributions, it is possible to investigate and 

isolate, among the hundreds of variables used in the analysis, variables statistically 

linked with performances variations. 

Moreover, multivariate statistical analysis techniques are well suited for the development of 

multivariate statistical control charts. These charts are advantageous as only few statistics 

have to be computed to efficiently summarize process behaviour and hence determine if a 

pot is in control or not, based on a model built from good operation. Examples of these 

charts were presented in chapters 3 and 4 through the use of T2 and Q statistics. These 

statistics include the in-model and out-of-model variations, respectively. In the event these 

statistics violate their statistical limits, the contributions of the variables can be used to help 

isolate possible causes for the process disturbance. 

8.2 Recommendations and Future Work 

Alcoa Deschambault is a modem smelter where the database structure is considered good, 

compared to older smelters. In spite of this, the work presented in this thesis pointed out 

that not enough information is available around reduction cells to completely assess their 

behaviour and thus their performances variations: 

• Alumina properties are only available as bulk estimates from the certificate of 

analysis (COA). Unfortunately, due to the inequalities arising from gas treatment 

center, charging alumina with fluoride, and from the transportation systems, not all 

the pots are fed with the same alumina. Some segregation arises in the alumina 

handling systems and therefore, some pots are fed with more fine particles while 

other are fed with coarser ones. This might play a role in the alumina dissolution 

rate and hence increase or decrease current efficiency and/or energy consumption in 

particular cells. Characterising this segregation throughout a potline may come 

handy when performance assessment is made on a pot-to-pot basis. 
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• In a similar fashion, anode properties are assessed using a few core samples 

collected on a weekly basis. However, considering the fact that a few thousands 

anode pieces are produced on a weekly basis, this limited population sample might 

not always give a representative picture of the anodes average quality. Furthermore, 

anode quality is not known on a pot basis which is a limitation to better capture the 

effects of anode quality on pot performance. It is known that pots are operated as a 

function of the worst anode in the pot. Unfortunately, it is actually impossible to 

track the properties of each anode and hence properly link their variations to pot 

performance. 

• Moreover, there is room for more information complementing the already available 

information from each pot. Bath temperature, level and chemistry are only available 

on a daily basis, or every other day. An industrial device, robust to the daily 

aggressive conditions inside reduction cells, has yet to be developed in order to 

measure at least bath level and temperature. Anode cover material composition is 

not available on a pot basis, in spite of the fact that it is the most influential variable 

to bath level variations. However, the image analysis technique proposed in this 

thesis may overcome this situation and give this information on a pot to pot basis. 

There is only little information indicating manual operation quality, however, 

heavily instrumented pot tending machines and tapping cranes are now available 

and are in used in different smelters. Such equipments can transmit information 

collected during anode setting or metal and bath tapping, and hence give an 

indication of the manual operation consistency and quality. 

• Only a limited amount of information is available from the preheating stage of 

reduction cells. At best, few thermocouples are embedded in cathodes blocks to 

monitor temperatures through the preheating phase. Unfortunately, due to variations 

in contact resistances throughout the anode shadow area, in case of electrical 

preheating, it is not guaranteed that all cathodes are at a sufficiently high 

temperature to prevent thermal gradients or cathode cracking. Therefore, not all the 

effect of preheating temperature is captured here. 
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Having these data available would greatly improve the results obtained in this thesis as it 

would give a better idea of the real disturbances affecting each reduction cell. It is believed 

that the variance explained for current efficiency, energy consumption and potlife would 

increase. 

A new anode cover material imaging prototype is currently in development. The image 

quality obtained through this set-up is greatly improved compared to images used in the 

work performed in chapter 7. An industrial validation should be performed soon. 

Finally, performing similar studies based on data from different smelter would be of 

interest. Comparing results obtained here with those from a smelter using the same 

technology could clarify some of the results. On the other hand, using data from other pot 

technology might highlight some systematic differences between both technologies. 



