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General and exact approach to percolation on random graphs
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We present a comprehensive and versatile theoretical framework to study site and bond percolation on clustered
and correlated random graphs. Our contribution can be summarized in three main points. (i) We introduce a set
of iterative equations that solve the exact distribution of the size and composition of components in finite-size
quenched or random multitype graphs. (ii) We define a very general random graph ensemble that encompasses
most of the models published to this day and also makes it possible to model structural properties not yet included
in a theoretical framework. Site and bond percolation on this ensemble is solved exactly in the infinite-size limit
using probability generating functions [i.e., the percolation threshold, the size, and the composition of the giant
(extensive) and small components]. Several examples and applications are also provided. (iii) Our approach
can be adapted to model interdependent graphs—whose most striking feature is the emergence of an extensive
component via a discontinuous phase transition—in an equally general fashion. We show how a graph can
successively undergo a continuous then a discontinuous phase transition, and preliminary results suggest that
clustering increases the amplitude of the discontinuity at the transition.
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I. INTRODUCTION

Percolation on graphs offers a simple theoretical framework
to model and investigate the behavior of many complex
systems, noteworthy examples being the growth and the
robustness of their structure [1,2], their observability [3,4],
as well as the effect of their structure on the propagation of
emerging infectious agents [5,6]. On the analytical front, recent
progress has been mainly achieved within the configuration
model (CM) paradigm [7], which, in the limit of large graphs,
allows an exact and simple analytical treatment with the use of
probability generating functions (pgfs) [8,9]. The versatility
of the pgf method has triggered the development of many
variants of the CM, reproducing, to some extent, correlations
and clustering found in real complex systems [10–31].

To move beyond what has been done thus far, we introduce
a very general and comprehensive class of random graphs
that increases significantly the nontrivial correlations and clus-
tering patterns that can be handled analytically. Correlations
and clustering are incorporated into the graphs through the
use of types of vertices and types of stubs (i.e., half edge
stemming from vertices). Hence, by explicitly controlling who
is connected to whom and through what kind of connection,
our approach reproduces any correlations as long as they can
be mapped onto this multitype framework. For instance, the
type of the vertices can correspond to their degree (the number
of neighbors) [22,30], to their intrinsic properties such as age
or ethnicity [11,23], or to their position in the k-core structure
of the graph [16].

Furthermore, the use of types of stubs explicitly accounts
for different categories of connections. On the one hand, these
differences may be of a conceptual nature [32]. For instance,
in multilayer or multiplex graphs the type of an edge refers
to the layer of interaction to which it belongs (e.g., family
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ties and acquaintances in social networks). On the other hand,
the different types of stubs can describe different topological
functions. Since some edges may be undirected or directed,
different types of stubs can be used to identify in-degrees,
out-degrees, or undirected degrees [9,20]. More importantly
perhaps, stubs can be matched in groups of more than two
vertices to form motifs, also called hyperedges [10,17], per-
mitting the inclusion of clustering in a very general and natural
fashion. These motifs can take a wide variety of forms: Simple
triangles, cliques of several hundreds of vertices, or arbitrary
graphs with directed and multiple edges [see Fig. 1(a)].
Additionally, these motifs can have a quenched (i.e., fixed)
or a random structure (e.g., multitype Erdős-Rényi graphs).

We have developed a mathematical framework that solves
the site and bond percolation (hereafter hybrid percolation)
on this general class of random graphs. We build upon the
well-known pgf-based formalism and obtain the analytical
expression for the size of the extensive “giant” component,
the percolation threshold, as well as the distribution of the size
of the “small” components in the limit of large graph size.
However, the pgf approach de facto assumes locally treelike
graphs forbidding closed loops and therefore any clustering
whatsoever. To circumvent this limitation, we present a set of
iterative equations that exactly solves the size distribution of
components in finite-size arbitrary, or quenched, graphs. These
equations map the possible outcomes of hybrid percolation on
any motif (i.e., the size distribution of the components) onto
a distribution of branching trees and thereby reconcile the
presence of motifs with the treelike requirement of the pgf
approach.

The general nature of our model acts as a theoretical labo-
ratory where the effect of a wide selection of structural features
on the outcomes of hybrid percolation can be investigated on a
common ground. To facilitate understanding and to provide
support for our claims, several examples accompany the
analysis and illustrate its practical implementation. Moreover,
our model encompasses most variants of the CM published
to date; we provide several examples supporting this claim as
well.
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FIG. 1. (Color online) (a) Example of an arbitrary graph that can be handled by our framework. Red and blue represent vertex types 1 and
2, respectively. There are ten vertices of each type. (b) Distribution of the number of vertices of type j in components reached from an initial
vertex chosen at random for the graph shown in (a). Symbols are the results of 2.5 × 108 numerical simulations, and lines are the predictions
of Eqs. (3a)–(3d). The distributions are discrete; lines have been added to guide the eye. Triangles (�) correspond to pure site percolation,
with {r̃ ′

s} ≡ {r̃ ′
1,r̃

′
2} = {0.40,0.70} and {p̃′

ij } ≡ {p̃′
11,p̃

′
12,p̃

′
21,p̃

′
22} = {1.00,1.00,1.00,1.00}. Circles (◦) correspond to hybrid percolation (site

and bond) with {r̃ ′
s} ≡ {r̃ ′

1,r̃
′
2} = {0.95,0.90} and {p̃′

ij } ≡ {p̃′
11,p̃

′
12,p̃

′
21,p̃

′
22} = {1.00,0.90,0.85,0.95}. These probabilities are given in terms of

the original vertex types to lighten the presentation (thus the use of a prime). To use the mapping described in Sec. II B, a probability for each
individual vertex and each individual edge must be defined. For instance, if vertex 8 is of type 1, we set r8 = r̃ ′

1. Similarly, if vertex 5 is of type
2 and shares three undirected edges with vertex 8, we set p58 = 1 − (1 − p̃′

21)3 and p85 = 1 − (1 − p̃′
12)3.

Finally, we show how our approach can be adapted to
model interdependent graphs—in which the extensive com-
ponent emerges via a discontinuous transition instead of a
continuous one [33,34]—through a suitable change in the
definition of what constitutes an extensive component (i.e.,
the order parameter). This adaptation shows that a graph can
successively undergo a continuous then a discontinuous phase
transition [35] and provide a quantitative measure of the effect
of clustering on the emergence of the extensive component.

The paper is organized as follows. In Sec. II, we introduce
the set of iterative equations that exactly solves the size
distribution of components in finite-size arbitrary graphs.
In Sec. III, we formally define the general graph ensemble
discussed above and obtain its exact structural properties
under hybrid percolation (i.e., the size and composition of
the components and the position of the percolation threshold).
We then illustrate the workings of our formalism with several
examples and special cases in Sec. IV. We finally show how
our approach can be adapted to model interdependent graphs in
Sec. V. Conclusions and final remarks are collected in Sec. VI.

II. PERCOLATION ON FINITE-SIZE
ARBITRARY GRAPHS

To reconcile the treelike assumption of the pgf approach
with the presence of motifs in graphs, the outcomes of
percolation on these motifs—the distribution of the number
of vertices that can be reached from a given vertex—must
be obtained beforehand. These distributions can be computed
by hand by enumerating each possible configuration where
vertices and edges exist with given probabilities [17,21].
However, this procedure becomes rapidly unwieldy for motifs
of more than a handful of vertices. Instead, we generalize the
equations presented in Ref. [36] to obtain a set of iterative

equations that solve the outcome of hybrid percolation on
small arbitrary graphs.

A. Multitype Erdős-Rényi graphs

Let us first consider multitype random graphs as a gener-
alization of the Gn,p model (i.e., Erdős-Rényi random graphs)
in which n vertices are linked by edges that exist individually
and independently with a probability p [37]. We generalize
this model by labeling vertices using types; the set of types
is noted N , and there are a total of |N | types of vertices. A
directed edge from a vertex of type i towards a vertex of type
j (noted i → j ) exists with a probability pij independently
of other potential edges [38]. For the sake of conciseness,
we refer to a graph composed of ni vertices of type i (with
i = 1, . . . ,|N |) with the vector n ≡ (n1, . . . ,n|N |)T. We use
a similar notation for other quantities throughout this paper,
unless specified otherwise.

