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Résumé 

Les situations spatio-temporelles dynamiques sont des situations qui évoluent dans 

l’espace et dans le temps. L’être humain peut identifier des configurations de 

situations dans son environnement et les utilise pour prendre des décisions. Ces 

configurations de situations peuvent aussi être appelées « situations d’intérêt » ou 

encore « patrons spatio-temporels ». En informatique, les situations sont obtenues par 

des systèmes d’acquisition de données souvent présents dans diverses industries grâce 

aux récents développements technologiques et qui génèrent des bases de données de 

plus en plus volumineuses. On relève un problème important dans la littérature lié au 

fait que les formalismes de représentation utilisés sont souvent incapables de 

représenter des phénomènes spatiotemporels dynamiques et complexes qui reflètent 

la réalité. De plus, ils ne prennent pas en considération l’appréhension cognitive 

(modèle mental) que l’humain peut avoir de son environnement. Ces facteurs rendent 

difficile la mise en œuvre de tels modèles par des agents logiciels.   

 

Dans cette thèse, nous proposons un nouveau modèle de représentation des situations 

d’intérêt s’appuyant sur la notion des patrons spatiotemporels. Notre approche utilise 

les graphes conceptuels pour offrir un aspect qualitatif au modèle de représentation. 

Le modèle se base sur les notions d’événement et d’état pour représenter des 

phénomènes spatiotemporels dynamiques. Il intègre la notion de contexte pour 

permettre aux agents logiciels de raisonner avec les instances de patrons détectés. 

Nous proposons aussi un outil de génération automatisée des relations qualitatives de 

proximité spatiale en utilisant un classificateur flou. Finalement, nous proposons une 

plateforme de gestion des patrons spatiotemporels pour faciliter l’intégration de notre  
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modèle dans des applications industrielles réelles. Ainsi, les contributions principales 

de notre travail sont : 

• Un formalisme de représentation qualitative des situations spatiotemporelles 

dynamiques en utilisant des graphes conceptuels. 

• Une approche cognitive pour la définition des patrons spatio-temporels basée 

sur l’intégration de l’information contextuelle. 

• Un outil de génération automatique des relations spatiales qualitatives de 

proximité basé sur les classificateurs neuronaux flous. 

• Une plateforme de gestion et de détection des patrons spatiotemporels basée 

sur l’extension d’un moteur de traitement des événements complexes 

(Complex Event Processing).  
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Abstract 

 

Dynamic spatiotemporal situations are situations that evolve in space and time. They 

are part of humans’ daily life. One can be interested in a configuration of situations 

occurred in the environment and can use it to make decisions. In the literature, such 

configurations are referred to as “situations of interests” or “spatiotemporal patterns”. 

In Computer Science, dynamic situations are generated by large scale data acquisition 

systems which are deployed everywhere thanks to recent technological advances. 

Spatiotemporal pattern representation is a research subject which gained a lot of 

attraction from two main research areas. In spatiotemporal analysis, various works 

extended query languages to represent patterns and to query them from voluminous 

databases. In Artificial Intelligence, predicate-based models represent spatiotemporal 

patterns and detect their instances using rule-based mechanisms. Both approaches 

suffer several shortcomings. For example, they do not allow for representing dynamic 

and complex spatiotemporal phenomena due to their limited expressiveness. 

Furthermore, they do not take into account the human’s mental model of the 

environment in their representation formalisms. This limits the potential of building 

agent-based solutions to reason about these patterns.  

 

In this thesis, we propose a novel approach to represent situations of interest using the 

concept of spatiotemporal patterns. We use Conceptual Graphs to offer a qualitative 

representation model of these patterns. Our model is based on the concepts of 

spatiotemporal events and states to represent dynamic spatiotemporal phenomena. It 

also incorporates contextual information in order to facilitate building the knowledge 
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base of software agents. Besides, we propose an intelligent proximity tool based on a 

neuro-fuzzy classifier to support qualitative spatial relations in the pattern model. 

Finally, we propose a framework to manage spatiotemporal patterns in order to 

facilitate the integration of our pattern representation model to existing applications in 

the industry. 

The main contributions of this thesis are as follows: 

• A qualitative approach to model dynamic spatiotemporal situations of interest 

using Conceptual Graphs. 

• A cognitive approach to represent spatiotemporal patterns by integrating 

contextual information. 

• An automated tool to generate qualitative spatial proximity relations based on 

a neuro-fuzzy classifier. 

• A platform for detection and management of spatiotemporal patterns using an 

extension of a Complex Event Processing engine. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

vii 
 

Contents 

Résumé ................................................................................................................................. iii 

Abstract ................................................................................................................................. v 

Contents .............................................................................................................................. vii 

List of Tables ....................................................................................................................... xi 

List of Figures ..................................................................................................................... xii 

Acronyms .......................................................................................................................... xvii 

Foreword ............................................................................................................................. xx 

 General Introduction ......................................................................................... 1 Chapter 1

Introduction ........................................................................................................................ 1 

1.1 Problems and Research Issues ............................................................................. 4 

1.2 Objectives ............................................................................................................ 7 

1.3 Research methodology ......................................................................................... 8 

1.4 Contributions ....................................................................................................... 9 

1.5 Organization of the Thesis ................................................................................. 10 

 Qualitative Spatiotemporal Situation of Interest: A State of the Art ......... 14 Chapter 2

Introduction ...................................................................................................................... 14 

2.1 Large Scale Monitoring and Data Acquisition Systems .................................... 15 

2.1.1 Big Data .....................................................................................................................15 

2.1.2 Pervasive and Ubiquitous Computing ........................................................................16 

2.1.3 Examples of Large Scale Monitoring Systems in the Industry ..................................17 

2.1.4 Synthesis ....................................................................................................................18 

2.2 Situation Awareness .......................................................................................... 20 

2.2.1 Definition of Situation Awareness .............................................................................20 

2.2.2 Situation Management ...............................................................................................23 

2.2.3 Synthesis ....................................................................................................................24 

2.3 Classical Approaches in Artificial Intelligence for Situation Modeling ............ 25 

2.3.1 Situation Calculus ......................................................................................................25 



 

viii 
 

2.3.2 Event Calculus ...........................................................................................................26 

2.3.3 Synthesis ....................................................................................................................27 

2.4 Situations of Interest Modeling Using Patterns ................................................. 28 

2.4.1 Predicate-Based Approaches ......................................................................................28 

2.4.2 Query-Based Approaches ..........................................................................................31 

2.4.3 Synthesis ....................................................................................................................35 

2.5 Complex Event Processing ................................................................................ 36 

2.5.1 Synthesis ....................................................................................................................39 

2.6 Semantic-Based Approaches for Situation Modeling ........................................ 40 

2.6.1 Synthesis ....................................................................................................................45 

2.7 Qualitative Spatiotemporal representation and reasoning ................................. 45 

2.7.1 Qualitative Spatial Representation and Reasoning ....................................................46 

2.7.2 Qualitative Temporal Representation and Reasoning ................................................49 

2.7.3 Synthesis ....................................................................................................................51 

2.8 Discussion .......................................................................................................... 51 

2.8.1 Definition of Situation of Interest ..............................................................................52 

2.8.2 Integration of Situations of Interest in Large Scale Systems .....................................55 

2.9 Conclusion ......................................................................................................... 55 

 Qualitative Representation of Dynamic Spatiotemporal Patterns .............. 58 Chapter 3

Introduction ...................................................................................................................... 58 

3.1 Definition of Dynamic Spatiotemporal Patterns ................................................ 59 

3.1.1 From Situations of Interest to Spatiotemporal Patterns .............................................59 

3.1.2 Conceptual Graphs for Spatiotemporal Pattern Representation .................................62 

3.2 A Dynamic Spatiotemporal Environment.......................................................... 65 

3.2.1 Spatial Objects ...........................................................................................................66 

3.2.2 Spatial Relations ........................................................................................................67 

3.2.3 Dynamic Spatiotemporal Situations ...........................................................................67 

3.2.4 Temporal Relations ....................................................................................................69 

3.2.5 State ............................................................................................................................70 

3.2.6 Event ..........................................................................................................................72 

3.2.7 Summary on the Spatiotemporal Situation Representation........................................74 

3.3 Dynamic Spatiotemporal Pattern ....................................................................... 75 

3.3.1 Qualified Spatiotemporal Situation ............................................................................76 



 

ix 
 

3.3.2 Simple Pattern ............................................................................................................77 

3.3.3 Complex Pattern .........................................................................................................79 

3.3.4 Timer Pattern .............................................................................................................81 

3.3.5 Repetitive Pattern .......................................................................................................83 

3.3.6 Conclusion .................................................................................................................85 

3.4 Contextual Information ...................................................................................... 85 

3.4.1 The role of context in knowledge representation .......................................................85 

3.4.2 How to Define Contexts in Patterns? .........................................................................86 

3.4.3 Our Definition of Context in Patterns ........................................................................87 

3.4.4 Conclusion .................................................................................................................89 

3.5 Case Study: Outage Management Systems ....................................................... 90 

3.5.1 Background ................................................................................................................90 

3.5.2 Proposed Approach ....................................................................................................92 

3.5.3 System Architecture ...................................................................................................94 

3.5.4 Pattern Specifications .................................................................................................94 

3.6 Discussion .......................................................................................................... 98 

3.7 Conclusion ....................................................................................................... 100 

 Using a Neuro-Fuzzy Classifier to Automatically Generate Spatial Chapter 4
Proximity Quantifiers ...................................................................................................... 101 

Introduction .................................................................................................................... 101 

4.1 Qualitative Spatial Proximity........................................................................... 103 

4.1.1 Distance-Based Approaches ....................................................................................104 

4.1.2 Context-Based Approaches ......................................................................................107 

4.1.3 Discussion ................................................................................................................110 

4.2 The Neurofuzzy Classifier Structure ............................................................... 112 

4.3 Implementation Details .................................................................................... 116 

4.3.1 Training the Neurofuzzy Classifier ..........................................................................116 

4.3.2 Results ......................................................................................................................120 

4.4 A Qualitative Proximity Tool: Architecture and Implementation ................... 123 

4.5 Conclusion ....................................................................................................... 125 

 A Framework for Managing Qualitative Spatiotemporal Patterns .......... 127 Chapter 5

Introduction .................................................................................................................... 127 



 

x 
 

5.1 Motivations ...................................................................................................... 128 

5.2 Pattern Abstraction Module ............................................................................. 130 

5.3 Data Processing and Pattern Detection Module .............................................. 132 

5.3.1 Data Processing ........................................................................................................136 

5.3.2 Automated Pattern Conversion from Conceptual Graphs to EPL ............................138 

5.4 A Spatial Extension of the CEP Engine........................................................... 145 

5.5 Software Architecture and Implementation ..................................................... 147 

5.6 Case Study ....................................................................................................... 150 

5.6.1 Remote Fiber Test System .......................................................................................150 

5.6.2 Background and Challenges .....................................................................................152 

5.6.3 Proposed Solution ....................................................................................................154 

5.6.4 Spatial Environment .................................................................................................155 

5.6.5 Pattern Specification ................................................................................................157 

5.6.6 Using Contextual Information .................................................................................160 

5.7 Conclusion ....................................................................................................... 165 

 Conclusion ...................................................................................................... 166 Chapter 6

6.1 Synthesis .......................................................................................................... 166 

6.2 Contributions ................................................................................................... 167 

6.3 Limits and Drawbacks ..................................................................................... 170 

6.4 Future Work ..................................................................................................... 171 

Bibliography ..................................................................................................................... 173 

Appendix ........................................................................................................................... 183 

 
  



 

xi 
 

List of Tables 

Table 2-1: A summary of different approaches for situation of interest modeling ..... 53 

Table 4-1: Fuzzy distance as proposed by [Brennan and Martin, 2006] .................. 105 

Table 4-2: NFC features (inputs) .............................................................................. 117 

Table 4-3: NFC Classes (outputs) ............................................................................. 117 

Table 4-4: NFC data set training preparation ............................................................ 119 

Table 5-1: An example of simple pattern conversion algorithm............................... 140 

Table 5-2: Complex pattern conversion algorithm ................................................... 143 

  



 

xii 
 

List of Figures 

Figure 1.1: IEC recommendations ................................................................................ 4 

Figure 1.2: Existing solutions to manage situations of interest .................................... 5 

Figure 1.3: Organization of the thesis ......................................................................... 12 

Figure 2.1: A Typical Big Data Architecture .............................................................. 16 

Figure 2.2: A difference between data and information [Endsley et al, 2012] ........... 19 

Figure 2.3: The general architecture of SAIL [Baader et al, 2009] ............................ 21 

Figure 2.4: A semantic graph representation of a situation [Anagnostopoulos et al, 

2006] ........................................................................................................................... 22 

Figure 2.5: A situation represented using Description Logic [Anagnostopoulos et al, 

2006] ........................................................................................................................... 23 

Figure 2.6: An example of Situation Management approach [Jakobson et al, 2007] . 24 

Figure 2.7: Event Calculus Principle of Operation [Shanahan, 1999] ........................ 27 

Figure 2.8: A framework for pattern detection as defined by [Holzmann, 2007] ....... 29 

Figure 2.9: An example of a spatiotemporal pattern [Gerhke et al, 2005].................. 29 

Figure 2.10: An example of a rule of association defined by [Lattner et al, 2006] .... 30 

Figure 2.11: Different operations on pattern supported by [Lattner et al, 2006] ........ 31 

Figure 2.12: A general event definition according to [Etzion and Zolotorvesky, 2010]

 ..................................................................................................................................... 37 

Figure 2.13: A pattern expressing an excessive energy usage situation [Hasan et al, 

2012] ........................................................................................................................... 37 

Figure 2.14: A typical CEP architecture [Helmer et al, 2011] .................................... 38 

Figure 2.15: An EPL statement example .................................................................... 39 

Figure 2.16: A spatiotemporal model of situations [Haddad and Moulin, 2010] ....... 42 

Figure 2.17: An example of a state [Haddad and Moulin, 2010] ................................ 43 

Figure 2.18: An example of an event [Haddad and Moulin, 2010] ............................ 44 

Figure 2.19: An example of a process [Haddad and Moulin, 2010] ........................... 44 

Figure 2.20: An example of spatial relations types [Holzmann and Ferscha, 2010] .. 47 

Figure 2.21: RCC-8 topological relations from [Renz, 2002] .................................... 49 



 

xiii 
 

Figure 2.22: Qualitative temporal intervals relations [Allen, 1983] ........................... 51 

Figure 3.1: A dynamic STP model .............................................................................. 59 

Figure 3.2: Representation of situations of interest using patterns (adapted from 

[Russell and Norvig, 1995] ......................................................................................... 60 

Figure 3.3: Agent decision model for way finding problem. Adapted from [Freksa, 

2007] ........................................................................................................................... 61 

Figure 3.4: A Conceptual Graph example using linear and graph representations ..... 64 

Figure 3.5: Our conceptual model for spatiotemporal patterns. Adapted from [Haddad 

and Moulin, 2010] ....................................................................................................... 65 

Figure 3.6: An example of concept lattice including context specialization .............. 66 

Figure 3.7: An example of a topological relation between a Sensor and a Building 

using a Conceptual Graphs representation .................................................................. 67 

Figure 3.8: Static and dynamic situations according to Desclés ................................. 68 

Figure 3.9: A change from one state to another triggered by the occurrence of an 

event ............................................................................................................................ 68 

Figure 3.10: Illustration of time intervals according to [Moulin, 1997] ..................... 69 

Figure 3.11: An example of temporal relation using Conceptual Graphs 

representation .............................................................................................................. 70 

Figure 3.12: A state describing a normal fiber state. The state is defined in a time 

interval between July 17th at 10:00 AM and July 24th at 05:33 PM. ......................... 71 

Figure 3.13: A state describing a degraded fiber state. The state is defined at distance 

23Km of a fiber link between Quebec and Montreal .................................................. 71 

Figure 3.14: A state represented using CGs’ linear notation ...................................... 71 

Figure 3.15: An event representation using temporal relations to link with the state 

before the occurrence and after the occurrence........................................................... 74 

Figure 3.16: An example of a qualified situation ........................................................ 76 

Figure 3.17: Structure of a simple pattern ................................................................... 78 

Figure 3.18: An example of a simple pattern .............................................................. 79 

Figure 3.19: A simple pattern example using the negation operator .......................... 79 

Figure 3.20: Structure of a complex pattern................................................................ 80 



 

xiv 
 

Figure 3.21: A complex pattern example where the communication_error_pattern is 

related with the temporal relation after to the emergency_pattern ............................. 81 

Figure 3.22: An example of a timer pattern ................................................................ 82 

Figure 3.23: Structure of the timer pattern .................................................................. 83 

Figure 3.24: Structure of the repetitive pattern ........................................................... 84 

Figure 3.25: An example of a repetitive pattern ......................................................... 84 

Figure 3.26: Our approach to model support contextual information in our 

spatiotemporal pattern formalism ............................................................................... 88 

Figure 3.27: A pattern definition using contextual information ................................. 89 

Figure 3.28: Different components of an Outage Management System ..................... 92 

Figure 3.29: An outage map in the State of New York [conEdison, 2013] ................ 92 

Figure 3.30: Our agent's reasoning model .................................................................. 94 

Figure 3.31: A system architecture involving the outage management system and the 

interaction with the goal-based agent .......................................................................... 95 

Figure 3.32: An example of simple pattern with linear notation ................................ 95 

Figure 3.33: An example of rule used for crew assignment ....................................... 96 

Figure 3.34: Output of the action AssignFreeCrew in the Prolog+CG console. ........ 97 

Figure 3.35: A complex pattern representation. .......................................................... 97 

Figure 4.1: A simple pattern example using a qualitative spatial relation ................ 102 

Figure 4.2: An example of possible proximity relations between two objects [Schultz 

et al, 2007] ................................................................................................................. 104 

Figure 4.3: A Java-based proximity platform developed by [Schultz et al, 2007], 

where fuzzy quantifiers are used to query spatial objects ......................................... 106 

Figure 4.4: A conceptual framework proposed by Brennan and Martin to compute 

impact area from contextual information and geographic distance. ......................... 108 

Figure 4.5: An example of difference between influence areas [Kettani and Moulin, 

1999] and impact area [Brennan and Martin, 2012] ................................................. 108 

Figure 4.6: A general architecture of the neuro-fuzzy system for proximity modeling 

proposed by [Yao and Thill, 2007] ........................................................................... 110 

Figure 4.7: An overview of the proposed approach .................................................. 112 

Figure 4.8: Partition of the feature space [Sun and Jang, 1993] ............................... 113 



 

xv 
 

Figure 4.9:A neurofuzzy classifier, adapted from [Cetişli and Barkana, 2010] ....... 115 

Figure 4.10: Fuzzy rules used to prepare the data set ............................................... 118 

Figure 4.11: NFC training Performance for 3 features and 4 classes ....................... 121 

Figure 4.12: The distance feature as defined by user to train the NFC ..................... 121 

Figure 4.13: The distance feature after the NFC training ......................................... 121 

Figure 4.14: The road traffic feature as defined by user to train the NFC ................ 122 

Figure 4.15: The road traffic feature after the NFC training..................................... 122 

Figure 4.16: User’s familiarity with area feature as defined by user to train the NFC

 ................................................................................................................................... 122 

Figure 4.17: User’s familiarity with area feature after the NFC training.................. 123 

Figure 4.18: Architecture of our qualitative proximity tool ...................................... 124 

Figure 5.1: Overview of the different components of the proposed framework ....... 129 

Figure 5.2: Architecture of the pattern specification module ................................... 131 

Figure 5.3: A concept type lattice using the Amine Platform ................................... 131 

Figure 5.4: A simple pattern represented using the Amine Platform ........................ 132 

Figure 5.5: A typical CEP architecture [Helmer et al, 2010] .................................... 135 

Figure 5.6: An example of sensor definition ............................................................. 137 

Figure 5.7: A sample of events generated by a Fault Current Indicator sensor ........ 137 

Figure 5.8: An example of a class for event definition in ESPER ............................ 137 

Figure 5.9: Description of the pattern detection module ........................................... 138 

Figure 5.10: Examples of simple patterns in CG and EPL formats .......................... 141 

Figure 5.11: An output example of the complex pattern conversion algorithm ....... 144 

Figure 5.12: Architecture and software packages used in our framework ................ 148 

Figure 5.13: The Pattern Management Tool ............................................................. 149 

Figure 5.14: OTDR Trace Information [Foa, 2015] ................................................. 151 

Figure 5.15: The general architecture of an RFTS .................................................... 151 

Figure 5.16: The Crew Manager's reasoning model ................................................. 155 

Figure 5.17: A metro network example in Quebec City. Fiber optic routes are 

represented by green lines and the RTU location is represented by a Yellow Square.

 ................................................................................................................................... 156 

Figure 5.18: A specialization example of the concept type Location ....................... 156 



 

xvi 
 

Figure 5.19: An alarm report about an event generated by the “RTU Paris” as 

described by [NTest. 2014] RFTS ............................................................................ 157 

Figure 5.20: A Conceptual Graph representation of the event reported by “RTU 

Paris” ......................................................................................................................... 158 

Figure 5.21: An example of a simple pattern where the event occurrence changes the 

state of a fiber from degraded to broken ................................................................... 159 

Figure 5.22: An example of a complex pattern linking two simple patterns ............ 160 

Figure 5.23: A concept type lattice representing contextual information ................. 161 

Figure 5.24: A simple pattern example with spatial contextual information ............ 162 

Figure 5.25: A simple pattern example with semantic contextual information ........ 163 

 
  



 

xvii 
 

Acronyms 

AI Artificial Intelligence  

ANFIS Adaptive Neuro-Fuzzy Inference System 

B-DAD Big Data Analytics and Decisions 

BTS Base Transceiver Stations  

CDMA Code Division Multiple Access 

CDR Call Detail Records  

CEP Complex Event Processing 

CG Conceptual Graphs  

CIS Customer Information System 

CPC Context Propositional Content  

CPPC Complex Pattern Propositional Content  

CRM Customer Relation Management  

CTL Concept Type Lattice 

DBMS Database Management System  

DMS Distribution Management System 

DNP Distributed Network Protocol 

DSPM Data Stream Processing Models 

DSTP Dynamic Spatiotemporal Patterns  

EC Event Calculus  

ECA Event Condition Action  

EDA Event Driven Architecture  

ELE ETALIS Language for Events  

EMS Energy Management System 

EPC Event Propositional Content  

EPL Event Pattern Language  

ESA Event Spatial Attribute  

ETS Event Time Stamp  

FOR Fiber Optic Route  

GIS Geographic Information System  

GSM Global System for Mobile Communications 

IEC International Electro-technical Commission 

IE Inference Engine 

IVR Interactive Voice Response  

KPI Key Performance Indicators  

NFC Neurofuzzy Classifier  

NoSQL Not Only SQL  

OGC Open Geospatial Consortium 



 

xviii 
 

OMS Outage Management System 

OSS Operations Support System  

OTDR Optical Time Domain Reflectometer  

QSR Qualitative Spatiotemporal Reasoning  

RCC Region Connection Calculus  

RDMS Relational Database Management Systems  

RFTS Remote Fiber Test System  

RPC Repetitive Pattern Count  

RPPC Repetitive Pattern Propositional Content  

RTU Remote Terminal Units  

SA Situation Awareness  

SAIDI System Average Interruption Duration Index 

SAIL Situation Awareness by Inference and Logic 

SC Situation Calculus  

SCADA Supervisory Control and Data Acquisition 

SFTP Secure File Transfer Protocol 

SLA Service Level Agreement 

SM Situation Management  

SPC State Propositional Content  

SPPC Simple Pattern Propositional Content  

SQL Standard Query Language  

SSA State Spatial Attribute  

STI State Time Interval  

STP Spatiotemporal Pattern  

STPS Spatiotemporal Pattern System  

STS Qualified Spatiotemporal Situation  

TPC Timer Pattern Content  

TPPC Timer Pattern Propositional Content  
 

 

  



 

xix 
 

To my parents. 



 

xx 
 

 

 

Foreword 

 

This thesis becomes a reality with the kind support and help of many people. I would 

like to extend my sincere thanks to all of them. 

  

I’m grateful to the members of my thesis jury: Prof. Jules Desharnais, Prof. 

Christophe Claramunt, Prof. Luc Lamontagne, Prof. Sehl Mellouli and Prof. Thierry 

Badard for accepting to review this work, for their time and their interest.    

 

I’m deeply indebted to my supervisor Prof. Bernard Moulin for his extended 

enthusiasm and continuous support throughout my Ph.D. studies. He gave me the 

opportunity to join his research group and he continuously encouraged me to go 

further in my work. I owe him a great debt of gratitude for his tremendous patience 

and for his valuable guidance. 

 

I would like to thank all my colleagues and friends for their precious advices and 

constant encouragement.  

 

My parents and sisters receive my love and gratitude. My hard-working parents have 

sacrificed their lives for my sisters and myself and they raised us with great values. 

My sisters have been my best friends all my life and I want to recognize their 

contribution to this achievement.     

 

I saved the last word of acknowledgement for my dear wife Mouna, who has been 

with me all these years. Without her faithful patience and her unconditional 

encouragement especially during the critical moments, this work would not have been 

done. 



 

1 
 

 

 

 

 

  Chapter 1

General Introduction 

 

Introduction 

Recent advances in Computer Science (hardware and software) and in 

telecommunication systems led to the emergence of a new reality: a flood of data is 

being generated every day. According to IBM, 2.5 Exabytes (1 Exabyte=1 billion 

Gigabyte) were generated every day in 2012. This reality affects a large number of 

domains such as finance (e-trading, commercial transactions, credit cards), health 

(remote monitoring, patient management) and the social area (social networks, news, 

media streaming), to name a few. In this thesis, we focus on a new generation of data 

acquisition systems widely present in industries such as power utilities and 

telecommunications. In these areas, massive amounts of data are generated by a new 

generation of devices enhanced by powerful processing capabilities. These devices 

are deployed everywhere and they collect numerous observations about phenomena 

occurring in the world to report them in various data formats to centralized enterprise 

servers. They generate heterogeneous and dynamic data1 which is also geo-

referenced. The phenomena that we consider here have spatial and temporal 

characteristics. We will call them ‘spatio-temporal situations’. 

 

                                                 
1 Data is said to be dynamic when it changes in space and time. 
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In recent years, many research teams attempted to cope with this new reality by 

offering a set of tools, frameworks and commercial products to manage such huge 

amounts of data. Managing this flood of data is about: 1) managing the way data is 

stored; 2) managing the interoperability between heterogeneous data formats; 3) 

offering the end-user efficient tools to take advantage of this flood of data. These 

efforts led to the emergence of new paradigms such as Big Data, Internet of Things, 

Sensor Web, Everyware, Ambient Intelligence and Pervasive Computing. One of the 

main objectives of these domains is to offer the end-user the possibility to make 

decisions related to dynamic spatiotemporal situations occurring in the world. This 

objective becomes crucial in the current context of competition between different 

companies which offer critical services such as power services, cellular operators, TV 

broadcasting services and internet providers, to name a few. Different key 

performance indicators (KPIs) are driving these domains such as SLA (Service Level 

Agreement) in telecommunications and SAIDI (System Average Interruption 

Duration Index) in power utilities. Existing solutions in these domains attempt to 

offer decision tools to help end-users visualizing interesting data. To this end, the 

end-user should be able to express “what he wants to observe” in the world so that 

existing tools need to query data collected from different sources and display the 

requested information.  

 

Actually, in a large number of application areas, human operators need to identify 

typical configurations (patterns) in their operational environments based on the 

exploitation of observations provided by distributed devices and correlated with 

additional information which may be obtained from different kinds of static data 

sources such as Geographic Information Systems (GIS) and other enterprise 

applications. The human operator’s goal is to analyze (‘reason about’) these 

configurations in order to make appropriate decisions to manage/control the situations 

when a human intervention is needed. We will call these typical configurations 

dynamic spatiotemporal situations of interest because they are dynamic situations 

that are characterized by spatial and temporal properties and are particularly 

interesting for decision makers. 



 

3 
 

The notion of situation of interest plays a key role in humans’ decision processes. We 

suggest that it needs to be carefully addressed by existing tools in a manner that suits 

human operators’ cognitive expectations. Modeling a situation of interest as such is 

not a trivial task. It requires complex cognitive capabilities to model the semantics of 

dynamic objects that are involved in the situation and their changes. The proposal of 

an adequate representation model of situations of interest is one of the challenging 

aspects of this thesis.   

 

This thesis takes place in the context of research dealing with the modeling and 

management of dynamic spatiotemporal situations applied to large scale acquisition 

and monitoring systems. These systems are widely deployed at different levels across 

organizations and generate data in heterogeneous structures. They are usually built up 

in monolithic and specialized application systems. The example depicted below 

(Figure 1.1) is adapted from the recommendations of the IEC (International Electro-

technical Commission) group under the Smart Grid Initiative for the Power Utility 

Industry. This group tries to define how software solutions can be deployed in large 

utilities, how they can interact (if possible) and how they can be implemented in 

organizations. A multilayer architecture is proposed starting at the Market Level 

where a SCADA (Supervisory Control and Data Acquisition) system and an EMS 

(Energy Management System) can be involved. The Enterprise Level comes after 

where a GIS, an Asset Management System and a CIS (Customer Information 

System) are deployed. The Operation Level makes the link between the Enterprise 

Level and the Field Level. A SCADA, an EMS, a DMS (Distribution Management 

System), an OMS (Outage Management System) are the main components used at this 

level for operation management purposes. Finally, the Field Level is specified to 

manage raw data retrieved from all devices and sensors deployed in the field such as 

data concentrators, voltage regulators, breakers and others which are commonly 

used in the power industry.  