References 

Adams, A., Cahill, R., Belzile, Y., Cantin, K., Gendron, M., 2009, Minimizing impact of 
low sulphur coke on anode quality, Proceedings of The Minerals, Metals & 
Materials Society, Light Metals 2009, pp. 957-962. 

Banta, L., Dai, C , Biedler, P., 2003, Noise classification in the aluminum reduction 
process, Proceedings of The Minerals, Metals & Materials Society, Light Metals 
2003, pp.431-435. 

Baron, J.T., McKinney, S.A., Wombles, R.H., 2009, Coal tar pitch - Past, present and 
future, Proceedings of The Minerals, Metals & Materials Society, Light Metals 
2009, pp. 935-939. 

Bartolacci, G, Pelletier, P., Tessier, J., Duchesne, C , Bossé, P.A., Fournier, J., 2006, 
Application of numerical image analysis to process diagnosis and physical 
parameter measurement in mineral processes—Part 1 : Flotation control based on 
froth textural characteristics, Minerals Engineering, Vol., 19, No. 6-8, pp. 734-747 

Beame, G.P., 1999, The development of aluminum reduction cell process control, JOM, 
May 1999, pp. 16-22. 

Benkahla, B., Caratini, Y., Mezin, H., Renaudier, S., Fardeau, S., 2008, Last development 
in AP-50 cells, Proceedings of The Minerals, Metals & Materials Society, Light 
Metals 2008, pp.451-455. 

Benkahla, B., Martin, O., Tomasino, T., 2009, AP-50 performances and new development, 
Proceedings of The Minerals, Metals & Materials Society, Light Metals 2009, 
pp.365-370. 

Bharati, M .H., 1997, Multivariate Image Analysis for Real-Time Process Monitoring, 
MSc. Thesis, McMaster University, Hamilton, Ontario, Canada, 125 p.. 

Bharati, M.H., MacGregor, J.F., 2001,Texture analysis of images using principal 
component analysis, Proceedings of the SPIE; Process Imaging for Automatic 
Control, Vol. 4188, pp. 27-37. 

Bharati, M. H., Liu, J., MacGregor, J.F., 2004, Image texture analysis: Methods and 
comparisons, Chemometrics and Intelligent Laboratory Systems; Vol. 72, pp. 57-71. 

Bonifazi, G., La Marca, F., Massacci, P., 1999, Imaging and pattern recognition techniques 
applied to particulate solids material characterization in mineral processing, 
Proceedings of Control and Optimization in Minerals, Metals and Materials 
Processing, MetSoc 99, pp. 43-57. 



148 

Burnham, A.J., Viveros, R., MacGregor, J.F., 1996, Frameworks for latent variable 
multivariate regression, Journal of Chemometrics, Vol. 10, 1996, pp.31-45. 

Bruno, M.J., 2003, Aluminum carbothermic technology comparison to Hall-Héroult 
process, Proceedings of The Minerals, Metals & Materials Society, Light Metals 
2003, pp.395-400. 

Calderon De Anda, J., Wang, X.Z., Roberts, K.J., 2005, Multi-scale segmentation image 
analysis for the in-process monitoring of particle shape with batch crystallizers, 
Chemical Engineering Science, Vol. 60, pp. 1053-1065. 

Chandan, C , Sivakumar, K., Masad, E., Fletcher, T., 2004, Application of imaging 
techniques to geometry analysis of aggregate particles, Journal of Computing in 
Civil Engineering, Vol. 18, No. 1, pp. 75-82. 

Choate, W., Green, J., 2006, Thenoeconomic assessment of the carbothermic reduction 
processfor aluminum production, Proceedings of The Minerals, Metals & 
Materials Society, Light Metals 2006, pp.445-450. 

Chong, I.-G, Jun, C.H., 2005, Performance of some variable selection methods when 
multicollinearity is present, Chemometrics and Intelligent Laboratory Systems, 
Vol. 78, pp. 103-112. 