Since edges may be directed, we define a component as
the vertices that are reachable from a given initial vertex,
including itself (i.e., the out-component rooted to this given
vertex). This initial vertex is identified solely by its type
since vertices of a given type are indistinguishable. We define
Wi(l|n) as the probability that l ≡ (l1, . . . ,l|N |)T vertices can
be reached from an initial vertex of type i in a graph containing
n vertices. The calculation of Wi(l|n) begins with the initial
condition Wi(δi |δi ) = 1, where δi is the vector of Kronecker
δ’s (δi1, . . . ,δi|N |)T and corresponds to a single vertex of type
i. This initial condition simply states that the probability
of finding a component of one vertex of type i in a graph
containing one vertex of type i is 1. Now suppose that there
are other vertices in the graph and that it contains n vertices
instead. The probability of finding a component of only one
vertex of type i in this graph, Wi(δi |n), is equal to the
probability that there is a component containing δi vertex,
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Wi(δi |δi ) (which in this case is equal to one), multiplied by
the probability that none of the potential edges from the vertex
in the component (i.e., the vertex of type i) towards the other
vertices of the graph of size n exist:

Wi(δi |n) = Wi(δi |δi )
∏
k∈N

(1 − pik)nk−δik . (1)

Let us now consider a component made of two vertices of type
i, which we note 2δi . By definition of the multitype random
graphs, we know that Wi(2δi |2δi ) = pii since the component
exists only if there is a directed edge from the initial vertex
to the other vertex of type i. Following the steps leading to
Eq. (1), the probability of finding a component of size 2δi

from an initial vertex of type i in a graph containing n vertices
(we assume that ni � 2) is

Wi(2δi |n) = Wi(2δi |2δi )(ni − 1)
∏
k∈N

(1 − pik)2(nk−2δik ), (2)

where the extra factor (ni − 1) accounts for the number of
ways to choose the second vertex among the ni − 1 available
vertices of type i in the graph, and 2(nk − 2δik) is the number
of potential edges from the two vertices of type i towards the
nk − 2δik vertices of type k. Repeating this exercise for larger
components, we obtain a general form for a generic component
of size l ,

Wi(l|n) = Wi(l|l)
∏
j∈N

(
nj − δij

lj − δij

)∏
k∈N

(1−pjk)lj (nk−lk ), (3a)

where Wi(l|l) is the probability that l vertices form a
component considering an initial vertex of type i. In this last
equation, the binomial coefficients count the number of ways
the other l − δi vertices in the component can be chosen from
the n − δi vertices available in the graph, and the other terms
correspond to the probability that no other vertices can be
reached from the l vertices in the component.

The only missing information in Eq. (3a) is the probability
Wi(l|l). As seen in the two simple examples above, it is
possible to compute the probability Wi(l|l) by hand, but
this calculation becomes rapidly tedious as the size of the
component increases. Fortunately, we can use Eq. (3a) to
circumvent this difficulty. For example, from Wi(δi |δi ) = 1,
Eq. (1) yields Wi(δi |2δi ) = 1 − pii . Since the probabilities
must sum to 1 for a given graph size, we conclude that
Wi(2δi |2δi ) = 1 − Wi(δi |2δi ) = pii . Hence, it is possible to
build upon the probabilities computed for smaller graph size
to obtain the missing probability Wi(l|l) by simply asking for
normalization. In general terms,

Wi(l|l) = 1 −
∑
m<l

Wi(m|l), (3b)

where the probabilities Wi(m|l) are obtained with Eq. (3a) and
where the sum covers every possible instance of m such that
mj � lj for all j but excludes the case in which all elements of
the two vectors are equal (i.e., mj = lj for every j ). In short,
Eqs. (3a) and (3b) are mutually dependent: The left-hand side
of one feeds the right-hand side of the other. Thus, from a graph
consisting of a single vertex (the initial condition), Eqs. (3a)
and (3b) extend the graph to the desired size n and keep track

of the component size distribution along the way to build the
final distribution {Wi(l|n)}.

A mass of information is produced during the iteration of
Eqs. (3a) and (3b): The probability of finding every possible
components l in each intermediate graph whose size is smaller
than n. When interested in bond percolation solely (as in
Ref. [36]), the only probabilities of interest are the ones related
to the graph of maximum size n. This ultimately leaves most
of the calculated probabilities unused. However, if interested
in hybrid percolation, that is, when edges and vertices exist
with given probabilities, all the calculated probabilities can be
put to contribution.

The probability for a graph of original size n to be left with
b vertices after each of its vertices has been independently kept
with probabilities {rj }j∈N (i.e., a vertex of type j is kept with
probability rj ) is

Bi(b|n) ≡
∏
j∈N

(
nj − δij

bj − δij

)
r

bj −δij

j (1 − rj )nj −bj , (3c)

where we assume that the initial vertex of type i exists. Hence,
from a starting vertex of type i, the probability to find a
component of size l in a graph of original size n when vertices
and edges exist with given probabilities, Qi(l|n), is

Qi(l|n) =
n∑

b=l

Wi(l|b)Bi(b|n), (3d)

where the sum covers every possible instances of b such that
lj � bj � nj for every j ∈ N . Thus, by slightly increasing
the computational effort, it is possible to incorporate site
percolation into the systematic method introduced in Ref. [36]
for bond percolation.

B. Arbitrary graphs

Our framework can also be used to predict the outcomes
of hybrid percolation on small arbitrary graphs. By small
arbitrary graphs, we mean graphs of finite size with a fixed
structure, in which edges may be directed and/or multiple, and
whose vertices may belong to types. We use the adjacency
matrix A, whose element Aij is the number of edges leaving
vertex i towards vertex j , to specify the structure. Figure 1(a)
depicts an example of such an arbitrary graph. In such graphs,
percolation corresponds to the random removal of edges
and vertices according to some given probabilities which
may depend on the type of the vertices involved. Predicting
the outcome of percolation then consists of predicting the
probability that a component of size l can be reached from
a given initial vertex in a graph of size n.

For Eqs. (3a)–(3d) to be applicable, we need to map
arbitrary graphs onto multitype random graphs. This mapping
is achieved by assigning to each vertex its own type (|N | equals
the number of vertices) and by setting the probabilities {pij } to
mimic the structure of the original arbitrary graph. To account
for the fact that more than one edge may exist between two
vertices in the original graph, we set pij = 1 − (1 − p̃ij )Aij ,
where p̃ij is the probability that an individual edge from vertex
i to vertex j remains after the random removal of edges in the
arbitrary graph. Note that p̃ij may depend on the original
types of vertices i and j in the graph [e.g., there are two types
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of vertices in Fig. 1(a)]. The same applies for the existence
probabilities of vertices (i.e., {ri} must be equal to {r̃i}). An
example is given in the caption of Fig. 1. Using this mapping,
Eqs. (3a)–(3d) offer a systematic procedure to compute the
outcomes of hybrid percolation on small arbitrary graphs.
Figure 1(b) compares the predictions of Eqs. (3a)–(3d) with the
results of numerical simulations for the arbitrary graph shown
in Fig. 1(a). As expected, a perfect agreement is observed.

III. PERCOLATION ON CORRELATED AND CLUSTERED
INFINITE RANDOM GRAPHS

We now turn our attention to the generalized version of the
CM briefly described in the Introduction. We provide a formal
definition of the model and analytically solve percolation for
this general ensemble of random graphs.

A. A stub matching scheme

The CM defines an ensemble of graphs that are random
in all respects except for the degree of their vertices (the
number of neighbors), which is prescribed by a given dis-
tribution {P (k)}k∈N. More precisely, to generate graphs of this
ensemble, we start with N vertices and assign a degree to each
one by drawing an integer from {P (k)}k∈N. We then build a
list of stubs (half edges) in which a vertex whose degree is k

appears k times. We shuffle the list and pair stubs according
to this randomized list to create edges. Up to corrections of
order O(N−1), this procedure uniformly samples the ensemble
of graphs with a given distribution whose second moment
is bounded [7]. Moreover, as any closed loop occurs with
a probability proportional to N−1, this procedure generates
graphs that are locally treelike in the limit N → ∞.

We generalize this scheme to account for types of vertices
and types of stubs. In our model, each of the N vertices
belongs to a type and we note N the set of vertex types,
as in the last section. We also note wi the fraction of vertices
whose type is i. As in the CM, vertices are assigned a number
of stubs, but now these stubs are identified with types as
well. We say that a vertex has kα stubs of type α, and we
note E the set of stub types. Unless specified otherwise,
greek and latin letters refer to types of edges and vertices,
respectively. The number of stubs of each type belonging to
a vertex of type i is prescribed by the joint degree distribu-
tion {Pi(k1, . . . ,k|E |)}k1,...,k|E |∈N ≡ {Pi(k)}k∈N|E | . Hence, when
generating graphs from this ensemble, each of the N vertices
is assigned a type according to {wi}i∈N and then assigned a
number of stubs of each type according to the corresponding
joint degree distribution.

