

Using Spatiotemporal Patterns to Qualitatively
Represent and Manage Dynamic Situations of Interest:

A Cognitive and Integrative Approach

Thèse

Foued Barouni

Doctorat en Informatique

Philosophiæ Doctor (Ph.D.)

Québec, Canada

© Foued Barouni, 2016

Using Spatiotemporal Patterns to Qualitatively
Represent and Manage Dynamic Situations of Interest:

A Cognitive and Integrative Approach

Thèse

Foued Barouni

Sous la direction de :

Bernard Moulin, directeur de recherche

iii

Résumé

Les situations spatio-temporelles dynamiques sont des situations qui évoluent dans

l’espace et dans le temps. L’être humain peut identifier des configurations de

situations dans son environnement et les utilise pour prendre des décisions. Ces

configurations de situations peuvent aussi être appelées « situations d’intérêt » ou

encore « patrons spatio-temporels ». En informatique, les situations sont obtenues par

des systèmes d’acquisition de données souvent présents dans diverses industries grâce

aux récents développements technologiques et qui génèrent des bases de données de

plus en plus volumineuses. On relève un problème important dans la littérature lié au

fait que les formalismes de représentation utilisés sont souvent incapables de

représenter des phénomènes spatiotemporels dynamiques et complexes qui reflètent

la réalité. De plus, ils ne prennent pas en considération l’appréhension cognitive

(modèle mental) que l’humain peut avoir de son environnement. Ces facteurs rendent

difficile la mise en œuvre de tels modèles par des agents logiciels.

Dans cette thèse, nous proposons un nouveau modèle de représentation des situations

d’intérêt s’appuyant sur la notion des patrons spatiotemporels. Notre approche utilise

les graphes conceptuels pour offrir un aspect qualitatif au modèle de représentation.

Le modèle se base sur les notions d’événement et d’état pour représenter des

phénomènes spatiotemporels dynamiques. Il intègre la notion de contexte pour

permettre aux agents logiciels de raisonner avec les instances de patrons détectés.

Nous proposons aussi un outil de génération automatisée des relations qualitatives de

proximité spatiale en utilisant un classificateur flou. Finalement, nous proposons une

plateforme de gestion des patrons spatiotemporels pour faciliter l’intégration de notre

iv

modèle dans des applications industrielles réelles. Ainsi, les contributions principales

de notre travail sont :

• Un formalisme de représentation qualitative des situations spatiotemporelles

dynamiques en utilisant des graphes conceptuels.

• Une approche cognitive pour la définition des patrons spatio-temporels basée

sur l’intégration de l’information contextuelle.

• Un outil de génération automatique des relations spatiales qualitatives de

proximité basé sur les classificateurs neuronaux flous.

• Une plateforme de gestion et de détection des patrons spatiotemporels basée

sur l’extension d’un moteur de traitement des événements complexes

(Complex Event Processing).

v

Abstract

Dynamic spatiotemporal situations are situations that evolve in space and time. They

are part of humans’ daily life. One can be interested in a configuration of situations

occurred in the environment and can use it to make decisions. In the literature, such

configurations are referred to as “situations of interests” or “spatiotemporal patterns”.

In Computer Science, dynamic situations are generated by large scale data acquisition

systems which are deployed everywhere thanks to recent technological advances.

Spatiotemporal pattern representation is a research subject which gained a lot of

attraction from two main research areas. In spatiotemporal analysis, various works

extended query languages to represent patterns and to query them from voluminous

databases. In Artificial Intelligence, predicate-based models represent spatiotemporal

patterns and detect their instances using rule-based mechanisms. Both approaches

suffer several shortcomings. For example, they do not allow for representing dynamic

and complex spatiotemporal phenomena due to their limited expressiveness.

Furthermore, they do not take into account the human’s mental model of the

environment in their representation formalisms. This limits the potential of building

agent-based solutions to reason about these patterns.

In this thesis, we propose a novel approach to represent situations of interest using the

concept of spatiotemporal patterns. We use Conceptual Graphs to offer a qualitative

representation model of these patterns. Our model is based on the concepts of

spatiotemporal events and states to represent dynamic spatiotemporal phenomena. It

also incorporates contextual information in order to facilitate building the knowledge

vi

base of software agents. Besides, we propose an intelligent proximity tool based on a

neuro-fuzzy classifier to support qualitative spatial relations in the pattern model.

Finally, we propose a framework to manage spatiotemporal patterns in order to

facilitate the integration of our pattern representation model to existing applications in

the industry.

The main contributions of this thesis are as follows:

• A qualitative approach to model dynamic spatiotemporal situations of interest

using Conceptual Graphs.

• A cognitive approach to represent spatiotemporal patterns by integrating

contextual information.

• An automated tool to generate qualitative spatial proximity relations based on

a neuro-fuzzy classifier.

• A platform for detection and management of spatiotemporal patterns using an

extension of a Complex Event Processing engine.

vii

Contents

Résumé ... iii

Abstract ... v

Contents .. vii

List of Tables ... xi

List of Figures ... xii

Acronyms .. xvii

Foreword ... xx

 General Introduction ... 1 Chapter 1

Introduction .. 1

1.1 Problems and Research Issues ... 4

1.2 Objectives .. 7

1.3 Research methodology ... 8

1.4 Contributions ... 9

1.5 Organization of the Thesis ... 10

 Qualitative Spatiotemporal Situation of Interest: A State of the Art 14 Chapter 2

Introduction .. 14

2.1 Large Scale Monitoring and Data Acquisition Systems 15

2.1.1 Big Data ...15

2.1.2 Pervasive and Ubiquitous Computing ..16

2.1.3 Examples of Large Scale Monitoring Systems in the Industry17

2.1.4 Synthesis ..18

2.2 Situation Awareness .. 20

2.2.1 Definition of Situation Awareness ...20

2.2.2 Situation Management ...23

2.2.3 Synthesis ..24

2.3 Classical Approaches in Artificial Intelligence for Situation Modeling 25

2.3.1 Situation Calculus ..25

viii

2.3.2 Event Calculus ...26

2.3.3 Synthesis ..27

2.4 Situations of Interest Modeling Using Patterns ... 28

2.4.1 Predicate-Based Approaches ..28

2.4.2 Query-Based Approaches ..31

2.4.3 Synthesis ..35

2.5 Complex Event Processing .. 36

2.5.1 Synthesis ..39

2.6 Semantic-Based Approaches for Situation Modeling .. 40

2.6.1 Synthesis ..45

2.7 Qualitative Spatiotemporal representation and reasoning 45

2.7.1 Qualitative Spatial Representation and Reasoning ..46

2.7.2 Qualitative Temporal Representation and Reasoning ..49

2.7.3 Synthesis ..51

2.8 Discussion .. 51

2.8.1 Definition of Situation of Interest ..52

2.8.2 Integration of Situations of Interest in Large Scale Systems55

2.9 Conclusion ... 55

 Qualitative Representation of Dynamic Spatiotemporal Patterns 58 Chapter 3

Introduction .. 58

3.1 Definition of Dynamic Spatiotemporal Patterns .. 59

3.1.1 From Situations of Interest to Spatiotemporal Patterns ...59

3.1.2 Conceptual Graphs for Spatiotemporal Pattern Representation62

3.2 A Dynamic Spatiotemporal Environment.. 65

3.2.1 Spatial Objects ...66

3.2.2 Spatial Relations ..67

3.2.3 Dynamic Spatiotemporal Situations ...67

3.2.4 Temporal Relations ..69

3.2.5 State ..70

3.2.6 Event ..72

3.2.7 Summary on the Spatiotemporal Situation Representation..74

3.3 Dynamic Spatiotemporal Pattern ... 75

3.3.1 Qualified Spatiotemporal Situation ..76

ix

3.3.2 Simple Pattern ..77

3.3.3 Complex Pattern ...79

3.3.4 Timer Pattern ...81

3.3.5 Repetitive Pattern ...83

3.3.6 Conclusion ...85

3.4 Contextual Information .. 85

3.4.1 The role of context in knowledge representation ...85

3.4.2 How to Define Contexts in Patterns? ...86

3.4.3 Our Definition of Context in Patterns ..87

3.4.4 Conclusion ...89

3.5 Case Study: Outage Management Systems ... 90

3.5.1 Background ..90

3.5.2 Proposed Approach ..92

3.5.3 System Architecture ...94

3.5.4 Pattern Specifications ...94

3.6 Discussion .. 98

3.7 Conclusion ... 100

 Using a Neuro-Fuzzy Classifier to Automatically Generate Spatial Chapter 4
Proximity Quantifiers .. 101

Introduction .. 101

4.1 Qualitative Spatial Proximity... 103

4.1.1 Distance-Based Approaches ..104

4.1.2 Context-Based Approaches ..107

4.1.3 Discussion ..110

4.2 The Neurofuzzy Classifier Structure ... 112

4.3 Implementation Details .. 116

4.3.1 Training the Neurofuzzy Classifier ..116

4.3.2 Results ..120

4.4 A Qualitative Proximity Tool: Architecture and Implementation 123

4.5 Conclusion ... 125

 A Framework for Managing Qualitative Spatiotemporal Patterns 127 Chapter 5

Introduction .. 127

x

5.1 Motivations .. 128

5.2 Pattern Abstraction Module ... 130

5.3 Data Processing and Pattern Detection Module .. 132

5.3.1 Data Processing ..136

5.3.2 Automated Pattern Conversion from Conceptual Graphs to EPL138

5.4 A Spatial Extension of the CEP Engine... 145

5.5 Software Architecture and Implementation ... 147

5.6 Case Study ... 150

5.6.1 Remote Fiber Test System ...150

5.6.2 Background and Challenges ...152

5.6.3 Proposed Solution ..154

5.6.4 Spatial Environment ...155

5.6.5 Pattern Specification ..157

5.6.6 Using Contextual Information ...160

5.7 Conclusion ... 165

 Conclusion .. 166 Chapter 6

6.1 Synthesis .. 166

6.2 Contributions ... 167

6.3 Limits and Drawbacks ... 170

6.4 Future Work ... 171

Bibliography ... 173

Appendix ... 183

xi

List of Tables

Table 2-1: A summary of different approaches for situation of interest modeling 53

Table 4-1: Fuzzy distance as proposed by [Brennan and Martin, 2006] 105

Table 4-2: NFC features (inputs) .. 117

Table 4-3: NFC Classes (outputs) ... 117

Table 4-4: NFC data set training preparation .. 119

Table 5-1: An example of simple pattern conversion algorithm............................... 140

Table 5-2: Complex pattern conversion algorithm ... 143

xii

List of Figures

Figure 1.1: IEC recommendations .. 4

Figure 1.2: Existing solutions to manage situations of interest 5

Figure 1.3: Organization of the thesis ... 12

Figure 2.1: A Typical Big Data Architecture .. 16

Figure 2.2: A difference between data and information [Endsley et al, 2012] 19

Figure 2.3: The general architecture of SAIL [Baader et al, 2009] 21

Figure 2.4: A semantic graph representation of a situation [Anagnostopoulos et al,

2006] ... 22

Figure 2.5: A situation represented using Description Logic [Anagnostopoulos et al,

2006] ... 23

Figure 2.6: An example of Situation Management approach [Jakobson et al, 2007] . 24

Figure 2.7: Event Calculus Principle of Operation [Shanahan, 1999] 27

Figure 2.8: A framework for pattern detection as defined by [Holzmann, 2007] 29

Figure 2.9: An example of a spatiotemporal pattern [Gerhke et al, 2005].................. 29

Figure 2.10: An example of a rule of association defined by [Lattner et al, 2006] 30

Figure 2.11: Different operations on pattern supported by [Lattner et al, 2006] 31

Figure 2.12: A general event definition according to [Etzion and Zolotorvesky, 2010]

 ... 37

Figure 2.13: A pattern expressing an excessive energy usage situation [Hasan et al,

2012] ... 37

Figure 2.14: A typical CEP architecture [Helmer et al, 2011] 38

Figure 2.15: An EPL statement example .. 39

Figure 2.16: A spatiotemporal model of situations [Haddad and Moulin, 2010] 42

Figure 2.17: An example of a state [Haddad and Moulin, 2010] 43

Figure 2.18: An example of an event [Haddad and Moulin, 2010] 44

Figure 2.19: An example of a process [Haddad and Moulin, 2010] 44

Figure 2.20: An example of spatial relations types [Holzmann and Ferscha, 2010] .. 47

Figure 2.21: RCC-8 topological relations from [Renz, 2002] 49

xiii

Figure 2.22: Qualitative temporal intervals relations [Allen, 1983] 51

Figure 3.1: A dynamic STP model .. 59

Figure 3.2: Representation of situations of interest using patterns (adapted from

[Russell and Norvig, 1995] ... 60

Figure 3.3: Agent decision model for way finding problem. Adapted from [Freksa,

2007] ... 61

Figure 3.4: A Conceptual Graph example using linear and graph representations 64

Figure 3.5: Our conceptual model for spatiotemporal patterns. Adapted from [Haddad

and Moulin, 2010] ... 65

Figure 3.6: An example of concept lattice including context specialization 66

Figure 3.7: An example of a topological relation between a Sensor and a Building

using a Conceptual Graphs representation .. 67

Figure 3.8: Static and dynamic situations according to Desclés 68

Figure 3.9: A change from one state to another triggered by the occurrence of an

event .. 68

Figure 3.10: Illustration of time intervals according to [Moulin, 1997] 69

Figure 3.11: An example of temporal relation using Conceptual Graphs

representation .. 70

Figure 3.12: A state describing a normal fiber state. The state is defined in a time

interval between July 17th at 10:00 AM and July 24th at 05:33 PM. 71

Figure 3.13: A state describing a degraded fiber state. The state is defined at distance

23Km of a fiber link between Quebec and Montreal .. 71

Figure 3.14: A state represented using CGs’ linear notation 71

Figure 3.15: An event representation using temporal relations to link with the state

before the occurrence and after the occurrence... 74

Figure 3.16: An example of a qualified situation .. 76

Figure 3.17: Structure of a simple pattern ... 78

Figure 3.18: An example of a simple pattern .. 79

Figure 3.19: A simple pattern example using the negation operator 79

Figure 3.20: Structure of a complex pattern.. 80

xiv

Figure 3.21: A complex pattern example where the communication_error_pattern is

related with the temporal relation after to the emergency_pattern 81

Figure 3.22: An example of a timer pattern .. 82

Figure 3.23: Structure of the timer pattern .. 83

Figure 3.24: Structure of the repetitive pattern ... 84

Figure 3.25: An example of a repetitive pattern ... 84

Figure 3.26: Our approach to model support contextual information in our

spatiotemporal pattern formalism ... 88

Figure 3.27: A pattern definition using contextual information 89

Figure 3.28: Different components of an Outage Management System 92

Figure 3.29: An outage map in the State of New York [conEdison, 2013] 92

Figure 3.30: Our agent's reasoning model .. 94

Figure 3.31: A system architecture involving the outage management system and the

interaction with the goal-based agent .. 95

Figure 3.32: An example of simple pattern with linear notation 95

Figure 3.33: An example of rule used for crew assignment 96

Figure 3.34: Output of the action AssignFreeCrew in the Prolog+CG console. 97

Figure 3.35: A complex pattern representation. .. 97

Figure 4.1: A simple pattern example using a qualitative spatial relation 102

Figure 4.2: An example of possible proximity relations between two objects [Schultz

et al, 2007] ... 104

Figure 4.3: A Java-based proximity platform developed by [Schultz et al, 2007],

where fuzzy quantifiers are used to query spatial objects ... 106

Figure 4.4: A conceptual framework proposed by Brennan and Martin to compute

impact area from contextual information and geographic distance. 108

Figure 4.5: An example of difference between influence areas [Kettani and Moulin,

1999] and impact area [Brennan and Martin, 2012] ... 108

Figure 4.6: A general architecture of the neuro-fuzzy system for proximity modeling

proposed by [Yao and Thill, 2007] ... 110

Figure 4.7: An overview of the proposed approach .. 112

Figure 4.8: Partition of the feature space [Sun and Jang, 1993] 113

xv

Figure 4.9:A neurofuzzy classifier, adapted from [Cetişli and Barkana, 2010] 115

Figure 4.10: Fuzzy rules used to prepare the data set ... 118

Figure 4.11: NFC training Performance for 3 features and 4 classes 121

Figure 4.12: The distance feature as defined by user to train the NFC 121

Figure 4.13: The distance feature after the NFC training ... 121

Figure 4.14: The road traffic feature as defined by user to train the NFC 122

Figure 4.15: The road traffic feature after the NFC training..................................... 122

Figure 4.16: User’s familiarity with area feature as defined by user to train the NFC

 ... 122

Figure 4.17: User’s familiarity with area feature after the NFC training.................. 123

Figure 4.18: Architecture of our qualitative proximity tool 124

Figure 5.1: Overview of the different components of the proposed framework 129

Figure 5.2: Architecture of the pattern specification module 131

Figure 5.3: A concept type lattice using the Amine Platform 131

Figure 5.4: A simple pattern represented using the Amine Platform 132

Figure 5.5: A typical CEP architecture [Helmer et al, 2010] 135

Figure 5.6: An example of sensor definition ... 137

Figure 5.7: A sample of events generated by a Fault Current Indicator sensor 137

Figure 5.8: An example of a class for event definition in ESPER 137

Figure 5.9: Description of the pattern detection module ... 138

Figure 5.10: Examples of simple patterns in CG and EPL formats 141

Figure 5.11: An output example of the complex pattern conversion algorithm 144

Figure 5.12: Architecture and software packages used in our framework 148

Figure 5.13: The Pattern Management Tool ... 149

Figure 5.14: OTDR Trace Information [Foa, 2015] ... 151

Figure 5.15: The general architecture of an RFTS .. 151

Figure 5.16: The Crew Manager's reasoning model ... 155

Figure 5.17: A metro network example in Quebec City. Fiber optic routes are

represented by green lines and the RTU location is represented by a Yellow Square.

 ... 156

Figure 5.18: A specialization example of the concept type Location 156

xvi

Figure 5.19: An alarm report about an event generated by the “RTU Paris” as

described by [NTest. 2014] RFTS .. 157

Figure 5.20: A Conceptual Graph representation of the event reported by “RTU

Paris” ... 158

Figure 5.21: An example of a simple pattern where the event occurrence changes the

state of a fiber from degraded to broken ... 159

Figure 5.22: An example of a complex pattern linking two simple patterns 160

Figure 5.23: A concept type lattice representing contextual information 161

Figure 5.24: A simple pattern example with spatial contextual information 162

Figure 5.25: A simple pattern example with semantic contextual information 163

xvii

Acronyms

AI Artificial Intelligence

ANFIS Adaptive Neuro-Fuzzy Inference System

B-DAD Big Data Analytics and Decisions

BTS Base Transceiver Stations

CDMA Code Division Multiple Access

CDR Call Detail Records

CEP Complex Event Processing

CG Conceptual Graphs

CIS Customer Information System

CPC Context Propositional Content

CPPC Complex Pattern Propositional Content

CRM Customer Relation Management

CTL Concept Type Lattice

DBMS Database Management System

DMS Distribution Management System

DNP Distributed Network Protocol

DSPM Data Stream Processing Models

DSTP Dynamic Spatiotemporal Patterns

EC Event Calculus

ECA Event Condition Action

EDA Event Driven Architecture

ELE ETALIS Language for Events

EMS Energy Management System

EPC Event Propositional Content

EPL Event Pattern Language

ESA Event Spatial Attribute

ETS Event Time Stamp

FOR Fiber Optic Route

GIS Geographic Information System

GSM Global System for Mobile Communications

IEC International Electro-technical Commission

IE Inference Engine

IVR Interactive Voice Response

KPI Key Performance Indicators

NFC Neurofuzzy Classifier

NoSQL Not Only SQL

OGC Open Geospatial Consortium

xviii

OMS Outage Management System

OSS Operations Support System

OTDR Optical Time Domain Reflectometer

QSR Qualitative Spatiotemporal Reasoning

RCC Region Connection Calculus

RDMS Relational Database Management Systems

RFTS Remote Fiber Test System

RPC Repetitive Pattern Count

RPPC Repetitive Pattern Propositional Content

RTU Remote Terminal Units

SA Situation Awareness

SAIDI System Average Interruption Duration Index

SAIL Situation Awareness by Inference and Logic

SC Situation Calculus

SCADA Supervisory Control and Data Acquisition

SFTP Secure File Transfer Protocol

SLA Service Level Agreement

SM Situation Management

SPC State Propositional Content

SPPC Simple Pattern Propositional Content

SQL Standard Query Language

SSA State Spatial Attribute

STI State Time Interval

STP Spatiotemporal Pattern

STPS Spatiotemporal Pattern System

STS Qualified Spatiotemporal Situation

TPC Timer Pattern Content

TPPC Timer Pattern Propositional Content

xix

To my parents.

xx

Foreword

This thesis becomes a reality with the kind support and help of many people. I would

like to extend my sincere thanks to all of them.

I’m grateful to the members of my thesis jury: Prof. Jules Desharnais, Prof.

Christophe Claramunt, Prof. Luc Lamontagne, Prof. Sehl Mellouli and Prof. Thierry

Badard for accepting to review this work, for their time and their interest.

I’m deeply indebted to my supervisor Prof. Bernard Moulin for his extended

enthusiasm and continuous support throughout my Ph.D. studies. He gave me the

opportunity to join his research group and he continuously encouraged me to go

further in my work. I owe him a great debt of gratitude for his tremendous patience

and for his valuable guidance.

I would like to thank all my colleagues and friends for their precious advices and

constant encouragement.

My parents and sisters receive my love and gratitude. My hard-working parents have

sacrificed their lives for my sisters and myself and they raised us with great values.

My sisters have been my best friends all my life and I want to recognize their

contribution to this achievement.

I saved the last word of acknowledgement for my dear wife Mouna, who has been

with me all these years. Without her faithful patience and her unconditional

encouragement especially during the critical moments, this work would not have been

done.

1

 Chapter 1

General Introduction

Introduction

Recent advances in Computer Science (hardware and software) and in

telecommunication systems led to the emergence of a new reality: a flood of data is

being generated every day. According to IBM, 2.5 Exabytes (1 Exabyte=1 billion

Gigabyte) were generated every day in 2012. This reality affects a large number of

domains such as finance (e-trading, commercial transactions, credit cards), health

(remote monitoring, patient management) and the social area (social networks, news,

media streaming), to name a few. In this thesis, we focus on a new generation of data

acquisition systems widely present in industries such as power utilities and

telecommunications. In these areas, massive amounts of data are generated by a new

generation of devices enhanced by powerful processing capabilities. These devices

are deployed everywhere and they collect numerous observations about phenomena

occurring in the world to report them in various data formats to centralized enterprise

servers. They generate heterogeneous and dynamic data1 which is also geo-

referenced. The phenomena that we consider here have spatial and temporal

characteristics. We will call them ‘spatio-temporal situations’.

1 Data is said to be dynamic when it changes in space and time.

2

In recent years, many research teams attempted to cope with this new reality by

offering a set of tools, frameworks and commercial products to manage such huge

amounts of data. Managing this flood of data is about: 1) managing the way data is

stored; 2) managing the interoperability between heterogeneous data formats; 3)

offering the end-user efficient tools to take advantage of this flood of data. These

efforts led to the emergence of new paradigms such as Big Data, Internet of Things,

Sensor Web, Everyware, Ambient Intelligence and Pervasive Computing. One of the

main objectives of these domains is to offer the end-user the possibility to make

decisions related to dynamic spatiotemporal situations occurring in the world. This

objective becomes crucial in the current context of competition between different

companies which offer critical services such as power services, cellular operators, TV

broadcasting services and internet providers, to name a few. Different key

performance indicators (KPIs) are driving these domains such as SLA (Service Level

Agreement) in telecommunications and SAIDI (System Average Interruption

Duration Index) in power utilities. Existing solutions in these domains attempt to

offer decision tools to help end-users visualizing interesting data. To this end, the

end-user should be able to express “what he wants to observe” in the world so that

existing tools need to query data collected from different sources and display the

requested information.

Actually, in a large number of application areas, human operators need to identify

typical configurations (patterns) in their operational environments based on the

exploitation of observations provided by distributed devices and correlated with

additional information which may be obtained from different kinds of static data

sources such as Geographic Information Systems (GIS) and other enterprise

applications. The human operator’s goal is to analyze (‘reason about’) these

configurations in order to make appropriate decisions to manage/control the situations

when a human intervention is needed. We will call these typical configurations

dynamic spatiotemporal situations of interest because they are dynamic situations

that are characterized by spatial and temporal properties and are particularly

interesting for decision makers.

3

The notion of situation of interest plays a key role in humans’ decision processes. We

suggest that it needs to be carefully addressed by existing tools in a manner that suits

human operators’ cognitive expectations. Modeling a situation of interest as such is

not a trivial task. It requires complex cognitive capabilities to model the semantics of

dynamic objects that are involved in the situation and their changes. The proposal of

an adequate representation model of situations of interest is one of the challenging

aspects of this thesis.

This thesis takes place in the context of research dealing with the modeling and

management of dynamic spatiotemporal situations applied to large scale acquisition

and monitoring systems. These systems are widely deployed at different levels across

organizations and generate data in heterogeneous structures. They are usually built up

in monolithic and specialized application systems. The example depicted below

(Figure 1.1) is adapted from the recommendations of the IEC (International Electro-

technical Commission) group under the Smart Grid Initiative for the Power Utility

Industry. This group tries to define how software solutions can be deployed in large

utilities, how they can interact (if possible) and how they can be implemented in

organizations. A multilayer architecture is proposed starting at the Market Level

where a SCADA (Supervisory Control and Data Acquisition) system and an EMS

(Energy Management System) can be involved. The Enterprise Level comes after

where a GIS, an Asset Management System and a CIS (Customer Information

System) are deployed. The Operation Level makes the link between the Enterprise

Level and the Field Level. A SCADA, an EMS, a DMS (Distribution Management

System), an OMS (Outage Management System) are the main components used at this

level for operation management purposes. Finally, the Field Level is specified to

manage raw data retrieved from all devices and sensors deployed in the field such as

data concentrators, voltage regulators, breakers and others which are commonly

used in the power industry.

Similar hierarchical architectures can be found in other domains such as security

surveillance, weather monitoring and telecommunications, to name a few. These

4

architectures have in common some aspects of volume, variety, heterogeneity,

uncertainty, and distribution of data. Most of the proposed architectures seek to

reduce the so-called ‘semantic gap’ between the big amount of data they generate and

the end-user’s requirements to support the decision making process, which mainly

aims at offering a certain level of quality and a continuous service (power, security,

information, communication) to customers.

Figure 1.1: IEC recommendations

1.1 Problems and Research Issues

As we mentioned earlier, the main characteristics of large scale monitoring systems

are variety, uncertainty, and heterogeneity of data. Figure 1.2 depicts an example

about how data is processed from various sources and displayed to an end-user

through a set of solutions and tools. Basically, data sources (sensors for example)

generate observations in a raw data format which can be either stored as such or

presented to the end-user in a legible form after some elementary processing. Such

data may be displayed in various ways (alarms, views, tables, charts, graphs) or may

5

take the form of reports and files, or even be modeled as digital numbers or even by

more sophisticated data structures capturing events and states. For decision making

purposes, a user may need to retrieve data from different acquisition systems and to

process it. For example, a user may be interested by some “situations” in relation to

weather conditions in a particular location, at a certain time. Therefore, s/he needs to

access a sensor web system for weather monitoring to get data about weather

conditions (wind speed, wind direction etc...). Then, s/he may need to collect data

from other systems such as a GIS and eventually establish relationships between the

retrieved data to finally draw conclusions in the form of useful information presented

for example on a map. In other words, the user needs to carry out a cognitive effort to

interpret correlated data in terms of situations that he recognizes in the operational

environment. Here, we define a situation of interest a set of correlated data which

represents a specific configuration of the real world which is interesting for the end-

user. In this thesis we consider that the user (or the operator) builds his/her own

interpretation of the data obtained from acquisition systems, according to his

cognitive (or ‘mental’) interpretation of the operational environment.

Figure 1.2: Existing solutions to manage situations of interest

6

Decision makers are considered as expert of their domains of expertise. They usually

have multidisciplinary capabilities and they are application domain oriented. They

need to identify situations of interest in order to make decisions in a competitive

context, act on mission critical environments, and last but not least, comply with

regulated markets. To this end, decision makers need to carry out the following main

actions:

• Collect data from various data sources (online data streams, offline databases,

statistical data, etc.)

• Identify dynamic spatiotemporal phenomena of interest

• Correlate these phenomena and identify situations of interest while taking

advantage of their expertise.

Despite the large number of available sophisticated software solutions, decision

makers carry out the above steps and make a cognitive effort because of the currently

existing ‘semantic gap’ between what decision makers are looking for and what the

proposed approaches are offering. Several approaches have been proposed to

represent situations of interest, using various notions such as spatiotemporal patterns,

spatiotemporal phenomena and spatiotemporal situations A variety of formalisms

and tools have been proposed to help querying information from large size databases

or collecting data on the fly from data sources and to process them according to

predefined knowledge structures. However, most of these approaches do not

explicitly consider the way end-users reason about such situations of interest. In this

thesis we suggest that there is a need to provide a clear definition of a situation of

interest that takes into account the user’s mental model in order to reduce the existing

semantic gap between the way data is presented by currently available

approaches/software and what is a situation of interest from a user’s perspective. We

argue that a qualitative and application independent representation formalism is

needed to describe possible configurations of a situation of interest and to represent

complex spatiotemporal phenomena. Current approaches in the literature offer limited

capabilities to cope with the aforementioned issues.

7

1.2 Objectives

The objective of this thesis is twofold:

To propose a knowledge engineering approach to represent and manage qualitative

spatiotemporal situations of interest: this approach will offer a methodology to build

a cognitive approach to represent and manage situations of interest in large scale data

acquisition systems. This objective can be achieved through the following sub-

objectives:

• To propose a model that represents dynamic spatiotemporal situations of

interest in a qualitative manner. The formalism should allow for expressing

situations of interest using a representation language close to Natural

Language. The formalism should also consider the user’s mental perception of

the environment and allow for reasoning about situations of interest using

intelligent software systems.

• To propose an approach which supports qualitative representation and

reasoning with spatial relations: this approach will be used to help users

building a mental model of the spatial environment and to integrate qualitative

spatial relations in the definition of situations of interest. Particular emphasis

should be placed on spatial proximity relations.

To propose an approach and a set of tools to manage instances of situations of

interest occurring in a dynamic spatiotemporal environment. To validate our

approach, we propose two application domains: a Remote Fiber Optic Monitoring

System which is used in the telecommunication industry and an Outage Management

System which is used in the public power industry. We will develop our approach

and the set of tools to help users to manage different tasks aiming at maintaining a

8

certain level of quality of service and to react in an efficient way to critical situations

that may occur in their operational environments.