Conlin, A.K., Martin, E.B., Morris, A.J., 2000, Confidence limits for contribution plots, 
Journal of Chemometrics, Vol. 10, pp.725-736. 

D'Amours, G, Fafard, M., Gakwaya, A., Mirchi, A.A., 2003, Mechanical behaviour of 
carbon cathode: Understanding, modeling and identification, Proceedings of The 
Minerals, Metals & Materials Society, Light Metals 2003, pp.633-639. 

Dando, N., Xu, W., Nichols, R, Rusche, S., Neimer, M., 2008, Comparison of PFC 
emission rates for operating and newly started pots at a horizontal Sôderberg 
smelter, Proceedings of The Minerals, Metals & Materials Society, Light Metals 
2008, pp.233-237. 

Dewing, E.W., Loss of current efficiency in aluminum electrolysis cells, Metallurgical and 
Materials Transactions B, Vol. 22B, April 1991, pp. 177-182. 

Doiron, P., Lindsay, S.J., 2009, Pure metal production and methodology: The Alcoa 
Deschambault experience, Proceedings of The Minerals, Metals & Materials 
Society, Light Metals 2009, pp.499-503. 

Duchesne, C , Kourti, T., MacGregor, J.F., Multivariate SPC for startups and grade 
transitions, AIChE Journal, 2002, pp.2890-2901. 

Duchesne, C , Bouajila, A., Bartolacci, G, Pelletier, P., Breau, Y., Fournier, J., Girard, D., 
2003, Application of Multivariate Image Analysis (MIA) to Predict Concentrate 



149 

Grade in Froth Flotation Processes, Proceedings of the 35th Annual Meeting of the 
Canadian Mineral Processors, CMP 2003, pp. 511-526. 

Dunn, M.R., Galadari, Q.M.I., 1997, An analysis of the electrical preheat technique based 
on the start-up of the CD200 prototypes at Dubai Aluminum Co. Ltd., Proceedings 
of The Minerals, Metals & Materials Society, Light Metals 1997, pp.247-251. 

Edwards, J., 1955, The Immortal Woodshed: The story of the inventor who brought 
aluminum to America, New York.USA, Dodd, Mead & Company, 244p. 

Encyclopaedia Britannica (a), Retrieved July 22, 2009, from Encyclopaedia Britannica 
Online: http://www.britannica.com/EBchecked/topic/17944/aluminum 

Encyclopaedia Britannica (b), Retrieved September 15, 2009, from Encyclopaedia 
Britannica Online: http://www.britannica.com/EBchecked/topic /564172/statistics# 

Entner, P.M., 1992, Control of A1F3 concentration, Proceedings of The Minerals, Metals & 
Materials Society, Light Metals 1992, pp.369-374. 

Eriksson L., Johansson E., Kettaneh-Wold N., Trygg J., Wikstrom C, Wold S., 2006, 
Multivariate and Megavariate Data Analysis: Part I - Basic Principles and 
Applications. Umetrics, Umeâ, Sweden, 307p. 

Fisher, W.K, Mannweiler, U., Keller, F., Perruchoud, R.C, Biihler, U., 1995, Anodes for 
the Aluminum Industry, Sierre, Switzerland, R&D Carbon, 394p. 

Geladi, P., Kowalski, B.R., 1986, Partial least squares regression: A tutorial, Analytica 
Chimica Acta, Vol. 186, pp. 1-17. 

Geladi, P., Grahn, H., 1996, Multivariate Image Analysis, John Wiley and Sons, 
Chichester, England, 316 p.. 

Geladi, P., Manley, M., Lestander, T., 2003, Scatter plotting in multivariate data analysis, 
Journal of Chemometrics, Vol. 17, pp.503-511. 

Grjotheim, K, Kvande, H., 1993, Introduction to Aluminum Electrolysis, Dusseldorf, 
Germany, Aluminum-Verlag, 260p. 

Haralick, R.M., 1979, Statistical and structural approaches to texture, Proceedings of the 
IEEE, Vol.67, No.5, pp. 786-804. 