To generate graphs from this sequence of vertices, we build
a list of stubs for each pair (α,i), where α ∈ E and i ∈ N .
For example, a vertex of type i that has kα stubs of type α

and kβ stubs of type β appears kα times in the list (α,i) and
kβ times in the list (β,i). Stubs are then randomly matched
according to a set of rules—noted R—to generate graphs.
The information encoded in these rules is twofold. On the one
hand, they prescribe from which lists should stubs be picked
during the matching step. Mathematically, this is encoded in
the distribution {R(n)}n∈N|E |×|N | , where n is a matrix whose
elements, nαi (for every α ∈ E and i ∈ N ), give the number of

stubs from each list involved in the edge (or hyperedge, if more
than two stubs are involved). The probability that a hyperedge
contains n stubs is then R(n).

On the other hand, the rulesR prescribe how the vertices are
connected to one another within the hyperedge. For example,
stubs from the list (α,i) and (α,j ) could be paired to create
undirected edges between layers i and j of multilayer graphs.
Similarly, stubs from the lists (β,i) and (γ,i) could be paired to
create directed edges between vertices of a same type (the two
types of stubs corresponding, respectively, to the in-degree and
out-degree). Moreover, three stubs from a same list could be
matched to create triangles, or m stubs of type ε stemming from
different types of vertices could be matched to form a multitype
Erdős-Rényi motif, where edges exist with probability p (see
Sec. II A). In fact, the hyperedges can take any imaginable
form and composition as long as they can be mapped onto
the multitype random graphs defined in Sec. II. Note that only
one stub is required to be part of an hyperedge, even if this
hyperedge contributes more than one to the degree of vertices.
For instance, if stubs of type � correspond to triangles, a vertex
with k� = 2 will belong to two triangles. An illustration of the
stub matching scheme is given in Fig. 2.

For this graph ensemble to be consistent, the distributions
{Pi(k)}k∈N|E | and {R(n)}n∈N|E |×|N | must obey certain constraints
in the limit N → ∞. Namely,

wi〈kα〉Pi

wj 〈kν〉Pj

= 〈nαi〉R
〈nνj 〉R (4)

for each i,j ∈ N and α,ν ∈ E , where 〈x〉Y represents the
average of x according to the distribution Y (x). These
constraints simply require that the ratio of the average number
of elements in each list (left) equals the relative proportion in
which pairs appear in hyperedges (right).

As for the CM, this stub matching scheme uniformly
samples—up to corrections of order O(N−1)—a maximally
random ensemble of graphs defined by the distributions
{wi}i∈N and {Pi(k)}i∈N ;k∈N|E | and by the rules R. Since stubs
are matched randomly, the graphs of that ensemble have an
underlying treelike structure in the limit N → ∞, except
within clustered hyperedges.

B. Probability generating functions

To solve percolation on this general ensemble of random
graphs, we adapt the well-known pgf approach [9,10] to
account for vertex and stub types. As mentioned above, this
approach assumes that the structure of the graphs is locally
treelike, an assumption that is not valid whenever a hyperedge
contains a loop (e.g., a triangle). However, by solving the
component size distribution on each hyperedge beforehand,
it is possible to consider that the hyperedge has an effective
treelike structure: The probability that there is an effective edge
from vertex A to vertex B is simply the probability that vertex
B can be reached from vertex A either directly or through the
other vertices in the hyperedge. Figures 3(a) and 3(b) illustrate
the idea behind the effective treelike structure. This slight
change of perspective allows the use of the pgf approach even
though the treelike structure assumption is not valid in the
original graph ensemble.
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FIG. 2. (Color online) Illustration of the stub matching scheme. (a) Vertices are attributed a type according to the distribution {wi}, and are
given a number of stubs of each type according to the distribution {Pi(k)}. There are N = 12 vertices, |N | = 3 types of vertices (four vertices
of type 1 in red, four vertices of type 2 in green, and four vertices of type 3 in blue), and |E | = 2 types of stubs (light blue and dark red). Stubs
are then randomly matched according to a set of rules, R, to create hyperedges. For example, a light blue stub and a dark red stub that both
stem from vertices of type 2 can be matched to create a directed edge, or three light blue stubs stemming from three vertices of types 1, 2, and
3 can be matched to create a triangle. More complex hyperedges are possible and can be handled by our mathematical approach. (b) Example
of a graph obtained with the stub matching scheme which can reproduce a great variety of nontrivial correlations and clustering patterns. In the
infinite-size limit (N → ∞), the resulting graphs have an underlying treelike structure: There are no closed paths other than within clustered
hyperedges.

The effective treelike structure of hyperedges is unveiled
with Eqs. (3), where a vertex is now identified by the pair
(α,i) instead of by its vertex type solely. In other words, we
keep track of the type of the vertices but also the type of
the stubs through which they are involved in the hyperedge.
As a result, bold variables like n and l now contain |E | × |N |
elements instead of the |N | elements as in Sec. II. The quantity
Qαi(l|n;R) therefore corresponds to the probability that a pair
(α,i) leads to l pairs—i.e., lνj pairs (ν,j ), for each ν ∈ E and
j ∈ N—in a hyperedge containing n pairs. A dependency on
the rules R has been added in Qαi(l|n;R) to explicitly mark
that the inner structure of the hyperedges (e.g., quenched or
random nature, probabilities of existence of vertices or edges)
is prescribed by these rules [39].

The pgf that generates the distribution of the number of pairs
that can be reached from an initial pair (α,i) in an hyperedge
containing n pairs is

n∑
l=δα◦δi

Qαi(l|n;R)
∏
ν∈E
j∈N

x
lνj −δανδij

νj , (5)

where the sum covers every possible instances of l such
that δμαδmi � lμm � nμm for every m ∈ N and μ ∈ E (“◦”
denotes the entrywise product). These two δ’s of Kronecker
account for the fact that there is at least one pair (α,i) in the
hyperedge. Similarly, the two others δ’s of Kronecker δανδij

appearing in Eq. (5) remove the initial pair—by definition
included in l—from the count of reachable pairs. Because we
are ultimately interested in the number of pairs that can be
reached from a given initial pair regardless of the specifics of
the hyperedge, we must remove the dependency of Eqs. (5)

on the composition n. To do so, we average this pgf over the
probabilities that the initial pair (α,i) belongs to a hyperedge
whose composition is n. Since stubs are matched randomly,
a vertex identified by the pair (α,i) is ten times more likely
to belong to an hyperedge containing ten pairs (α,i) than to
belong to an hyperedge that contains only one pair (α,i).
Consequently, the probabilities R(n) must be weighted by
the number of pairs (α,i) that each composition contains,
i.e., averaged over nαiR(n)/〈nαi〉R , where the normalizing
factor, 〈nαi〉R , is the average value of nαi with respect to
the distribution R(n). Doing so yields the pgf generating the
distribution of the number of pairs of each types that can be
reached from a pair (α,i),

θαi(x) =
∑

n

nαiR(n)

〈nαi〉R
n∑

l=δα◦δi

Qαi(l|n;R)
∏
ν∈E
j∈N

x
lνj −δανδij

νj ,

(6)

where the sum over n covers all hyperedge compositions such
that R(n) �= 0. Computed for each initial pair (α,i), θαi(x)
provides the projection of the outcomes of percolation on
the hyperedges onto an effective branching tree and therefore
permits the use of the pgf approach.