1.3 Research methodology

To achieve the objectives of this thesis, we adopted a four-steps approach 1)

conducting a literature review of research works on spatiotemporal situation of

interest modeling and related subjects; 2) proposing a knowledge engineering

approach to represent and manage spatiotemporal situations of interest; 3) developing

a set of tools to detect instances of spatiotemporal situation of interest in dynamic

environments.; 4) Validating the proposed approach using two case studies.

The state of the art is the first step in our research methodology where we carried out

an in-depth analysis of existing approaches on modeling dynamic situations of

interest. In the literature, researchers usually refer to situations of interest using the

term spatiotemporal patterns. For the rest of this thesis, we refer to dynamic

situations of interest as dynamic spatiotemporal patterns (DSTP). Our literature

review on DSTP addresses several perspectives. The representation perspective deals

with the issue of how DSTP are represented in terms of syntax and semantics. The

cognitive perspective deals with the way DSTPs are used in knowledge-based

approaches. The application perspective attempts to review different research areas

and application domains involving the representation of DSTP and reasoning with

them. In particular, we will discuss domains such as big data, ubiquitous computing,

ambient intelligence, location/context aware systems, pervasive computing, Artificial

Intelligence and Complex Event Processing.

Reviewing current approaches to qualitatively represent and manage situations of

interest is a mandatory step which will help identifying their current advantages,

limits and shortcomings. Hence, as a next step of our research work, we will propose

9

a novel approach to qualitatively represent situations of interest by considering

several requirements such as offering a qualitative representation and the possibility

of using such an approach using a cognitive perspective. This will imply selecting a

suitable representation formalism and providing a clear definition of a dynamic

situation of interest. Both spatial and temporal dimensions need to be supported as

well as other fundamental notions such as events and states.

The development of software tools to support the proposed approach is the third step

of the thesis. We will develop a framework to manage instance of situations of

interest which can be detected in a dynamic spatiotemporal environment. To this end,

a hybrid architecture based on the integration of our formal definition of situations of

interest to a pattern detection framework will be proposed. The proposed framework

is integrated with a Complex Event Processing engine which is used for pattern

detection.

The validation of the proposed approach is the fourth step of the thesis in which two

scenarios from telecommunication and power distribution industries are used to

illustrate the application of the main aspects of our research work and to emphasize

their usefulness and applicability.

1.4 Contributions

As a first contribution, this thesis presents a novel knowledge engineering approach

to qualitatively represent and manage dynamic spatiotemporal situations of interest.

While most works on spatiotemporal patterns focus on extending database query

languages, our approach tackles the issue of DSTP modeling from a cognitive

perspective. To define a DSTP we take into account a cognitive representation of the

operational environment and propose a knowledge engineering methodology to build

the DSTP model. To this end, our approach uses the rich semantic capabilities of

Sowa’s Conceptual Graphs formalism and its equivalence to First Order Logic. This

10

will open the possibility to couple our software tools to be used with agent-based

systems in order to enable them to manipulate patterns and to reason about them.

Furthermore, we introduce the notion of contextual knowledge in our formalism to

enhance and refine the definition of pattern. Last but not least, since this thesis deals

with dynamic environments, our pattern formalism represents dynamic

spatiotemporal phenomena and allows for the explicit representation of states, events

and temporal relations between them.

To integrate the proposed DSTP model to spatial environments and to support

qualitative spatial reasoning capabilities, the second main contribution of this thesis

is a qualitative technique to represent and to reason about spatial relations. The

proposed approach uses a Neurofuzzy classifier to integrate contextual knowledge in

the qualification of spatial proximity. Using the proposed technique, qualitative

spatial quantifiers are closer to the human’s mental model of the spatial environment

and are used to represent spatial proximity relations in our DSTP model.

The third main contribution of this thesis is a set of tools and algorithms to manage

spatiotemporal pattern instances from a stream of data generated by large scale

applications. Actually, in our first contribution we propose a qualitative DSTP model

but it does not address the issue of detecting DSTP instances in the context of real

applications. Hence, we developed a hybrid framework integrated with an existing

Complex Event Processing engine and we created a set of algorithms to implement

our semantic DSTP model and to manage the detection of DSTP instances. These

detected instances of patterns can be used to build knowledge bases that can be

exploited by software agents.

1.5 Organization of the Thesis

This thesis is organized as follows (Figure 1.3). After introducing different research

issues in the current chapter, Chapter 2 presents a state of the art of different works

11

on modeling situations of interest. In this chapter we present the context of large scale

monitoring and data acquisition systems and discuss the limits of current approaches

with respect to the objectives of this thesis.

Chapter 3 presents our first contribution and proposes a novel formalism to

qualitatively represent spatiotemporal patterns using Conceptual Graphs. These

spatiotemporal patterns represent dynamic spatiotemporal situations while adopting a

cognitive perspective and taking into account contextual information. The chapter

includes a short case study to illustrate some examples of the proposed formalism and

to raise some difficult issues that will be solved in the next chapters.

Spatial relations are a key element in the spatiotemporal formalism that we propose in

Chapter 3. In particular, spatial proximity is used in several applications to qualify the

proximity between spatial references. In Chapter 4 we propose an automated

approach based on a neurofuzzy classifier to generate qualitative spatial proximity

relations. These relations are integrated in a GIS and used in our pattern formalism.

Some challenges related to pattern detection and management discussed in Chapter 3,

are now addressed in Chapter 5 which presents the framework that we developed to

manage spatiotemporal patterns. The framework integrates a Complex Event

Processing engine and the qualitative spatial proximity tool that we presented in

Chapter 4, as well as our qualitative spatiotemporal pattern model described in

Chapter 3. A case study illustrates different aspects of our solution.

Finally, Chapter 6 concludes the thesis by summarizing its main contributions and by

outlining some limits that will be explored in future research work.

12

Figure 1.3: Organization of the thesis

13

Part I

State of the Art

14

 Chapter 2

Qualitative Spatiotemporal Situation of

Interest: A State of the Art

Introduction

Several research areas such as Psychology, Spatiotemporal Reasoning and Artificial

Intelligence (AI) investigated situation modeling. In AI, several approaches and

formalisms were proposed for situation modeling such as Situation Calculus,

Situation Awareness, Event Calculus and Spatiotemporal Patterns, to name a few. In

this chapter, a state of the art of spatiotemporal situation modeling is presented.

The rest of this chapter is organized as follows. Section 2.1 presents a brief overview

of large scale monitoring and data acquisition systems. Section 2.2 introduces the

concept of Situation Awareness which is a widely used approach for situation

modeling. Section 2.3 surveys some Artificial Intelligence approaches for situation

modeling such as Situation and Event Calculi. In Section 2.4, we present an overview

of works based on patterns to represent situations of interest. Section 2.5 introduces

Complex Event Processing and discusses how this technology is used to manage and

detect situations of interest. In Section 2.6 we review some approaches which address

the semantic aspects of situation modeling. Section 2.7 surveys classical qualitative

spatiotemporal representation and reasoning techniques. Section 2.8 discusses the

15

limits of these approaches and positions them in the context of this thesis. Finally,

Section 2.9 concludes the chapter.

2.1 Large Scale Monitoring and Data Acquisition Systems

This thesis is defined in the context of a new generation of data acquisition and

monitoring systems which are addressed in the literature by several research areas.

Without being exhaustive, we propose in this subsection a brief overview of these

concepts.

2.1.1 Big Data

“Big Data” is a term that applies to systems where datasets are constantly increasing

until they become too large to be managed using traditional database management

systems [Elgendy and Elragal, 2014]. Consequently, advanced analytics techniques

are used on big datasets in order to deal with challenges related to dataset

management such as capture, storage, search and visualization. According to

[Elgendy and Elragal, 2014] three main features characterize big data: volume,

variety and velocity (namely the three V’s). The size of the dataset corresponds to the

volume. The variety of the dataset is related to the heterogeneity aspect of data. The

velocity of datasets is the way data is changing and how often it is generated. These

characteristics led to the definition of new requirements for developing tools capable

of fast access and efficient analysis of these datasets while these capabilities are not

supported by traditional database management systems. For example, the Big Data

Analytics and Decisions (B-DAD) [Elgendy and Elragal, 2014] is a framework that

establishes a link between Big Data Analytics tools and Decision making systems. A

typical (B-DAD) architecture is depicted in Figure 2.1. A Storage and Management

Module is used to deal with data storage. It can be stored in typical hard disks or

hosted in memory (called in-memory DBs structure) in order to optimize the

read/write access speed. Other aspects may be addressed in this module such as how

the data repository is structured. It can be different from traditional relational

16

databases and it can use the so-called Not Only SQL approach (NoSQL) which

separates data management and data storage for better performances. The Analytic

Processing Module addresses issues such as fast data loading, fast data processing

and storage space optimization. Finally, the Analytics Module addresses data

extraction and visualization issues and pattern detection mechanisms.

Figure 2.1: A Typical Big Data Architecture

It is worth to mention that Big Data is still considered as an emerging set of concepts

and ideas which make this paradigm continuously evolving. This explains why no

clear and unique definition can be found yet and that some of the existing definitions

overlap with other domains such as Pervasive Computing.

2.1.2 Pervasive and Ubiquitous Computing

Pervasive Computing is a paradigm that emerged in the first decade of the 21st

century. It is based on the idea of providing access to applications everywhere,

anytime, by means of any device and through natural interactions so that users may

17

not even be aware that they are using computational devices [Cascado et al, 2011].

Ambient Intelligence and Ubiquitous Computing are other approaches related to

Pervasive Computing. The development and implementation of pervasive

applications emerged in various domains such as Internet technologies, mobile and

distributed computing, computer hardware, wireless communication networks, sensor

networks and intelligent systems, to name a few [Obaidat et al, 2011]. The research

community on pervasive computing identified several challenges related to three

main issues [Saha and Mukherjee, 2003]: scalability, heterogeneity, and context-

awareness. A system is scalable when it allows for adding new devices without the

need to design a new application and allows for deploying a large number of such

devices. A system is heterogeneous when it allows for using a variety of services and

different types of devices, networks, systems and environments. Context Awareness

is defined as the use of information to characterize the situation of an entity, be it a

person, a place or an object [Dey, 2001]. One of the most popular categories of

context-aware systems is location aware systems. We emphasize here that the

concept of context is characterized by different dimensions such as time, space and

user’s preferences. According to [Cascado et al, 2011] user’s preferences change

according to his context. Therefore, context aware-systems must adapt to the user

when needed; and provide the following three characteristics: 1) present information

and services to a user; 2) automatically execute services for a user; 3) tag the context

related to the provided information for later use [Dey, 2001].

2.1.3 Examples of Large Scale Monitoring Systems in the Industry

Several domains are concerned with challenges addressed by Big Data and Pervasive

Computing systems. They share a common set of characteristics such as very large

datasets and the need to offer decision making capabilities to end-users.

In the telecommunication industry, Fiber Quality Monitoring Systems use laser-based

sensors to scan fiber optic links, detect critical events such as fiber degradations and

fiber breaks and locate these events using a GIS. They help users to reduce network

18

downtime and respect service level agreements. Operations Support Systems (OSS)

are widely used in telephone networks to support operation functions such as network

configuration and monitoring, service commissioning and asset management.

In the Power Utilities industry, Outage Management Systems use smart sensors

which are deployed throughout the distribution network. These sensors are mounted

on power cables and they report an outage event to centralized servers using

cellphone communication channels and industrial communication protocols. The

reported events are also located using a GIS which models the distribution network.

The main function of an OMS is to track outage events and to update customers with

the real time outage status in their respective regions. Other large scale monitoring

systems are used in the Power industry such as Energy Management System (EMS)

to monitor, measure, control and optimize electric generation and transmission

networks and Distribution Management System (DMS) to optimize and control

electric distribution networks.

2.1.4 Synthesis

Various architectures and approaches are proposed by Big Data, Pervasive

Computing and other similar paradigms to manage large scale systems and their

datasets. These architectures share some common aspects such as variety,

heterogeneity and distribution of data sources. Since these systems are used by

humans on a daily basis, they try to reduce the semantic gap between the data they

provide and the end-user’s requirements to support his decision making process.

Hence, the more supportive of end-users’ decision making process a system is, the

more it is useful and efficient. For example, [Endsley et al, 2012] claimed that a user-

centric design should be considered rather than a data-centric design for the new

generation of computer software. This will help turning raw data into relevant

information (Figure 2.2). This information could be visual (alarms, views, tables,

charts, graphs) or could take the form of reports and files. It can also be categorized

as events, states, digital numbers, or more generally, as dynamic spatiotemporal

19

phenomena. For decision making purposes, a user may need to collect this

information from various systems and reason about it. For example, a user may be

interested by some “situations” about traffic conditions in a given city, at a certain

time. Therefore, he needs to access cameras providing information about traffic

conditions. Then, he may need to get information from other systems such as a GIS,

and eventually, establish relationships between all these retrieved information to draw

conclusions. In other words, users need to carry out cognitive processes to transform

heterogeneous data into recognized situations of interest according to the way they

perceive their environment. A situation of interest (also called a pattern2) can be

thought of as the result of the correlation of a sequence of information to identify a

specific configuration of the real world. Human beings have mental representations of

the world and carry out their own interpretations of the information collected from

system outputs, according to the way they perceive the surrounding environment.

Figure 2.2: A difference between data and information [Endsley et al, 2012]

The rest of this chapter reviews different approaches proposed to model

spatiotemporal situations of interest. Our research on this topic led us to conclude that

works on situations of interest can be subdivided into several sub-families. There are

approaches based on situation awareness and situation management. There are

classical approaches in Artificial Intelligence that use logic to reason about situations.

2 Several works in the literature use the word “pattern” to refer to “situations of interest”. We will

review these works in the next sections of this chapter.

20

There are also approaches that propose to represent situations of interest as

spatiotemporal patterns such as SQL-based approaches and event-driven approaches.

Finally, there are approaches which address the semantic aspects of different

situations’ components such as events, states and spatiotemporal phenomena in

general. To align this review with the context of this thesis, we will try to evaluate

how these approaches deal with the following issues:

• How situations of interest are represented and how close these representation

formalisms are to Natural Language?

• How dynamic and complex situations are represented?

• How situations of interest are detected and managed?

• How situations of interest are used from a cognitive perspective?

• How the proposed approaches can be integrated in real computing solutions

currently existing in the industry?

2.2 Situation Awareness

A quick Google search on spatiotemporal situations yields a multitude of references

to situation awareness and situation management. In this section, we present a brief

overview of these concepts.

2.2.1 Definition of Situation Awareness

A formal definition of Situation Awareness (SA) is given by [Endsley, 1988]: “SA is

the perception of the elements in the environment within a volume of time and space,

the comprehension of their meaning, and the projection of their status in the near

future”. Originally, SA has been carefully studied in the military domain. Then, the

notion and the related techniques have been generalized to other application domains

where a user needs to be aware of what is happening around him and which

information is important for him in order to intervene appropriately. In other words,

“being situation aware” means to have the information which is the most important to

make decisions. For example, a car driver must be aware of the relative distances of

21

other cars surrounding his car in the traffic, the car speed and the fuel level; but the

user does not need to know what the car’s engine characteristics are. According to

[Endsley et al, 2012], SA can be defined through several main stages: 1) Perception

of the elements in the environment using different means (visual, auditory), sensors

(in general) and a combination of these means; 2) Comprehension of the current

situation, which consists in integrating many pieces of the perceived data to build

information and in defining a priority of each piece of information according to its

importance, reliability and meaning; 3) Projection of future status. At this stage, a

user can take advantage of his comprehension of the current situation (stage 2) to

anticipate (predict) what will happen in the future and to choose a course of actions.

Several SA systems have been proposed to support the management of a large

number of data sources such as sensors, textual information and databases [Baader et

al, 2009] [Fischer et al, 2014]. These systems have been applied to different domains.

For example [Baader et al, 2009] developed a system called SAIL (Situation

Awareness by Inference and Logic) applied to the military domain which uses

surveillance data and a formal definition of situations based on events. The authors

used a Prolog-like syntax to define rules implementing automated reasoning

capabilities. The high level system architecture of SAIL is depicted in Figure 2.3.

Figure 2.3: The general architecture of SAIL [Baader et al, 2009]

22

Anagnostopoulos and colleagues [2006] proposed a semantic definition of situations

based on interrelated concepts and using contextual information. Contextual

information describes spatial context, temporal context, artifact context (which

represents the context of the user’s computational entity (operating system, PDA,

etc.) and personal context which is the role that a user may play in a given situation.

A semantic graph representation of a situation is illustrated in Figure 2.4 and a formal

representation using Description Logic is given in Figure 2.5.

Figure 2.4: A semantic graph representation of a situation [Anagnostopoulos et al,

2006]

Situation Awareness is a multidisciplinary domain where researchers contributed to

different aspects such as data collection, user interface, situation modeling and

spatiotemporal analysis. Creating a synergy between all these contributions became a

challenge and led to the emergence of the Situation Management paradigm.

23

Figure 2.5: A situation represented using Description Logic [Anagnostopoulos et al,

2006]

2.2.2 Situation Management

Situation Management (SM for short) is a research area that aims at finding a synergy

between different contributions in situation representation and reasoning approaches.

SM is “a framework of concepts, models and enabling technologies for recognizing,

reasoning about, acting on, and predicting situations that are happening or might

happen in dynamic systems during a pre-defined operational time.” [Jakobson et al,

2007]. Managing situations is a goal-directed process which involves different

aspects [Jakobson et al, 2007].

• Sensing and information collection;

• Perceiving and recognizing situations;

• Analyzing past situations and predicting future situations;

• Reasoning, planning and implementing actions to reach desired goals.

Figure 2.6 depicts a general process loop of situation management. The core of SM is

the situation model which is said to be investigative if the situation model aims at

recognizing existing situations while considering situations that occurred in the past.

The situation model is said to be predictive when it aims at predicting future

24

situations. A real situation occurring in the world is sensed and perceived in the form

of events. The problem solving module uses the situation model’s output to propose

an action plan. In this model we note that the transition between real situations and

events through sensing is confusing and limits the characterization of a situation to

the use of events only.

Figure 2.6: An example of Situation Management approach [Jakobson et al, 2007]

2.2.3 Synthesis

Situation Management is based on three core processes which are Situation

Modelling, Situation Recognition and Situational Reasoning. Both with Situation

Awareness, they integrate approaches from different disciplines such as Artificial

Intelligence, Situation Awareness, Information Fusion, Multi-Agent Systems and

Sensor Networks. The main contribution of these approaches is the organization of

data in a layered architecture to adequately present it to end-users. However, one of

the major shortcomings of SA is the absence of a clear definition of a situation of

interest. For example, the situation model (one of the three core aspects of SM) is

25

essentially based on a classical definition of states and events and possible relations

between them. In Situation Management, reasoning about situations is supported

using classical Artificial Intelligence techniques such as Event Calculus and Situation

Calculus. These classical techniques reduce the semantic capabilities of Situation

Awareness and limit their use in cognitive-based systems as we will show in the next

subsection.

2.3 Classical Approaches in Artificial Intelligence for

Situation Modeling

Spatiotemporal reasoning has been addressed in AI through a variety of approaches.

In the context of spatiotemporal situation modeling, the logical approach has gained

an increasing attention and tried to offer different formalisms in order to model

situations. In this subsection, we briefly present the most commonly used approaches

such as Situation Calculus and Event Calculus.

2.3.1 Situation Calculus

Situation Calculus (SC) is the name of a particular way of modeling the notion of

change using First-Order Logic. It conceives the world as consisting of a sequence of

situations, each of which is a snapshot of the state of the world. Situations are

generated from previous situations by actions [McCarthy and Hayes, 1969]. A given

relation or property that can change over time can be handled adding an extra

situation argument in the corresponding predicate. If the position of an agent is

represented by the predicate At(Agent, location) and a situation is represented by the

constant S, then the location of the agent in the corresponding situation is denoted

At(Agent, location, S).

To represent how the world changes from one situation to the next one, Situation

Calculus uses the function Result(action, situation) to denote the situation that results

from performing an action in some initial situation. Situation Calculus is commonly

26

used to perform planning tasks. Given a set of possible actions, an inference engine

can be used to find a sequence of actions that achieves a desired effect [Guesgen and

Marsland, 2010].

Although situation calculus has been used to represent situations and the change over

time, it has several shortcomings. According to [Russell and Norvig, 1995] Situation

Calculus defines situations as instantaneous points in time which are not very useful

for describing changes that occur continuously over time. Moreover, Situation

Calculus is more suitable when only one action occurs at a time. This approach does

not offer an explicit time and space representation [Guesgen and Marsland, 2010]. To

overcome these limitations, the Event Calculus has been proposed as an improved

version of Situation Calculus.

2.3.2 Event Calculus

The event calculus has been introduced by Kowalski and Sergot in 1986. They

proposed a logic programming formalism to represent events and their effects and

applied this formalism especially to database applications [Kowalski & Sergot, 1986].

A simplified version of Event Calculus was presented later by [Kowalski, 1992]

which initiated the emergence of a number of Event Calculus dialects since then. Like

Situation Calculus, Event Calculus is a formalism for reasoning about action and

change. Actions in Event Calculus are simply called events and they are defined to

reason about changes. In other words, the Event Calculus is a logical mechanism that

infers what’s true given “what happens when”, and “what actions do”. The “what

happens” part is a narrative of events. The “what actions do” part describes the effect

of actions [Shanahan, 1999]. Figure 2.7 describes the Event Calculus principle of

operation.

Other versions of Event Calculus have been proposed such as the Basic Event

Calculus (BEC) [Shanahan, 1997] and the Event Calculus (EC) proposed by [Miller

27

and Shanahan, 1999]. They have been applied to a variety of problems including

natural language processing and vision.

Figure 2.7: Event Calculus Principle of Operation [Shanahan, 1999]

2.3.3 Synthesis

One of the major shortcomings of Situation Calculus is the frame problem [Russell

and Norvig, 1995]. The research community attempted to propose several solutions.

Some of these efforts led to the introduction of Event Calculus which was widely

used to represent and to reason about situations of interest. In the spatiotemporal

research community, researchers attempted to provide an implicit representation of

situations of interest and defined some reasoning mechanisms using First Order

Logic. Nevertheless, Event Calculus becomes ineffective when considering complex

spatiotemporal phenomena occurring in the real world. Typical examples are dynamic

situations which are not clearly represented using a combination of states and events

[Haddad, 2009]. The majority of the proposed works seem to be outdated and not

easily integrated in modern applications. Usually, authors tend to use simple

assumptions to simplify logical rules and the proposed formalisms need to be used by

well-trained users.

28

2.4 Situations of Interest Modeling Using Patterns

The notion of pattern is usually related to the Data Mining research domain.

However, patterns have been used by a limited number of researchers to represent

and reason about situations of interest. These works can be categorized in two

different families: predicate-based approaches and query-based approaches.

2.4.1 Predicate-Based Approaches

In Section 2.3, we presented some foundations of Event and Situation Calculi. These

approaches do not necessarily focus on the formal definition of spatiotemporal

situation of interest. However, several works in the literature used predicates to build

patterns representing situations of interest. For example, Holzmann [Holzmann,

2007] proposed a qualitative model applied to dynamic environments for recognition

and detection of situations involving spatiotemporal objects defined in a specific

environment and using different contexts. His model uses a combination of spatial

and temporal relationships and a set of logical rules.

Figure 2.8 shows the main modules of Holzmann’s framework. Spatiotemporal

patterns are defined by a “human expert” as a set of rules. The "Rule Engine" gets the

qualitative relationships from spatial sensors stored in the relationship repository and

performs pattern matching operations according to logical rules stored in the rule

base. The detected patterns are used to select actions that the system can carry out.

Gerhke [Gerhke et al, 2005] proposed an explicit representation of traffic scenes

using spatiotemporal data (called the "background knowledge") and situation

patterns. Situation patterns are defined by a combination of spatial and temporal

predicates. An example of a dynamic situation describing two approaching vehicles

with a risk of collision is depicted in Figure 2.10. The "Holds" operator specifies the

validity of a predicate p during a time interval i.

29

Figure 2.8: A framework for pattern detection as defined by [Holzmann, 2007]

Figure 2.9: An example of a spatiotemporal pattern [Gerhke et al, 2005]

Hadji's approach [Hadji et al, 2005] is different from formerly presented works. Hadji

defines a spatiotemporal pattern in the form of a sequence of spatial predicates and

temporal constraints. Moreover, the authors proposed spatiotemporal algorithms to

evaluate and classify spatiotemporal queries in order to reduce the execution time in

large-size databases. Lattner [Lattner et al, 2006] proposed a framework for the

prediction of situations of interest and behaviors of mobile robots moving on a soccer

field. The proposed system is based on a set of algorithms to detect patterns from a

dynamic environment. Patterns are defined by a sequence of spatial or conceptual

predicates linked by temporal relations. Figure 2.10 illustrates an example of a

30

spatiotemporal pattern defined by Lattner. The pattern "p77" describes a scene where

a robot controls the ball first and where a second robot is free and located in front of

the first robot. By combining these predicates with temporal relationships (in this

example younger, younger & contemporary) it was possible to deduce using a

knowledge base (called the set of "rules of association" by Lattner) that the first robot

will pass the ball to the second robot with a probability of 63%.

Figure 2.10: An example of a rule of association defined by [Lattner et al, 2006]

The authors also proposed a hierarchy of patterns (see Figure 2.11) and defined a set

of specialization and generalization operations. The specialization of a pattern is

possible either by adding a new predicate, by adding a new temporal relationship, or

by specializing a predicate. The generalization of a pattern is carried out by

eliminating a predicate, by removing a temporal relationship or finally by

generalizing a predicate.

31

Figure 2.11: Different operations on pattern supported by [Lattner et al, 2006]

2.4.2 Query-Based Approaches

The concept of spatiotemporal patterns (STP) has been used to model situations of

interest using extensions of query languages running on spatiotemporal databases. An

in-depth review can be found in [Erwig, 2004] who categorized works on STPs in

two areas. The first area aims at proposing a set of representation tools to query

spatiotemporal patterns. Generally speaking, most of these works propose an

enhanced version of existing query languages such as SQL. The second area aims at

32

using data mining and knowledge discovery techniques to find relevant patterns in

large datasets. Most of the works in this category propose algorithms to find “group

patterns” using statistical techniques such as [Sakr and Guting, 2014]. For example,

[Bermingham and Lee, 2014] proposed a statistical approach to extract

spatiotemporal meta-data by combining a set of photos collected from a social

network (i.e. Flickr). In this subsection, we focus on the first category since we are

interested in spatiotemporal situations representation and reasoning.

Existing query-based approaches tend to offer extensions of query languages in order

to find changes in objects in spatial or spatiotemporal datasets and relationships

between objects. This was applied to different areas such as meteorology, medicine

and geophysics. Change phenomena in human-related activities were also considered

such as movement of terrorists and criminals, traffic management and military

operations [Erwig, 2004]. In order to specify spatiotemporal patterns, the extended

query languages used temporal and spatial formalisms such as temporal logic and

topological relations. However, these works were limited in terms of expressiveness

and they offered languages too complex to be used by users who are not familiar with

such query languages [Erwig, 2004]. Erwig proposed to overcome such a limitation

by the introduction of spatiotemporal predicates which “describe precisely the

‘developments of objects’ and their relationships in a simple way”. According to

Erwig, a predicate P is a function that maps a pair of spatiotemporal objects to a

Boolean value: �: �	 × �	 → ���	 for �, �	 ∈ {����, �����}. A query that finds the

pattern “ships leaving the oil spill” can be formulated as follows:

SELECT sname

FROM Ships, Pollutions

WHERE pname=’Spill’ AND Pos Leaves Reg

Where Leaves is a predicate that describes a “leaving development” of a specific

object and can be defined as: Leaves:= Inside meet Disjoint. Notice that Leaves is a

33

predicate that takes the value true for two objects O1 and O2 if for some time, O1 was

inside O2, then O1 touched O2’s border and finally O1 disjoined from O2.

Another way to process spatiotemporal patterns using query languages was proposed

by [Sakr and Guting, 2010]. The authors used a set of general and powerful classes of

predicates called “lifted predicates” to enhance the pattern query language to support

moving objects. Moving objects are defined using the moving type constructor which

defines the moving counterpart of any static component such as point, region or line.

Lifted predicates are a time-dependent version of static predicates. Instead of

returning a Boolean value like standard predicates do, lifted predicates return a

moving(bool). For example, the static predicate Quebec inside Canada returns a

Boolean type and the lifted predicate Bus_803 inside Quebec returns a moving(bool)

type. The query language uses Allen’s operators to specify relationships between time

intervals. Hence, the spatiotemporal predicates proposed by the authors are defined as

a set of time-dependent predicates that are fulfilled in a certain temporal sequencing

order. The situation “the snow storms that could increase their area over ¼ square km

during the first traversed 5 km” can be represented by the following pattern:

SELECT *

FROM snowstorms

WHERE pattern (

[distancetraversed(rough_center(storm) <= 5000.0 as pred1, area(storm) > 25000.0 as

pred2], [stconstraint (“pred1”, “pred2”, meanwhile)])

Where distancetraversed and rough_center are lifted predicates representing

respectively “the distance that the moving point traversed since the start of its

definition time” and “the aggregation of the moving region into a moving point that

represents its center of gravity”.

34

To optimize the computation time of their query language, [Sakr and Guting, 2010]

proposed to integrate their spatiotemporal pattern queries in a query optimizer. The

proposed solution has been developed and made publicly available as a SECONDO

plugin [Secondo web site, 2013] and an extended version of their work was proposed

in [Sakr and Guting, 2014] to support “group patterns”.

Another work addressed the issue of spatiotemporal representation using query

languages. With the recent advances in ubiquitous computing technologies, Vieira et

al [2010] investigated human motions generated by Call Detail Records (CDR) of cell

phone networks. Typically, any phone call received by a human is logged in the form

of a CDR which includes information about originating and destination phone

numbers, time and date when the call started and which towers were used to make

this call. Such a variety of information is inherently spatiotemporal and may be of

interest for many studies such as human’s mobility behaviors, cellular network

performance and so on. The CDR records are stored in very large relational

databases. The authors noticed that searching for STPs in existing commercial

databases is computationally expensive and requires a large number of queries. They

proposed a Spatiotemporal Pattern System (STPS) to query patterns in CDR

databases. The STPS is designed to “express mobility pattern queries using a regular

expression like language”. It uses spatial and temporal predicates in the pattern

definition. Spatial predicates are used to locate Base Transceiver Stations (BTS) and

their covering areas and to establish topological relationships between them. Three

forms of temporal predicates are defined in the STPS. 1) Time interval like for

example “between t1 and t2” where t1 <= t2. 2) Time snapshot like for example “at

5:00 PM”. 3) Relative temporal relations like for example “1 hour after user left his

home”.

