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ABSTRACT 

The sexual dimorphism in human body fat distribution suggests a causal role for sex hormones. 

This is of particular importance when considering the role of excess visceral adipose tissue 

accumulation as a critical determinant of obesity-related cardiometabolic alterations. Scientific 

literature on the modulation of body fat distribution by androgens in humans is abundant, 

remarkably inconsistent and difficult to summarize. We reviewed relevant literature on this topic, 

with a particular emphasis on androgen replacement, androgen effects on selected parameters of 

adipose tissue function and adipose tissue steroid-converting enzymes. In men, low androgenic 

status mostly reflected by reduced total testosterone is a frequent feature of visceral obesity and 

the metabolic syndrome. Regarding testosterone therapy, however, studies must be appreciated 

in the context of current controversies on their cardiovascular effects. Analyses of available 

studies suggest that decreases in waist circumference in response to testosterone are more likely 

observed in men with low levels of testosterone and high BMI at study onset. In women with 

androgen excess, higher testosterone and free testosterone levels are fairly consistent predictors 

of increased abdominal and/or visceral adipose tissue accumulation, which is not the case in non-

hyperandrogenic women. Regarding mechanisms, androgens decrease adipogenesis and markers 

of lipid storage in vitro in men and women. Evidence also suggest that local steroid 

transformations by adipose tissue steroid-converting enzymes expressed in a depot-specific 

fashion may play a role in androgen-meditated modulation of body fat distribution. 

Accumulating evidence shows that androgens are critical modulators of body fat distribution in 

both men and women. 
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DIDACTIC SYNOPSIS 

Major Teaching Points: 

1. Reduced total testosterone is observed frequently in men with abdominal and/or visceral 

obesity and the metabolic syndrome. 

 

2. Reports on testosterone replacement therapy in men show that:  

a. Observational studies have reported decreases in waist circumference in response to 

testosterone more frequently than randomized controlled trials. 

b. This may be explained in part by the lower average waist circumference or BMI values 

and higher testosterone levels at baseline in randomized controlled trials compared to 

observational studies. 

c. Independent of study design, decreases in waist circumference in response to 

testosterone are observed more frequently in men with low levels of testosterone and 

high BMI at study onset. 

 

3. In women with androgen excess, higher testosterone and free testosterone levels are frequent 

correlates of increased abdominal and/or visceral fat accumulation; this may not necessarily 

be the case in non-hyperandrogenic women. 

 

4. Steroid-converting enzymes expressed in adipose tissues may be involved in androgen-

meditated modulation of body fat distribution. 
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INTRODUCTION 

Obesity is an important public health concern because of its association with serious disorders 

such as type 2 diabetes and cardiovascular disease (280, 309). It is a heterogeneous condition 

with variable cardiometabolic risk owing to a complex hormonal and metabolic interplay 

involving many organs and tissues in the processes leading to atherogenesis, dyslipidemia and 

insulin resistance. Accumulating evidence suggests that regional body fat distribution is a critical 

factor in the relationship between obesity and cardiometabolic disease, where significant sexual 

dimorphisms are observed (293). Generally, women have higher body fat percentages than men, 

who in turn have higher lean body mass (LBM) including muscle and bone (164, 239, 286, 301). 

Moreover, men present an android fat distribution pattern and preferentially accumulate fat in the 

abdomen, while women present a gynoid fat distribution pattern and more likely accumulate 

lipids in the gluteal and femoral regions of the body (266). Men also have more visceral or intra-

abdominal fat, that is, adipose tissue located inside the abdominal cavity, compared to women, 

regardless of total adiposity (266). In spite of this dimorphism, wide interindividual variation in 

the amount of visceral adipose tissue (VAT) is observed in both sexes (262). For example, 

visceral fat varies by approximately 10 fold in samples of lean to moderately obese Caucasian 

men and women (262). The inter-individual variation in visceral fat accumulation for a similar 

body fat mass (BFM) is illustrated in Figure 1. 

 

Excess accumulation of abdominal fat as assessed by the waist circumference (WC) is a highly 

prevalent feature among the clustering risk factors found in the metabolic syndrome (MetS) (75, 

235). The latter affected approximately 23% of US adults in 2010, and 56% of individuals had a 

high WC (21). In Canada, MetS was found in 18% of individuals in 2009 (235). The prevalence 
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of cardiometabolic alterations increased with age and high WC was the most prevalent 

diagnostic criterion of MetS (21, 235). These conditions contribute to the risk of type 2 diabetes 

and cardiovascular disease, but also increase the risk, or alter the outcome of some cancers 

including breast cancer and endometrial cancer (89, 266). Indications that android obesity and 

MetS affect close to one fifth of our population and up to half of older age individuals highlight 

the urgency of addressing these conditions as a priority. Interestingly, the amount of visceral fat 

has been shown repeatedly to be among the most critical determinants of the presence of the 

clustering metabolic syndrome features in men as well as women (75, 246).  

 

The difference in regional body fat deposition in males versus females and the changes seen after 

menopause or other altered states of androgen deficiency or excess suggest a causal role for sex 

steroid hormones in human body fat distribution patterning (26, 266, 274). However, the specific 

role of each hormone remains quite elusive. In fact, through many decades of research on this 

topic, available literature, though widely abundant, remains remarkably inconsistent and difficult 

to summarize. This may be due to methodological caveats in some of the studies, including 

particularities of the study designs and populations examined of course, but most importantly, 

many reports have been plagued by difficulties in the accurate measurement of steroid levels. At 

the same time, the effects of sex steroids on each adipose tissue compartment are difficult to 

decipher at the cellular level. Access to abdominal adipose tissue samples and the complex 

dynamic interactions among all adipose tissue cell types clearly represent great challenges. As a 

particularly striking example, adipose tissues express a large number of steroid-converting 

enzymes that may either decrease or increase steroid action at the local level (274). The present 

overview article summarizes relevant literature on the particular role of androgens as modulators 
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of body fat distribution patterns in men and women, with a particular emphasis on androgen 

replacement, androgen effects on selected parameters of adipose tissue function and adipose 

tissue steroid-converting enzymes. 

 

METHODOLOGICAL ISSUES 

Measurement of body composition, body fat distribution and androgen levels 

As illustrated above, assessing body shape and more specifically body fat distribution patterns 

has become a key issue in the evaluation of the metabolic risk associated with obesity (266). The 

reports reviewed in this manuscript are based on a large number of measurements or indices 

reflecting either body composition or body fat distribution. Many reports relied on 

anthropometric measurements whereas other used more detailed assessments of body 

composition and distribution such as imaging techniques. Anthropometric measurements of 

overall adiposity or body composition include body weight and the body mass index (BMI), the 

latter corresponding to body weight in kilograms divided by squared height in meters (156). 

More detailed measurements of body composition were performed using dual-energy x-ray 

absorptiometry or occasionally hydrostatic weighing, which generate values for BFM, body fat 

percentage (%BF) and LBM or fat-free mass (FFM). Anthropometric indices of body fat 

distribution include WC and the waist-to-hip ratio (WHR). The former has been described as a 

superior proxy of VAT accumulation compared to the latter (211, 266) despite limitations that 

are clearly apparent in Figure 1. 

 

Imaging techniques such as computed tomography (CT) or magnetic resonance imaging (MRI) 

have been used to assess visceral and subcutaneous adipose tissue areas or volumes specifically. 
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Other methods to assess visceral and subcutaneous fat accumulation also may include 

ultrasonography or dual-energy x-ray absorptiometry. Addressing the strengths and limitations of 

each measurement technique is obviously beyond the scope of the present article. However, as a 

general rule, imaging techniques assessing either body composition (i.e. dual-energy x-ray 

absorptiometry) or body fat distribution (i.e. computed tomography, MRI, ultrasound) generally 

are considered superior measurements compared to anthropometric indices such as body weight 

or BMI (for body composition), and WC or the WHR (for body fat distribution). Limitation in 

the ability to adequately assess body fat distribution is one of the factors possibly contributing to 

discrepancies among available studies on the relationship between body fat distribution and 

androgens in men and women. From a lexical standpoint, the present article uses the term 

‘visceral obesity’ when visceral fat tissue was examined specifically. The term ‘abdominal 

obesity’ is used when anthropometric measurements were used. 

 

Additional methodological issues pertain to the assessment of androgens levels. With the 

initiative of the Endocrine Society, a comity has been formed to define objectives and develop a 

consensus on the issue of testosterone assay standardization (226). A full discussion of androgen 

measurement methods is beyond the scope of this article, but other authoritative papers have 

examined this issue (43, 225, 261). Briefly, testosterone concentration may be assessed by 

immunoassay or liquid chromatography tandem-mass spectrometry (LC-MS/MS) (225). 

Radioimmunoassays and chemiluminescent immunoassays can be performed directly in the 

matrix examined (direct assays) or with prior extraction or chromatography (indirect 

immunoassays) (225). Immunoassay disadvantages are attributed mainly to specificity issues, 

usually problems with the antiserum or antibody. Sensitivity may also be lacking because of the 
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low affinity of anti-steroid antibodies. Cross-reactivity may occur with structurally related 

compounds and interference of steroid binding proteins. These issues were largely improved 

with the use of indirect immunoassays (261). The use of LC-MS/MS methodology has increased 

in steroid hormone analysis because of its high analytical specificity (43). LC-MS/MS methods 

for testosterone and other steroid hormones were reviewed previously (43). The conclusion is 

that LC-MS/MS methods report values that are close to true testosterone concentrations. 

Unfortunately, no reference methods are available for androstenedione and DHEA, so the 

trueness of these methods could not be estimated in that review (43). Some authors suggested 

that if the steroid assayed is in high concentration or specific, a well validated immunoassay 

method is completely reliable. Testosterone in men is a good example (261). For example, 

Taylor et al (261) conducted a large comparative study on testosterone measurements by a well-

standardized immunoassay compared to mass spectrometry in serum samples of more than 3,000 

men. They concluded that testosterone measurements by immunoassay offered good accuracy at 

all concentrations found in both eugonadal and hypogonadal men. However, in children and 

women, where low levels of androgens are seen or when structurally similar steroids may 

interfere, the LC-MS/MS method offered more accurate and reliable quantitation (261). Despite 

the generally accepted superiority of LC-MS/MS for measuring testosterone in females, a recent 

study comparing total testosterone assays in women concluded that various LC-MS/MS methods 

still showed variability and poor precision at low levels, and that the results obtained by 

immunoassays and LC-MS/MS were comparable (163). LC-MS/MS has been proposed as the 

preferable method in the Endocrine Society Position Statement (163). Consequently, the majority 

of experts in the field emphasize the importance of assay validation and quality control, 

independently of the assay technology (261). Also, the majority of circulating testosterone is 
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bound to sex hormone binding globulin (SHBG) (60-65%) or albumin (35-40%)(72). The 

fraction bound to SHBG is not accessible to tissues whereas testosterone bound to albumin is 

(72). This physiological situation led to the employment of various means for expressing 

circulating testosterone levels in studies: total testosterone, bioavailable testosterone (free and 

bound to albumin) and free testosterone. Free testosterone may be assayed directly or indirectly, 

or calculated with law of mass equations (225). The free androgen index (FAI) is also widely 

used, which is a testosterone/SHBG ratio (225). In general, reliability of androgen assessments 

will rely partly on the appropriateness of the methodology used (225), which may have 

contributed to discrepancies in the literature. The importance of the methodological issues 

pertaining to the measurement of body composition, body fat distribution or androgen levels will 

be emphasized where relevant. 

 

Regarding study design, the term “observational study” used in the section on androgens in men 

refers to intervention protocols (testosterone replacement therapy, TRT) in a single cohort 

follow-up. Outcomes are obtained by comparing the baseline and final values within the same 

individuals. Randomized controlled studies are based on the baseline random attribution of 

patients to 2 separate groups, a group receiving the treatment and the other receiving no 

intervention or a placebo (the control group). Outcomes are generated by comparing the 

intervention group values to the control group values. The term “observational study” in the 

section on androgens in women refers to cross-sectional or longitudinal data. It is not linked to 

any intervention protocol.  

 

 



Manuscript CPHY‐17‐0009 - Revised, Page 10 

ANDROGENS AND BODY FAT DISTRIBUTION IN MEN 

Endogenous androgens 

Studies on androgens and body fat distribution in men generally are consistent in showing that 

obesity as well as increased accumulation of abdominal, visceral fat and the metabolic syndrome 

are associated with proportionally lower levels total testosterone, as evidenced from both cross-

sectional and longitudinal studies (26, 27, 105, 162, 200). There is a linear age-related decrease 

in serum testosterone with concomitant increases in SHBG concentrations starting around age 

20-30 years in men (151) that may, in some individuals, create a relative state of hypogonadism 

which is commonly associated with abdominal obesity and the metabolic syndrome (162, 233). 

Convincing evidence for a higher risk of abdominal obesity and metabolic syndrome in men with 

lower total testosterone levels also was provided in a meta-analysis of 20 published studies 

where the presence of metabolic syndrome features predicted low total testosterone levels even 

after statistical adjustment for age and BMI (59). 