To solve percolation on the graphs defined in the previous
section, we first need to compute the distribution of the com-
position of the neighborhood of vertices. The neighborhood of
a vertex is the set of reachable vertices with which it shares
a hyperedge. In other words, vertex B is a neighbor of vertex
A if there exists an effective edge from vertex A to vertex B.
The pgf θαi(x) generates the distribution of neighbors that a
vertex of type i has through one of its stubs of type α. In the
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FIG. 3. (Color online) (a), (b) Effective treelike structure of an hyperedge from the point of view of a vertex of type 2 before and after
projection, respectively. There exists an effective edge between the initial vertex of type 2 and any vertices that are directly or indirectly
reachable from it. The probability for an effective edge to exist corresponds to the probability that a direct or indirect path exists. (c) Schematic
representation of the pgf fμi(x). Knowing that a vertex of type i has been reached from one of its stubs of type μ [i.e., a pair (μ,i)], this pgf
generates the distribution of the number of vertices of each type in its neighborhood, as well as the type of stubs from which they have been
reached. The types of the vertices and of the stubs are identified with the subscripts of the variables x = {xνi}.

limit N → ∞, the treelike structure of the graphs ensures that
the neighboring vertices reachable through two different stubs
do not overlap. Hence, the composition of the neighborhood
of a vertex of type i that has kα and kβ stubs of type α and
β is generated by [θαi(x)]kα · [θβi(x)]kβ , which corresponds
to the convolution of the distributions. Since the number of
stubs belonging to vertices of type i is distributed according to
{Pi(k)}k∈N|E | , we obtain that the distribution of the composition
of the neighborhood of vertices of type i is generated by

gi(x) =
∑

k

Pi(k)
∏
α∈E

[θαi(x)]kα , (7)

where the sum covers all cases where Pi(k) �= 0. As in
θαi(x), this pgf keeps track of the type of the stubs from
which the neighboring vertices have been reached through
the subscripts of the variables x = {xνj }ν∈E ;j∈N . In other
words, gi(x) generates the number of pairs that are in the
neighborhood of a vertex of type i. This pgf is analogous to
the function G0(x) generating the degree distribution in the
CM [7,9].

The complete solution to the percolation problem requires
the distribution of possible neighborhood compositions for
vertices reached through one of their stubs. As discussed for
θαi(x), the probability for a stub of type μ to be attached to
a vertex with a total of k stubs (i.e., kα stubs of type α for
every α ∈ E) is weighted by the number of stubs of type μ that
this vertex has. Hence, given that a vertex of type i has been
reached through one of its stubs of type μ [i.e., a pair (μ,i)],
the composition of the neighborhood accessible from its other
stubs is generated by

fμi(x) =
∑

k

kμPi(k)

〈kμ〉Pi

∏
α∈E

[θαi(x)]kα−δαμ , (8)

where δαμ has been added to exclude from the count the
stub of type μ from which the vertex has been reached and
where 〈kμ〉Pi

is the average number of stubs of type μ that
vertices of type i have. The distributions generated by fμi(x)
are analogous to the excess degree distribution generated by
G1(x) in the CM [7,9]. Figure 3(c) illustrates the information
encoded in the pgfs fμi(x).

C. Extensive “giant” component

Having defined the pgfs gi(x) and fμi(x), the behavior of
the extensive “giant” component can be predicted in the limit
N → ∞ using simple self-consistency arguments. We define
aμi as the probability that a vertex of type i reached via one
of its stubs of type μ does not lead to the giant component.
Self-consistency then requires that if this pair does not lead
to the giant component, then neither should the pairs that are
reachable from it. Since the distribution of the number of pairs
reachable from a given pair (μ,i) is generated by Eq. (8), this
self-consistency requirement can be rewritten as

aμi = fμi(a) (9)

for every μ ∈ E and i ∈ N . Because the coefficients of fμi(x)
are normalized (they form a probability distribution), the point
a = 1 (every aμi equals 1) is always a solution of Eqs. (9).
However, as the density of edges and/or vertices increases
with increasing {rj }j∈N and/or {pjk}j,k∈N , another solution
where at least one element of a is smaller than 1 appears. This
new solution marks the emergence of an extensive component.

Because their coefficients are all positives, the pgfs fμi(x)
are all convex and monotonic increasing in [0,1]|E |×|N |. Hence,
when a = 1 is the only solution of Eqs. (9) in [0,1]|E |×|N |, it
is the stable fixed point of (with n ∈ N),

a(n+1) = f (a(n)), (10)

for any initial condition a(0) in [0,1]|E |×|N |, and where
the map f (x) consists of every fμi(x). This fixed point
becomes unstable through a transcritical bifurcation as soon as
another solution in [0,1]|E |×|N | appears. The shape of f (x) in
[0,1]|E |×|N | and the fact that f (1) = 1 implies that this other
solution is unique in the interval of interest, that it is a stable
fixed point of Eq. (10), and that the transition is continuous.
Analyzing the stability of f (x) around the fixed point a = 1
leads to the criterion for the emergence of the giant component

det(J − I) = 0, (11)

where J is the Jacobian matrix of f (x) around x = 1, and I
is the identity matrix. Put differently, an extensive component
exists whenever the largest eigenvalue of J, λmax(J), is greater
than one.

Having solved Eqs. (9), the probability that a vertex of
type i leads to the giant component through at least one of
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its neighbors is given by Pi = 1 − gi(a). Consequently, the
probability that a randomly chosen vertex does lead to the
giant component is

P =
∑
i∈N

riwiPi∑
j∈N rjwj

= 1 −
∑
i∈N

riwigi(a)∑
j∈N rjwj

, (12)

where ri is the probability that a vertex of type i exists.
As shown in Sec. II, hyperedges may include directed

edges, or edges that are more likely to exist in one direction
than the other [i.e., pij �= pji in Eq. (3a)]. This implies that
while vertex B is in the neighborhood of vertex A, vertex
A may not be in the neighborhood of vertex B. From such
local asymmetries, a global asymmetry arises between the
probability that a vertex leads to the giant component, P ,
and the relative size S of the giant component. In such case,
the extensive component has a “bow-tie” structure [11,40],
meaning that the vertices involved in the extensive component
belong to one of the three nonoverlapping sets I in, Iboth,
and Iout. The set I in includes vertices that lead to the giant
component but that cannot be reached from it; these vertices
are somehow “hidden” behind directed edges. The set Iout

contains vertices that cannot lead to the giant component but
that can be reached from it; they are positioned downstream of
directed edges. The set Iboth contains vertices that lead to the
giant component and that can be reached from it. From this,
we conclude P = |I in ⋃

Iboth|/N and S = |Iboth ⋃
Iout|/N .

This perspective offers a direct and intuitive way to calculate
S: It is the probability that a vertex does not lead to the
extensive component when the direction of every edges is
reversed. This edge reversal is fully encoded in Q̄αi(l|n;R)
computed with Eqs. (3) with incoming directed edges swapped
into outgoing ones (and vice versa) and with edges that were
more likely to exist in a given direction now more likely to exist
in the opposite direction (i.e., pij becomes pji). From these
probabilities, we define the pgfs θ̄αi(x), ḡi(x), and f̄μi(x),
which are analogous to the ones previously defined [Pi(k) and
R(n) remain unchanged]. Defining āμi as the probability that
a vertex of type i reached by one of its stubs of type μ does not
lead to the giant component in the reversed graph ensemble,
self-consistency now requires

āμi = f̄μi(ā) (13)

for every μ ∈ E and i ∈ N . As for Eqs. (9), the solution
of this set of equations corresponds to the fixed point of
the corresponding map and can therefore be obtained by
successive iterations of any initial condition in [0,1]|E |×|N |.
The elements of the Jacobian matrix of both Eqs. (9) and (13)
are the average number of pairs, say (α,j ), that are in the
neighborhood of a pair, say (μ,i), in their respective graph
ensemble. Since Eqs. (9) and (13) correspond to different
perspectives of the same graph ensemble, the transcritical
bifurcation occurs simultaneously in both systems [41].

Having obtained ā from Eqs. (13), the probability for
a vertex of type i to be part of the giant component is
Si = 1 − ḡi(ā), and the relative size of the giant component is

S =
∑
i∈N

riwiSi∑
j∈N rjwj

= 1 −
∑
i∈N

riwiḡi(ā)∑
j∈N rjwj

. (14)

Clearly, when all hyperedges are symmetric (i.e., pij = pji

for every i,j ∈ N ), there is no global asymmetry in the graph
ensemble, and P = S. Also, whenever Eqs. (5)–(14) are used
in the context of site percolation—where vertices exist or are
activated with a given set of probabilities—the value of P
and S is relative to the number of vertices that exist. In other
words, P is the probability that an existing vertex leads to an
extensive component, and S is the probability that an existing
vertex is part of it.

D. Small components

Substituting xνj by zj for every j ∈ N and ν ∈ E in Eq. (7)
yields a pgf that generates the number of vertices of each type
that are directly accessible from a vertex of type i (i.e., vertices
that are in its neighborhood). In other words, the information
concerning the types of stubs is lost. Using self-consistency
arguments similar to the one used in the previous section, it is
possible to obtain a pgf that generates the distribution of the
number of vertices of each type that will be eventually reached
from a vertex of type i; the reach of this new pgf is no longer
limited to the immediate neighborhood. In fact, this new pgf
makes it possible to investigate the composition and the sizes
of the components that contain a finite number of vertices. Let
this new pgf be denoted K(z).