The expression: “find all mobile users that on Saturdays first start in an arbitrary

area different from Neighborhood-2 in the morning, then immediately go to Airport,

then pass along the Stadium-1 between 6pm and 8pm, then go in the Neighborhood-1

35

neighborhood between 8pm and 10pm, and finally return to their first area”, can be

represented by the following query:

� ≔ (〈@�, �_���� = 8	�� ∶ 	�_�0 = 3	#�〉. 〈&�#���, �_� = 1	��〉. 〈(��)*� −
1, �_���� = 6	#�:	�_10 = 8	#�〉. 〈-��ℎ���ℎ��) − 1, �_���� = 8	#�:	�_10 =
10	#�〉. 〈@�〉, / = {@�! = -��ℎ���ℎ��) − 2, ∀�_, �_3 ∈ (, 4���(�_) ∧
4�7(�_) = "(��*�)�7"})

Notice that formulating such a query needs expertise in query languages that the

average user does not possess.

2.4.3 Synthesis

Spatiotemporal situations of interest have been represented by a limited number of

pattern-based approaches in the literature. Instead of dealing with pattern

representation, predicate-based approaches rather addressed pattern matching issues

by proposing different algorithms for this purpose. Patterns are usually built using

temporal relations between predicates. They are stored in pattern bases and pattern

matching algorithms are used to detect pattern instances from incoming data.

Although reasoning capabilities are enabled using such approaches, they remain

limited since the predicate language makes it difficult to represent dynamic and

complex spatiotemporal situations. The integration of such works in large-scale

systems seems to be quite challenging and weakly addressed by these works.

Query-based approaches proposed several extensions to the SQL language to query

patterns from spatiotemporal databases. Proposed query languages are usually

associated with specific platforms because they require some specific

implementations to optimize the search time (see the SECONDO platform for

example). In the context of Big Data and the new generation of large scale

monitoring systems, this becomes a real challenge. Furthermore, using SQL

languages and their special extensions requires well-trained users and reduces the

36

semantic expressiveness capabilities of these patterns. Finally, Query-based

approaches consider several aspects of situations of interest such as moving objects

and temporal relations. However, dynamic situations of interest may involve other

components such as events and states which are not clearly represented by these

languages. In the next subsection, we explore another alternative to overcome some

limitations related to query-based approaches which is Complex Event Processing.

2.5 Complex Event Processing

The limitations of spatiotemporal query approaches and the increasing number of

distributed applications which need to process data generated by any kind of sensors,

led to the emergence of Complex Event Processing as a novel approach to manage

event streams [Cugola and Margara, 2012]. CEP systems consider the stream of data

as notifications of events happening in the external world. The main objective of a

CEP system is to detect the occurrence of complex events also called patterns. As a

consequence of this detection, responding actions can be taken [Anicic et al, 2010].

Generally, events are instantaneous and happen at one specific point of time.

Complex events or patterns are the result of correlations between sets of events using

temporal and/or causal relations as well as aggregations. Originally, CEP has been

used in the financial industry to predict phenomena such as market development and

exchange rate trends. The notion of event has been defined in its different aspects

(general, semantic, etc.) by the CEP research community. A general definition of an

event is given by [Luckham, 2002] as “something that happens”. [Etzion and

Zolotorvesky, 2010] proposed a general representation of the concept of event

depicted in Figure 2.12. Events which have the same meaning and which are defined

with the same set of event attributes can be considered as instances of a given event

type. Event attributes can be divided into three main sections: Header, Payload and

Event Relations. The Header contains the meta-information about an event. The

Payload contains specific information about the event occurrence itself. The Event

Relations, which is optional, allows for establishing relationships between several

events.

37

Figure 2.12: A general event definition according to [Etzion and Zolotorvesky, 2010]

Patterns are generated by the result of event correlation and can be expressed using

SQL-like languages. For example, the Event Pattern Language (EPL) [Esper, 2015] is

a pattern language proposed by the ESPER CEP Framework. A pattern describing a

situation of excessive energy usage in a floor using power meter inputs can be

expressed using EPL statements as described in Figure 2.13.

Figure 2.13: A pattern expressing an excessive energy usage situation [Hasan et al,

2012]

38

Several CEP frameworks have been proposed by the Computer Science community.

They allow for event representation and management and they provide pattern

detection capabilities. A detailed review on these frameworks can be found in

[Cugola and Margara, 2012]. A typical architecture of a CEP framework is depicted

in Figure 2.14 where events are generated by Event Producers (e.g. sensors, terminal

units or social network feeds) and managed through the Event Channel. The Event

Processing Engine uses the Event Condition Action (ECA) principle to trigger the

(Event) Pattern Matching Engine, to verify patterns’ conditions (Condition) and to

direct detected patterns through the Event Channel to Event Consumers (Actions).

Event Development Tools and Event Management Tools are also available with CEP

frameworks.

One of the key features of CEP is the support of contextual information. Contexts are

used to change the way an event (or a pattern) is processed [Etzion and Zolotorvesky,

2010]. Contexts are used in CEP to partition a stream of events using different

context types such as time and space. Contextual information can be either implicit or

explicit. When they are explicit, contexts are clearly expressed in event pattern

languages and they are used by the Event Processing Engine to evaluate patterns’

conditions.

Figure 2.14: A typical CEP architecture [Helmer et al, 2011]

The following EPL statement (Figure 2.15) illustrates how contexts are defined in the

ESPER Event Pattern Language [Esper, 2015]. The statement refers to the context

39

“segmented by customer” created to detect a money withdrawal which is bigger than

a given amount, followed by a second withdrawal that occurred within a time interval

of minutes of the first withdrawal. Both events are related to the same customer. The

customer plays the role of the contextual information in this example.

Figure 2.15: An EPL statement example

2.5.1 Synthesis

Complex Event Processing is an emerging research area for event-based pattern

representation, detection and management. Existing CEP approaches deal mainly

with the syntactical processing of raw data, constructive event database views and

stream management [Teymourian and Paschke, 2010]. Patterns are expressed using a

correlation of events and can be detected by taking into account contextual

information. The CEP approach in the context of situation management is more

efficient than classical relational database management systems (RDMS) since CEP

allows for detecting patterns on the fly whereas patterns are retrieved from databases

offline, which may make the pattern detection in RDMS both resource and time

consuming. CEP can be considered as a natural evolution to overcome RDMS

limitations in terms of performance and expressiveness. CEP systems are part of

Event Driven Systems where events and contextual information play a key role in the

pattern definition and detection. However, most of CEP systems use a SQL-like

language for pattern representation which limits the expressiveness of situations of

interest and does not facilitate their integration with agent-based software

[Teymourian and Paschke, 2010]. The ETALIS project [Anicic et al, 2010] is one of

the rare CEP frameworks using a non SQL-like language for pattern representation.

ETALIS uses a declarative logic language for pattern representation and reasoning

context SegmentedByCustomer

select * from pattern [every a=BankTxn(amount > x) -> b=BankTxn(amount

> x) where timer:within(y minutes)]

40

and proposes a set of operators (mostly based on Allen’s interval logic) to build

“complex event descriptions”. It implements the ETALIS Language for Events (ELE)

and EP-SPARQL for event pattern representation. ETALIS uses a rule-based

language with a clear syntax and declarative formal semantics. The logic-based

approach used in ETALIS is expressive enough and allows for using contextual

information which can be expressed as PROLOG rules and facts. However, the ELE

language and EP-SPARQL are limited to few temporal operators (such as sequence

[Zhou et al, 2012]) and they lack other semantic operators (such as spatial operators).

Furthermore, the notion of pattern is still limited to events. The tool does not allow

for expressing dynamic and complex situations of interest which may involve,

besides events, other components such as states and spatial objects, to name a few.

2.6 Semantic-Based Approaches for Situation Modeling

Researchers still do not agree on a unique semantic representation of a situation of

interest in a dynamic environment. Several related aspects are discussed such as

change representation, the ontological aspect of various components involved in a

situation of interest, possible relationships between these components and

mechanisms to reason about situations of interest. To address these aspects, a

particular research group defined situations of interest as spatiotemporal phenomena.

For example, [Galton, 2004] discussed the incorporation of time in GIS to represent

spatiotemporal phenomena. He started from a well-known approach in this domain

which relies on time-indexed snapshots. Using a set of snapshots related by temporal

relations, one can represent an animated sequence of some features of interest.

[Galton, 2004] discussed some limitations of such an approach since, in real life,

spatiotemporal information does not come bundled in complete snapshots. Indeed,

spatiotemporal phenomena can be related to a set of observations of different events

occurring at different points of time; and about spatial objects situated in different

locations. The author defined a change as a relationship between a set of events � ∈ 9

and spatial objects	: ∈ /. He proposed to represent the effect of an event as follows:

41

����:�(�) = ;〈:<, #<,#<= 〉, 〈:>, #>,#>= 〉, 〈:?, #?,#?= 〉, … . . , 〈:A, #A,#A= 〉B

Where :<, :>, … . . :A are the “participants” (objects) in � and the effect of � on :C is to

change its position from #C to #C=. Further details on the event definition are proposed

by the author who also discussed some challenges related to the representation of

complex phenomena (called multi-aspect phenomena) such as storms, floods, a

protest march, etc.

In other works, the concept of situation of interest is represented through the

combination of events and spatial objects. [Cole and Hornsby, 2005] presented an

approach to model events and sequences of events in a dynamic geospatial domain.

Events are referred to as occurrents and they are modeled using an UML diagram. A

sequence of events is defined to specify movements which capture the dynamic

experience of an entity as it travels through space. The authors used temporal logic to

manipulate temporal relations between events and implicitly represent situations of

interest. A sequence of events can be defined by a set of events ordered by their

occurrence times. This approach limits the definition of dynamic situations of interest

to events only, whereas other objects such as spatial objects, states and processes

should be considered to represent complex spatiotemporal phenomena.

Other definitions of spatiotemporal situations are offered by [Tan et al, 2009] , [Lin et

al, 2009] and [Aigong, 2009] who proposed a set of 8 situations types and [Devaraju

and Kauppinen, 2012] who proposed a semantic definition of events and a rule engine

to reason about them.

These works partially address the notion of situation of interest via the definition of

events, states or processes. However, they do not consider possible relationships

between these different entities to represent complex and dynamic situations. Finally,

these works do not seem to be easy to integrate in software agent systems.

42

To overcome the above limitations, Haddad and Moulin proposed in [Haddad and

Moulin, 2010] a novel definition of a spatiotemporal situation taking advantage of

Desclés’s work. According to this French linguist [Desclés, 2005], a spatiotemporal

situation can be either static (state) or dynamic (event or process). A dynamic

situation allows for the explicit representation of change using temporal relations.

Haddad and Moulin used the Conceptual Graph formalism [Sowa, 1984] to represent

different types of situations. Using Conceptual Graphs (CG) makes their formalism

closer to natural language and ready to be used by software agents. The various

concepts introduced in their model are based on the ontological work introduced by

[Grenon and Smith, 2004] where entities populating the world are either called

endurant (static) or occurrent (dynamic). Haddad and Moulin proposed the

conceptual model illustrated in Figure 2.16.

Figure 2.16: A spatiotemporal model of situations [Haddad and Moulin, 2010]

The endurant view defines static entities called geo-objects such as (buildings, trees,

mountains, etc.) and actors (moving objects such as people, cars, etc…). Given the

spatial position of geo-objects, their relations can be described using qualitative

spatial relations such as topological relations, proximity relations and superposition

relations. The dynamic view defines spatiotemporal situations such as states, events

and processes inspired by Desclès’ definition. A state is a finite configuration of

43

some aspect of the world in a limited region of space that remains stable for a certain

period of time.

Figure 2.17 illustrates a CG example of a state describing that Dany was sick during a

time interval and that Dany was in two different locations (Paris and Quebec). An

event as defined by the authors expresses a temporal occurrence that appears in a

“static background”. An event may or may not change an aspect of the world from

one state to another. This change can be represented using temporal relations as

illustrated by Figure 2.18 where Before Situation and After Situation are temporal

relations used to relate the states describing the current spatial location of the Actor

“Hedi”. The event Spatial_Zone_Entry_Event describes the entrance of the actor in a

specific spatial zone.

Figure 2.17: An example of a state [Haddad and Moulin, 2010]

Finally, a process expresses a change initiated by an event that marks the beginning

of the process, and may have an end-event and a resulting state. An example of a

process is illustrated in Figure 2.19 where the temporal relation During Situation is

used to link a process to the current state of the world which holds during the process.

The authors used the proposed spatiotemporal situation formalism to support “What-

if” reasoning and its particular application to the planning of course of actions

(COAs). They implemented several scenarios from the aerial search and rescue

domain (SAR) on a multi-agent geo-simulation platform called MAGS-COA

[Haddad, 2009].

44

Figure 2.18: An example of an event [Haddad and Moulin, 2010]

Figure 2.19: An example of a process [Haddad and Moulin, 2010]

45

2.6.1 Synthesis

The approach proposed by Haddad and Moulin seems to be the most advanced one to

represent situations of interest. While other works limit the definition of phenomena

to events only, Haddad and Moulin’s approach is very promising thanks to the

strength of the representation formalism used to represent dynamic situations (i.e.

Conceptual Graphs and Desclés’ definitions). However, the authors did not provide a

formal definition of situation of interest in their approach. Unlike Complex Event

Processing, the framework proposed by Haddad and Moulin does not support

contextual information and does not address the issue of detecting situation instances

from a stream of data. This does not make this approach directly suitable for Big Data

and Pervasive Computing applications discussed in Section 2.1.

2.7 Qualitative Spatiotemporal representation and

reasoning

Temporal and spatial relations are widely used in most of the works which deal with

different components of spatiotemporal situations of interest. They take advantage of

recent advances in the spatiotemporal research domain to provide a set of tools and

formalisms that help representing and reasoning about space and time in a qualitative

manner. Actually, qualitative modeling is one of the key elements of knowledge

representation. Forbus [Forbus, 2007] defines qualitative modeling as follows:

“qualitative modeling concerns representation and reasoning about continuous

aspects of entities and systems in a symbolic, human-like manner”. In other words,

qualitative modeling makes a bridge between quantitative information (raw data) and

the way a user considers this data in his mental model. People do not need to know

about complex equations and mathematical theory to achieve everyday tasks by

handling the common sense world of quantities, motion, time and space. A software

agent may need to make decisions in a similar way as humans. Therefore, agents have

to apply qualitative modeling and reasoning as abstraction means and to transform

quantitative information into entities and symbols. In this subsection, we briefly

46

introduce some interesting aspects of qualitative spatial and temporal modeling which

are major research subjects in Qualitative Modeling.

2.7.1 Qualitative Spatial Representation and Reasoning

Spatial knowledge can be represented using either a quantitative approach or a

qualitative approach [Renz, 2002]. A quantitative spatial representation deals with

numerical (classical) spatial information. Software agents which share a global

coordinate system need to consider their local coordinate systems to reason about

spatial objects. The exact position and properties of a spatial object must be known,

which makes reasoning about inexact information difficult [Renz, 2002]. A

qualitative approach allows for representing and reasoning about spatial objects

without using exact numerical values. It rather uses a human-like vocabulary such as

“far”, “close”, “inside” as possible spatial relations between spatial objects. This

approach led to the definition of the Qualitative Spatial Reasoning (QSR). QSR is a

subfield of knowledge representation and symbolic reasoning which deals with

qualitative knowledge representation of the spatial domain; and reasoning using finite

qualitative relations [Wolter and Wallgrun, 2013]. The term “qualitative” is used

because the aim of QSR is to model human common-sense understanding of space.

QSR has been mainly used in GIS-based applications. It has been also applied to

several application domains such as Sensor Networks, Sensor Web, Path Planning

and Robot Navigation, to name a few. According to [Cohn and Renz, 2007] most of

QSR approaches deal with two aspects of space: spatial knowledge representation and

qualitative spatial reasoning. In such applications, users need to query spatial data in a

qualitative manner and to have an abstract view of numerical (quantitative) data to

reason about spatiotemporal situations. In the following paragraphs, we review

different spatial representation approaches and their related reasoning mechanisms.

In a spatial knowledge representation, there are different ways to represent two spatial

entities and to specify spatial relations between these entities using topological,

distance or other relation types. In [Cohn and Renz, 2007] the authors proposed an

47

overview of different approaches related to qualitative spatial representation which is

a major topic in spatial representation. It deals with the study of different spatial

relations types that can be defined to link spatial entities. Usually, spatial relations are

binary relations and they are applied to a given spatial domain. Hence, a spatial

relation can take the form R={(a,b)| a,b ∈ 4} where D is the infinite spatial domain.

Using algebraic operators such as union and intersection allows for the definition of

an algebra of spatial relations between spatial entities. Different works on spatial

relations tried to restrict relations to one particular aspect of space such as topology,

shape and orientation. This resulted in the definition of four types of spatial relations

as described in Figure 2.20: orientation (e.g. font of, right of), direction (e.g. right

direction, left direction), distance (e.g. near, far), and topology (e.g. disjoint, equal,

overlaps) [Holzmann and Ferscha, 2010].

Figure 2.20: An example of spatial relations types [Holzmann and Ferscha, 2010]

Direction relations describe the direction of one object relatively to another one using

three basic concepts: the primary object, the reference object and the frame of

reference. Therefore, using a binary relation is not sufficient to represent

direction/orientation relations. The STAR algebra is one of the approaches proposed

to define direction relations [Renz and Mitra, 2004].

48

Distance relations describe the proximity of objects. The notion of distance is one of

the most fundamental primitives used in computational and common sense reasoning

[Bera and Claramunt, 2003]. A distance relation can be absolute or relative. Absolute

distance can be obtained by dividing a real line between two spatial objects into

different sectors such as “close”, “very close” and so on. Relative distance can be

obtained by comparing the distance to a relative spatial reference which may be a

spatial entity for example. This gives relations such as “closer than”, “farther than” or

“equidistant” [Renz, 2002]. Usually, a distance relation is metric-based; but it can

also be defined using absolute and relative measurements. Recent works tend to

consider other aspects of proximity in the definition of distance relations. These

aspects are related to contextual information. For example, the distance between

Quebec City and Montreal (which is about 250 Km) can be qualified as far according

to a pedestrian and close according to a car driver. Hence, the transportation mean is a

contextual information which can be combined with metric information to qualify the

distance relation. Other researchers noticed that spatial proximity relations are vague.

They used Fuzzy Logic techniques to better manage the vagueness of relations and to

provide a smooth mapping from metric data to natural language quantifiers [Guesgen

and Albrecht, 2000], [Brennan and Martin, 2006] and [Yao and Thill, 2007]. Using

Fuzzy logic, it is also possible to use if-then rules to reason about spatial properties

and to derive new distance relations. Another way to define distance relations without

using distance metrics is the work of [Bera and Claramunt, 2003] who proposed a

topology-based measure of proximity.

The topological distinction between spatial entities is inherently qualitative and

makes topological relations a widely used concept in human spatial reasoning

according to [Renz, 2002]. It also makes the qualitative approach more popular than

the quantitative approach in dealing with this type of relations. Examples of

topological relations are “A is inside B”, “A overlaps B” and “A touches B” which

are invariant regarding to any transformation occurring in the surrounding space

[Renz, 2002]. One of the well-known approaches in topological relations in the

Region Connection Calculus (RCC) which is a fully axiomatized first-order logic for

49

topological relations representation and reasoning [Cohn et al, 1997]. RCC is based

on a single primitive relation between spatial regions which is the “connected”

relation C. The topological interpretation of the relation C(a, b), where a and b are

spatial regions, is that a and b are connected if and only if their topological closures

share a common point [Renz, 2002]. Other relations can be derived using the

definition of C(a, b). RCC-8 is a particular implementation of RCC which defined 8

primitive relations depicted in Figure 2.21. DC(x, y) is the Disconnected relation,

EC(x, y) is the Externally Connected relation, TPP(x, y) is the Tangential Proper Part

relation, PO(x, y) is the Partially Overlaps relation, EQ(x, y) is the Equals relation,

NTPP(x, y) is the Non-Tangential Proper Part relation. TPP-1(x, y) and NTPP-1(x, y)

are respectively the converse of the non-symmetrical relations TPP(x, y) and NTPP(x,

y). RCC-8 is one of the most popular approaches for topological relations in the

literature.

Figure 2.21: RCC-8 topological relations from [Renz, 2002]

2.7.2 Qualitative Temporal Representation and Reasoning

The notion of time can vary from one domain to another. In Philosophy and in

Natural Language Processing, time can be considered as absolute or relative. In signal

processing and mathematics, time can be discrete or continuous. In Event Processing

Systems time can be defined as detection time and occurrence time. Detection time is

50

the time when an event is recorded by a system (as for example a database

management system). Occurrence time is the time when an event occurred in the real

world. In temporal databases, transaction time and valid time are defined. Transaction

time is the time where information is recorded whereas valid time is the time when a

phenomenon occurred [Haddad, 2009]. Other research communities addressed the

notion of time from different perspectives. In Artificial Intelligence, [Chittaro and

Montanari, 2000] divided temporal reasoning in two main subfields: reasoning about

actions and change and reasoning about temporal constraints.

Reasoning about actions and change focuses on the evolution of the world as the

result of the occurrence of actions and events. Most of reasoning approaches are

interested in the future prediction or the past interpretation of phenomena pursuant to

the occurrence of events. This kind of reasoning is also called temporal projection

and can be divided into two categories: forward projection and backward projection.

Forward projection tries to deal with the following proposition: “if X is true at time t1,

then Y is true at time t2, where �< ≤ �>”. Backward projection tries to find an

explanation about what happened in the past (post-diction) and deals with the

following proposition: “if X is true at time t2, then Y is true at time t1, where �< ≤ �>”.

The Situation Calculus and the Event Calculus are among the well-known formalisms

developed to deal with reasoning about actions and change. In these approaches

possible relations between temporal entities such as points and intervals are

implemented using the temporal logic proposed by [Allen, 1983] who proposed the

well-known formalism for temporal representation and reasoning about time

intervals. He defined a set of 6 temporal relations that are before, meets, overlaps,

starts, during, finishes, and their inverses and the basic relation equal which gives

thirteen relations in total (See Figure 2.22).

Other time interval or point formalisms have been proposed in the literature such as

Vilain’s and Kautz point algebra and Van Beek’s Continuous end point Algebra. A

detailed review of these works can be found in [Chittaro and Montanari, 2000].

51

Figure 2.22: Qualitative temporal intervals relations [Allen, 1983]

2.7.3 Synthesis

Spatiotemporal data plays a key role in spatiotemporal situation modeling. It helps

users to better understand the temporal and spatial aspects of situations and to

associate them with the surrounding environment. Our short survey on spatiotemporal

analysis shows recent advances in this research area to offer a large variety of tools

and approaches for qualitative representation and reasoning. In the spatial domain,

RCC-8 is one of the most known and popular approaches for topological relations

whereas Fuzzy Logic has been widely used for proximity relations. In the temporal

domain, Allen’s temporal logic is the approach mostly used in the literature.

2.8 Discussion

We presented in this chapter a review of the main approaches, models and concepts

that have been proposed to model spatiotemporal situations. We discussed the

relevance of these approaches in the context of our thesis. Here we present a synthesis

of these approaches in Table 2-1 where we outline the main features supported by

each approach and its shortcomings. In the following sub-sections, we review these

52

works from three different viewpoints. First, we discuss the way these works define

spatiotemporal situations of interest. Then, we review how situations of interest are

represented by these approaches and which reasoning capabilities have been

proposed, if any. Finally, we address the issue of the integration of these formalisms

in real applications and how situations of interest are managed and detected when

they occur in the real world. It is worth mentioning that the above approaches use

temporal and spatial relations in their situation modeling formalisms. They leverage

the recent advances in Qualitative Spatiotemporal Reasoning techniques that we

briefly presented in Section 2.7.

2.8.1 Definition of Situation of Interest

The definition of situation of interest varies from one research area to another. In

Artificial Intelligence, situations are represented and manipulated using Situation

Calculus and Event Calculus. In predicate-based approaches, patterns are used to

represent and to reason about situations as proposed by [Gerhke et al, 2005] or

[Lattner el al, 2006]. These patterns are expressed using events related by temporal

and spatial relations. Patterns are also used by query-based approaches to query

situations of interest from spatiotemporal databases.

A similar approach was proposed by the Complex Event Processing research

community where event-based patterns are used to represent situations. Most of these

works consider events in the definition of situations of interest. [Haddad and Moulin,

2010] proposed one of the approaches where situations are defined considering other

spatiotemporal phenomena such as states and processes. The authors proposed an

explicit definition of change by using temporal relations between states and events to

represent dynamic phenomena and used an extension of Conceptual Graphs [Sowa,

1984] to represent these situations in a qualitative manner. However, their formalism

does not provide a clear definition of patterns since they only use situations to

represent a state, an event or a process and are not able to represent relationships

between them.

53

 Approaches Features Shortcomings

Classical

approaches

(Artificial

Intelligence)

-Event based

-Temporal relations support

-Most used approach in

spatiotemporal analysis

-Frame problem

-User needs familiarity with FOL

-Limited expressiveness

-Do not allow representation of

dynamic situations

Semantic based

approaches

-In-depth semantic definition of

spatiotemporal phenomena

-Qualitative representation, close to

Natural Language

-Explicit representation of change

-Implicit representation of situation

of interest

-No integration with real complex

systems

-Need complex algorithms to detect

situations

-Contextual information is not

supported

Situation

Awareness/Manage

ment

-Multi-layers architectures to

manage the flow of data from

sensors.

-Scalability

-Heterogeneity

-No explicit representation of

situations

-FOL based

-Contextual information is limited

to spatial information

Predicates and

query- based

approaches

-Pattern detection from large

databases

-Need complex algorithms for

pattern matching

-Time and resource consuming

-Not suitable to build knowledge

bases for intelligent systems

Complex Event

Processing

-Integration in complex systems

-Complex Event Processing engine

for online pattern detection

-User needs familiarity with SQL

based languages

-Contextual information is used for

filtering purposes.

-Dynamic situations are not

represented

Table 2-1: A summary of different approaches for situation of interest modeling

54

Another important aspect in the definition of situations of interest is contextual

information. Human beings and software agents need to use situations of interest for

decision making purposes. Therefore, the definition of situations of interest shall

consider the human mental model which is context-based [Freksa et al, 2007].

Contextual information shall be considered when defining situations of interest. We

already mentioned that theories such as Situation Management, Situation Awareness

and Complex Event Processing attempt to integrate the notion of context into the

definition of situations of interest. However, contextual information in these

approaches is usually limited to spatial information (in Situation Awareness and

CEP) and temporal information (in CEP). It is also used for filtering purposes in

CEP.

Providing a novel definition of situations of interest from a cognitive perspective is a

key step in this thesis. Several aspects shall be considered such as dynamic situation

representation and support of contextual information. This is one of the main

challenges of our thesis.

The representation formalism of situations of interest shall be carefully selected to

allow for expressing complex phenomena detected in the real world and for building

knowledge bases to be used either by humans or by software agents. Our literature

review showed that in predicate-based approaches and, generally in Artificial

Intelligence, First Order Logic has be often used to represent situations of interest.

This representation formalism is quite limited when it comes to deal with complex

spatiotemporal situations. In the domains of spatiotemporal databases and in

Complex Event Processing, extended versions of SQL languages are usually

proposed [Sakr and Guting, 2010], but the resulting queries are too complex to be

manipulated by human operators. They require people with advanced knowledge of

these SQL-based languages and they are not suitable to easily build knowledge bases

that can be used by software agents. [Haddad and Moulin, 2010] used Conceptual

Graphs (CG) to represent and to reason about spatiotemporal situations. This

55

approach seems promising thanks to the advantages of the CG representation

language and will be explored in the next chapters of this thesis.

2.8.2 Integration of Situations of Interest in Large Scale Systems

Another objective of this thesis is to propose a representation model of situations of

interest which can be used in large scale monitoring and data acquisition systems.

The proposed situation of interest formalism shall be easily integrated in such

systems. Complex Event Processing is one of the promising approaches that help

meeting such a requirement. Indeed, patterns representing situations of interest need

to be detected on the fly from event streams which are continuously generated by

distributed devices. Other works that deal with the semantic aspect of situations of

interest such as [Haddad and Moulin, 2010] and [Gehrke et al, 2005], proposed some

approaches to detect instances of these situations from simulated data (such as the

MAGS-COA system in [Haddad, 2009]) or from real data. Moreover, theories such

as Situation Management and Situation Awareness attempted to propose different

architectures to manage the flow of data obtained from heterogeneous devices. These

works tend to use algorithms closely related to the application domain in order to

detect instances of situations. This makes the use of the proposed approaches in other

application domains quite challenging. Hence, the Complex Event Processing

technology remains one the best current options to manage patterns and to integrate

their definitions in real applications.

2.9 Conclusion

In this chapter, we presented a short survey of different concepts and techniques

related to spatiotemporal situations modeling. First, we introduced general concepts

related to a new generation of large scale monitoring data acquisition systems where

these situations can be identified. Then, we surveyed different works on

spatiotemporal situation modeling. We also proposed a brief overview of qualitative

spatiotemporal representation and reasoning techniques which are widely used in

56

situation modeling approaches. Finally, we discussed the relevance the surveyed

approaches and their limits to achieve the objectives of this thesis. The next chapters

of this thesis will present the different contributions that we propose to overcome the

aforementioned limits.

57

Part II

Contributions

Part II presentation

One of the main objectives of this thesis is to propose a framework to qualitatively

represent dynamic situations of interest and to facilitate reasoning about them. In

Chapter 2 we discussed how dynamic situations of interest are usually referred to as

patterns. In Chapter 3 we propose a formalism to qualitatively represent patterns

using an extension of Sowa’s Conceptual Graphs and we provide some examples of

such patterns using a case study.

Spatial proximity is a key element of patterns that can be identified in several

domains such as telecommunications and power distribution. We propose in Chapter

4 an approach to qualitatively represent spatial proximity. We developed a software

that combines numerical distance and contextual information and uses a NeuroFuzzy

classifier to deduce spatial proximity quantifiers. The system input is a training

dataset and a set of inference rules provided by human operators based on their

experience about a specific application domain. The system output is a set of

membership functions of spatial proximity quantifiers.

Chapter 5 integrates our pattern model presented in Chapter 3 and our qualitative

proximity tool presented in Chapter 4 in a pattern management framework. A case

study from the power industry is presented to illustrate different aspects of this work.

58

 Chapter 3

Qualitative Representation of Dynamic

Spatiotemporal Patterns

Introduction

In this chapter, we propose a framework for the qualitative representation of dynamic

spatiotemporal patterns (DSTP for short), which corresponds to the first objective of

this thesis. As illustrated in Figure 3.1, our formalism aims at transforming raw data

generated by different sensors geographically distributed in the real world in a form

that agrees with the user’s mental model more closely. To this end, the proposed

representation formalism uses spatiotemporal patterns applied to geo-referenced raw

data as well as contextual information to represent situations of interest. The detected

instances of these patterns will populate a knowledge base which can be used by

humans to make decisions or by software agents to support the human decision

making process.