 

The association between circulating levels of other androstane C19 steroids is less convincing. 

For example, in a review on DHEA and obesity (271), we found that in men, most studies 

reported a significant negative association between levels of unesterified DHEA and abdominal 

fat accumulation (62, 95, 269). When focusing on computed tomography measurements of VAT 

area, a negative correlation is also observed with DHEA (62, 269). Regarding the sulphate ester 

(DHEA-S), however, negative association were reported in some studies (62, 95), whereas other 

reported the opposite (219, 269). The same is true for studies using CT (62, 269). Some of the 

discrepancies observed in available studies on DHEA and body fat distribution may partly be due 
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to variation in the ability of peripheral sites such as adipose tissues to convert DHEA into more 

potent steroids, as discussed later in this article. 

 

The physiological mechanisms underlying the association between low testosterone and 

(abdominal) obesity have been reviewed elegantly elsewhere and this relationship appears to be 

bidirectional (103). The first causal direction is illustrated by the fact that variation in body 

weight relates to concomitant changes in total testosterone, SHBG and free testosterone levels. 

For example, a review of 15 weight loss studies (103) indicated that the increase in circulating 

total testosterone was directly proportional to the amount of weight lost (or to the decrease in 

BMI) during the intervention. Not all studies found significant increases in free testosterone with 

weight loss, but apparently required more substantial weight loss (103). In a study where male 

sedentary monozygotic twins were required to achieve an energy deficit of 1,000 kcal per day 

through standardized submaximal cycle-ergometer exercise during 93 days, a 5.0±2.2 kg weight 

loss and a 4.9±2.3 kg fat mass loss were observed (213). This intervention led to significant 

increases in total testosterone (from 12.3±4.1 to 17.4±5.1 nmol/L). Interestingly, males that lost 

the most visceral fat in response to the intervention had higher baseline testosterone levels and 

significant correlations were observed between changes in visceral fat or total BFM on the one 

hand and changes in testosterone on the other. Moreover, twin resemblance observed in baseline 

testosterone levels was not maintained after the intervention, suggesting that important changes 

in body composition and fat distribution superseded genetic determinism in this case (213).  

 

The second causal direction is that low testosterone levels may underlie fat mass accretion and 

the development of abdominal obesity and concomitant metabolic alterations (103). As one 
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example, we investigated the impact of baseline hormone concentrations on the susceptibility to 

gain weight and BFM in response to a standardized 840 kcal per day overfeeding protocol over 

100 days, leading to an average gain of 5.4±1.9 kg in a sample of 24 young men (36). High 

baseline testosterone was one of the significant predictors of lower BFM accretion in response to 

the intervention. Other markers of androgenic status also predicted the response to overfeeding 

including baseline DHEA levels, which were negatively related to body weight and BFM gain, 

and concentrations of androgen metabolite androstene-3α,17βdiol-glucuronide, which were 

positively related to these responses (36). The relevance of androgen metabolism in abdominal 

obesity is addressed later in this review.  

 

Overall, a low androgenic status is reflected by reduced total testosterone but also by lower 

concentrations of free testosterone or other androstanes such as DHEA or DHEA-S, as well as 

lower SHBG. In most reports, low androgenic status is a frequent feature in men with abdominal 

obesity and the metabolic syndrome. From the causality standpoint, this relationship seems to be 

bidirectional because body fatness fluctuation modulates testosterone levels and differences in 

testosterone predict modulation of fatness over time through time or in various weight-modifying 

intervention protocols. 

 

Androgen replacement therapy in men 

Abundant evidence is available in the scientific and clinical literature regarding the effect of 

androgen replacement therapy on body composition and distribution in various patient 

populations. Two meta-analyses examining data from available randomized clinical trials (RCT) 

and observational studies showed that testosterone replacement therapy (TRT) was associated 
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with a significant decrease in BFM and an increase in LBM (57, 58). Within these meta-

analyses, study sizes, variability in patient population, treatment dosing and methods for 

evaluating body composition conferred small to medium treatment effect for BFM and LBM 

respectively. This was consistent with a meta-analysis published 11 years before on RCTs in 

pooled hypogonadal and eugonadal middle-aged and aging men using testosterone, testosterone 

ester and dihydrotestosterone (DHT) preparations (138). Yet, the effect of TRT on total weight, 

body mass index (BMI) and WC is not as consistent in the literature. The RCT meta-analysis by 

Corona et al. revealed no TRT effect on these outcomes (58), whereas the meta-analysis of 

observational studies reported a significant time-dependant effect, which may account for these 

discrepancies (57). The pooled baseline BMI values of patients enrolled in the studies included 

in both meta-analyses differed significantly (57). The observational studies tended to have a 

longer duration of treatment (mean 18 months) whereas available RCTs were limited to shorter 

duration (<12 months) and may not have captured the effect of TRT on WC and weight (57, 58). 

Indeed, with long term TRT, a 10.6 to 14.3 cm decrease in WC was reported and total weight 

loss averaged 17.4 to 30.5 kg, when stratifying by baseline class of obesity in a registry cohort of 

obese men treated with testosterone undecanoate over 5 years (249). This compares to a change 

in WC of 6.23 cm and weight loss of 3.5 kg reported in the observational meta-analysis (57). 

Other baseline characteristics of the study populations differed, with observational studies 

enrolling younger patients (average of 51.7±6.1 years) with more severe hypogonadism as 

determined by baseline testosterone levels (average of 7.2 nmol/L vs. 11.6 nmol/L in pooled 

RCTs) and higher rates of T2D (57). This may reflect more rigid entry criteria for the RCTs in 

which the effect of TRT on body composition, WC and total weight was not the primary 

outcome. However, these meta-analyses still demonstrated a greater treatment effect in terms of 
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WC, weight loss and BMI in younger patients (<60 years) with lower baseline testosterone 

measurements and in patients with diabetes mellitus or obesity (BMI >30 kg/m2) at baseline (57, 

58). 

 

Regarding indirect markers of visceral adiposity and the MetS, the same meta-analyses reported 

changes in blood lipid parameters, glucose metabolism and blood pressure. There were no 

statistically significant changes in total cholesterol, triglycerides and high-density lipoprotein 

(HDL) cholesterol in the pooled population of patients receiving TRT within RCTs (58). 

However, when placebo-controlled TRT trials in hypogonadal patients are considered (baseline 

total T <12 nmol/L), triglycerides and total cholesterol decreased significantly (58). This finding 

was also supported in observational studies, which showed a significant decrease in total 

cholesterol (-0.83 mmol/L, p<0.0001), triglycerides (-0.47 mmol/L, p<0.0001), and a significant 

increase in HDL cholesterol (0.12 mmol/L, p<0.01) (57). Glucose metabolism is improved as 

well with TRT in studies including normoglycaemic and hyperglycaemic patients. Fasting 

glucose (44, 57, 58) and HOMA-IR (57, 58) were reduced in the 2 RCT meta-analyses and in 

pooled observational studies with greater effect amongst patients with MetS and obesity. These 

findings are supported by another meta-analysis and systematic review of TRT effect in men 

with T2D and metabolic syndrome (MetS) that also reported a significant decrease in insulin 

resistance with studies using HOMA1, but not with studies using HOMA2 (116). Glycated 

hemoglobin A1c did not differ significantly in the meta-analysis specifically examining patients 

with T2D, but this may reflect the relative short duration of the trials examined (44, 116). 

Discrepancies on the effect of TRT on blood pressure appeared between study designs with no 
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changes in systolic or diastolic blood pressure reported in pooled RCTs (58), but a decrease in 

both parameters was shown in observational studies (57). 

 

There was no association between BFM and LBM outcomes and final total testosterone level, 

although within the studies represented in the RCT meta-analysis, testosterone levels in the 

treatment groups normalized and were significantly higher when compared to placebo and 

baseline testosterone measurements (58). It was noted also that intramuscular and transdermal 

preparations were related to higher testosterone levels at follow-up compared to oral 

preparations. Improvements of body composition were significant with the use of transdermal 

and parenteral formulations, but transdermal gel preparations produced significantly better 

results than patches in short-term studies (275). Among the numerous types of parenteral 

preparations, intramuscular (IM) testosterone undecanoate generated a greater effect. No 

improvements in BFM or LBM were noted in RCTs using oral testosterone formulations (58). 

 

Large RCTs in various hypogonadal populations examining the effect of TRT on body 

composition have not been reported and are less likely to occur in the future as the focus of TRT 

has now shifted to cardiovascular safety and mortality outcomes. RCTs and observational studies 

with similar baseline patient characteristics and treatment formulation are lacking, making the 

broad interpretation of outcomes more challenging. As a result, it is currently difficult to draw 

formal conclusions to guide clinical practice in using TRT to alter body composition in the 

treatment of obesity and metabolic disease. Even if RCTs contribute to a larger extent to 

scientific proof than observational studies, a thorough analysis may still be useful to understand 

the variable and conflicting results within existing literature, specifically in terms of WC, which 
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is a better clinical marker of VAT accumulation and has the largest effect on MetS. The next 

sections present additional analyses of existing literature to specifically assess the effect of TRT 

on WC and VAT accumulation. 

 

Scientific literature on TRT, weight, BMI and abdominal obesity in men 

To delineate the effects of TRT on body composition and fat distribution, we conducted an 

extensive PubMed search with the following key words and MESH terms: ‘visceral/adipose 

tissue’, ‘body composition’, ‘fat mass’, ‘testosterone/treatment/replacement 

therapy/supplementation’, ‘clinical trial’, ‘randomized clinical trial’ and ‘observational’ to the 

end of August 2017. We also screened the references in the 3 previously cited meta-analyses (57, 

58, 138) and the bibliographies of all other additional single studies. Studies were included after 

1992 due to variability of testosterone assay reporting and lack of data on WC, visceral adipose 

tissue and BFM in older trials. English-language observational studies and RCTs were included, 

and case reports and case series were excluded. Studies met inclusion if they comprised the 

following criteria: (i) available baseline total testosterone measurement; (ii) outcome reporting of 

WC, weight or BMI as a primary or secondary outcome; (iii) presence of a testosterone-only 

subgroup in studies using other androgen formulations (such as DHT) or concomitant therapies 

with other androgen-modifying agents (finasteride, clomiphene, hCG, anabolic steroids). Studies 

reporting the effects of TRT on female or transgendered patients and patients with HIV were 

excluded from this section of the article. 

 

Baseline patient characteristics including age, BMI, WC, total testosterone, comorbidities, 

testosterone formulation and treatment duration as well as study design are summarized in 
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Tables 1 and 2. Hypogonadal status was determined by a baseline total testosterone level below 

the lower limit of the normal range in the testosterone assay used if available, or less than 11 

nmol/L if not reported, per Endocrine Society Guidelines (22). Measurements of free or 

bioavailable testosterone and SHBG were not included due to limited reporting amongst studies. 

Our primary outcome was WC with additional analysis of treatment effect on weight, BMI, SAT 

and VAT. Outcomes were described qualitatively as “decrease,” “no change” or “increase.” To 

establish a qualitative change, a statistically significant difference was required post-treatment 

between the TRT group and the placebo group for RCTs. For observational studies, the effect 

was determined based on results compared to baseline as determined in each individual study.  

 

A total of 84 studies that tested the effect of TRT on body composition met all our selection 

criteria. Forty-seven of these studies were RCTs (Table 1) including 38 double-blind 

randomized placebo-controlled studies, 5 double-blind randomized placebo-controlled crossover 

studies and 3 studies of single-blind randomized placebo- controlled crossover, single-blind 

randomized placebo-controlled and open-label randomized controlled protocols. Thirty-seven 

were observational studies, of which 34 had prospective designs (Table 2). The studies varied 

widely with respect to testosterone preparation, delivery method and dose, as well as protocol 

design, measured endpoints and baseline characteristics of patients including age (range of mean 

20.8- 77.6 years). Baseline testosterone levels ranged from 2.5 to 21.6 nmol/L and various 

testosterone assays were used. Represented patients were heterogeneous in terms of medical 

comorbidities and indications for TRT with 61 studies including patients meeting criteria for 

hypogonadism and 29 studies including patients with features of MetS or T2D (Tables 1 and 2). 

One study was conducted in patients treated long term with exogenous glucocorticoids for 
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respiratory conditions (74), 3 studies included patients with established cardiac disease (64, 176, 

182) and 2 studies were conducted in patients with chronic obstructive pulmonary disease 

(COPD) (49, 252).  