Haugland, E., B0rset, H., Gikling, H., H0ie, H., 2003, Effects of ambient temperature and 
ventilation on shell temperature, heat balance and side ledge of an alumina 
reduction cell, Proceedings of The Minerals, Metals & Materials Society, Light 
Metals 2003, pp.269-276. 

http://www.britannica.com/EBchecked/topic/17944/aluminum
http://www.britannica.com/EBchecked/topic


150 

Haupin, W.E., 1991, A challenging task to improve potlife in aluminum industry, 10th 

International Course on Process Metallurgy of Aluminum, Institute of Inorganic 
Chemistry, Trondheim, Norway. 

Haupin, W.E., Kvande, H., 1993, Mathematical model of fluoride evolution from Hall-
Héroult cells, Proceedings of The Minerals, Metals & Materials Society, Light 
Metals 1993, pp.257-263. 

Haupin, W.E., 1995, Principles of aluminum electrolysis, Proceedings of The Minerals, 
Metals & Materials Society, Light Metals 1995, pp. 195-203. 

Haupin, W.E., 2003, History of Aluminum Production: What is its significance to today?, 
Industrial Aluminum Electrolysis: Theory & Practice of Primary Aluminum 
Production,The Minerals, Metals and Materials Society, Quebec City, Canada 

Homsi, P., Peyneau, J.-M., Reverdy, M., 2000, Overview of process control in reduction 
cells and potlines, Proceedings of The Minerals, Metals & Materials Society, Light 
Metals 2000, pp.223-230. 

Hôskuldsson, A., 1988, PLS regression methods, Journal of Chemometrics, Vol. 2, pp. 
211-228. 

Hôskuldsson, A., Svinning, K, 2006, Modelling of multi-block data, Journal of 
Chemometrics, Vol. 20, pp. 376-385. 

Jackson, J.E., 1991, A User's Guide to Principal Component Analysis, John Wiley and 
Sons, New-York, United States of America, 592 p.. 

Jain, R.K., Tricklebank, S.B., Welch, B.J., Williams, D.J., 1983, Interaction of aluminas 
with aluminum smelting electrolytes, Proceedings of The Minerals, Metals & 
Materials Society, Light Metals 1983, pp.609-622. 

Jentoftsen, T., Linga, H., Aga, B., Christensen, V., Hoff, F., Holden, I., 2009, Correlation 
between anode properties and cell performance, Proceedings of The Minerals, 
Metals & Materials Society, Light Metals 2009, pp.301-304. 

Johnson, A.R., 1981, Alumina crusting and dissolution in molten electrolyte, Proceedings 
of The Minerals, Metals & Materials Society, Light Metals 1981, pp.373-387. 

Keniry, J., 2001, The economics of inert anodes and wettable cathodes for aluminum 
reduction cells, JOM, Vol. 52, No. 2, pp.22-28 

Kolas, S., St0re, T., 2009, Bath temperature and A1F3 control of an aluminum electrolysis 
cell, Control Engineering Practice, In Press, 9p. 



151 

Kourti, T., MacGregor, J.F., 1995, Process analysis, monitoring and diagnosis, using 
multivariate projection methods, Chemometrics and Intelligent Laboratory 
Systems, Vol. 28, pp. 3-21. 

Kourti, T., 2002, Process analysis and abnormal situation detection: From theory to 
practice, IEEE Control Systems Magazine, October 2002, pp. 10-25. 

Kourti, T., 2005, Application of latent variable methods to process control and multivariate 
statistical process control in industry, International Journal of Adaptive Control and 
Signal Processings ol. 19, No. 4, 2005, pp.213-246. 

Kresta, J.V., MacGregor, J.F., Marlin, T.E., 1991, Multivariate statistical monitoring of 
process operating performance, The Canadian Journal of Chemical Engineering, 
Vol. 69, pp. 35-47. 