To compute K(z), we first consider the pgf Aαi(x) that
generates the distribution of the number of all pairs of each
type that will eventually be reached (i.e., not limited to the first
neighbors) from a vertex of type i given that this vertex has
been reached from one of its stubs of type α. In other words,
this function generates the distribution of the number of the
vertices that are eventually reached from a pair (α,i). Note that
Aαi(x) is a function of x so that it keeps track of the type of
the stubs from which each vertex has been reached. Besides
yielding a treelike structure, the stub matching scheme used
to generate graphs implies that the pgfs {fμi(x)} are invariant
under translations on the graphs in the limit N → ∞. In other
words, while navigating on a graph from this ensemble, the
number and the type of the vertices downstream from any given
vertex does not depend on the types of the vertices (or the types
of the stubs) previously encountered; navigating on graphs
from this ensemble is a stationary Markov process (i.e., it only
depends on the current position on the graph). Consequently, a
vertex of type i reached from one of its stubs of type α and a pair
(α,i) present in its neighborhood should both lead to a finite
tree whose size and composition are identically distributed;
this distribution is generated by Aαi(x). Considering every
combination (α,i), this self-consistency requirement can be
mathematically formulated as

Aαi(x) = xαifαi[A(x)], (15)

where the extra xαi accounts for the vertex of type i that has
been reached through one of its stubs of type α. Analogously
to the set of probabilities {aαi}, the pgfs {Aαi(x)} are the fixed
point of (with n ∈ N)

A(n+1)(x) = x ◦ f [A(n)(x)], (16)

where “◦” denotes the entrywise product and f (x) is the same
map as in Eq. (10). It is, in fact, straightforward to show that
the extra x guarantees that the distributions generated by A(x)

062807-7
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can be obtained for components of n vertices or less in n + 1
iterations of Eq. (16) from the initial condition A(0)(x) = 1
[i.e., A

(0)
αi (x) = 1 for every i ∈ N and α ∈ E].

Having obtained A(x) up to a sufficient size of components,
n, the number of vertices of each type that can be reached in
a finite component from a randomly chosen vertex of type i

is generated by Ki(z) ≡ zigi[A(z)]. The pgf generating the
number of vertices of each type that are accessible in a small
component from a randomly chosen (existing) vertex is

K(z) =
∑
i∈N

riwiKi(z)∑
j∈N rjwj

=
∑
i∈N

riwizigi[A(z)]∑
j∈N rjwj

. (17)

It is worth mentioning that the distributions generated by K(z)
and {Aαi(z)} are not normalized in the presence of an extensive
component as there is a nonzero probability that a pair (α,i)
leads to the giant component. In fact, comparing Eqs. (10)
and (16) leads to the conclusion that Aαi(1) = aαi and that
K(1) = 1 − P .

IV. SPECIAL CASES AND APPLICATIONS

To demonstrate the versatility and the flexibility of the
formalism, we present a series of representative examples. This
will also clarify the conceptual and numerical steps necessary
to implement such a general approach.

A. Semidirected random graphs

Semidirected random graphs are composed of indistin-
guishable vertices connected via undirected and directed
edges. They were used in Ref. [20] to study the impact of
nonreciprocal connections in contact networks on the propa-
gation of an emerging infectious disease. These nonreciprocal
connections accounted for the susceptibility of health-care
workers to get infected from infectious individuals seeking
treatments in hospitals. Semidirected is also a good first
example for it has the well-known undirected graphs and
directed graphs as special cases.

Every vertex in these graphs belongs to the same type
(|N | = 1, type 1, w1=1), and there are |E | = 3 types of
stubs: Stubs of type A are paired together to form undirected
edges, and stubs of types B (outgoing) and C (incoming) are
paired to form a directed edge. The joint degree distribu-
tion P1(k) = P1(kA,kB,kC) corresponds to the distribution of
undirected degree, out-degree and in-degree. In this scenario,
the conditions given by Eq. (4) imply that there must be as
much incoming stubs as there are outgoing stubs, 〈kB〉P1 =
〈kC〉P1 , and they fix the values of R(n) = R(nA1,nB1,nC1)
in terms of the average degrees, R(2,0,0) = 1 − R(0,1,1) =
〈kA〉P1/(〈kA〉P1 + 2〈kB〉P1 ). Assuming that edges exist with
probability p11 and vertices exist with probability r1, we find
from Eqs. (3) and (6)

θA1(x) = (1 − r1p11) + r1p11xA1, (18a)

θB1(x) = (1 − r1p11) + r1p11xC1, (18b)

θC1(x) = 1, (18c)

from which we define the pgfs g1(x), fA1(x), and fC1(x)
from Eqs. (7) and (8). Note that fB1(x) does not exist as
vertices cannot be reached by an outgoing stub. Similarly,

when reversing the direction of edges (directed edges now run
from C stubs to B stubs), we obtain

θ̄A1(x) = (1 − r1p11) + r1p11xA1, (19a)

θ̄B1(x) = 1, (19b)

θ̄C1(x) = (1 − r1p11) + r1p11xB1, (19c)

which yield the pgfs ḡ1(x), f̄A1(x), and f̄B1(x) [f̄C1(x) is
nondefined]. Using Eqs. (18) and (19) in Eqs. (7)–(17) with
r1 = 1 yields the results obtained in Ref. [20] and the ones
obtained for purely directed [9] or purely undirected random
graphs [42] in the appropriate limits.

B. Correlated random graphs

Other interesting special cases of our model are correlated
random graphs: Graphs where vertices are more likely to be
connected with vertices having specific intrinsic properties
(e.g., degree, centrality, ethnicity, age group, gender). In such
cases, there are |N | types of vertices, one for each intrinsic
property, and there are as many types of stubs: Each type
of stub corresponds to the type of the vertex that is at the
other end of the edge. To simplify the notation, types of stubs
will be identified by the type of the vertex toward which they
point (i.e., E = N ). Hence, the joint degree distribution Pi(k)
prescribes the number of vertices of each type that vertices of
type i are connected to. The conditions (4) ask that there are as
many stubs stemming from vertices of type i toward vertices of
type j as in the reverse direction, wi〈kj 〉Pi

= wj 〈ki〉Pj
. These

constraints also prescribe the distribution

R(n) = 1

R′
∑

i,j∈N
(1 − δ0,nji

)wi〈kj 〉Pi
, (20)

where R′ = ∑
i ′,j ′∈N wi ′ 〈kj ′ 〉Pj ′ is simply the normalization

factor. Assuming that vertices of type i exist with probability
ri and that edges going from a vertex of type i to a vertex
of type j exist with probability pij (i.e., edges may be more
likely to exist in one direction than in the other), we get from
Eqs. (3) and (6)

θji(x) = (1 − rjpij ) + rjpij xij , (21a)

θ̄j i(x) = (1 − rjpji) + rjpjixij , (21b)

for i,j ∈ N . Using Eqs. (21) in Eqs. (7)–(17) and setting every
ri = 1 yields the results obtained in Ref. [11] for multitype
graphs, which are themselves a generalization of several other
formalisms [9,23,42]. We have also used this approach in
Ref. [3] to study the observability of random graphs and in
Ref. [16] to define an ensemble of graphs with an arbitrary
k-core structure.

C. Degree-correlated random graphs

An important category of correlations is the one based on
the degree of vertices [22,30]. These correlations are encoded
in the conditional probability P (d ′|d) corresponding to the
probability that the neighbor of a vertex with a degree d has a
degree equal to d ′. This can be reproduced with our formalism
by considering that every vertex with the same degree are of
the same type (i.e., a vertex of type i has i neighbors, and,
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consequently, {wi} corresponds to the degree distribution) and
by using the type-specific joint degree distribution

Pi(k) = i!∏
j ′∈N kj ′!

∏
j∈N

[P (j |i)]kj . (22)

From Eq. (7), we obtain

gi(x) =
⎡
⎣∑

j∈N
P (j |i)θji(x)

⎤
⎦

i

, (23)

where θji(x) is given by Eq. (21a), and Eq. (8) yields

fli(x) =
⎡
⎣∑

j∈N
P (j |i)θji(x)

⎤
⎦

i−1

, (24)

which is independent of the type of the vertex/stub, namely
l, from which the vertex has been reached. This is a direct
consequence of the multinomial distribution in Eq. (22) and
shows that our approach, through the joint distribution Pi(k),
can include more detailed correlations in the degree of the
neighbors of vertices.