 

Effect of TRT on body weight and BMI 

Baseline mean reported weight and BMI for patients were included in the 34 RCTs and 28 

observational studies that documented weight outcomes. Patients were within the overweight and 

obese categories with the exception of 2 RCTs, including one that enrolled patients with COPD 

(252, 275) and one observational study (189). With respect to measured weight, 2 RCTs reported 

a decrease after TRT (39, 146), 25 reported no change (2, 17, 35, 37, 45, 64, 76, 94, 108, 120, 

132, 135, 175, 179, 180, 182, 190, 195, 240, 242, 248, 249, 252, 253, 304) and 7 reported an 

increase (49, 101, 102, 169, 176, 238, 275). In contrast, a higher proportion of observational 

studies reported weight loss with 13 studies showing a decrease from baseline (5, 99, 100, 122-

124, 228-230, 232, 276, 310, 311). No changes in weight were reported in 9 studies (71, 143, 

150, 187, 221, 227, 247, 297, 320) and weight gain was observed in 6 (23, 41, 189, 298, 299, 

313). Similar results were seen with respect to BMI. Among the 35 RCTs that documented BMI, 

only 2 reported a decrease (146, 182). The majority of RCTs reported no change in BMI (1, 2, 

10, 11, 35, 39, 64, 76, 85, 108, 109, 113, 120, 132, 135, 144, 147, 148, 155, 175, 179, 180, 188, 

190, 238, 240, 248, 253, 260) and a small number reported an increase (45, 101, 102, 169). 

Among the 24 observational studies that documented BMI, the majority of them reported a 

reduction in BMI (5, 99, 100, 122-124, 159, 207, 228-230, 310, 311) and a small number 

reported no change (9, 143, 150, 184, 186, 206, 221, 317). Two studies reported an increase in 

BMI (189, 298). Where both post-intervention weight and BMI were reported, the results were 
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largely concordant. Figure 2 illustrates the contrast between RCTs and observational studies. 

Interestingly, decreases in weight or BMI were observed, independent of study design, in studies 

recruiting men with a combination of a baseline BMI in the obesity range and a low baseline 

total testosterone (Tables 1 and 2). Corona et al. previously reported no effect of TRT on weight 

or BMI amongst RCTs, however the studies included in the analysis generated pooled data of 

BMI in the overweight range and/or eugonadism at initiation of therapy (58).  

 

As mentioned, duration of therapy also may influence weight outcomes. Treatment duration of 

studies that showed weight gain or increased BMI did not exceeded 6 months (41, 101, 102, 189, 

238, 298, 299, 313) and most of these studies lasted 3 months or less (23, 49, 169, 176, 275). In 

contrast, observational studies reporting weight loss and reduced BMI ranged in treatment 

duration from 3.0 to 102.9 months (5, 99, 100, 122-124, 228-230, 232, 276, 310, 311). This 

observation may be explained by the fact that weight and BMI cannot differentiate between 

LBM and BFM and that increases in LBM may occur before the decrease of BFM, thus causing 

a transient increase or neutral effect on overall measured weight. For example, Corona et al. 

postulated that opposing effects of TRT causing an increase in LBM and reduction in BFM to the 

same degree could lead to a null effect on weight and BMI (58). Observational studies showing a 

decrease in weight had a mean treatment duration of 56 months, suggesting that the RCTs 

included in Corona et al. did not generate significant results due to insufficient treatment 

duration. Indeed, both in our analysis and that of Corona et al. the mean treatment duration of 

RCTs where a weight neutral or gain effect was demonstrated was 9.6 months. The null effect on 

weight might occur between 6 to 12 months. Therefore, extending trial duration is needed to 

observe decreases in BFM that are superior to LBM increases. This hypothesis is further 
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supported by a study from Hackett et al. (120). Treatment with testosterone undecanoate in a 

patient population with T2D demonstrated no significant change in body weight or BMI after 7.5 

months, however after treatment extension to 13 months, a significant decrease in both body 

weight and BMI was reported. The concomitant changes in LBM and BFM with TRT also 

suggest that a more specific measurement of body composition may be required to assess the 

metabolic effects of treatment. Consideration of the WC and changes in VAT through imaging 

methods could logically differentiate the effects of TRT on body composition from those more 

specifically affecting body fat distribution and metabolic outcomes.  

 

Effect of TRT on Waist Circumference  

WC is used frequently as a surrogate marker for VAT (268). Measurements of WC were 

documented in 25 RCTs and 19 observational studies with the majority including patients with a 

WC meeting MetS criteria. The majority of RCTs displayed a neutral effect (1, 2, 37, 64, 76, 

101, 102, 108, 113, 132, 135, 144, 175, 179, 180, 188, 242, 253, 260), but a small number of 

studies showed a decrease in WC (10, 11, 120, 146-148). Among observational studies, all 

reported that TRT induced a decrease in WC (9, 24, 99, 100, 122-124, 131, 206, 207, 227-230, 

276, 310, 311, 320), with the exception of one study reporting a WC increase (298) and one 

group within a parallel study that had a WC within normal limits prior to treatment showing no 

change (24). These observations are consistent with previous meta-analyses (57, 58). The 

contrast in treatment effects on WC between RCTs and observational studies is illustrated in 

Figure 3. 
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To further investigate the importance of baseline levels of obesity and testosterone, we plotted 

the values obtained from RCTs and observational studies and found a significant negative 

correlation between baseline BMI and baseline testosterone (Figure 4). This association with 

data obtained from many independent studies is consistent with the one usually observed in 

cross-sectional samples. Interestingly, the studies that reported a significant loss of WC in 

response to TRT generally segregated to the left of the regression, suggesting that independent of 

trial design, studies enrolling obese men with low baseline total testosterone are more likely to 

report a decrease in WC in response to TRT (Figure 4). A very similar relationship is observed 

when plotting values of baseline WC and baseline testosterone level (Figure 5). In both analyses, 

it is striking that none of the studies involving men with baseline testosterone levels above 11 

nmol/L reported a significant changes in WC (Figures 4 and 5). TRT appears to be effective 

only in men with the combination of (abdominal) obesity and hypogonadism. Relatively similar 

results were obtained when testing this association in RCTs and observational studies separately. 

For example, when only RCTs are considered, the studies reporting a significant WC decrease 

consisted of patients with BMI in the obesity range (>30 kg/m2) and baseline total testosterone 

suggestive of hypogonadism. Again, none of the studies reporting a favourable outcome on WC 

had baseline testosterone levels above 10 or 11 nmol/L. In this case, however, some of the trials 

examining patients with low testosterone at baseline reported no impact of the treatment. It is 

important to note that these studies also enrolled a large proportion of non-obese men, which 

could have skewed pooled WC outcomes. No relationship between age and baseline total 

testosterone level was observed despite the known decline in testosterone levels with age (not 

shown). This likely is due to a selection bias of younger patients with hypogonadism in available 

studies. Therefore, firm conclusions cannot be reached as to whether older age is a contributing 
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factor to the absence of effect on WC seen in RCTs. Overall, findings of these analyses indirectly 

suggest that enrolling obese men or abdominally obese men with low initial testosterone levels 

likely increases the probability of detecting a significant effect of TRT on WC. 

 

As opposed to what is observed with body weight and BMI, short-term studies are sufficient to 

detect a significant decrease in WC with TRT. In fact, many short-term RCTs lasting 9 months 

or less (11, 120, 146-148) reported significant statistical differences in WC between the 

treatment and control/placebo groups while a considerable number of RCTs showed no effect 

with longer follow-up periods up to 12 months (1, 2, 37, 64, 113, 132, 144, 253, 260). Studies 

examining longer treatment duration would contribute to a greater effect size of TRT on WC. 

However, extending placebo-based treatments in hypogonadal patients would increase the 

likelihood of side effects on reproductive function or the risk of osteoporosis, which is not 

feasible. The differences in the kinetics of the body composition vs. WC response to TRT further 

suggests that WC and other imaging modalities may offer more information in assessing the 

impact of TRT. 

 

Effect of TRT on visceral and subcutaneous adipose tissue 

There were 13 RCTs and one observational study (150) that assessed the effect of TRT on SAT 

and on VAT directly or in addition to other anthropometric markers such as WC. Measurements 

were performed by multiple modalities including magnetic resonance imaging (MRI) (2, 101, 

108, 111, 188), dual-energy x-ray absorptiometry (DXA) (135, 190), computerized tomography 

(CT) (135, 150, 179, 180, 190, 253) or ultrasonography (85). Among these studies, results are 

equivocal with respect to the effect of TRT on SAT with studies showing either a reduction (101, 
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108, 111, 150, 188, 253) or no change (2, 85, 135, 179, 180). With VAT, the effect of TRT 

appears to be neutral as 75% of studies reported no change (85, 101, 108, 111, 135, 150, 188, 

190, 253). Although 3 studies did find a correlation between TRT and decreased VAT, they did 

not reach statistical significance with respect to the observed decrease in WC (2, 179, 180). 

Furthermore, decreases in VAT were in the order of -0.2, -0.4, -0.6 kg respectively and may only 

have been significant due to demonstrated increases in VAT in the placebo groups. It is difficult 

to base conclusions on these data due to the limited number of studies assessing this outcome and 

the heterogeneity among the reports. The studies differed not only in the measurement method of 

adipose tissue, but also in treatment formulations and age of the subjects. Furthermore, most 

studies enrolled eugonadal, non-obese subjects, whom as discussed previously may be less 

responsive to TRT regarding WC. Further studies assessing the effect of TRT on VAT and SAT 

are needed as there measurements previously  have been shown to be more accurate in assessing 

visceral obesity than WC (266). 

 

Effect of TRT on body composition in specific patient subgroups  

In addition to evidence of a treatment effect in obese, hypogonadal subjects, our analysis 

revealed that all RCTs showing a significant decrease in WC enrolled men with metabolic 

impairment, either type T2D (120, 147, 148) or MetS (10, 11, 146) and the majority of studies 

reporting no effect of TRT on WC included subjects without metabolic complications (1, 2, 37, 

64, 101, 102, 132, 135, 179, 180, 188, 242, 253, 260). Only 5 studies with MetS or T2D subjects 

showed no effect (76, 108, 113, 144, 175). A similar result is noted among observational studies, 

where 10 involved a patient sample with a form of metabolic impairment and at least half had a 

complication of metabolic disease (9, 24, 99, 100, 122-124, 131, 206, 207). Three studies did not 
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quantify the number of patients with a metabolic complication (227, 230, 310) and one study 

enrolled men with postsurgical hypogonadotropic hypogonadism (276). Furthermore, 3 studies 

had a considerable percentage (~30-42%) of patients with T2D in their sample, but did not 

document presence of MetS in the absence of T2D (228, 229, 311). Only a single observational 

study reporting an effect did not include a large proportion of metabolic disease (14% T2D) 

(320). The Testim registry based in the US population has assessed the effect of TRT in a patient 

population with MetS and non-MetS. Concordant with the observations presented here, they 

reported a decrease in WC in the MetS group but no change in the non-MetS group (24). 

 

Impact of androgen formulation 

The various formulations of testosterone replacement used across studies introduce further 

heterogeneity that could impact the conclusion on the effect of testosterone. Among the RCTs 

examined, many formulations including oral testosterone undecanoate, transdermal testosterone 

gel and patches and intramuscular testosterone undecanoate, testosterone enanthate, testosterone 

cypionate and mixed esters were utilized. The same formulations were used within observational 

studies in addition to intramuscular testosterone cyclodextrin. In both RCTs and observational 

studies, intramuscular routes of therapy were associated more frequently with decreases in WC 

compared to oral or transdermal formulations, despite potential concerns about medication non-

adherence that could occur in observational studies with formulations that are self-administered. 

These findings are substantiated further by direct comparison of oral and intramuscular 

testosterone undecanoate whereby the latter was superior in decreasing WC and BFM in 

hypogonadal patients with the MetS (11). Corona et al. also noted no improvement in LBM or 

BFM with oral formulations using pooled data from RCTs but significant improvements were 
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noted with parenteral and intramuscular formulations with testosterone undecanoate leading to 

larger reductions (58). Further heterogeneity is likely found in studies testing intramuscular 

formulations because target testosterone levels differed among publications and not all reported 

peak levels achievement with injections. Based on the limited results available, we suggest that 

although oral, parenteral and intramuscular testosterone formulations are all able to yield 

therapeutic testosterone levels, intramuscular testosterone undecanoate results in greater changes 

in LBM and BFM.  

 

Summarizing data on TRT, body composition and body fat distribution in men 

The present review indicates that controlled studies on TRT report a decrease in BFM and an 

increase in LBM in hypogonadal men (total testosterone level <11 nmol/L) with obesity (BMI 

>30 kg/m2) and metabolic impairments. These findings were more prominent when considering 

WC, which is a marker of body fat distribution. However, the limited number of studies and 

differing protocols impair our ability to draw similar conclusions with respect to the effect of 

TRT on VAT and SAT measured by imaging techniques. Our findings are consistent with 

several conclusions within 3 previous meta-analyses (57, 58, 138), which included RCTs and 

observational studies that were analysed as separate pooled populations. Our analysis provides a 

novel perspective suggesting that the effects of TRT on body composition in observational 

studies but not in RCTs are likely the result of treatment duration (>12 months) rather than 

specific protocol design issues. A few limitations may be pointed out in our analysis. Our 

identification of articles, although inclusive, was not conducted in a systematic manner. 