Kvande, H., 1994, Bath chemistry and aluminum cell performance - Facts, fictions and 
doubts, JOM, Vol. 52, No. 2, pp.22-28. 

Kvande, H., 1998, Alumina, In Fundamentals of Aluminum Production 1998 Course, 
Institute of Inorganic Chemistry, Trondheim, Norway. 

Larsen, P.A., Rawling, J.B., Ferrier, N.J., 2006, An algorithm for analyzing noisy, in situ 
images of high-aspect-ratio crystals to monitor particle size distribution, Chemical 
Engineering Science, Vol. 61, pp. 5326-5248. 

Lepistô, L., Kunttu, I., Autio, J., Visa, A., 2003, Rock image classification using non-
homogeneous textures and spectral imaging, Proceedings of the WSCG 2003, 5 p. 

Li, J., Lii, X.-j., Lai, Y.-q., Li, Q-y, Liu, T.-x., 2008, Research progress in TiB2 wettable 
cathode for aluminum reduction, JOM, August 2008, pp. 32-37. 

Lindsay, S.J., 2005, SGA requirements in coming years, Proceedings of The Minerals, 
Metals & Materials Society, Light Metals 2005, pp.429-434. 

Liu, J., 2004, Machine Vision for Process Industries: Monitoring, control, and 
Optimization of Visual Quality of Process and Products, PhD. Thesis, McMaster 
University, Hamilton, Canada, 170 p.. 

Liu, J., McGregor, J.F., Duchesne, C , Bartolacci, G, 2005, Flotation froth monitoring 
using multiresolutional multivariate image analysis, Minerals Engineering, Vol. 18, 
No.l, pp. 65-76. 

Liu, D., Zhang, G, Li, J., Ostrovski, O., 2009, Solid start carbothermal of alumina, 
Proceedings of The Minerals, Metals & Materials Society, Light Metals 2009, 
pp.429-434. 



152 

MacGregor, J.F., Yu, H., Munoz, S.G., Flores-Cerrillo, J., 2005, Data-based latent variable 
methods for process analysis, monitoring and control, Computers & Chemical 
Engineering, Vol. 29, pp. 1217-1223. 

Maeda, H., Matsui, S., Era, A., 1985, Measurement of dissolution rate of alumina in 
cryolite melt, Proceedings of The Minerals, Metals & Materials Society, Light 
Metals 1985, pp.763-780. 

Maharaj, D., Imery, J., Zarate, J., Lazarde, J., 1991, Investigation of early cathode failure, 
Proceedings of The Minerals, Metals & Materials Society, Light Metals 2009, 
pp.429-434. 

Majid, N.A.A., Young, B.R., Taylor, M.P., Chen, J.J.J., 2009, Detecting abnormalities in 
aluminium reduction cells based on process events using multi-way principal 
component analysis (MPCA), Proceedings of The Minerals, Metals & Materials 
Society, Light Metals 2009, pp. 589-593. 

Martens, H., 2001, Reliable and relevant modelling of real world data: a personal account 
of the development of PLS Regression, Chemometrics and Intelligent Laboratory 
Systems, Vol. 58, pp. 85-95. 

Martin, O., Jolas, J.M., Benkahla, B., Rebouillat, O., Richard, C , Ritter, C , 2006, The next 
stop to the AP3X-HALE technology: Higher amperage, lower energy and 
economical performances, Proceedings of The Minerals, Metals & Materials 
Society, Light Metals 2006, pp.249-254. 

Meier, M.W., Fisher, W.K., Perruchoud, R.C, Thermal shock of anodes - A solved 
problem?, Proceedings of The Minerals, Metals & Materials Society, Light Metals 
1994, pp.685-694. 

Metson, J.B., Haverkamp, R.G., Hyland, M.M., Chen, J., 2002, The anode effect revisited, 
Proceedings of The Minerals, Metals & Materials Society, Light Metals 2002, 
pp.239-244. 