 

Similar hierarchical architectures can be found in other domains such as security 

surveillance, weather monitoring and telecommunications, to name a few. These 



 

4 
 

architectures have in common some aspects of volume, variety, heterogeneity, 

uncertainty, and distribution of data. Most of the proposed architectures seek to 

reduce the so-called ‘semantic gap’ between the big amount of data they generate and 

the end-user’s requirements to support the decision making process, which mainly 

aims at offering a certain level of quality and a continuous service (power, security, 

information, communication) to customers.  

 

 

 

Figure 1.1: IEC recommendations 

1.1 Problems and Research Issues 

As we mentioned earlier, the main characteristics of large scale monitoring systems 

are variety, uncertainty, and heterogeneity of data. Figure 1.2 depicts an example 

about how data is processed from various sources and displayed to an end-user 

through a set of solutions and tools. Basically, data sources (sensors for example) 

generate observations in a raw data format which can be either stored as such or 

presented to the end-user in a legible form after some elementary processing. Such 

data may be displayed in various ways (alarms, views, tables, charts, graphs) or may 



 

5 
 

take the form of reports and files, or even be modeled as digital numbers or even by 

more sophisticated data structures capturing events and states. For decision making 

purposes, a user may need to retrieve data from different acquisition systems and to 

process it. For example, a user may be interested by some “situations” in relation to 

weather conditions in a particular location, at a certain time. Therefore, s/he needs to 

access a sensor web system for weather monitoring to get data about weather 

conditions (wind speed, wind direction etc...). Then, s/he may need to collect data 

from other systems such as a GIS and eventually establish relationships between the 

retrieved data to finally draw conclusions in the form of useful information presented 

for example on a map. In other words, the user needs to carry out a cognitive effort to 

interpret correlated data in terms of situations that he recognizes in the operational 

environment. Here, we define a situation of interest a set of correlated data which 

represents a specific configuration of the real world which is interesting for the end-

user. In this thesis we consider that the user (or the operator) builds his/her own 

interpretation of the data obtained from acquisition systems, according to his 

cognitive (or ‘mental’) interpretation of the operational environment.  

 

 

 

Figure 1.2: Existing solutions to manage situations of interest 
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Decision makers are considered as expert of their domains of expertise. They usually 

have multidisciplinary capabilities and they are application domain oriented. They 

need to identify situations of interest in order to make decisions in a competitive 

context, act on mission critical environments, and last but not least, comply with 

regulated markets. To this end, decision makers need to carry out the following main 

actions: 

• Collect data from various data sources (online data streams, offline databases, 

statistical data, etc.) 

• Identify dynamic spatiotemporal phenomena of interest 

• Correlate these phenomena and identify situations of interest while taking 

advantage of their expertise. 

 

Despite the large number of available sophisticated software solutions, decision 

makers carry out the above steps and make a cognitive effort because of the currently 

existing ‘semantic gap’ between what decision makers are looking for and what the 

proposed approaches are offering. Several approaches have been proposed to 

represent situations of interest, using various notions such as spatiotemporal patterns, 

spatiotemporal phenomena and spatiotemporal situations A variety of formalisms 

and tools have been proposed to help querying information from large size databases 

or collecting data on the fly from data sources and to process them according to 

predefined knowledge structures. However, most of these approaches do not 

explicitly consider the way end-users reason about such situations of interest. In this 

thesis we suggest that there is a need to provide a clear definition of a situation of 

interest that takes into account the user’s mental model in order to reduce the existing 

semantic gap between the way data is presented by currently available 

approaches/software and what is a situation of interest from a user’s perspective. We 

argue that a qualitative and application independent representation formalism is 

needed to describe possible configurations of a situation of interest and to represent 

complex spatiotemporal phenomena. Current approaches in the literature offer limited 

capabilities to cope with the aforementioned issues. 



 

7 
 

1.2 Objectives 

The objective of this thesis is twofold: 

 

To propose a knowledge engineering approach to represent and manage qualitative 

spatiotemporal situations of interest: this approach will offer a methodology to build 

a cognitive approach to represent and manage situations of interest in large scale data 

acquisition systems. This objective can be achieved through the following sub-

objectives: 

 

• To propose a model that represents dynamic spatiotemporal situations of 

interest in a qualitative manner. The formalism should allow for expressing 

situations of interest using a representation language close to Natural 

Language. The formalism should also consider the user’s mental perception of 

the environment and allow for reasoning about situations of interest using 

intelligent software systems.  

 

• To propose an approach which supports qualitative representation and 

reasoning with spatial relations: this approach will be used to help users 

building a mental model of the spatial environment and to integrate qualitative 

spatial relations in the definition of situations of interest. Particular emphasis 

should be placed on spatial proximity relations.  

 

To propose an approach and a set of tools to manage instances of situations of 

interest occurring in a dynamic spatiotemporal environment. To validate our 

approach, we propose two application domains: a Remote Fiber Optic Monitoring 

System which is used in the telecommunication industry and an Outage Management 

System which is used in the public power industry. We will develop our approach 

and the set of tools to help users to manage different tasks aiming at maintaining a 
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certain level of quality of service and to react in an efficient way to critical situations 

that may occur in their operational environments.  

 

1.3 Research methodology 

To achieve the objectives of this thesis, we adopted a four-steps approach 1) 

conducting a literature review of research works on spatiotemporal situation of 

interest modeling and related subjects; 2) proposing a knowledge engineering 

approach to represent and manage spatiotemporal situations of interest; 3) developing 

a set of tools to detect instances of spatiotemporal situation of interest in dynamic 

environments.; 4) Validating the proposed approach using two case studies.  

 

The state of the art is the first step in our research methodology where we carried out 

an in-depth analysis of existing approaches on modeling dynamic situations of 

interest. In the literature, researchers usually refer to situations of interest using the 

term spatiotemporal patterns.  For the rest of this thesis, we refer to dynamic 

situations of interest as dynamic spatiotemporal patterns (DSTP). Our literature 

review on DSTP addresses several perspectives.  The representation perspective deals 

with the issue of how DSTP are represented in terms of syntax and semantics. The 

cognitive perspective deals with the way DSTPs are used in knowledge-based 

approaches. The application perspective attempts to review different research areas 

and application domains involving the representation of DSTP and reasoning with 

them. In particular, we will discuss domains such as big data, ubiquitous computing, 

ambient intelligence, location/context aware systems, pervasive computing, Artificial 

Intelligence and Complex Event Processing. 

 

Reviewing current approaches to qualitatively represent and manage situations of 

interest is a mandatory step which will help identifying their current advantages, 

limits and shortcomings. Hence, as a next step of our research work, we will propose 
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a novel approach to qualitatively represent situations of interest by considering 

several requirements such as offering a qualitative representation and the possibility 

of using such an approach using a cognitive perspective. This will imply selecting a 

suitable representation formalism and providing a clear definition of a dynamic 

situation of interest. Both spatial and temporal dimensions need to be supported as 

well as other fundamental notions such as events and states. 

 

The development of software tools to support the proposed approach is the third step 

of the thesis. We will develop a framework to manage instance of situations of 

interest which can be detected in a dynamic spatiotemporal environment. To this end, 

a hybrid architecture based on the integration of our formal definition of situations of 

interest to a pattern detection framework will be proposed. The proposed framework 

is integrated with a Complex Event Processing engine which is used for pattern 

detection.  

 

The validation of the proposed approach is the fourth step of the thesis in which two 

scenarios from telecommunication and power distribution industries are used to 

illustrate the application of the main aspects of our research work and to emphasize 

their usefulness and applicability.  

1.4 Contributions 

As a first contribution, this thesis presents a novel knowledge engineering approach 

to qualitatively represent and manage dynamic spatiotemporal situations of interest. 

While most works on spatiotemporal patterns focus on extending database query 

languages, our approach tackles the issue of DSTP modeling from a cognitive 

perspective. To define a DSTP we take into account a cognitive representation of the 

operational environment and propose a knowledge engineering methodology to build 

the DSTP model. To this end, our approach uses the rich semantic capabilities of 

Sowa’s Conceptual Graphs formalism and its equivalence to First Order Logic. This 
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will open the possibility to couple our software tools to be used with agent-based 

systems in order to enable them to manipulate patterns and to reason about them. 

Furthermore, we introduce the notion of contextual knowledge in our formalism to 

enhance and refine the definition of pattern. Last but not least, since this thesis deals 

with dynamic environments, our pattern formalism represents dynamic 

spatiotemporal phenomena and allows for the explicit representation of states, events 

and temporal relations between them.  

 

To integrate the proposed DSTP model to spatial environments and to support 

qualitative spatial reasoning capabilities, the second main contribution of this thesis 

is a qualitative technique to represent and to reason about spatial relations. The 

proposed approach uses a Neurofuzzy classifier to integrate contextual knowledge in 

the qualification of spatial proximity. Using the proposed technique, qualitative 

spatial quantifiers are closer to the human’s mental model of the spatial environment 

and are used to represent spatial proximity relations in our DSTP model.  

 

The third main contribution of this thesis is a set of tools and algorithms to manage 

spatiotemporal pattern instances from a stream of data generated by large scale 

applications. Actually, in our first contribution we propose a qualitative DSTP model 

but it does not address the issue of detecting DSTP instances in the context of real 

applications.  Hence, we developed a hybrid framework integrated with an existing 

Complex Event Processing engine and we created a set of algorithms to implement 

our semantic DSTP model and to manage the detection of DSTP instances. These 

detected instances of patterns can be used to build knowledge bases that can be 

exploited by software agents. 

1.5 Organization of the Thesis 

This thesis is organized as follows (Figure 1.3). After introducing different research 

issues in the current chapter, Chapter 2 presents a state of the art of different works 
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on modeling situations of interest. In this chapter we present the context of large scale 

monitoring and data acquisition systems and discuss the limits of current approaches 

with respect to the objectives of this thesis.  

 

Chapter 3 presents our first contribution and proposes a novel formalism to 

qualitatively represent spatiotemporal patterns using Conceptual Graphs. These 

spatiotemporal patterns represent dynamic spatiotemporal situations while adopting a 

cognitive perspective and taking into account contextual information. The chapter 

includes a short case study to illustrate some examples of the proposed formalism and 

to raise some difficult issues that will be solved in the next chapters. 

 

Spatial relations are a key element in the spatiotemporal formalism that we propose in 

Chapter 3. In particular, spatial proximity is used in several applications to qualify the 

proximity between spatial references. In Chapter 4 we propose an automated 

approach based on a neurofuzzy classifier to generate qualitative spatial proximity 

relations. These relations are integrated in a GIS and used in our pattern formalism. 

 

Some challenges related to pattern detection and management discussed in Chapter 3, 

are now addressed in Chapter 5 which presents the framework that we developed to 

manage spatiotemporal patterns. The framework integrates a Complex Event 

Processing engine and the qualitative spatial proximity tool that we presented in 

Chapter 4, as well as our qualitative spatiotemporal pattern model described in 

Chapter 3. A case study illustrates different aspects of our solution.  

 

Finally, Chapter 6 concludes the thesis by summarizing its main contributions and by 

outlining some limits that will be explored in future research work.    
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Figure 1.3: Organization of the thesis 
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  Chapter 2

Qualitative Spatiotemporal Situation of 

Interest: A State of the Art 

 

Introduction 

Several research areas such as Psychology, Spatiotemporal Reasoning and Artificial 

Intelligence (AI) investigated situation modeling. In AI, several approaches and 

formalisms were proposed for situation modeling such as Situation Calculus, 

Situation Awareness, Event Calculus and Spatiotemporal Patterns, to name a few. In 

this chapter, a state of the art of spatiotemporal situation modeling is presented. 

 

The rest of this chapter is organized as follows. Section 2.1 presents a brief overview 

of large scale monitoring and data acquisition systems. Section 2.2 introduces the 

concept of Situation Awareness which is a widely used approach for situation 

modeling. Section 2.3 surveys some Artificial Intelligence approaches for situation 

modeling such as Situation and Event Calculi. In Section 2.4, we present an overview 

of works based on patterns to represent situations of interest. Section 2.5 introduces 

Complex Event Processing and discusses how this technology is used to manage and 

detect situations of interest. In Section 2.6 we review some approaches which address 

the semantic aspects of situation modeling. Section 2.7 surveys classical qualitative 

spatiotemporal representation and reasoning techniques. Section 2.8 discusses the 
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limits of these approaches and positions them in the context of this thesis. Finally, 

Section 2.9 concludes the chapter. 

2.1 Large Scale Monitoring and Data Acquisition Systems 

This thesis is defined in the context of a new generation of data acquisition and 

monitoring systems which are addressed in the literature by several research areas. 

Without being exhaustive, we propose in this subsection a brief overview of these 

concepts.   

2.1.1 Big Data 

“Big Data” is a term that applies to systems where datasets are constantly increasing 

until they become too large to be managed using traditional database management 

systems [Elgendy and Elragal, 2014]. Consequently, advanced analytics techniques 

are used on big datasets in order to deal with challenges related to dataset 

management such as capture, storage, search and visualization. According to 

[Elgendy and Elragal, 2014] three main features characterize big data: volume, 

variety and velocity (namely the three V’s). The size of the dataset corresponds to the 

volume. The variety of the dataset is related to the heterogeneity aspect of data. The 

velocity of datasets is the way data is changing and how often it is generated. These 

characteristics led to the definition of new requirements for developing tools capable 

of fast access and efficient analysis of these datasets while these capabilities are not 

supported by traditional database management systems. For example, the Big Data 

Analytics and Decisions (B-DAD) [Elgendy and Elragal, 2014] is a framework that 

establishes a link between Big Data Analytics tools and Decision making systems. A 

typical (B-DAD) architecture is depicted in Figure 2.1. A Storage and Management 

Module is used to deal with data storage. It can be stored in typical hard disks or 

hosted in memory (called in-memory DBs structure) in order to optimize the 

read/write access speed. Other aspects may be addressed in this module such as how 

the data repository is structured. It can be different from traditional relational 
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databases and it can use the so-called Not Only SQL approach (NoSQL) which 

separates data management and data storage for better performances. The Analytic 

Processing Module addresses issues such as fast data loading, fast data processing 

and storage space optimization. Finally, the Analytics Module addresses data 

extraction and visualization issues and pattern detection mechanisms.  

 

 

 

Figure 2.1: A Typical Big Data Architecture   

 

It is worth to mention that Big Data is still considered as an emerging set of concepts 

and ideas which make this paradigm continuously evolving. This explains why no 

clear and unique definition can be found yet and that some of the existing definitions 

overlap with other domains such as Pervasive Computing.   

2.1.2 Pervasive and Ubiquitous Computing 

Pervasive Computing is a paradigm that emerged in the first decade of the 21st 

century. It is based on the idea of providing access to applications everywhere, 

anytime, by means of any device and through natural interactions so that users may 
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not even be aware that they are using computational devices [Cascado et al, 2011]. 

Ambient Intelligence and Ubiquitous Computing are other approaches related to 

Pervasive Computing. The development and implementation of pervasive 

applications emerged in various domains such as Internet technologies, mobile and 

distributed computing, computer hardware, wireless communication networks, sensor 

networks and intelligent systems, to name a few [Obaidat et al, 2011].  The research 

community on pervasive computing identified several challenges related to three 

main issues [Saha and Mukherjee, 2003]: scalability, heterogeneity, and context-

awareness. A system is scalable when it allows for adding new devices without the 

need to design a new application and allows for deploying a large number of such 

devices. A system is heterogeneous when it allows for using a variety of services and 

different types of devices, networks, systems and environments. Context Awareness 

is defined as the use of information to characterize the situation of an entity, be it a 

person, a place or an object [Dey, 2001]. One of the most popular categories of 

context-aware systems is location aware systems. We emphasize here that the 

concept of context is characterized by different dimensions such as time, space and 

user’s preferences. According to [Cascado et al, 2011] user’s preferences change 

according to his context. Therefore, context aware-systems must adapt to the user 

when needed; and provide the following three characteristics: 1) present information 

and services to a user; 2) automatically execute services for a user; 3) tag the context 

related to the provided information for later use [Dey, 2001]. 

2.1.3 Examples of Large Scale Monitoring Systems in the Industry 

Several domains are concerned with challenges addressed by Big Data and Pervasive 

Computing systems. They share a common set of characteristics such as very large 

datasets and the need to offer decision making capabilities to end-users.  

 

In the telecommunication industry, Fiber Quality Monitoring Systems use laser-based 

sensors to scan fiber optic links, detect critical events such as fiber degradations and 

fiber breaks and locate these events using a GIS. They help users to reduce network 
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downtime and respect service level agreements. Operations Support Systems (OSS) 

are widely used in telephone networks to support operation functions such as network 

configuration and monitoring, service commissioning and asset management.  

 

In the Power Utilities industry, Outage Management Systems use smart sensors 

which are deployed throughout the distribution network. These sensors are mounted 

on power cables and they report an outage event to centralized servers using 

cellphone communication channels and industrial communication protocols. The 

reported events are also located using a GIS which models the distribution network. 

The main function of an OMS is to track outage events and to update customers with 

the real time outage status in their respective regions. Other large scale monitoring 

systems are used in the Power industry such as Energy Management System (EMS) 

to monitor, measure, control and optimize electric generation and transmission 

networks and Distribution Management System (DMS) to optimize and control 

electric distribution networks.  

2.1.4 Synthesis 

Various architectures and approaches are proposed by Big Data, Pervasive 

Computing and other similar paradigms to manage large scale systems and their 

datasets. These architectures share some common aspects such as variety, 

heterogeneity and distribution of data sources. Since these systems are used by 

humans on a daily basis, they try to reduce the semantic gap between the data they 

provide and the end-user’s requirements to support his decision making process. 

Hence, the more supportive of end-users’ decision making process a system is, the 

more it is useful and efficient. For example, [Endsley et al, 2012] claimed that a user-

centric design should be considered rather than a data-centric design for the new 

generation of computer software. This will help turning raw data into relevant 

information (Figure 2.2). This information could be visual (alarms, views, tables, 

charts, graphs) or could take the form of reports and files. It can also be categorized 

as events, states, digital numbers, or more generally, as dynamic spatiotemporal 
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phenomena. For decision making purposes, a user may need to collect this 

information from various systems and reason about it. For example, a user may be 

interested by some “situations” about traffic conditions in a given city, at a certain 

time. Therefore, he needs to access cameras providing information about traffic 

conditions. Then, he may need to get information from other systems such as a GIS, 

and eventually, establish relationships between all these retrieved information to draw 

conclusions. In other words, users need to carry out cognitive processes to transform 

heterogeneous data into recognized situations of interest according to the way they 

perceive their environment. A situation of interest (also called a pattern2) can be 

thought of as the result of the correlation of a sequence of information to identify a 

specific configuration of the real world. Human beings have mental representations of 

the world and carry out their own interpretations of the information collected from 

system outputs, according to the way they perceive the surrounding environment.  

 

 

 

Figure 2.2: A difference between data and information [Endsley et al, 2012] 

 

The rest of this chapter reviews different approaches proposed to model 

spatiotemporal situations of interest. Our research on this topic led us to conclude that 

works on situations of interest can be subdivided into several sub-families. There are 

approaches based on situation awareness and situation management. There are 

classical approaches in Artificial Intelligence that use logic to reason about situations. 
                                                 
2 Several works in the literature use the word “pattern” to refer to “situations of interest”. We will 

review these works in the next sections of this chapter.  
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There are also approaches that propose to represent situations of interest as 

spatiotemporal patterns such as SQL-based approaches and event-driven approaches. 

Finally, there are approaches which address the semantic aspects of different 

situations’ components such as events, states and spatiotemporal phenomena in 

general. To align this review with the context of this thesis, we will try to evaluate 

how these approaches deal with the following issues: 

• How situations of interest are represented and how close these representation 

formalisms are to Natural Language? 

• How dynamic and complex situations are represented? 

• How situations of interest are detected and managed? 

• How situations of interest are used from a cognitive perspective? 

• How the proposed approaches can be integrated in real computing solutions 

currently existing in the industry? 

2.2 Situation Awareness 

A quick Google search on spatiotemporal situations yields a multitude of references 

to situation awareness and situation management. In this section, we present a brief 

overview of these concepts.   

2.2.1 Definition of Situation Awareness 

A formal definition of Situation Awareness (SA) is given by [Endsley, 1988]: “SA is 

the perception of the elements in the environment within a volume of time and space, 

the comprehension of their meaning, and the projection of their status in the near 

future”. Originally, SA has been carefully studied in the military domain. Then, the 

notion and the related techniques have been generalized to other application domains 

where a user needs to be aware of what is happening around him and which 

information is important for him in order to intervene appropriately. In other words, 

“being situation aware” means to have the information which is the most important to 

make decisions. For example, a car driver must be aware of the relative distances of 
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other cars surrounding his car in the traffic, the car speed and the fuel level; but the 

user does not need to know what the car’s engine characteristics are. According to 

[Endsley et al, 2012], SA can be defined through several main stages: 1) Perception 

of the elements in the environment using different means (visual, auditory), sensors 

(in general) and a combination of these means; 2) Comprehension of the current 

situation, which consists in integrating many pieces of the perceived data to build 

information and in defining a priority of each piece of information according to its 

importance, reliability and meaning; 3) Projection of future status. At this stage, a 

user can take advantage of his comprehension of the current situation (stage 2) to 

anticipate (predict) what will happen in the future and to choose a course of actions.  

Several SA systems have been proposed to support the management of a large 

number of data sources such as sensors, textual information and databases [Baader et 

al, 2009] [Fischer et al, 2014]. These systems have been applied to different domains. 

For example [Baader et al, 2009] developed a system called SAIL (Situation 

Awareness by Inference and Logic) applied to the military domain which uses 

surveillance data and a formal definition of situations based on events. The authors 

used a Prolog-like syntax to define rules implementing automated reasoning 

capabilities. The high level system architecture of SAIL is depicted in Figure 2.3.  

 

 

 

Figure 2.3: The general architecture of SAIL [Baader et al, 2009] 
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Anagnostopoulos and colleagues [2006] proposed a semantic definition of situations 

based on interrelated concepts and using contextual information. Contextual 

information describes spatial context, temporal context, artifact context (which 

represents the context of the user’s computational entity (operating system, PDA, 

etc.) and personal context which is the role that a user may play in a given situation. 

A semantic graph representation of a situation is illustrated in Figure 2.4 and a formal 

representation using Description Logic is given in Figure 2.5.   

 

 

 

Figure 2.4: A semantic graph representation of a situation [Anagnostopoulos et al, 

2006] 

 

Situation Awareness is a multidisciplinary domain where researchers contributed to 

different aspects such as data collection, user interface, situation modeling and 

spatiotemporal analysis. Creating a synergy between all these contributions became a 

challenge and led to the emergence of the Situation Management paradigm. 
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Figure 2.5: A situation represented using Description Logic [Anagnostopoulos et al, 

2006] 

2.2.2 Situation Management 

Situation Management (SM for short) is a research area that aims at finding a synergy 

between different contributions in situation representation and reasoning approaches. 

SM is “a framework of concepts, models and enabling technologies for recognizing, 

reasoning about, acting on, and predicting situations that are happening or might 

happen in dynamic systems during a pre-defined operational time.” [Jakobson et al, 

2007]. Managing situations is a goal-directed process which involves different 

aspects [Jakobson et al, 2007]. 

• Sensing and information collection;  

• Perceiving and recognizing situations;  

• Analyzing past situations and predicting future situations; 

• Reasoning, planning and implementing actions to reach desired goals.  

 

Figure 2.6 depicts a general process loop of situation management. The core of SM is 

the situation model which is said to be investigative if the situation model aims at 

recognizing existing situations while considering situations that occurred in the past. 

The situation model is said to be predictive when it aims at predicting future 
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situations. A real situation occurring in the world is sensed and perceived in the form 

of events. The problem solving module uses the situation model’s output to propose 

an action plan. In this model we note that the transition between real situations and 

events through sensing is confusing and limits the characterization of a situation to 

the use of events only.  

 

 

 

Figure 2.6: An example of Situation Management approach [Jakobson et al, 2007] 

2.2.3 Synthesis 

Situation Management is based on three core processes which are Situation 

Modelling, Situation Recognition and Situational Reasoning. Both with Situation 

Awareness, they integrate approaches from different disciplines such as Artificial 

Intelligence, Situation Awareness, Information Fusion, Multi-Agent Systems and 

Sensor Networks. The main contribution of these approaches is the organization of 

data in a layered architecture to adequately present it to end-users. However, one of 

the major shortcomings of SA is the absence of a clear definition of a situation of 

interest. For example, the situation model (one of the three core aspects of SM) is 
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essentially based on a classical definition of states and events and possible relations 

between them. In Situation Management, reasoning about situations is supported 

using classical Artificial Intelligence techniques such as Event Calculus and Situation 

Calculus. These classical techniques reduce the semantic capabilities of Situation 

Awareness and limit their use in cognitive-based systems as we will show in the next 

subsection.   

2.3 Classical Approaches in Artificial Intelligence for 

Situation Modeling 

Spatiotemporal reasoning has been addressed in AI through a variety of approaches. 

In the context of spatiotemporal situation modeling, the logical approach has gained 

an increasing attention and tried to offer different formalisms in order to model 

situations. In this subsection, we briefly present the most commonly used approaches 

such as Situation Calculus and Event Calculus.  

2.3.1 Situation Calculus 

Situation Calculus (SC) is the name of a particular way of modeling the notion of 

change using First-Order Logic. It conceives the world as consisting of a sequence of 

situations, each of which is a snapshot of the state of the world. Situations are 

generated from previous situations by actions [McCarthy and Hayes, 1969]. A given 

relation or property that can change over time can be handled adding an extra 

situation argument in the corresponding predicate. If the position of an agent is 

represented by the predicate At(Agent, location) and a situation is represented by the 

constant S, then the location of the agent in the corresponding situation is denoted 

At(Agent, location, S).  

 

To represent how the world changes from one situation to the next one, Situation 

Calculus uses the function Result(action, situation) to denote the situation that results 

from performing an action in some initial situation. Situation Calculus is commonly 
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used to perform planning tasks. Given a set of possible actions, an inference engine 

can be used to find a sequence of actions that achieves a desired effect [Guesgen and 

Marsland, 2010].  

 

Although situation calculus has been used to represent situations and the change over 

time, it has several shortcomings. According to [Russell and Norvig, 1995] Situation 

Calculus defines situations as instantaneous points in time which are not very useful 

for describing changes that occur continuously over time. Moreover, Situation 

Calculus is more suitable when only one action occurs at a time. This approach does 

not offer an explicit time and space representation [Guesgen and Marsland, 2010]. To 

overcome these limitations, the Event Calculus has been proposed as an improved 

version of Situation Calculus.  

2.3.2 Event Calculus 

The event calculus has been introduced by Kowalski and Sergot in 1986. They 

proposed a logic programming formalism to represent events and their effects and 

applied this formalism especially to database applications [Kowalski & Sergot, 1986].  

A simplified version of Event Calculus was presented later by [Kowalski, 1992] 

which initiated the emergence of a number of Event Calculus dialects since then. Like 

Situation Calculus, Event Calculus is a formalism for reasoning about action and 

change. Actions in Event Calculus are simply called events and they are defined to 

reason about changes. In other words, the Event Calculus is a logical mechanism that 

infers what’s true given “what happens when”, and “what actions do”. The “what 

happens” part is a narrative of events. The “what actions do” part describes the effect 

of actions [Shanahan, 1999]. Figure 2.7 describes the Event Calculus principle of 

operation. 

 

Other versions of Event Calculus have been proposed such as the Basic Event 

Calculus (BEC) [Shanahan, 1997] and the Event Calculus (EC) proposed by [Miller 
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and Shanahan, 1999]. They have been applied to a variety of problems including 

natural language processing and vision.  

 

 

 

Figure 2.7: Event Calculus Principle of Operation [Shanahan, 1999] 

 

2.3.3 Synthesis  

One of the major shortcomings of Situation Calculus is the frame problem [Russell 

and Norvig, 1995]. The research community attempted to propose several solutions. 

Some of these efforts led to the introduction of Event Calculus which was widely 

used to represent and to reason about situations of interest. In the spatiotemporal 

research community, researchers attempted to provide an implicit representation of 

situations of interest and defined some reasoning mechanisms using First Order 

Logic. Nevertheless, Event Calculus becomes ineffective when considering complex 

spatiotemporal phenomena occurring in the real world. Typical examples are dynamic 

situations which are not clearly represented using a combination of states and events 

[Haddad, 2009]. The majority of the proposed works seem to be outdated and not 

easily integrated in modern applications. Usually, authors tend to use simple 

assumptions to simplify logical rules and the proposed formalisms need to be used by 

well-trained users.  
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2.4 Situations of Interest Modeling Using Patterns 

The notion of pattern is usually related to the Data Mining research domain. 

However, patterns have been used by a limited number of researchers to represent 

and reason about situations of interest. These works can be categorized in two 

different families: predicate-based approaches and query-based approaches.  

2.4.1 Predicate-Based Approaches 

In Section 2.3, we presented some foundations of Event and Situation Calculi. These 

approaches do not necessarily focus on the formal definition of spatiotemporal 

situation of interest. However, several works in the literature used predicates to build 

patterns representing situations of interest. For example, Holzmann [Holzmann, 

2007] proposed a qualitative model applied to dynamic environments for recognition 

and detection of situations involving spatiotemporal objects defined in a specific 

environment and using different contexts. His model uses a combination of spatial 

and temporal relationships and a set of logical rules. 