Moreover, due to limited availability of patient characteristics in many studies, it is also possible 

that some patient samples overlapped, particularly in the prospective registry studies. In many 
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cases, the studies evaluated did not include anthropomorphic indices or body composition as a 

primary outcome and, therefore, may not have been sufficiently powered to achieve statistical 

significance. Most studies did not include weight loss as a targeted outcome or initial selection 

criterion, which also may have affected the results. Finally, due to the heterogeneity of studies, 

our analyses were limited mostly to qualitative assessments of significance. Further studies are 

required prior to considering TRT as a specific, sustainable treatment for obesity or abdominal 

obesity, even in hypogonadal populations (228). In addition to inconsistent literature, safety 

concerns over TRT in obese patients and complications associated with the MetS warrant caution 

of its use in these populations. Four studies published within the last 6 years reported an increase 

of cardiovascular events among men who were treated with testosterone, prompting the issuance 

of a black box warning on testosterone formulations by the Food and Drugs Administration 

(FDA) citing increased risk of myocardial and other adverse cardiac events (15, 96, 294, 306). 

The Androgen Study Group has since challenged the conclusions of these studies over concerns 

of statistical analysis and study methodology. A large retrospective observational case-control 

study reported no association between the risk of myocardial infarction and all current or past 

use of testosterone (86). Furthermore, TRT actually may reduce all-cause mortality, risk of MI 

and stroke in hypogonadal patients (237). Testosterone is known to induce erythropoiesis, with 

increases in hemoglobin and hematocrit occurring in a linear dose-dependent manner (63). 

Because obesity is also a known risk factor for venous thromboembolism, thorough monitoring 

is required with TRT in this population (236). Despite these ongoing controversies and concerns, 

the high prevalence of overweight and obesity in North American, European and South Asian 

populations require scientific and medical attention. Our analysis further contributes to the 
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literature examining the role of testosterone as a potential treatment for abdominal obesity in 

select male populations. 

 

Regarding supraphysiological levels of androgens, a recent literature review reported on the 

effects of anabolic-androgen steroids (AAS) use on human health (210). Briefly, AAS use has 

been associated with cardiovascular side effects such as cardiomyopathy, hypertension and an 

increased risk of myocardial infarction, stroke, sudden death as well as conduction and 

coagulation abnormalities (210). AAS is reported to cause changes in heart morphology and 

histology including cardiomegaly, fibrosis and myocytolysis (210). AAS is also related to altered 

blood lipids mainly involving increased LDL-C and a decreased in HDL-C (210). Endothelial 

dysfunction may be implicated as well because a study demonstrated increased nitrous oxide 

production and oxidative stress when supraphysiological testosterone levels were reached (245). 

Polycythemia is a frequent adverse event reported, as androgens stimulate erythropoiesis by 

increasing sensitivity to erythropoietin, suppressing hepcidin transcription, and increasing iron 

availability for erythropoiesis (210). Psychiatric symptoms are also reported in AAS abuse 

groups including increased in hypomanic or manic syndromes, the latter which are characterized 

by irritability, aggressiveness, exaggerated self-confidence, hyperactivity, reckless behavior, and 

occasional psychotic symptoms (210). Other adverse effects such as hypothalamic-pituitary-

thyroid axis suppression and increased risk of tendon rupture are associated with AAS (210). 

Deleterious effects on the liver and kidneys may also be observed but the association remains to 

be clearly established. Imperlini et al. (137) have shown that supraphysiological T or DHT 

affected many molecular pathways related to inflammation, atherosclerosis, calcium homeostasis 
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alterations and apoptosis (137). In a cross-sectional study, AAS users had significantly higher 

VAT measured by DXA and lower insulin sensitivity compared to the control group (218).  

 

ROLE OF ANDROGENS IN FEMALE BODY FAT DISTRIBUTION 

As previously discussed, women preferentially tend to accumulate fat in the gluteo-femoral area 

compared to men who tend to have more adipose deposition in the abdominal region (196). 

Differences in sex steroid hormone levels, mainly androgens and their ratios to estrogens, are 

thought to be the cause of differences in fat distribution, although fat accumulation also may 

influence hormone levels conferring a more androgenic profile (185). This is supported by 

hormonal and physical changes that occur during menopause, where reductions in estrogen 

production in the face of preserved androgen production from the ovaries and a shift toward 

increased adrenal androgen production likely cause increases in the testosterone/estrogen ratio. 

These hormonal shifts are accompanied by changes in body composition and body fat 

distribution consistent with accelerated visceral fat accumulation following menopause (171). 

Furthermore, in both pre- and post-menopausal women, abdominal obesity has been associated 

with increases in free testosterone levels and lower sex hormone binding globulin (SHBG), 

conferring a more androgenic profile (88). Low circulating levels of SHBG also are associated 

with accumulation of visceral abdominal fat and a pattern of metabolic complications similar to 

those in men (66, 121, 152, 270, 273). Along with other evidence from women with polycystic 

ovary syndrome (PCOS, see section 3.3 below), the documented sexual dimorphism in fat 

distribution and the menopause-related increases in abdominal adiposity led to a widespread 

assumption that high androgens increase abdominal fat and VAT accumulation in women. 
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However, reports on this relationship are far from unanimous. This section of the article reviews 

studies that focused on androgens and body fat distribution in women. 

 

Scientific literature on androgens and body fat distribution in women 

An extensive PubMed search using the following keywords and MESH terms was performed: 

‘visceral/adipose tissue,’ ‘body composition,’ ‘women/female,’ ‘pre-/peri-/post-/menopause’, 

‘testosterone/androgen,’ and ‘polycystic ovary syndrome/PCOS’ up to August 2017. We also 

screened and selected articles from each of the references of reports selected in this query. 

Studies were included were English-language RCTs or observational with case reports and case 

series excluded. To be included, studies needed to meet the following criteria: (i) available 

assessment abdominal fat or VAT accumulation using anthropomorphic measurements (WC or 

WHR) or imaging modalities; (ii) report on the relationship between body composition and total 

testosterone level, free testosterone levels, androstenedione, dehydroepiandrosterone (DHEA) or 

SHBG concentrations. Studies describing the effects of androgens in transgendered patients or 

patients with androgen excess syndromes other than PCOS such as isolated hirsutism, congenital 

adrenal dysplasia or androgen-producing tumors were excluded.  

 

Study characteristics including cohort size, methodology to measure of body fat distribution, 

correlation coefficient between hormone levels and adiposity variables as well as statistical 

significance for total testosterone, free testosterone, androstenedione, in women with PCOS and 

mixed studies are summarized in Tables 3 to 7. Androgen measurements were interpreted in the 

context of normal range values for the specific assays used in each study. PCOS status was 

confirmed by criteria outlined in each study or through Rotterdam Criteria (90) unless explicitly 
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stated. We further cross-referenced average BMI (per WHO classification) (46) to determine if 

this value influenced study outcomes. Our primary goal was to determine whether a correlative 

relationship exists between circulating androgen levels and abdominal fat accumulation in 

women. 

 

Androgens and body fat distribution in women with no indication of androgen excess 

As shown in Table 3, a total of 21 cross-sectional and 2 longitudinal studies tested the 

association between total testosterone level and abdominal fat with variable results. Of the 

smaller cross-sectional studies, 9 (47, 51, 79, 88, 152, 153, 199, 203, 208, 315) found no 

significant correlation between testosterone levels and body fat distribution indices. In contrast, 4 

studies were able to demonstrate a positive association between total testosterone level and body 

fat distribution measurements (48, 54, 70, 87, 106, 199) across different measurement modalities, 

whereas 4 reported negative correlations (6, 67, 69, 282). The data from cross-sectional 

measurements in larger studies also are equivocal. Indeed, in 359 women from the Study on 

Woman’s Health Across the Nation (SWAN) cohort, Janssen et al. reported no correlation 

between total testosterone level and VAT measured by CT (141). Furthermore, cross-sectional 

data from the Mammary Carcinoma Risk factor Investigation (MARIE) cohort which included 

1180 women, showed no association between total testosterone level and WC (168). On the other 

hand, the Shanghai Breast Cancer Study (SBCT), which included 420 women, showed a positive 

association between total testosterone level and WC (40). In the Multi-Ethnic Study of 

Atherosclerosis (MESA) cohort, Vaidya et al. found a positive association between total 

testosterone level and WHR in the cross-sectional baseline data analysis, but they did not find 

any significant correlation between the changes in those parameters over a one-to-three-year 
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follow-up (285). Goss et al. also found no correlation between testosterone and VAT changes in 

53 women enrolled in a 2-year study (114). Taken together, combined evidence from multiple 

studies with varied protocols do not allow a firm conclusion on the relationship between total 

testosterone level and abdominal fat or VAT accumulation at this time. 

 

Table 4 lists the 21 studies examining free testosterone levels and abdominal fat measurements. 

Of these, 7 small cross-sectional studies found free testosterone levels to be positively associated 

with abdominal fat or VAT accumulation in women (47, 54, 88, 119, 129, 141, 161, 168, 203, 

208, 234) but 7 studies found no correlation (6, 47, 67, 139, 140, 152, 282). Interestingly, the 

study by Cao et al. evaluated the correlation between free testosterone levels and abdominal fat 

in an early postmenopausal group and a late postmenopausal group and a significant positive 

correlation was seen only in the former group (47). All cross-sectional studies using large 

cohorts (MARIE, SWAN, MESA, and Seidell et al.) showed a positive association between free 

testosterone level and either WC (168, 234) or VAT accumulation (141, 185). In 2015, Janssen 

et al. examined the relationship between the changes of free testosterone level and the changes of 

VAT in the SWAN cohort over a 4-year follow up and were able to demonstrate a positive 

correlation (141). Furthermore, 2 smaller longitudinal studies found positive associations 

between free testosterone level and VAT accumulation (2-year follow up) as well as abdominal 

fat measured by DXA (5-year follow up) respectively (114, 119). Because longitudinal studies 

and cross-sectional samples in both large cohorts and most small studies show a positive 

correlation, the conclusion that free testosterone level is positively associated with abdominal fat 

and VAT in women seems accurate.  Menopausal status did not seem to influence the correlation 

between free testosterone and VAT, suggesting that even the lower free testosterone level seen in 
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premenopausal, non-hyperandrogenic women may predict abdominal adiposity. Differences in 

the results across multiple studies and inconsistencies in measuring free testosterone and total 

testosterone levels in women illustrate the need for additional studies confirming these findings. 

 

With respect to androstenedione, almost all studies found no significant association between 

circulating levels of this steroid and abdominal adiposity indices (51, 61, 67, 69, 88, 139, 152, 

153, 199, 203, 282) (Table 5). Cross-sectional data from the MARIE cohort generated a non-

significant association (168), as did the small longitudinal study by Goss et al. (114). Only one 

cross-sectional study found androstenedione to be a positive correlate of WC respectively (106, 

199). 

 

Data on DHT is limited due to its being sparsely measured in research studies compared to other 

androgens. However, in the three cross-sectional studies that measured DHT, a significant, 

inverse correlation was noted between DHT and WHR, trunk fat and VAT accumulation 

respectively (61, 198, 203). Further studies are needed to address the significance of the 

apparently consistent negative correlation between circulating levels of the most potent natural 

androgen and abdominal, visceral fat accumulation in women. 

 

Body fat distribution indices of which SHBG concentration has been found to be negative 

correlate include: WHR (88, 152), WC (79), trunk fat measured by DXA (47, 203) and VAT area 

measured by CT (69, 282) or by MRI (70, 208). Only 2 of the selected studies found no 

association between SHBG and VAT accumulation (51, 153). Furthermore, the cross-sectional 

data from major longitudinal studies (SWAN, MARIE, MESA and SBCT cohorts) also found 
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SHBG to be a consistent negative correlate of abdominal fat and VAT accumulation (40, 141, 

168, 285). The body of evidence available allows for the conclusion that SHBG is a consistent 

negative correlate of abdominal fat and VAT accumulation in women. Discussion of the 

pathophysiological basis of this complex association is beyond the scope of the present article.  

 

Androgens and body fat distribution in women with PCOS 

Women presenting with pathologic androgen excess, such as patients with PCOS, have a high 

prevalence of overweight and obesity that is associated with insulin resistance and metabolic 

disorders. Increased activity of steroid-converting enzymes in women with PCOS suggests that 

adipose tissue function is influenced at the tissue level by these sex steroid hormones (see section 

5.2 below). The prevalence of abdominal obesity and high VAT in the PCOS population and 

their relation with the hyperandrogenic state, however are not completely defined (90). Several 

studies have assessed the relationship between androgen levels (total testosterone, free 

testosterone, androstenedione) and abdominal fat or VAT accumulation in women with PCOS 

using various anthropomorphic and imaging modalities (Table 6).  

 

Within the PCOS population, most studies found that total testosterone level was correlated 

positively with the presence and amount of abdominal adiposity (82, 83, 87, 133), with only two 

studies reporting that WC or WHR measurements were not related to total testosterone level (81, 

199). For VAT specifically, only 2 studies (34, 170) have quantified this relationship with 

discordant results. Borruel et al. demonstrated a positive correlation between total testosterone 

level, free testosterone level and ultrasonography-measured VAT accumulation in a cross-

sectional study involving women with or without PCOS and men with similar BMI values (34). 
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Women with PCOS were found to have intermediate thickness of intraperitoneal and mesenteric 

fat depots compared to women without PCOS or men (p<0.01). However, Lord et al. were only 

able to demonstrate a correlation between DHEAS levels and CT-measured VAT areas (170). 