This chapter is organized as follows. Section 3.1 provides a definition of

spatiotemporal patterns in the qualitative spatiotemporal reasoning domain. Section

3.2 introduces the Conceptual Graph approach and explains our motivation to use it

to represent DSTPs. Sections 3.3 and 3.4 are the core of this chapter since they

introduce the formal definition of the dynamic spatiotemporal environment and the

formal definition of DSTPs as well as the contextual information in the pattern

59

definition. Section 3.5 presents a case study in the power distribution domain and

some application scenarios to illustrate the proposed approach. In Section 3.6 we

discuss some challenges related to our DSTP formalism and Section 3.7 concludes

this chapter.

Figure 3.1: A dynamic STP model

3.1 Definition of Dynamic Spatiotemporal Patterns

In Chapter 1 we briefly discussed how situations of interest can be referred to as

spatiotemporal patterns. In this section, we show how the notion of pattern can be

used to represent situations of interest as perceived by human beings. We also

provide a formal definition of spatiotemporal patterns which will be used in the rest

of this thesis.

3.1.1 From Situations of Interest to Spatiotemporal Patterns

Human beings observe the world and find relevant links between phenomena and

interpret the entailed observations according to the way they see the world [Political

Psychology, 2003]. In fact, this is a cognitive process which is driven by the person’s

interest in certain configurations appearing in the real world in relation to these

phenomena. Such ‘configurations’ take a certain meaning for a person according to

her mental representation of the environment or of the real world. We will refer to

60

this representation as the person’s mental model of the environment. These

configurations will be called situations of interest in this thesis. We define a situation

of interest as a set of correlated information (phenomena in our case) which

represents a specific configuration of the real world.

We also have the objective to enable software agents to reason about situations of

interest in order to support humans in their decision making process, Hence, we need

a knowledge representation formalism to represent situations of interest in a computer

tractable form.

For example, let us recall that renowned authors in Artificial Intelligence [Russell and

Norvig 1995] have described how knowledge representation formalisms are used to

translate humans’ perception of the world (‘facts’ or ‘situations’ in the context of this

thesis) to statements or sentences that can be stored within software agents’

knowledge bases (Figure 3.2).

Figure 3.2: Representation of situations of interest using patterns (adapted from

[Russell and Norvig, 1995]

Let us also recall that the spatiotemporal research community represents a situation of

interest (corresponding to a fact in Figure 3.2) causing the notion of spatiotemporal

pattern (corresponding to a sentence in Figure 3.2).

61

Several researchers attempted to model operational environments in a way that agrees

with humans’ mental models. For example, [Freksa et al, 2007] proposed a cognitive

approach to model humans’ mental representation of the spatial environment using

spatial contextual information and the potential interactions between agents and the

environment. Freksa defined three main components: 1) an agent A which is

associated with a set of goals; 2) a spatial environment E where agent A evolves and

about which it maintains a mental representation; 3) a map M which is used by the

agent to enrich his level of spatial knowledge of the environment E. Figure 3.3

depicts a simplified version of Freksa’s model with the aforementioned three

elements and the relationships holding between them. Relation R1 establishes a

correspondence between the environment E and the mental representation of agent A.

Relation R2 establishes a correspondence between the agent’s mental representation

and the map M. The environment E may use the map M through relation R3.

Figure 3.3: Agent decision model for way finding problem. Adapted from [Freksa,

2007]

Freksa’s approach will be an inspiration for our spatiotemporal pattern definition in

the next section. The use of Freksa’s model is motivated by the fact that this model

considers contextual information which plays a key role in human cognition. In

Freksa’s model, contextual information is only related to the spatial information

which is provided by the map M. Our pattern formalism will extend this model to

consider other kinds of contextual information such as the temporal and semantic

62

contexts. Although several works proposed algorithms and frameworks to match and

recognize patterns, we have found a limited number of pattern definitions in the

spatiotemporal research area. The notion of pattern is more related to the discovery of

noteworthy structures that may exist in a large dataset: these works can be mainly

associated with data mining techniques.

One of the pattern definitions found in the spatiotemporal analysis domain is

provided by [Imfeld, 2000] which states that: “Regular structures in space and time,

in particular, repeating structures, are often called patterns. Patterns that describe

changes in space and time are referred to as spatiotemporal patterns”. Since we are

interested in dynamic spatiotemporal situations of interest, we can extend Imfeld’s

definition as follows:

Definition 1: “Regular structures in space and time, in particular, repeating

structures, are often called patterns. Patterns that describe one or a set of dynamic

spatiotemporal situations are referred to as dynamic spatiotemporal patterns.”

We use the notion of dynamic spatiotemporal situation which has a broader scope

than the notion of change used by [Imfeld, 2000]. A dynamic spatiotemporal situation

is a critical component of spatiotemporal patterns (STP for short) and it will be

defined in the next sections.

3.1.2 Conceptual Graphs for Spatiotemporal Pattern

Representation

One of the goals of this chapter is to propose a representation formalism of

spatiotemporal patterns in a way that they can be manipulated by software agents.

These patterns are used to structure the knowledge required by agents and humans for

reasoning purposes. Conceptual Graphs (CGs for short) are one of the representation

63

schemes widely used for knowledge representation. According to Sowa [Sowa,

1984]:

Conceptual graphs (CGs) are a system of logic based on the existential

graphs of Charles Sanders Peirce and the semantic networks of Artificial

Intelligence. They express meaning in a form that is logically precise,

humanly readable, and computationally tractable. With their direct

mapping to language, conceptual graphs serve as an intermediate

language for translating computer-oriented formalisms to and from

natural languages. With their graphic representation, they serve as a

readable, but formal design and specification language. CGs have been

implemented in a variety of projects for information retrieval, database

design, expert systems, and natural language processing.

The CG formalism will be used in our pattern representation approach. This choice is

motivated by several reasons. First, the CG formalism is a powerful knowledge

representation formalism which offers an easy mapping from and to natural language.

CGs are easily understood by knowledge experts who can quickly learn the

formalism and easily use it to express spatiotemporal patterns. Second, CGs are

equivalent to first order logic and offer manipulation and reasoning capabilities based

on several operations such as generalization, specialization and join of conceptual

graphs, to name a few, by taking advantage of their graph-oriented structure. They

also enable the specification of if-then rules to build a rule-based system which can be

integrated in agents reasoning models. Third, CGs have been successfully used in

various applications such as natural language processing, and in particular, in

qualitative spatial reasoning and qualitative simulation. For example, Moulin

[Moulin, 1997] presented a temporal extension of Allen’s formalism and proposed a

temporal situation formalism. Mekni [Mekni, 2010] proposed a semantic abstraction

of virtual geographic environments for multiagent geosimulation. [Arioua et al, 2014]

used CGs in a query-answering system to access multiple data sources defined over a

common ontology. In health care systems, [Kamsu-Foguem et al, 2014] used CGs to

64

represent clinical practice guidelines and protocols and to help users visualize

different steps of the knowledge reasoning process. To the best of our knowledge,

there is no existing work in the literature which uses CGs to represent spatiotemporal

patterns. Using this representation formalism is one the original aspects of this thesis.

According to Sowa [Sowa, 1984] a Conceptual Graph (CG) is a semantic network

composed of concepts and conceptual relations. Concepts are representations of

objects of the application domain. A concept is characterized by two elements: a type

which represents the set of all the occurrences of a given class (i.e., human, animal

etc.) and a referent which represents a given occurrence of the class that is associated

with the concept (i.e., John, Mary, etc.). A CG can be represented using a graph

notation and/or a linear notation. Using the linear notation, a concept is specified

between square brackets: [TYPE-NAME: referent]. The concept types are classified

within a type lattice whose root is the universal concept, denoted T. The type lattice

supports operations on concepts such as generalization and specialization as well as

the determination of the minimal common generalization and of the maximal

common specialization of two concepts. A conceptual relation links two concepts or

more. When it links two concepts, a conceptual relation is binary. Using CG linear

notation, a binary conceptual relation is represented between brackets and is

associated with concepts by means of arrows. The following example illustrates the

linear representation and the graph representation of the sentence “A severe storm in

Quebec City”

[Event: Storm]-

-(CHRC)�[Severe]
-(loc)�[City: Quebec City]

Figure 3.4: A Conceptual Graph example using linear and graph representations

65

3.2 A Dynamic Spatiotemporal Environment

Spatiotemporal patterns are defined in a dynamic spatiotemporal environment where

geo-referenced data is reported by different types of devices geographically

distributed. Several works in the literature characterized dynamic environments. For

example [Grenon and Smith, 2004] proposed to characterize a dynamic environment

using two different layers. A static layer defines static objects of the environment

such as geographic objects. A dynamic layer defines dynamic spatiotemporal

situations called by Galton “occurrents”. A similar approach was proposed by

Haddad and Moulin [2010] who introduced a static view and a dynamic view (Figure

2.16) in their spatiotemporal situation formalism. In this thesis, for the

characterization of our dynamic spatiotemporal environment we propose to extend

this approach to include spatiotemporal patterns. Our conceptual model is depicted in

Figure 3.5, where we characterize a spatiotemporal pattern by several components

appearing in the endurant and the dynamic views. Each component can be

represented by a knowledge structure called a concept. Since patterns are represented

using conceptual graphs, they can be organized in a Concept Type Lattice [Sowa,

1984]. In Figure 3.6 we present a concept type lattice that organizes concepts such as

situation, context and spatial object and their specialized concept types. These

concepts will be defined throughout the next subsections.

Figure 3.5: Our conceptual model for spatiotemporal patterns. Adapted from

[Haddad and Moulin, 2010]

66

Figure 3.6: An example of concept lattice including context specialization

Let us mention that a Concept Type Lattice is used instead of a hierarchical tree

structure because although trees are considered to be the simplest hierarchies (where

each type except the top has only one immediate super-type), they cannot represent a

type which has two supertypes. For example, the type Building has Location and

Spatial Context as super-types. A lattice allows types to have multiple immediate

super-types [Sowa, 1984].

3.2.1 Spatial Objects

Spatial objects are defined as spatial entities which are part of spatial regions. Spatial

regions are part of the “container view” called Space which is the entire spatial

universe according to [Grenon and Smith, 2004]. A spatial object has its own borders

that distinguish it from other objects in the environment. Borders can be concrete for

objects such as buildings, roads and mountains or abstract for objects such as cities

and countries. Spatial objects belong to the endurant view. They capture individual

67

things extended in space that can be identified and described by properties and

relations. Spatial objects can be classified into object types based on shared properties

and relations [Kuhn and Ballatore, 2015].

3.2.2 Spatial Relations

Spatial relations are used to describe the relative spatial position of entities defined

by spatial attributes. They are usually binary relations [Cohn and Renz, 2007].

Generally, spatial relations are categorized into three families: directional/orientation

relations, distance relations and topological relations. An overview on these spatial

relations was already presented in Chapter 2. Figure 3.7 depicts the spatial relation

inside which links two spatial objects (a Sensor and a Building) using the CG linear

notation.

Figure 3.7: An example of a topological relation between a Sensor and a Building

using a Conceptual Graphs representation

3.2.3 Dynamic Spatiotemporal Situations

Spatiotemporal situations are part of the dynamic view as described by Figure 3.5. A

situation is a finite configuration where objects that are part of this situation, have

properties and are related to each other [Sowa 1984]. When a situation evolves in

time and is defined with regards to spatial attributes and entities from the

environment, it is called a spatial-temporal situation. According to [Desclés, 1985],

situations can be categorized in two types: static situations and dynamic situations

(Figure 3.8). Static situations remain stable during a given time interval and no

change on the subject described by the situation is observed. Dynamic situations

define changes in time and space references. A change is a transition from one state

68

to another (Figure 3.9). Dynamic situations can be either categorized as events or

processes. To conclude, a spatiotemporal situation is based on two main aspects:

- It can be static or dynamic. When static, it is named a state. When it is

dynamic, it can be either an event or a process.

- Changes from one state to another are trigged by the occurrence of events or

of processes.

Figure 3.8: Static and dynamic situations according to Desclés

Figure 3.9: A change from one state to another triggered by the occurrence of an

event

Our spatiotemporal pattern model will be used to represent situations of interest

defined in the context of large data acquisition systems existing in the

telecommunication and the power distribution industries. In these applications,

dynamic situations can be represented using states and events. Consequently, only

states and events will be considered in the definition of spatiotemporal situations in

this thesis, although the model proposed by [Haddad, 2009] included the concept of

process to represent complex geographic phenomena. However, the formalism that

Situation

Static Dynamic

Process Event

Initial State Final State
Event

69

we propose will allow for extending this definition to include the concept of process

and to represent more complex situations if needed in future applications. This may

be useful in other domains such as weather monitoring (for example, a thunderstorm

can be represented as a process) and multi-agent geo-simulation.

3.2.4 Temporal Relations

Examples of temporal relations are A occurred After B, A Meets B and so on. The 13

qualitative temporal interval relations that have been introduced by Allen in his

interval algebra [Allen, 1983] are used for this purpose, with the difference that we

are not concerned with a continuous time and we deal only with discrete time. Moulin

proposed an extended version of Allen’s logic using CG representation formalism. He

considered “Before” and “During” as two primitive relations [Moulin, 1997].

Considering two time intervals A and B, BT and ET respectively correspond to Begin

Time and End Time for a given time interval. The temporal relation Before(A, B)

holds if we have the following conditions: BT(A) < ET(A); BT(B)<ET(B) and

BT(A)<BT(B).

Considering the operation DB which stands for distance between the BT(A) and

BT(B), and DE the distance between the ET(A) and ET(B) the relation During(A, B,

DB, DE) holds under the following constraints: BT(A) < ET(A); BT(B < (ET(B);

BT(A) ≥ BT(B); ET(A) ≤ ET(B); BT(A)-BT(B)=DB and ET(B)-ET(A)=DE. Figure 3.10

illustrates an example of the During relation with all the corresponding parameters.

Figure 3.10: Illustration of time intervals according to [Moulin, 1997]

Temporal relations can be used to link two situations together or one situation and a

temporal reference. In Conceptual Graphs, they can be represented using conceptual

70

relations. Figure 3.11 depicts an example of the temporal relation Before used to link

the event Storm and the temporal reference 12:00 AM.

Figure 3.11: An example of temporal relation using Conceptual Graphs

representation

3.2.5 State

A state is part of the dynamic view. It is defined, according to [Desclés, 1994], as a

“static situation describing the stability and the non-change”. We use the state

representation and the during temporal relation proposed by Haddad [Haddad, 2009]

who extended the temporal situation formalism proposed by Moulin [Moulin, 1997]

to support the spatial attributes of a spatiotemporal situation. A state is a

spatiotemporal situation with the following elements:

• A pair (situation type, situation referent) where situation type takes the value

of a state type from the state type hierarchy and situation referent is a

reference to the state instance. The type hierarchy is a knowledge structure

based on the CG formalism used to represent concept types and relation types.

• State Propositional Content (SPC) which is a knowledge structure describing

the state. This structure is non-temporal, which means that it does not contain

any time reference.

• State Time Interval (STI), which is a knowledge structure that allows for

representing the temporal information associated with the state.

• State Spatial Attribute (SSA), which is a knowledge structure that represents

the spatial information associated with the state.

71

Haddad and Moulin [2010] extended the graphical representation of CGs to allow for

a compact representation of these four elements. Figure 3.12 depicts an example of a

situation identified by #FiberState describing the state of a fiber optic link identified

by #QuebecMontreal during the period between July 17th and 24th 2013. The fiber

status is normal. Note that it is possible to have a state without the “ET” attribute

(ET= end time) which means that the state has not changed yet. Figure 3.13 depicts

an example of a degraded state of the fiber optic at distance 23 Km, without end time.

Figure 3.14 illustrates the CG linear notion of the state given in Figure 3.12.

Figure 3.12: A state describing a normal fiber state. The state is defined in a time

interval between July 17th at 10:00 AM and July 24th at 05:33 PM.

Figure 3.13: A state describing a degraded fiber state. The state is defined at distance

23Km of a fiber link between Quebec and Montreal

Figure 3.14: A state represented using CGs’ linear notation

72

3.2.6 Event

Events are also part of the dynamic view. They can be defined according to two

dimensions: 1) The semantic dimension, which aims at studying the meaning of

events and at defining its significance in the geospatial world and 2) The

representation dimension which aims at defining the programming entity used to

represent the event object [Etzion and Zolotorvesky, 2010]. In the semantic

dimension, Haddad [Haddad, 2009] adopted Desclés’s event definition as a “temporal

occurrence that appears in a static background, which may or not change a state in

the world”.

Other researchers proposed event definitions. Luckham [Luckham, 2002] defined an

event by “something that happens in reality”. [Cole and Hornsby, 2005] stated that:

“events capture happenings or activities in a domain that require intervention, for

example, a system-generated notification that evidence of a significant concurrent

has been detected in the database”. Galton [Galton, 2004] defined two types of

events: punctual events and durative events. Punctual events mark the onset or

termination of states of affairs (for example, an object is starting to move). The OGC

[2015] proposed a similar definition which states that an event is an action that occurs

at an instant or over an interval of time. In our model, we consider an event as a

happening and we only consider punctual events as proposed by [Cole and Hornsby,

2005]. All these models used a similar event structure. The event is defined by an

event type, an event identifier, a temporal attribute (either time or time interval) and

other attributes that may vary from one approach to another. For example, if the event

is defined in a geospatial domain, the spatial attribute is specified in the event

definition. Usually, an event type is defined to allow event instantiation.

In the Complex Event Processing research community, Etzion [Etzion and

Zolotorvesky, 2010] proposed a general structure for an event object containing three

main structures: a header which contains the meta-data about the event, a payload

73

which contains specific information about the event occurrence and finally an event

relation, which is optional and handles semantic relationships between events.

Since an event means something that happens and results in a change from one state

to another, several works attempted to consider to notion of change in the event

model. For example, Cole and Hornsby [Cole and Hornsby, 2005] proposed a model

where all events (called occurrences) have a spatial attribute, a time stamp and a

spatial attribute named “expected next” that allows for representing what is the next

spatial zone reached by a mobile object.

Using temporal relations Haddad [Haddad, 2009] proposed a more generic approach

where an event is a spatiotemporal situation linking two states. We use this approach

in our model because it explicitly represents change using temporal relations between

an event and the initial and final states. This is an important issue in large scale data

acquisition systems where a user needs to know the state of the system before and

after the event’s occurrence.

We define an event as a spatiotemporal situation with the following elements:

• A pair (event type, event referent), where event type takes the value of an

event type from the event type hierarchy and event referent is a reference to

the event instance.

• Event Propositional Content (EPC), which is a knowledge structure

describing the event. This structure is non-temporal, which means that it does

not contain any time reference.

• Event Time Stamp (ETS), which is a knowledge structure that allows for

representing the temporal information associated with the event.

• Event Spatial Attribute (ESA), which is a knowledge structure that represents

the spatial information associated with the event.

74

We use temporal relations to link the event occurrence with the state holding before

it, as well as with the state which holds after it. Moulin’s formalism [Moulin, 1997]

introduced in Section 3.2.4 is used to represent temporal relations. Figure 3.15

graphically illustrates an instance of an event of type break that occurred on a fiber

optic link between Quebec City and Montreal. The break occurred at distance 125 km

at 05:33 PM and changed the state of the fiber optic from “normal” to “broken”. Note

that the state which comes after the break event has a begin time only; whereas the

state that comes before the break event has a time interval delimited by BT (Begin

Time) and ET (End Time). In addition, spatial information about the event may be

present in the resulting state to provide further information about the position where

the break occurred (at distance 125 km).

Figure 3.15: An event representation using temporal relations to link with the state

before the occurrence and after the occurrence

3.2.7 Summary on the Spatiotemporal Situation Representation

The definition of spatiotemporal situation (state or event) is mainly adapted from

Haddad’s model [Haddad, 2009]. This choice was motivated by several reasons.

First, the spatiotemporal situation definition is compatible with most of the event and

state definitions in the literature. It integrates spatial and temporal attributes, which

75

makes it agree with the spatiotemporal environment defined in Freska’s model

(introduced in Section 3.1). Second, the spatiotemporal situation definition considers

both states and events and allows for representing dynamic situations whereas other

works in the literature restrict their definitions to events. Third, the proposed model

uses the conceptual graph formalism, which makes it expressive and human readable.

This was one of the requirements for our spatiotemporal pattern representation. States

and events can be related by temporal relations. Spatial relations can be used in

situation definitions to relate the events’ spatial attributes. Now that we presented our

representation of a dynamic spatiotemporal environment and the main concepts

related to it, we present in the next section our spatiotemporal pattern definition and

we propose some pattern types.

3.3 Dynamic Spatiotemporal Pattern

A spatiotemporal situation is defined as a finite configuration involving states and

events, spatial and temporal relations. Different configurations representing these

situations may generate different pattern types. Some existing works recommend

using predefined pattern types. Among them, the OGC initiative [OGC, 2015]

submitted a work proposal with a classification of pattern types. Although this work

is not in its final stage, we will use it in our pattern classification. Four types of

patterns are defined: simple pattern, repetitive pattern, complex pattern and timer

pattern.

Using our definition of spatiotemporal situations in the previous sections, we

introduce here the concept of qualified spatiotemporal situation which is a key

element of our definition of spatiotemporal patterns. Then, different pattern type

definitions will be proposed.

76

3.3.1 Qualified Spatiotemporal Situation

When an agent reasons about a situation, it often needs to “locate” it relatively to the

environment. To this end, it can use the situation’s spatial and temporal attributes.

Such a cognitive activity is also called qualification [Galton, 2004]. Agents need to

qualify situations with regards to a temporal or spatial reference because a situation

may be interpreted in different ways. For example, a cyclone observed by a city

habitant can appear as a storm for another village habitant because both habitants who

are qualifying such an event are located in two different spatial regions and observe

the cyclone with two different time references [Galton, 2004]. Hence, we introduce

the concept of a qualified spatiotemporal situation (qualified STS for short) in the

following definition:

Definition 2: A qualified STS is a situation which has a qualifying relation (temporal

and/or spatial) that qualifies its temporal and/or spatial attributes relatively to the

environment.

Figure 3.16: An example of a qualified situation

77

Figure 3.16 illustrates an example of a qualified STS describing the following

configuration: a “Break Event” event type occurred at distance “125 km” on the

spatial object “Fiber #QuebecMontreal” and inside the spatial object building of type

“central office”.

3.3.2 Simple Pattern

A simple pattern is a qualified spatiotemporal situation. It is a finite configuration

that can represent change in space and time and can be perceived by software agents

or humans when recognizing phenomena that occurred in the environment. Therefore,

we consider a qualified STS as the simplest way to define a spatiotemporal pattern.

Definition 3: A simple pattern is a spatiotemporal situation that represents a change

in space and time and that can be qualified using spatial and/or temporal relations

relatively to the environment.

This definition restricts the use of STS to only events since states do not represent

changes in space and time. Indeed, an event may represent change when using

temporal relations relating the event to a state before and to another state after its

occurrence.

From the above definition, a simple pattern can take one of the following

configurations:

• An event which triggers a change from one state to another. This is the

simplest pattern configuration.

• An event which triggers a change from one state to another and whose its

temporal attribute is qualified by a temporal reference.

• An event which triggers a change from one state to another and which has a

spatial attribute qualified in relation to a spatial object.

• An event which triggers a change from one state to another and which has a

spatial attribute qualified in relation to a spatial object, and which has a

temporal attribute qualified in relation to a temporal reference.

78

• A state cannot be a spatiotemporal pattern since it does not represent a

change.

A simple pattern is represented by a knowledge structure with the following

elements:

• A pair (simple pattern type, simple pattern referent) where simple pattern

referent is a reference to the simple pattern instance.

• A Simple Pattern Propositional Content (SPPC) which is a knowledge

structure describing the simple pattern. This is basically the qualified

spatiotemporal situation.

Figure 3.17: Structure of a simple pattern

Figure 3.17 presents the structure of a simple pattern. Figure 3.18 illustrates an

emergency pattern example where a fiber state changes to break after the occurrence

of a break event at a certain distance. Figure 3.19 illustrates another example where

the non-occurrence of an event (expressed by the negation operator “¬”) is

considered as a communication error pattern and may require the verification of the

corresponding sensor. Such a type of pattern can be very useful in sensor-based

monitoring systems. A sensor can be in a healthy status but may not be able to report

observations due to a communication failure. At the occurrence of such a pattern, a

field technician may investigate the communication link to repair it.

79

Figure 3.18: An example of a simple pattern

Figure 3.19: A simple pattern example using the negation operator

3.3.3 Complex Pattern

A software agent can be programmed to monitor or observe dynamic phenomena.

During its observation activity the agent may detect interesting configurations that

usually involve several STSs. A single STS can be interpreted and qualified to

produce a simple pattern. However, such an interpretation may change when one STS

is related to one or even several other STSs. When several STSs are related using

spatial or temporal relations, they define what we call a Complex Pattern.

80

Definition 4: A complex pattern is a set of simple patterns related by spatial and/or

temporal relations.

Two possible configurations can be present in a complex pattern:

Case 1: When a spatial relation links two simple patterns, the relation is established

between the event spatial attributes of each simple pattern.

Case 2: When a temporal relation links two simple patterns, the relation is established

between the event temporal attributes of each simple pattern.

In our representation model, a complex pattern is a knowledge structure which has

the following elements:

• A pair (complex pattern type, complex pattern referent) where complex

pattern referent is a reference to the complex pattern instance.

• A Complex Pattern Propositional Content (CPPC) which is a knowledge

structure describing the complex pattern. The content of this knowledge

structure is basically a set of simple patterns related by temporal and/or spatial

relations. It is worth noticing that temporal and spatial relations are binary.

However, one simple pattern can be related to n simple patterns by n

spatial/temporal relations.

Figure 3.20: Structure of a complex pattern

81

Figure 3.20 illustrates the structure of a complex pattern and Figure 3.21 illustrates a

complex pattern example where the temporal relation after is used to link the simple

pattern Communication Error to the simple pattern Emergency.

Figure 3.21: A complex pattern example where the communication_error_pattern is

related with the temporal relation after to the emergency_pattern

3.3.4 Timer Pattern

Some patterns can be qualified relatively to temporal information. Temporal

information can be:

82

• A position in time (or temporal reference). For example Monday, April 16th

2015 10:05:03 AM;

• A time interval.

Definition 5: A timer pattern is a pattern qualified with regards to a temporal

information provided by a system clock.

In our representation model, a timer pattern is a knowledge structure which has the

following elements:

• A pair (pattern type, pattern referent) where pattern referent is a reference to

the pattern instance. The pattern type can be simple or complex.

• A Timer Pattern Propositional Content (TPPC) which is a knowledge

structure describing the pattern.

• A Timer Pattern Content (TPC) which is a knowledge structure describing the

temporal information. A temporal relation is used to link the PPC to the TPC.

Figure 3.22 illustrates an example of a timer pattern describing a communication

error on a sensor occurring after 24 hours and Figure 3.23 presents the general

structure of the timer pattern.

Figure 3.22: An example of a timer pattern

83

Figure 3.23: Structure of the timer pattern

3.3.5 Repetitive Pattern

In some applications, the repetitive pattern can be used to count the matches for a

simple of a complex pattern instances. For example, a System Engineer may be

interested to detect when a sensor reported a connection failure 5 times so that he can

send someone to inspect the communication link between the sensor and the

monitoring system.

Definition 6: A repetitive pattern is the repetition of a sub-pattern for a specific

number of times.

In our representation model, a repetitive pattern is a knowledge structure which has

the following elements:

• A pair (repetitive pattern type, repetitive pattern referent) where repetitive

pattern referent is a reference to the repetitive pattern instance.

• A Repetitive Pattern Propositional Content (RPPC) which is a knowledge

structure describing the pattern which will be repeated.

84

• A Repetitive Pattern Count (RPC), which is the number of repetition of the

sub pattern.

Figure 3.24 presents the structure of the repetitive pattern and Figure 3.25 illustrates

an example of a repetitive pattern describing a communication error on a sensor

occurring 6 times.

Figure 3.24: Structure of the repetitive pattern

Figure 3.25: An example of a repetitive pattern

85

3.3.6 Conclusion

The core elements of our pattern formalism are events and states which allow for

representing dynamic situations. We proposed in this section a number of pattern

types that may be used in real time data acquisition systems. The representation

formalism allows for the definition of other patterns types suitable to specific

application domains. Thanks to CGs, our patterns can serve as knowledge base for

software agents. As discussed in Section 3.1, the agents may have a mental model of

the environment and may have their own interpretation of situations of interest

according to contexts.

3.4 Contextual Information

In this section, we discuss how contextual information can be integrated in our

spatiotemporal pattern definition to enhance agent’s reasoning capabilities. Our

literature review in Chapter 2 showed that contextual information is not supported by

most of spatiotemporal pattern models. In this section, we adapt Frekas’s model

introduced in Section 3.1 to include contextual information in our pattern formalism.

Let us first discuss the role of contexts in pattern definitions. Then, we study how

context can be defined in our pattern formalism and we propose a formal definition.

3.4.1 The role of context in knowledge representation

Generally speaking, a given entity can have properties which have different meanings

when this entity is evaluated in some contexts. In other words, context is defined as

additional information in the perceptual/cognition level which allows for “perceiving

or recognizing something that is actually not there” [Toussaint, 1978]. In the

knowledge representation community the relationship between context and

knowledge is a debated issue. [Bastien, 1998] states that “context cannot be separated

from the knowledge it organizes, the triggering role context plays and the field of

validity it defines”. According to Toussaint, the use of context tackles three main

86

problems in pattern recognition: disambiguation, error correction and filling the gap.

Filling the gap means providing more information which is missing to reason about

the related pattern. McCarthy [McCarthy, 1993] states that “formulas are not just true

or false; they are true or false is some contexts”. Patterns which play the role of

formulas here can be also true or false in some contexts. They are interpreted in some

contexts and may assign different meanings about the situations of interest that occur

in the world.

3.4.2 How to Define Contexts in Patterns?

Now that we have discussed the role of context in knowledge representation, let us try

to find a suitable context definition for our pattern formalism. In Artificial

Intelligence, people agree that no clear and final definition of context can be

provided. It is difficult to find a context description common to most disciplines

[Bazire and Brezillon, 2005]. Pervasive Computing is one of the domains where the

concept of context is very popular. For example, in location-aware applications,

contextual information is related to spatial information and used to help software

agents track objects positions and adapt their goals [Chen and Kotz, 2000]. Even in

context/location aware applications, a clear definition of context is missing and tends

to be more focused on the spatial aspect and does not consider other dimensions

(temporal, semantic, etc..).