 

Figure 2.8 shows the main modules of Holzmann’s framework. Spatiotemporal 

patterns are defined by a “human expert” as a set of rules. The "Rule Engine" gets the 

qualitative relationships from spatial sensors stored in the relationship repository and 

performs pattern matching operations according to logical rules stored in the rule 

base. The detected patterns are used to select actions that the system can carry out. 

 

Gerhke [Gerhke et al, 2005] proposed an explicit representation of traffic scenes 

using spatiotemporal data (called the "background knowledge") and situation 

patterns. Situation patterns are defined by a combination of spatial and temporal 

predicates. An example of a dynamic situation describing two approaching vehicles 

with a risk of collision is depicted in Figure  2.10. The "Holds" operator specifies the 

validity of a predicate p during a time interval i. 
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Figure 2.8: A framework for pattern detection as defined by [Holzmann, 2007] 

 

 

 
 

 

Figure 2.9: An example of a spatiotemporal pattern [Gerhke et al, 2005] 

 

 

Hadji's approach [Hadji et al, 2005] is different from formerly presented works. Hadji 

defines a spatiotemporal pattern in the form of a sequence of spatial predicates and 

temporal constraints. Moreover, the authors proposed spatiotemporal algorithms to 

evaluate and classify spatiotemporal queries in order to reduce the execution time in 

large-size databases. Lattner [Lattner et al, 2006] proposed a framework for the 

prediction of situations of interest and behaviors of mobile robots moving on a soccer 

field. The proposed system is based on a set of algorithms to detect patterns from a 

dynamic environment. Patterns are defined by a sequence of spatial or conceptual 

predicates linked by temporal relations. Figure 2.10 illustrates an example of a 
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spatiotemporal pattern defined by Lattner. The pattern "p77" describes a scene where 

a robot controls the ball first and where a second robot is free and located in front of 

the first robot. By combining these predicates with temporal relationships (in this 

example younger, younger & contemporary) it was possible to deduce using a 

knowledge base (called the set of "rules of association" by Lattner) that the first robot 

will pass the ball to the second robot with a probability of 63%. 

 

 

 

Figure 2.10: An example of a rule of association defined by [Lattner et al, 2006] 

 

The authors also proposed a hierarchy of patterns (see Figure 2.11) and defined a set 

of specialization and generalization operations. The specialization of a pattern is 

possible either by adding a new predicate, by adding a new temporal relationship, or 

by specializing a predicate. The generalization of a pattern is carried out by 

eliminating a predicate, by removing a temporal relationship or finally by 

generalizing a predicate. 
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Figure 2.11: Different operations on pattern supported by [Lattner et al, 2006] 

2.4.2 Query-Based Approaches 

The concept of spatiotemporal patterns (STP) has been used to model situations of 

interest using extensions of query languages running on spatiotemporal databases. An 

in-depth review can be found in [Erwig, 2004] who categorized works on STPs in 

two areas. The first area aims at proposing a set of representation tools to query 

spatiotemporal patterns. Generally speaking, most of these works propose an 

enhanced version of existing query languages such as SQL. The second area aims at 
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using data mining and knowledge discovery techniques to find relevant patterns in 

large datasets. Most of the works in this category propose algorithms to find “group 

patterns” using statistical techniques such as [Sakr and Guting, 2014]. For example, 

[Bermingham and Lee, 2014] proposed a statistical approach to extract 

spatiotemporal meta-data by combining a set of photos collected from a social 

network (i.e. Flickr). In this subsection, we focus on the first category since we are 

interested in spatiotemporal situations representation and reasoning.  

 

Existing query-based approaches tend to offer extensions of query languages in order 

to find changes in objects in spatial or spatiotemporal datasets and relationships 

between objects. This was applied to different areas such as meteorology, medicine 

and geophysics. Change phenomena in human-related activities were also considered 

such as movement of terrorists and criminals, traffic management and military 

operations [Erwig, 2004].  In order to specify spatiotemporal patterns, the extended 

query languages used temporal and spatial formalisms such as temporal logic and 

topological relations. However, these works were limited in terms of expressiveness 

and they offered languages too complex to be used by users who are not familiar with 

such query languages [Erwig, 2004]. Erwig proposed to overcome such a limitation 

by the introduction of spatiotemporal predicates which “describe precisely the 

‘developments of objects’ and their relationships in a simple way”. According to 

Erwig, a predicate P is a function that maps a pair of spatiotemporal objects to a 

Boolean value: �: �	 × �	 → ���	 for �, �	 ∈ {����, �����}.  A query that finds the 

pattern “ships leaving the oil spill” can be formulated as follows: 

 

SELECT sname 

FROM Ships, Pollutions 

WHERE pname=’Spill’ AND Pos Leaves Reg 

 

Where Leaves is a predicate that describes a “leaving development” of a specific 

object and can be defined as: Leaves:= Inside meet Disjoint. Notice that Leaves is a 
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predicate that takes the value true for two objects O1 and O2 if for some time, O1 was 

inside O2, then O1 touched O2’s border and finally O1 disjoined from O2.  

 

Another way to process spatiotemporal patterns using query languages was proposed 

by [Sakr and Guting, 2010]. The authors used a set of general and powerful classes of 

predicates called “lifted predicates” to enhance the pattern query language to support 

moving objects. Moving objects are defined using the moving type constructor which 

defines the moving counterpart of any static component such as point, region or line. 

Lifted predicates are a time-dependent version of static predicates. Instead of 

returning a Boolean value like standard predicates do, lifted predicates return a 

moving(bool). For example, the static predicate Quebec inside Canada returns a 

Boolean type and the lifted predicate Bus_803 inside Quebec returns a moving(bool) 

type. The query language uses Allen’s operators to specify relationships between time 

intervals. Hence, the spatiotemporal predicates proposed by the authors are defined as 

a set of time-dependent predicates that are fulfilled in a certain temporal sequencing 

order.  The situation “the snow storms that could increase their area over ¼ square km 

during the first traversed 5 km” can be represented by the following pattern: 

 

SELECT * 

FROM snowstorms 

WHERE pattern ( 

[distancetraversed(rough_center(storm) <= 5000.0 as pred1, area(storm) > 25000.0 as 

pred2], [stconstraint (“pred1”, “pred2”, meanwhile)]) 

 

Where distancetraversed and rough_center are lifted predicates representing 

respectively “the distance that the moving point traversed since the start of its 

definition time” and “the aggregation of the moving region into a moving point that 

represents its center of gravity”.  
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To optimize the computation time of their query language, [Sakr and Guting, 2010] 

proposed to integrate their spatiotemporal pattern queries in a query optimizer. The 

proposed solution has been developed and made publicly available as a SECONDO 

plugin [Secondo web site, 2013] and an extended version of their work was proposed 

in [Sakr and Guting, 2014] to support “group patterns”.  

 

Another work addressed the issue of spatiotemporal representation using query 

languages. With the recent advances in ubiquitous computing technologies, Vieira et 

al [2010] investigated human motions generated by Call Detail Records (CDR) of cell 

phone networks. Typically, any phone call received by a human is logged in the form 

of a CDR which includes information about originating and destination phone 

numbers, time and date when the call started and which towers were used to make 

this call. Such a variety of information is inherently spatiotemporal and may be of 

interest for many studies such as human’s mobility behaviors, cellular network 

performance and so on. The CDR records are stored in very large relational 

databases. The authors noticed that searching for STPs in existing commercial 

databases is computationally expensive and requires a large number of queries. They 

proposed a Spatiotemporal Pattern System (STPS) to query patterns in CDR 

databases. The STPS is designed to “express mobility pattern queries using a regular 

expression like language”. It uses spatial and temporal predicates in the pattern 

definition. Spatial predicates are used to locate Base Transceiver Stations (BTS) and 

their covering areas and to establish topological relationships between them. Three 

forms of temporal predicates are defined in the STPS. 1) Time interval like for 

example “between t1 and t2” where t1 <= t2. 2) Time snapshot like for example “at 

5:00 PM”. 3) Relative temporal relations like for example “1 hour after user left his 

home”.   

 

The expression: “find all mobile users that on Saturdays first start in an arbitrary 

area different from Neighborhood-2 in the morning, then immediately go to Airport, 

then pass along the Stadium-1 between 6pm and 8pm, then go in the Neighborhood-1 
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neighborhood between 8pm and 10pm, and finally return to their first area”, can be 

represented by the following query: 

 

� ≔ (〈@�, �_���� = 8	�� ∶ 	�_�0 = 3	#�〉. 〈&�#���, �_� = 1	��〉. 〈(��)*� −
1, �_���� = 6	#�:	�_10 = 8	#�〉. 〈-��ℎ���ℎ��) − 1, �_���� = 8	#�:	�_10 =
10	#�〉. 〈@�〉, / = {@�! = -��ℎ���ℎ��) − 2, ∀�_, �_3 ∈ (, 4���(�_	) ∧
4�7(�_	) = "(��*�)�7"})  

 

Notice that formulating such a query needs expertise in query languages that the 

average user does not possess. 

2.4.3 Synthesis 

Spatiotemporal situations of interest have been represented by a limited number of 

pattern-based approaches in the literature. Instead of dealing with pattern 

representation, predicate-based approaches rather addressed pattern matching issues 

by proposing different algorithms for this purpose. Patterns are usually built using 

temporal relations between predicates. They are stored in pattern bases and pattern 

matching algorithms are used to detect pattern instances from incoming data. 

Although reasoning capabilities are enabled using such approaches, they remain 

limited since the predicate language makes it difficult to represent dynamic and 

complex spatiotemporal situations. The integration of such works in large-scale 

systems seems to be quite challenging and weakly addressed by these works. 

 

Query-based approaches proposed several extensions to the SQL language to query 

patterns from spatiotemporal databases. Proposed query languages are usually 

associated with specific platforms because they require some specific 

implementations to optimize the search time (see the SECONDO platform for 

example).  In the context of Big Data and the new generation of large scale 

monitoring systems, this becomes a real challenge.  Furthermore, using SQL 

languages and their special extensions requires well-trained users and reduces the 
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semantic expressiveness capabilities of these patterns. Finally, Query-based 

approaches consider several aspects of situations of interest such as moving objects 

and temporal relations. However, dynamic situations of interest may involve other 

components such as events and states which are not clearly represented by these 

languages. In the next subsection, we explore another alternative to overcome some 

limitations related to query-based approaches which is Complex Event Processing.  

2.5 Complex Event Processing  

The limitations of spatiotemporal query approaches and the increasing number of 

distributed applications which need to process data generated by any kind of sensors, 

led to the emergence of Complex Event Processing as a novel approach to manage 

event streams [Cugola and Margara, 2012]. CEP systems consider the stream of data 

as notifications of events happening in the external world. The main objective of a 

CEP system is to detect the occurrence of complex events also called patterns. As a 

consequence of this detection, responding actions can be taken [Anicic et al, 2010]. 

Generally, events are instantaneous and happen at one specific point of time. 

Complex events or patterns are the result of correlations between sets of events using 

temporal and/or causal relations as well as aggregations. Originally, CEP has been 

used in the financial industry to predict phenomena such as market development and 

exchange rate trends. The notion of event has been defined in its different aspects 

(general, semantic, etc.) by the CEP research community. A general definition of an 

event is given by [Luckham, 2002] as “something that happens”. [Etzion and 

Zolotorvesky, 2010] proposed a general representation of the concept of event 

depicted in Figure 2.12. Events which have the same meaning and which are defined 

with the same set of event attributes can be considered as instances of a given event 

type. Event attributes can be divided into three main sections: Header, Payload and 

Event Relations. The Header contains the meta-information about an event. The 

Payload contains specific information about the event occurrence itself. The Event 

Relations, which is optional, allows for establishing relationships between several 

events. 
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Figure 2.12: A general event definition according to [Etzion and Zolotorvesky, 2010] 

 

Patterns are generated by the result of event correlation and can be expressed using 

SQL-like languages. For example, the Event Pattern Language (EPL) [Esper, 2015] is 

a pattern language proposed by the ESPER CEP Framework. A pattern describing a 

situation of excessive energy usage in a floor using power meter inputs can be 

expressed using EPL statements as described in Figure 2.13. 

 

 

 

Figure 2.13: A pattern expressing an excessive energy usage situation [Hasan et al, 

2012] 
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Several CEP frameworks have been proposed by the Computer Science community. 

They allow for event representation and management and they provide pattern 

detection capabilities. A detailed review on these frameworks can be found in 

[Cugola and Margara, 2012]. A typical architecture of a CEP framework is depicted 

in Figure 2.14 where events are generated by Event Producers (e.g. sensors, terminal 

units or social network feeds) and managed through the Event Channel. The Event 

Processing Engine uses the Event Condition Action (ECA) principle to trigger the 

(Event) Pattern Matching Engine, to verify patterns’ conditions (Condition) and to 

direct detected patterns through the Event Channel to Event Consumers (Actions). 

Event Development Tools and Event Management Tools are also available with CEP 

frameworks. 

 

One of the key features of CEP is the support of contextual information. Contexts are 

used to change the way an event (or a pattern) is processed [Etzion and Zolotorvesky, 

2010]. Contexts are used in CEP to partition a stream of events using different 

context types such as time and space. Contextual information can be either implicit or 

explicit. When they are explicit, contexts are clearly expressed in event pattern 

languages and they are used by the Event Processing Engine to evaluate patterns’ 

conditions. 

  

 

 

Figure 2.14: A typical CEP architecture [Helmer et al, 2011] 

 

The following EPL statement (Figure 2.15) illustrates how contexts are defined in the 

ESPER Event Pattern Language [Esper, 2015]. The statement refers to the context 
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“segmented by customer” created to detect a money withdrawal which is bigger than 

a given amount, followed by a second withdrawal that occurred within a time interval 

of minutes of the first withdrawal. Both events are related to the same customer. The 

customer plays the role of the contextual information in this example.  

 

 

 

Figure 2.15: An EPL statement example 

2.5.1 Synthesis 

Complex Event Processing is an emerging research area for event-based pattern 

representation, detection and management. Existing CEP approaches deal mainly 

with the syntactical processing of raw data, constructive event database views and 

stream management [Teymourian and Paschke, 2010]. Patterns are expressed using a 

correlation of events and can be detected by taking into account contextual 

information. The CEP approach in the context of situation management is more 

efficient than classical relational database management systems (RDMS) since CEP 

allows for detecting patterns on the fly whereas patterns are retrieved from databases 

offline, which may make the pattern detection in RDMS both resource and time 

consuming.  CEP can be considered as a natural evolution to overcome RDMS 

limitations in terms of performance and expressiveness. CEP systems are part of 

Event Driven Systems where events and contextual information play a key role in the 

pattern definition and detection. However, most of CEP systems use a SQL-like 

language for pattern representation which limits the expressiveness of situations of 

interest and does not facilitate their integration with agent-based software 

[Teymourian and Paschke, 2010]. The ETALIS project [Anicic et al, 2010] is one of 

the rare CEP frameworks using a non SQL-like language for pattern representation. 

ETALIS uses a declarative logic language for pattern representation and reasoning 

context SegmentedByCustomer 

select * from pattern [  every a=BankTxn(amount > x) -> b=BankTxn(amount 

> x) where timer:within(y minutes)] 
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and proposes a set of operators (mostly based on Allen’s interval logic) to build 

“complex event descriptions”. It implements the ETALIS Language for Events (ELE) 

and EP-SPARQL for event pattern representation. ETALIS uses a rule-based 

language with a clear syntax and declarative formal semantics. The logic-based 

approach used in ETALIS is expressive enough and allows for using contextual 

information which can be expressed as PROLOG rules and facts. However, the ELE 

language and EP-SPARQL are limited to few temporal operators (such as sequence 

[Zhou et al, 2012]) and they lack other semantic operators (such as spatial operators). 

Furthermore, the notion of pattern is still limited to events. The tool does not allow 

for expressing dynamic and complex situations of interest which may involve, 

besides events, other components such as states and spatial objects, to name a few.  

2.6 Semantic-Based Approaches for Situation Modeling 

Researchers still do not agree on a unique semantic representation of a situation of 

interest in a dynamic environment. Several related aspects are discussed such as 

change representation, the ontological aspect of various components involved in a 

situation of interest, possible relationships between these components and 

mechanisms to reason about situations of interest. To address these aspects, a 

particular research group defined situations of interest as spatiotemporal phenomena. 

For example, [Galton, 2004] discussed the incorporation of time in GIS to represent 

spatiotemporal phenomena. He started from a well-known approach in this domain 

which relies on time-indexed snapshots. Using a set of snapshots related by temporal 

relations, one can represent an animated sequence of some features of interest. 

[Galton, 2004] discussed some limitations of such an approach since, in real life, 

spatiotemporal information does not come bundled in complete snapshots. Indeed, 

spatiotemporal phenomena can be related to a set of observations of different events 

occurring at different points of time; and about spatial objects situated in different 

locations. The author defined a change as a relationship between a set of events � ∈ 9 

and spatial objects	: ∈ /. He proposed to represent the effect of an event as follows: 
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����:�(�) = ;〈:<, #<,#<= 〉, 〈:>, #>,#>= 〉, 〈:?, #?,#?= 〉, … . . , 〈:A, #A,#A= 〉B 

 

Where :<, :>, … . . :A are the “participants” (objects) in � and the effect of � on :C is to 

change its position from #C to #C=. Further details on the event definition are proposed 

by the author who also discussed some challenges related to the representation of 

complex phenomena (called multi-aspect phenomena) such as storms, floods, a 

protest march, etc.  

 

In other works, the concept of situation of interest is represented through the 

combination of events and spatial objects. [Cole and Hornsby, 2005] presented an 

approach to model events and sequences of events in a dynamic geospatial domain. 

Events are referred to as occurrents and they are modeled using an UML diagram. A 

sequence of events is defined to specify movements which capture the dynamic 

experience of an entity as it travels through space. The authors used temporal logic to 

manipulate temporal relations between events and implicitly represent situations of 

interest. A sequence of events can be defined by a set of events ordered by their 

occurrence times. This approach limits the definition of dynamic situations of interest 

to events only, whereas other objects such as spatial objects, states and processes 

should be considered to represent complex spatiotemporal phenomena. 

Other definitions of spatiotemporal situations are offered by [Tan et al, 2009] , [Lin et 

al, 2009] and [Aigong, 2009] who proposed a set of 8 situations types and [Devaraju 

and Kauppinen, 2012] who proposed a semantic definition of events and a rule engine 

to reason about them.  

 

These works partially address the notion of situation of interest via the definition of 

events, states or processes. However, they do not consider possible relationships 

between these different entities to represent complex and dynamic situations. Finally, 

these works do not seem to be easy to integrate in software agent systems. 
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To overcome the above limitations, Haddad and Moulin proposed in [Haddad and 

Moulin, 2010] a novel definition of a spatiotemporal situation taking advantage of 

Desclés’s work. According to this French linguist [Desclés, 2005], a spatiotemporal 

situation can be either static (state) or dynamic (event or process). A dynamic 

situation allows for the explicit representation of change using temporal relations. 

Haddad and Moulin used the Conceptual Graph formalism [Sowa, 1984] to represent 

different types of situations. Using Conceptual Graphs (CG) makes their formalism 

closer to natural language and ready to be used by software agents. The various 

concepts introduced in their model are based on the ontological work introduced by 

[Grenon and Smith, 2004] where entities populating the world are either called 

endurant (static) or occurrent (dynamic). Haddad and Moulin proposed the 

conceptual model illustrated in Figure 2.16.  

 

 

 

Figure 2.16: A spatiotemporal model of situations [Haddad and Moulin, 2010] 

 

The endurant view defines static entities called geo-objects such as (buildings, trees, 

mountains, etc.) and actors (moving objects such as people, cars, etc…). Given the 

spatial position of geo-objects, their relations can be described using qualitative 

spatial relations such as topological relations, proximity relations and superposition 

relations. The dynamic view defines spatiotemporal situations such as states, events 

and processes inspired by Desclès’ definition. A state is a finite configuration of 
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some aspect of the world in a limited region of space that remains stable for a certain 

period of time.  

 

Figure 2.17 illustrates a CG example of a state describing that Dany was sick during a 

time interval and that Dany was in two different locations (Paris and Quebec).  An 

event as defined by the authors expresses a temporal occurrence that appears in a 

“static background”. An event may or may not change an aspect of the world from 

one state to another. This change can be represented using temporal relations as 

illustrated by Figure 2.18 where Before Situation and After Situation are temporal 

relations used to relate the states describing the current spatial location of the Actor 

“Hedi”. The event Spatial_Zone_Entry_Event describes the entrance of the actor in a 

specific spatial zone.  

 

 

 

Figure 2.17: An example of a state [Haddad and Moulin, 2010]  

 

Finally, a process expresses a change initiated by an event that marks the beginning 

of the process, and may have an end-event and a resulting state. An example of a 

process is illustrated in Figure 2.19 where the temporal relation During Situation is 

used to link a process to the current state of the world which holds during the process.  

 

The authors used the proposed spatiotemporal situation formalism to support “What-

if” reasoning and its particular application to the planning of course of actions 

(COAs). They implemented several scenarios from the aerial search and rescue 

domain (SAR) on a multi-agent geo-simulation platform called MAGS-COA 

[Haddad, 2009].  
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Figure 2.18: An example of an event [Haddad and Moulin, 2010] 

 

 

 

 

 

Figure 2.19: An example of a process [Haddad and Moulin, 2010] 
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2.6.1 Synthesis 

The approach proposed by Haddad and Moulin seems to be the most advanced one to 

represent situations of interest. While other works limit the definition of phenomena 

to events only, Haddad and Moulin’s approach is very promising thanks to the 

strength of the representation formalism used to represent dynamic situations (i.e. 

Conceptual Graphs and Desclés’ definitions). However, the authors did not provide a 

formal definition of situation of interest in their approach. Unlike Complex Event 

Processing, the framework proposed by Haddad and Moulin does not support 

contextual information and does not address the issue of detecting situation instances 

from a stream of data. This does not make this approach directly suitable for Big Data 

and Pervasive Computing applications discussed in Section 2.1.  

2.7 Qualitative Spatiotemporal representation and 

reasoning 

Temporal and spatial relations are widely used in most of the works which deal with 

different components of spatiotemporal situations of interest. They take advantage of 

recent advances in the spatiotemporal research domain to provide a set of tools and 

formalisms that help representing and reasoning about space and time in a qualitative 

manner. Actually, qualitative modeling is one of the key elements of knowledge 

representation. Forbus [Forbus, 2007] defines qualitative modeling as follows: 

“qualitative modeling concerns representation and reasoning about continuous 

aspects of entities and systems in a symbolic, human-like manner”. In other words, 

qualitative modeling makes a bridge between quantitative information (raw data) and 

the way a user considers this data in his mental model. People do not need to know 

about complex equations and mathematical theory to achieve everyday tasks by 

handling the common sense world of quantities, motion, time and space. A software 

agent may need to make decisions in a similar way as humans. Therefore, agents have 

to apply qualitative modeling and reasoning as abstraction means and to transform 

quantitative information into entities and symbols. In this subsection, we briefly 
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introduce some interesting aspects of qualitative spatial and temporal modeling which 

are major research subjects in Qualitative Modeling.  

2.7.1 Qualitative Spatial Representation and Reasoning 

Spatial knowledge can be represented using either a quantitative approach or a 

qualitative approach [Renz, 2002]. A quantitative spatial representation deals with 

numerical (classical) spatial information. Software agents which share a global 

coordinate system need to consider their local coordinate systems to reason about 

spatial objects. The exact position and properties of a spatial object must be known, 

which makes reasoning about inexact information difficult [Renz, 2002]. A 

qualitative approach allows for representing and reasoning about spatial objects 

without using exact numerical values. It rather uses a human-like vocabulary such as 

“far”, “close”, “inside” as possible spatial relations between spatial objects. This 

approach led to the definition of the Qualitative Spatial Reasoning (QSR). QSR is a 

subfield of knowledge representation and symbolic reasoning which deals with 

qualitative knowledge representation of the spatial domain; and reasoning using finite 

qualitative relations [Wolter and Wallgrun, 2013]. The term “qualitative” is used 

because the aim of QSR is to model human common-sense understanding of space. 

QSR has been mainly used in GIS-based applications. It has been also applied to 

several application domains such as Sensor Networks, Sensor Web, Path Planning 

and Robot Navigation, to name a few. According to [Cohn and Renz, 2007] most of 

QSR approaches deal with two aspects of space: spatial knowledge representation and 

qualitative spatial reasoning. In such applications, users need to query spatial data in a 

qualitative manner and to have an abstract view of numerical (quantitative) data to 

reason about spatiotemporal situations. In the following paragraphs, we review 

different spatial representation approaches and their related reasoning mechanisms.  

 

In a spatial knowledge representation, there are different ways to represent two spatial 

entities and to specify spatial relations between these entities using topological, 

distance or other relation types. In [Cohn and Renz, 2007] the authors proposed an 
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overview of different approaches related to qualitative spatial representation which is 

a major topic in spatial representation. It deals with the study of different spatial 

relations types that can be defined to link spatial entities. Usually, spatial relations are 

binary relations and they are applied to a given spatial domain. Hence, a spatial 

relation can take the form R={(a,b)| a,b ∈ 4} where D is the infinite spatial domain. 

Using algebraic operators such as union and intersection allows for the definition of 

an algebra of spatial relations between spatial entities. Different works on spatial 

relations tried to restrict relations to one particular aspect of space such as topology, 

shape and orientation. This resulted in the definition of four types of spatial relations 

as described in Figure 2.20: orientation (e.g. font of, right of), direction (e.g. right 

direction, left direction), distance (e.g. near, far), and topology (e.g. disjoint, equal, 

overlaps) [Holzmann and Ferscha, 2010].  

 

 

 

Figure 2.20: An example of spatial relations types [Holzmann and Ferscha, 2010] 

 

Direction relations describe the direction of one object relatively to another one using 

three basic concepts: the primary object, the reference object and the frame of 

reference. Therefore, using a binary relation is not sufficient to represent 

direction/orientation relations. The STAR algebra is one of the approaches proposed 

to define direction relations [Renz and Mitra, 2004].  
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Distance relations describe the proximity of objects. The notion of distance is one of 

the most fundamental primitives used in computational and common sense reasoning 

[Bera and Claramunt, 2003]. A distance relation can be absolute or relative. Absolute 

distance can be obtained by dividing a real line between two spatial objects into 

different sectors such as “close”, “very close” and so on. Relative distance can be 

obtained by comparing the distance to a relative spatial reference which may be a 

spatial entity for example. This gives relations such as “closer than”, “farther than” or 

“equidistant” [Renz, 2002]. Usually, a distance relation is metric-based; but it can 

also be defined using absolute and relative measurements. Recent works tend to 

consider other aspects of proximity in the definition of distance relations. These 

aspects are related to contextual information. For example, the distance between 

Quebec City and Montreal (which is about 250 Km) can be qualified as far according 

to a pedestrian and close according to a car driver. Hence, the transportation mean is a 

contextual information which can be combined with metric information to qualify the 

distance relation. Other researchers noticed that spatial proximity relations are vague. 

They used Fuzzy Logic techniques to better manage the vagueness of relations and to 

provide a smooth mapping from metric data to natural language quantifiers [Guesgen 

and Albrecht, 2000], [Brennan and Martin, 2006] and [Yao and Thill, 2007]. Using 

Fuzzy logic, it is also possible to use if-then rules to reason about spatial properties 

and to derive new distance relations. Another way to define distance relations without 

using distance metrics is the work of [Bera and Claramunt, 2003] who proposed a 

topology-based measure of proximity.  

 

The topological distinction between spatial entities is inherently qualitative and 

makes topological relations a widely used concept in human spatial reasoning 

according to [Renz, 2002]. It also makes the qualitative approach more popular than 

the quantitative approach in dealing with this type of relations. Examples of 

topological relations are “A is inside B”, “A overlaps B” and “A touches B” which 

are invariant regarding to any transformation occurring in the surrounding space 

[Renz, 2002].  One of the well-known approaches in topological relations in the 

Region Connection Calculus (RCC) which is a fully axiomatized first-order logic for 
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topological relations representation and reasoning [Cohn et al, 1997]. RCC is based 

on a single primitive relation between spatial regions which is the “connected” 

relation C. The topological interpretation of the relation C(a, b), where a and b are 

spatial regions, is that a and b are connected if and only if their topological closures 

share a common point [Renz, 2002]. Other relations can be derived using the 

definition of C(a, b). RCC-8 is a particular implementation of RCC which defined 8 

primitive relations depicted in Figure 2.21. DC(x, y) is the Disconnected relation, 

EC(x, y) is the Externally Connected relation, TPP(x, y) is the Tangential Proper Part 

relation, PO(x, y) is the Partially Overlaps relation, EQ(x, y) is the Equals relation, 

NTPP(x, y) is the Non-Tangential Proper Part relation. TPP-1(x, y) and NTPP-1(x, y) 

are respectively the converse of the non-symmetrical relations TPP(x, y) and NTPP(x, 

y). RCC-8 is one of the most popular approaches for topological relations in the 

literature. 

 

 

 

Figure 2.21: RCC-8 topological relations from [Renz, 2002] 

2.7.2 Qualitative Temporal Representation and Reasoning 

The notion of time can vary from one domain to another. In Philosophy and in 

Natural Language Processing, time can be considered as absolute or relative. In signal 

processing and mathematics, time can be discrete or continuous. In Event Processing 

Systems time can be defined as detection time and occurrence time. Detection time is 
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the time when an event is recorded by a system (as for example a database 

management system). Occurrence time is the time when an event occurred in the real 

world. In temporal databases, transaction time and valid time are defined. Transaction 

time is the time where information is recorded whereas valid time is the time when a 

phenomenon occurred [Haddad, 2009]. Other research communities addressed the 

notion of time from different perspectives. In Artificial Intelligence, [Chittaro and 

Montanari, 2000] divided temporal reasoning in two main subfields: reasoning about 

actions and change and reasoning about temporal constraints.  