 

Free testosterone level also appears to be positively correlated with abdominal fat and VAT 

accumulation in women with PCOS, with the majority of studies reaching this conclusion (12, 

34, 81, 110, 142, 254, 279) and only 3 studies using CT or DXA reporting no association (112, 

170, 314). Interestingly, Jin et al. found that free testosterone level was associated positively with 

VAT but not with the visceral and subcutaneous abdominal fat ratio (142), suggesting that both 

VAT and SAT may be increased in women with PCOS (see below). BMI category did not seem 

to influence the outcome for VAT. No large cohort or longitudinal studies have been conducted 

to test the relationship between androgen levels and body fat distribution indices, but the data 

from available cross-sectional studies indicate that total testosterone and free testosterone level 

are generally positive correlates of abdominal fat accumulation in women with PCOS. 

 

Only 3 studies assessed the association between androstenedione levels and abdominal fat or 

VAT accumulation. Results are discordant, with two studies using ultrasonography and DXA 

finding no significant correlation (34, 82), and one study using WHR and reporting a positive 

association (16, 199). Additional studies are needed to determine whether androstenedione is a 

significant correlate of abdominal fat accumulation in women with PCOS. 

 

Much like in women with non-pathologic increases in androgens, the type of androgen assay did 

not appear to influence the outcome of the studies in women with PCOS. SHBG, however, again 
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was found to be a consistent negative correlate of abdominal fat and VAT in this population (12, 

16, 34, 81, 112, 170).  

 

Body fat distribution in women with vs. those without PCOS 

As discussed in the sections above, PCOS is characterized by androgen excess and the 

correlation between levels of testosterone or other androgens and abdominal adiposity seems to 

be fairly consistent in women with PCOS. We further tested if there was a higher prevalence of 

abdominal or visceral obesity in this population. Previous studies have found increased 

abdominal adiposity in women with PCOS compared to control groups when matched for 

potential confounders (34, 60, 79, 82, 87, 129, 158, 199, 214, 254, 314) but several studies also 

reported no significant difference (12, 16, 110, 133, 149, 254, 312). Similar patterns occur within 

specific BMI subgroups, where patients with PCOS in the normal, overweight, obese and 

severely obese BMI categories were found to have more abdominal fat than controls in some, but 

not all studies (Table 7). Among specific fat distribution indices, trunk fat mass, the trunk-and-

leg fat ratio, WC and WHR were increased more often in PCOS vs. controls compared to 

findings with specific measurements of VAT (Table 7). This discrepancy could be due to 

methodology itself, as trunk fat measurements do not exclude breast mass which could 

overestimate abdominal obesity prevalence and WHR or WC include subcutaneous adipose 

tissue. All studies specifically examining VAT found no significant difference (14, 80, 142, 177, 

194, 204) between the PCOS and the control group. BMI category did not seem to influence the 

outcome for VAT differences (Table 7). Taken together, combined evidence from multiple 

studies with varied protocols do not allow a firm conclusion that PCOS women have higher 

abdominal and especially VAT accumulation compared to non-hyperandrogenic controls. 
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Summarizing the data on androgens and body fat distribution in women 

Limitations in data and variability among studies make broad conclusions regarding the 

relationship between physiologic states of androgen excess in women and preferential 

accumulation of fat or VAT premature at this time. The discrepancies among existing studies 

may be multifactorial. Methodological issues with the quantitative measurement of androgens 

and lack of normative data on total and free testosterone levels in women may confound these 

data. Assays have been developed to allow for sensitivity and specificity in measuring androgens 

in small quantities in the presence of similar structures, but are less accurate in measuring the 

low levels of testosterone found in premenopausal and postmenopausal women (223). Variability 

in measurements among similar samples using different assays also makes defining differences 

at low concentrations less reliable within patient populations (258, 296). However, comparing 

the androgen assays used in the studies presented within this review, we were unable to define a 

specific effect of assay type on study outcome (data not shown).  

 

Our analysis demonstrates that free testosterone level generally correlates with abdominal 

adiposity and VAT accumulation. However, it is not the case with androstenedione in patients in 

the menopausal state where the ratio of estrogens-to-adrenal or ovarian androgens changes. 

Similarly, free testosterone level appeared to be a better correlate of abdominal adiposity in 

patients with PCOS. Free testosterone level is modulated by numerous factors, such as SHBG, 

the latter being modulated by many factors (125). It is therefore not surprising that we were able 

to demonstrate that free testosterone level, which is believed to be a better marker of androgenic 

status in women, shows a stronger correlation with abdominal adiposity and VAT accumulation 
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compared to total testosterone level. The relationship between fat distribution indices and SHBG 

is generally much more consistent than that with androgens, with observation of a negative 

correlation between SHBG and central fat accumulation in the vast majority of cross-sectional 

studies (26, 267). The fact that total and free testosterone levels have more predictive value for 

abdominal adiposity in PCOS than in non-hyperandrogenic menopausal women may reflect 

increases in both overall adiposity and androgen levels in the PCOS, which respectively will 

cause lower levels of SHBG altering androgen dynamics (125) and facilitating more accurate 

measurements of androgens (303). Further evidence for the role of androgens on body fat 

distribution changes in the menopause has been provided by a small sample of women with 

premature ovarian failure (POI) and earlier onset form of menopause, where women did not have 

elevated levels of total testosterone or SHBG compared to controls and did not demonstrate 

significant differences in SAT, VAT or preperitoneal fat thickness despite increased WC (>88 

cm) (8). The change in body fat distribution in the menopausal period is likely multifactorial and 

at this time recommendations regarding interventions targeting androgens or their receptors with 

respect to abdominal adiposity cannot be made due to a paucity of evidence. 

 

ANDROGENIC IMPACT ON SELECTED ASPECTS OF ADIPOSE TISSUE FUNCTION 
 
For a very long time, physiologists have known that androgens, androgen receptor and androgen 

binding are detectable in adipose tissue (33, 68, 74, 91, 92, 145, 257). The most abundant 

androstane steroids in human adipose tissues are DHEA, androstenedione and testosterone (18, 

91) but the most potent natural androgen DHT, though present at lower levels, also may be 

measured with sensitive techniques (18). Many studies have tested the impact of androgens on 

various aspects of adipose tissue function. We have reviewed this topic in other articles (32, 192, 

291). The present section provides an overview of the effects of androgens on selected aspects of 
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adipose tissue function including adipogenesis (preadipocyte differentiation), lipolysis and lipid 

storage.   

 

Androgens and adipogenesis 

Adipose tissue expansion takes place through: 1) adipocyte hypertrophy, which corresponds to 

an increase in the size of existing cells; 2) adipocyte hyperplasia corresponding to an increase in 

cell number through differentiation of preadipocytes to lipid-storing, mature cells; or 3) a 

combination of both phenomena (65, 172). Differentiation of preadipocytes into adipocytes, or 

adipogenesis, is a complex and tightly regulated process controlled by a cascade involving two 

major transcription factors, PPARγ and C/EBPα and many other proteins (reviewed in (65, 115, 

172, 222)). 

 

A number of studies have demonstrated that androgens inhibit preadipocyte differentiation 

(reviewed in (316)). Testosterone and DHT inhibited in vitro differentiation of 3T3-L1 and 

C3H10T1/2 murine preadipocytes through an androgen receptor-mediated pathway (78, 243, 

244). This effect was partially blocked by receptor antagonists flutamide or bicatulamide (243, 

244). In another report, the effects of testosterone and DHEA were examined in the 3T3-L1, 

3T3-F442A and 3T3-A31 murine preadipocyte cell lines; it was shown that both steroids 

decrease 3T3-L1 proliferation and adipogenic differentiation (104). Although DHEA decreased 

3T3-F442A cell proliferation in that study, its effects were not detected in the presence of 

Trilostane, an inhibitor of 3β-hydroxysteroid dehydrogenase, suggesting that enzymatic 

conversion of DHEA to androgens or other steroids is necessary to observe an effect of this 

steroid in adipocytes (104). It is important to note that even if the murine 3T3-L1 cell line has 
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been used extensively, it does not allow any conclusion on sex-dependent and fat compartment-

dependent adipogenesis.  

 

Regarding human adipogenesis, both testosterone and DHT have been reported to inhibit 

differentiation of preadipocytes from the subcutaneous, mesenteric and omental (OM) fat depots 

(118). Most interestingly, this effect does not appear to be sex-specific and is also linear with 

androgen concentration in both sexes (29). For example, adipogenic differentiation measured by 

the activity of glycerol-3-phosphate dehydrogenase or oil red staining of lipids was inhibited by 

both testosterone and DHT, in men as well as in women, and in both the subcutaneous and 

visceral fat compartments (29). Although cells from women appeared to be slightly more 

sensitive to androgens than cells from men, we were unable to demonstrate a biphasic effect of 

androgens on adipogenesis in cells from women. In fact, even when increasing the androgen 

dose to 1 µmol/L in vitro, we were unable to show a stimulation of adipogenesis by androgens in 

cells from women. Quite the opposite, we found a clear inhibitory effect (29). Hence, a putative 

stimulatory effect of androgens on abdominal fat accumulation in women would logically have 

to occur through pathways other than stimulated adipogenesis. 

 

Lipolysis 

Lipolysis is the pathway leading to triglyceride hydrolysis in adipocytes, providing energy to 

tissues in the form of fatty acids; it is a complex process which is tightly regulated (160). Two 

major enzymes in the lipolytic cascade are responsible for triacylglycerol in the adipocyte: 

hormone-sensitive lipase (HSL) and adipose triglyceride lipase (ATGL) (52). Under stimulation 

of β-adrenergic receptors and a G protein-coupled activation of adenylate cyclase and the protein 
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kinase (PKA) pathway, HSL undergoes phosphorylation and translocates to the fat droplets of 

adipocytes (52). Many agents regulate lipolysis including catecholamines, acting not only on β- 

but also α-adrenergic receptors, as well as insulin, which has an inhibitory effect on lipolysis, 

with a more pronounced effect in subcutaneous than in visceral adipocytes (264, 319). Reports 

on the role of androgens in lipolysis are not unanimous. Treatment with testosterone increased 

norepinephrine-stimulated lipolysis in subcutaneous fat obtained in normal men (220), a finding 

that was reported also in testosterone- or DHEA-treated human and rodent adipocytes (130, 307). 

Results obtained in female rhesus macaques suggest that the regulation of lipolsysis by sex 

hormones is complex. Animals in the luteal phase of the menstrual cycle (high estradiol and 

progesterone production) had higher basal lipolysis and HSL expression in visceral but not in 

subcutaneous fat compared to menstruating controls (289). Testosterone supplementation starting 

in the prepubertal period blunted the effect of the luteal phase on basal lipolysis, but these 

hormonal effects were not apparent when lipolysis was stimulated by β-adrenergic agonist 

isoproterenol (289). Other groups described testosterone inhibition of catecholamine-induced 

lipolysis in primary subcutaneous preadipocytes obtained from women and differentiated in vitro 

(77). These effects appeared to occur through androgen receptor-mediated (3) regulation of HSL, 

adenylate cyclase and β-adrenergic receptors (77, 201, 202, 307, 308), although aromatization to 

estrogens cannot be excluded as a potential mediator of these effects. DHEA-S was found to 

stimulate lipolysis in adipocytes obtained from the subcutaneous but not the visceral 

compartment of women, but no effect was found in adipocytes from either the visceral or the 

subcutaneous compartment of men (130). Finally, we reported a positive association between 

androgen concentrations in plasma or in VAT and the responsiveness of isolated adipocytes to 

positive lipolytic stimuli such as isoproterenol, dibutyryl cyclic AMP and forskolin (18). In sum, 
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although available studies are not unanimous, androgens (testosterone was studied most) appear 

to have sex-specific stimulatory effects on adipocyte lipolysis. Such regulation may involve the 

androgen receptor, but may also be mediated in part by aromatization to estrogens.   

 

Lipid accumulation 

Regarding lipid uptake and triglyceride synthesis in adipocytes, also described as lipogenesis, the 

majority of studies seem to indicate that androgens decrease lipid uptake and storage in adipose 

tissue. In men, testosterone treatment has been shown to reduce both lipoprotein lipase (LPL) 

activity and triglyceride uptake in the abdominal fat compartments (167, 220). Divergent effects 

were described isolated mature adipocytes (3) and in simian adipose tissue from animals that 

were castrated and testosterone-replaced (290). Specifically, castration of Japanese macaques 

stimulated formation of small and multilocular adipocytes, which was reversed by testosterone 

(290). In vitro DHT treatment of adipose tissues obtained from the retroperitoneal fat 

compartment of female rhesus macaques inhibited fatty acid uptake in insulin-stimulated 

conditions, but uptake was stimulated in the basal state (290). In other studies, interaction with 

the menstrual cycle was described (289). As an example, chronic testosterone treatment 

increased fatty acid uptake and insulin signaling in omental adipose tissue during the menstrual 

period but this effect was not observed during the luteal phase (289). In a study of whole adipose 

tissue explants obtained from the visceral and subcutaneous compartments of men and women, 

we tested the effects of DHT and testosterone on LPL activity (29). Both androgens appeared to 

inhibit LPL activity, but the effect was especially apparent in explants from the males (29). The 

inhibitory effects of testosterone on LPL activity in visceral and subcutaneous explants of 

women were, at best, modest and were detected at supraphysiologic dose (1µmol/L). Consistent 
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with what was described in the section on adipogenesis, no biphasic effect of androgens were 

observed on adipose tissue LPL activity in women, again suggesting that a putative stimulatory 

effect of androgens on abdominal fat accumulation in women would have to occur through 

mechanisms other than LPL activity regulation. More studies are needed to establish the depot-

specific and sex-specific impact of androgens on the pathways of lipid storage in adipose tissues 

from both men and women. 