Miletic, I., Quinn, S., Dudzic, M., Vaculik, V., Champagne, M., 2004, An industrial 
perspective on implementing on-line applications of multivariate statistics, 
Journal of Process Control, Vol. 14, pp. 821-836. 

Moolman, D.W., Aldrich, C , Van Deventer, J.S.J., Stange, W.W., 1994, Digital image 
processing as a tool for on-line monitoring of froth in flotation plants, Minerals 
Engineering, Vol. 7, No. 9, pp. 1149-1164. 

Moore, K.L., Urata, N., 2001, Multivariable control of aluminum reduction cells, 
Proceedings of The Minerals, Metals & Materials Society, Light Metals 2001, 
pp. 1243-1249. 



153 

Nomikos, P., MacGregor, J.F., 1995, Multivariate SPC charts for monitoring batch 
processes, Technometrics, Vol. 37, 1995, pp.41-59. 

Patnaik, P., 2002, Handbook of Inorganic Chemicals, McGraw-Hill, New York, USA 1086 
p.. 

Paulino, L., Yamamoto, J., Camilli, R.A., Araujo, J.C, 2006, Bath ration control 
improvements at Alcoa Poços de Caldas-Brazil- an update, Proceedings of The 
Conference of Metallurgists, Aluminum 2006, pp.359-368. 

Petersen, K.R.P, Aldrich, C , Van Deventer, J.S.J., 1998, Analysis of ore particles based on 
textural pattern recognition, Minerals Engineering, Vol. 11, No. 10, pp. 959-977. 

Proulx, G, Doiron, P., Champoux, P., Paquin, J., 2006, Step changes in potroom operation 
schedule at the Alcoa Deschambault smelter, Proceedings of The Conference of 
Metallurgists, Aluminum.2006, pp.333-343. 

Richard, D., 2004, Aspects Thermomécaniques de la Modélisation par Éléments Finis du 
Préchauffage Electrique d'une Cuve de Hall-Héroult : Lois Constitutives, 
Conception Orientée-Objets et Validation, PhD Thesis, Université Laval, Québec, 
Canada, 183 p. (In French) 

Richard, D., D'Amours, G, Fafard, M., Gakwaya, A., Désilets, M., 2005, Development 
and validation of a thermo-chemo-mechanical model of the baking of ramming 
paste, Proceedings of The Minerals, Metals & Materials Society, Light Metals 2005, 
pp.733-738. 

Rieck, T., Iffert, M., White, P., Rodrigo, R., Kelehtermans, R., 2003, Increased current 
efficiency and reduced energy consumption at the Trimet Smelter Essen, using 9 
box matrix control, Proceedings of The Minerals, Metals & Materials Society, 
Light Metals 2003, pp.449-456. 

Rolots, B., Wai-Poi, N., 2000, The effect of anode spike formation on operational 
performance, Proceedings of The Minerals, Metals & Materials Society, Light 
Metals 2000, pp.1%9-193. 

Schmidt-Hatting, W., Perruchoud, R., Durgnadt, J.M., 1986, Influence of vanadium on 
anode quality and pot performances, Proceedings of The Minerals, Metals & 
Materials Society, Light Metals 1986, pp.623-625. 

Smilde, A.K., Westerhuis, J.A., Jong, S. de., 2003, A framework for sequential multiblock 
component methods, Journal of Chemometrics, Vol. 17, pp.323-337. 

Sorlie, M., 0ye, H.A., 1989, Cathodes in Aluminum Electrolysis, Diisseldorf, Germany, 
Aluminum-Verlag, 294p. 



154 

Sterten, A., Solli, P.A., Skybakmoen, E., 1998, Influence of electrolyte impurities on 
current efficiency in aluminum electrolysis cells, Journal of Applied 
Electrochemistry, Vol. 28, 1998, pp.781-789. 

Stevens McFadden, F.J., Welch, B.J., Austin, P.C., 2006, The multivariable model-based 
control of the non-alumina electrolyte variables in aluminum smelting cells, JOM, 
February 2006, pp. 42-47. 