In Complex Event Processing, context is defined relatively to the sole notion of

event. For example, context according to [Sharon and Etzion, 2008] “specifies the

relevance of the events participating in pattern detection”. The authors define three

types of contexts: temporal context, spatial-based context and semantic-based

context. [Adi et al, 2003] states that context partitions the space of events according

to several dimensions; temporal, spatial, state-based and semantic. These two

definitions are adopted by the Complex Event Processing research community. They

tend to partition the so-called event cloud into multiple instances and do neither

consider other pattern components nor the cognitive aspect of the application. They

use context for event filtering purposes. In contrast, our pattern definition does not

87

consider only events but also involves other components such as states and spatial

objects.

Brezillon [Brezillon, 1999] worked on the context definition for more than 25 years

and he concluded that since context does not have a clear definition, it is better to

design a knowledge model that takes into account contextual information and helps in

making decisions. A similar conclusion was drawn by [Freksa et al, 2007] who

proposed an approach to model context from a cognitive perspective using a modular

architecture.

In our model, we adopt Freksa’s approach, where the context is defined from a

cognitive perspective in order to provide additional information that helps agents to

interpret spatiotemporal patterns. We use Freksa’s model as an inspiration to define

the relationship between contexts and spatiotemporal patterns.

3.4.3 Our Definition of Context in Patterns

Figure 3.26 depicts an overview of the approach that we propose. The relation R1

between the Agent (A) and Environment (E) defines the way A perceives situations

of interest using our pattern model. These patterns can be interpreted according to

contextual information defined by the relation R2 between the agent A and the

context base C. In our model, the context base C contains three types of contextual

information: M (map) for the spatial information as defined in Freksa’s model, S

(semantic) and T (temporal).

Formally, a context is a knowledge structure expressed using an extended form of

Conceptual Graphs having the following elements:

- A pair (context type, context referent) where context type is a concept type

that takes values depending on the application domain.

- Context Propositional Content (CPC) which is a knowledge structure

describing the contextual information according to the context type.

88

Figure 3.26: Our approach to model support contextual information in our

spatiotemporal pattern formalism

The most used context types in the Pervasive Computing and Event Processing

domains [Etzion and Zolotorvesky, 2010] are semantic context, temporal context and

spatial context.

Semantic context is a non-temporal and non-spatial information that can be added to

characterize the related pattern. “National Holiday” or “Vacations” are examples of

semantic contexts that can be used to characterize patterns. Temporal context is a

temporal information structure that can be a time interval or a single time reference.

Spatial context is a spatial information structure. Context referent is the identifier of

the instance of the context type in our definition.

Figure 3.27 depicts an example of a spatiotemporal pattern with a semantic context of

type National Holiday. In some applications, a pattern that occurs during a national

holiday may have a special meaning and require a special attention from decision

makers.

89

Figure 3.27: A pattern definition using contextual information

3.4.4 Conclusion

We introduced the contextual information in our pattern definition by extending

Freksa’s model. Our definition goes beyond spatial context and includes temporal and

semantic contexts. Moreover, the contextual information is represented using a

conceptual graph.

Introducing the contextual information in the spatiotemporal situation model is an

original aspect of the model proposed in this chapter. Since in the literature classical

pattern definitions use query based languages, they are limited in terms of

expressiveness and do not make use of contextual information. Other semantic-based

models such as [Tan et al, 2009], [Lin et al, 2009] and [Aigong, 2009] do not support

contextual information either. In Complex Event Processing, contexts are used for

filtering purposes whereas our model uses contextual information to extend the

interpretation of situations of interest.

90

In the next section, we present a case study to illustrate some examples of patterns

that may be detected to represent situations of interest in the domain of Power

Distribution.

3.5 Case Study: Outage Management Systems

Since this thesis is defined in the context of large scale monitoring and data

acquisition systems, we apply our pattern model to the Power Distribution domain

and in particular to Outage Management Systems (OMS). We define qualitative

spatiotemporal patterns to detect interesting dynamic spatiotemporal situations and to

help agents making decision about crew assignment and outage status in a

distribution network. This case study will provide some examples of the use of

spatiotemporal patterns by agents in their decision making process. Consequently,

some assumptions are proposed for simplification purposes. We assume that pattern

instances are already populated in a given knowledge base and are accessible by

agents. Here, we address neither issues related to data collection from the event

cloud, nor the automated agent interaction with the environment and pattern detection

aspects.

3.5.1 Background

An increasing pressure from customers (residential, commercial and industrial) and

media is placed over electric distribution companies to supply reliable information

about outage in their distribution network. An OMS is a computer system used by

operators of electric distribution systems to assist in restoration of power

[Chakravarty and Wickramasekara, 2014]. Using OMS mainly aims at reducing the

outage time in the distribution or transmission network for power utilities and at

keeping customers updated about the real time status of an outage in the network. To

this end, an OMS offers a variety of capabilities. It needs to predict the location of

electric devices such as switches and breakers that opened during a failure. It also

needs to identify faulty electrical devices such as the transformer or the cable that

91

caused the outage. Furthermore, it can help prioritize restoration efforts based on

several criteria such as the location of emergency facilities, crew availability, crew

expertise, and the outage size.

An OMS is usually designed to integrate information from several software

applications. A GIS is used for spatial network modeling and to locate the outage

when the related event is reported. An outage event (or “incident”) can be reported in

different ways. The first source of outage information is the Supervisory Control and

Data Acquisition System (SCADA) which is a system designed to monitor the status

of electrical devices in real-time, stores acquired information in historian3 databases

and reports the information when a fault occurs. The second source of outage

information is the Interactive Voice Response (IVR) which is a software application

that answers customer’s phone calls, routes information, compiles information and

recalls customers as programmed. Besides outage information, the OMS is connected

to a Customer Relation Management (CRM) system. A CRM is a software

application that manages customers’ information and profiles. It manages billing

information and stores customers’ requirements and preferences. These systems are

used by the OMS to achieve two main goals: keeping customers informed about the

status of an outage and dispatching the crews according to several criteria. Figure

3.28 depicts an overview of a standard OMS architecture.

The main function of an OMS is to help managing crews and to update customers

with the real time outage status in their respective regions. Figure 3.29 depicts an

example of an outage map where an outage is associated with a particular area. The

number of outages can be grouped by subareas. The number of customers affected

and the estimated restoration time is displayed.

3 A historian is the term used in the electrical power industry referring to a software application that

logs time-based process data and records trends in a database for future reference.

92

Figure 3.28: Different components of an Outage Management System

Figure 3.29: An outage map in the State of New York [conEdison, 2013]

3.5.2 Proposed Approach

We propose to develop a software agent that correlates information collected from

several data sources and establishes relationship between them to identify interesting

situations. Data sources which belong to the environment may be static or dynamic.

Static data sources provide information such as states and geographic data. Dynamic

OMS

GIS

IVR

CRM

SCADA

93

data sources (such as sensors) provide information about outage events. The agent has

its own contextual information and may correlate it with data provided by OMS

sources in order to interpret interesting situations. Based on the result of this

interpretation, an agent can suggest solutions for crew assignment and updates the

outage status.

Software agents’ reasoning models can be classified in four categories according to

[Russel and Norvig, 1995]: simple reflex agents, agents that keep track of the world,

goal-based and utility-based agents. In our approach, we adopt a goal-based agent

architecture. An agent maintains a list of goal specifications stored in the Goal

Specification module. The agent’s reasoning module uses contextual information,

retrieves information from different data sources (mainly sensors) and uses its mental

representation of the environment to detect instances of patterns. Actions will be

taken according to the agent’s goals which are updating the outage status and

assigning crews to the new/existing outages according to crews’ availability and to

the occurrence of outages in the same outage area. Figure 3.30 illustrates an example

of our agent’s reasoning model adapted from [Russel and Norvig, 1995].

In order to implement our spatiotemporal pattern model, we use the Amine Platform

[Kabbaj, 2006] to define CGs, to build a knowledge base and to define the reasoning

mechanisms used by agents. Amine is a Java based multi-layer platform designed for

the development of intelligent and multi-agents systems [Kabbaj, 2006]. CG

structures and operations in Amine can be called using Java APIs. The Amine

platform provides rule-based functions expressed in the PROLOG+CG language

which is an extension of PROLOG using the Java object oriented language and

Conceptual Graphs.

94

Figure 3.30: Our agent's reasoning model

3.5.3 System Architecture

The global system architecture that we propose is depicted in Figure 3.31 where

outage sensors are deployed throughout the distribution network. They are mounted

on power cables and report events by sending a message using an industrial

communication protocol such as DNP (Distributed Network Protocol) [IEEE, 2010]

or Modbus [Cena et al, 2014] to a centralized SCADA using a wireless cell

communication (GSM or CDMA). The retrieved messages are located using a GIS

which is also used to model the distribution network. The Amine knowledge base

(KB layer) is used to store the pattern specifications and the detected pattern

instances. Amine’s Prolog +CG layer is used by agents to identify relevant patterns

and to update the environment with action results.

3.5.4 Pattern Specifications

We propose two types of patterns: simple patterns and complex patterns. Simple

patterns are used to represent situations where only one event occurs. Complex

patterns are used for more complex situations where there are temporal and spatial

relations holding between situations. A simple pattern is expressed using Amine’s

linear CG notation and is illustrated in Figure 3.32. It represents the following

situation:

95

“An event type OutageEvent occurs near an area (here defined as Outage Area), the

resulting state of the cable is Broken and the crew status is free”.

Figure 3.31: A system architecture involving the outage management system and the

interaction with the goal-based agent

[Normal_Outage_Pattern]-
-Pattern_Description->[Proposition : [[OutageEvent]-

-Before->[[CableState]-status->[Broken]]]
-near->[Outage_Area]]

-Context_Description->[Proposition : [ElectricCrew]-attr->[CrewStatus="Free"]]

Figure 3.32: An example of simple pattern with linear notation

Thanks to temporal relations between events and states, it becomes possible to

represent the change that occurred on a specific cable after the occurrence of the

outage event. Such a feature is very important in this kind of systems to enhance the

users’ decision making capabilities. In some cases, an outage can be reported but it

96

may not necessarily be related to a cable break. Hence, a user may need to investigate

other elements of the network. When an agent detects an instance of such a pattern, it

performs two actions: first, it assigns a crew to the corresponding area to fix the

problem. Second, it updates the outage map using the outage information. Both

actions can be achieved using Prolog+CG programs:

1. Assign_Free_Crew:-SimplePattern_With_ContextInfo

(_Simple_Pattern,Environment) which assigns the crew to the outage event,

2. UpdateOutageMap(_Simple_Pattern,Environment) which updates the outage map

with the information on the related event information.

Figure 3.34 shows an example of the Prolog+CG console output when the action

AssignFreeCrew is performed. Note that the agent can change the crew status and

retrieve it using CG rules as illustrated by Figure 3.33. Therefore, the next time an

outage event occurs, the agent’s contextual information will indicate that the crew

belonging to this specific area is already assigned and that there is a need to find

another alternative. Additional details about the agent’s reasoning model and the

environment configuration in PROLOG+CG is given in the Appendix section.

Figure 3.33: An example of rule used for crew assignment

In some cases a user may be interested in situations which involve more than one

event. For example, the complex pattern illustrated in Figure 3.35 represents the

following situation:

“An event type OutageEvent occurs near an area (here defined as _Area). Before

that, a communication error event occurred on a sensor in the same area”.

97

Figure 3.34: Output of the action AssignFreeCrew in the Prolog+CG console.

Figure 3.35: A complex pattern representation.

98

This is a typical use case in monitoring systems. A sensor can be out of service and

the system detects an outage event in the same area, but reported by another sensor.

Such a situation can occur during a storm where sensors are in service but some

communication links have failed. Hence, the storm can be used as contextual

information in the pattern definition. When such a pattern is detected, the crew should

repair the outage and inspect the sensor and fix the issue. Note the presence of the

negation operator in the structure of the communication error event which means that

the non-occurrence of an event can be considered as an event by a user.

3.6 Discussion

This case study shows how spatiotemporal situations play a key role in an OMS

where software agents need to detect patterns using information collected from

different data sources. An agent can also use its own contextual information to make

decisions giving spatiotemporal situations, resulting in different interpretations from

one agent to another. Using the CG formalism enhances agents’ reasoning

capabilities about spatiotemporal patterns. We proposed a cognitive approach which

integrates contextual information to better interpret spatiotemporal patterns. Although

agent’s reasoning capabilities are enhanced using our spatiotemporal formalism, the

proposed approach is far from offering a complete solution to manage patterns. There

are several issues that still need to be addressed.

First, the proposed approach uses qualitative spatial and temporal relations. Mapping

temporal relations from quantitative data to qualitative quantifier is supported thanks

to Moulin’s model [Moulin, 1997]. However, our formalism does not allow for a

smooth mapping from quantitative spatial data to qualitative spatial relations. In the

next chapter, we address this issue by proposing an intelligent spatial proximity tool

to qualify spatial proximity relations using a neurofuzzy classifier and contextual

information. This particular attention to proximity relations is motivated by the

application domains used in this thesis where proximity is very often used in pattern

definitions.

99

Second, we assumed in our case study that pattern instances are stored in a specific

knowledge structure. This is not the case in practice where events, states and

spatiotemporal situations in general can be represented in a heterogeneous way, with

different semantics and structures and can be generated by distributed data sources.

Although Conceptual Graphs provide an approach that helps matching pattern

instances to pattern definitions, they remain limited to manage and to process a large

dataset. For example, if n events are generated by i different data sources

(where	�	��)		 ∈ 	ℕ) how does Amine platform handle these events? Which events

will be selected to detect a specific pattern instance? Which knowledge structure will

be used to carry these events? What will happen to the selected events?

Our formalism for spatiotemporal situations is based on states and events but it does

not integrate the concept of process to represent more complex situations. This may

be useful in some specific domains such as weather monitoring (for example, a

thunderstorm can be represented as a process) and multi-agent geo-simulation. The

integration of the notion of process in our pattern definition may raise some

challenges related to pattern detection which could not be addressed by existing

technologies. For this reason, we propose to address this issue in future works.

Finally, most of Conceptual Graph tools and in particular the Amine platform, do not

offer temporal and spatial operators. Furthermore, these CG tools cannot be easily

integrated in existing monitoring applications such as SCADA, OMS and Sensors

Web systems. The issue of integrating our pattern model in existing monitoring

systems is quite challenging and will be addressed in Chapter 5 of this thesis.

It is worth mentioning that the main content of this chapter has been published in the

International Conference of Conceptual Structures held in Iasi, Romania in 2014

[Barouni and Moulin, 2014a]. Using Conceptual Graphs in the context of Big Data

applications is a new topic in the Conceptual Structure research community and may

give the opportunity to explore several interesting research aspects in the future.

100

3.7 Conclusion

In this chapter, we proposed our model for spatiotemporal pattern representation and

reasoning. The proposed formalism uses a qualitative approach to represent patterns

instead of using query languages such as most pattern definitions currently proposed

in the literature. Moreover, it allows for representing dynamic spatiotemporal

phenomena thanks to the extension of Haddad’s model [Haddad, 2009]. Another

original aspect of our representation formalism is that it integrates contextual

information. Using contextual information allows users and software agents to have

their own interpretation of situations of interest according to their mental models of

the environment. Other works in the literature as reviewed in Chapter 2 do not use

context to enrich patterns definitions and to offer different interpretation of situations

of interest. Finally, we proposed a qualitative representation model extending the

Conceptual Graph formalism and we implemented some examples using the Amine

platform. Using Conceptual Graphs allows making the representation of qualitative

spatiotemporal situations of interest close to Natural Language and hence allows

users to more easily understand and represent spatiotemporal patterns.

Moreover, some challenges related to qualitative spatial relations and pattern

detection should be addressed to facilitate the integration of our pattern model to real

applications in the industry. These issues will be addressed in the next chapters of the

thesis.

101

 Chapter 4

Using a Neuro-Fuzzy Classifier to

Automatically Generate Spatial Proximity

Quantifiers

Introduction

In Chapter 3, we proposed a spatiotemporal pattern formalism using Conceptual

Graphs. A spatiotemporal pattern involves spatial and temporal relations between its

various components. These relations are expressed in a qualitative manner. In

particular, we give a special attention to spatial proximity relations which are widely

used in real-time monitoring and data acquisition systems for decision making

purposes. Figure 4.1 illustrates an example where the qualitative spatial relation

“near” qualifies the distance between an outage event and a distribution cabinet.

102

The notion of proximity is one of the fundamental concepts in daily human cognition

studied by researchers over the last decades. Several authors proposed tools to reason

about proximity and solutions which can be automated and integrated in a GIS. The

goal is to reduce the semantic gap between quantitative data in GIS (metric distance)

and qualitative data (proximity) as used by humans [Cohn and Renz, 2007]. Such

works used advanced qualitative techniques (such as fuzzy sets and fuzzy logic) as

well as conceptual notions such as influence and impact areas. Other empirical works

have also been conducted. However, spatial distance is not the only factor that

influences human reasoning about spatial proximity. Actually, proximity relations

have two characteristics: they are context dependent and uncertain. For example, the

means of transportation used to travel from Paris to London may change the traveler’s

perception of distance (context-dependence). When a person parks a car, she does not

need to know the exact distance of the empty space between two cars (uncertainty). A

suitable model of spatial proximity should consider both characteristics in order to be

closer to the human apprehension of proximity.

Figure 4.1: A simple pattern example using a qualitative spatial relation

In this chapter, we propose a novel approach to represent and reason about spatial

proximity. The approach is based on contextual information and uses a neuro-fuzzy

103

classifier to handle the uncertainty aspect of spatial proximity. Neuro-fuzzy systems

[Negnevitsky, 2011] are a combination of neural networks and fuzzy systems and

incorporate the advantages of both techniques. While Fuzzy systems are focused on

knowledge representation, they do not allow for the estimation of membership

functions. Conversely, neuronal networks use powerful learning techniques, but they

are not able to explain how results are obtained [Gliwa and Byrski, 2013]. Neuro-

fuzzy systems benefit from both techniques by using training data to generate

membership functions and by using fuzzy rules to represent expert knowledge

[Borkar et al, 2013]. Moreover, contextual information is collected from a knowledge

structure. The complete solution that we propose is integrated in a GIS, enhancing it

with proximity reasoning capabilities.

This chapter is organized as follows. Section 4.1 gives an overview of some research

works on qualitative spatial proximity and outlines their limitations. Section 4.2

presents an overview of the neuro-fuzzy classifier used in our approach. Section 4.3

presents the experiments that we carried out to validate our approach and the results.

Section 4.4 presents the architecture of our qualitative proximity tool. Section 4.5

concludes this chapter and discusses some research outlooks.

4.1 Qualitative Spatial Proximity

Spatial proximity reasoning is a research area which has been addressed by the

qualitative spatial reasoning community, adopting different perspectives such as

geography, cognitive science and linguistics [Yao and Thill, 2007]. A large number

of prior works used Fuzzy Logic and qualitative techniques to deal with spatial

proximity because it has inherent fuzziness [Robinson, 1990]. While reasoning with

proximity, human beings may also consider metric distances and other parameters

referred to in the literature as contextual information. In the following sub-sections,

we present an overview of some works which used uncertainty techniques and

contextual information or a combination of them.

104

4.1.1 Distance-Based Approaches

[Guesgen, 2002] used fuzzy sets and associated each set with a qualitative spatial

relation. The idea behind Guesgen’s approach is to interpret qualitative proximity

relations between spatial objects as restrictions of spatial linguistic variables such as

near and far. Each linguistic variable is associated with a fuzzy set. The proximity

relation is therefore represented by a membership degree of each of these fuzzy sets

using a membership function. For example, the expression “the object A is near the

object B” may be interpreted by a near membership value which is associated with

each near relation between object A and surrounding objects such as B, C and D.

Generally, the nearest an object is to A, the highest its membership value is (Figure

4.2).

Figure 4.2: An example of possible proximity relations between two objects [Schultz

et al, 2007]

[Schultz et al, 2007] implemented Guesgen’s formalism using the Euclidian distance

between two objects. A Java-based software helps a user to define a “nearness” factor

which will be used to specify other proximity relations. Then, the user can query

spatial objects using proximity relations. Figure 4.3 shows a query example searching

for spatial objects of type Cables (blue lines) moderately near spatial objects of type

Buildings (transparent red boxes).

105

[Brennan and Martin, 2006] stated that most fuzzy-based proximity formalisms

proposed in the literature suffer from an important shortcoming: membership

functions are not clearly defined. To overcome this limitation, they used Gahegan’s

approach [Gahegan, 1995] who proposed a method to identify spatial proximity using

three factors: the absolute distance, the relative distance between two spatial objects

and the combination of both. An absolute distance may be a spatial relation such as

very close, close and far. A relative distance may be a spatial relation such as closest

or farthest. The combination of both absolute and relative distances was defined by

Gahegan to reason about spatial relations using a fuzzy union operator.

Since Gahegan did not use experimental data to validate his approach, [Brennan and

Martin, 2006] proposed an approach to evaluate membership functions and showed

how they can be combined using fuzzy logic operators. To this end, they used the

absolute distance membership function FGHI(&, J) proposed by Gahegan. This

function is presented in Table 4-1 where A and B are spatial objects, Dist(A,B) is the

absolute distance between A and B. Max is the maximum distance between all the

places in the data set and it is used to normalize the value of Dist(A,B). The authors

used the function FKLM(&, J) proposed in [Worboys, 1996] to compute the relative

distance membership function, where reldis(A,B) is the relative distance between A

and B which is calculated using the distance between A and B; and divided by the

mean of the distances between A and every object in the data set (see Table 4-1).

Absolute Distance Metrics FGHI(&, J) = 1 − 4N�(&, J)O��

Relative Distance Metrics FKLM(&, J) = 1(��)N(&, J) + 1)

Fuzzy Union FQRSH_T(&, J) = O&U(FGHI(&, J), FKLM(&, J))

Fuzzy Intersection FQRSH_C(&, J) = OV-(FGHI(&, J), FKLM(&, J))

Table 4-1: Fuzzy distance as proposed by [Brennan and Martin, 2006]

106

Figure 4.3: A Java-based proximity platform developed by [Schultz et al, 2007],

where fuzzy quantifiers are used to query spatial objects

The results of the experiments conducted by [Brennan and Martin, 2006]

demonstrated that the absolute distance and relative distance membership functions

can be used separately and generate linear distributions. However, using the union

operator to combine these metrics gives clustered distributions and may not be

relevant for proximity reasoning whereas fuzzy intersection gives better results. The

authors proposed to use the fuzzy union and they implemented their approach in a

GIS. However, they neither expressed the meaning of fuzzy intersection in terms of

spatial proximity, nor justified the use of fuzzy logic since fuzzy rules were not used.

Moreover, the way such an approach can be applied to qualitative spatial reasoning

was not clearly discussed.

In [Worboys et al, 2004] the authors addressed the issue of possible relationships

between the geometric notions of proximity and direction. They discussed human

conceptual models of an environmental space, and possible combinations of

proximity and directional relations. They also addressed the issue of granularity of

vague space relations. To this end, Worboys and colleagues conducted an empirical

107

study involving a number of observations of people having the same background and

belonging to the same spatial domain (students on campus). Despite the small size of

the dataset used in these experiments, some interesting findings were drawn. First,

there exists a context-dependent relationship between the cognitive aspect of nearness

(nearness as perceived by humans) and geometric distances. Second, combining

direction (i.e. leftness) and proximity (i.e. nearness) enhanced the efficiency of

qualitative spatial reasoning.

4.1.2 Context-Based Approaches

Other works on spatial proximity started from the observation that proximity is

context-dependent. For example, [Brennan and Martin, 2012] proposed a conceptual

framework to qualitatively represent spatial proximity and to enhance the capacity of

spatial reasoning systems using contextual information. They considered contextual

information as a key element in any model of spatial proximity. For example, a

degree of proximity to an object may vary if the object is meant to be seen or reached.

To reason about spatial proximity, Brennan and Martin introduced the notion of

impact area which is a generalization of the influence area concept introduced by

[Kettani and Moulin, 1999]. An influence area is a portion of space surrounding an

object: it has an interior and exterior border such that the borders of the influence area

and the border of the object have the same shape [Kettani and Moulin, 1999].

Euclidean geometry has been used by Kettani and Moulin to compute the width of an

influence area. Brennan and Martin proposed a more generic approach motivated by

the fact that spatial proximity is more than a metric measure. Proximity is rather

context dependent. Furthermore, other spatial relations such as topological and

directional relations have some unified views within the research community. Hence,

they introduced the impact area concept which involves contextual information to

qualify spatial proximity. The impact area of an object takes into account both the

nature of the object and its surrounding environment. Some examples in [Brennan

and Martin, 2012] demonstrate how an impact area is more generic than an influence

area, and how this notion uses contextual information in proximity analysis. As

described in Figure 4.4, contextual information is defined as any “information

108

collated by an expert who is expected to incorporate all relevant factors into the

impact area”. Figure 4.5 illustrates the difference between an influence area and an

impact area for two couples of objects. Objects A1 and B1 are water tanks and objects

A2 and B2 are radio towers. The distance between A1 and B1 is equal to the distance

between A2 and B2. The influence area of water tank is equal to the influence area of

radio towers because all objects have the same shape and size and because they are

located at the same distance from each another. If we consider the functionality of the

towers (range of frequency) and the surrounding Cliff, the impact areas will be

different.

Figure 4.4: A conceptual framework proposed by Brennan and Martin to compute

impact area from contextual information and geographic distance.

Figure 4.5: An example of difference between influence areas [Kettani and Moulin,

1999] and impact area [Brennan and Martin, 2012]

109

According to [Yao and Thill, 2007] proximity relations have two main characteristics.

The first one is that a proximity relation is context dependent. These authors

classified context factors as ‘objective’ and ‘subjective’. Subjective context factors

may have different values according to the involved person. Examples include the

navigator’s familiarity with the area, his time and his budget. Objective context

factors have values which do not depend on the person who perceives the distance

like the type of activity (run, walk), object reachability and transportation mode, to

name a few. The second characteristic of proximity is the uncertainty of distance

measures. If a person wants to park her car, she does not need to know the exact

distance between her car and the other cars around. The authors proposed a review of

existing approaches based on fuzzy logic to handle the uncertainty aspect of

proximity measures and they noticed that most of these works preset the form of

membership functions. To overcome this limitation, Yao and Thill proposed a novel

approach based on neuro-fuzzy techniques which allows for reasoning with spatial

proximity by considering contextual information and by handling its uncertainty

aspect. Neuro-fuzzy systems, take advantage of both techniques by using training

data instead of preset membership functions and by using fuzzy rules to represent

expert knowledge. The general architecture of the neuro-fuzzy system for proximity

modeling proposed by Yao and Thill is depicted in Figure 4.6. The contextual factors

used in Yao and Thill’s approach (objective and subjective) take the form of crisp

inputs. They are fuzzyfied using membership functions which can be preset by an

expert. Fuzzyfied outputs are generated as consequences of applying all fuzzy rules.

The final output (either fuzzy or crisp) is calculated through defuzzification using the

weighted average of fuzzyfied outputs. Yao and Thill used ANFIS (Adaptive

NeuroFuzzy Inference System) to implement and validate their approach. ANFIS is a

Takagi-Sugeno fuzzy inference system [Nauck and Kruse, 1999]. It uses a back

propagation algorithm to train the fuzzy neural network. This algorithm computes the

error between the training data and the neural network output and uses the error to

adjust the rules’ weights. The experimental results demonstrated that a neuro-fuzzy

approach gives higher prediction accuracy when training data and testing data are

compared. Finally, the proposed approach allowed for overcoming the problem of

110

using preset membership functions reported by the authors and by [Brennan and

Martin, 2006].

Figure 4.6: A general architecture of the neuro-fuzzy system for proximity modeling

proposed by [Yao and Thill, 2007]

4.1.3 Discussion

Several metric-based approaches used advanced qualitative techniques to represent

and reason about spatial proximity. For example, using fuzzy sets allows for a smooth

mapping from quantitative to qualitative distances using fuzzy quantifiers close to

natural language, thanks to the use of so-called linguistic variables [Zadeh, 1965].

Later, it has been shown that metric distance is not necessarily the only factor that

influences the human cognitive apprehension of spatial proximity.

A suitable model of spatial proximity should acknowledge other factors such as

contextual information as claimed by [Brennan and Martin, 2012]. However, their

work suffers from two main shortcomings: first it only allows for reasoning about

nearness. There is no clear definition of other proximity relations such as “far” and

“close to”. Therefore, it is difficult to relate their definition of impact area with

different proximity relations used by humans and by GIS solutions. Second, the

definition of impact area seems to be particularly domain-specific. Examples

111

provided by the authors do not clearly explain how and from where contextual

information is obtained and how contextual information can influence the spatial

proximity. Therefore, implementing this work in a generic GIS is quite challenging.

[Yao and Thill, 2007] proposed an innovative solution to reason about proximity by

using contextual information to handle the cognitive aspect and by using neuro-fuzzy

techniques to handle the qualitative aspect of spatial proximity. Although Yao and

Thill’s approach is quite suitable for qualitative spatial reasoning, it suffers from

several drawbacks. The neuro-fuzzy system used for the implementation of their

approach for their experiments is ANFIS which is an approximation system [Nauck

and Kruse, 1999]. ANFIS’ output is a crisp value, which does not help in

“classifying” the spatial proximity. Usually, given a number of context factors, a

user/agent tries to answer the following question: what is the proximity relation

between object A and object B? Possible answers are very near, near, far or very far.

We believe that qualitative proximity is a classification problem rather than an

approximation problem. Furthermore, Yao and Thill proposed a general architecture

to implement their solution and conducted experiments to prove its relevance.

However, their solution was not integrated in a GIS.

In the next sections, we propose a new framework to reason about qualitative

proximity with the following features: first, a neuro-fuzzy classifier (NFC) is used

instead of ANFIS in order to handle the uncertainty aspect of proximity. Second, we

integrate the proposed solution in a GIS to enhance its qualitative proximity

reasoning capabilities. Figure 4.7 illustrates the general architecture of our approach.

A user specifies contextual information and fuzzy rules to generate training data. This

dataset is used by the NFC to train the fuzzy inference system and to generate

qualitative proximity quantifiers that will be used in the qualitative proximity tool.

An overview of the NFC structure used in our approach is presented in the following

section.

112

Figure 4.7: An overview of the proposed approach

4.2 The Neurofuzzy Classifier Structure

The structure of a neuro-fuzzy system is similar to a multilayer neural network. In

general, a neuro-fuzzy system has one input layer, one output layer, and three hidden

layers [Negnevitsky, 2011]. In neuro-fuzzy classification systems, the feature space is

partitioned into multiple fuzzy subspaces which are managed by fuzzy rules. Rules

are represented by a network structure and their parameters (weights) are optimized

using learning techniques.