 

Overall, active androgens testosterone and possibly DHT seem to favor fat mass reductions that 

manifest through inhibition of adipogenesis and lipogenesis and a possible stimulation of 

lipolysis. The effects have been reported to vary according to the fat compartment examined and 

also as a function of the nature and dose of the androgen tested. Considering the sex-specific 

effects of androgens on adipose tissue metabolism and their dimorphic impact on adipose tissue 

distribution patterns, local synthesis or inactivation of active androgens could logically 

contribute to a depot-specific and a sex-specific effect of these hormones, affecting androgen 

availability and possibly adipose tissue accumulation. This has been one of our central working 

hypotheses of the past years. The next section addresses the potential importance of adipose 

tissue steroid-converting enzymes on androgen dynamics and body fat distribution patterns. 

 

LOCAL ANDROGEN METABOLISM IN ADIPOSE TISSUES 

Regional differences in adipose tissue steroid content have been identified by many investigators. 

For example, we examined steroid content of subcutaneous and omental adipose tissue in men 

(18) and reported that although similar testosterone levels were observed in these adipose tissue 

compartments, DHEA, androstenedione and DHT levels were higher in omental compared to 
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subcutaneous adipose tissue. These differences may result from depot-specific differences in 

steroid-converting enzyme activities, which may in turn contribute to the local availability of 

active androgens in any given compartment. These results, along with many other studies, support 

the notion of a depot-specific regulation of androgen availability in adipose tissue by steroid-

converting enzymes. A detailed review all the adipose tissue enzymes with activity toward steroids 

has been published recently (265). Only enzymes relevant to androgen dynamics in adipose tissue 

are described in this section (Figure 6). 

 

17β-hydroxysteroid dehydrogenases 

17β-HSD type 2 is a 387 amino acid protein that has a molecular weight of 42.7 kDa and is 

encoded by a 1.4-kb cDNA (305). It catalyzes the conversion of active 17β-hydroxysteroids into 

less active 17-ketosteroids using NAD+ as a cofactor (302). In a specific manner, it catalyzes the 

transformation of testosterone to androstenedione, of estradiol (E2) to estrone (E1) and of 20α-

dihydroprogesterone to progesterone (305). It also was shown to have 3β-HSD activity in HEK 

293 cells stably overexpressing this isoenzyme (251). It has been detected in the liver, the 

placenta and the endometrium (50) as well as in human fetal liver, and urinary tract at 20 weeks 

of gestation, surface epithelial cells of the stomach, small intestine, colon and renal medulla 

(259). Its activity has been suggested to play a possible role in maintaining progesterone levels in 

pregnancy by inactivating placental androgens and estrogens )305( . The enzyme also possibly 

has a role in decreasing ER2 Rsecretion rates toward the foetal blood circulation (84). 

 

In adipose tissue of men, we reported that 17β-HSD type 2 activity was higher in visceral 

compared to subcutaneous adipose tissue using both whole tissue homogenates as well as explant 
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cultures. Similar differences were found regarding 17β-HSD type 2 mRNA expression (97). In 

adipose tissues from females, 17β-HSD type 2 mRNA expression also was higher in visceral 

compared to subcutaneous adipose tissue (28). We reported that the enzyme appears to be 

localized in the vasculature of adipose tissue (97), suggesting that fat-depot differences in 

expression and activity possibly may result from differences in the vascularization of adipose 

tissue compartments (136). The cellular localization of 17β-HSD type 2 is shown in Figure 7. 

We described that the enzyme seems to be localized in the endoplasmic reticulum of CD31-

positive endothelial cells (Figure 8) (97). Consistent with this finding, Wu et al., (305) have 

shown that 17β-HSD type 2 protein contains a carboxyl-terminal endoplasmic reticulum 

retention motif. This was confirmed by our demonstration that 17β-HSD type 2 exhibited high 

expression and strong activity in Human Adipose Microvascular Endothelial Cultures (HAMEC) 

(97) (Figure 8). The oxidative activity on testosterone was significantly inhibited by specific 

17β-HSD type 2 inhibitor EM-919, indicating that 17β-HSD type 2 is, indeed, responsible for 

this activity (97) (Figure 8). Finally, 17β-HSD type 2 mRNA and activity are also high in 

endothelial cell cultures from umbilical artery (HUAEC) and vein (HUVEC) (241). 

 

In vivo studies are consistent with these previous findings. Boulton et al. (38) examined arterio-

venous concentration differences in human subcutaneous adipose tissue and reported that a 

fraction of testosterone was removed from the circulation when passing through the vascular bed 

of fat tissue and, most interestingly, that the rates of removal were correlated with arterial 

testosterone levels. 17β-HSD type 2-mediated inactivation of testosterone in adipose tissue 

vasculature may affect the availability of testosterone and its impact on various aspects of 
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adipose tissue function or metabolism (97), including body fat distribution patterns, preadipocyte 

differentiation (29, 53) and lipolysis (26).  

 

Positive associations were detected between BMI and 17β-HSD type 2 activity in OM or SAT. 

The association was also positive between 17β-HSD type 2 activity in SAT and subcutaneous 

adipocyte cell size (97). Obesity-related changes in vascularization may explain this association 

(191) although some studies reported lower adipose tissue capillary density (197) and reduced 

perfusion in obesity (134). In other words, 17β-HSD type 2 activity increases in obesity may be 

due to either to increased vascularization or to specific up-regulation of the enzyme in 

endothelial cells in the absence of increased vascularization (97). Various 17β-HSD type 2 

inhibitors may prove relevant for osteoporosis treatment in situations of low circulating 

androgens and estrogens, for example in postmenopausal women or elderly men (107, 178, 302). 

In adipose tissue, we tested the EM-919 inhibitor (209) and found that the majority of the 

conversion of testosterone into androstenedione detected in this tissue is, indeed, mediated by 

17β-HSD type 2. However, the impact of this inhibitor on adipose tissue function remains to be 

established. 

 

17β-HSD type 3 is expressed in human SAT and VAT (28, 56, 174) and converts 

androstenedione to testosterone (173). In preadipocyte cultures, differentiation tends to increase 

expression levels of this enzyme (28, 216), but its specific role in modulating availability of 

androgens in fat tissue remains to be established. The ratio of VAT 17β-HSD3-to-aromatase 

mRNA ratio was associated with BMI in one study (55). However, 17β-HSD type 5, another 
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enzyme converting androstenedione to testosterone is expressed at higher levels in adipose tissue 

than the type 3 isoenzyme in adipose tissue (see below). 

 

As mentioned, 17β-HSD type 5 (AKR1C3) also mediates the conversion of androstenedione to 

testosterone and adipose tissue expression levels of this isoenzyme were associated positively 

with several adiposity indices (295). In vitro, adipocyte differentiation substantially up-regulates 

expression and activity of this enzyme. Specifically, testosterone formation is stimulated 5-fold 

in differentiated adipocytes from the subcutaneous and visceral fat compartments, and mRNA 

expression follows the same pattern (20, 28, 30). Consistent with increased expression in 

differentiated adipocytes, mRNA of the enzyme is more abundant in the subcutaneous fat 

compartment (28, 30) and it is expressed also at higher levels in larger than in smaller adipocytes 

from the same tissue donor (255). Whether obesity-related increases in expression levels and 

activity of this isoenzyme contribute to androgen availability remains to be formally established. 

As is the case with many steroid-converting enzymes, other activities of the isoenzyme could 

mediate its relationship with obesity. 17β-HSD type 5 is known to be involved in the synthesis of 

prostaglandins, which are known modulators of PPARγ (215). However, we reported that 

AKR1B1 was likely more important for adipose tissue synthesis of prostaglandin F2α compared 

to AKR1C3 (183). 

 

5α-reductases 

DHT can be generated directly by 5α-reduction of testosterone, or from 5α-reduction of 

androstenedione and subsequent 17-oxoreduction by available 17β-HSD isoenzymes. In general, 

it is assumed that the testosterone-to-DHT conversion is predominant (13). Yet in the sebaceous 
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gland, our group previously has demonstrated that the formation of DHT likely results from 

androstenedione reduction (231). Enzymology data supports that this may be related to enzyme 

characteristics and, therefore, the substrate preference observed in sebaceous gland may apply to 

other cell types or tissue (4).  

 

Three 5α-reductase isoenzymes which are generated from three different genes have been 

identified: SRD5A1, SRD5A2 and SRD5A3 (166). The type 1 and 2 isoenzymes have low 

homology and they differ in their chromosomal localizations, kinetics and tissue distributions 

(193). The third type of 5α-reductase (283) was detected in prostatic tissue and was reported in 

vitro to be poorly inhibited by dutasteride at high androgen concentrations (277). This isoenzyme 

was detected also in other tissues and organs (283).  

 

We reported recently that only SRD5A1 and SRD5A3 are expressed in human adipose tissue and 

that SRD5A3 is the most highly expressed subtype (98). Upreti et al. (284) previously had 

reported that SRD5A1, not SRD5A2, was expressed in human SAT. In vitro, mRNA of SRD5A1 

and SRD5A3 were not modulated dramatically when inducing differentiation of primary 

preadipocytes (98). Blouin et al. (28), also reported that SRD5A1 expression was not modulated 

during preadipocyte differentiation in cells from both the subcutaneous and visceral fat 

compartments. A positive correlation was found between adipose tissue SRD5A1 mRNA 

expression and BMI (98). Tsilchorozidou et al. (281) also demonstrated that 5α-reductase activity 

toward cortisol was associated positively with BMI in a sample of PCOS women. Conversely, 

Wake et al. (295) reported that SRD5A1 mRNA level in human SAT did not predict the amount 

or distribution of body fat. 
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As mentioned, in many tissues, the majority of DHT production likely results from the 

transformation of androstenedione (4, 231, 250). As one example, Perel et al. (205) showed that 

5α-reduced metabolites such as androstanedione, androsterone and DHT were formed in stromal 

cells from breast adipose tissue incubated with androstenedione, and that formation of 5α-

reduced metabolites exceeded E1 formation by 100 fold. DHT formation in preadipocyte cultures 

showed higher DHT production from androstenedione over 24 hours compared to equimolar 

treatment with testosterone (98). DHT formation was slightly higher in subcutaneous compared 

to visceral preadipocyte cultures (98) but regional differences remain uncertain. No statistical 

difference in 5α-reductase activity between flank and abdominal adipose tissue cell cultures was 

reported in another study (157).  

 

We previously tested the effects of 5α-reductase inhibitors 4-MA and finasteride on 5α-reductase 

isoenzymes using HEK-293 cultures stably transfected with each subtype (98) (Figure 9). Cells 

overexpressing 5α-reductase type 1 showed very strong androstenedione-to-androstanedione 

activity that was slightly blunted by 4-MA, but not by finasteride (Figure 9). Strong activity was 

also detected in the 5α-reductase type 2 cell line, but was inhibited by both inhibitors (Figure 9). 

Finally, cells overexpressing 5α-reductase type 3 had lower activity which was blocked 

completely by both 4-MA and finasteride (Figure 9) (98). With the exception of SRD5A2, 

which is not expressed in adipose tissue, inhibitors were effective against the type 3 isoenzyme, 

but not against type 1 (98). Considering that most of the DHT produced by primary preadipocyte 

cultures was also blunted by both inhibitors (98), we suggest that this provides indirect indication 

that the type 3 isoenzyme may be relevant for DHT formation in human preadipocytes (98).  
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The impact of 5α-reductase inhibition was also tested in human primary preadipocytes 

undergoing differentiation (98). The 5α-reductase inhibitors completely reversed the inhibitory 

effect of androstenedione and testosterone on preadipocyte differentiation (Figure 10). As 

described earlier in this article, we previously had shown that testosterone and DHT both inhibit 

preadipocyte differentiation in visceral and subcutaneous primary preadipocyte cultures of both 

sexes (29). Our findings support the notion that DHT generated through 5α-reductase action may 

be responsible for an important portion of the effect of both androstenedione and testosterone on 

preadipocyte differentiation (98).  

 

Production of 5α-reduced metabolites of other steroids may also be relevant in adipose tissue. 

Our group reported that 5α-pregnane-3α/β-ol-20-one, 5α-pregnanedione and 5α-pregnane-20α-

ol-3-one were major metabolites of progesterone in visceral and subcutaneous preadipocyte 

cultures (318). Tomlinson et al. (278) also reported lower 5α-reductase activity after weight loss 

based on the ratio of circulating 5α-THF over THF. The liver was likely the major contributor to 

this change, but a contribution of adipose tissue is not impossible. The relevance of 5α-reductase 

isoenzymes to a local, depot-specific modulation of the availability of active androgens, 

progesterone and glucocorticoids requires further investigation. 