Szatvanyi, G., Duchesne, C , Bartolacci, G., 2006, Multivariate Image Analysis of Flames 
for Product Quality and Combustion Control in Rotary Kilns, Industrial & 
Engineering Chemistry Research, Vol. 45, No. 13, pp. 4706-4715. 

Tabereaux, A. T., 2000, Prebake Cell Technology: A Global Review, JOM, Vol. 52, No. 2, 
pp.22-28. 

Tabereaux, A. T., 2007, Maximum anode effect voltage, Proceedings of The Minerals, 
Metals & Materials Society, Light Metals 2007, pp.405-410. 

Tabsh, I., Dupuis, M., Gomes, A., 1996, Process simulation of aluminum reduction cells, 
Proceedings of The Minerals, Metals & Materials Society, Light Metals 1996, pp. 
451-457. 

Tabsh, I., Dupuis, M., 1997, Simulation of the dynamic response of aluminum reduction 
cells, Proceedings of The Minerals, Metals & Materials Society, Light Metals 1996, 
p p . 443-447. 

Tarcy, G.P., DeCapite., 1990, Controlled potential coulometry as a tool for the 
determination of current efficiency in commercial Hall cells, Proceedings of The 
Minerals, Metals & Materials Society, Light Metals 1990, pp.275-283. 

Tarcy, G.P., Sorensen, J., 1991, Determination of factors affecting current efficiency in 
commercial Hall cells using controlled potential coulometry and statistical 
experiments, Proceedings of The Minerals, Metals & Materials Society, Light 
Metals 1991, pp.453-459. 

Tarcy, G.P., Strategies for maximizing current efficiency in commercial Hall-Héroult cells, 
Proceedings of the 5th Australasian Aluminum Smelting Technology Workshop, 
Sydney, Australia, 1995, pp. 139-160. 

Taylor, M. P., Johnson, G. L., Andrews, E. W., Welch, B. J., 2004, The impact of anode 
cover control and anode assembly design on reduction cell performance, 
Proceedings of The Minerals, Metals & Materials Society, Light Metals 2004, pp. 
199-206. 

Tessier, J., 2006, Détermination de la Composition de l'Alimentation des Circuits de 
Broyage par Analyse d'Images Multivarié, MSc. Thesis , Université Laval, Quebec 
City, Canada, 97 p.., In French 



155 

Tessier, J., Duchesne, C , Bartolacci, G., 2006, On-line multivariate image analysis of run-
of-mine ore for control of grinding and mineral processing plants, Proceedings of 
Mineral Process Modelling, Simulation and Control, pp. 175-189. 

Tessier, J., Duchesne, C , Tarcy, G.P., Gauthier, C , Dufour, G., 2008, Analysis of a 
potroom performance drift, from a multivariate point of view, Proceedings of The 
Minerals, Metals & Materials Society, Light Metals 2008, pp. 319-324. 

Tessier, J., Zwirz, T.G., Tarcy, G.P., Manzini, R.A., 2009, Multivariate statistical process 
monitoring of reduction cells, Proceedings of The Minerals, Metals & Materials 
Society, Light Metals 2009, pp. 305-310. 

Thonstad, J., Fellner, P., Haarberg, G.M., Hives, J., Kvande, H., Sterten, A., 2001, 
Aluminum Electrolysis: Fundamentals of the Hall-Héroult Process, 3r edition, 
Aluminum-Verlag, Dusseldorf, Germany, 360p. 

Vanvoren, C , 2001, The PECHINEY reduction cell family: 25 years of development in 
design and process control, Proceedings of The Conference of Metallurgists, COM 
2001; Light Metals, pp.49-62. 

Venetski, S., 1969, Silver form clay, Metallurgist, Vol. 13, No. 7, July, 1969, pp. 44-46. 

Wang, X., Tabereaux, A.T., Richards, N.E., 1994, The electrical conductivity of cryolite 
melts containing aluminum carbide, Proceedings of The Minerals, Metals & 
Materials Society, Light Metals 1994, pp. 177-185. 