A fuzzy classification rule �; establishes the relation between the input feature

spaces and classes (output). It is defined as follows:

�C: �	�Q<	N	(C<	��)……		�QW 	N	(CW	��)	�QA	N	(CA	�.��	�*�#*�	:	�NN	N	/X

Where �QWis the 3th input variable of the cth sample; (CWdenotes the fuzzy set of the 3th
feature in the th rule; and /Y represents the Yth label of class. (CW is associated with a

suitable membership function [Sun and Jang 1993]. Using fuzzy rules allows for

splitting the feature space into multiple fuzzy subspaces. These rules can be

represented by a neural network. Figure 4.8 depicts an example of a space partition of

two inputs x1 and x2. Each input (feature) has three fuzzy sets described by linguistic

variables. Hence, for this example there are nine fuzzy rules overall.

113

Figure 4.8: Partition of the feature space [Sun and Jang, 1993]

A neuro-fuzzy classifier is a multilayer network with six layers. The first layer is the

input layer (also called “features”). The last layer is the output layer (also called

“classes”). The other layers are defined as follows.

Membership layer: each input is identified using fuzzy sets and each fuzzy set is

associated with a linguistic variable. Fuzzy sets are represented by membership

functions. According to [Cetişli and Barkana, 2010] bell-shaped functions are the

most used functions in neuro-fuzzy classifiers since these functions have fewer

parameters and smoother partial derivatives. Such a function is used for this layer and

is defined as follows:

FCWZ�QW[= exp	(− Z�QW − :CW[
>

2_>CW)										`Cetişli	and	Barkana, 2010l		

Where FCWZ�QW[is the membership grade of th rule and 3th feature; �QW represents the

cth sample and 3th feature; :3 and _3 are the center and the width of bell shaped

function, respectively. The membership functions of input variables x1 and x2 of

Figure 4.8 are examples of bell shaped functions.

114

Fuzzification layer: Each node in this layer is a fuzzy rule. The antecedent of the

fuzzy rule is a fuzzy set. The output is a singleton membership function. The fuzzy

rule premises become weights for the rule neurons of this layer [Gliwa and Birsky,

2013]. The conclusion of a rule is a connection from the rule neuron to the next layer.

Each node in this layer has an activation function which corresponds to the degree of

fulfillment of the fuzzy rule for the �QW sample. The activation function �CQ of a fuzzy

rule is defined as follows:

�CQ = ∏ FCWZ�QW[AWn< 	 `Gliwa	and	Birsky, 2013l

Where n is the total number of features.

Defuzzification layer: In this layer, according to its weight each rule affects each

class. The more a rule influences a class, the bigger is the weight between that rule

output and the specific class. Otherwise, the class’s weights are small. The weighted

output for a given sample x that belongs to a class k is computed as follows:

sQX =	t�CQuCX
v

Cn<
	`Do	and	Chen, 2013l

Where uY denotes the degree of belonging to the Yth class that is controlled by the th
rule and Z represents the number of rules [Do and Chen, 2013].

Normalization layer: Depending on the defuzzification method, the weighted sum

may generate a value greater than 1. Therefore, this sum should be normalized using

the following formula:

-QX = z{|
∑ z{~�~��

 [Do and Chen, 2013]

115

Where -QX is the normalized value of the cth sample that belongs to the Yth class and

� is the number of classes.

Finally, the output class Cc is the maximum of normalized values given by the

normalization layer:

/Q = ���Xn<,>,…..,X�-QX�	`Do	and	Chen, 2013l

Figure 4.9 depicts a neurofuzzy classifier network and the different layers mentioned

above. This network has two input features namely X1 and X2 and three output

classes namely C1, C2 and C3.

Figure 4.9:A neurofuzzy classifier, adapted from [Cetişli and Barkana, 2010]

116

4.3 Implementation Details

After briefly presenting the structure of a neuro-fuzzy classifier in the previous

section, we present our approach to build a qualitative spatial proximity

representation and the associated reasoning tool. The creation of this tool was

achieved in several steps that are detailed in the next subsections.

4.3.1 Training the Neurofuzzy Classifier

One of the advantages of using a neuro-fuzzy classifier is that membership functions

and rules can be learned from data sets. If (v×A and /v×A are the sigma and the

center values of the bell membership function; and �v×� is the weight matrix of

connections from the fuzzification layer to the defuzzification layer; then � =
{	(v×A, /v×A, �v×�} is the set of parameters that will be optimized by the learning

algorithm.

Several training algorithms have been proposed for neuro-fuzzy classifiers [Do and

Chen, 2013]. However, the scale conjugate gradient (SCG) is one of the most

efficient algorithms with less errors and high efficiency. This algorithm was enhanced

and implemented in a software package by [Cetişli and Barkana, 2010]. We use this

algorithm to train our data set. A detailed overview of the training algorithm can be

found in [Cetişli and Barkana, 2010].

We adapted a Matlab implementation of the NFC which has been developed by

[Cetişli and Barkana, 2010]. This program first trains the NFC; then it generates the

fuzzy inference system parameters that are used by the qualitative proximity

reasoning engine. In this section, we present how data sets were prepared to train the

NFC and we present the obtained results.

117

We use Yao and Thill’s definition of contextual information to select the NFC inputs.

The contextual information is objective when variables are selected independently of

the person who perceives the distance. The contextual information is subjective when

variables are dependent on the person who perceives the distance. We use Euclidian

distance as the objective contextual information. The transportation mean is one of

the most popular contextual information used by humans to qualify proximity. Since

a dataset was generated from user’s experience about Quebec City, we realized that

cars are the main transportation mean in this city. Therefore, we decided to use

another subjective contextual information instead. In our approach we used road

traffic and user’s familiarity with the area as subjective contextual information. Four

classes are used for the proximity output (close, medium, far and very far). It is worth

mentioning that Euclidian distance is used for simplification purposes. For other

experiments, a distance between two geographic features can be computed using a

path planning software or using various GIS functions available either in web-based

or desktop applications. Table 4-2 and Table 4-3 detail the chosen NFC inputs and

outputs.

 Variable name Fuzzy sets Range

Euclidian distance Close, medium, far 0-500 KM

Traffic Light, medium, heavy 0-1

User familiarity with the site Week, average, good 0-1

Table 4-2: NFC features (inputs)

Classes Value

Close 1

Medium 2

Far 3

Very Far 4

Table 4-3: NFC Classes (outputs)

118

To train the NFC, the data set shall be separated into two sub-sets. The first set is

used to train the NFC and the second one is used to test the generated NFC

parameters. We conducted our experiments with the help of a surveyed population

based in Quebec City. Hence, a data set with 300 samples has been prepared using

locations in Quebec City. 150 samples are used to train the NFC and 150 samples are

used to test the trained NFC. To generate the different classes (outputs) in the sample

data set, the user defined a fuzzy inference system (FIS) with 13 rules taking

advantage of his experience and familiarity with the spatial environment. An example

of these rules is displayed in Figure 4.10.

Figure 4.10: Fuzzy rules used to prepare the data set

The data set has been created using a specific area which is delimited using a square.

All distances are computed between geographic objects that belong to this particular

area. Therefore, the training results will be valid only for this specific area. If the

selected area changes, the NFC training must be repeated for the new area. Each

119

feature is associated with three fuzzy sets which are represented by a bell shaped

membership function. The FIS uses a Sugeno-type system [Nauck and Kruse, 1999]

to calculate the weighted sum of the fuzzy rules output for each sample vector. The

FIS gives a crisp output with a float number which is not suitable to make a decision

about which class the proximity belongs to. Therefore, we apply a “ceil function4” to

extract from the float number the related class. An algorithm to automate data

generation is described by the pseudo-code in Table 4-4.

Algorithm 1: NFC dataset preparation

Generate Data Set (V, O)

Variables:

V: vector of inputs

O: output of the FIS

1. Get all the geographic objects inside the training area.

2. Compute the Euclidian distance between the objects.

3. For each distance between two geographic objects,

4. Assign two contextual information

5. Save in the Sample Data Set

6. End For

7. Load Sample Data

8. For each vector feature from the V= ��Q<�Q>�Q?
� in the data set,

9. Calculate the output of the fuzzy rules.

10. Calculate the FIS output of the specific vector V

11. The output class = Ceil the FIS output.

12. End For

Table 4-4: NFC data set training preparation

4 Ceil is a function defined in Matlab which is used to round an element to the nearest integer greater

than or equal to that element

120

4.3.2 Results

Now that our data set is ready, we use it to train the NFC and to collect the outputs.

The root mean square error (RMSE) is used to evaluate the error between the NFC

output and the testing output. It converges after 55 epochs5 and remains stable at

0.229963 (Figure 4.11). This means that 77% of the testing inputs have been

successfully classified by the NFC. Note that this score is presented here for

illustration purposes and that it varies from one data set to another. In other

experiments, higher scores were obtained (around 90%). A user may use other data

sets and run additional iterations until she reaches a satisfying score. The classifier

generated a new set of features with new fuzzy sets and new membership functions.

For example, the distance feature in the data set used to train the algorithm had three

fuzzy sets: short, medium and far. But, the new distance feature has four fuzzy sets

named as follows: close, average, far and very far. Indeed, these names have been

chosen by an expert who intuitively associates the values of linguistic variables with

different features proposed by the NFC.

The same logic applies to other features (road traffic and user’s familiarity with the

region). Figures 4.12, 4.13, 4.14, 4.15, 4.16 and 4.17 illustrate the fuzzy sets of each

input feature as proposed by the user to generate the data set and the fuzzy sets of

each input feature as classified by the NFC. These outputs are only valid for the

geographic area in which the data set has been defined. If the area changes, these

membership functions are no longer valid and the system should be trained again.

5 The term epoch is used by the NFC research community to express the term iteration.

121

Figure 4.11: NFC training Performance for 3 features and 4 classes

Figure 4.12: The distance feature as defined by user to train the NFC

Figure 4.13: The distance feature after the NFC training

0 10 20 30 40 50 60 70 80 90 100
0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

Performance evaluation

Epochs

R
M

S
E

 v
a
lu

e

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

0.2

0.4

0.6

0.8

1

Distance

D
e
g
re

e
 o

f
m

e
m

b
e
rs

h
ip

Close Medium Far

0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

0.2

0.4

0.6

0.8

1

Distance

D
e
g

re
e
 o

f
m

e
m

b
e
rs

h
ip

Close Average FarVeryFarFar Very Far

122

Figure 4.14: The road traffic feature as defined by user to train the NFC

Figure 4.15: The road traffic feature after the NFC training

Figure 4.16: User’s familiarity with area feature as defined by user to train the NFC

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

RoadTraffic

D
e

g
re

e
 o

f
m

e
m

b
e

rs
h

ip

Light Medium Heavy

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0

0.2

0.4

0.6

0.8

1

Traffic

D
e
g
re

e
 o

f
m

e
m

b
e
rs

h
ip

VeryLight Light Medium Heavy

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

Familiarity

D
e
g
re

e
 o

f
m

e
m

b
e
rs

h
ip

Weak Average Good

123

Figure 4.17: User’s familiarity with area feature after the NFC training

[Yao and Thill, 2007] used ANFIS to generate spatial proximtiy quantifiers from a

dataset. As we mentionned in Section 4.1.3, ANFIS is an approximation function. We

used instead a neuro-fuzzy classifier to generate our spatial proximity quantifiers.

Furthermore, [Yao and Thill, 200] did not integrate their solution in a GIS. Let us

also mention that several works compared ANFIS and NFC and proved that ANFIS is

not suitable for classification problems [Cetişli and Barkana, 2010]. For this reason,

comparing our results to Yao and Thill’s results [Yao and Thill, 2007] becomes non

relevant since we are not comparing two classification approaches. In the next

section, we present the qualitative proximity software that that we developed to

integrate our neuro-fuzzy classifier solution in a GIS using a Fuzzy Inference System

(FIS).

4.4 A Qualitative Proximity Tool: Architecture and

Implementation

The main goal of using NFC is to generate membership functions and fuzzy rules for

the fuzzy inference system based on the data sets and initial fuzzy rules specified by

an expert. We developed a software tool to integrate the NFC output in a qualitative

proximity reasoning tool which has been integrated in a GIS.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0

0.2

0.4

0.6

0.8

1

User
F
amiliarity

D
e
g
re

e
 o

f
m

e
m

b
e
rs

h
ip

VeryGoodGoodAverageWeak

124

The general architecture of our tool is depicted in Figure 4.18. The NFC is a Matlab-

based program which uses the data set to generate fuzzy membership functions and

fuzzy rules. These outputs are used by a fuzzy inference system (FIS) which is

managed by the jFuzzyLogic module. jFuzzyLogic is an open source fuzzy logic

library implementing industry standards to simplify the development of fuzzy

systems. It is a java package which uses FIS files to implement fuzzy rules. The Java

Topology Suite (JTS) is a software package which is used to handle the spatial

calculus of geographic features which are stored in the database (using PostGIS). The

system output of our framework is a qualitative spatial relation represented by a

linguistic variable which can be used by our pattern definition presented in Chapter 3.

Figure 4.18: Architecture of our qualitative proximity tool

The qualitative proximity tool is designed to help users qualify spatial proximity

using various factors and not only spatial distance. A user can train the tool using her

experience and by specifying proximity parameters in a data set. If training outputs

are satisfying, a user can use the generated membership functions to build an

inference engine which determines the proximity.

125

Our proximity software allows for determining proximity in an automated way. This

makes our approach original when it is compared to Yao and Thill’s work [Yao and

Thill, 2007] who limited their approach to a set of experiments based on Matlab and

did not integrate their approach in a GIS.

4.5 Conclusion

Qualitative reasoning about spatial proximity is not limited to metric distances. Other

factors can influence the user’s perception of the proximity relation between two

locations. A human being does not need to know the exact metric values of distances

in his daily’s life, which makes proximity relations uncertain and fuzzy. In this

chapter, we considered these aspects in designing a solution for qualitative spatial

proximity reasoning tool. Such a solution is integrated in a GIS and can be used in

various application domains. The main contribution of our work is twofold. First,

while [Yao and Thill, 2007] used ANFIS, we used a neuro-fuzzy classifier to train

our system since determining proximity relations can be thought of as a classification

problem. Second, we developed a software tool that integrates our solution in an

existing GIS. This offers to users an automated tool that enables them to determine

spatial proximity whereas [Yao and Thill, 2007] only applied their approach to a

limited number of experiments.

Some improvements of our solution remain to be made. For example, it would be

interesting to enhance the human machine interaction model so that a user could

easily pick up locations and select contextual information and get the proximity

relation. Moreover, the contextual information is currently specified from a simplified

database. In the future, it would be interesting to get such information from a

knowledge base. The next chapter will detail how this tool can be used in a

spatiotemporal pattern detection framework to qualify the relative distance between

pattern components. Finally, it is worth mentioning that an early version of this

chapter has been published in the ISPRS Conference held in Toronto in 2014

[Barouni and Moulin, 2014b]. An extended version of this paper appeared in a special

126

issue on Advances in Geospatial Statistical Modeling, Analysis and Data Mining of

the Canadian Institute of Geomatics [Barouni and Moulin, 2015a].

127

 Chapter 5

A Framework for Managing Qualitative

Spatiotemporal Patterns

Introduction

In this chapter, we present a framework that we developed to manage qualitative

spatiotemporal patterns. This framework is designed for large scale monitoring

systems. Actually, a significant effort has been made in recent years to propose a new

generation of data acquisition systems with reliable and efficient communication

capabilities. These systems generate a huge amount of real-time data in various

formats. End-users are very interested in finding data configurations based on their

expertise and attempt to leverage the large amounts of data generated by acquisition

systems. Several software tools have been proposed to help users achieve such goals.

However, the available commercial solutions are mostly based on relational databases

and use SQL queries to implement such functionalities. These systems do not allow

for real-time detection of situations of interest (also called “patterns” in this domain)

due to the weak expressiveness of SQL queries to represent situations of interest. We

present a novel approach which extends Complex Event Processing to the real-time

detection of situations of interest based on events, states and spatial objects. We

leverage the rich semantics of the qualitative pattern representation model that we

presented in Chapter 3 as well as the powerful proximity analysis tool introduced in

Chapter 4 to present a complete solution to qualitatively represent patterns and to

detect their instances from the event cloud under severe time constraints. Thanks to

128

our approach, a user will be able to react to detected patterns instead of trying to

identify (or “to mine”) patterns in databases as it is proposed in currently available

approaches.

This chapter is organized as follows. Section 5.1 presents the motivations of this

work as well as an overview of the proposed approach. Section 5.2 presents the

pattern abstraction layer of the proposed solution. Section 5.3 presents the data

processing and pattern detection layer and a set of algorithms for pattern conversion.

Section 5.4 presents a spatial extension of the CEP engine using fuzzy quantifiers.

Section 5.5 presents a pattern management tool and the software architecture of our

framework. Section 5.6 presents a case study that illustrates the different

characteristics of the proposed framework. Section 5.7 concludes the chapter.

5.1 Motivations

The spatiotemporal pattern (STP) definition introduced in Chapter 3 allows for

representing patterns using extended Conceptual Graphs. This knowledge

representation provides a smooth mapping from natural language to computer

processing and allows for building knowledge bases which can enable agents to

reason about the detected pattern instances.

One of the goals of this thesis is to apply the STP definitions in the domain of large

size acquisition systems. These systems have two types of data sources (also called

views according to [Haddad, 2009]): static data sources and dynamic data sources.

Static data can be available through GIS and knowledge bases describing the

different states of the system’s components. Dynamic data is collected from

geographically distributed sources (such as sensors) which generate data in various

formats in real time. Generally, the sampling rate in acquisition systems is very high

and the reaction to data change must meet severe timing constraints [Hong et al,

2013]. A human being or a software agent leverages their field experience in a

129

specific domain to define situations of interest that occur in the environment in which

they operate. Using our STP formalism, such situations can be expressed as

qualitative patterns and can use contextual information. First Order Logic can be used

to reason about these patterns. Nevertheless, the detection of pattern instances from

large acquisition systems has not been addressed in the former chapters of this thesis.

A short case study has been proposed in Chapter 3 and raised some practical

questions about how pattern instances can be detected from data provided by the

event cloud. In this chapter, we address these questions and present a framework for

spatiotemporal pattern representation, detection and reasoning which can be used by

human operators as well as software agents to make decisions. An overview of the

proposed approach is depicted in Figure 5.1 which emphasizes the global workflow

of our framework.

Figure 5.1: Overview of the different components of the proposed framework

130

The proposed approach is automated and was developed in two main stages when we

designed and implemented our pattern management framework. First, the semantic

representation of STPs is handled by the Pattern Abstraction Module. These patterns

are represented using our extended CG formalism (see Chapter 3) to facilitate the

qualitative representation of different pattern components. Second, since this

formalism does not allow for the detection of pattern instances from large data

acquisition systems, this detection is handled by the Pattern Detection and Data

Processing Module which facilitates the integration of our framework to current

acquisition systems in different domains. Finally, reasoning about patterns is another

aspect addressed by the proposed framework. Thanks to their expression in CGs,

pattern instances can be stored in a knowledge base. They can be processed by

software agents for decision making purposes. The next sections of this chapter detail

each stage, present the corresponding implemented software modules and provide

additional justifications for our technological choices.

5.2 Pattern Abstraction Module

The Pattern Abstraction Module is defined to handle the qualitative representation of

spatiotemporal patterns. We use the formalism that we introduced in Chapter 3 to

represent STPs. A user can represent patterns using our extended CG formalism

which offers powerful mapping capabilities from natural language to computer

language and vice versa. The pattern specifications are edited using the Amine

Platform [Kabbaj, 2006] and stored in a knowledge base. The user defines a

concept/relation lattice suitable to her application domain. Figure 5.2 illustrates the

architecture of our pattern abstraction module.

Pattern specifications are input by the user using the Amine GUI which allows for

adding new concepts in the concept type lattice. Several elements are involved in the

spatiotemporal pattern definition such as events, states, geographic objects, spatial

relations and temporal relations. These elements can be represented in a knowledge

base using an abstraction level which is handled by the Concept Type Lattice (CTL).

131

Hence, each component involved in the STP definition can be specialized or

generalized. Consequently, an STP type can be generalized or specialized. The

pattern specifications are stored in the Pattern Repository. Figure 5.3 displays a

portion of the type lattice that organizes some fundamental concepts and different

patterns defined in the knowledge base. Figure 5.4 illustrates a simple pattern edited

using the Amine Knowledge Base Editor module.

Figure 5.2: Architecture of the pattern specification module

Figure 5.3: A concept type lattice using the Amine Platform

132

Figure 5.4: A simple pattern represented using the Amine Platform

Now that situations of interest are defined using patterns, we need to address the issue

of pattern detection from large applications and introduce our Data Processing and

Pattern Detection Module in the next section.

5.3 Data Processing and Pattern Detection Module

One of the challenges of large scale systems is the management (querying, storage

and display) of large volumes of data in a short time period: this is a practical issue

that falls in the field of big data management which has been gaining an increasing

popularity in recent years. Such systems usually collect events generated by a large

number of sensors deployed in the field. Ideally, these events should be correlated

and linked to other components from the environment to generate pattern instances.

In Chapter 3, we addressed the issue of pattern representation using qualitative

techniques and the issue of representing dynamic spatiotemporal phenomena.

However, the issue of detecting pattern instances from real world data was not

tackled. In this section, we introduce Complex Event Processing as an effective way

to manage the stream of events. We propose to explore this technology and see how it

can be used in conjunction with our pattern processing module to detect pattern

instances.

133

Pattern detection in real-time acquisition systems is an issue that has been addressed

in the literature by several research communities. Some of these works are based on

database management systems (DBMS) in which data is stored and indexed before

processing. When a user needs to find a pattern instance, he needs to query the

database. This cannot comply with several use cases in monitoring applications where

patterns should be detected as soon as sensors report observations. Furthermore, the

concept of event is not clearly defined in DBMS and the pattern detection mechanism

is usually complex, time and labor consuming. The notion of Event Driven

Architecture (EDA) has been introduced to overcome such limitations in DBMS.

EDA is a software architecture which manages the creation, processing and

monitoring of events. After several years of work, the research community proposed

a set of EDA approaches to overcome the limitations of classical DBMS in terms of

pattern detection and management. According to [Cugola and Margara, 2012] these

solutions can be classified in two families: Data Stream Processing Models (DSPM),

and Complex Event Processing Models (CEP). DSPMs are a special version of

databases. They are designed to deal with transient data which is continuously

updated, while traditional databases are more suitable to deal with persistent data.

Therefore, while a DBMS returns a complete answer to a query than runs just once, a

DSPM runs continuous queries and returns updated results when new data arrives

from various sources. Although DBMSs are different from DSPMs, both kids of

systems process the incoming data through a sequence of transformations based on

SQL operators such as aggregation and join.

Complex Event Processing (CEP) has been introduced in recent years to overcome

the limitations of DSPM and DBMS. CEP systems correlate simple events temporally

and/or spatially using advanced temporal and spatial operators. This kind of

correlations allows for inferring more meaningful “complex” events [Helmer et al,

2010]. CEP systems increase the expressive power of their query language to

consider complex patterns of events that involve the occurrence of multiple related

events [Cugola and Margara, 2012].

134

Basically, the main difference between Complex Event Processing and relational

databases relies on the way events are defined and processed. Relational databases

and the Standard Query Language (SQL) are designed to manage static data. They

can support complex queries. They are optimized for disk access on data servers

where data are stored. A query is used to retrieve data from a database. If a system

needs some data 10 times per second it must trigger the same query 10 times per

second. This does not scale up well to hundreds or thousands of queries per second!

[Esper, 2015]. Other solutions have been proposed to overcome these performance

limitations such as using database triggers which can be activated in response to

database update events. However, database triggers tend to be slow and often cannot

easily perform complex condition checking and perform application functionalities to

appropriately react to an incoming event [Esper, 2015]. As an alternative, a CEP can

be thought of as a ‘database turned upside-down’. The CEP engine allows

applications to store queries, channel the data through predefined streams, detect

patterns and store results in databases. Therefore, the CEP engine gives an answer in

real-time when pattern conditions are satisfied. The execution model is thus

continuous rather than being only reactive to query submission.

A typical CEP architecture is depicted in Figure 5.5. Events are generated by so-

called event producers (input). Events are time-stamped and have some attributes

which are part of the event definition. Event producers vary from one application

domain to another. A given CEP system can deal with several event producers which

can be heterogeneous (i.e. specified in different ways). The CEP engine uses temporal

and logical operators to correlate events and then sends them to event consumers

(output). Event consumers can be humans, software agents, other intelligent

applications or storage systems. They receive events communicated by the event

processing engine and react to these events. The reaction might include the generation

of new events, so that consumers can be event producers as well.

135

Figure 5.5: A typical CEP architecture [Helmer et al, 2010]

The Event Processing Engine receives events from different event channels. It is

based on the Event Condition Action paradigm (ECA) which consists in triggering

actions when appropriate conditions are satisfied. Possible actions can be “sending

the events to the event consumer” or “generating a set of new events”. The processing

of events can be carried out on separate events or on a combination of events using

temporal, spatial, causal operators and other user-defined functions. The correlation

of events can be expressed using a specific language that is used to generate the so-

called patterns. In a CEP, Event Development Tools are used to define events, to

define rules (patterns), to program user-defined functions for event correlation and to

set parameters for the overall system. Event Management Tools are used to fine-tune

the system, to collect system outputs and to monitor the system’s performance.

An interesting review of CEP frameworks can be found in [Cugola and Margara,

2012]. For our framework, we selected the ESPER software which is a lightweight

CEP system offering an Event Pattern Language (EPL for short) to represent patterns

using an SQL-like language. EPL queries are created and stored in the pattern base

and publish results to so called listeners when events are received by the engine or

when timer events occur and match the criteria specified in the query.

Events can be consumed according to different consumption policies that can be

configured in the CEP engine. For example, an event is consumed when a specific

pattern is detected and then it is removed from the event stream. But, if certain events

136

are present in several pattern definitions, it is possible to keep them in the event

stream so that all related patterns will be detected. The suitable consumption strategy

can vary from one application to another.

5.3.1 Data Processing

In our framework, we implemented the data processing module in three steps.

1. Step 1: Connect to data sources. Data sources are usually sensors which

report dynamic variations. The connection to these sensors can be point to

point or through an aggregator (i.e. a data concentrator). The data format

varies from one domain to another. For example, in the power industry,

events are reported using industrial protocols. In the telecommunication

industry, people use real time database systems. Each sensor is defined by

a set of attributes. Figure 5.6 depicts a Fault Current Indicator Sensor used

in outage management systems as introduced in Chapter 3. Note the

presence of spatial attributes in the sensor characteristics that allow for

locating these sensors in a spatial database.

2. Step 2: Define the event types that can be generated by each sensor type in

the CEP. Now that the CEP is connected to data sources, it is important to

extract relevant data from the incoming events. For each sensor type, we

need to select a specific number of event types and to define their

corresponding event classes. Figure 5.7 depicts an example of events

generated by a Fault Current Indicator Sensor used in the power

distribution industry to detect outages and to measure the status of power

lines. These events are collected by a data acquisition system through a

cellular link using an industrial communication protocol. Figure 5.8

depicts the class defining an event in ESPER which will be used by the

engine to collect events from the data acquisition system. This structure

can vary from one event type to another and its attributes can be different

from one application to another.

137

Figure 5.6: An example of sensor definition

Figure 5.7: A sample of events generated by a Fault Current Indicator sensor

Figure 5.8: An example of a class for event definition in ESPER

138

3. Step 3: Configure the ESPER engine. The CEP requires a specific set of

parameters to be loaded at runtime. For example, our CEP runtime system

loads the event definitions, a set of user-defined functions, the data source

connection parameters and the pattern listeners. For each pattern type, a

pattern listener is defined to process the detected patterns and perform

actions. We will detail the notion of pattern listener in a forthcoming

section.

Since ESPER uses the Event Pattern Language (EPL) as a language to represent

patterns, we developed a set of algorithms to convert abstract pattern definitions from

our Conceptual Graph formalism to EPL. These algorithms are presented in the next

section.

5.3.2 Automated Pattern Conversion from Conceptual Graphs to

EPL

Pattern specifications are represented using the Pattern Abstraction Module. They

need to be represented in the EPL language to allow the ESPER engine to query data

from data sources (either static or dynamic) and to detect pattern instances. The

detected pattern instances are stored in text files. Figure 5.9 gives a description of our

Pattern detection and data processing module.

Figure 5.9: Description of the pattern detection module

139

We used the Java programming language and the Eclipse development tool to

implement the algorithms which convert the simple and complex patterns introduced

in Chapter 3 to an enriched version of Event Pattern Language (EPL). Since EPL is

SQL-based, the proposed algorithms convert pattern definitions from Conceptual

Graphs to enriched SQL-like statements.

5.3.2.1 Simple Pattern Conversion Algorithm

Our pattern conversion algorithm shall consider two aspects. First, it needs to find the

event in the simple pattern and its relations to spatial and/or temporal attributes.

Second, if the event is related to states, the algorithm needs to find the temporal

relations between the event and the states. We also use the ESPER user-defined

functions to represent custom temporal relations between events and states as well as

other relation types such as spatial relations. User-defined functions are custom

functions which are implemented using the Java programming language. They can be

used in the EPL statement and can be called by the ESPER runtime engine. Table 5-1

summarizes the pseudo code of our conversion algorithm for simple patterns.

Algorithm 1: Simple Pattern Conversion SimplePatternFinder(KB: input)
Variables

RelationType ///Can be temporal or spatial relation.
SpatialObject///An abstraction object from the environment with spatial attributes.
TemporalReference. // A reference on the time axis. Can be a semantic reference or a
numerical data.
WhereClause. //The where clause of the EPL statement
States //List of states related to a given Event
KB //The Knowledge Base //
ListPatterns //List of simple patterns
i: counter. Number of generated EPL statements.
Output

EPLStatement: Array of Strings. //Simple Patterns in EPL
Begin

1. Initialize all the variables ().
2. Load all the concept type lattices
3. ListPatterns � Get all the simple patterns from the KB
4. For each pattern in ListPatterns

140

 5. Event�Get the Concept type Event
6. Relations�Get_the_outcome6_relations_(Event)
7. For each relation in Relations
8. If the relation type is spatial relation Then
9. SpatialObject � Get the spatial object type
10. WhereClause � Relationtype(Event, SpatialObject)
11. End If
12. If the relation type is temporal relation Then
13. TemporalReference � Get the temporal attribute
14. WhereClause � Relationtype(Event, TemporalReference)
15. End If
16. End For
17. States�GetStates(Event)
18. TempRel�GetTemporalRelations(Event)
19.

EPLStatement[i]�CreateEPLStatmt(Event,States,WhereClause,TempRel)
20. i=i+1
21. End For

End

Table 5-1: An example of simple pattern conversion algorithm

Basically, the above algorithm allows for filling a generic EPL statement with

information extracted from the CG representation of an STP to build the enriched

EPL pattern representation that we propose. For example, one of the generic EPL

statements for a simple pattern can take the form illustrated by the code below. This

simple pattern represents a qualified event with a temporal reference using a temporal

relation. The second statement gives an example where an event is also related to a

state using the temporal relation “beforeEvent”. This allows for representing dynamic

situations as introduced in our pattern representation model (Chapter 3).