 

Reasoning about actions and change focuses on the evolution of the world as the 

result of the occurrence of actions and events. Most of reasoning approaches are 

interested in the future prediction or the past interpretation of phenomena pursuant to 

the occurrence of events. This kind of reasoning is also called temporal projection 

and can be divided into two categories: forward projection and backward projection. 

Forward projection tries to deal with the following proposition: “if X is true at time t1, 

then Y is true at time t2, where �< ≤ �>”. Backward projection tries to find an 

explanation about what happened in the past (post-diction) and deals with the 

following proposition: “if X is true at time t2, then Y is true at time t1, where �< ≤ �>”. 

The Situation Calculus and the Event Calculus are among the well-known formalisms 

developed to deal with reasoning about actions and change. In these approaches 

possible relations between temporal entities such as points and intervals are 

implemented using the temporal logic proposed by [Allen, 1983] who proposed the 

well-known formalism for temporal representation and reasoning about time 

intervals. He defined a set of 6 temporal relations that are before, meets, overlaps, 

starts, during, finishes, and their inverses and the basic relation equal which gives 

thirteen relations in total (See Figure 2.22).  

 

Other time interval or point formalisms have been proposed in the literature such as 

Vilain’s and Kautz point algebra and Van Beek’s Continuous end point Algebra. A 

detailed review of these works can be found in [Chittaro and Montanari, 2000]. 
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Figure 2.22: Qualitative temporal intervals relations [Allen, 1983] 

2.7.3 Synthesis 

Spatiotemporal data plays a key role in spatiotemporal situation modeling. It helps 

users to better understand the temporal and spatial aspects of situations and to 

associate them with the surrounding environment. Our short survey on spatiotemporal 

analysis shows recent advances in this research area to offer a large variety of tools 

and approaches for qualitative representation and reasoning. In the spatial domain, 

RCC-8 is one of the most known and popular approaches for topological relations 

whereas Fuzzy Logic has been widely used for proximity relations. In the temporal 

domain, Allen’s temporal logic is the approach mostly used in the literature.  

2.8 Discussion 

We presented in this chapter a review of the main approaches, models and concepts 

that have been proposed to model spatiotemporal situations. We discussed the 

relevance of these approaches in the context of our thesis. Here we present a synthesis 

of these approaches in Table 2-1 where we outline the main features supported by 

each approach and its shortcomings.  In the following sub-sections, we review these 
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works from three different viewpoints. First, we discuss the way these works define 

spatiotemporal situations of interest. Then, we review how situations of interest are 

represented by these approaches and which reasoning capabilities have been 

proposed, if any. Finally, we address the issue of the integration of these formalisms 

in real applications and how situations of interest are managed and detected when 

they occur in the real world. It is worth mentioning that the above approaches use 

temporal and spatial relations in their situation modeling formalisms. They leverage 

the recent advances in Qualitative Spatiotemporal Reasoning techniques that we 

briefly presented in Section 2.7.   

2.8.1 Definition of Situation of Interest 

The definition of situation of interest varies from one research area to another. In 

Artificial Intelligence, situations are represented and manipulated using Situation 

Calculus and Event Calculus. In predicate-based approaches, patterns are used to 

represent and to reason about situations as proposed by [Gerhke et al, 2005] or 

[Lattner el al, 2006]. These patterns are expressed using events related by temporal 

and spatial relations. Patterns are also used by query-based approaches to query 

situations of interest from spatiotemporal databases.  

 

A similar approach was proposed by the Complex Event Processing research 

community where event-based patterns are used to represent situations. Most of these 

works consider events in the definition of situations of interest. [Haddad and Moulin, 

2010] proposed one of the approaches where situations are defined considering other 

spatiotemporal phenomena such as states and processes. The authors proposed an 

explicit definition of change by using temporal relations between states and events to 

represent dynamic phenomena and used an extension of Conceptual Graphs [Sowa, 

1984] to represent these situations in a qualitative manner. However, their formalism 

does not provide a clear definition of patterns since they only use situations to 

represent a state, an event or a process and are not able to represent relationships 

between them.  
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  Approaches Features Shortcomings 

Classical 

approaches 

(Artificial 

Intelligence) 

-Event based 

-Temporal relations support 

-Most used approach in 

spatiotemporal analysis 

-Frame problem 

-User needs familiarity with FOL 

-Limited expressiveness  

-Do not allow representation of 

dynamic situations  

Semantic based 

approaches  

-In-depth semantic definition of 

spatiotemporal phenomena 

-Qualitative representation, close to 

Natural Language 

-Explicit representation of change  

-Implicit representation of situation 

of interest 

-No integration with real complex 

systems 

-Need complex algorithms to detect 

situations 

-Contextual information is not 

supported 

Situation 

Awareness/Manage

ment 

-Multi-layers architectures to 

manage the flow of data from 

sensors. 

-Scalability 

-Heterogeneity 

-No explicit representation of 

situations 

-FOL based  

-Contextual information is limited 

to spatial information 

Predicates and 

query- based 

approaches  

-Pattern detection from large 

databases 

-Need complex algorithms for 

pattern matching 

-Time and resource consuming 

-Not suitable to build knowledge 

bases for intelligent systems 

 

Complex Event 

Processing 

-Integration in complex systems 

-Complex Event Processing engine 

for online pattern detection 

 

-User needs familiarity with SQL 

based languages 

-Contextual information is used for 

filtering purposes. 

-Dynamic situations are not 

represented 

 

Table 2-1: A summary of different approaches for situation of interest modeling 
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Another important aspect in the definition of situations of interest is contextual 

information. Human beings and software agents need to use situations of interest for 

decision making purposes. Therefore, the definition of situations of interest shall 

consider the human mental model which is context-based [Freksa et al, 2007]. 

Contextual information shall be considered when defining situations of interest. We 

already mentioned that theories such as Situation Management, Situation Awareness 

and Complex Event Processing attempt to integrate the notion of context into the 

definition of situations of interest. However, contextual information in these 

approaches is usually limited to spatial information (in Situation Awareness and 

CEP) and temporal information (in CEP).  It is also used for filtering purposes in 

CEP.   

 

Providing a novel definition of situations of interest from a cognitive perspective is a 

key step in this thesis. Several aspects shall be considered such as dynamic situation 

representation and support of contextual information. This is one of the main 

challenges of our thesis. 

 

The representation formalism of situations of interest shall be carefully selected to 

allow for expressing complex phenomena detected in the real world and for building 

knowledge bases to be used either by humans or by software agents. Our literature 

review showed that in predicate-based approaches and, generally in Artificial 

Intelligence, First Order Logic has be often used to represent situations of interest. 

This representation formalism is quite limited when it comes to deal with complex 

spatiotemporal situations. In the domains of spatiotemporal databases and in 

Complex Event Processing, extended versions of SQL languages are usually 

proposed [Sakr and Guting, 2010], but the resulting queries are too complex to be 

manipulated by human operators. They require people with advanced knowledge of 

these SQL-based languages and they are not suitable to easily build knowledge bases 

that can be used by software agents. [Haddad and Moulin, 2010] used Conceptual 

Graphs (CG) to represent and to reason about spatiotemporal situations. This 
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approach seems promising thanks to the advantages of the CG representation 

language and will be explored in the next chapters of this thesis.  

2.8.2 Integration of Situations of Interest in Large Scale Systems 

Another objective of this thesis is to propose a representation model of situations of 

interest which can be used in large scale monitoring and data acquisition systems. 

The proposed situation of interest formalism shall be easily integrated in such 

systems. Complex Event Processing is one of the promising approaches that help 

meeting such a requirement. Indeed, patterns representing situations of interest need 

to be detected on the fly from event streams which are continuously generated by 

distributed devices. Other works that deal with the semantic aspect of situations of 

interest such as [Haddad and Moulin, 2010] and [Gehrke et al, 2005], proposed some 

approaches to detect instances of these situations from simulated data (such as the 

MAGS-COA system in [Haddad, 2009]) or from real data. Moreover, theories such 

as Situation Management and Situation Awareness attempted to propose different 

architectures to manage the flow of data obtained from heterogeneous devices. These 

works tend to use algorithms closely related to the application domain in order to 

detect instances of situations. This makes the use of the proposed approaches in other 

application domains quite challenging. Hence, the Complex Event Processing 

technology remains one the best current options to manage patterns and to integrate 

their definitions in real applications. 

2.9  Conclusion 

In this chapter, we presented a short survey of different concepts and techniques 

related to spatiotemporal situations modeling. First, we introduced general concepts 

related to a new generation of large scale monitoring data acquisition systems where 

these situations can be identified. Then, we surveyed different works on 

spatiotemporal situation modeling. We also proposed a brief overview of qualitative 

spatiotemporal representation and reasoning techniques which are widely used in 
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situation modeling approaches. Finally, we discussed the relevance the surveyed 

approaches and their limits to achieve the objectives of this thesis. The next chapters 

of this thesis will present the different contributions that we propose to overcome the 

aforementioned limits. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 



 

57 
 

Part II 

Contributions 

 

 

 

Part II presentation 

One of the main objectives of this thesis is to propose a framework to qualitatively 

represent dynamic situations of interest and to facilitate reasoning about them. In 

Chapter 2 we discussed how dynamic situations of interest are usually referred to as 

patterns. In Chapter 3 we propose a formalism to qualitatively represent patterns 

using an extension of Sowa’s Conceptual Graphs and we provide some examples of 

such patterns using a case study.  

Spatial proximity is a key element of patterns that can be identified in several 

domains such as telecommunications and power distribution. We propose in Chapter 

4 an approach to qualitatively represent spatial proximity. We developed a software 

that combines numerical distance and contextual information and uses a NeuroFuzzy 

classifier to deduce spatial proximity quantifiers. The system input is a training 

dataset and a set of inference rules provided by human operators based on their 

experience about a specific application domain. The system output is a set of 

membership functions of spatial proximity quantifiers.  

Chapter 5 integrates our pattern model presented in Chapter 3 and our qualitative 

proximity tool presented in Chapter 4 in a pattern management framework. A case 

study from the power industry is presented to illustrate different aspects of this work.  
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 Chapter 3

Qualitative Representation of Dynamic 

Spatiotemporal Patterns 

Introduction 

In this chapter, we propose a framework for the qualitative representation of dynamic 

spatiotemporal patterns (DSTP for short), which corresponds to the first objective of 

this thesis.  As illustrated in Figure 3.1, our formalism aims at transforming raw data 

generated by different sensors geographically distributed in the real world in a form 

that agrees with the user’s mental model more closely. To this end, the proposed 

representation formalism uses spatiotemporal patterns applied to geo-referenced raw 

data as well as contextual information to represent situations of interest. The detected 

instances of these patterns will populate a knowledge base which can be used by 

humans to make decisions or by software agents to support the human decision 

making process.   

 

This chapter is organized as follows. Section 3.1 provides a definition of 

spatiotemporal patterns in the qualitative spatiotemporal reasoning domain. Section 

3.2 introduces the Conceptual Graph approach and explains our motivation to use it 

to represent DSTPs. Sections 3.3 and 3.4 are the core of this chapter since they 

introduce the formal definition of the dynamic spatiotemporal environment and the 

formal definition of DSTPs as well as the contextual information in the pattern 
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definition. Section 3.5 presents a case study in the power distribution domain and 

some application scenarios to illustrate the proposed approach. In Section 3.6 we 

discuss some challenges related to our DSTP formalism and Section 3.7 concludes 

this chapter. 

 

 
 

Figure 3.1: A dynamic STP model 

3.1 Definition of Dynamic Spatiotemporal Patterns 

In Chapter 1 we briefly discussed how situations of interest can be referred to as 

spatiotemporal patterns. In this section, we show how the notion of pattern can be 

used to represent situations of interest as perceived by human beings. We also 

provide a formal definition of spatiotemporal patterns which will be used in the rest 

of this thesis.  

3.1.1 From Situations of Interest to Spatiotemporal Patterns 

Human beings observe the world and find relevant links between phenomena and 

interpret the entailed observations according to the way they see the world [Political 

Psychology, 2003]. In fact, this is a cognitive process which is driven by the person’s 

interest in certain configurations appearing in the real world in relation to these 

phenomena. Such ‘configurations’ take a certain meaning for a person according to 

her mental representation of the environment or of the real world. We will refer to 
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this representation as the person’s mental model of the environment. These 

configurations will be called situations of interest in this thesis. We define a situation 

of interest as a set of correlated information (phenomena in our case) which 

represents a specific configuration of the real world.   

 

We also have the objective to enable software agents to reason about situations of 

interest in order to support humans in their decision making process, Hence, we need 

a knowledge representation formalism to represent situations of interest in a computer 

tractable form.  

 

For example, let us recall that renowned authors in Artificial Intelligence [Russell and 

Norvig 1995] have described how knowledge representation formalisms are used to 

translate humans’ perception of the world (‘facts’ or ‘situations’ in the context of this 

thesis) to statements or sentences that can be stored within software agents’ 

knowledge bases (Figure 3.2).  

 

 

 

Figure 3.2: Representation of situations of interest using patterns (adapted from 

[Russell and Norvig, 1995] 

 
Let us also recall that the spatiotemporal research community represents a situation of 

interest (corresponding to a fact in Figure 3.2) causing the notion of spatiotemporal 

pattern (corresponding to a sentence in Figure 3.2).  
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Several researchers attempted to model operational environments in a way that agrees 

with humans’ mental models. For example, [Freksa et al, 2007] proposed a cognitive 

approach to model humans’ mental representation of the spatial environment using 

spatial contextual information and the potential interactions between agents and the 

environment. Freksa defined three main components: 1) an agent A which is 

associated with a set of goals; 2) a spatial environment E where agent A evolves and 

about which it maintains a mental representation; 3) a map M which is used by the 

agent to enrich his level of spatial knowledge of the environment E. Figure 3.3 

depicts a simplified version of Freksa’s model with the aforementioned three 

elements and the relationships holding between them.  Relation R1 establishes a 

correspondence between the environment E and the mental representation of agent A.  

Relation R2 establishes a correspondence between the agent’s mental representation 

and the map M. The environment E may use the map M through relation R3. 

 

 
 

Figure 3.3: Agent decision model for way finding problem. Adapted from [Freksa, 

2007] 

 

Freksa’s approach will be an inspiration for our spatiotemporal pattern definition in 

the next section. The use of Freksa’s model is motivated by the fact that this model 

considers contextual information which plays a key role in human cognition. In 

Freksa’s model, contextual information is only related to the spatial information 

which is provided by the map M. Our pattern formalism will extend this model to 

consider other kinds of contextual information such as the temporal and semantic 
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contexts. Although several works proposed algorithms and frameworks to match and 

recognize patterns, we have found a limited number of pattern definitions in the 

spatiotemporal research area. The notion of pattern is more related to the discovery of 

noteworthy structures that may exist in a large dataset: these works can be mainly 

associated with data mining techniques.  

 

One of the pattern definitions found in the spatiotemporal analysis domain is 

provided by [Imfeld, 2000] which states that: “Regular structures in space and time, 

in particular, repeating structures, are often called patterns. Patterns that describe 

changes in space and time are referred to as spatiotemporal patterns”. Since we are 

interested in dynamic spatiotemporal situations of interest, we can extend Imfeld’s 

definition as follows:  

 

Definition 1: “Regular structures in space and time, in particular, repeating 

structures, are often called patterns. Patterns that describe one or a set of dynamic 

spatiotemporal situations are referred to as dynamic spatiotemporal patterns.”  

 

We use the notion of dynamic spatiotemporal situation which has a broader scope 

than the notion of change used by [Imfeld, 2000]. A dynamic spatiotemporal situation 

is a critical component of spatiotemporal patterns (STP for short) and it will be 

defined in the next sections.    

3.1.2 Conceptual Graphs for Spatiotemporal Pattern 

Representation 

One of the goals of this chapter is to propose a representation formalism of 

spatiotemporal patterns in a way that they can be manipulated by software agents. 

These patterns are used to structure the knowledge required by agents and humans for 

reasoning purposes. Conceptual Graphs (CGs for short) are one of the representation 
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schemes widely used for knowledge representation. According to Sowa [Sowa, 

1984]:  

 

Conceptual graphs (CGs) are a system of logic based on the existential 

graphs of Charles Sanders Peirce and the semantic networks of Artificial 

Intelligence. They express meaning in a form that is logically precise, 

humanly readable, and computationally tractable. With their direct 

mapping to language, conceptual graphs serve as an intermediate 

language for translating computer-oriented formalisms to and from 

natural languages. With their graphic representation, they serve as a 

readable, but formal design and specification language. CGs have been 

implemented in a variety of projects for information retrieval, database 

design, expert systems, and natural language processing.  

 

The CG formalism will be used in our pattern representation approach. This choice is 

motivated by several reasons. First, the CG formalism is a powerful knowledge 

representation formalism which offers an easy mapping from and to natural language. 

CGs are easily understood by knowledge experts who can quickly learn the 

formalism and easily use it to express spatiotemporal patterns.  Second, CGs are 

equivalent to first order logic and offer manipulation and reasoning capabilities based 

on several operations such as generalization, specialization and join of conceptual 

graphs, to name a few, by taking advantage of their graph-oriented structure. They 

also enable the specification of if-then rules to build a rule-based system which can be 

integrated in agents reasoning models. Third, CGs have been successfully used in 

various applications such as natural language processing, and in particular, in 

qualitative spatial reasoning and qualitative simulation. For example, Moulin 

[Moulin, 1997] presented a temporal extension of Allen’s formalism and proposed a 

temporal situation formalism. Mekni [Mekni, 2010] proposed a semantic abstraction 

of virtual geographic environments for multiagent geosimulation. [Arioua et al, 2014] 

used CGs in a query-answering system to access multiple data sources defined over a 

common ontology. In health care systems, [Kamsu-Foguem et al, 2014] used CGs to 
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represent clinical practice guidelines and protocols and to help users visualize 

different steps of the knowledge reasoning process. To the best of our knowledge, 

there is no existing work in the literature which uses CGs to represent spatiotemporal 

patterns. Using this representation formalism is one the original aspects of this thesis.  

According to Sowa [Sowa, 1984] a Conceptual Graph (CG) is a semantic network 

composed of concepts and conceptual relations. Concepts are representations of 

objects of the application domain. A concept is characterized by two elements: a type 

which represents the set of all the occurrences of a given class (i.e., human, animal 

etc.) and a referent which represents a given occurrence of the class that is associated 

with the concept (i.e., John, Mary, etc.). A CG can be represented using a graph 

notation and/or a linear notation. Using the linear notation, a concept is specified 

between square brackets: [TYPE-NAME: referent]. The concept types are classified 

within a type lattice whose root is the universal concept, denoted T. The type lattice 

supports operations on concepts such as generalization and specialization as well as 

the determination of the minimal common generalization and of the maximal 

common specialization of two concepts. A conceptual relation links two concepts or 

more. When it links two concepts, a conceptual relation is binary. Using CG linear 

notation, a binary conceptual relation is represented between brackets and is 

associated with concepts by means of arrows. The following example illustrates the 

linear representation and the graph representation of the sentence “A severe storm in 

Quebec City” 

 
[Event: Storm]- 

-(CHRC)�[Severe] 
-(loc)�[City: Quebec City] 
 
 

 
Figure 3.4: A Conceptual Graph example using linear and graph representations 
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3.2 A Dynamic Spatiotemporal Environment 

Spatiotemporal patterns are defined in a dynamic spatiotemporal environment where 

geo-referenced data is reported by different types of devices geographically 

distributed. Several works in the literature characterized dynamic environments. For 

example [Grenon and Smith, 2004] proposed to characterize a dynamic environment 

using two different layers. A static layer defines static objects of the environment 

such as geographic objects. A dynamic layer defines dynamic spatiotemporal 

situations called by Galton “occurrents”. A similar approach was proposed by 

Haddad and Moulin [2010] who introduced a static view and a dynamic view (Figure 

2.16) in their spatiotemporal situation formalism. In this thesis, for the 

characterization of our dynamic spatiotemporal environment we propose to extend 

this approach to include spatiotemporal patterns. Our conceptual model is depicted in 

Figure 3.5, where we characterize a spatiotemporal pattern by several components 

appearing in the endurant and the dynamic views. Each component can be 

represented by a knowledge structure called a concept. Since patterns are represented 

using conceptual graphs, they can be organized in a Concept Type Lattice [Sowa, 

1984].  In Figure 3.6 we present a concept type lattice that organizes concepts such as 

situation, context and spatial object and their specialized concept types. These 

concepts will be defined throughout the next subsections. 

 

 

 

Figure 3.5: Our conceptual model for spatiotemporal patterns. Adapted from 

[Haddad and Moulin, 2010] 
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Figure 3.6: An example of concept lattice including context specialization 

 

Let us mention that a Concept Type Lattice is used instead of a hierarchical tree 

structure because although trees are considered to be the simplest hierarchies (where 

each type except the top has only one immediate super-type), they cannot represent a 

type which has two supertypes. For example, the type Building has Location and 

Spatial Context as super-types. A lattice allows types to have multiple immediate 

super-types [Sowa, 1984]. 

3.2.1 Spatial Objects  

Spatial objects are defined as spatial entities which are part of spatial regions. Spatial 

regions are part of the “container view” called Space which is the entire spatial 

universe according to [Grenon and Smith, 2004]. A spatial object has its own borders 

that distinguish it from other objects in the environment. Borders can be concrete for 

objects such as buildings, roads and mountains or abstract for objects such as cities 

and countries. Spatial objects belong to the endurant view. They capture individual 
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things extended in space that can be identified and described by properties and 

relations. Spatial objects can be classified into object types based on shared properties 

and relations [Kuhn and Ballatore, 2015]. 

3.2.2 Spatial Relations 

Spatial relations are used to describe the relative spatial position of entities defined 

by spatial attributes. They are usually binary relations [Cohn and Renz, 2007]. 

Generally, spatial relations are categorized into three families: directional/orientation 

relations, distance relations and topological relations. An overview on these spatial 

relations was already presented in Chapter 2. Figure 3.7 depicts the spatial relation 

inside which links two spatial objects (a Sensor and a Building) using the CG linear 

notation. 

 

 
 

Figure 3.7: An example of a topological relation between a Sensor and a Building 

using a Conceptual Graphs representation 

3.2.3 Dynamic Spatiotemporal Situations 

Spatiotemporal situations are part of the dynamic view as described by Figure 3.5. A 

situation is a finite configuration where objects that are part of this situation, have 

properties and are related to each other [Sowa 1984]. When a situation evolves in 

time and is defined with regards to spatial attributes and entities from the 

environment, it is called a spatial-temporal situation. According to [Desclés, 1985], 

situations can be categorized in two types: static situations and dynamic situations 

(Figure 3.8). Static situations remain stable during a given time interval and no 

change on the subject described by the situation is observed. Dynamic situations 

define changes in time and space references. A change is a transition from one state 
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to another (Figure 3.9). Dynamic situations can be either categorized as events or 

processes. To conclude, a spatiotemporal situation is based on two main aspects: 

  

- It can be static or dynamic. When static, it is named a state. When it is 

dynamic, it can be either an event or a process.  

- Changes from one state to another are trigged by the occurrence of events or 

of processes. 

 
 
 
 
 
 
 
 

 

 

 
Figure 3.8: Static and dynamic situations according to Desclés 

 

 

 
 
 
 

Figure 3.9: A change from one state to another triggered by the occurrence of an 

event 

 

Our spatiotemporal pattern model will be used to represent situations of interest 

defined in the context of large data acquisition systems existing in the 

telecommunication and the power distribution industries. In these applications, 

dynamic situations can be represented using states and events. Consequently, only 

states and events will be considered in the definition of spatiotemporal situations in 

this thesis, although the model proposed by [Haddad, 2009] included the concept of 

process to represent complex geographic phenomena. However, the formalism that 

Situation 

Static Dynamic 

Process Event 

Initial State Final State 
Event 
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we propose will allow for extending this definition to include the concept of process 

and to represent more complex situations if needed in future applications. This may 

be useful in other domains such as weather monitoring (for example, a thunderstorm 

can be represented as a process) and multi-agent geo-simulation.  

3.2.4 Temporal Relations 

Examples of temporal relations are A occurred After B, A Meets B and so on. The 13 

qualitative temporal interval relations that have been introduced by Allen in his 

interval algebra [Allen, 1983] are used for this purpose, with the difference that we 

are not concerned with a continuous time and we deal only with discrete time. Moulin 

proposed an extended version of Allen’s logic using CG representation formalism. He 

considered “Before” and “During” as two primitive relations [Moulin, 1997].  

Considering two time intervals A and B, BT and ET respectively correspond to Begin 

Time and End Time for a given time interval. The temporal relation Before(A, B) 

holds if we have the following conditions: BT(A) < ET(A); BT(B)<ET(B) and 

BT(A)<BT(B).  

 

Considering the operation DB which stands for distance between the BT(A) and 

BT(B), and DE the distance between the ET(A) and ET(B) the relation During(A, B, 

DB, DE) holds under the following constraints: BT(A) < ET(A); BT(B < (ET(B); 

BT(A) ≥ BT(B); ET(A) ≤ ET(B); BT(A)-BT(B)=DB and ET(B)-ET(A)=DE. Figure 3.10 

illustrates an example of the During relation with all the corresponding parameters. 

 

 
Figure 3.10: Illustration of time intervals according to [Moulin, 1997] 

 

Temporal relations can be used to link two situations together or one situation and a 

temporal reference. In Conceptual Graphs, they can be represented using conceptual 
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relations. Figure 3.11 depicts an example of the temporal relation Before used to link 

the event Storm and the temporal reference 12:00 AM. 

 

 
 

Figure 3.11: An example of temporal relation using Conceptual Graphs 

representation 

3.2.5 State  

A state is part of the dynamic view. It is defined, according to [Desclés, 1994], as a 

“static situation describing the stability and the non-change”. We use the state 

representation and the during temporal relation proposed by Haddad [Haddad, 2009] 

who extended the temporal situation formalism proposed by Moulin [Moulin, 1997] 

to support the spatial attributes of a spatiotemporal situation. A state is a 

spatiotemporal situation with the following elements: 

• A pair (situation type, situation referent) where situation type takes the value 

of a state type from the state type hierarchy and situation referent is a 

reference to the state instance. The type hierarchy is a knowledge structure 

based on the CG formalism used to represent concept types and relation types.   

• State Propositional Content (SPC) which is a knowledge structure describing 

the state. This structure is non-temporal, which means that it does not contain 

any time reference. 

• State Time Interval (STI), which is a knowledge structure that allows for 

representing the temporal information associated with the state. 

• State Spatial Attribute (SSA), which is a knowledge structure that represents 

the spatial information associated with the state. 
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Haddad and Moulin [2010] extended the graphical representation of CGs to allow for 

a compact representation of these four elements. Figure 3.12 depicts an example of a 

situation identified by #FiberState describing the state of a fiber optic link identified 

by #QuebecMontreal during the period between July 17th and 24th 2013. The fiber 

status is normal. Note that it is possible to have a state without the “ET” attribute 

(ET= end time) which means that the state has not changed yet. Figure 3.13 depicts 

an example of a degraded state of the fiber optic at distance 23 Km, without end time. 

Figure 3.14 illustrates the CG linear notion of the state given in Figure 3.12. 

 

 

 

Figure 3.12: A state describing a normal fiber state. The state is defined in a time 

interval between July 17th at 10:00 AM and July 24th at 05:33 PM. 

 

 
 

Figure 3.13: A state describing a degraded fiber state. The state is defined at distance 

23Km of a fiber link between Quebec and Montreal 

 

 

 

Figure 3.14: A state represented using CGs’ linear notation 
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3.2.6 Event 

Events are also part of the dynamic view. They can be defined according to two 

dimensions: 1) The semantic dimension, which aims at studying the meaning of 

events and at defining its significance in the geospatial world and 2) The 

representation dimension which aims at defining the programming entity used to 

represent the event object [Etzion and Zolotorvesky, 2010]. In the semantic 

dimension, Haddad [Haddad, 2009] adopted Desclés’s event definition as a “temporal 

occurrence that appears in a static background, which may or not change a state in 

the world”.  

 

Other researchers proposed event definitions. Luckham [Luckham, 2002] defined an 

event by “something that happens in reality”. [Cole and Hornsby, 2005] stated that: 

“events capture happenings or activities in a domain that require intervention, for 

example, a system-generated notification that evidence of a significant concurrent 

has been detected in the database”. Galton [Galton, 2004] defined two types of 

events: punctual events and durative events. Punctual events mark the onset or 

termination of states of affairs (for example, an object is starting to move). The OGC 

[2015] proposed a similar definition which states that an event is an action that occurs 

at an instant or over an interval of time. In our model, we consider an event as a 

happening and we only consider punctual events as proposed by [Cole and Hornsby, 

2005]. All these models used a similar event structure. The event is defined by an 

event type, an event identifier, a temporal attribute (either time or time interval) and 

other attributes that may vary from one approach to another. For example, if the event 

is defined in a geospatial domain, the spatial attribute is specified in the event 

definition. Usually, an event type is defined to allow event instantiation.  