 

3β-HSD 

The conversion of DHEA to androstenedione and of androst-5-ene-3β,17β-diol (5-diol) to 

testosterone is catalyzed by 3β-HSD. This enzyme was found to be more highly expressed in 

SAT than in OM adipose tissue (28). Expression of 3β-HSD is also higher in SAT of women 
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with PCOS compared to controls (300). Messenger RNA abundance of 3β-HSD (HSD3B1) were 

found to be decreased in VAT in mice that gained weight under a high-fat diet, suggesting 

reduced androgen synthesis (287). Fujioka et al. (104) tested the effect of testosterone and 

DHEA on preadipocyte differentiation in the 3T3-L1 murine preadipocyte cell line and found 

that these steroids decreased adipogenic proliferation and differentiation. Interestingly, the 

effects of DHEA were blocked in the presence of the 3β-HSD inhibitor Trilostane, suggesting 

that conversion to active androgens or other steroids is required to observe an effect of DHEA in 

this cell culture model (104). 3β-HSDs may also convert 17-OH-pregnenolone into 17-OH-

progesterone and pregnenolone into progesterone (19, 217) which may be relevant for adipocyte 

function. The specific impact of 3β-HSD for adipose tissue steroid hormone synthesis remains to 

be determined. 

 

3α-HSD type 3 (AKR1C2) and UDP-glucuronosyltransferases 

Several years ago, we published original studies showing that circulating concentrations of the 

3α-reduced, glucuronide conjugate of DHT (3α-androstane 3β,17β-glucuronide) were increased 

in men with abdominal obesity and were modulated by weight gain or loss (212, 213, 272). 

These initial results were confirmed in a large cohort study by another group (288). This led to 

our interest in adipose tissue enzymes that may be involved in androgen inactivation. We have 

detected significant expression of UDP-glucuronosyltransferase in adipose tissue (263). Our 

work further has shown that the conversion of DHT to the inactive androgen metabolite 3α-

androstanediol (the precursor of the glucuronide conjugated metabolite described above) (Figure 

6) is detectable in adipose tissue of both men and women (25, 30, 31). This activity appears to be 

higher in subcutaneous compared to visceral adipose tissue, and, most importantly, DHT 
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inactivation rates in visceral fat are correlated positively with adiposity indices such as BMI, 

adipocyte size and VAT area assessed by CT (25, 30, 31).  

 

We have shown that the enzyme responsible for most of the DHT-to-3α-diol conversion in 

humans is 3α-HSD type 3, or AKR1C2 (292) (Figure 6). Higher expression and activity of 

AKR1C2/3α-HSD3 in subcutaneous compared to visceral fat of both men and women suggested 

that cell composition of the tissue might affect the enzyme. Accordingly, we found that mature 

adipocytes had higher rates of DHT inactivation compared to preadipocytes (31). Further 

experiments showed that induction of fat cell differentiation increased both androgen 

inactivation rates and AKR1C2 mRNA expression (28). Interestingly, AKR1C2 expression was 

increased in subcutaneous adipose tissue of PCOS women compared to normal controls, which 

was observed in conjunction with a pattern of enzyme expression potentially reflecting increased 

testosterone but lower DHT levels in this condition (300). 

 

When we examined factors that could modulate DHT inactivation rates in preadipocytes, we 

were intrigued by the finding of a dose-dependent inactivation of DHT by dexamethasone (28). 

This effect was apparent after only 24 hours, it did not require additional lipogenic factors 

(insulin or PPAR-γ agonist) and was completely reversed by glucocorticoid receptor antagonist 

RU486. Active glucocorticoids stimulate adipogenesis and are synthesized locally by 11β-HSD 

type 1 in proportion to mature adipocyte size and number (42, 181). As mentioned previously, 

DHT inhibits adipogenesis, but we now learned that it may be inactivated locally by an enzyme 

that is responsive to glucocorticoids. We have suggested that the stimulation of AKR1C2 

expression and DHT inactivation by glucocorticoids in preadipocytes may remove some of the 
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inhibitory effect of androgens and allow adipogenesis. Other interactions have been noted in 

adipose tissue between the androgen and glucocorticoid signalling pathways (128, 165). Our 

working model postulates that interaction of these hormonal signals at the local level may 

represent significant modulators of human body fat distribution patterns.  

 

OTHER MECHANISMS 

SHBG 

As mentioned, SHBG is a consistent correlate of adiposity and body fat distribution in both men 

and women and could mediate part of the association between androgens and abdominal obesity. 

Discussing the role of SHBG regulation is beyond the scope of this article and has been done 

thoroughly elsewhere (125). Many endogenous factors including metabolic agents and hormones 

indirectly influence hepatic expression and circulating levels of human SHBG. Such modulation 

is directly linked to HNF4-α activity modulation (125). Pro-inflammatory cytokines (TNF-α, Il-

1β), which are generally increased in the low-grade, pro-inflammatory state of obesity, 

contribute to reduced expression and low plasma levels of SHBG (125). Adiponectin has been 

showed to increase SHBG production by reducing hepatic lipid production and to increase the 

level of HNF4-α (125). Additional modulators include thyroid hormones (125), 

monosaccharides, especially fructose (125) and cortisol (224).  

 

Gut microbiota 

Emerging data support the idea that steroid hormone levels may regulate composition of the gut 

microbial community and that changes in the latter would be associated with metabolic 

disorders. Some authors suggested that the gut microbiota may be implicated in the PCOS 
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physiopathology (117, 154). Two studies used letrozole (a nonsteroidal aromatase inhibitor) to 

induce PCOS in female mice/rats and reported significant changes in the composition of the fecal 

microbiome in PCOS animals compared to the control group (117, 154). Species abundance and 

phylogenetic diversity of the gut microbiome was considerably reduced in the PCOS group 

(154). Testosterone levels were correlated negatively with alpha-diversity in that study (154). In 

another study, prevalence of Lactobacillus, Ruminococcus and Clostridium were lower and 

Prevotella was higher in PCOS rats group compared with a control group (117). When PCOS 

rats were treated with fecal microbiota transplant from healthy rats, Lactobacillus and 

Clostridium were increased in both groups to levels similar to that of the control group. The 

prevalence of Prevotella was decreased in transplant animals compared to untreated PCOS 

animals, but the changes were more significant in the fecal transplant group (117). Improved 

estrus cycle, ovarian morphology and significant increases in estradiol and estrone levels were 

seen, whereas testosterone and androstenedione levels were decreased compared to untreated rats 

(117). Overall, gut microbiota dysbiosis was associated with hyperandrogenemia in PCOS 

models (117, 154). However, whether alterations in the gut microbiome cause the PCOS 

metabolic phenotype or result from it remains to be determined (154). Androgen deprivation via 

castration altered cecal and fecal microbiota in a high-fat diet-dependent manner in male mice. 

Indeed, castration increased the Firmicutes/Bacteroidetes phyla ratio and Lactobacillus species 

(126, 127). In another study, Harada et al. showed that castrated mice fed with a high-fat-diet 

exhibited abdominal obesity, impaired fasting glucose, excess accumulation of liver 

triglycerides, and thigh muscle loss. Interestingly, these effects were not observed after castration 

when antibiotics were administered (127). It is important to point out that changes in microbiota 

in animal models may not be directly transferred to humans. For example, even the gut 



Manuscript CPHY‐17‐0009 - Revised, Page 54 

microbiota association with and impact on obesity is still unclear in humans (256). More studies 

are obviously needed in humans.  

 

CONCLUSION 

In this review on androgens and body fat distribution in men and women, we confirm that low 

androgen levels including reduced total testosterone but also free testosterone or adrenal C19 

steroids in some reports, are frequently observed in men with abdominal and/or visceral obesity 

and the metabolic syndrome. Data on TRT are, however, much less consistent in showing a 

significant favorable effects when considering specifically body fat distribution. Our analysis 

lends support to the notion that, independent of study design, trials involving patients with 

initially low baseline testosterone (below 11 nmol/L) and a high BMI are more likely to lead to 

lower WC in response to TRT. In women, the positive association between total testosterone or 

free testosterone levels and abdominal adiposity indices seems to be fairly consistent but only in 

women with androgen excess. Studies remain equivocal in women without androgen excess. At 

the functional level, testosterone and DHT inhibit adipogenesis and LPL activity in both men and 

women, pointing toward other mechanisms to explain the positive association between 

androgens and visceral fat accumulation in women with androgen excess. A stimulatory effect of 

androgens on lipolysis may be present, but is not unanimous in the literature. In addition, at the 

tissue level, many steroid-converting enzymes are expressed and active in the various cell types 

of adipose tissues including 17β-HSDs, 5α-reductases and aldoketoreductases which may 

contribute to alter androgen dynamics in a depot-specific manner and in so doing, may contribute 

to explain the effect of androgens on body fat distribution in humans.  
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TABLES 
 
Table 1. Randomized controlled trials examining the effect of TRT on body composition 
 

 Baseline characteristics of the participants TRT 
formulation/duration Outcomes 

Ref. N Comorbidities Age 
(years) 

BMI 
(kg/m2) 

WC 
(cm) 

TTL 
(nmol/L) 

Formulation Duration 
(months) 

WC 
(Δ) 

Weight 
(Δ) 

BMI 
(Δ) 

Tenover 1992 13 - 66.7 ± 5.4 22.0-29.0 NA 11.7 ± 1.5 IM TE 3  NA  NA 
Sih 1997 17 - 67 ± 7 29.1 ± 5.2 NA 9.2 ± 0.9a IM TCY 12  NA   
Snyder 1999 54 - ≥ 65 27.1 ± 2.9 NA 12.7 ± 2.7 TP 36  NA   
Kenny 2001 24 - 76 ± 4 27 ± 3 NA 13.5 ± 6.0 TP 12  NA NA  
Ferrando 2002a 7 - 68 ± 3 NA NA 9.6-15.9 IM TE 6  NA  NA 
Boyanov 2003 24 T2D 57.5 ± 4.8 31.08 ± 4.79 NA 9.56 ± 2.33 Oral TU 3  NA   
Liu 2003a 17 - 67.5 ± 0.8 NA NA NA IM ME 1  NA   
Steidle 2003 106 - 56.8 ± 10.6 29.9 ± 3.3 NA 8.1 ± 2.2 Gel 3  NA  NA 102 - 60.5 ± 9.7 29.9 ± 3.8 8.3 ± 2.4 TP 
Wittert 2003 39 - 69 ± 6 27.9 ± 4.1 NA 17.0 ± 4.4a Oral TU 12  NA  NA 
Casaburi 2004 12 COPD 66.6 ± 7.5 NA NA 10.5 ± 3.1 IM TE 2.5  NA  NA 
Malkin 2004a 13 CHF 74.1 ± 2.3 25.9 ± 1.2 NA 14.3 ± 2.1 IM ME 1  NA  NA 
Svartberg 2004 15 COPD 64.5 ± 6.5 23.8 ± 3.2 NA 21.6 ± 5.7 IM TE 6  NA  NA 
Page 2005 24 - 71 ± 4 28.7 ± 3.6 NA 9.9 ± 1.6 IM TE 36  NA  NA 
Giannoulis 2006a 23 - 70.3 ± 0.6 26.9 ± 0.7 NA 17.2 ± 1.2 TP 6 NA NA  

Nair 2006b 27 - 66.2 (61.8-
72.3) 28.4 (25.7-30.3) NA 12.4 (9.8-16.1) TP 24  NA   

Emmerlot-Vonk 
2008 120 - 67.1 ± 5.0 27.4 ± 3.8 NA 11.0 ± 1.9 Oral TU 6  NA NA  
Caminiti 2009 35 CHF 71 26.4 ± 3.7 NA 8.0 ± 6.2 IM TU 3  NA   
Mathur 2009 7 CA 62.1 ± 5.2 30.4 ± 4.7 NA 9.8 ± 1.9 IM TU 12  NA   
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The data are presented as mean ± SD unless otherwise indicated. a Mean ± SEM, b Median (Interquartile range), c Median ± SD. 
Non-SI unit values of testosterone were converted to nmol/L by a factor of 0.03467. 