It may be useful at this point to illustrate the precise
connection with previous works. Consider the quantity ui ≡∑

j∈N P (j |i)[(1 − rjpji) + rjpji āij ], which under succes-
sive application of Eqs. (13), (21b), and (24) becomes the
self-consistent expression

ui =
∑
j∈N

P (j |i)[(1 − rjpji) + rjpjiu
j−1
j

]
(25)

for every i ∈ N . Setting every rjpji =1−f , with 0 � f � 1,
in this last equation yields Eqs. (5) and (13) of Ref. [30],
while Eq. (8) of Ref. [22] is obtained by setting rjpji = 1.
Similarly, replacing P (j |i) with jwj/

∑
l∈N lwl and assuming

every ui = u in Eq. (25) yields the results of Ref. [8]. More
precisely, setting every pji = 1 makes it possible to retrieve
their Eq. (15), and their Eq. (8) is obtained by setting every
rjpji = qsqb, with 0 � qs,qb � 1. Expressions for the size
of the extensive component derived in Refs. [8,22,30] can be
obtained from our formalism similarly.

D. Clustered random graphs

We now show how many variants of the CM containing
clustered hyperedges (i.e., hyperedges that contain loops) are
special cases of the approach presented in this paper.

Since the clustering property is related to the number
of triangles found in graphs—hence capturing the idea that
the friend of my friend is also my friend—it is natural to
introduce clustering in graphs through the use of triangles
(i.e., three vertices all connected together) [21,25,27]. The
simplest clustered graph ensemble then has |N | = 1 types of
vertices (type 1, w1 = 1) and |E | = 2 types of stubs: Two
stubs of type A are paired to form undirected edges and three
stubs of type B are matched to create triangles. Note that only
one stub of type B is required to belong to a triangle even
though its contribution amounts to two to the degree of the
vertex; stubs can be seen as a membership to a hyperedge.
The constraints given by Eq. (4) de facto set the values of
R(n) = R(nA1,nB1) since R(2,0) = 1 − R(0,3) = 3〈kA〉P1/

(3〈kA〉P1 + 2〈kB〉P1 ). Assuming that vertices and edges exist
with probabilities r1 and p11, we obtain from Eqs. (3) and (6)

θA1(x) = (1 − r1p11) + r1p11xA1, (26a)

θB1(x) = (1 − r1p11)2 + 2r1p11[1 − r1p11(2 − p11)]xB1

+ r2
1 p2

11[3 − 2p11]x2
B1. (26b)

Using these two functions in Eqs. (7)—(17) leads directly
to the results obtained in Refs. [21,25,28]. Similarly, the results
of Ref. [13] can be obtained with three types of vertices, N =
{1,2,3}, and one type of stubs, E = {A}, where all hyperedges
are triangles containing one vertex of each type [R(1,1,1) = 1
and θAi(x) = xA1xA2xA3/xAi].

Besides triangles, clustering—or any digression from a
perfect treelike structure—has been introduced in random
graphs through the inclusion of various categories of hyper-
edges that involve more than three vertices. For instance,
in Ref. [14,15,24] clustering is incorporated through fully
connected hyperedges, or cliques, where vertices or edges
exist with given probabilities (i.e., Erdős-Rényi graphs). In all
cases, there is only one type of vertex. We retrieve the model
of Ref. [24] by using one type of stubs; P1(kA) prescribes
the number of cliques to which vertices belong, and R(nA1)
prescribes the size of cliques (respectively the distributions rm

and sn in Ref. [24]). In the model considered in Refs. [14,15],
vertices belong to only one clique, but can have many single
edges. Since the number of single edges and the size of the
clique can be correlated in the original model, there is one type
of stub for each clique size and an additional type for single
edges; cliques of size m are formed by matching m stubs of
the type assigned to cliques of size m. Hence, the structure
of the graphs is fully prescribed by P1(k) whose argument
indicates the number of single edges and the size of the clique.
The constraints (4) then yield

R(n) = 1

R′′
∑
β∈E

(
1 − δ0,nβ1

) 〈kβ〉P1

nβ1
, (27)

where R′′ = ∑
β∈E 〈kβ〉P1/nβ1 is the normalization constant.

Using these distributions and quantities, our model reproduces
the ones presented in Refs. [14,15]. Also, we have used a
version of our model that is similar to the one introduced
in Ref. [15] to uncover a transition in the effectiveness of
immunization strategies [5].

Finally, two of the most versatile models published to
date are also special cases of our model. Reference [10] is a
previous version of the model presented in this paper. The two
main differences are that the previous version did not handle
site percolation, and that only stubs of same type could be
matched to create hyperedges (e.g., forbidding directed edge
between vertices of a same type). The model introduced in
Ref. [17] can be retrieved from our model with one type of
vertex (|N | = 1) and with one type of stubs for each role that
a vertex can play in hyperedges. However, this approach lacks
the systematic method offered by Eqs. (3) to solve percolation
on each hyperedge beforehand, thereby limiting the number
of hyperedges that can effectively be handled analytically.
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E. Weak and strong clustering regimes

We now use our model to test a conjecture regarding
the effect of clustering (e.g., triangles) on bond percolation.
References [27,43] proposed that clustering has opposite
effects on the bond percolation threshold depending of the
density of triangles in a graph. This density is measured
through the degree dependent clustering coefficient c̄(k): The
probability that two neighbors of a vertex of degree k are also
neighbors (i.e., they complete the triangle). The conjecture
states that the weak clustering regime c̄(k) < (1 − k)−1 leads to
a higher percolation threshold than in an equivalent unclustered
graph. Contrariwise, strong clustering, defined as c̄(k) >

(1 − k)−1, leads to a lower percolation threshold than in an
equivalent unclustered graph.

Let us consider the following graph ensemble in which
there are two types of vertices N = {1,2} and three types of
edges E = {A,B,C}. Every vertex of type 1 has one stub of
type A and one stub of type B, while each vertex of type 2
has one stub of type B and one stub of type C. In other words,
we set Pi(k) = Pi(kA,kB,kC) as P1(1,1,0) = P2(0,1,1) = 1.0.
Hyperedges are formed by matching either four stubs of
type A, four stubs of type B (two stemming from vertices
of type 1 and two from vertices of type 2), or eight stubs
of type C; vertices are all connected to one another in
every hyperedge. The constraints given by Eq. (4) imply
that w1 = w2 and that R(n) = R(nA1,nB1,nC1,nA2,nB2,nC2)
follows the relation 2R(4,0,0,0,0,0) = R(0,2,0,0,2,0) =
4R(0,0,0,0,0,8) = 4/7. Vertices of type 1 all have a degree
equal to 6, and vertices of type 2 all have a degree equal to 10.
Consequently, we see that c̄(6) = 6

15 > 1
5 and c̄(10) = 24

45 > 1
9 ,

which implies that this graph ensemble qualifies for the strong
regime.

To isolate the effect of clustering on bond percolation, we
compare the results obtained for the graph ensemble described
above with the ones obtained with an equivalent unclustered
version [21]. This equivalent graph ensemble possesses iden-
tical correlations, but hyperedges are broken into individual
independent edges instead (e.g., each vertex in an hyperedge
containing n vertices now have n − 1 independent edges). The
behavior of its giant component is obtained as in Sec. IV B
with P1(4,2,0) = P2(0,2,8) = 1.

Figure 4 compares the behavior of the giant component in
both ensembles when edges exist with probability p11. We
conclude that although the clustered graph ensemble qualifies
for the strong regime, the behavior observed is the one of
the weak regime: Higher percolation threshold than for the
equivalent unclustered graph. This behavior can be understood
in terms of branching factors. The unclustered graphs have a
treelike structure and therefore maximize the number of new
vertices encountered while navigating the graph: Every edge
leads to a new vertex. The redundancy caused by clustering
means that not all edges lead to a new vertex in the clustered
graphs, which reduces the average number of vertices that can
be reached from any given vertex. Hence, a larger number of
edges must be present for a giant component to appear (e.g.,
larger threshold) since many edges will be wasted by leading
to vertices previously reached.

This counterexample suggests that the criterion on c̄(k)
could be a necessary condition for a strong clustering regime
but that it is not a sufficient one. The explanation in terms

0.1 0.2 0.3 0.4
p11
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0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

S

unclust.
clust.