 

In the Complex Event Processing research community, Etzion [Etzion and 

Zolotorvesky, 2010] proposed a general structure for an event object containing three 

main structures: a header which contains the meta-data about the event, a payload 
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which contains specific information about the event occurrence and finally an event 

relation, which is optional and handles semantic relationships between events.  

 

Since an event means something that happens and results in a change from one state 

to another, several works attempted to consider to notion of change in the event 

model. For example, Cole and Hornsby [Cole and Hornsby, 2005] proposed a model 

where all events (called occurrences) have a spatial attribute, a time stamp and a 

spatial attribute named “expected next” that allows for representing what is the next 

spatial zone reached by a mobile object.  

 

Using temporal relations Haddad [Haddad, 2009] proposed a more generic approach 

where an event is a spatiotemporal situation linking two states. We use this approach 

in our model because it explicitly represents change using temporal relations between 

an event and the initial and final states. This is an important issue in large scale data 

acquisition systems where a user needs to know the state of the system before and 

after the event’s occurrence.  

 

We define an event as a spatiotemporal situation with the following elements: 

• A pair (event type, event referent), where event type takes the value of an 

event type from the event type hierarchy and event referent is a reference to 

the event instance. 

• Event Propositional Content (EPC), which is a knowledge structure 

describing the event. This structure is non-temporal, which means that it does 

not contain any time reference. 

• Event Time Stamp (ETS), which is a knowledge structure that allows for 

representing the temporal information associated with the event. 

• Event Spatial Attribute (ESA), which is a knowledge structure that represents 

the spatial information associated with the event.  
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We use temporal relations to link the event occurrence with the state holding before 

it, as well as with the state which holds after it. Moulin’s formalism [Moulin, 1997] 

introduced in Section 3.2.4 is used to represent temporal relations. Figure 3.15 

graphically illustrates an instance of an event of type break that occurred on a fiber 

optic link between Quebec City and Montreal.  The break occurred at distance 125 km 

at 05:33 PM and changed the state of the fiber optic from “normal” to “broken”. Note 

that the state which comes after the break event has a begin time only; whereas the 

state that comes before the break event has a time interval delimited by BT (Begin 

Time) and ET (End Time). In addition, spatial information about the event may be 

present in the resulting state to provide further information about the position where 

the break occurred (at distance 125 km). 

 

 
 

Figure 3.15: An event representation using temporal relations to link with the state 

before the occurrence and after the occurrence 

3.2.7 Summary on the Spatiotemporal Situation Representation 

The definition of spatiotemporal situation (state or event) is mainly adapted from 

Haddad’s model [Haddad, 2009]. This choice was motivated by several reasons. 

First, the spatiotemporal situation definition is compatible with most of the event and 

state definitions in the literature. It integrates spatial and temporal attributes, which 
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makes it agree with the spatiotemporal environment defined in Freska’s model 

(introduced in Section 3.1). Second, the spatiotemporal situation definition considers 

both states and events and allows for representing dynamic situations whereas other 

works in the literature restrict their definitions to events. Third, the proposed model 

uses the conceptual graph formalism, which makes it expressive and human readable. 

This was one of the requirements for our spatiotemporal pattern representation. States 

and events can be related by temporal relations. Spatial relations can be used in 

situation definitions to relate the events’ spatial attributes. Now that we presented our 

representation of a dynamic spatiotemporal environment and the main concepts 

related to it, we present in the next section our spatiotemporal pattern definition and 

we propose some pattern types. 

3.3 Dynamic Spatiotemporal Pattern 

A spatiotemporal situation is defined as a finite configuration involving states and 

events, spatial and temporal relations. Different configurations representing these 

situations may generate different pattern types. Some existing works recommend 

using predefined pattern types. Among them, the OGC initiative [OGC, 2015] 

submitted a work proposal with a classification of pattern types. Although this work 

is not in its final stage, we will use it in our pattern classification. Four types of 

patterns are defined: simple pattern, repetitive pattern, complex pattern and timer 

pattern.  

 

Using our definition of spatiotemporal situations in the previous sections, we 

introduce here the concept of qualified spatiotemporal situation which is a key 

element of our definition of spatiotemporal patterns. Then, different pattern type 

definitions will be proposed. 
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3.3.1 Qualified Spatiotemporal Situation 

When an agent reasons about a situation, it often needs to “locate” it relatively to the 

environment. To this end, it can use the situation’s spatial and temporal attributes. 

Such a cognitive activity is also called qualification [Galton, 2004]. Agents need to 

qualify situations with regards to a temporal or spatial reference because a situation 

may be interpreted in different ways. For example, a cyclone observed by a city 

habitant can appear as a storm for another village habitant because both habitants who 

are qualifying such an event are located in two different spatial regions and observe 

the cyclone with two different time references [Galton, 2004]. Hence, we introduce 

the concept of a qualified spatiotemporal situation (qualified STS for short) in the 

following definition: 

 

Definition 2: A qualified STS is a situation which has a qualifying relation (temporal 

and/or spatial) that qualifies its temporal and/or spatial attributes relatively to the 

environment.  

 

 
 

Figure 3.16: An example of a qualified situation 
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Figure 3.16 illustrates an example of a qualified STS describing the following 

configuration: a “Break Event” event type occurred at distance “125 km” on the 

spatial object “Fiber #QuebecMontreal” and inside the spatial object building of type 

“central office”.  

3.3.2 Simple Pattern 

A simple pattern is a qualified spatiotemporal situation. It is a finite configuration 

that can represent change in space and time and can be perceived by software agents 

or humans when recognizing phenomena that occurred in the environment. Therefore, 

we consider a qualified STS as the simplest way to define a spatiotemporal pattern.   

 

Definition 3: A simple pattern is a spatiotemporal situation that represents a change 

in space and time and that can be qualified using spatial and/or temporal relations 

relatively to the environment.  

This definition restricts the use of STS to only events since states do not represent 

changes in space and time. Indeed, an event may represent change when using 

temporal relations relating the event to a state before and to another state after its 

occurrence. 

 

From the above definition, a simple pattern can take one of the following 

configurations: 

• An event which triggers a change from one state to another. This is the 

simplest pattern configuration. 

• An event which triggers a change from one state to another and whose its 

temporal attribute is qualified by a temporal reference. 

• An event which triggers a change from one state to another and which has a 

spatial attribute qualified in relation to a spatial object. 

• An event which triggers a change from one state to another and which has a 

spatial attribute qualified in relation to a spatial object, and which has a 

temporal attribute qualified in relation to a temporal reference. 
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• A state cannot be a spatiotemporal pattern since it does not represent a 

change. 

 

A simple pattern is represented by a knowledge structure with the following 

elements: 

• A pair (simple pattern type, simple pattern referent) where simple pattern 

referent is a reference to the simple pattern instance. 

• A Simple Pattern Propositional Content (SPPC) which is a knowledge 

structure describing the simple pattern. This is basically the qualified 

spatiotemporal situation.  

 

 

 

Figure 3.17: Structure of a simple pattern  

 

Figure 3.17 presents the structure of a simple pattern. Figure 3.18 illustrates an 

emergency pattern example where a fiber state changes to break after the occurrence 

of a break event at a certain distance.  Figure 3.19 illustrates another example where 

the non-occurrence of an event (expressed by the negation operator “¬”) is 

considered as a communication error pattern and may require the verification of the 

corresponding sensor. Such a type of pattern can be very useful in sensor-based 

monitoring systems. A sensor can be in a healthy status but may not be able to report 

observations due to a communication failure. At the occurrence of such a pattern, a 

field technician may investigate the communication link to repair it.   
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Figure 3.18: An example of a simple pattern  

 

 
 

Figure 3.19: A simple pattern example using the negation operator 

3.3.3 Complex Pattern 

A software agent can be programmed to monitor or observe dynamic phenomena. 

During its observation activity the agent may detect interesting configurations that 

usually involve several STSs. A single STS can be interpreted and qualified to 

produce a simple pattern. However, such an interpretation may change when one STS 

is related to one or even several other STSs. When several STSs are related using 

spatial or temporal relations, they define what we call a Complex Pattern.  
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Definition 4: A complex pattern is a set of simple patterns related by spatial and/or 

temporal relations.  

 

Two possible configurations can be present in a complex pattern: 

Case 1: When a spatial relation links two simple patterns, the relation is established 

between the event spatial attributes of each simple pattern. 

Case 2: When a temporal relation links two simple patterns, the relation is established 

between the event temporal attributes of each simple pattern.   

 

In our representation model, a complex pattern is a knowledge structure which has 

the following elements: 

• A pair (complex pattern type, complex pattern referent) where complex 

pattern referent is a reference to the complex pattern instance. 

• A Complex Pattern Propositional Content (CPPC) which is a knowledge 

structure describing the complex pattern. The content of this knowledge 

structure is basically a set of simple patterns related by temporal and/or spatial 

relations. It is worth noticing that temporal and spatial relations are binary. 

However, one simple pattern can be related to n simple patterns by n 

spatial/temporal relations.  

 

 

 

Figure 3.20: Structure of a complex pattern  
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Figure 3.20 illustrates the structure of a complex pattern and Figure 3.21 illustrates a 

complex pattern example where the temporal relation after is used to link the simple 

pattern Communication Error to the simple pattern Emergency.  

 

 

 

Figure 3.21: A complex pattern example where the communication_error_pattern is 

related with the temporal relation after to the emergency_pattern 

3.3.4 Timer Pattern 

Some patterns can be qualified relatively to temporal information. Temporal 

information can be: 
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• A position in time (or temporal reference). For example Monday, April 16th 

2015 10:05:03 AM; 

• A time interval.  

 

Definition 5: A timer pattern is a pattern qualified with regards to a temporal 

information provided by a system clock.  

 

In our representation model, a timer pattern is a knowledge structure which has the 

following elements: 

• A pair (pattern type, pattern referent) where pattern referent is a reference to 

the pattern instance. The pattern type can be simple or complex. 

• A Timer Pattern Propositional Content (TPPC) which is a knowledge 

structure describing the pattern.  

• A Timer Pattern Content (TPC) which is a knowledge structure describing the 

temporal information. A temporal relation is used to link the PPC to the TPC. 

 

Figure 3.22 illustrates an example of a timer pattern describing a communication 

error on a sensor occurring after 24 hours and Figure 3.23 presents the general 

structure of the timer pattern. 

 

 

 

Figure 3.22: An example of a timer pattern 
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Figure 3.23: Structure of the timer pattern 

3.3.5 Repetitive Pattern 

In some applications, the repetitive pattern can be used to count the matches for a 

simple of a complex pattern instances. For example, a System Engineer may be 

interested to detect when a sensor reported a connection failure 5 times so that he can 

send someone to inspect the communication link between the sensor and the 

monitoring system.    

 

Definition 6: A repetitive pattern is the repetition of a sub-pattern for a specific 

number of times.  

 

In our representation model, a repetitive pattern is a knowledge structure which has 

the following elements: 

• A pair (repetitive pattern type, repetitive pattern referent) where repetitive 

pattern referent is a reference to the repetitive pattern instance. 

• A Repetitive Pattern Propositional Content (RPPC) which is a knowledge 

structure describing the pattern which will be repeated.  
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• A Repetitive Pattern Count (RPC), which is the number of repetition of the 

sub pattern.  

 

Figure 3.24 presents the structure of the repetitive pattern and Figure 3.25 illustrates 

an example of a repetitive pattern describing a communication error on a sensor 

occurring 6 times. 

 

 

 

Figure 3.24: Structure of the repetitive pattern 

 

 

 

Figure 3.25: An example of a repetitive pattern 
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3.3.6 Conclusion 

The core elements of our pattern formalism are events and states which allow for 

representing dynamic situations. We proposed in this section a number of pattern 

types that may be used in real time data acquisition systems. The representation 

formalism allows for the definition of other patterns types suitable to specific 

application domains. Thanks to CGs, our patterns can serve as knowledge base for 

software agents. As discussed in Section 3.1, the agents may have a mental model of 

the environment and may have their own interpretation of situations of interest 

according to contexts.   

3.4 Contextual Information 

In this section, we discuss how contextual information can be integrated in our 

spatiotemporal pattern definition to enhance agent’s reasoning capabilities. Our 

literature review in Chapter 2 showed that contextual information is not supported by 

most of spatiotemporal pattern models. In this section, we adapt Frekas’s model 

introduced in Section 3.1 to include contextual information in our pattern formalism. 

Let us first discuss the role of contexts in pattern definitions. Then, we study how 

context can be defined in our pattern formalism and we propose a formal definition. 

3.4.1 The role of context in knowledge representation  

Generally speaking, a given entity can have properties which have different meanings 

when this entity is evaluated in some contexts. In other words, context is defined as 

additional information in the perceptual/cognition level which allows for “perceiving 

or recognizing something that is actually not there” [Toussaint, 1978]. In the 

knowledge representation community the relationship between context and 

knowledge is a debated issue. [Bastien, 1998] states that “context cannot be separated 

from the knowledge it organizes, the triggering role context plays and the field of 

validity it defines”. According to Toussaint, the use of context tackles three main 
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problems in pattern recognition: disambiguation, error correction and filling the gap. 

Filling the gap means providing more information which is missing to reason about 

the related pattern.  McCarthy [McCarthy, 1993] states that “formulas are not just true 

or false; they are true or false is some contexts”. Patterns which play the role of 

formulas here can be also true or false in some contexts. They are interpreted in some 

contexts and may assign different meanings about the situations of interest that occur 

in the world.  

3.4.2 How to Define Contexts in Patterns? 

Now that we have discussed the role of context in knowledge representation, let us try 

to find a suitable context definition for our pattern formalism. In Artificial 

Intelligence, people agree that no clear and final definition of context can be 

provided. It is difficult to find a context description common to most disciplines 

[Bazire and Brezillon, 2005]. Pervasive Computing is one of the domains where the 

concept of context is very popular. For example, in location-aware applications, 

contextual information is related to spatial information and used to help software 

agents track objects positions and adapt their goals [Chen and Kotz, 2000]. Even in 

context/location aware applications, a clear definition of context is missing and tends 

to be more focused on the spatial aspect and does not consider other dimensions 

(temporal, semantic, etc..).  

 

In Complex Event Processing, context is defined relatively to the sole notion of 

event. For example, context according to [Sharon and Etzion, 2008] “specifies the 

relevance of the events participating in pattern detection”. The authors define three 

types of contexts: temporal context, spatial-based context and semantic-based 

context. [Adi et al, 2003] states that context partitions the space of events according 

to several dimensions; temporal, spatial, state-based and semantic. These two 

definitions are adopted by the Complex Event Processing research community. They 

tend to partition the so-called event cloud into multiple instances and do neither 

consider other pattern components nor the cognitive aspect of the application. They 

use context for event filtering purposes. In contrast, our pattern definition does not 
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consider only events but also involves other components such as states and spatial 

objects.  

 

Brezillon [Brezillon, 1999] worked on the context definition for more than 25 years 

and he concluded that since context does not have a clear definition, it is better to 

design a knowledge model that takes into account contextual information and helps in 

making decisions. A similar conclusion was drawn by [Freksa et al, 2007] who 

proposed an approach to model context from a cognitive perspective using a modular 

architecture. 

 

In our model, we adopt Freksa’s approach, where the context is defined from a 

cognitive perspective in order to provide additional information that helps agents to 

interpret spatiotemporal patterns. We use Freksa’s model as an inspiration to define 

the relationship between contexts and spatiotemporal patterns.    

3.4.3 Our Definition of Context in Patterns 

Figure 3.26 depicts an overview of the approach that we propose. The relation R1 

between the Agent (A) and Environment (E) defines the way A perceives situations 

of interest using our pattern model. These patterns can be interpreted according to 

contextual information defined by the relation R2 between the agent A and the 

context base C. In our model, the context base C contains three types of contextual 

information: M (map) for the spatial information as defined in Freksa’s model, S 

(semantic) and T (temporal).  

 

Formally, a context is a knowledge structure expressed using an extended form of 

Conceptual Graphs having the following elements: 

- A pair (context type, context referent) where context type is a concept type 

that takes values depending on the application domain.  

- Context Propositional Content (CPC) which is a knowledge structure 

describing the contextual information according to the context type.  
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Figure 3.26: Our approach to model support contextual information in our 

spatiotemporal pattern formalism 

 

The most used context types in the Pervasive Computing and Event Processing 

domains [Etzion and Zolotorvesky, 2010] are semantic context, temporal context and 

spatial context.  

 

Semantic context is a non-temporal and non-spatial information that can be added to 

characterize the related pattern. “National Holiday” or “Vacations” are examples of 

semantic contexts that can be used to characterize patterns. Temporal context is a 

temporal information structure that can be a time interval or a single time reference. 

Spatial context is a spatial information structure. Context referent is the identifier of 

the instance of the context type in our definition. 

 

Figure 3.27 depicts an example of a spatiotemporal pattern with a semantic context of 

type National Holiday. In some applications, a pattern that occurs during a national 

holiday may have a special meaning and require a special attention from decision 

makers.  
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Figure 3.27: A pattern definition using contextual information 

3.4.4 Conclusion 

We introduced the contextual information in our pattern definition by extending 

Freksa’s model. Our definition goes beyond spatial context and includes temporal and 

semantic contexts. Moreover, the contextual information is represented using a 

conceptual graph.  

 

Introducing the contextual information in the spatiotemporal situation model is an 

original aspect of the model proposed in this chapter. Since in the literature classical 

pattern definitions use query based languages, they are limited in terms of 

expressiveness and do not make use of contextual information. Other semantic-based 

models such as [Tan et al, 2009], [Lin et al, 2009] and [Aigong, 2009] do not support 

contextual information either. In Complex Event Processing, contexts are used for 

filtering purposes whereas our model uses contextual information to extend the 

interpretation of situations of interest.  
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In the next section, we present a case study to illustrate some examples of patterns 

that may be detected to represent situations of interest in the domain of Power 

Distribution. 

3.5 Case Study: Outage Management Systems 

Since this thesis is defined in the context of large scale monitoring and data 

acquisition systems, we apply our pattern model to the Power Distribution domain 

and in particular to Outage Management Systems (OMS). We define qualitative 

spatiotemporal patterns to detect interesting dynamic spatiotemporal situations and to 

help agents making decision about crew assignment and outage status in a 

distribution network. This case study will provide some examples of the use of 

spatiotemporal patterns by agents in their decision making process. Consequently, 

some assumptions are proposed for simplification purposes. We assume that pattern 

instances are already populated in a given knowledge base and are accessible by 

agents. Here, we address neither issues related to data collection from the event 

cloud, nor the automated agent interaction with the environment and pattern detection 

aspects. 

3.5.1 Background 

An increasing pressure from customers (residential, commercial and industrial) and 

media is placed over electric distribution companies to supply reliable information 

about outage in their distribution network. An OMS is a computer system used by 

operators of electric distribution systems to assist in restoration of power 

[Chakravarty and Wickramasekara, 2014]. Using OMS mainly aims at reducing the 

outage time in the distribution or transmission network for power utilities and at 

keeping customers updated about the real time status of an outage in the network. To 

this end, an OMS offers a variety of capabilities. It needs to predict the location of 

electric devices such as switches and breakers that opened during a failure. It also 

needs to identify faulty electrical devices such as the transformer or the cable that 
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caused the outage. Furthermore, it can help prioritize restoration efforts based on 

several criteria such as the location of emergency facilities, crew availability, crew 

expertise, and the outage size.  

 

An OMS is usually designed to integrate information from several software 

applications. A GIS is used for spatial network modeling and to locate the outage 

when the related event is reported. An outage event (or “incident”) can be reported in 

different ways. The first source of outage information is the Supervisory Control and 

Data Acquisition System (SCADA) which is a system designed to monitor the status 

of electrical devices in real-time, stores acquired information in historian3 databases 

and reports the information when a fault occurs. The second source of outage 

information is the Interactive Voice Response (IVR) which is a software application 

that answers customer’s phone calls, routes information, compiles information and 

recalls customers as programmed. Besides outage information, the OMS is connected 

to a Customer Relation Management (CRM) system. A CRM is a software 

application that manages customers’ information and profiles. It manages billing 

information and stores customers’ requirements and preferences. These systems are 

used by the OMS to achieve two main goals: keeping customers informed about the 

status of an outage and dispatching the crews according to several criteria. Figure 

3.28 depicts an overview of a standard OMS architecture.  

 

The main function of an OMS is to help managing crews and to update customers 

with the real time outage status in their respective regions. Figure 3.29 depicts an 

example of an outage map where an outage is associated with a particular area. The 

number of outages can be grouped by subareas. The number of customers affected 

and the estimated restoration time is displayed.  

                                                 
3 A historian is the term used in the electrical power industry referring to a software application that 

logs time-based process data and records trends in a database for future reference. 
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Figure 3.28: Different components of an Outage Management System 

 

 
 

Figure 3.29: An outage map in the State of New York [conEdison, 2013] 

3.5.2 Proposed Approach 

We propose to develop a software agent that correlates information collected from 

several data sources and establishes relationship between them to identify interesting 

situations. Data sources which belong to the environment may be static or dynamic. 

Static data sources provide information such as states and geographic data. Dynamic 

OMS

GIS
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SCADA
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data sources (such as sensors) provide information about outage events. The agent has 

its own contextual information and may correlate it with data provided by OMS 

sources in order to interpret interesting situations. Based on the result of this 

interpretation, an agent can suggest solutions for crew assignment and updates the 

outage status. 

 

Software agents’ reasoning models can be classified in four categories according to 

[Russel and Norvig, 1995]: simple reflex agents, agents that keep track of the world, 

goal-based and utility-based agents.  In our approach, we adopt a goal-based agent 

architecture. An agent maintains a list of goal specifications stored in the Goal 

Specification module. The agent’s reasoning module uses contextual information, 

retrieves information from different data sources (mainly sensors) and uses its mental 

representation of the environment to detect instances of patterns. Actions will be 

taken according to the agent’s goals which are updating the outage status and 

assigning crews to the new/existing outages according to crews’ availability and to 

the occurrence of outages in the same outage area.  Figure 3.30 illustrates an example 

of our agent’s reasoning model adapted from [Russel and Norvig, 1995]. 

 

In order to implement our spatiotemporal pattern model, we use the Amine Platform 

[Kabbaj, 2006] to define CGs, to build a knowledge base and to define the reasoning 

mechanisms used by agents. Amine is a Java based multi-layer platform designed for 

the development of intelligent and multi-agents systems [Kabbaj, 2006]. CG 

structures and operations in Amine can be called using Java APIs. The Amine 

platform provides rule-based functions expressed in the PROLOG+CG language 

which is an extension of PROLOG using the Java object oriented language and 

Conceptual Graphs.  
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Figure 3.30: Our agent's reasoning model  

3.5.3 System Architecture 

The global system architecture that we propose is depicted in Figure 3.31 where 

outage sensors are deployed throughout the distribution network. They are mounted 

on power cables and report events by sending a message using an industrial 

communication protocol such as DNP (Distributed Network Protocol) [IEEE, 2010] 

or Modbus [Cena et al, 2014] to a centralized SCADA using a wireless cell 

communication (GSM or CDMA). The retrieved messages are located using a GIS 

which is also used to model the distribution network. The Amine knowledge base 

(KB layer) is used to store the pattern specifications and the detected pattern 

instances. Amine’s Prolog +CG layer is used by agents to identify relevant patterns 

and to update the environment with action results.  

3.5.4 Pattern Specifications 

We propose two types of patterns: simple patterns and complex patterns. Simple 

patterns are used to represent situations where only one event occurs. Complex 

patterns are used for more complex situations where there are temporal and spatial 

relations holding between situations. A simple pattern is expressed using Amine’s 

linear CG notation and is illustrated in Figure 3.32. It represents the following 

situation:  
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“An event type OutageEvent occurs near an area (here defined as Outage Area), the 

resulting state of the cable is Broken and the crew status is free”.  

 

 
 

Figure 3.31: A system architecture involving the outage management system and the 

interaction with the goal-based agent 

 

[Normal_Outage_Pattern]-
-Pattern_Description->[Proposition : [[OutageEvent]-

-Before->[[CableState]-status->[Broken]]]         
-near->[Outage_Area]]

-Context_Description->[Proposition : [ElectricCrew]-attr->[CrewStatus="Free"]]

 

 

Figure 3.32: An example of simple pattern with linear notation 

 

Thanks to temporal relations between events and states, it becomes possible to 

represent the change that occurred on a specific cable after the occurrence of the 

outage event. Such a feature is very important in this kind of systems to enhance the 

users’ decision making capabilities. In some cases, an outage can be reported but it 
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may not necessarily be related to a cable break. Hence, a user may need to investigate 

other elements of the network. When an agent detects an instance of such a pattern, it 

performs two actions: first, it assigns a crew to the corresponding area to fix the 

problem. Second, it updates the outage map using the outage information. Both 

actions can be achieved using Prolog+CG programs:  

1. Assign_Free_Crew:-SimplePattern_With_ContextInfo 

(_Simple_Pattern,Environment) which assigns the crew to the outage event,  

 
2. UpdateOutageMap(_Simple_Pattern,Environment) which updates the outage map 

with the information on the related event information. 

Figure 3.34 shows an example of the Prolog+CG console output when the action 

AssignFreeCrew is performed. Note that the agent can change the crew status and 

retrieve it using CG rules as illustrated by Figure 3.33. Therefore, the next time an 

outage event occurs, the agent’s contextual information will indicate that the crew 

belonging to this specific area is already assigned and that there is a need to find 

another alternative. Additional details about the agent’s reasoning model and the 

environment configuration in PROLOG+CG is given in the Appendix section.  

 

 

 

Figure 3.33: An example of rule used for crew assignment 

 

In some cases a user may be interested in situations which involve more than one 

event. For example, the complex pattern illustrated in Figure 3.35 represents the 

following situation: 

  

“An event type OutageEvent occurs near an area (here defined as _Area). Before 

that, a communication error event occurred on a sensor in the same area”. 
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Figure 3.34: Output of the action AssignFreeCrew in the Prolog+CG console. 

 

 

 

Figure 3.35: A complex pattern representation. 
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This is a typical use case in monitoring systems. A sensor can be out of service and 

the system detects an outage event in the same area, but reported by another sensor. 

Such a situation can occur during a storm where sensors are in service but some 

communication links have failed. Hence, the storm can be used as contextual 

information in the pattern definition. When such a pattern is detected, the crew should 

repair the outage and inspect the sensor and fix the issue. Note the presence of the 

negation operator in the structure of the communication error event which means that 

the non-occurrence of an event can be considered as an event by a user.  

3.6 Discussion 

This case study shows how spatiotemporal situations play a key role in an OMS 

where software agents need to detect patterns using information collected from 

different data sources. An agent can also use its own contextual information to make 

decisions giving spatiotemporal situations, resulting in different interpretations from 

one agent to another. Using the CG formalism enhances agents’ reasoning 

capabilities about spatiotemporal patterns. We proposed a cognitive approach which 

integrates contextual information to better interpret spatiotemporal patterns. Although 

agent’s reasoning capabilities are enhanced using our spatiotemporal formalism, the 

proposed approach is far from offering a complete solution to manage patterns. There 

are several issues that still need to be addressed.  

 

First, the proposed approach uses qualitative spatial and temporal relations. Mapping 

temporal relations from quantitative data to qualitative quantifier is supported thanks 

to Moulin’s model [Moulin, 1997]. However, our formalism does not allow for a 

smooth mapping from quantitative spatial data to qualitative spatial relations. In the 

next chapter, we address this issue by proposing an intelligent spatial proximity tool 

to qualify spatial proximity relations using a neurofuzzy classifier and contextual 

information. This particular attention to proximity relations is motivated by the 

application domains used in this thesis where proximity is very often used in pattern 

definitions.  
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Second, we assumed in our case study that pattern instances are stored in a specific 

knowledge structure. This is not the case in practice where events, states and 

spatiotemporal situations in general can be represented in a heterogeneous way, with 

different semantics and structures and can be generated by distributed data sources. 

Although Conceptual Graphs provide an approach that helps matching pattern 

instances to pattern definitions, they remain limited to manage and to process a large 

dataset. For example, if n events are generated by i different data sources 

(where	�	��)		 ∈ 	ℕ) how does Amine platform handle these events? Which events 

will be selected to detect a specific pattern instance? Which knowledge structure will 

be used to carry these events? What will happen to the selected events?  

Our formalism for spatiotemporal situations is based on states and events but it does 

not integrate the concept of process to represent more complex situations. This may 

be useful in some specific domains such as weather monitoring (for example, a 

thunderstorm can be represented as a process) and multi-agent geo-simulation. The 

integration of the notion of process in our pattern definition may raise some 

challenges related to pattern detection which could not be addressed by existing 

technologies. For this reason, we propose to address this issue in future works. 

 

Finally, most of Conceptual Graph tools and in particular the Amine platform, do not 

offer temporal and spatial operators. Furthermore, these CG tools cannot be easily 

integrated in existing monitoring applications such as SCADA, OMS and Sensors 

Web systems. The issue of integrating our pattern model in existing monitoring 

systems is quite challenging and will be addressed in Chapter 5 of this thesis. 