6 An outcome relation is a relation which originates from a concept and relates it to another one.

141

{
_sqlstatement="Select "+eventType+" where " + eventType+ ".time is "+

temporalRelation +" "+temporalReference ;

}

{
_sqlstatement="Select * where " + eventType+ ".time is "+ temporalRelation

+" "+temporalReference" and " beforeEvent(eventType,stateType);

}

Figure 5.10 illustrates some output examples of the proposed algorithm. The

algorithm starts by loading all pattern definitions expressed in conceptual graphs

from the knowledge base populated using the pattern abstraction module. Then, it

displays each simple pattern expression in a CG linear form followed by the enriched

EPL statement (using the EPL language). Note the presence of some user-defined

functions near and far from in the EPL statement. These user-defined functions will

be discussed in detail in a forthcoming subsection.

Figure 5.10: Examples of simple patterns in CG and EPL formats

CG linear specification

EPL extended

specification

142

5.3.2.2 Complex Pattern Conversion Algorithm

Now that we have a simple pattern algorithm that allows for mapping simple pattern

definitions (in our CG formalism) to our enriched EPL statements, we propose in this

subsection another algorithm to map complex patterns abstract definitions (expressed

in CG) to enriched EPL statements. In Chapter 3, a complex pattern is defined as a set

of simple patterns related by spatial and/or temporal relations. The basic idea of the

proposed algorithm is to identify in the CG specification all simple patterns included

in the complex pattern structure and to find relations between these simple patterns.

Table 5-2 describes the pseudo code of our conversion algorithm for complex

patterns.

Algorithm 2: Complex Pattern conversion

Variables

RelationType ///Can be temporal or spatial relation.
SpatialObject///An abstraction object from the environment with spatial attributes.
TemporalReference. // A reference on the time axis. Can be a semantic reference and
numerical data.
WhereClause. //The where clause of the EPL statement
SimplePatterns //List of simple patterns in a complex pattern
KB //The Knowledge Base //
ListPatterns //List of complex patterns
i: counter. Number of generated EPL statements.
Output

EPLStatement: Array of String. //Complex Patterns in EPL
Begin

1. Initialize all the variables ().
2. Load all the concept type lattices
3. ListPatterns � Get all the complex patterns from the KB
4. For each pattern in ListPatterns

 5. SimplePatterns � Get all the simple patterns(ListPatterns)
 6. For each s_pattern in SimplePatterns
 7. Event�Get the Concept type Event(s_pattern)
 8. Relations�Get all the spatial or temporal relations related to
Event.

9. For each s_relation in Relations
10. If the s_relation is Spatial_relation Then

143

11. SpatialObject � Get the spatial object type
12. WhereClause � Relationtype(Event, SpatialObject)
13. End If
14. If the relation type is Temporal_relation Then
15. TemporalReference � Get the temporal attribute
16. WhereClause � Relationtype(Event,

TemporalReference)
17. End If
18. End For
19. End For
20. EPLStatement[i] � CreateEPLStatement (SimplePatterns, WhereClause)
21. i=i+1
22. End For

End

Table 5-2: Complex pattern conversion algorithm

Figure 5.11 displays the output of the proposed algorithm for a given example of a

complex pattern. The algorithm starts by loading from the knowledge base all the

pattern definitions expressed using our extended CG formalism. Then, it searches for

all the relations between simple patterns. Finally, it calls the simple pattern

conversion algorithm which was presented in the previous subsection.

The program output depicted in Figure 5.11 shows the difference in terms of

expressiveness between a pattern expressed using our CG and the resulting EPL

representation. The CG formalism allows for representing patterns in a more human -

readable form whereas the EPL enriched statement is more efficient to represent these

patterns in a format interpretable by a CEP engine. If a complex pattern has a

complex data structure; the corresponding EPL statement can become really complex;

hence the practical interest of our automated conversion algorithm

144

Figure 5.11: An output example of the complex pattern conversion algorithm

In the Pattern Detection and Data Processing Module illustrated in Figure 5.9, the

User defined functions module is part of the ESPER engine. User defined functions

implement special functions that can be called in pattern definitions. In our

framework, these functions are used for two purposes:

1. A State Manager Module has been specified to access the static data

source and to retrieve or update the status of a component of the

environment which is involved in a spatiotemporal pattern definition.

2. In order to support qualitative spatial proximity relations, we implemented

a spatial extension of the ESPER framework using our qualitative spatial

tool presented in Chapter 4. We detail this extension in the next section.

Detection of simple

patterns

Expression of the complex pattern in enriched EPL

145

5.4 A Spatial Extension of the CEP Engine

Since the Pattern Detection Module deals with qualitative spatiotemporal patterns,

qualitative spatial relations used in pattern definitions need to be supported. The CEP

framework needs to be enhanced to support these qualitative spatial relations. We

propose in this section a spatial extension of a CEP engine to support spatial

proximity relations since they are the most used in practical applications. Our

software aims at generating automatically spatial proximity quantifiers using user

defined functions.

CEP systems have been originally designed and applied to the financial and economic

industries in order to predict market development and exchange rate trends. CEP

patterns emerge from relationships between event’s attributes such as time and cause

(causal relation between events) and aggregation (significance of an event’s activity

with respect to other events). Processing geospatial events requires the extension of

CEP to include location attributes [Resch et al, 2010]. Spatial relations are used to

combine geo-referenced events and to create spatiotemporal patterns.

In the literature, several works proposed spatial extensions to CEP engines. Among

them, we note SpatialRules [SpatialRules, 2013] which is a CEP engine for geospatial

data and is compliant with OGC geospatial specifications [OGC, 2015]. Event

processing is performed through rules that offer geospatial and temporal operators.

Geospatial operators are mainly topology or distance based. GCEP [GCEP, 2014] is

an extension of the ESPER CEP engine that allows for using OGC geospatial

functions in the rules used to filter events. The GCEP engine offers 12 topological

functions for ESPER for Java that conforms to Open Geospatial Consortium

standards. ruleCore CEP Server [ruleCore, 2013] is a CEP engine used for real-time

detection of complex event patterns. The system is scalable and can be used to

implement event driven architecture solutions: ruleCore enables defining rules using

location information. Location data can be collected from GPS or other sensors and

146

can be natively processed by ruleCore. The engine allows for stream creation based

on events coming from specific geographic areas.

Although the above solutions support the processing of spatiotemporal events, they

do not deal with uncertainty and vagueness and therefore they are not close enough to

users’ qualitative reasoning which is essentially based on natural language. Taking

advantages of Zadeh’s linguistic variables [Zadeh, 1965], we leverage our approach

presented in Chapter 4 to develop an extension of the ESPER CEP engine by

introducing fuzzy spatial relations between events to allow for the definition of

qualitative spatiotemporal patterns. To this end, we defined and implemented fuzzy

proximity relations between two events using our qualitative proximity reasoning

framework. A Neuro-Fuzzy Classifier is used to train the system using data sets

provided by users. Spatial relations can be automatically deduced from the qualitative

proximity tool. To integrate this tool to ESPER we implemented a number of user

defined functions. Examples of fuzzy spatial relations used in our framework are

“very near”, “near”, “far from” and “very far from”. Here is an example of a pattern

expressed in EPL and using a fuzzy spatial relation.

Select * from Pattern [Every Break] Where near(Break.location, Building) and

Before(Break, Normal)

Where near(Break.location, Building) is a user-defined function expressing a

qualitative spatial proximity relation between the event spatial attribute of type Break

and a spatial object of type Building. This function takes two spatial objects as

parameters and returns a Boolean value.

The automated generation of spatial relations can be summarized in the following

three steps, taking advantage of the software modules that we presented in Chapter 4:

1. Step 1: A user provides a training data set to the NFC according to his

experience.

147

2. Step 2: The NFC generates the fuzzy quantifiers and their related

membership functions.

3. Step 3: User-defined functions are used in ESPER to deduce spatial

relations using a Fuzzy Inference System (FIS).

Now that we have introduced all the elements of our pattern management framework,

we present in the next section the software architecture and the implementation

details. Then, we propose a case study to illustrate some application examples of this

framework.

5.5 Software Architecture and Implementation

The software architecture of our framework is depicted in Figure 5.12. In order to

train the NFC (see the NFC block in the figure), a dataset is provided by the user and

can be loaded from an Excel spreadsheet. The membership functions corresponding

to the spatial proximity quantifiers (subjective and objective) are generated by the

NFC which is implemented in Matlab. JFuzzyLogic is a JAVA package that we used

to implement a fuzzy inference system for qualitative spatial reasoning (Chapter 4).

The output of the fuzzy inference system is a fuzzy spatial relation which can be used

by the Amine platform in the pattern representation formalism and by the ESPER

engine for pattern matching operations. The Amine platform is also used to

implement reasoning mechanisms thanks to the Prolog+CG module (Agents block in

the figure). Pattern instances are stored in the pattern repository as well as the

contextual information. Software agents interact with these modules as part of their

reasoning model. The Pattern Detection and Data Processing module (black lined

block in the figure) loads the system configuration and initializes pattern listeners. A

pattern listener is a computer program which subscribes to a pattern definition and

takes actions on the detection of a pattern instance. In our framework, a specific

pattern listener is associated with each pattern definition loaded from the knowledge

base: it creates a new instance of the detected pattern and matches its different

148

components with detected data. The detected pattern instance is saved in a text file for

future use.

Figure 5.12: Architecture and software packages used in our framework

We developed a pattern management tool (blue block in the figure) to facilitate the

user’s interaction with our framework. A user can visualise and manage patterns. The

main window of the tool is depicted in Figure 5.13. A user can load the knowledge

base (KB) in Amine KB format (XML file) (1 in Figure 5.13). An algorithm fetches

all the patterns in the KB and lists them in a table (2 in Figure 5.13). To view a

pattern, the user can select one pattern entry and use the View Selected Pattern button

(3 in Figure 5.13). He can also view the pattern in EPL format by selecting the

Convert Selected Pattern button (4 in Figure 5.13). Using the Start Event Generator

button (5 in Figure 5.13), a user can generate a number of different types of events.

Each event is time-stamped and geo-referenced. Finally, the user can visualize the

generated events and the detected patterns instances from the Pattern Management

149

Tool window (7 in Figure 5.13). A user can load a Quantum GIS Lisboa project file

in order to configure the spatial environment (6 in Figure 5.13). He can also select a

dataset from an Excel spreadsheet in order to train the fuzzy inference system.

Finally, the user can view the resulting spatial proximity relations and their associated

membership functions.

Figure 5.13: The Pattern Management Tool

1 2

3
4

5

7 6

150

After presenting how patterns are managed by our framework, we present in the next

section a case study from the telecommunication industry to provide some examples

of using pattern instances and contextual information in agents’ decision models. We

also show some pattern configurations that may be defined by users to identify

typical situations of interest in their application domain.

5.6 Case Study

This case study is motivated by a typical application in the telecommunication

domain. In particular, we address the issue of asset management and monitoring.

Typically, A Remote Fiber Test System (RFTS) is a real time acquisition system

designed to monitor fiber optic networks [Ponchon and Champavere, 2011]. It is

widely used in the Telecommunication industry to optimize the Service Level

Agreement between service providers and consumers. It can also be used in the Oil &

Gas industry to monitor pipelines. In that case Optic Fibers can be deployed

throughout gas pipelines and the occurrence of a fiber fault event means that the

related pipeline is damaged.

5.6.1 Remote Fiber Test System

The RFTS is based on the Optical Time Domain Reflectometer (OTDR) technology

[Ponchon and Champavere, 2011]. OTDRs are commonly used to characterize the

loss and length of fibers as they go from initial manufacturing through to cabling,

warehousing while wound on a drum, installation and then splicing. OTDRs are also

commonly used for fault finding on installed systems. Figure 5.14 presents an

example of an OTDR acquisition and the different information that can be deduced

about a fiber optic link.

The RFTS is a distributed system where Remote Terminal Units (RTU) are

geographically deployed and continuously run to monitor the fiber status using

OTDRs. When a fiber fault occurs, it is detected by an RTU and reported to a central

151

server which maps the fault in a GIS. Figure 5.15 depicts the general structure of a

remote fiber test system.

Figure 5.14: OTDR Trace Information [Foa, 2015]

Figure 5.15: The general architecture of an RFTS

152

A user needs to evaluate the distance between the fault location and several locations

such as: crew location, location of critical sites where Service Level Agreements

(SLA) must be fully respected (such as bank, broadcasting channel building and

security cameras) and asset locations (splice point, transmission equipment and so

on). Hence, the notion of proximity is very important in such applications and plays a

key role in users’ decisions.

5.6.2 Background and Challenges

Basically, an OTDR is designed to calculate the total attenuation of a fiber link.

Attenuation can be affected by the total length of the fiber or by the presence of

splices and connectors. Mainly, the OTDR reports two types of events: fiber break

events and fiber degradation events. The fiber break event occurs when the fiber optic

link is cut or when a splice is damaged, or when a connector is disconnected. This

type of event can also occur when there are maintenance operations performed on the

link (known reasons, they are usually planned) or when there are damages on the

fiber caused by unplanned actions such as construction activities in the area. Current

commercial OTDRs are designed to support up to 128 optical ports. They are usually

installed at the central office or deployed at the outside plant. When a new fiber is

commissioned, the OTDR sends a laser signal on the fiber and saves the data

acquisition to become a trace reference7. The trace reference allows for characterizing

the fiber and keeps the information about the total fiber length, the number of

splices/connectors and their positions on the fiber; and the total fiber loss. The OTDR

starts to monitor the fiber according to a test cycle. This test cycle depends on the

number of fibers under test and the sampling period for each fiber.

When a fiber optic event is triggered by an OTDR, the RTU generates the event data

and sends an XML file using a secure connection (SFTP protocol for example) to the

main server. This file is parsed by a Fiber Optic Network modeling software to get

7 In fiber optic testing, a data acquisition is called « reference trace » when it is used by the system as a
basis to compare to new data acquisitions. Any variation relatively to the reference and which exceeds
a user-defined threshold will generate an alarm.

153

the fiber ID and the event distance and to locate the fault on the map. The event data

is also used to generate alarms and to notify end-users using different notification

channels such as display screens, emails and text messages.

As we mentioned earlier, SLA is one of the key performance indicators defined to

evaluate the quality of service provided to customers in the telecommunication world.

To optimize SLA, asset management teams use monitoring systems to guaranty the

reliability of their transmission systems. In case of a fiber failure, the asset

management team should promptly react to locate the fault and assign a crew to

repair the fiber. The monitoring system can also store data in a historical database and

make it available to experts for further analysis in order to setup preventive

maintenance mechanisms.

Since the main goal of using an RFTS is to help telecommunication operators

guarantee Service Level Agreements, it can be involved in the following tasks:

• Help to organize crew assignment to various work orders in the field and

prioritize the work orders according to their degree of emergency/criticality.

• Make network events data available to experts to conduct in depth analysis

and help in predefining patterns;

• Display the information about network failures in a fast and efficient way

using GIS mapping.

There are several systems in the industry which offer efficient solutions for data

acquisition and network modeling using advanced spatial modeling tools such as

[Exfo, 2014], [JDSU, 2014] and [NTest, 2014], to name a few. However, they suffer

from several drawbacks. For example, events are usually displayed separately to the

end-user. There is no correlation between these events and they are not linked to

previous fiber states. GIS systems are offered with an enriched semantic description

of the telecommunication assets as well as the surrounding objects such as buildings

and roads. However, the spatial information is only used for mapping purposes.

154

Events are located on the map and they are not qualified with regards to the

surrounding objects. Hence, this increases the user’s workload to analyze the data

provided by various data sources.

We propose to use our framework to overcome the above mentioned limitations.

Basically, our spatiotemporal pattern framework allows for managing the stream of

events generated by OTDRs and for making the necessary correlations between

different components of the environment to detect pattern instances. It also provides a

rule-based engine to implement some business rules defined by the user in order to

efficiently manage the crew assignment process.

5.6.3 Proposed Solution

We proposed an architecture to implement the agent reasoning module which is

illustrated by Figure 5.16. We define a Crew Manager agent which is responsible of

detecting urgent situations related to the fiber optic network and which manages crew

dispatching operations. The Crew Manager is a goal-based agent which uses pattern

instances detected by the Pattern Detection and Data Processing Module and

contextual information to make decisions and propose action plans to the human

operator. The inference engine (IE) is a computer program that takes pattern instances

from the pattern detection module and logically manipulates symbolic patterns

(expressed in CG) using First Order Predicate Calculus. We use the Amine

Prolog+CG language which is an object oriented and CG-based extension of Prolog.

It supports CG operations and allows for loading the pattern instances from the

knowledge base and uses rule-based functions. Human operators can use the IE

answers to make decisions and intervene on the environment. Notice that the Crew

Manager is also defined using a Prolog+CG program.

155

Figure 5.16: The Crew Manager's reasoning model

5.6.4 Spatial Environment

For illustration purposes, we use a fictitious fiber optic network in the city of Quebec.

Three RTUs are deployed in the field and are used to monitor a number of fiber optic

routes. Each fiber optic route is connected to one RTU. The fiber optic route (FOR) is

a set of cable spans. Each cable span length is 4km and contains up to 144 fiber optic

links. Therefore, a splice is necessary to connect all the cable spans and build the

FOR. Each splice is represented by a splice point on the map. FORs can be aerial or

underground. Two types of networks can be monitored. Urban networks concern

cities with high density of population (also called Metro networks). Rural networks

are networks which are deployed outside the city and which serve low densities of

populations. It is also used to interconnect cities. The GIS also provides other

information about the spatial environment such as Central Offices buildings where

the crews are located, other buildings that are provisioned with fiber links and which

need a special attention from the network engineers as they are considered in the

SLA. A partial representation of a fiber optic network in the City of Quebec is

depicted by Figure 5.17. A semantic abstraction of the spatial environment was

manually created using Conceptual Graphs. Automating the abstraction process is out

of the scope of this thesis. Several works exist in the literature to automate the

156

abstraction of a spatial environment such as [Mekni, 2010]. We use the Concept Type

Lattice to represent spatial concepts according to their level of generality.

Figure 5.18 illustrates a specialization example of the concept type Location.

Figure 5.17: A metro network example in Quebec City. Fiber optic routes are

represented by green lines and the RTU location is represented by a Yellow Square.

Figure 5.18: A specialization example of the concept type Location

157

5.6.5 Pattern Specification

In this section, we present some examples of simple and complex patterns that can be

used in the RFTS application. We also present how contextual information can be

integrated into pattern definitions and how it can be used to extend the pattern

meaning. Current commercially available RFTSs detect events and display them to

the end-user with additional information about the spatial environment. For example,

the alarm report illustrated in Figure 5.19 shows some information about an event

reported by the “RTU Paris” as described by one RFTS system available in the

telecommunication market. Note the presence of two distances: a physical distance

(“sheath distance”) and an optical distance. Physical distance is the distance of the

FOR including cable spans, splices and slack loops. Optical distance is the distance

measured by the OTDR. The optical distance is always greater than the physical

distance and may vary slightly from one acquisition to another depending on the laser

pulse. This makes the optical distance imprecise. Moreover, the spatial information is

provided in this event by locating it relatively to the surrounding spatial references.

Figure 5.19: An alarm report about an event generated by the “RTU Paris” as

described by [NTest. 2014] RFTS

The alarm generated by “RTU Paris” can be represented using the graph depicted in

Figure 5.20. We use the spatial relation “near” to qualify the distance between the

158

break location and the two spatial references “access point XZ-23H-AP4” and

“Corner of 4th and Main”.

Figure 5.20: A Conceptual Graph representation of the event reported by “RTU

Paris”

Using our pattern representation model, a user may configure a situation of interest

related to this alarm. Figure 5.21 represents a simple pattern where the event type

Break_Event occurs on a fiber and changes its state from “degraded” to “broken”.

This may help the user to conclude that the break occurred on the fiber due to a

degradation problem. This is a typical use case in the fiber optic industry. As another

example inspired from a real customer case in a telecommunication company that we

visited in Bolivia, outside plant engineers noticed that a degradation event can occur

on a fiber changing its state to “degraded” for a certain period of time. A break event

can be followed changing the fiber state to “broken”. Further inspection after the

detection of such a pattern revealed that tropical spiders gnaw these fibers and caused

these damages.

159

Figure 5.21: An example of a simple pattern where the event occurrence changes the

state of a fiber from degraded to broken

Another way to represent the example of fiber optic networks in Bolivia is to

correlate simple patterns. Such a correlation generates a complex pattern and can be

used to inform the user that a fiber degradation event was followed by another

degradation event that occurred near the same location. Such a situation of interest

can be expressed by a complex pattern illustrated in Figure 5.22. Note that we used a

spatial relation to correlate simple patterns. The detection of the Fiber Inspection

Pattern will trigger a fiber inspection maintenance task and a crew will be assigned to

it.

160

Qualified_Degradation_Pattern: #003

Near

CentralOffice= « St-Jean »

Near

Fiber_Inspection_Pattern

Degradation_Pattern : #001

[Distance]->(Attr)->[Real=35]

[Fiber :#QuebecMontreal]->(status)->[Degraded]

Deg_Event : #1001; T: July 24th 2013 05:33 PM

[Distance]->(Attr)->[Real=38]

[Fiber :#QuebecMontreal]->(status)->[Degraded]

Deg_Event : #1021; T: July 24th 2013 07:12 PM

Figure 5.22: An example of a complex pattern linking two simple patterns

5.6.6 Using Contextual Information

Context is defined as additional information in the perceptual/cognition level which

allows “perceiving or recognizing something that is actually not there” [Toussaint,

1978]. In our approach, contextual information is related to a specific spatiotemporal

pattern. A different contextual information may change a pattern meaning. Therefore,

contextual information is represented in the same knowledge structure as the

spatiotemporal pattern. Contextual information is defined at two levels: at concept

type lattice level where it can be used in the pattern definition and at the reasoning

level where context instances can be linked to pattern instances which are detected by

the Pattern Detection Module (see Figure 5.9). For our case study, the contextual

information is represented by a Concept Type Lattice where three main types of

161

contexts are defined: spatial context, temporal context and semantic context. Each

context type can be specialized in different sub-types (Figure 5.23).

Figure 5.23: A concept type lattice representing contextual information

Typically, a fiber break event may be caused by construction works. During their

activities, workers may damage the underground fibers since they do not have any

knowledge about their presence. Therefore, a “construction zone” can be defined as a

spatial contextual information and can be associated with a simple pattern describing

a fiber break or degradation event. Hence, other events reported by the system in the

same construction zone will get a similar meaning and the management team will

coordinate with construction workers to better manage their activities and prevent

such damages in the future (Figure 5.24).

The second example uses semantic contextual information to define emergency

patterns. A break event can occur on a fiber which serves a given region. An

amphitheater which hosts popular events (music shows, sport competitions) belongs

to this region. If the break event occurs during an event hosted by the building, the

situation is critical. The problem should be fixed to guarantee a continuous

162

transmission from/to the amphitheater. Figure 5.25 illustrates how a semantic context

can be used in a simple pattern.

Figure 5.24: A simple pattern example with spatial contextual information

The characteristics of a crew can be defined in the knowledge base using CGs. Each

crew can be located in a central office; it can belong to an area and it can have a state.

A crew can be “Free” if it is located in the central office. It can be “Assigned” when it

is working to repair a fiber optical link. Both Crew characteristics can be expressed in

Prolog+CG as follows:

cg([Crew = "Team1"] -loc-> [Area = "Beauport"]).

cg([Crew = "Team2"] -loc-> [Area = "SainteFoy"]).

cg([Crew = "Team1"] -attr-> [CrewStatus = "Free"]).

cg([Crew = "Team2"] -attr-> [CrewStatus = "Assigned"]).

163

Figure 5.25: A simple pattern example with semantic contextual information

Each Remote Test Unit (RTU) used to test the fibers can be represented in the

knowledge base using the following statement:

cg([RTU = "sensor001"] -

 -loc-> [Area = "Beauport"],

 -attr-> [SerialNumber = "001"]).

The Crew Manager’s goals are defined using simple and complex patterns. For

example the following complex pattern describes a situation of interest where a fiber

break changed the status from broken to true and where the contextual information

indicates that a crew is assigned to the related break area.

164

//Complex pattern to detect the recovery of a break configuration that occurred in a

specific //area.

ComplexPatternWithContextInfo(_CPattern,Environment,x)

:-cg([Complex_Pattern=_CPattern]-

Pattern_Description>[Proposition:[Event=[Break=_brk1]-

-EPC->[Proposition: [RTU=_sens1]-attr->[FiberState=Broken]]

-ESA->[Area=_Area]]

-before->[State=[NormalState]-SPC->[Proposition:[RTU]-attr-

->[FiberState]]]

-before->[Event=[Repair]-

-EPC->[Proposition: [RTU=_sens1]-attr->[FiberState=Rapaired]]

-ESA->[Area=_Area]]]),

//Contextual Information

cg([Complex_Pattern = _CPattern]-

-Context_Description->[Proposition : [Crew=x]-attr->[CrewStatus="Assigned"]]).

The relation EPC stands for Event Propositional Content. The relation ESA stands for

Event Spatial Attribute. The relation SPC stands for State Propositional Content.

These relations are part of the event definition as introduced in Chapter 3. The

detection of an instance of this complex pattern means that a broken fiber has been

repaired by the assigned crew according to the observation of the RTU (_sens1 in the

above example).

When a fiber break is repaired, a Crew Manager agent can also revoke the crew and

update its status to Free using the following Prolog+CG instruction:

RevokeCrew:-ComplexPatternWithContextInfo(_CPattern,Environment,x),

write(_CPattern), writeln(" pattern detected"),

165

write("Crew revoked from :"), writeln(x),

UpdateCrewStatus(x,"Free"),

getCrewStatus(_CPattern,x,_status),

write("New "),write(x),write(" "), write("status is "), writeln(_status).

A human operator may have his own interpretation of spatiotemporal situations of

interest in a certain context. We used the above examples to show the integration of

contextual information in the pattern definition. Using Prolog+CG a user can easily

specify her own business rules by combining patterns instances and contextual

information.

5.7 Conclusion

In this chapter, we presented a framework to manage qualitative spatiotemporal

patterns. This framework takes advantage of the qualitative spatiotemporal formalism

introduced in Chapter 3 and the qualitative spatial relations model introduced in

Chapter 4. The framework allows for detecting patterns from large datasets found in

real-time applications. It also helps (software and human) agents to reason about the

detected patterns since they are expressed using Conceptual Graphs. A case study

from the telecommunications industry has been presented to illustrate the usefulness

of the framework. Three papers based on this chapter have been published in three

conferences covering various domains such as Spatial Analysis [Barouni and Moulin,

2012] and Smart Grids [Barouni and Moulin, 2014c] and [Barouni and Moulin,

2015b]. This emphasizes the multidisciplinary aspect of our work. Another research

paper in under preparation and will be submitted to the Big Data Applications journal

by July 2015. The next chapter discusses the limits related to our approach and

concludes this thesis.

166

 Chapter 6

Conclusion

The main objective of this thesis was to propose a novel approach for qualitative

representation and management of dynamic spatiotemporal situations of interest. In

this chapter, we conclude the thesis by summing up the goals that have been achieved

with respect to our initial objectives. We also present an overview of some future

research topics that may represent prospective opportunities of our approach.

6.1 Synthesis

In this thesis, we proposed a novel approach to manage dynamic spatiotemporal

situations of interest. Managing situations of interest is made possible thanks to the

qualitative representation of their definitions, to the detection of their instances from a

stream of data and to offering reasoning capabilities close to the user’s mental model.

Our approach is defined in the context of Big Data applications and large scale data

acquisition and monitoring systems routinely used in the industry. This objective has

been achieved throughout the following stages.

First, we proposed a novel approach to qualitatively represent dynamic

spatiotemporal situations of interest. We based our approach on the notion of

spatiotemporal pattern which is widely present in the spatiotemporal analysis domain.

We used Conceptual Graphs to qualitatively represent pattern definitions and we

integrated the concept of contextual information in the pattern model in order to allow

agents to reason about these patterns.

167

Second, we proposed a novel approach to automate reasoning about spatial

proximity. Our model is based on contextual information which can be either

objective such as spatial distance or subjective such as traffic conditions or the user’s

familiarity with the city. We integrated a neuro-fuzzy classifier to train a dataset input

by an expert and to generate fuzzy quantifiers that are used by a Fuzzy Inference

System to qualify spatial proximity relations. As a concrete result of this approach,

we integrated our qualitative proximity tool in a GIS and we made qualitative spatial

relations available to our qualitative pattern model.

Third, we proposed a framework to manage spatiotemporal patterns occurring in a

dynamic environment. This framework is based on a hybrid architecture where

Conceptual Graphs are used to: 1) qualitatively represent pattern definitions; 2) build

the knowledge base of software agents. We developed an extension to a Complex

Event Processing engine to detect pattern instances from a stream of data generated

by distributed sensors and to enable agents’ qualitative spatial reasoning capabilities.

Detected pattern instances can be populated in knowledge bases and integrated in

agents’ reasoning models.

We proposed two case studies to illustrate different aspects related to our framework.

In the first case study, agents use pattern definitions to make decision about different

outage configurations which are generated by an Outage Management System. In the

second case study, agents use detected patterns to assign crews to intervene over a

fiber optic network.

6.2 Contributions

The first contribution of this thesis is a cognitive approach which allows for

qualitative representation and management of situations of interest using

spatiotemporal patterns. Modeling situations of interest has been addressed by several

168

research communities such as data mining, Complex Event Processing or Artificial

Intelligence. For example [Fisher et al, 2014] proposed a mathematical model to

recognize situations of interest in surveillance applications and [Baader et al, 2009]

proposed a query-based approach to retrieve situations of interest from situation

awareness systems. There are also works in the spatiotemporal analysis domain

which tend to use query-based approaches to find patterns that represent situations of

interest such as the work of [Sakr and Guting, 2014]. These works are limited with

respect to their capability to represent complex and dynamic phenomena and do not

provide a relevant approach to enable agents to reason about them. We also use the

concept of patterns to represent situations of interest. However, our approach is

different since we use Conceptual Graphs as a powerful representation formalism

close to Natural Language. Furthermore, our pattern definition goes beyond event-

based patterns as it is used in CEP approaches since it supports the representation of

dynamic phenomena and integrates contextual information. The resulting model

provides a cognitive flavor that attempts to better reflect human’s mental model about

the environment in the agent’s reasoning model.

The second contribution of this thesis is a qualitative proximity tool based on

contextual information. We integrate contextual information in a qualitative

proximity model and we automate the generation of spatial proximity quantifiers.

While other works such as [Yao and Thill, 2007] used an approximation function (i.e.

ANFIS) and did not integrate their approach in a GIS, our work uses a neuro-fuzzy

classifier and a Fuzzy Inference System to qualify proximity relations. Another

original aspect of this contribution is that it has been used to extend a Complex Event

Processing Engine to support qualitative spatial relations in pattern definitions.