FIG. 4. (Color online) Comparison of the emergence of the giant
component in a clustered graph ensemble that qualifies for the strong
clustering regime with its unclustered counterpart. We see that the
latter has a lower percolation threshold. Details on the graphs used
are given in Sec. IV E.

of branching factors alongside the results in Refs. [21,44,45]
point toward the conclusion that the effect of clustering on
random graphs with an underlying treelike structure is best
described by the weak clustering regime. Indeed, Ref. [46]
has recently shown that strong clustering may induce a double
continuous phase transition which conciliates the conjectured
antagonistic effects of weak and strong clustering and whose
effects are in line with our conclusion.

F. Bijection between site and bond percolation thresholds

From Eqs. (8), we see that the elements of the Jacobian
matrix J used to determine the point at which the giant
component appears have the general form

∂fμi(1)

∂xνj

=
∑
α∈E

〈kμ(kα − δμα)〉Pi

〈kμ〉Pi

∂θαi(1)

∂xνj

(28)

for every i,j ∈ N and μ,ν ∈ E . These terms are, in fact,
branching factors: Each element is the average number of pairs
(ν,j ) that are present in the neighborhood of a pair (μ,i). More
precisely, the first term corresponds to the average number of
stubs of type α that a vertex of type i has if it has been reached
from one of its stubs of type μ (this stub is excluded from the
count if α = μ). The second term is the average number of
pairs (ν,j ) that can be reached in hyperedges accessed via a
stub of type α of a vertex of type i. The value of these latter
terms depends on the structure of hyperedges (i.e., rules R)
and on the probabilities for vertices and edges to exist (i.e.,
{rj }j∈N and {pjk}j,k∈N ).

Let us assume that all hyperedges have the same structure;
vertices of different types may be involved in a nontrivial
manner as long as all hyperedges have the same shape (e.g.,
they all are triangles). We also suppose that vertices and edges
exist with probabilities that are independent of their type, that is
ri = r and pij = p for all i,j ∈ N . In such case, every nonzero
element of the Jacobian matrix, ∂θiα (1)

∂xνj
, is a polynomial in r and

p, h(r,p), and is independent of i, j , α, and ν. Consequently,
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the dependency in r and p can be factored out of the Jacobian
matrix

J = h(r,p)J′. (29)

Since the giant component appears when λmax(J) =
h(r,p)λmax(J′) = 1, the points (r ′,p′) at which the phase
transition occurs all belong to the critical surface

h(r ′,p′) = 1

λmax(J′)
. (30)

Whenever the Jacobian matrix can be written like in Eq. (29),
any given point (r1,p1) at which a graph ensemble is known
to percolate can be related to any other critical point (r2,p2)
through h(r1,p1) = h(r2,p2). For instance, this relation leads
to a direct bijection between the thresholds of pure site
percolation (rc,1) and pure bond percolation (1,pc) through
h(rc,1) = h(1,pc). Additionally, h(r,p) = rp for unclustered
correlated random graphs, and the fact that r and p only appear
as rp in Eqs. (21) implies that site and bond percolation are
equivalent for this random graph ensemble.

V. INTERDEPENDENT RANDOM GRAPHS

In this last section, we briefly show how our approach can be
adapted to model interdependent graphs through a redefinition
of Eqs. (9)–(14) and use the resulting formalism to investigate
the emergence of an extensive component on interdependent
clustered random graphs.

To lighten the description, we consider the case of two
interdependent graphs, graph A and graph B, without loss of
generality (guidelines for a straightforward generalization to
an arbitrary number of graphs are given in Ref. [47]). We
assume that every edge in each graph is undirected such that
there is no global asymmetry: The probability that a randomly
chosen vertex leads to the extensive component is equal to
the relative size of the extensive component (i.e., P = S).
Furthermore, we consider that the pgfs gi(x) and fμi(x) and
all other related quantities defined in the previous sections
(i.e., {wi}, R, N , {ri}, ...) are known for both graphs and are
identified with the superscript A or B. Both graphs contain the
same number of vertices which tends to infinity: NA = NB =
N → ∞.

The change in the nature of the transition (i.e., from
continuous to discontinuous) originates from the existence
of dependencies between vertices of the two graphs. Again,
to lighten the description, we consider the case in which
each vertex has either one twin vertex on which it depends
or none. To specify the dependencies between vertices, we
define qAB

iv as the probability that a vertex of type i in graph
A has a twin vertex of type v in graph B. Note that allowing
graphs to be partially dependent—not all vertices have a twin
vertex—implies that∑

v∈N B

qAB
iv ≡ 1 − q̄AB

i � 1, (31)

for each i ∈ NA, and where the sum is over the types of the
vertices in graph B. Therefore, a fraction q̄AB

i of the vertices
of type i in graph A do not have a twin vertex in graph B. A
similar set of probabilities, {qBA

ju }j,u with j ∈ N B and u ∈ NA,
is defined to specify the dependencies of vertices in graph B.

Moreover, we add the constraint that the dependency between
two vertices must be reciprocal unless a vertex’s twin has no
dependency whatsoever. In other words, if vertex nA in graph A
depends on vertex nB in graph B, then either vertex nB depends
on vertex nA as well or it depends on no vertex at all. In the latter
case, vertex nA is the only vertex in graph A that can depend on
vertex nB . This constrains the two probability sets, {qAB

iv }i,v and
{qBA

ju }j,u, as there must be enough “independent” vertices in
graph A (graph B) to account for the vertices in graph B (graph
A) whose dependency is not reciprocal. Mathematically, these
conditions can be written as∑
i∈NA

max
{
NAwA

i qAB
iv − NBwB

v qBA
vi ,0

}
� NBwB

v q̄BA
v (32)

for each u ∈ NA and v ∈ N B . A similar expression in which
the superscripts A and B are swapped must also hold. In the
expression above, NAwA

i qAB
iv corresponds to the number of

vertices of type i in graph A that depend on a vertex of type v

in graph B, and NBwB
v q̄BA

v is the number of vertices of type v

in graph B that have no dependency.
A discontinuous phase transition is associated with the

emergence of an extensive functional component: An extensive
component composed solely of vertices with no dependency
or whose twin vertex is part of the extensive functional
component in its respective graph. To compute the size of
the extensive functional component, we define aA

μi as the
probability that a vertex of type i reached from one of its stubs
of type μ in graph A does not lead to the functional extensive
component in graph A. Similar probabilities are defined for the
other types of vertices and stubs in graph A and in graph B.
Following the locally treelike structure argument of Sec. III C,
we now derive a set of self-consistent equations similar to
Eqs. (9) for these probabilities.

Let us consider the case of a vertex of type i in graph
A reached via one of its stubs of type μ. By definition, this
vertex belongs to the extensive functional component in graph
A with probability 1 − aA

μi . Only two scenarios can lead to
this situation. The first one consists of the vertex being part of
the extensive functional component in graph A and having no
twin vertex. This happens with probability [1 − f A

μi(a
A)]q̄AB

i .
The second scenario consists of the vertex being part of the
extensive functional component in graph A and having a twin
vertex that is part of the extensive functional component in its
own graph. This scenario happens with probability[

1 − f A
μi(a

A)
] ∑

v∈N B

qAB
iv rB

v

[
1 − gB

v (aB)
]
, (33)

where qAB
iv is the probability that the twin vertex is of type

v, rB
v is the probability that it exists (i.e., it has not been

removed), and 1 − gB
v (aB) is the probability that it belongs

to the extensive functional component in graph B. Summing
these two scenarios yields

aA
μi = 1 − [

1 − f A
μi(a

A)
]{

q̄AB
i +

∑
v∈N B

qAB
iv rB

v

[
1 − gB

v (aB)
]}

,

(34)

which must hold for every i ∈ NA and μ ∈ EA, as well as for
graph B (i.e., simply swap the superscripts A and B in the
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last expression). Having solved Eqs. (34) for the probabilities
a A ≡ {aA

μi} and aB ≡ {aB
νj }, the probability that a randomly

chosen vertex of type i in graph A belongs to the functional
component is

SA
i = [

1 − gA
i (a A)

]{
q̄AB

i +
∑

v∈N B

qAB
iv rB

v

[
1 − gB

v (aB)
]}

,

(35)

which is similar to the calculation of Si in Sec. III C, but in
this case the probability that a vertex of type i belongs to
the functional extensive component, 1 − gA

i (a A), is weighted
by the probability that its twin vertex, if any, belongs to the
extensive functional component as well. Averaging over the
fraction of existing vertices of each type (e.g., a fraction rA

i wA
i

of vertices in graph A corresponds to vertices of type i that have
not been removed), we finally obtain the size of the extensive
functional component in graph A,

SA =
∑
i∈NA

rA
i wA

i∑
j∈NA rA

j wA
j

SA
i . (36)

Similar equations for vertices in graph B are obtained by
swapping the superscripts A and B in the last two expressions.
As for the quantities P and S defined previously, the fraction
SA (and SB) is relative to the number of existing vertices (i.e.,
vertices that have not been removed). Note also that Eqs. (9) are
retrieved from Eqs. (34) if there are no dependencies. However,
contrariwise to Eqs. (9) and Eqs. (13), the right-hand side of
Eqs. (34) does not necessarily correspond to monotonously
increasing functions (some coefficients in the polynomials
are negative). This implies that, although the point a A ⊕
aB = 1 is still a solution, another solution in the hypercube
[0,1]|N

A|×|EA|+|N B |×|EB | corresponding to the presence of an
extensive functional component may not appear continuously
from a A ⊕ aB = 1 through a transcritical bifurcation as in
Sec. III C. Hence, the values of SA and SB jump abruptly
from zero to a finite value in [0,1] which corresponds to a
discontinuous phase transition.