 

It is worth mentioning that the main content of this chapter has been published in the 

International Conference of Conceptual Structures held in Iasi, Romania in 2014 

[Barouni and Moulin, 2014a].  Using Conceptual Graphs in the context of Big Data 

applications is a new topic in the Conceptual Structure research community and may 

give the opportunity to explore several interesting research aspects in the future.  
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3.7 Conclusion 

In this chapter, we proposed our model for spatiotemporal pattern representation and 

reasoning. The proposed formalism uses a qualitative approach to represent patterns 

instead of using query languages such as most pattern definitions currently proposed 

in the literature. Moreover, it allows for representing dynamic spatiotemporal 

phenomena thanks to the extension of Haddad’s model [Haddad, 2009]. Another 

original aspect of our representation formalism is that it integrates contextual 

information. Using contextual information allows users and software agents to have 

their own interpretation of situations of interest according to their mental models of 

the environment. Other works in the literature as reviewed in Chapter 2 do not use 

context to enrich patterns definitions and to offer different interpretation of situations 

of interest. Finally, we proposed a qualitative representation model extending the 

Conceptual Graph formalism and we implemented some examples using the Amine 

platform. Using Conceptual Graphs allows making the representation of qualitative 

spatiotemporal situations of interest close to Natural Language and hence allows 

users to more easily understand and represent spatiotemporal patterns.  

 

Moreover, some challenges related to qualitative spatial relations and pattern 

detection should be addressed to facilitate the integration of our pattern model to real 

applications in the industry. These issues will be addressed in the next chapters of the 

thesis. 
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  Chapter 4

Using a Neuro-Fuzzy Classifier to 

Automatically Generate Spatial Proximity 

Quantifiers 

Introduction 

In Chapter 3, we proposed a spatiotemporal pattern formalism using Conceptual 

Graphs.  A spatiotemporal pattern involves spatial and temporal relations between its 

various components. These relations are expressed in a qualitative manner. In 

particular, we give a special attention to spatial proximity relations which are widely 

used in real-time monitoring and data acquisition systems for decision making 

purposes. Figure 4.1 illustrates an example where the qualitative spatial relation 

“near” qualifies the distance between an outage event and a distribution cabinet.  
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The notion of proximity is one of the fundamental concepts in daily human cognition 

studied by researchers over the last decades. Several authors proposed tools to reason 

about proximity and solutions which can be automated and integrated in a GIS. The 

goal is to reduce the semantic gap between quantitative data in GIS (metric distance) 

and qualitative data (proximity) as used by humans [Cohn and Renz, 2007]. Such 

works used advanced qualitative techniques (such as fuzzy sets and fuzzy logic) as 

well as conceptual notions such as influence and impact areas. Other empirical works 

have also been conducted. However, spatial distance is not the only factor that 

influences human reasoning about spatial proximity. Actually, proximity relations 

have two characteristics: they are context dependent and uncertain. For example, the 

means of transportation used to travel from Paris to London may change the traveler’s 

perception of distance (context-dependence). When a person parks a car, she does not 

need to know the exact distance of the empty space between two cars (uncertainty). A 

suitable model of spatial proximity should consider both characteristics in order to be 

closer to the human apprehension of proximity.  

 

Figure 4.1: A simple pattern example using a qualitative spatial relation 

 

In this chapter, we propose a novel approach to represent and reason about spatial 

proximity. The approach is based on contextual information and uses a neuro-fuzzy 
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classifier to handle the uncertainty aspect of spatial proximity. Neuro-fuzzy systems 

[Negnevitsky, 2011] are a combination of neural networks and fuzzy systems and 

incorporate the advantages of both techniques. While Fuzzy systems are focused on 

knowledge representation, they do not allow for the estimation of membership 

functions. Conversely, neuronal networks use powerful learning techniques, but they 

are not able to explain how results are obtained [Gliwa and Byrski, 2013]. Neuro-

fuzzy systems benefit from both techniques by using training data to generate 

membership functions and by using fuzzy rules to represent expert knowledge 

[Borkar et al, 2013]. Moreover, contextual information is collected from a knowledge 

structure. The complete solution that we propose is integrated in a GIS, enhancing it 

with proximity reasoning capabilities.  

 

This chapter is organized as follows. Section 4.1 gives an overview of some research 

works on qualitative spatial proximity and outlines their limitations. Section 4.2 

presents an overview of the neuro-fuzzy classifier used in our approach. Section 4.3 

presents the experiments that we carried out to validate our approach and the results. 

Section 4.4 presents the architecture of our qualitative proximity tool. Section 4.5 

concludes this chapter and discusses some research outlooks.  

4.1 Qualitative Spatial Proximity 

Spatial proximity reasoning is a research area which has been addressed by the 

qualitative spatial reasoning community, adopting different perspectives such as 

geography, cognitive science and linguistics [Yao and Thill, 2007]. A large number 

of prior works used Fuzzy Logic and qualitative techniques to deal with spatial 

proximity because it has inherent fuzziness [Robinson, 1990]. While reasoning with 

proximity, human beings may also consider metric distances and other parameters 

referred to in the literature as contextual information. In the following sub-sections, 

we present an overview of some works which used uncertainty techniques and 

contextual information or a combination of them.  
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4.1.1 Distance-Based Approaches 

[Guesgen, 2002] used fuzzy sets and associated each set with a qualitative spatial 

relation. The idea behind Guesgen’s approach is to interpret qualitative proximity 

relations between spatial objects as restrictions of spatial linguistic variables such as 

near and far. Each linguistic variable is associated with a fuzzy set. The proximity 

relation is therefore represented by a membership degree of each of these fuzzy sets 

using a membership function. For example, the expression “the object A is near the 

object B” may be interpreted by a near membership value which is associated with 

each near relation between object A and surrounding objects such as B, C and D. 

Generally, the nearest an object is to A, the highest its membership value is (Figure 

4.2).  

 

 

 

Figure 4.2: An example of possible proximity relations between two objects [Schultz 

et al, 2007] 

 

[Schultz et al, 2007] implemented Guesgen’s formalism using the Euclidian distance 

between two objects. A Java-based software helps a user to define a “nearness” factor 

which will be used to specify other proximity relations. Then, the user can query 

spatial objects using proximity relations. Figure 4.3 shows a query example searching 

for spatial objects of type Cables (blue lines) moderately near spatial objects of type 

Buildings (transparent red boxes). 
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[Brennan and Martin, 2006] stated that most fuzzy-based proximity formalisms 

proposed in the literature suffer from an important shortcoming: membership 

functions are not clearly defined. To overcome this limitation, they used Gahegan’s 

approach [Gahegan, 1995] who proposed a method to identify spatial proximity using 

three factors: the absolute distance, the relative distance between two spatial objects 

and the combination of both. An absolute distance may be a spatial relation such as 

very close, close and far. A relative distance may be a spatial relation such as closest 

or farthest. The combination of both absolute and relative distances was defined by 

Gahegan to reason about spatial relations using a fuzzy union operator.  

 

Since Gahegan did not use experimental data to validate his approach, [Brennan and 

Martin, 2006] proposed an approach to evaluate membership functions and showed 

how they can be combined using fuzzy logic operators. To this end, they used the 

absolute distance membership function FGHI(&, J) proposed by Gahegan. This 

function is presented in Table 4-1 where A and B are spatial objects, Dist(A,B) is the 

absolute distance between A and B. Max is the maximum distance between all the 

places in the data set and it is used to normalize the value of Dist(A,B). The authors 

used the function FKLM(&, J) proposed in [Worboys, 1996] to compute the relative 

distance membership function, where reldis(A,B) is the relative distance between A 

and B which is calculated using the distance between A and B; and divided by the 

mean of the distances between A and every object in the data set (see Table 4-1).  

 

Absolute Distance Metrics FGHI(&, J) = 1 − 4N�(&, J)O��  

Relative Distance Metrics FKLM(&, J) = 1(��	)N(&, J) + 1) 

Fuzzy Union FQRSH_T(&, J) = O&U(FGHI(&, J), FKLM(&, J)) 

Fuzzy Intersection FQRSH_C(&, J) = OV-(FGHI(&, J), FKLM(&, J)) 

 

Table 4-1: Fuzzy distance as proposed by [Brennan and Martin, 2006] 
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Figure 4.3: A Java-based proximity platform developed by [Schultz et al, 2007], 

where fuzzy quantifiers are used to query spatial objects 

 

The results of the experiments conducted by [Brennan and Martin, 2006] 

demonstrated that the absolute distance and relative distance membership functions 

can be used separately and generate linear distributions. However, using the union 

operator to combine these metrics gives clustered distributions and may not be 

relevant for proximity reasoning whereas fuzzy intersection gives better results. The 

authors proposed to use the fuzzy union and they implemented their approach in a 

GIS. However, they neither expressed the meaning of fuzzy intersection in terms of 

spatial proximity, nor justified the use of fuzzy logic since fuzzy rules were not used. 

Moreover, the way such an approach can be applied to qualitative spatial reasoning 

was not clearly discussed.  

 

In [Worboys et al, 2004] the authors addressed the issue of possible relationships 

between the geometric notions of proximity and direction. They discussed human 

conceptual models of an environmental space, and possible combinations of 

proximity and directional relations. They also addressed the issue of granularity of 

vague space relations. To this end, Worboys and colleagues conducted an empirical 
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study involving a number of observations of people having the same background and 

belonging to the same spatial domain (students on campus). Despite the small size of 

the dataset used in these experiments, some interesting findings were drawn. First, 

there exists a context-dependent relationship between the cognitive aspect of nearness 

(nearness as perceived by humans) and geometric distances. Second, combining 

direction (i.e. leftness) and proximity (i.e. nearness) enhanced the efficiency of 

qualitative spatial reasoning.   

4.1.2 Context-Based Approaches 

Other works on spatial proximity started from the observation that proximity is 

context-dependent. For example, [Brennan and Martin, 2012] proposed a conceptual 

framework to qualitatively represent spatial proximity and to enhance the capacity of 

spatial reasoning systems using contextual information. They considered contextual 

information as a key element in any model of spatial proximity. For example, a 

degree of proximity to an object may vary if the object is meant to be seen or reached. 

To reason about spatial proximity, Brennan and Martin introduced the notion of 

impact area which is a generalization of the influence area concept introduced by 

[Kettani and Moulin, 1999]. An influence area is a portion of space surrounding an 

object: it has an interior and exterior border such that the borders of the influence area 

and the border of the object have the same shape [Kettani and Moulin, 1999]. 

Euclidean geometry has been used by Kettani and Moulin to compute the width of an 

influence area. Brennan and Martin proposed a more generic approach motivated by 

the fact that spatial proximity is more than a metric measure. Proximity is rather 

context dependent. Furthermore, other spatial relations such as topological and 

directional relations have some unified views within the research community. Hence, 

they introduced the impact area concept which involves contextual information to 

qualify spatial proximity. The impact area of an object takes into account both the 

nature of the object and its surrounding environment. Some examples in [Brennan 

and Martin, 2012] demonstrate how an impact area is more generic than an influence 

area, and how this notion uses contextual information in proximity analysis. As 

described in Figure 4.4, contextual information is defined as any “information 
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collated by an expert who is expected to incorporate all relevant factors into the 

impact area”.  Figure 4.5 illustrates the difference between an influence area and an 

impact area for two couples of objects. Objects A1 and B1 are water tanks and objects 

A2 and B2 are radio towers. The distance between A1 and B1 is equal to the distance 

between A2 and B2. The influence area of water tank is equal to the influence area of 

radio towers because all objects have the same shape and size and because they are 

located at the same distance from each another. If we consider the functionality of the 

towers (range of frequency) and the surrounding Cliff, the impact areas will be 

different. 

 

 

Figure 4.4: A conceptual framework proposed by Brennan and Martin to compute 

impact area from contextual information and geographic distance. 

 

 

Figure 4.5: An example of difference between influence areas [Kettani and Moulin, 

1999] and impact area [Brennan and Martin, 2012] 
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According to [Yao and Thill, 2007] proximity relations have two main characteristics. 

The first one is that a proximity relation is context dependent. These authors 

classified context factors as ‘objective’ and ‘subjective’. Subjective context factors 

may have different values according to the involved person. Examples include the 

navigator’s familiarity with the area, his time and his budget. Objective context 

factors have values which do not depend on the person who perceives the distance 

like the type of activity (run, walk), object reachability and transportation mode, to 

name a few. The second characteristic of proximity is the uncertainty of distance 

measures. If a person wants to park her car, she does not need to know the exact 

distance between her car and the other cars around. The authors proposed a review of 

existing approaches based on fuzzy logic to handle the uncertainty aspect of 

proximity measures and they noticed that most of these works preset the form of 

membership functions. To overcome this limitation, Yao and Thill proposed a novel 

approach based on neuro-fuzzy techniques which allows for reasoning with spatial 

proximity by considering contextual information and by handling its uncertainty 

aspect. Neuro-fuzzy systems, take advantage of both techniques by using training 

data instead of preset membership functions and by using fuzzy rules to represent 

expert knowledge. The general architecture of the neuro-fuzzy system for proximity 

modeling proposed by Yao and Thill is depicted in Figure 4.6. The contextual factors 

used in Yao and Thill’s approach (objective and subjective) take the form of crisp 

inputs. They are fuzzyfied using membership functions which can be preset by an 

expert. Fuzzyfied outputs are generated as consequences of applying all fuzzy rules. 

The final output (either fuzzy or crisp) is calculated through defuzzification using the 

weighted average of fuzzyfied outputs. Yao and Thill used ANFIS (Adaptive 

NeuroFuzzy Inference System) to implement and validate their approach. ANFIS is a 

Takagi-Sugeno fuzzy inference system [Nauck and Kruse, 1999]. It uses a back 

propagation algorithm to train the fuzzy neural network. This algorithm computes the 

error between the training data and the neural network output and uses the error to 

adjust the rules’ weights. The experimental results demonstrated that a neuro-fuzzy 

approach gives higher prediction accuracy when training data and testing data are 

compared. Finally, the proposed approach allowed for overcoming the problem of 



 

110 
 

using preset membership functions reported by the authors and by [Brennan and 

Martin, 2006]. 

 

 

 
Figure 4.6: A general architecture of the neuro-fuzzy system for proximity modeling 

proposed by [Yao and Thill, 2007] 

4.1.3 Discussion 

Several metric-based approaches used advanced qualitative techniques to represent 

and reason about spatial proximity. For example, using fuzzy sets allows for a smooth 

mapping from quantitative to qualitative distances using fuzzy quantifiers close to 

natural language, thanks to the use of so-called linguistic variables [Zadeh, 1965]. 

Later, it has been shown that metric distance is not necessarily the only factor that 

influences the human cognitive apprehension of spatial proximity.  

 

A suitable model of spatial proximity should acknowledge other factors such as 

contextual information as claimed by [Brennan and Martin, 2012]. However, their 

work suffers from two main shortcomings: first it only allows for reasoning about 

nearness. There is no clear definition of other proximity relations such as “far” and 

“close to”. Therefore, it is difficult to relate their definition of impact area with 

different proximity relations used by humans and by GIS solutions. Second, the 

definition of impact area seems to be particularly domain-specific. Examples 
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provided by the authors do not clearly explain how and from where contextual 

information is obtained and how contextual information can influence the spatial 

proximity. Therefore, implementing this work in a generic GIS is quite challenging. 

[Yao and Thill, 2007] proposed an innovative solution to reason about proximity by 

using contextual information to handle the cognitive aspect and by using neuro-fuzzy 

techniques to handle the qualitative aspect of spatial proximity. Although Yao and 

Thill’s approach is quite suitable for qualitative spatial reasoning, it suffers from 

several drawbacks. The neuro-fuzzy system used for the implementation of their 

approach for their experiments is ANFIS which is an approximation system [Nauck 

and Kruse, 1999]. ANFIS’ output is a crisp value, which does not help in 

“classifying” the spatial proximity. Usually, given a number of context factors, a 

user/agent tries to answer the following question: what is the proximity relation 

between object A and object B? Possible answers are very near, near, far or very far. 

We believe that qualitative proximity is a classification problem rather than an 

approximation problem. Furthermore, Yao and Thill proposed a general architecture 

to implement their solution and conducted experiments to prove its relevance. 

However, their solution was not integrated in a GIS.  

 

In the next sections, we propose a new framework to reason about qualitative 

proximity with the following features: first, a neuro-fuzzy classifier (NFC) is used 

instead of ANFIS in order to handle the uncertainty aspect of proximity. Second, we 

integrate the proposed solution in a GIS to enhance its qualitative proximity 

reasoning capabilities. Figure 4.7 illustrates the general architecture of our approach. 

A user specifies contextual information and fuzzy rules to generate training data. This 

dataset is used by the NFC to train the fuzzy inference system and to generate 

qualitative proximity quantifiers that will be used in the qualitative proximity tool. 

An overview of the NFC structure used in our approach is presented in the following 

section. 
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Figure 4.7: An overview of the proposed approach 

4.2 The Neurofuzzy Classifier Structure 

The structure of a neuro-fuzzy system is similar to a multilayer neural network. In 

general, a neuro-fuzzy system has one input layer, one output layer, and three hidden 

layers [Negnevitsky, 2011]. In neuro-fuzzy classification systems, the feature space is 

partitioned into multiple fuzzy subspaces which are managed by fuzzy rules. Rules 

are represented by a network structure and their parameters (weights) are optimized 

using learning techniques.  

A fuzzy classification rule �; establishes the relation between the input feature 

spaces and classes (output). It is defined as follows: 

 

�C: �	�Q<	N	(C<	��)……		�QW 	N	(CW	��)	�QA	N	(CA	�.��	�*�#*�	:	�NN	N	/X 

 

Where �QWis the 3th input variable of the cth sample; (CWdenotes the fuzzy set of the 3th 
feature in the th rule; and /Y represents the Yth label of class. (CW is associated with a 

suitable membership function [Sun and Jang 1993]. Using fuzzy rules allows for 

splitting the feature space into multiple fuzzy subspaces. These rules can be 

represented by a neural network. Figure 4.8 depicts an example of a space partition of 

two inputs x1 and x2. Each input (feature) has three fuzzy sets described by linguistic 

variables. Hence, for this example there are nine fuzzy rules overall.  
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Figure 4.8: Partition of the feature space [Sun and Jang, 1993] 

  

A neuro-fuzzy classifier is a multilayer network with six layers. The first layer is the 

input layer (also called “features”). The last layer is the output layer (also called 

“classes”). The other layers are defined as follows. 

 

Membership layer: each input is identified using fuzzy sets and each fuzzy set is 

associated with a linguistic variable. Fuzzy sets are represented by membership 

functions. According to [Cetişli and Barkana, 2010] bell-shaped functions are the 

most used functions in neuro-fuzzy classifiers since these functions have fewer 

parameters and smoother partial derivatives. Such a function is used for this layer and 

is defined as follows: 

 

FCWZ�QW[ = exp	(− Z�QW − :CW[
>

2_>CW )										`Cetişli	and	Barkana, 2010l		 

 

Where FCWZ�QW[	 is the membership grade of th rule and 3th feature; �QW represents the 

cth sample and 3th feature; :3 and _3 are the center and the width of bell shaped 

function, respectively. The membership functions of input variables x1 and x2 of 

Figure 4.8 are examples of bell shaped functions.  
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Fuzzification layer: Each node in this layer is a fuzzy rule. The antecedent of the 

fuzzy rule is a fuzzy set. The output is a singleton membership function. The fuzzy 

rule premises become weights for the rule neurons of this layer [Gliwa and Birsky, 

2013]. The conclusion of a rule is a connection from the rule neuron to the next layer. 

Each node in this layer has an activation function which corresponds to the degree of 

fulfillment of the fuzzy rule for the �QW sample.  The activation function �CQ of a fuzzy 

rule is defined as follows: 

 

�CQ = ∏ FCWZ�QW[AWn< 	 `Gliwa	and	Birsky, 2013l   

 

Where n is the total number of features. 

 

Defuzzification layer: In this layer, according to its weight each rule affects each 

class. The more a rule influences a class, the bigger is the weight between that rule 

output and the specific class. Otherwise, the class’s weights are small. The weighted 

output for a given sample x that belongs to a class k is computed as follows: 

 

sQX =	t�CQuCX
v

Cn<
	`Do	and	Chen, 2013l 

Where uY denotes the degree of belonging to the Yth class that is controlled by the th 
rule and Z represents the number of rules [Do and Chen, 2013].  

 

Normalization layer: Depending on the defuzzification method, the weighted sum 

may generate a value greater than 1. Therefore, this sum should be normalized using 

the following formula: 

  

-QX = z{|
∑ z{~�~��

 [Do and Chen, 2013] 
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Where -QX is the normalized value of the cth sample that belongs to the Yth class and 

� is the number of classes.  

 

Finally, the output class Cc is the maximum of normalized values given by the 

normalization layer:  

 

/Q = ���Xn<,>,…..,X�-QX�	`Do	and	Chen, 2013l    

 

Figure 4.9 depicts a neurofuzzy classifier network and the different layers mentioned 

above. This network has two input features namely X1 and X2 and three output 

classes namely C1, C2 and C3. 

 

 

 

Figure 4.9:A neurofuzzy classifier, adapted from [Cetişli and Barkana, 2010] 
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4.3 Implementation Details 

After briefly presenting the structure of a neuro-fuzzy classifier in the previous 

section, we present our approach to build a qualitative spatial proximity 

representation and the associated reasoning tool. The creation of this tool was 

achieved in several steps that are detailed in the next subsections.  

4.3.1 Training the Neurofuzzy Classifier 

One of the advantages of using a neuro-fuzzy classifier is that membership functions 

and rules can be learned from data sets. If (v×A and  /v×A are the sigma and the 

center values of the bell membership function; and �v×� is the weight matrix of 

connections from the fuzzification layer to the defuzzification layer; then � =
{	(v×A, /v×A, �v×�} is the set of parameters that will be optimized by the learning 

algorithm. 

 

Several training algorithms have been proposed for neuro-fuzzy classifiers [Do and 

Chen, 2013]. However, the scale conjugate gradient (SCG) is one of the most 

efficient algorithms with less errors and high efficiency. This algorithm was enhanced 

and implemented in a software package by [Cetişli and Barkana, 2010]. We use this 

algorithm to train our data set. A detailed overview of the training algorithm can be 

found in [Cetişli and Barkana, 2010].  

 

We adapted a Matlab implementation of the NFC which has been developed by 

[Cetişli and Barkana, 2010]. This program first trains the NFC; then it generates the 

fuzzy inference system parameters that are used by the qualitative proximity 

reasoning engine. In this section, we present how data sets were prepared to train the 

NFC and we present the obtained results. 
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We use Yao and Thill’s definition of contextual information to select the NFC inputs.  

The contextual information is objective when variables are selected independently of 

the person who perceives the distance. The contextual information is subjective when 

variables are dependent on the person who perceives the distance. We use Euclidian 

distance as the objective contextual information. The transportation mean is one of 

the most popular contextual information used by humans to qualify proximity. Since 

a dataset was generated from user’s experience about Quebec City, we realized that 

cars are the main transportation mean in this city. Therefore, we decided to use 

another subjective contextual information instead. In our approach we used road 

traffic and user’s familiarity with the area as subjective contextual information. Four 

classes are used for the proximity output (close, medium, far and very far). It is worth 

mentioning that Euclidian distance is used for simplification purposes. For other 

experiments, a distance between two geographic features can be computed using a 

path planning software or using various GIS functions available either in web-based 

or desktop applications. Table 4-2 and Table 4-3 detail the chosen NFC inputs and 

outputs. 

 

 Variable name Fuzzy sets Range 

Euclidian distance Close, medium, far 0-500 KM 

Traffic Light, medium, heavy 0-1 

User familiarity with the site Week, average, good 0-1 

 

Table 4-2: NFC features (inputs) 

 

Classes Value 

Close 1 

Medium 2 

Far 3 

Very Far 4 

 

Table 4-3: NFC Classes (outputs) 
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To train the NFC, the data set shall be separated into two sub-sets. The first set is 

used to train the NFC and the second one is used to test the generated NFC 

parameters. We conducted our experiments with the help of a surveyed population 

based in Quebec City. Hence, a data set with 300 samples has been prepared using 

locations in Quebec City. 150 samples are used to train the NFC and 150 samples are 

used to test the trained NFC. To generate the different classes (outputs) in the sample 

data set, the user defined a fuzzy inference system (FIS) with 13 rules taking 

advantage of his experience and familiarity with the spatial environment. An example 

of these rules is displayed in Figure 4.10.  

 

  

 

Figure 4.10: Fuzzy rules used to prepare the data set 

 

The data set has been created using a specific area which is delimited using a square. 

All distances are computed between geographic objects that belong to this particular 

area. Therefore, the training results will be valid only for this specific area. If the 

selected area changes, the NFC training must be repeated for the new area. Each 
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feature is associated with three fuzzy sets which are represented by a bell shaped 

membership function. The FIS uses a Sugeno-type system [Nauck and Kruse, 1999] 

to calculate the weighted sum of the fuzzy rules output for each sample vector. The 

FIS gives a crisp output with a float number which is not suitable to make a decision 

about which class the proximity belongs to. Therefore, we apply a “ceil function4” to 

extract from the float number the related class. An algorithm to automate data 

generation is described by the pseudo-code in Table 4-4. 

 

Algorithm 1: NFC dataset preparation 

Generate Data Set (V, O)   

Variables: 

V: vector of inputs 

O: output of the FIS 

1. Get all the geographic objects inside the training area. 

2. Compute the Euclidian distance between the objects. 

3. For each distance between two geographic objects,  

4.                Assign two contextual information 

5.                Save in the Sample Data Set 

6. End For 

7. Load Sample Data  

8. For each vector feature from the V= ��Q<�Q>�Q?
� in the data set,  

9.               Calculate the output of the fuzzy rules.  

10.               Calculate the FIS output of the specific vector V 

11.               The output class = Ceil the FIS output. 

12. End For 

 

Table 4-4: NFC data set training preparation 

                                                 
4 Ceil is a function defined in Matlab which is used to round an element to the nearest integer greater 

than or equal to that element  
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4.3.2 Results 

Now that our data set is ready, we use it to train the NFC and to collect the outputs. 

The root mean square error (RMSE) is used to evaluate the error between the NFC 

output and the testing output. It converges after 55 epochs5 and remains stable at 

0.229963 (Figure 4.11). This means that 77% of the testing inputs have been 

successfully classified by the NFC. Note that this score is presented here for 

illustration purposes and that it varies from one data set to another. In other 

experiments, higher scores were obtained (around 90%). A user may use other data 

sets and run additional iterations until she reaches a satisfying score. The classifier 

generated a new set of features with new fuzzy sets and new membership functions. 

For example, the distance feature in the data set used to train the algorithm had three 

fuzzy sets:  short, medium and far. But, the new distance feature has four fuzzy sets 

named as follows: close, average, far and very far. Indeed, these names have been 

chosen by an expert who intuitively associates the values of linguistic variables with 

different features proposed by the NFC. 

 

The same logic applies to other features (road traffic and user’s familiarity with the 

region). Figures 4.12, 4.13, 4.14, 4.15, 4.16 and 4.17 illustrate the fuzzy sets of each 

input feature as proposed by the user to generate the data set and the fuzzy sets of 

each input feature as classified by the NFC. These outputs are only valid for the 

geographic area in which the data set has been defined. If the area changes, these 

membership functions are no longer valid and the system should be trained again.   

                                                 
5 The term epoch is used by the NFC research community to express the term iteration.  
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Figure 4.11: NFC training Performance for 3 features and 4 classes 

 

Figure 4.12: The distance feature as defined by user to train the NFC 

 

 

Figure 4.13: The distance feature after the NFC training 
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Figure 4.14: The road traffic feature as defined by user to train the NFC 

 

 

Figure 4.15: The road traffic feature after the NFC training 

 

 

Figure 4.16: User’s familiarity with area feature as defined by user to train the NFC 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

RoadTraffic

D
e

g
re

e
 o

f 
m

e
m

b
e

rs
h

ip

Light Medium Heavy

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0

0.2

0.4

0.6

0.8

1

Traffic

D
e
g
re

e
 o

f 
m

e
m

b
e
rs

h
ip

VeryLight Light Medium Heavy

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

Familiarity

D
e
g
re

e
 o

f 
m

e
m

b
e
rs

h
ip

Weak Average Good



 

123 
 

 

Figure 4.17: User’s familiarity with area feature after the NFC training 

 

[Yao and Thill, 2007] used ANFIS to generate spatial proximtiy quantifiers from a 

dataset. As we mentionned in Section 4.1.3, ANFIS is an approximation function. We 

used instead a neuro-fuzzy classifier to generate our spatial proximity quantifiers. 

Furthermore, [Yao and Thill, 200] did not integrate their solution in a GIS. Let us 

also mention that several works compared ANFIS and NFC and proved that ANFIS is 

not suitable for classification problems [Cetişli and Barkana, 2010]. For this reason, 

comparing our results to Yao and Thill’s results [Yao and Thill, 2007] becomes non 

relevant since we are not comparing two classification approaches. In the next 

section, we present the qualitative proximity software that that we developed to 

integrate our neuro-fuzzy classifier solution in a GIS using a Fuzzy Inference System 

(FIS). 

4.4 A Qualitative Proximity Tool: Architecture and 

Implementation 

The main goal of using NFC is to generate membership functions and fuzzy rules for 

the fuzzy inference system based on the data sets and initial fuzzy rules specified by 

an expert. We developed a software tool to integrate the NFC output in a qualitative 

proximity reasoning tool which has been integrated in a GIS.  
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The general architecture of our tool is depicted in Figure 4.18. The NFC is a Matlab-

based program which uses the data set to generate fuzzy membership functions and 

fuzzy rules. These outputs are used by a fuzzy inference system (FIS) which is 

managed by the jFuzzyLogic module. jFuzzyLogic is an open source fuzzy logic 

library implementing industry standards to simplify the development of fuzzy 

systems. It is a java package which uses FIS files to implement fuzzy rules. The Java 

Topology Suite (JTS) is a software package which is used to handle the spatial 

calculus of geographic features which are stored in the database (using PostGIS). The 

system output of our framework is a qualitative spatial relation represented by a 

linguistic variable which can be used by our pattern definition presented in Chapter 3. 