Wang, X., 2009, Alumina dissolution in aluminum smelting electrolyte, Proceedings of The 
Minerals, Metals & Materials Society, Light Metals 2009, pp.383-388. 

Welch, B.J., 1999, Aluminum production paths in the new millennium, JOM, May 1999, 
pp. 24-28. 

Welch, B.J., 2009, Inert anodes- The status of the materials science, the opportunities they 
present and the challenges that need resolving before commercial implementation, 
Proceedings of The Minerals, Metals & Materials Society, Light Metals 2009, pp. 
971-978. 

Westerhuis, J.A., Coenegracht, P.M.L., 1997, Multivariate modelling of the pharmaceutical 
two-step process of wet granulation and tableting with multiblock partial least 
squares, Journal of Chemometrics, Vol. 11, pp. 379-392. 

Westerhuis, J.A., Kourti, T., MacGregor, J.F., 1998, Analysis of multiblock and 
hierarchical PCA and PLS models, Journal of Chemometrics, Vol. 12, pp. 301-321. 



156 

Westerhuis, J.A., Kourti, T., MacGregor, J.F., 1999, Comparing alternative approaches for 
multivariate statistical analysis of batch process data, Journal of Chemometrics, 
Vol. 13, pp. 397-413. 

Westerhuis, J.A., Gurden, S.P., Smilde, A.K., 2000, Generalized contribution plots in 
multivariate statistical process monitoring, Chemometrics and Intelligent 
Laboratory Systems, Vol. 51, pp. 95-114. 

Wilkening, S., Reny, P., Murphy, B., 2005, Anode cover material and bath level control, 
Proceedings of The Minerals, Metals & Materials Society, Light Metals 2005, pp. 
367-372. 

Wilkening, S., 2009, Maintaining consistent anode density using varying carbon raw 
materials, Proceedings of The Minerals, Metals & Materials Society, Light Metals 
2009, pp. 991-998. 

Wold, S., 1978, Cross-validation estimation of the number of components in factor and 
principal components models, Technometrics, Vol. 20, pp.397-405. 

Wold, S., Esbensen, K, Geladi, P., 1987, Principal component analysis, Chemometrics and 
Intelligent Laboratory Systems, Vol. 2, pp.37-52. 

Wold, S., Sjôstrôm, M., Eriksson, L., 2001, PLS-Regression: a basic tool of chemometrics, 
Chemometrics and Intelligent Laboratory Systems, Vol. 58, pp. 109-130. 

Yu, H., MacGregor, J.F., Haarsma, G, Bourg, W., 2003, Digital Imaging for Online 
Monitoring and Control of Industrial Snack Food Processes, Industrial & 
Engineering Chemistry Research, Vol. 42, pp. 3036-3044. 

Yu, H., MacGregor, J.F., 2004, Monitoring flames in an industrial boiler using multivariate 
image analysis, AIChE Journal, Vol. 50, No. 7, pp. 1474-1483. 

Yurkov, V., Mann, V., Nikandrov, K, Trebukh, O., 2004, Development of aluminum 
reduction process supervisory control system, Proceedings of The Minerals, Metals 
& Materials Society, Light Metals 2004, pp.263-267. 

Yurkov, V., Mann, V., 2005, A simple dynamic realtime model for aluminum reduction 
cell control system, Proceedings of The Minerals, Metals & Materials Society, Light 
Metals 2005, pp.423-428. 

Zangiacomi, C , Pandolfelli, V., Paulino, L., Lindsay, S., Kvande, H., 2005, Preheating 
study of smelting cells, Proceedings of The Minerals, Metals & Materials Society, 
Light Metals 2005, pp.333-336. 

Zangiacomi, C , Pandolfelli, V-, Paulino, L., 2006, A challenging task to improve potlife in 
aluminum industry, Proceedings of The Conference of Metallurgists COM 2006, 
Aluminum, p.653-666. 