To illustrate this behavior, we investigate the emergence
of extensive components on interdependent clustered random
graphs. To do so, we consider the edge-triangle clustered
graph ensemble presented in Sec. IV D with the joint de-
gree distribution P1(0,3) = P1(2,1) = 2P1(2,0) = 4/10 and
p11 = 1.0. Notice that this joint degree distribution forces
assortative mixing since high and low degree vertices tend
to be segregated. The size of the extensive component in this
isolated random graph ensemble is given as a function of the
vertex existence probability r1 in Fig. 5 (black curve labeled
S(c,i)).

To illustrate the impact of interdependence on the phase
transition, we consider the case of two identical partially
dependent edge-triangle clustered graphs with qAB

11 = 0.6 and
qBA

11 = 1.0. In other words, only 60% of the vertices in graph
A depend on a vertex in graph B, whereas every vertex
in graph B has a twin vertex. The green curves labeled
SA

(c,d) and SB
(c,d) in Fig. 5 show the size of the extensive

functional component in graph A and graph B as a function
of r1. We see that the extensive functional components indeed
emerge through a discontinuous phase transition, unlike the

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
r1
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0.6

0.7

0.8
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0.5 0.8
r1

0.0
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(u,d)

S̃(u,i)

FIG. 5. (Color online) Comparison of the size of the extensive
(functional) components as a function of the vertex existence
probability r1 in four related graph ensembles. The details of each
graph ensemble are given in the main text of Sec. V. The curves
S(c,i) and S(u,i) were obtained with Eq. (14) and the curves SA

(c,d),
SB

(c,d), SA
(u,d), and SB

(u,d) were obtained with Eq. (36). Symbols show
the results of numerical simulations on these graph ensembles with
N = 106 vertices. (Inset) Comparison between the curve SA

(u,d) and
the curveS(u,i) rescaled according to S̃(u,i)[r1] = q̄AB

1 S(u,i)[r1q̄
AB
1 ] (the

dependence to r1 in shown in brackets).

extensive component in the isolated clustered graphs that
emerges continuously. We also see that the extensive functional
component in graph A is always bigger than the one on
graph B since vertices with no dependency are more likely
to be in the extensive functional component than vertices
with a dependency. Indeed, a vertex in graph A that has no
dependency belongs to the extensive functional component
with probability [1 − gA

1 (a A)], which is clearly greater than
[1 − gA

1 (a A)]rB
1 [1 − gB

1 (aB)] for a vertex with a dependency
since 0 � rB

1 [1 − gB
1 (aB)] � 1 (the second equality holds only

when there is no extensive component and rB
1 = 1). Figure 5

also shows that the size of the extensive functional component
in the interdependent graphs is bounded by the size of the giant
component in the corresponding isolated graphs. Again, this is
expected since being part of the extensive component is a sine
qua non condition for being part of the extensive functional
component.

As in Sec. IV E, we consider the unclustered version of
the edge-triangle random graph ensemble—in which triangles
are broken into two independent single edges—to isolate the
impact of clustering. In order to preserve the correlations
present in the clustered dependent graph ensemble, two types
of stubs are used to distinguish the original single edges from
the single edges due to the broken triangles. As expected,
the extensive component in this isolated unclustered graph
ensemble appears at a lower value of r1 (red curve labeled
S(u,i) in Fig. 5) than for the isolated clustered random graph
ensemble (see Sec. IV E). The same conclusion holds for the
extensive functional component in the unclustered version
of the two partially dependent graphs described in the last
paragraph (blue curves labeled SA

(u,d) and SB
(u,d) in Fig. 5).

Comparing the size of the extensive functional component in

062807-12



GENERAL AND EXACT APPROACH TO PERCOLATION ON . . . PHYSICAL REVIEW E 92, 062807 (2015)

the clustered and unclustered versions of these interdependent
graphs also suggests that clustering increases the jump size at
the transition.

One interesting observation from Fig. 5 is that graph
A in the interdependent unclustered graph ensemble (curve
labeledSA

(u,d)) successively undergoes two phase transitions: A
continuous then a discontinuous one. While the discontinuous
transition is caused by the interdependency with graph B, the
continuous one is due to the fact that the 40% of vertices
in graph A that have no dependency are able to form an
extensive component before the discontinuous phase transition
occurs. From Fig. 5, we see that the continuous phase
transition happens at r1  0.23 in the isolated unclustered
graph ensemble, while the phase transitions occur at r1 
0.58 (continuous) and at r1  0.68 (discontinuous) in the
interdependent unclustered graph ensemble. Below r1  0.68,
the vertices in graph A that depend on a vertex in graph B can be
effectively considered as removed since there is no extensive
functional component in graph B (i.e., they cannot be part of an
extensive component). Hence, we expect graph A to behave as
its isolated graph ensemble counterpart in which an effective
fraction 1 − r1q̄

AB
1 of its vertices has been removed. This is

indeed confirmed in the inset of Fig. 5. In fact, successive
phase transitions should occur whenever independent vertices
are able to form an extensive component before the extensive
functional component emerges. In other words, we observe a
double phase transition whenever the rescaled value at which
the continuous phase transition happens in the isolated graph
ensemble is below the value at which the discontinuous phase
transition occurs in the interdependent graph ensemble.

VI. CONCLUSION

Building upon our previous works [5,10,11,16,36], we
have presented a unifying conceptual framework that offers
a comprehensive mathematical description of a wide variety
of structural properties found in graphs extracted from real
complex systems (e.g., correlations, segregation, clustering of
various forms). The generality of the formalism resides on a
multitype perspective for a precise prescription on how vertices
are connected to one another and on a set of iterative equations
for the solution of the distribution of the size of components in
small arbitrary graphs. Interestingly, these iterative equations
are by themselves a valuable addition to graph theoretical
methodology. In fact, besides being a cornerstone of our
formalism, allowing a mapping of hyperedges onto an effective

treelike structure, they also have potential applications in
the theoretical description of fragmentation processes and
of percolation on lattices [48–51] (see Ref. [36] for further
details).

Our approach leads to the definition of a very general
random graph ensemble for which site and/or bond percolation
can be solved exactly using pgfs in the infinite-size limit (e.g.,
size of the giant component, percolation threshold, distribution
of the size of small components). We have shown that this
random graph ensemble encompasses most random graph
models published until now and can incorporate structural
properties not yet included in a theoretical framework. This
versatility makes it a perfect theoretical laboratory to investi-
gate the role of specific local structural properties on the global
connectivity of the graphs. We have illustrated this point by
implementing our method to provide a counterexample to a
conjecture [27] on the effect of clustering on the percolation
threshold.

Our formalism is also naturally equipped for the modeling
of interdependent graphs whose most striking feature is the
emergence of the extensive component via a discontinuous
phase transition. We have provided a specific implementation
for this application that demonstrates how a graph can
successively undergo a continuous then a discontinuous phase
transition, and how clustering increases the amplitude of
discontinuity at the transition.

By offering one of the most comprehensive mathematical
description of percolation on random graphs, we believe that
the present work contributes to a better understanding of the
interplay between local structural properties and the global
connectivity of graphs. Moreover, our approach can easily
accommodate other types of dynamics for which the pgf
technique has already proven to be useful [3,52,53]. We are
hopeful that several extensions (different dynamics and/or
percolation models, see for instance Refs. [54,55]) will shed
further light on the role of structure in the behavior of complex
systems. We put forward that some of the tools to perform these
studies are now available.
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