 

 

Figure 4.18: Architecture of our qualitative proximity tool 

 

The qualitative proximity tool is designed to help users qualify spatial proximity 

using various factors and not only spatial distance. A user can train the tool using her 

experience and by specifying proximity parameters in a data set. If training outputs 

are satisfying, a user can use the generated membership functions to build an 

inference engine which determines the proximity. 
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Our proximity software allows for determining proximity in an automated way. This 

makes our approach original when it is compared to Yao and Thill’s work [Yao and 

Thill, 2007] who limited their approach to a set of experiments based on Matlab and 

did not integrate their approach in a GIS. 

4.5 Conclusion  

Qualitative reasoning about spatial proximity is not limited to metric distances. Other 

factors can influence the user’s perception of the proximity relation between two 

locations. A human being does not need to know the exact metric values of distances 

in his daily’s life, which makes proximity relations uncertain and fuzzy.  In this 

chapter, we considered these aspects in designing a solution for qualitative spatial 

proximity reasoning tool. Such a solution is integrated in a GIS and can be used in 

various application domains. The main contribution of our work is twofold. First, 

while [Yao and Thill, 2007] used ANFIS, we used a neuro-fuzzy classifier to train 

our system since determining proximity relations can be thought of as a classification 

problem. Second, we developed a software tool that integrates our solution in an 

existing GIS. This offers to users an automated tool that enables them to determine 

spatial proximity whereas [Yao and Thill, 2007] only applied their approach to a 

limited number of experiments.    

 

Some improvements of our solution remain to be made. For example, it would be 

interesting to enhance the human machine interaction model so that a user could 

easily pick up locations and select contextual information and get the proximity 

relation. Moreover, the contextual information is currently specified from a simplified 

database. In the future, it would be interesting to get such information from a 

knowledge base. The next chapter will detail how this tool can be used in a 

spatiotemporal pattern detection framework to qualify the relative distance between 

pattern components. Finally, it is worth mentioning that an early version of this 

chapter has been published in the ISPRS Conference held in Toronto in 2014 

[Barouni and Moulin, 2014b]. An extended version of this paper appeared in a special 
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issue on Advances in Geospatial Statistical Modeling, Analysis and Data Mining of 

the Canadian Institute of Geomatics [Barouni and Moulin, 2015a].     
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  Chapter 5

A Framework for Managing Qualitative 

Spatiotemporal Patterns 

Introduction 

In this chapter, we present a framework that we developed to manage qualitative 

spatiotemporal patterns. This framework is designed for large scale monitoring 

systems. Actually, a significant effort has been made in recent years to propose a new 

generation of data acquisition systems with reliable and efficient communication 

capabilities. These systems generate a huge amount of real-time data in various 

formats. End-users are very interested in finding data configurations based on their 

expertise and attempt to leverage the large amounts of data generated by acquisition 

systems. Several software tools have been proposed to help users achieve such goals. 

However, the available commercial solutions are mostly based on relational databases 

and use SQL queries to implement such functionalities. These systems do not allow 

for real-time detection of situations of interest (also called “patterns” in this domain) 

due to the weak expressiveness of SQL queries to represent situations of interest. We 

present a novel approach which extends Complex Event Processing to the real-time 

detection of situations of interest based on events, states and spatial objects. We 

leverage the rich semantics of the qualitative pattern representation model that we 

presented in Chapter 3 as well as the powerful proximity analysis tool introduced in 

Chapter 4 to present a complete solution to qualitatively represent patterns and to 

detect their instances from the event cloud under severe time constraints. Thanks to 



 

128 
 

our approach, a user will be able to react to detected patterns instead of trying to 

identify (or “to mine”) patterns in databases as it is proposed in currently available 

approaches.    

 

This chapter is organized as follows. Section 5.1 presents the motivations of this 

work as well as an overview of the proposed approach. Section 5.2 presents the 

pattern abstraction layer of the proposed solution. Section 5.3 presents the data 

processing and pattern detection layer and a set of algorithms for pattern conversion. 

Section 5.4 presents a spatial extension of the CEP engine using fuzzy quantifiers. 

Section 5.5 presents a pattern management tool and the software architecture of our 

framework. Section 5.6 presents a case study that illustrates the different 

characteristics of the proposed framework. Section 5.7 concludes the chapter.  

5.1 Motivations 

The spatiotemporal pattern (STP) definition introduced in Chapter 3 allows for 

representing patterns using extended Conceptual Graphs. This knowledge 

representation provides a smooth mapping from natural language to computer 

processing and allows for building knowledge bases which can enable agents to 

reason about the detected pattern instances.  

 

One of the goals of this thesis is to apply the STP definitions in the domain of large 

size acquisition systems. These systems have two types of data sources (also called 

views according to [Haddad, 2009]): static data sources and dynamic data sources. 

Static data can be available through GIS and knowledge bases describing the 

different states of the system’s components. Dynamic data is collected from 

geographically distributed sources (such as sensors) which generate data in various 

formats in real time.  Generally, the sampling rate in acquisition systems is very high 

and the reaction to data change must meet severe timing constraints [Hong et al, 

2013]. A human being or a software agent leverages their field experience in a 
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specific domain to define situations of interest that occur in the environment in which 

they operate. Using our STP formalism, such situations can be expressed as 

qualitative patterns and can use contextual information. First Order Logic can be used 

to reason about these patterns. Nevertheless, the detection of pattern instances from 

large acquisition systems has not been addressed in the former chapters of this thesis. 

A short case study has been proposed in Chapter 3 and raised some practical 

questions about how pattern instances can be detected from data provided by the 

event cloud. In this chapter, we address these questions and present a framework for 

spatiotemporal pattern representation, detection and reasoning which can be used by 

human operators as well as software agents to make decisions. An overview of the 

proposed approach is depicted in Figure 5.1 which emphasizes the global workflow 

of our framework.  

 

 

 
Figure 5.1: Overview of the different components of the proposed framework 
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The proposed approach is automated and was developed in two main stages when we 

designed and implemented our pattern management framework. First, the semantic 

representation of STPs is handled by the Pattern Abstraction Module. These patterns 

are represented using our extended CG formalism (see Chapter 3) to facilitate the 

qualitative representation of different pattern components. Second, since this 

formalism does not allow for the detection of pattern instances from large data 

acquisition systems, this detection is handled by the Pattern Detection and Data 

Processing Module which facilitates the integration of our framework to current 

acquisition systems in different domains. Finally, reasoning about patterns is another 

aspect addressed by the proposed framework. Thanks to their expression in CGs, 

pattern instances can be stored in a knowledge base. They can be processed by 

software agents for decision making purposes. The next sections of this chapter detail 

each stage, present the corresponding implemented software modules and provide 

additional justifications for our technological choices.  

5.2 Pattern Abstraction Module 

The Pattern Abstraction Module is defined to handle the qualitative representation of 

spatiotemporal patterns. We use the formalism that we introduced in Chapter 3 to 

represent STPs. A user can represent patterns using our extended CG formalism 

which offers powerful mapping capabilities from natural language to computer 

language and vice versa. The pattern specifications are edited using the Amine 

Platform [Kabbaj, 2006] and stored in a knowledge base. The user defines a 

concept/relation lattice suitable to her application domain. Figure 5.2 illustrates the 

architecture of our pattern abstraction module. 

 

Pattern specifications are input by the user using the Amine GUI which allows for 

adding new concepts in the concept type lattice. Several elements are involved in the 

spatiotemporal pattern definition such as events, states, geographic objects, spatial 

relations and temporal relations. These elements can be represented in a knowledge 

base using an abstraction level which is handled by the Concept Type Lattice (CTL). 
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Hence, each component involved in the STP definition can be specialized or 

generalized. Consequently, an STP type can be generalized or specialized. The 

pattern specifications are stored in the Pattern Repository. Figure 5.3 displays a 

portion of the type lattice that organizes some fundamental concepts and different 

patterns defined in the knowledge base. Figure 5.4 illustrates a simple pattern edited 

using the Amine Knowledge Base Editor module. 

 

 

 
Figure 5.2: Architecture of the pattern specification module 

 

 

 
 

Figure 5.3: A concept type lattice using the Amine Platform 
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Figure 5.4: A simple pattern represented using the Amine Platform 

 

Now that situations of interest are defined using patterns, we need to address the issue 

of pattern detection from large applications and introduce our Data Processing and 

Pattern Detection Module in the next section. 

5.3 Data Processing and Pattern Detection Module 

One of the challenges of large scale systems is the management (querying, storage 

and display) of large volumes of data in a short time period: this is a practical issue 

that falls in the field of big data management which has been gaining an increasing 

popularity in recent years. Such systems usually collect events generated by a large 

number of sensors deployed in the field. Ideally, these events should be correlated 

and linked to other components from the environment to generate pattern instances. 

In Chapter 3, we addressed the issue of pattern representation using qualitative 

techniques and the issue of representing dynamic spatiotemporal phenomena. 

However, the issue of detecting pattern instances from real world data was not 

tackled. In this section, we introduce Complex Event Processing as an effective way 

to manage the stream of events. We propose to explore this technology and see how it 

can be used in conjunction with our pattern processing module to detect pattern 

instances. 
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Pattern detection in real-time acquisition systems is an issue that has been addressed 

in the literature by several research communities. Some of these works are based on 

database management systems (DBMS) in which data is stored and indexed before 

processing. When a user needs to find a pattern instance, he needs to query the 

database. This cannot comply with several use cases in monitoring applications where 

patterns should be detected as soon as sensors report observations.  Furthermore, the 

concept of event is not clearly defined in DBMS and the pattern detection mechanism 

is usually complex, time and labor consuming. The notion of Event Driven 

Architecture (EDA) has been introduced to overcome such limitations in DBMS. 

EDA is a software architecture which manages the creation, processing and 

monitoring of events. After several years of work, the research community proposed 

a set of EDA approaches to overcome the limitations of classical DBMS in terms of 

pattern detection and management. According to [Cugola and Margara, 2012] these 

solutions can be classified in two families: Data Stream Processing Models (DSPM), 

and Complex Event Processing Models (CEP). DSPMs are a special version of 

databases. They are designed to deal with transient data which is continuously 

updated, while traditional databases are more suitable to deal with persistent data. 

Therefore, while a DBMS returns a complete answer to a query than runs just once, a 

DSPM runs continuous queries and returns updated results when new data arrives 

from various sources. Although DBMSs are different from DSPMs, both kids of 

systems process the incoming data through a sequence of transformations based on 

SQL operators such as aggregation and join.  

 

Complex Event Processing (CEP) has been introduced in recent years to overcome 

the limitations of DSPM and DBMS. CEP systems correlate simple events temporally 

and/or spatially using advanced temporal and spatial operators. This kind of 

correlations allows for inferring more meaningful “complex” events [Helmer et al, 

2010]. CEP systems increase the expressive power of their query language to 

consider complex patterns of events that involve the occurrence of multiple related 

events [Cugola and Margara, 2012]. 
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Basically, the main difference between Complex Event Processing and relational 

databases relies on the way events are defined and processed. Relational databases 

and the Standard Query Language (SQL) are designed to manage static data. They 

can support complex queries. They are optimized for disk access on data servers 

where data are stored. A query is used to retrieve data from a database. If a system 

needs some data 10 times per second it must trigger the same query 10 times per 

second. This does not scale up well to hundreds or thousands of queries per second! 

[Esper, 2015]. Other solutions have been proposed to overcome these performance 

limitations such as using database triggers which can be activated in response to 

database update events. However, database triggers tend to be slow and often cannot 

easily perform complex condition checking and perform application functionalities to 

appropriately react to an incoming event [Esper, 2015]. As an alternative, a CEP can 

be thought of as a ‘database turned upside-down’. The CEP engine allows 

applications to store queries, channel the data through predefined streams, detect 

patterns and store results in databases. Therefore, the CEP engine gives an answer in 

real-time when pattern conditions are satisfied. The execution model is thus 

continuous rather than being only reactive to query submission. 

 

A typical CEP architecture is depicted in Figure 5.5. Events are generated by so-

called event producers (input). Events are time-stamped and have some attributes 

which are part of the event definition. Event producers vary from one application 

domain to another. A given CEP system can deal with several event producers which 

can be heterogeneous (i.e. specified in different ways). The CEP engine uses temporal 

and logical operators to correlate events and then sends them to event consumers 

(output). Event consumers can be humans, software agents, other intelligent 

applications or storage systems. They receive events communicated by the event 

processing engine and react to these events. The reaction might include the generation 

of new events, so that consumers can be event producers as well.  
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Figure 5.5: A typical CEP architecture [Helmer et al, 2010] 

 

The Event Processing Engine receives events from different event channels. It is 

based on the Event Condition Action paradigm (ECA) which consists in triggering 

actions when appropriate conditions are satisfied. Possible actions can be “sending 

the events to the event consumer” or “generating a set of new events”. The processing 

of events can be carried out on separate events or on a combination of events using 

temporal, spatial, causal operators and other user-defined functions.  The correlation 

of events can be expressed using a specific language that is used to generate the so-

called patterns. In a CEP, Event Development Tools are used to define events, to 

define rules (patterns), to program user-defined functions for event correlation and to 

set parameters for the overall system. Event Management Tools are used to fine-tune 

the system, to collect system outputs and to monitor the system’s performance. 

 

An interesting review of CEP frameworks can be found in [Cugola and Margara, 

2012]. For our framework, we selected the ESPER software which is a lightweight 

CEP system offering an Event Pattern Language (EPL for short) to represent patterns 

using an SQL-like language. EPL queries are created and stored in the pattern base 

and publish results to so called listeners when events are received by the engine or 

when timer events occur and match the criteria specified in the query.  

 

Events can be consumed according to different consumption policies that can be 

configured in the CEP engine. For example, an event is consumed when a specific 

pattern is detected and then it is removed from the event stream. But, if certain events 
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are present in several pattern definitions, it is possible to keep them in the event 

stream so that all related patterns will be detected. The suitable consumption strategy 

can vary from one application to another.  

5.3.1 Data Processing 

In our framework, we implemented the data processing module in three steps.  

1. Step 1: Connect to data sources. Data sources are usually sensors which 

report dynamic variations. The connection to these sensors can be point to 

point or through an aggregator (i.e. a data concentrator). The data format 

varies from one domain to another. For example, in the power industry, 

events are reported using industrial protocols. In the telecommunication 

industry, people use real time database systems. Each sensor is defined by 

a set of attributes. Figure 5.6 depicts a Fault Current Indicator Sensor used 

in outage management systems as introduced in Chapter 3. Note the 

presence of spatial attributes in the sensor characteristics that allow for 

locating these sensors in a spatial database. 

 

2. Step 2: Define the event types that can be generated by each sensor type in 

the CEP. Now that the CEP is connected to data sources, it is important to 

extract relevant data from the incoming events. For each sensor type, we 

need to select a specific number of event types and to define their 

corresponding event classes. Figure 5.7 depicts an example of events 

generated by a Fault Current Indicator Sensor used in the power 

distribution industry to detect outages and to measure the status of power 

lines. These events are collected by a data acquisition system through a 

cellular link using an industrial communication protocol.  Figure 5.8 

depicts the class defining an event in ESPER which will be used by the 

engine to collect events from the data acquisition system. This structure 

can vary from one event type to another and its attributes can be different 

from one application to another.  
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Figure 5.6: An example of sensor definition 

 

 

 

Figure 5.7: A sample of events generated by a Fault Current Indicator sensor 

 

 

Figure 5.8: An example of a class for event definition in ESPER 
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3. Step 3: Configure the ESPER engine. The CEP requires a specific set of 

parameters to be loaded at runtime. For example, our CEP runtime system 

loads the event definitions, a set of user-defined functions, the data source 

connection parameters and the pattern listeners. For each pattern type, a 

pattern listener is defined to process the detected patterns and perform 

actions. We will detail the notion of pattern listener in a forthcoming 

section. 

 

Since ESPER uses the Event Pattern Language (EPL) as a language to represent 

patterns, we developed a set of algorithms to convert abstract pattern definitions from 

our Conceptual Graph formalism to EPL. These algorithms are presented in the next 

section. 

5.3.2 Automated Pattern Conversion from Conceptual Graphs to 

EPL 

Pattern specifications are represented using the Pattern Abstraction Module. They 

need to be represented in the EPL language to allow the ESPER engine to query data 

from data sources (either static or dynamic) and to detect pattern instances.  The 

detected pattern instances are stored in text files. Figure 5.9 gives a description of our 

Pattern detection and data processing module. 

 

 

 

Figure 5.9: Description of the pattern detection module 
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We used the Java programming language and the Eclipse development tool to 

implement the algorithms which convert the simple and complex patterns introduced 

in Chapter 3 to an enriched version of Event Pattern Language (EPL). Since EPL is 

SQL-based, the proposed algorithms convert pattern definitions from Conceptual 

Graphs to enriched SQL-like statements.  

5.3.2.1 Simple Pattern Conversion Algorithm 

Our pattern conversion algorithm shall consider two aspects. First, it needs to find the 

event in the simple pattern and its relations to spatial and/or temporal attributes. 

Second, if the event is related to states, the algorithm needs to find the temporal 

relations between the event and the states. We also use the ESPER user-defined 

functions to represent custom temporal relations between events and states as well as 

other relation types such as spatial relations. User-defined functions are custom 

functions which are implemented using the Java programming language. They can be 

used in the EPL statement and can be called by the ESPER runtime engine. Table 5-1 

summarizes the pseudo code of our conversion algorithm for simple patterns. 

 
Algorithm 1: Simple Pattern Conversion  SimplePatternFinder(KB: input) 
Variables 

RelationType ///Can be temporal or spatial relation. 
SpatialObject///An abstraction object from the environment with spatial attributes. 
TemporalReference. // A reference on the time axis. Can be a semantic reference or a 
numerical data. 
WhereClause. //The where clause of the EPL statement 
States //List of states related to a given Event 
KB //The Knowledge Base // 
ListPatterns //List of simple patterns 
i: counter. Number of generated EPL statements.  
Output 

EPLStatement: Array of Strings. //Simple Patterns in EPL 
Begin 

1. Initialize all the variables (). 
2. Load all the concept type lattices 
3. ListPatterns � Get all the simple patterns from the KB 
4. For each pattern in ListPatterns 
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 5. Event�Get the Concept type Event 
6. Relations�Get_the_outcome6_relations_(Event) 
7. For each relation in Relations 
8.                    If the relation type is spatial relation Then 
9.     SpatialObject � Get the spatial object type 
10.     WhereClause � Relationtype(Event, SpatialObject) 
11.             End If 
12.             If the relation type is temporal relation Then 
13.     TemporalReference � Get the temporal attribute  
14.     WhereClause � Relationtype(Event, TemporalReference) 
15.             End If 
16.       End For  
17.       States�GetStates(Event) 
18.       TempRel�GetTemporalRelations(Event)            
19.       

EPLStatement[i]�CreateEPLStatmt(Event,States,WhereClause,TempRel) 
20.       i=i+1  
21. End For 

End 
 

Table 5-1: An example of simple pattern conversion algorithm 

 
 

Basically, the above algorithm allows for filling a generic EPL statement with 

information extracted from the CG representation of an STP to build the enriched 

EPL pattern representation that we propose. For example, one of the generic EPL 

statements for a simple pattern can take the form illustrated by the code below. This 

simple pattern represents a qualified event with a temporal reference using a temporal 

relation. The second statement gives an example where an event is also related to a 

state using the temporal relation “beforeEvent”. This allows for representing dynamic 

situations as introduced in our pattern representation model (Chapter 3). 

 

 

 

 

                                                 
6 An outcome relation is a relation which originates from a concept and relates it to another one. 
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{ 
_sqlstatement="Select "+eventType+" where " + eventType+ ".time is "+ 

temporalRelation +" "+temporalReference ;  

} 
 
{ 
_sqlstatement="Select * where " + eventType+ ".time is "+ temporalRelation 

+" "+temporalReference" and " beforeEvent(eventType,stateType);  

} 
 

Figure 5.10 illustrates some output examples of the proposed algorithm. The 

algorithm starts by loading all pattern definitions expressed in conceptual graphs 

from the knowledge base populated using the pattern abstraction module. Then, it 

displays each simple pattern expression in a CG linear form followed by the enriched 

EPL statement (using the EPL language). Note the presence of some user-defined 

functions near and far from in the EPL statement. These user-defined functions will 

be discussed in detail in a forthcoming subsection. 

 

 
 

Figure 5.10: Examples of simple patterns in CG and EPL formats 

 

CG linear specification 

EPL extended 

specification 
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5.3.2.2 Complex Pattern Conversion Algorithm 

Now that we have a simple pattern algorithm that allows for mapping simple pattern 

definitions (in our CG formalism) to our enriched EPL statements, we propose in this 

subsection another algorithm to map complex patterns abstract definitions (expressed 

in CG) to enriched EPL statements. In Chapter 3, a complex pattern is defined as a set 

of simple patterns related by spatial and/or temporal relations. The basic idea of the 

proposed algorithm is to identify in the CG specification all simple patterns included 

in the complex pattern structure and to find relations between these simple patterns. 

Table 5-2 describes the pseudo code of our conversion algorithm for complex 

patterns.  

 
 
Algorithm 2: Complex Pattern conversion 

Variables 

RelationType ///Can be temporal or spatial relation. 
SpatialObject///An abstraction object from the environment with spatial attributes. 
TemporalReference. // A reference on the time axis. Can be a semantic reference and 
numerical data. 
WhereClause. //The where clause of the EPL statement 
SimplePatterns //List of simple patterns in a complex pattern 
KB //The Knowledge Base // 
ListPatterns //List of complex patterns 
i: counter. Number of generated EPL statements. 
Output 

EPLStatement: Array of String. //Complex Patterns in EPL 
Begin 

1. Initialize all the variables (). 
2. Load all the concept type lattices 
3. ListPatterns � Get all the complex patterns from the KB 
4. For each pattern in ListPatterns 

 5. SimplePatterns � Get all the simple patterns(ListPatterns) 
            6.                For each s_pattern in SimplePatterns 
            7.         Event�Get the Concept type Event(s_pattern) 
            8.                Relations�Get all the spatial or temporal relations related to 
Event. 

9.                        For each s_relation in Relations 
10.                             If the s_relation is Spatial_relation Then 
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11.             SpatialObject � Get the spatial object type 
12.             WhereClause � Relationtype(Event, SpatialObject) 
13.                        End If 
14.                        If the relation type is Temporal_relation Then 
15.             TemporalReference � Get the temporal attribute  
16.             WhereClause � Relationtype(Event, 

TemporalReference) 
17.                        End If 
18.                             End For 
19.              End For 
20. EPLStatement[i] � CreateEPLStatement (SimplePatterns, WhereClause)  
21. i=i+1 
22. End For 

End 
 

Table 5-2: Complex pattern conversion algorithm 

 

Figure 5.11 displays the output of the proposed algorithm for a given example of a 

complex pattern. The algorithm starts by loading from the knowledge base all the 

pattern definitions expressed using our extended CG formalism. Then, it searches for 

all the relations between simple patterns. Finally, it calls the simple pattern 

conversion algorithm which was presented in the previous subsection.  

 

The program output depicted in Figure 5.11 shows the difference in terms of 

expressiveness between a pattern expressed using our CG and the resulting EPL 

representation.  The CG formalism allows for representing patterns in a more human -

readable form whereas the EPL enriched statement is more efficient to represent these 

patterns in a format interpretable by a CEP engine. If a complex pattern has a 

complex data structure; the corresponding EPL statement can become really complex; 

hence the practical interest of our automated conversion algorithm    
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Figure 5.11: An output example of the complex pattern conversion algorithm 

 

In the Pattern Detection and Data Processing Module illustrated in Figure 5.9, the 

User defined functions module is part of the ESPER engine. User defined functions 

implement special functions that can be called in pattern definitions. In our 

framework, these functions are used for two purposes: 

 

1. A State Manager Module has been specified to access the static data 

source and to retrieve or update the status of a component of the 

environment which is involved in a spatiotemporal pattern definition.  

2. In order to support qualitative spatial proximity relations, we implemented 

a spatial extension of the ESPER framework using our qualitative spatial 

tool presented in Chapter 4. We detail this extension in the next section. 

 

Detection of simple 

patterns 

 

Expression of the complex pattern in enriched EPL 
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5.4 A Spatial Extension of the CEP Engine 

Since the Pattern Detection Module deals with qualitative spatiotemporal patterns, 

qualitative spatial relations used in pattern definitions need to be supported. The CEP 

framework needs to be enhanced to support these qualitative spatial relations. We 

propose in this section a spatial extension of a CEP engine to support spatial 

proximity relations since they are the most used in practical applications. Our 

software aims at generating automatically spatial proximity quantifiers using user 

defined functions. 

 

CEP systems have been originally designed and applied to the financial and economic 

industries in order to predict market development and exchange rate trends. CEP 

patterns emerge from relationships between event’s attributes such as time and cause 

(causal relation between events) and aggregation (significance of an event’s activity 

with respect to other events). Processing geospatial events requires the extension of 

CEP to include location attributes [Resch et al, 2010]. Spatial relations are used to 

combine geo-referenced events and to create spatiotemporal patterns. 

  

In the literature, several works proposed spatial extensions to CEP engines. Among 

them, we note SpatialRules [SpatialRules, 2013] which is a CEP engine for geospatial 

data and is compliant with OGC geospatial specifications [OGC, 2015]. Event 

processing is performed through rules that offer geospatial and temporal operators. 

Geospatial operators are mainly topology or distance based. GCEP [GCEP, 2014] is 

an extension of the ESPER CEP engine that allows for using OGC geospatial 

functions in the rules used to filter events. The GCEP engine offers 12 topological 

functions for ESPER for Java that conforms to Open Geospatial Consortium 

standards. ruleCore CEP Server [ruleCore, 2013] is a CEP engine used for real-time 

detection of complex event patterns. The system is scalable and can be used to 

implement event driven architecture solutions: ruleCore enables defining rules using 

location information. Location data can be collected from GPS or other sensors and 



 

146 
 

can be natively processed by ruleCore. The engine allows for stream creation based 

on events coming from specific geographic areas. 

    

Although the above solutions support the processing of spatiotemporal events, they 

do not deal with uncertainty and vagueness and therefore they are not close enough to 

users’ qualitative reasoning which is essentially based on natural language. Taking 

advantages of Zadeh’s linguistic variables [Zadeh, 1965], we leverage our approach 

presented in Chapter 4 to develop an extension of the ESPER CEP engine by 

introducing fuzzy spatial relations between events to allow for the definition of 

qualitative spatiotemporal patterns. To this end, we defined and implemented fuzzy 

proximity relations between two events using our qualitative proximity reasoning 

framework. A Neuro-Fuzzy Classifier is used to train the system using data sets 

provided by users. Spatial relations can be automatically deduced from the qualitative 

proximity tool. To integrate this tool to ESPER we implemented a number of user 

defined functions. Examples of fuzzy spatial relations used in our framework are 

“very near”, “near”, “far from” and “very far from”. Here is an example of a pattern 

expressed in EPL and using a fuzzy spatial relation.    

 

Select * from Pattern [Every Break] Where near(Break.location, Building) and 

Before(Break, Normal)  

 

Where near(Break.location, Building) is a user-defined function expressing a 

qualitative spatial proximity relation between the event spatial attribute of type Break 

and a spatial object of type Building. This function takes two spatial objects as 

parameters and returns a Boolean value.  

 

The automated generation of spatial relations can be summarized in the following 

three steps, taking advantage of the software modules that we presented in Chapter 4: 

1. Step 1: A user provides a training data set to the NFC according to his 

experience. 
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2. Step 2: The NFC generates the fuzzy quantifiers and their related 

membership functions. 

3. Step 3: User-defined functions are used in ESPER to deduce spatial 

relations using a Fuzzy Inference System (FIS). 

 

Now that we have introduced all the elements of our pattern management framework, 

we present in the next section the software architecture and the implementation 

details. Then, we propose a case study to illustrate some application examples of this 

framework. 

5.5 Software Architecture and Implementation  

The software architecture of our framework is depicted in Figure 5.12. In order to 

train the NFC (see the NFC block in the figure), a dataset is provided by the user and 

can be loaded from an Excel spreadsheet. The membership functions corresponding 

to the spatial proximity quantifiers (subjective and objective) are generated by the 

NFC which is implemented in Matlab. JFuzzyLogic is a JAVA package that we used 

to implement a fuzzy inference system for qualitative spatial reasoning (Chapter 4). 

The output of the fuzzy inference system is a fuzzy spatial relation which can be used 

by the Amine platform in the pattern representation formalism and by the ESPER 

engine for pattern matching operations. The Amine platform is also used to 

implement reasoning mechanisms thanks to the Prolog+CG module (Agents block in 

the figure). Pattern instances are stored in the pattern repository as well as the 

contextual information. Software agents interact with these modules as part of their 

reasoning model. The Pattern Detection and Data Processing module (black lined 

block in the figure) loads the system configuration and initializes pattern listeners. A 

pattern listener is a computer program which subscribes to a pattern definition and 

takes actions on the detection of a pattern instance. In our framework, a specific 

pattern listener is associated with each pattern definition loaded from the knowledge 

base: it creates a new instance of the detected pattern and matches its different 
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components with detected data. The detected pattern instance is saved in a text file for 

future use. 