The third contribution of this thesis is a qualitative pattern management framework

based on a hybrid architecture. We integrate our pattern definition of dynamic

situations of interest in a CEP engine that we extended in order to facilitate the use of

our pattern model in large scale monitoring applications. There are several original

aspects in this contribution. First, it enhances the semantic capabilities of the CEP

169

engine by using Conceptual Graphs to represent patterns instead of using SQL-based

languages. Second, we use a cognitive approach to integrate contextual information in

the pattern definition. While current CEP solutions use context to manage the stream

of events [Etzion and Zolotorvesky, 2010], contextual information in our model is

used by agents to create their own interpretation of detected patterns. Third, this

contribution is part of recent efforts existing in the research community to address a

new generation of semantic CEP or knowledge-based CEP [Teymourian and

Paschke, 2010] where knowledge bases are used to enrich event patterns such as

works proposed by [Zhou et al, 2012],[Anicic et al, 2010] and [Teymourian, 2014].

Our approach is different from the aforementioned works for different reasons. We

use Conceptual Graphs to represent patterns whereas [Zhou et al, 2012] use query-

based approaches, [Anicic et al, 2010] use a predicate-based language to represent

event patterns and offers a limited number of temporal operators. [Teymourian, 2014]

and [Anicic et al, 2010] used so called event patterns where events are the main

component of patterns. Our approach provides an adequate expressiveness to

describe the semantics of events, states, temporal and spatial concepts to extend the

semantic capabilities of spatiotemporal patterns and to represent real complex

phenomena. Our framework provides an abstraction layer higher than spatiotemporal

data in raw format. Users no longer need to be familiar with advanced computer

languages and can focus on contents rather than on data format as discussed by [Kuhn

and Ballatore, 2015].

The knowledge base CEP proposed by [Teymourian, 2014] queries ontologies to

extend event semantics during the pattern matching process. This affects the pattern

engine capabilities, since an external data source (the ontology) must be accessed

during the event processing. We propose a different approach which enhances the

semantics of patterns a priori (i.e. before processing). This approach reduces the

processing time drastically since the pattern detection engine preloads pattern

definitions converted from Conceptual Graphs to an enriched version of EPL.

170

6.3 Limits and Drawbacks

Our approach to manage situations of interest can be enhanced in different ways. A

temporary limit concerns the proposed pattern definition to represent situations of

interest. Indeed, our pattern model is based on the concepts of states and events to

represent dynamic situations. The notion of process is not yet integrated in our model.

This limits the expressiveness capabilities of patterns to represent certain complex

phenomena that may be identified in applications such as video surveillance and

weather monitoring, to name a few. Supporting the notion of process in the pattern

definition will be a significant contribution to the CEP community where, to the best

of our knowledge, this notion is not clearly defined yet.

While spatial relations are defined in our pattern model, our framework only supports

fuzzy spatial proximity. The other qualitative spatial relations such as topology are

supported using classical spatial tools currently available in commercial solutions.

Using fuzzy qualitative topological and directional relations needs to be addressed in

the near future in order to better reflect the human’s mental model of the spatial

environment. The same limit applies to temporal relations. Our pattern model uses the

temporal model proposed by [Moulin, 1997] and may be extended in the future to

support fuzzy temporal relations.

Owing to time constraints, the pattern management framework presented in Chapter 5

does not fully integrate all pattern types proposed in Chapter 3. We only developed

algorithms to detect simple and complex pattern types from a stream of data.

Moreover, the agent’s reasoning module is called from an external module and it is

not completely integrated in the pattern management framework. The integration of

both modules will create new research opportunities which will be detailed in the next

section.

171

Finally, although our approach enables agent’s reasoning about patterns, we did not

explore in detail advanced reasoning mechanisms. For example, we did not address

the aspect of deriving new patterns from the knowledge base or the implementation of

complex transactional actions.

6.4 Future Work

Besides improvements to overcome the limits of our approach which are mentioned

in Section 6.3, we mention here several opportunities that can be explored in future

works.

A possible research opportunity is to implement pattern verification mechanisms to

discover patterns that will be never detected from large systems due to a lack of

consistency [Anicic et al, 2010]. Doing so, a user could be notified when some

defined patterns are not detected after a certain period of time. Other patterns can be

suggested to the user in this case. The concept of fuzzy patterns can be a good option

where pattern components are defined with a certain degree of uncertainty.

There are also issues related to the implementation of advanced reasoning

mechanisms such as causality relations between patterns, reasoning with course of

actions [Haddad, 2009] and automating the execution of actions generated by agent’s

deduction modules (such as in Event Condition Action architectures).In current Event

Condition Action systems, events are used to trigger the evaluation of a condition and

to execute an action. Patterns (which are based on a set of events) may be used to

trigger the evaluation of a condition and execute actions.

Another research topic that may be explored as an application of our approach

concerns Smart Cities. Smart Cities is a research topic which has emerged in recent

years as a result of the increasing number of applications and connected devices

generating temporal and spatial data in the urban environment. Cities can be “smart”

172

when there are tools and solutions that integrate and synthesize data in a way that

improves efficiency and sustainability [Batty et al, 2012]. In this context, our

approach can offer a good option to address several issues such as traffic

management, smart grid (energy efficiency and demand response) and human

mobility (modeling trajectory patterns followed by humans during their daily

activity). Through the use of real-time systems and sensors, data are collected from

citizens and objects and then processed in real-time [Wikipedia, 2015]. Our pattern

model could be used to define patterns to help governments and cities make decisions

in several areas.

In Demand Response applications, Advanced Metering Infrastructures (AMI) are

deployed in customer facilities and they provide real time data about power

consumption. Some countries such as Italy and Sweden have 100% of houses using

this emerging technology.

Demand response applications can be characterized by a dynamic environment due to

the variation of residential power consumption in a specific city according to several

patterns such as touristic activities during hot seasons or people migration. Several

works attempted to identify peak load patterns such as [Simmhan et al, 2011].].

However, these works are based on data mining techniques and SQL-based patterns.

In such applications, our pattern model would offer enough expressiveness to

represent complex situations in such dynamic environment with spatial and temporal

dimensions. It could also be used to detect patterns in real time using a CEP.

173

Bibliography

Adi, A., Biger, A., Botzer, D., Etzion, O., Sommer, Z., (2003). Context awareness in

Amit. Proceedings of the Autonomic Computing Workshop, pp.160-166

Aigong, X. and Lakmal, A. H. (2009). Conceptual Framework For Spatio-Temporal

Process Model. Proceedings of International Cartographic Conference,
Santiago, Chile.

Allen, J.F. (1983). Maintaining Knowledge about Temporal Intervals. ACM

Common, Vol. 26 (11), 1983, pp. 832–843

Anagnostopoulos, C.B., Ntarladimas, Y. and Hadjiefthymiades, S. (2006). Situation

Awareness: Dealing with Vague Context, Pervasive Services, in ACS/IEEE
International Conference, pp.131-140

Anicic, D., Fodor, P., Rudolph, S., Stühmer, R., Stojanovic, N. and Studer, R. (2010).

ETALIS: Rule-Based Reasoning in Event Processing, Chapter in Reasoning in
Event-based Distributed Systems, Series in Studies in Computational
Intelligence, Sven Helmer, Alex Poulovassilis and Fatos Xhafa editors.
Springer.

Arioua, A., Tamani, N. and Croitoru, M. (2014). On conceptual graphs and

explanation of query answering under inconsistency. In Graph-based
representation and reasoning, edited by N. Hernandez, R. Jaesche, and M.
Croitoru, Proceedings of the International Conference of Conceptual Structures
(ICCS), July 27-30, 2014, Iaşi, Romania, LNCS Vol. 8577, pp 51-64

Baader, F., Bauer. A., Baumgartner. P., Cregan. A., Gabaldon. A., Ji. K., Lee. K.,

Rajaratnam. D. and Schwitter. R. (2009). A Novel Architecture for Situation

Awareness Systems, Proceedings of the 18th International Conference on
Automated Reasoning with Analytic Tableaux and Related Methods, July 06-
10, 2009, Oslo, Norway, pp.77-92

Batty, M., Axhausen, K.W., Giannotti, F., Pozdnoukhov, A., Bazzani, A.,

Wachowicz, M., Ouzounis, G., Portugali, Y. (2012). Smart cities of the future.
European Journal of Physics Special Topics. Vol. 214(1), pp 481-518

174

Barouni, F. and Moulin, B. (2012). An Extended Complex Event Processing Engine

to Qualitatively Determine Spatiotemporal Patterns. In Proceedings of Global
Geospatial Conference, June 2012, Quebec City, Canada

Barouni, F. and Moulin, B. (2014a). A Framework for Qualitative Representation and

Reasoning about Spatiotemporal Patterns. In Graph-based representation and
reasoning, edited by N. Hernandez, R. Jaesche, and M. Croitoru, Proceedings of
the International Conference of Conceptual Structures (ICCS), July 27-30,
2014, Iaşi, Romania, LNCS Vol. 8577, pp 79-91

Barouni, F. and Moulin, B. (2014b). An Intelligent Spatial Proximity System Using

Neurofuzzy Classifiers and Contextual Information. International Archives of
the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol.
XL-2, pp.107-114

Barouni, F. and Moulin, B. (2014c). Using Complex Event Processing to Manage

Patterns in Distribution Networks. CIRED Workshop, June 11-12, 2014, Rome,
Italy

Barouni, F. and Moulin, B. (2015a). An Intelligent Spatial Proximity System Using

Neurofuzzy Classifiers and Contextual Information. Geomatica Special Issue,
Advances in Geospatial Statistical Modeling, Analysis and Data Mining. Vol.
69(2), to Appear in September 2015

Barouni, F. and Moulin, B. (2015b). Spatiotemporal Pattern Detection in Outage

Management Systems. Power and Energy Automation Conference, March 10-
12, 2015, Spokane, Washington, USA

Bastien, C. (1998). Contexte et situation. Dictionnaire des Sciences Cognitives. Paris:
PUF.

Bazire, M. and Brézillon, P. (2005). Understanding Context Before Using It.

Modeling and Using Context. Lecture notes in computer science. Springer-
Verlag, Vol. 3554, pp. 29-40

Bera, R. and Claramunt, C. (2003). Topolgy-based proximities in spatial systems.

Journal of Geographical Systems, Springer-Verlag, Vol. 5, pp. 353-379

Bermingham, L. and Lee, I. (2014). Spatio-temporal Sequential Pattern Mining for

Tourism Sciences. Procedia Computer Science, Vol. 29, pp. 379-389, ISSN
1877-0509,

Borkar, P. and Malik, L.G., (2013). Acoustic signal based traffic density state

estimation using adaptive Neuro-Fuzzy classifier. IEEE International
Conference on Fuzzy Systems, pp.1-8

175

Brennan, J. and Martin, E. (2006). Membership functions for spatial proximity. In
Advances in Artificial Intelligence, edited by Sattar, A., Kang, B.H., Lecture
Notes in Artificial Intelligence, Springer Verlag, Berlin, Vol. 4304, pp. 942–
949

Brennan, J. and Martin, E. (2012). Spatial proximity is more than just a distance

measure. International Journal of Human Computer Studies. Vol. 70(1), pp. 88-
106

Brezillon, P. (1999). Context in Artificial Intelligence: II, Key elements of context.

Computing and informatics, Vol. 18(5)

Chakravarty, P., Wickramasekara, M.G. (2014). A better GIS leads to a better DMS.

Power Systems Conference (PSC), Clemson University, pp.1-5

Cascado, D., Sevillano, J. L., Fernandez-Luque, L., Johan-Grøttum, K., Vognild, L.

K. and Burkow, T. M. (2011). Standards and Implementation of Pervasive

Computing Applications, in Pervasive Computing and Networking, edited by
M. S. Obaidat, M. Denko and I. Woungang, John Wiley & Sons, Ltd,
Chichester, UK. doi: 10.1002/9781119970422.ch9

Cena, G., Bertolotti, I.C., Tingting Hu, Valenzano, A., (2014). Design, verification,

and performance of a MODBUS-CAN adaptation layer. 10th IEEE Workshop
on Factory Communication Systems (WFCS), pp.1-10

Cetişli, B. and Barkana, A. (2010). Speeding up the scaled conjugate gradient

algorithm and its application in neuro-fuzzy classifier training. Soft
Computing. Vol. 14(4), pp. 365-378.

Chen, G. and Kotz, D. (2000). A survey of context-aware mobile computing.

Research. Technical report. Dartmouth College Hanover, NH, USA

Chittaro, L. and Montanari, A. (2000). Temporal representation and reasoning in

artificial intelligence: issues and approaches. Annals of Mathematics and
Artificial Intelligence. Vol. 28, pp. 47–106.

Cohn, A. and Renz, J. (2007). Qualitative Spatial Reasoning. Handbook of

Knowledge Representation, edited by Van Harmelen, F., Lifschitz, Frank V.
and Porter, B., Elsevier

Cohn, A.G, Bennett, B., Gooday, J. and Gotts, N.M. (1997). Qualitative Spatial

Representation and Reasoning with the Region Connection Calculus.

GeoInformatica, 1997, Vol. 1(3), pp-275

Cole, S. and Hornsby, K. (2005). Modeling Noteworthy events in a geospatial

domain. Lecture Notes in Computer Science. Vol. 3799, pp. 77-89

176

ConEdison. (2013).https://www.comed.com/_layouts/comedsp/OutageMap.aspx
[Accessed in 2013].

Cugola, G. and Margara, A. (2012). Processing flows of information: From data

stream to complex event processing. ACM Computer Surveys. Vol. 44(3),
Article 15

Desclés, J.-P. (1985). Représentation des connaissances: Archétypes cognitifs,

schèmes conceptuels et schémas grammaticaux. Actes Sémiotiques, Paris,
EHESS, Documents VII, pp. 69-70

Desclés, J.-P. (1994). Quelques Concepts Relatifs au Temps et à l'Aspect pour

l'Analyse des Textes. Stanislaw et al. (Eds.) : Études Cognitives: Sémantique
des Catégories d’aspect et de Temps, Vol. 1, pp. 57-88

Devaraju, A. and Kauppinen, T. (2012). Sensors tell more than they sense: Modeling

and reasoning about sensor observations for understanding weather events.
Special Issue on Semantic Sensor Networks, International Journal of Sensors,
Wireless Communications and Control

Dey, A.K. (2001), Understanding and using context. Personal and Ubiquitous

Computing. Vol. 5(1), pp. 4-7

Do, Q. H. and Chen, J. F. (2013). A Neuro-Fuzzy Approach in the Classification of

Students’ Academic Performance, Computational Intelligence and
Neuroscience. Vol. 2013 Article ID 179097

Elgendy, N. and Elragal, A. (2014). Big Data Analytics: A Literature Review Paper.

Advances in Data Mining. Applications and Theoretical Aspects Lecture Notes
in Computer Science Vol. 8557, pp. 214-227

Endsley, M. R. (1988). Design and evaluation for situation awareness enhancement.

In Proceedings of the Human Factors Society 32nd Annual Meeting Santa
Monica, CA: Human Factors Society, pp. 97–101

Endsley, M. R., Bolte, B., and Jones, D. G. (2012). Designing for situation

awareness: An approach to human-centered design. London: Taylor & Francis.

Erwig, M. (2004). Toward spatiotemporal patterns. In: Caluwa, R, Tré, G,

Boudogua, G eds. (2004) Toward spatiotemporal patterns, spatio-temporal
databases. Springer-Verlag, New York, pp. 29-54

Esper. (2015). http://esper.codehaus.org/ [accessed in 2015]

Etzion, O. and Zolotorvesky, N. (2010). Spatial Perspectives in Event Processing. In

From active data management to event-based systems and more, Edited by Kai

177

Sachs, Ilia Petrov, and Pablo Guerrero. Springer-Verlag, Berlin, Heidelberg, pp.
85-107

Exfo. (2014). http://exfo.com [accessed in 2014]

Fischer, Y., Reiswich, A. and Beyerer, J. (2014). Modeling and recognizing

situations of interest in surveillance applications. IEEE International Inter-
Disciplinary Conference on Cognitive Methods in Situation Awareness and
Decision Support (CogSIMA), pp. 209-215

Foa. (2015). The Fiber Optic Association. Thefoa.org, 2015, www.thefoa.org.

[Accessed in 2015].

Forbus, K. (2007). Qualitative modeling. In F. Harmelen, V. Lifschitz, & B. Porter

(Eds.), Handbook of knowledge representation. Elsevier, New York, pp. 361-
394

Freksa, C., Klippel, A. and Winter, S. (2007). A cognitive perspective on spatial

context. In Spatial cognition: Specialization and Integration. Edited by Anthony
G. Cohn and Christian Freksa and Bernhard Nebel. Vol. 05491, ISSN 1862-
4405

Gahegan, M. (1995). Proximity Operators for Qualitative Spatial Reasoning. In

COSIT ’95 Proceedings: Spatial Information Theory: A Theoretical Basis for
GIS, Edited by A. U. Frank and W. Kuhn. Berlin, Germany: Springer-Verlag,
pp. 31-44

Galton, A. (2004). Fields and Objects in Space, Time, and Space-time. Spatial

Cognition and Computation, Vol. 4, pp. 39-68

Gcep. (2014). www.surna.org [Accessed in 2014]

Gehrke, J., Lattner, A. and Herzog, O. (2005). Qualitative Mapping of Sensory Data

for Intelligent Vehicles. Workshop on Agents in Real-Time and Dynamic
Environments at the 19th International Joint Conference on Artificial
Intelligence (IJCAI-05), U. Visser, G. Lakemeyer, G. Vachtesevanos and M.
Veloso, Eds., Edinburgh, UK, pp. 51–60

Gliwa, B. and Byrski, A. (2013). Hybrid Neuro-Fuzzy Classifier Based on Nefclass

Model. Computer Science, Vol. 12, ISSN 2300-7036.

Grenon, P. and Smith, B. (2004). SNAP and SPAN: Towards Dynamic Spatial

Ontology. Spatial Cognition and Computation, Vol. 4 (1), pp. 69-103

Guesgen, H.W. (2002). Reasoning About Distance Based on Fuzzy Sets. Applied

Intelligence, Vol. 17, pp. 265-70

178

Guesgen, H.W. and Albrecht J. (2000), Imprecise reasoning in geographic

information systems. Fuzzy Sets and Systems (Special Issue on Uncertainty
Management in Spatial Data and GIS), Vol. 113, pp. 121-131

Guesgen, H.W. and Marsland, S. (2010). Spatio-temporal reasoning and context

awareness. Handbook of Ambient Intelligence and Smart Environments, pp.
609-634

Haddad, H. (2009). Une approche pour supporter l'analyse qualitative des suites

d'actions dans un environnement géographique virtuel et dynamique. L'analyse
« What-if » comme exemple, PhD Thesis, Laval University, Quebec, Canada.

Haddad, H. and Moulin, B. (2010). A Framework to Support Qualitative Reasoning

about COAs in a Dynamic Spatial Environment. Journal of Experimental &
Theoretical Artificial Intelligence, Taylor & Francis, Vol. 22(4), pp. 341-380

Hadji, M., Kollios, G. and Bakalov, P. (2005). Complex Spatio-temporal pattern

Queries. In Proceedings of the 31st international conference on Very large data
bases (VLDB '05). Trondheim, Norway, VLDB Endowment pp. 877-888.

Hasan, S., O'Riain, S. and Curry, E. (2012). Approximate semantic matching of

heterogeneous events. In Proceedings of the 6th ACM International Conference
on Distributed Event-Based Systems (DEBS '12). ACM, New York, NY, USA,
pp. 252-263.

Helmer, S. Poulovassilis, A. and Xhafa, F. (2011). Reasoning in Event-Based

Distributed Systems. Studies in Computational Intelligence. Springer, Vol. 347,
pp. 99-124

Holzmann, C. (2007). Rule based reasoning about qualitative spatiotemporal

relations. In Proceedings of the 5th international workshop on Middleware for
pervasive and ad-hoc computing: held at the ACM/IFIP/USENIX 8th
International Middleware Conference (MPAC '07). ACM, New York, NY,
USA, pp. 49-54

Holzmann, C. and Ferscha, A. (2010). A framework for utilizing qualitative spatial

relations between networked embedded systems. Journal of Pervasive and
Mobile Computing. Vol. 6(3), pp. 362-381

Hong, K., Lillethun, D., Ramachandran, U., Ottenwälder, B., and Koldehofe, B.

(2013). Opportunistic spatio-temporal event processing for mobile situation

awareness. In Proceedings of the 7th ACM international conference on
Distributed event-based systems (DEBS '13). ACM, New York, NY, USA, pp.
195-206.

IEEE. (2010). IEEE Standard for Electric Power Systems Communications --

Distributed Network Protocol (DNP3)," IEEE Std 1815-2010 , pp.1-775

179

Imfeld, S. (2000). Time, Points and Space - Towards a Better Analysis of Wildlife

Data in GIS. Dissertation, University of Zurich

Jakobson, G., Buford, J. and Lewis, L. (2007). Situation Management: Basic

Concepts and Approaches. In Information Fusion and Geographic Information
Systems, 2007, pp. 18-33.

JDSU. (2014). http://jdsu.com [accessed in 2014]

Kabbaj, A. (2006). Development of intelligent systems and multi-agents systems with

Amine platform. In Henrik Schärfe, Pascal Hitzler, and Peter Øhrstrøm editors,
ICCS’06: Proceedings of the 14th International Conference on Conceptual
Structures, Lecture Notes in Computer Science, Springer Verlag, Vol. 4068, pp.
286-299.

Kamsu-Foguem, B., Tchuenté-Foguem, G. and Foguem, C. (2014). Using conceptual

graphs for clinical guidelines representation and knowledge visualization.
Information Systems Frontiers Vol. 16(4), pp. 571-589

Kettani, D. and Moulin, B., (1999). A spatial model based on the notion of spatial

conceptual map and of object’s influence areas. In Spatial Information Theory
Cognitive and Computational Foundations of Geographic Information Science,
edited by Mark, D.M., Freksa, C., LCNS, Springer Verlag, Berlin, Vol. 1661,
pp. 401–416.

Kowalski, R. (1992). Database updates in the event calculus. Journal of Logic

Programming. Vol. 12(162), pp. 121-46

Kowalski, R. and Sergot, M. (1986). A Logic-Based Calculus of Events. New

Generation Computing, Vol. 4, pp. 67-95

Kuhn, W. and Ballatore, A. (2015). Designing a Language for Spatial Computing. In

AGILE 2015, Lecture Notes in Geoinformation and Cartography

Lattner, A., Miene, A., Visser, U. and Herzog, O. (2006). Sequential Pattern Mining

for Situation and Behavior Prediction in simulated Robotic Soccer. Lecture
notes in Computer Science. Springer. Vol. 4020. pp. 118-129

Lin, L., Gong, H., Li, L. and Wang, L. (2009). Semantic event representation and

recognition using syntactic attribute graph grammar. Pattern Recognition
Letters, Vol. 30(2), pp. 180-186, ISSN 0167-8655

Lind, J. (2003). Patterns in agent-oriented software engineering. Lecture Notes in

Computer Science, Vol. 2585, pp. 47-58.

180

Luckham, D.C. (2002). The Power of Events: An Introduction to Complex Event

Processing in Distributed Enterprise Systems. Addison-Wesley.

McCarthy, J., and Hayes, P. (1969). Some philosophical problems from the

standpoint of artificial intelligence. Machine Intelligence 4, Edinburgh U.
Press.

McCarthy, J. (1993). Notes on formalizing context. In Proceedings of IJCAI’93

Conference, Chambery, France.

Mekni, M. (2010). Automated Generation of Geometrically-Precise and

Semantically-Informed Virtual Geographic Environments Populated with

Spatially-Reasoning Agents. Ph.D. Thesis, Laval University, Quebec, Canada.

Miller, R. and Shanahan, M. (1999). The event-calculus in classical logic -

alternative axiomatizations. Electronic Transactions on Artificial Intelligence,
Vol. 3(1), pp. 77-105

Moulin, B. (1997). Temporal contexts for discourse representation: An extension of

the conceptual graph approach. Applied Intelligence, Vol. 7, pp. 225-227

Nauck, D. and Kruse, R. (1999). Neuro-fuzzy systems for approximation functions.

Fuzzy sets and systems, Vol. 101, pp. 261-271.

Negnevitsky, M. (2011). Artificial Intelligence: A Guide to Intelligent Systems.

Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA, ISBN
0201711591

NTest. (2014). http://www.ntestinc.com/ [Accessed in 2014]

Obaidat M.S. and Woungang. I. (2011). Pervasive Computing Systems. Pervasive

Computing and Networking (eds M. S. Obaidat, M. Denko and I. Woungang),
John Wiley & Sons, Ltd, Chichester, UK.

OGC. (2015). Open Geospatial Consortium. www.opengeospatial.org [Accessed in

2015]

Political Psychology. (2003). Special issue on Neuroscientific contributions to

political psychology, Political Psychology, Vol. 24(4)

Ponchon, J., Champavere, A., (2011). PON test systems - From theory to field

deployments. Optical Fiber Communication Conference and Exposition
(OFC/NFOEC), and the National Fiber Optic Engineers Conference, pp.1-3, 6-
10

Renz, J. (2002). Qualitative Spatial Reasoning with Topological Information. Vol.

2293, Springer: Berlin, Germany

181

Renz, J. and Mitra, D. (2004). Qualitative direction calculi with arbitrary

granularity. In: Zhang, C., Guesgen, H.W., Yeap, W.-K. eds. (2004) PRICAI
2004: Trends in Artificial Intelligence, 8th Pacific Rim International
Conference on Artificial Intelligence, Auckland, New Zealand, Lecture Notes
in Computer Science, Vol. 3157, pp. 65-74, Springer, Berlin

Resch, B., Lippautz, M. and Mittlboeck, M. (2010). Pervasive Monitoring - A

Standardized Sensor Web Approach for Intelligent Sensing Infrastructures.
Sensors. Special Issue “Intelligent Sensors 2010”, pp. 11440-11467.

Robinson, V. B. (1990). Interactive Machine Acquisition of a Fuzzy Spatial Relation.

Computers and Geosciences, Vol. 16(6), pp. 857-72.

Rulecore. (2013). www.rulecore.com [accessed in 2013]

Russell, S. and Norvig, P. (1995). Artificial Intelligence: A Modern Approach.

Prentice Hall, ISBN 0-13-604259-7

Saha, D. and Mukherjee, A. (2003) Pervasive computing: a paradigm for the 21st

century. IEEE Computer Vol. 36, pp. 25-31

Sakr, M. and Guting, R. (2010). Spatiotemporal Pattern Queries. Geoinformatica,

Vol. 15(3), pp. 497-540

Sakr, M. and Guting, R. (2014). Group Spatiotemporal Pattern Queries.

Geoinformatica, Vol. 18(4), pp. 669-746

Schultz, C.P.L., Guesgen, H.W. and Amor, R. (2007). A System for Querying With

Qualitative Distances in Networks. Fuzzy Systems Conference. FUZZ-IEEE,
London, United Kingdom, pp. 1-6

SECONDO web site. (2013). http://dna.fernunihagen.de/ Secondo.html/ [Accessed in

2013]

Shanahan, M. (1997). Solving the frame problem: A mathematical investigation of the

common sense law of inertia. MIT Press, ISBN 0-262-19384-1

Shanahan, M. (1999). The Event Calculus Explained. In Artificial Intelligence Today

edited by Wooldridge, M., & Veloso, M., Lecture Notes in Artificial
Intelligence. Vol. 1600, pp. 409-430.

Sharon, G. and Etzion, O. (2008). Event Processing Networks - model and

implementation. IBM System Journal, Vol. 47(2), pp. 321–334

Sowa, J.F. (1984). Conceptual Structures: Information Processing in Mind and

Machine. Adison-Wesley, Massachusetts.

182

SpatialRules. (2013). www.objectfx.com [accessed November 2013]

Sun, C.-T. and Jang, J.-S. (1993). A neuro-fuzzy classifier and its applications. Fuzzy

Systems, Vol. 1, pp. 94-98.

Tan, Y., Vuran, M. C. and Goddard, S. (2009). Spatio-temporal event model for

Cyber-Physical Systems. In Proc. of 29th IEEE International Conference on
Distributed Computing Systems Workshops, pp. 44-50

Teymourian, K. and Paschke, A. (2010). Enabling knowledge-based complex event

processing. In Proceedings of the 2010 edbt/icdt workshops, New York, NY,
USA, 2010, pp 1-7.

Teymourian, K. (2014). A Framework for Knowledge-Based Complex Event

Processing, Ph.D. Thesis, University of Berlin, Germany.

Toussaint, G. T. (1978). The use of context in pattern recognition. Pattern

Recognition. Vol. 10, pp. 189-204.

Vieira, M.R., Frías-Martínez, E., Bakalov, P., Frías-Martínez, V. and Tsotras, V.J.

(2010). Querying Spatio-temporal Patterns in Mobile Phone-Call Databases.
Eleventh International Conference on Mobile Data Management (MDM), May
2010, pp. 239-248

Wolter, D. and Wallgrün, J. O. (2013). Qualitative Spatial Reasoning for

Applications: New Challenges and the SparQL Toolbox. In Geographic
Information Systems: Concepts, Methodologies, Tools, and Applications,
Hershey, PA: Information Science Reference, pp. 1639-1664.

Worboys, M. F. (1996). Metrics and topologies for geographic space. In Advances in

Geographic Information Systems Research II: Proceedings of the International
Symposium on Spatial Data Handling, Delft, Netherlands, pp. 7A.1-7A.11

Worboys, M.F., Duckham, M. and Kulik, L. (2004). Commonsense notions of

proximity and direction in environmental space. Spatial Cognition and
Computation. Vol. 4(4), pp. 285-312

Yao, X. and Thill, J.-C. (2007). Neurofuzzy Modeling of Context–Contingent

Proximity Relations. Geographical Analysis, Vol. 39, pp. 169-194.

Zadeh, L (1965). Fuzzy sets. Information and Control, Vol. 8, pp. 338-353

Zhou, Q., Simmhan, Y. and Prasanna, V. (2012). Incorporating semantic knowledge

into dynamic data processing for smart power grids. In International Semantic
Web Conference, Lecture Notes in Computer Science, Vol. 7650 (2012), pp.
257-273

183

Appendix

The Crew Dispatcher Agent structure is defined in three main sections: knowledge,
goals and actions. The knowledge section contains the contextual information related
to the crew status. The following code snippet gives an example of an agent
instantiation with PROLOG+CG language and the agent’s knowledge structure.

Agent’s goals are defined using spatiotemporal patterns. The following code snippet
gives an example of a pattern definition.

The environment is configured through a separate PROLOG+CG instance. It contains
static information such as crews and sensor locations and dynamic information such
as events generated by sensors. The following code snippet illustrates an example of
the environment’s configuration.

184