 

 

Figure 5.12: Architecture and software packages used in our framework 

 

We developed a pattern management tool (blue block in the figure) to facilitate the 

user’s interaction with our framework. A user can visualise and manage patterns. The 

main window of the tool is depicted in Figure 5.13. A user can load the knowledge 

base (KB) in Amine KB format (XML file) (1 in Figure 5.13). An algorithm fetches 

all the patterns in the KB and lists them in a table (2 in Figure 5.13). To view a 

pattern, the user can select one pattern entry and use the View Selected Pattern button 

(3 in Figure 5.13). He can also view the pattern in EPL format by selecting the 

Convert Selected Pattern button (4 in Figure 5.13). Using the Start Event Generator 

button (5 in Figure 5.13), a user can generate a number of different types of events. 

Each event is time-stamped and geo-referenced. Finally, the user can visualize the 

generated events and the detected patterns instances from the Pattern Management 
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Tool window (7 in Figure 5.13).   A user can load a Quantum GIS Lisboa project file 

in order to configure the spatial environment (6 in Figure 5.13). He can also select a 

dataset from an Excel spreadsheet in order to train the fuzzy inference system. 

Finally, the user can view the resulting spatial proximity relations and their associated 

membership functions. 

 

 
 

Figure 5.13: The Pattern Management Tool 

1 2 

3 
4 

5 
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After presenting how patterns are managed by our framework, we present in the next 

section a case study from the telecommunication industry to provide some examples 

of using pattern instances and contextual information in agents’ decision models. We 

also show some pattern configurations that may be defined by users to identify 

typical situations of interest in their application domain. 

5.6 Case Study 

This case study is motivated by a typical application in the telecommunication 

domain.  In particular, we address the issue of asset management and monitoring. 

Typically, A Remote Fiber Test System (RFTS) is a real time acquisition system 

designed to monitor fiber optic networks [Ponchon and Champavere, 2011]. It is 

widely used in the Telecommunication industry to optimize the Service Level 

Agreement between service providers and consumers. It can also be used in the Oil & 

Gas industry to monitor pipelines. In that case Optic Fibers can be deployed 

throughout gas pipelines and the occurrence of a fiber fault event means that the 

related pipeline is damaged.  

5.6.1 Remote Fiber Test System 

The RFTS is based on the Optical Time Domain Reflectometer (OTDR) technology 

[Ponchon and Champavere, 2011]. OTDRs are commonly used to characterize the 

loss and length of fibers as they go from initial manufacturing through to cabling, 

warehousing while wound on a drum, installation and then splicing. OTDRs are also 

commonly used for fault finding on installed systems. Figure 5.14 presents an 

example of an OTDR acquisition and the different information that can be deduced 

about a fiber optic link.  

 

The RFTS is a distributed system where Remote Terminal Units (RTU) are 

geographically deployed and continuously run to monitor the fiber status using 

OTDRs. When a fiber fault occurs, it is detected by an RTU and reported to a central 
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server which maps the fault in a GIS. Figure 5.15 depicts the general structure of a 

remote fiber test system. 

 

 

 

Figure 5.14: OTDR Trace Information [Foa, 2015] 

 

 
 

Figure 5.15: The general architecture of an RFTS 
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A user needs to evaluate the distance between the fault location and several locations 

such as: crew location, location of critical sites where Service Level Agreements 

(SLA) must be fully respected (such as bank, broadcasting channel building and 

security cameras) and asset locations (splice point, transmission equipment and so 

on). Hence, the notion of proximity is very important in such applications and plays a 

key role in users’ decisions.  

5.6.2 Background and Challenges 

Basically, an OTDR is designed to calculate the total attenuation of a fiber link. 

Attenuation can be affected by the total length of the fiber or by the presence of 

splices and connectors. Mainly, the OTDR reports two types of events: fiber break 

events and fiber degradation events. The fiber break event occurs when the fiber optic 

link is cut or when a splice is damaged, or when a connector is disconnected. This 

type of event can also occur when there are maintenance operations performed on the 

link (known reasons, they are usually planned) or when there are damages on the 

fiber caused by unplanned actions such as construction activities in the area.  Current 

commercial OTDRs are designed to support up to 128 optical ports. They are usually 

installed at the central office or deployed at the outside plant. When a new fiber is 

commissioned, the OTDR sends a laser signal on the fiber and saves the data 

acquisition to become a trace reference7. The trace reference allows for characterizing 

the fiber and keeps the information about the total fiber length, the number of 

splices/connectors and their positions on the fiber; and the total fiber loss. The OTDR 

starts to monitor the fiber according to a test cycle. This test cycle depends on the 

number of fibers under test and the sampling period for each fiber.  

 

When a fiber optic event is triggered by an OTDR, the RTU generates the event data 

and sends an XML file using a secure connection (SFTP protocol for example) to the 

main server. This file is parsed by a Fiber Optic Network modeling software to get 

                                                 
7 In fiber optic testing, a data acquisition is called « reference trace » when it is used by the system as a 
basis to compare to new data acquisitions. Any variation relatively to the reference and which exceeds 
a user-defined threshold will generate an alarm.  
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the fiber ID and the event distance and to locate the fault on the map. The event data 

is also used to generate alarms and to notify end-users using different notification 

channels such as display screens, emails and text messages. 

 

As we mentioned earlier, SLA is one of the key performance indicators defined to 

evaluate the quality of service provided to customers in the telecommunication world. 

To optimize SLA, asset management teams use monitoring systems to guaranty the 

reliability of their transmission systems. In case of a fiber failure, the asset 

management team should promptly react to locate the fault and assign a crew to 

repair the fiber. The monitoring system can also store data in a historical database and 

make it available to experts for further analysis in order to setup preventive 

maintenance mechanisms. 

 

Since the main goal of using an RFTS is to help telecommunication operators 

guarantee Service Level Agreements, it can be involved in the following tasks: 

• Help to organize crew assignment to various work orders in the field and 

prioritize the work orders according to their degree of emergency/criticality. 

• Make network events data available to experts to conduct in depth analysis 

and help in predefining patterns; 

• Display the information about network failures in a fast and efficient way 

using GIS mapping. 

 

There are several systems in the industry which offer efficient solutions for data 

acquisition and network modeling using advanced spatial modeling tools such as 

[Exfo, 2014], [JDSU, 2014] and [NTest, 2014], to name a few. However, they suffer 

from several drawbacks. For example, events are usually displayed separately to the 

end-user. There is no correlation between these events and they are not linked to 

previous fiber states. GIS systems are offered with an enriched semantic description 

of the telecommunication assets as well as the surrounding objects such as buildings 

and roads. However, the spatial information is only used for mapping purposes. 
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Events are located on the map and they are not qualified with regards to the 

surrounding objects. Hence, this increases the user’s workload to analyze the data 

provided by various data sources.  

 

We propose to use our framework to overcome the above mentioned limitations. 

Basically, our spatiotemporal pattern framework allows for managing the stream of 

events generated by OTDRs and for making the necessary correlations between 

different components of the environment to detect pattern instances. It also provides a 

rule-based engine to implement some business rules defined by the user in order to 

efficiently manage the crew assignment process.   

5.6.3 Proposed Solution 

We proposed an architecture to implement the agent reasoning module which is 

illustrated by Figure 5.16. We define a Crew Manager agent which is responsible of 

detecting urgent situations related to the fiber optic network and which manages crew 

dispatching operations. The Crew Manager is a goal-based agent which uses pattern 

instances detected by the Pattern Detection and Data Processing Module and 

contextual information to make decisions and propose action plans to the human 

operator. The inference engine (IE) is a computer program that takes pattern instances 

from the pattern detection module and logically manipulates symbolic patterns 

(expressed in CG) using First Order Predicate Calculus. We use the Amine 

Prolog+CG language which is an object oriented and CG-based extension of Prolog. 

It supports CG operations and allows for loading the pattern instances from the 

knowledge base and uses rule-based functions. Human operators can use the IE 

answers to make decisions and intervene on the environment. Notice that the Crew 

Manager is also defined using a Prolog+CG program.  
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Figure 5.16: The Crew Manager's reasoning model  

5.6.4 Spatial Environment 

For illustration purposes, we use a fictitious fiber optic network in the city of Quebec. 

Three RTUs are deployed in the field and are used to monitor a number of fiber optic 

routes. Each fiber optic route is connected to one RTU. The fiber optic route (FOR) is 

a set of cable spans. Each cable span length is 4km and contains up to 144 fiber optic 

links. Therefore, a splice is necessary to connect all the cable spans and build the 

FOR. Each splice is represented by a splice point on the map. FORs can be aerial or 

underground. Two types of networks can be monitored. Urban networks concern 

cities with high density of population (also called Metro networks). Rural networks 

are networks which are deployed outside the city and which serve low densities of 

populations. It is also used to interconnect cities. The GIS also provides other 

information about the spatial environment such as Central Offices buildings where 

the crews are located, other buildings that are provisioned with fiber links and which 

need a special attention from the network engineers as they are considered in the 

SLA. A partial representation of a fiber optic network in the City of Quebec is 

depicted by Figure 5.17. A semantic abstraction of the spatial environment was 

manually created using Conceptual Graphs. Automating the abstraction process is out 

of the scope of this thesis. Several works exist in the literature to automate the 
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abstraction of a spatial environment such as [Mekni, 2010]. We use the Concept Type 

Lattice to represent spatial concepts according to their level of generality.  

Figure 5.18 illustrates a specialization example of the concept type Location.  

 

 

 

Figure 5.17: A metro network example in Quebec City. Fiber optic routes are 

represented by green lines and the RTU location is represented by a Yellow Square. 

 

 

 

Figure 5.18: A specialization example of the concept type Location  
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5.6.5 Pattern Specification 

In this section, we present some examples of simple and complex patterns that can be 

used in the RFTS application. We also present how contextual information can be 

integrated into pattern definitions and how it can be used to extend the pattern 

meaning. Current commercially available RFTSs detect events and display them to 

the end-user with additional information about the spatial environment. For example, 

the alarm report illustrated in Figure 5.19 shows some information about an event 

reported by the “RTU Paris” as described by one RFTS system available in the 

telecommunication market. Note the presence of two distances: a physical distance 

(“sheath distance”) and an optical distance. Physical distance is the distance of the 

FOR including cable spans, splices and slack loops. Optical distance is the distance 

measured by the OTDR. The optical distance is always greater than the physical 

distance and may vary slightly from one acquisition to another depending on the laser 

pulse. This makes the optical distance imprecise. Moreover, the spatial information is 

provided in this event by locating it relatively to the surrounding spatial references.  

 

 

 

Figure 5.19: An alarm report about an event generated by the “RTU Paris” as 

described by [NTest. 2014] RFTS 

 

The alarm generated by “RTU Paris” can be represented using the graph depicted in 

Figure 5.20. We use the spatial relation “near” to qualify the distance between the 
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break location and the two spatial references “access point XZ-23H-AP4” and 

“Corner of 4th and Main”.  

 

 

 

Figure 5.20: A Conceptual Graph representation of the event reported by “RTU 

Paris” 

 

Using our pattern representation model, a user may configure a situation of interest 

related to this alarm.  Figure 5.21 represents a simple pattern where the event type 

Break_Event occurs on a fiber and changes its state from “degraded” to “broken”. 

This may help the user to conclude that the break occurred on the fiber due to a 

degradation problem. This is a typical use case in the fiber optic industry. As another 

example inspired from a real customer case in a telecommunication company that we 

visited in Bolivia, outside plant engineers noticed that a degradation event can occur 

on a fiber changing its state to “degraded” for a certain period of time. A break event 

can be followed changing the fiber state to “broken”. Further inspection after the 

detection of such a pattern revealed that tropical spiders gnaw these fibers and caused 

these damages.    
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Figure 5.21: An example of a simple pattern where the event occurrence changes the 

state of a fiber from degraded to broken  

 

Another way to represent the example of fiber optic networks in Bolivia is to 

correlate simple patterns. Such a correlation generates a complex pattern and can be 

used to inform the user that a fiber degradation event was followed by another 

degradation event that occurred near the same location. Such a situation of interest 

can be expressed by a complex pattern illustrated in Figure 5.22. Note that we used a 

spatial relation to correlate simple patterns. The detection of the Fiber Inspection 

Pattern will trigger a fiber inspection maintenance task and a crew will be assigned to 

it.  
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Qualified_Degradation_Pattern: #003

Near

CentralOffice= « St-Jean »

Near

Fiber_Inspection_Pattern

Degradation_Pattern : #001

[Distance]->(Attr)->[Real=35]

[Fiber :#QuebecMontreal]->(status)->[Degraded]

Deg_Event : #1001; T: July 24th 2013 05:33 PM

[Distance]->(Attr)->[Real=38]

[Fiber :#QuebecMontreal]->(status)->[Degraded]

Deg_Event : #1021; T: July 24th 2013 07:12 PM

 

 

Figure 5.22: An example of a complex pattern linking two simple patterns 

5.6.6 Using Contextual Information 

Context is defined as additional information in the perceptual/cognition level which 

allows “perceiving or recognizing something that is actually not there” [Toussaint, 

1978].  In our approach, contextual information is related to a specific spatiotemporal 

pattern. A different contextual information may change a pattern meaning. Therefore, 

contextual information is represented in the same knowledge structure as the 

spatiotemporal pattern. Contextual information is defined at two levels: at concept 

type lattice level where it can be used in the pattern definition and at the reasoning 

level where context instances can be linked to pattern instances which are detected by 

the Pattern Detection Module (see Figure 5.9). For our case study, the contextual 

information is represented by a Concept Type Lattice where three main types of 
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contexts are defined: spatial context, temporal context and semantic context. Each 

context type can be specialized in different sub-types (Figure 5.23). 

 

 

 

Figure 5.23: A concept type lattice representing contextual information 

 

Typically, a fiber break event may be caused by construction works. During their 

activities, workers may damage the underground fibers since they do not have any 

knowledge about their presence. Therefore, a “construction zone” can be defined as a 

spatial contextual information and can be associated with a simple pattern describing 

a fiber break or degradation event. Hence, other events reported by the system in the 

same construction zone will get a similar meaning and the management team will 

coordinate with construction workers to better manage their activities and prevent 

such damages in the future (Figure 5.24). 

 

The second example uses semantic contextual information to define emergency 

patterns. A break event can occur on a fiber which serves a given region. An 

amphitheater which hosts popular events (music shows, sport competitions) belongs 

to this region. If the break event occurs during an event hosted by the building, the 

situation is critical. The problem should be fixed to guarantee a continuous 
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transmission from/to the amphitheater. Figure 5.25 illustrates how a semantic context 

can be used in a simple pattern.  

 

 

 

Figure 5.24: A simple pattern example with spatial contextual information 

 

The characteristics of a crew can be defined in the knowledge base using CGs. Each 

crew can be located in a central office; it can belong to an area and it can have a state. 

A crew can be “Free” if it is located in the central office. It can be “Assigned” when it 

is working to repair a fiber optical link. Both Crew characteristics can be expressed in 

Prolog+CG as follows: 

 

cg( [Crew = "Team1"] -loc-> [Area = "Beauport"]). 

cg( [Crew = "Team2"] -loc-> [Area = "SainteFoy"]). 

 

cg( [Crew = "Team1"] -attr-> [CrewStatus = "Free"]). 

cg( [Crew = "Team2"] -attr-> [CrewStatus = "Assigned"]). 
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Figure 5.25: A simple pattern example with semantic contextual information 

 

Each Remote Test Unit (RTU) used to test the fibers can be represented in the 

knowledge base using the following statement: 

 

cg(  [RTU = "sensor001"] - 

  -loc-> [Area = "Beauport"], 

  -attr-> [SerialNumber = "001" ]). 

 

The Crew Manager’s goals are defined using simple and complex patterns. For 

example the following complex pattern describes a situation of interest where a fiber 

break changed the status from broken to true and where the contextual information 

indicates that a crew is assigned to the related break area.   
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//Complex pattern to detect the recovery of a break configuration that occurred in a 

specific //area. 

 

ComplexPatternWithContextInfo(_CPattern,Environment,x) 

 

:-cg([Complex_Pattern=_CPattern]-

Pattern_Description>[Proposition:[Event=[Break=_brk1]- 

-EPC->[Proposition: [RTU=_sens1]-attr->[FiberState=Broken]] 

-ESA->[Area=_Area]] 

-before->[State=[NormalState]-SPC->[Proposition:[RTU]-attr- 

->[FiberState]]] 

-before->[Event=[Repair]- 

-EPC->[Proposition: [RTU=_sens1]-attr->[FiberState=Rapaired]] 

-ESA->[Area=_Area]]]), 

//Contextual Information 

cg([Complex_Pattern = _CPattern]- 

-Context_Description->[Proposition : [Crew=x]-attr->[CrewStatus="Assigned"]]). 

 

The relation EPC stands for Event Propositional Content. The relation ESA stands for 

Event Spatial Attribute. The relation SPC stands for State Propositional Content. 

These relations are part of the event definition as introduced in Chapter 3.  The 

detection of an instance of this complex pattern means that a broken fiber has been 

repaired by the assigned crew according to the observation of the RTU (_sens1 in the 

above example).  

 

When a fiber break is repaired, a Crew Manager agent can also revoke the crew and 

update its status to Free using the following Prolog+CG instruction: 

 

RevokeCrew:-ComplexPatternWithContextInfo(_CPattern,Environment,x), 

write(_CPattern), writeln(" pattern detected"), 
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write("Crew revoked from :"), writeln(x), 

UpdateCrewStatus(x,"Free"), 

getCrewStatus(_CPattern,x,_status), 

write("New "),write(x),write(" "), write("status is "), writeln(_status). 

 

A human operator may have his own interpretation of spatiotemporal situations of 

interest in a certain context. We used the above examples to show the integration of 

contextual information in the pattern definition. Using Prolog+CG a user can easily 

specify her own business rules by combining patterns instances and contextual 

information.   

5.7 Conclusion 

In this chapter, we presented a framework to manage qualitative spatiotemporal 

patterns. This framework takes advantage of the qualitative spatiotemporal formalism 

introduced in Chapter 3 and the qualitative spatial relations model introduced in 

Chapter 4. The framework allows for detecting patterns from large datasets found in 

real-time applications. It also helps (software and human) agents to reason about the 

detected patterns since they are expressed using Conceptual Graphs. A case study 

from the telecommunications industry has been presented to illustrate the usefulness 

of the framework. Three papers based on this chapter have been published in three 

conferences covering various domains such as Spatial Analysis [Barouni and Moulin, 

2012] and Smart Grids [Barouni and Moulin, 2014c] and [Barouni and Moulin, 

2015b]. This emphasizes the multidisciplinary aspect of our work.  Another research 

paper in under preparation and will be submitted to the Big Data Applications journal 

by July 2015. The next chapter discusses the limits related to our approach and 

concludes this thesis. 
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 Chapter 6

Conclusion 

The main objective of this thesis was to propose a novel approach for qualitative 

representation and management of dynamic spatiotemporal situations of interest. In 

this chapter, we conclude the thesis by summing up the goals that have been achieved 

with respect to our initial objectives. We also present an overview of some future 

research topics that may represent prospective opportunities of our approach.  

6.1 Synthesis 

In this thesis, we proposed a novel approach to manage dynamic spatiotemporal 

situations of interest. Managing situations of interest is made possible thanks to the 

qualitative representation of their definitions, to the detection of their instances from a 

stream of data and to offering reasoning capabilities close to the user’s mental model. 

Our approach is defined in the context of Big Data applications and large scale data 

acquisition and monitoring systems routinely used in the industry. This objective has 

been achieved throughout the following stages.  

 

First, we proposed a novel approach to qualitatively represent dynamic 

spatiotemporal situations of interest. We based our approach on the notion of 

spatiotemporal pattern which is widely present in the spatiotemporal analysis domain. 

We used Conceptual Graphs to qualitatively represent pattern definitions and we 

integrated the concept of contextual information in the pattern model in order to allow 

agents to reason about these patterns.  
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Second, we proposed a novel approach to automate reasoning about spatial 

proximity. Our model is based on contextual information which can be either 

objective such as spatial distance or subjective such as traffic conditions or the user’s 

familiarity with the city. We integrated a neuro-fuzzy classifier to train a dataset input 

by an expert and to generate fuzzy quantifiers that are used by a Fuzzy Inference 

System to qualify spatial proximity relations. As a concrete result of this approach, 

we integrated our qualitative proximity tool in a GIS and we made qualitative spatial 

relations available to our qualitative pattern model.  

 

Third, we proposed a framework to manage spatiotemporal patterns occurring in a 

dynamic environment. This framework is based on a hybrid architecture where 

Conceptual Graphs are used to: 1) qualitatively represent pattern definitions; 2) build 

the knowledge base of software agents. We developed an extension to a Complex 

Event Processing engine to detect pattern instances from a stream of data generated 

by distributed sensors and to enable agents’ qualitative spatial reasoning capabilities. 

Detected pattern instances can be populated in knowledge bases and integrated in 

agents’ reasoning models. 

 

We proposed two case studies to illustrate different aspects related to our framework. 

In the first case study, agents use pattern definitions to make decision about different 

outage configurations which are generated by an Outage Management System. In the 

second case study, agents use detected patterns to assign crews to intervene over a 

fiber optic network.   

6.2 Contributions 

The first contribution of this thesis is a cognitive approach which allows for 

qualitative representation and management of situations of interest using 

spatiotemporal patterns. Modeling situations of interest has been addressed by several 
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research communities such as data mining, Complex Event Processing or Artificial 

Intelligence.  For example [Fisher et al, 2014] proposed a mathematical model to 

recognize situations of interest in surveillance applications and [Baader et al, 2009] 

proposed a query-based approach to retrieve situations of interest from situation 

awareness systems. There are also works in the spatiotemporal analysis domain 

which tend to use query-based approaches to find patterns that represent situations of 

interest such as the work of [Sakr and Guting, 2014]. These works are limited with 

respect to their capability to represent complex and dynamic phenomena and do not 

provide a relevant approach to enable agents to reason about them. We also use the 

concept of patterns to represent situations of interest. However, our approach is 

different since we use Conceptual Graphs as a powerful representation formalism 

close to Natural Language. Furthermore, our pattern definition goes beyond event-

based patterns as it is used in CEP approaches since it supports the representation of 

dynamic phenomena and integrates contextual information. The resulting model 

provides a cognitive flavor that attempts to better reflect human’s mental model about 

the environment in the agent’s reasoning model. 

 

The second contribution of this thesis is a qualitative proximity tool based on 

contextual information. We integrate contextual information in a qualitative 

proximity model and we automate the generation of spatial proximity quantifiers. 

While other works such as [Yao and Thill, 2007] used an approximation function (i.e. 

ANFIS) and did not integrate their approach in a GIS, our work uses a neuro-fuzzy 

classifier and a Fuzzy Inference System to qualify proximity relations. Another 

original aspect of this contribution is that it has been used to extend a Complex Event 

Processing Engine to support qualitative spatial relations in pattern definitions.  

 

The third contribution of this thesis is a qualitative pattern management framework 

based on a hybrid architecture. We integrate our pattern definition of dynamic 

situations of interest in a CEP engine that we extended in order to facilitate the use of 

our pattern model in large scale monitoring applications. There are several original 

aspects in this contribution. First, it enhances the semantic capabilities of the CEP 
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engine by using Conceptual Graphs to represent patterns instead of using SQL-based 

languages. Second, we use a cognitive approach to integrate contextual information in 

the pattern definition. While current CEP solutions use context to manage the stream 

of events [Etzion and Zolotorvesky, 2010], contextual information in our model is 

used by agents to create their own interpretation of detected patterns. Third, this 

contribution is part of recent efforts existing in the research community to address a 

new generation of semantic CEP or knowledge-based CEP [Teymourian and 

Paschke, 2010] where knowledge bases are used to enrich event patterns such as 

works proposed by [Zhou et al, 2012],[Anicic et al, 2010] and [Teymourian, 2014]. 

Our approach is different from the aforementioned works for different reasons. We 

use Conceptual Graphs to represent patterns whereas [Zhou et al, 2012] use query-

based approaches, [Anicic et al, 2010] use a predicate-based language to represent 

event patterns and offers a limited number of temporal operators. [Teymourian, 2014] 

and [Anicic et al, 2010] used so called event patterns where events are the main 

component of patterns.  Our approach provides an adequate expressiveness to 

describe the semantics of events, states, temporal and spatial concepts to extend the 

semantic capabilities of spatiotemporal patterns and to represent real complex 

phenomena. Our framework provides an abstraction layer higher than spatiotemporal 

data in raw format. Users no longer need to be familiar with advanced computer 

languages and can focus on contents rather than on data format as discussed by [Kuhn 

and Ballatore, 2015].  

 

The knowledge base CEP proposed by [Teymourian, 2014] queries ontologies to 

extend event semantics during the pattern matching process. This affects the pattern 

engine capabilities, since an external data source (the ontology) must be accessed 

during the event processing. We propose a different approach which enhances the 

semantics of patterns a priori (i.e. before processing). This approach reduces the 

processing time drastically since the pattern detection engine preloads pattern 

definitions converted from Conceptual Graphs to an enriched version of EPL.   
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6.3 Limits and Drawbacks 

Our approach to manage situations of interest can be enhanced in different ways. A 

temporary limit concerns the proposed pattern definition to represent situations of 

interest. Indeed, our pattern model is based on the concepts of states and events to 

represent dynamic situations. The notion of process is not yet integrated in our model. 

This limits the expressiveness capabilities of patterns to represent certain complex 

phenomena that may be identified in applications such as video surveillance and 

weather monitoring, to name a few. Supporting the notion of process in the pattern 

definition will be a significant contribution to the CEP community where, to the best 

of our knowledge, this notion is not clearly defined yet.  

 

While spatial relations are defined in our pattern model, our framework only supports 

fuzzy spatial proximity. The other qualitative spatial relations such as topology are 

supported using classical spatial tools currently available in commercial solutions. 

Using fuzzy qualitative topological and directional relations needs to be addressed in 

the near future in order to better reflect the human’s mental model of the spatial 

environment. The same limit applies to temporal relations. Our pattern model uses the 

temporal model proposed by [Moulin, 1997] and may be extended in the future to 

support fuzzy temporal relations.  

 

Owing to time constraints, the pattern management framework presented in Chapter 5 

does not fully integrate all pattern types proposed in Chapter 3. We only developed 

algorithms to detect simple and complex pattern types from a stream of data. 

Moreover, the agent’s reasoning module is called from an external module and it is 

not completely integrated in the pattern management framework. The integration of 

both modules will create new research opportunities which will be detailed in the next 

section.   
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Finally, although our approach enables agent’s reasoning about patterns, we did not 

explore in detail advanced reasoning mechanisms. For example, we did not address 

the aspect of deriving new patterns from the knowledge base or the implementation of 

complex transactional actions.    

6.4 Future Work 

Besides improvements to overcome the limits of our approach which are mentioned 

in Section 6.3, we mention here several opportunities that can be explored in future 

works.  

 

A possible research opportunity is to implement pattern verification mechanisms to 

discover patterns that will be never detected from large systems due to a lack of 

consistency [Anicic et al, 2010]. Doing so, a user could be notified when some 

defined patterns are not detected after a certain period of time. Other patterns can be 

suggested to the user in this case. The concept of fuzzy patterns can be a good option 

where pattern components are defined with a certain degree of uncertainty. 

 

There are also issues related to the implementation of advanced reasoning 

mechanisms such as causality relations between patterns, reasoning with course of 

actions [Haddad, 2009] and automating the execution of actions generated by agent’s 

deduction modules (such as in Event Condition Action architectures).In current Event 

Condition Action systems, events are used to trigger the evaluation of a condition and 

to execute an action. Patterns (which are based on a set of events) may be used to 

trigger the evaluation of a condition and execute actions.   

 

Another research topic that may be explored as an application of our approach 

concerns Smart Cities.  Smart Cities is a research topic which has emerged in recent 

years as a result of the increasing number of applications and connected devices 

generating temporal and spatial data in the urban environment. Cities can be “smart” 
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when there are tools and solutions that integrate and synthesize data in a way that 

improves efficiency and sustainability [Batty et al, 2012].  In this context, our 

approach can offer a good option to address several issues such as traffic 

management, smart grid (energy efficiency and demand response) and human 

mobility (modeling trajectory patterns followed by humans during their daily 

activity). Through the use of real-time systems and sensors, data are collected from 

citizens and objects and then processed in real-time [Wikipedia, 2015]. Our pattern 

model could be used to define patterns to help governments and cities make decisions 

in several areas. 

 

In Demand Response applications, Advanced Metering Infrastructures (AMI) are 

deployed in customer facilities and they provide real time data about power 

consumption. Some countries such as Italy and Sweden have 100% of houses using 

this emerging technology.  

Demand response applications can be characterized by a dynamic environment due to 

the variation of residential power consumption in a specific city according to several 

patterns such as touristic activities during hot seasons or people migration. Several 

works attempted to identify peak load patterns such as [Simmhan et al, 2011]. ]. 

However, these works are based on data mining techniques and SQL-based patterns. 

In such applications, our pattern model would offer enough expressiveness to 

represent complex situations in such dynamic environment with spatial and temporal 

dimensions. It could also be used to detect patterns in real time using a CEP. 
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Appendix 

The Crew Dispatcher Agent structure is defined in three main sections: knowledge, 
goals and actions. The knowledge section contains the contextual information related 
to the crew status. The following code snippet gives an example of an agent 
instantiation with PROLOG+CG language and the agent’s knowledge structure. 
 

 

Agent’s goals are defined using spatiotemporal patterns. The following code snippet 
gives an example of a pattern definition. 
 

 

 

The environment is configured through a separate PROLOG+CG instance. It contains 
static information such as crews and sensor locations and dynamic information such 
as events generated by sensors. The following code snippet illustrates an example of 
the environment’s configuration. 
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