Sheffield-Moore 
2011 8 - 73 ± 8 27 ± 2 NA 11.8 ± 2.9 IM TE 5  NA   
Behre 2012 183 - 61.9 ± 6.6 28.5 ± 3.3 NA 10.4 ± 2.6 Gel 6  NA  NA 
Glintborg 2013b 20 - 68 (62-72) NA 107 (103-115) NA Gel 6  NA NA NA 
Borst 2014a 14 - 69.2 ± 8.0 29.4 ± 4.6 NA 8.5 ± 2.5 IM TE 12  NA   
Marin 1992a 11 - 51.9 ± 2.0 29.3 ± 0.8 106.0 ± 2.6 16.0 ± 1.2 Oral TU 8      
Marin 1993a 9 - 56.7 ± 2.2 29.4 ± 0.7 107.3 ± 1.5 15.1 ± 0.8 Gel 9      
Munzer 2001a 17 - 70.8 ± 0.7 26.4 ± 0.8 94.3 ± 2.2 15.3 ± 0.8 IM TE 6    NA  
Simon 2001a 6 - 52.8 ± 4.2 29.9 ± 0.9 NA 8.3 ± 0.3 Gel 3    NA 
Crawford 2003a 18 LTGCT 58.7 ± 4.9 26.7 ± 1.6 98.9 ± 3.9 13.8 ± 0.4 IM ME 12     
Agledahl 2008 13 - 68.9 ± 5.4 30.6 ± 3.9 109.1 ± 9.8 8.5 ± 1.7 IM TU 12   NA  
Allan 2008a 31 - 62.1 ± 1.0 26.1. ± 0.4 94.7 ± 1.4 13.6 ± 0.5 TP 12     
Svartberg 2008 17 - 69 ± 5 30.6 ± 3.8 110 ± 10 8.4 ± 1.7 IM TU 12     
Gopal 2010 22 T2D 44.23 ± 3.29 23.94 ± 4.46 89.09 ± 11.4 10.2 ± 3.7 IM TCY 12   NA  
Jones 2011 108 MetS or T2D 59.9 ± 9.1 32.87 ± 6.58 112.70 ± 13.22 9.2 ± 2.6 Gel 12   NA  
Frederiksen 2012 
Hoyos 2012 

23 - 68 30.2 ± 3.6 109.0 ± 8.2 
115.7 ± 8.8 

12.5 ± 4.0 Gel 6  
4.5  

 
 

 
 

 
 33 OSA 48.0 ± 1.6 34.9 ± 4.3 13.2 ± 5.3 IM TU 

Bouloux 2013 237 - 58.7 ± 5.8 27.3 ± 3.4 100.3 ± 10.1 12.8 ± 4.2 Oral TU 12    NA 
Frederiksen 2013b 20 - 68 (62-72) 29.8 (27.5-32.9) 107 (103-115) 12.2 (9.4-15.8) Gel 6     
Hildreth 2013 47 - 66.5 ± 5.8 29.2 ± 3.3 106.3 ± 19.2 10.3 ± 1.5 Gel 12     
Tan 2013c 56 - 53.8 ± 6.9 30.5 ± 5.3 103.1 ± 12.5 8.9 ± 2.0 IM TU 12   NA  

Gianatti 2014b 45 T2D 62 (58-68) 32.5 (28.3-35.5) 110.0 (104.0-
120.8) 10.6 (9.0-13.0) IM TU 7.5     

Dhindsa 2016 20 T2D 56.4 ± 7.9 39.0 ± 7.6 128.0 ± 20 8.98 ± 2.95 IM TCY 6     
Magnussen 2016 20 T2D 61 ± 6 30.6 (28.9-

32.3)b 106 (102-111)b 7.1 (6.6-11.9)b Gel 6     

Kapoor 2007a 20 T2D 63.15 ± 1.5 33.28 ± 1.02 115.95 ± 2.72 7.54 ± 0.55 IM ME 3   NA  
Aversa 20101 32 MetS 58 ± 10 30.2 ± 4.5 105 ± 10 NA IM TU 6   NA  10 57 ± 8 32.5 ± 5.2 NA NA Oral TU  
Aversa 20102 40 MetS 58 ± 10 30.2 ± 4.5 105.5 ± 8.0 9.0 ± 1.7 IM TU 12   NA  
Kalinchenko 2010 113 MetS 51.6 35.3 118.0 6.7 IM TU 7.5     
Hackett 2014 92 T2D 61.2 ± 10.5 33.0 ± 6.1 115.1 ± 13.1 9.2 ± 3.1 IM TU 7.5     
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: increase;  : no change; : decrease; NA: non-available 
WC: waist circumference; TTL: total testosterone level; CA: chronic angina; CHF: congestive heart failure; COPD: chronic 
obstructive pulmonary disease; CVD: cardiovascular disease; Gel: testosterone gel; IM: intramuscular; LTGCT: long-term 
glucocorticoid treatment; ME: mixed esters; MetS: metabolic syndrome; OSA: obstructive sleep apnea; PHH: postsurgical 
hypogonadotropic hypogonadism; SL: sublingual; T2D: type 2 diabetes; TCY: testosterone cypionate; TCYD: testosterone 
cyclodextrin; TE: testosterone enanthate; TP: testosterone patch; TU: testosterone undecanoate 
 
Study design: 
(1, 2, 10, 17, 35, 37, 45, 64, 76, 85, 94, 101, 102, 108, 109, 120, 132, 135, 144, 146, 155, 175, 179, 180, 182, 188, 190, 195, 238, 240, 
242, 248, 252, 253, 260, 304): Double-blind randomized placebo-controlled study  
(11, 249): Double-blind randomized placebo-controlled parallel study  
(113, 147, 148, 169, 275): Double-blind randomized placebo-controlled crossover study  
(176): Single-blind randomized placebo-controlled crossover study  
(49): Single-blind randomized placebo-controlled study  
(39): Open-label randomized controlled study 
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Table 2. Observational studies examining the effect of TRT on body composition 
 

 Baseline characteristics of the participants TRT 
formulation/duration Outcomes 

Ref. N Comorbidities Age 
(years) 

BMI 
(kg/m2) 

WC 
(cm) 

TTL 
(nmol/L) 

Formulation Duration 
(months) 

WC 
(Δ) 

Weight 
(Δ) 

BMI 
(Δ) 

Morley 1993 8 - 77.6 ± 2.3 NA NA NA IM TE 3  NA  NA 
Young 1993a 13 - 30.2 ± 1.5 NA NA 20.7 ± 1.7 IM TE 6  NA  NA 
Brodsky 1996a 5 - NA NA NA 3.7 ± 1.9 IM TCY 6  NA  NA 
Katznelson 1996 29 - 57c 28.2 ± 0.8a NA 6.4 ± 0.6a IM TE 18  NA   
Zgliczynski 1996a 22 - 58.5 ± 2.6 28.1 NA 4.4 IM TE 12  NA NA  
Bhasin 1997 7 - 36 24.7 NA 2.5 ± 1.0a IM TE 2.5  NA  NA 
Snyder 2000 18 - 51c NA NA 2.7 ± 2.7  TP 36  NA  NA 

Wang 2000a 78 - (19-67) NA NA 8.60 ± 0.55 Gel 6  NA  NA 76 8.22 ± 0.55 TP 
Wang 2004a 123 - 51.5 ± 0.9 29.00 ± 0.34 NA 9.2 Gel 42  NA  NA 
Dean 2005 371 - 58.5 ± 10.0 NA NA 8.1 ± 2.1 Gel 12  NA  NA 
Naharci 2007 24 - 20.75 ± 0.74 20.93 ± 2.12 NA 5.8 ± 1.3 IM ME 6  NA   
Minnemann 2008 20 - 18-65 28.1 ± 4.5 NA NA IM TE 7  NA NA  20 26.6 ± 4.4 IM TU 
Moon 2010 133 - 54.0 ± 9.6 25.0 ± 2.7 NA 8.7 ± 7.3 IM TU 6  NA NA  
Schwarz 2011 56 - 52.3 ± 7.8 33.2 ± 3.3 NA 15.2 ± 6.8 IM TCY 6-18  NA   
Arafa 2012 56 T2D 55.5 ± 7.8 30.7 ± 4.5 NA 8.9 ± 1.7 IM TU 3-6  NA   
Jo 2013 18 - 35.9 ± 3.3 25.6 ± 5.1 NA 3.12 ± 2.2 IM TU 12  NA   

Ko 2013b 246 - 58.5 (52.0-
64.2) 

24.91 (23.24-
26.55) NA 8.7 (6.8-10.6) IM TU 14.7  NA NA  

Rodriquez-Tolra 
2013 712 345 MetS and 151 

T2D 59.1 ± 5.6 29.0 ± 3.8 NA 10.2 ± 3.6 Gel and  
IM TU 24  NA   

            
Wang 1996a 67 - 19-60 28.0 ± 0.5 98.7 ± 1.4 4.13 ± 0.40 SL TCYD 6     
            
Saad 2008 27 - 60 NA 107.8 ± 9.4 7.6 ± 1.4 Gel 9    NA 28 61 102.0 ± 11.0 7.6 ± 2.1 IM TU  
Heufelder 2009a 16 MetS or T2D 57.3 ± 1.4 32.1 ± 0.5 107.9 ± 1.3 10.5 ± 0.2 Gel 12   NA NA 
Permpongkosol 2010 161 93 MetS 60.4 ± 9.27 26.0 ± 3.7 93.34 ± 9.20 9.4 (8.1-11.4)b IM TU 23c  NA  
Bhattacharya 2011 213 MetS 53.0 ± 11.3 34.6 ± 6.6 114.3 ± 16.0 9.0 Gel 12  NA NA 368 - 50.9 ± 12.2 28.7 ± 6.4 95.5 ± 13.7 10.9  
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The data are presented as mean ± SD unless otherwise indicated. a Mean ± SEM, b Median (Interquartile range), c Median ± SD. 
Non-SI unit values of testosterone were converted to nmol/L by a factor of 0.03467. 
: increase;  : no change; : decrease; NA: non-available 
WC: waist circumference; TTL: total testosterone level; CA: chronic angina; CHF: congestive heart failure; COPD: chronic 
obstructive pulmonary disease; CVD: cardiovascular disease; Gel: testosterone gel; IM: intramuscular; LTGCT: long-term 
glucocorticoid treatment; ME: mixed esters; MetS: metabolic syndrome; OSA: obstructive sleep apnea; PHH: postsurgical 
hypogonadotropic hypogonadism; SL: sublingual; T2D: type 2 diabetes; TCY: testosterone cypionate; TCYD: testosterone 
cyclodextrin; TE: testosterone enanthate; TP: testosterone patch; TU: testosterone undecanoate 
Study design:   
(2, 6, 7, 12, 15, 39, 45, 54, 61, 63, 64, 78, 88, 93, 94): Prospective study 
(159, 232, 276): Retrospective study 
(122-124, 228-230, 310, 311): Cumulative prospective registry study 
 (9, 100, 187, 189, 313):  Controlled prospective study 
(131):    Single-blind randomized parallel study 
(184, 297, 299): Open-label randomized parallel study (99, 227): Prospective parallel study 

Aversa 2013 40 MetS 58 ± 10 30.0 ± 4.5 NA 8.3 ± 2.4 IM TU 36  NA  
Saad 2013 255 80 T2D 58.02 ± 6.30 33.90 ± 5.51 107.24 ± 9.14 9.93 ± 1.38 IM TU 60    
Tirabassi 2013 15 PHH 55.66 ± 8.64 NA 95.7 ± 10.3 5.31 ± 1.8 IM TU 18.5-21   NA 
Yassin 2013 261 80 T2D 59.5 ± 8.4 31.7± 4.4 107.7 ± 10.0 7.7 ± 2.1 IM TU 60    
Zitzmann 2013 1493 14% T2D 49.2 ± 13.9 NA 99.50 ± 15.25 9.6 ± 7.5   IM TU 9-12   NA 
Francomano 20141 20 MetS or T2D 57 ± 8 31 ± 6 NA 8.3 ± 2.4 IM TU 60    
Francomano 20142 12 71% MetS 53 ± 8 42.6 ± 5.2 134 ± 12 8.5 ± 1.8 IM TU 13.5    
Haider 20142 181 178 MetS and 72 

T2D 59.11 ± 6.06 36.72 ± 3.72 111.20 ± 7.54 10.06 ± 1.30 IM TU 60    
Haider 20141 156 T2D 61.17 ± 6.18 36.31 ± 3.51 114.00 ± 8.69 8.9 ± 1.99 IM TU 72    
Pexman-Fieth 2014 712 345 MetS and 151 

T2D 53 ± 12 31 ± 4 107 ± 12 NA Gel 6  NA  

Saad 2015 450 - 56.10 ± 6.29 32.58 ± 5.08 106.54 ± 9.03 8.96 ± 1.95 IM TU 72    111 - 68.45 ± 2.91 32.84 ± 4.86 108.95 ± 10.75 8.48 ± 2.26 
Haider 2016 77 CVD and 41 T2D 60.65 ± 4.98 37 ± 4 112 ± 8 9.8 ± 1.6 IM TU 96    
Saad 2016 411 173 T2D 59.46 ± 7.05 35.43 ± 3.48 110.6 ± 8.4 9.13 ± 1.9 IM TU 96    
Yassin 2016 115 - 62.28 ± 7.34 30.81 ± 4.33 106.47 ± 8.72 7.84 ± 2.34 IM TU 102.9    
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Table 3: Selected studies that tested the relation between total testosterone and body fat distribution indices in women without 
androgen excess. 

Study n Menopausal 
status 

Age Body fat distribution 
measurement 

Correlation 
coefficient 

p-Value 

Non-significant correlation       
Cross-sectional studies       
Evans et al. 1983 80 Premenopausal 19-49b WHR -0.22 NS 
Kaye et al. 1991 88 Postmenopausal 61.0  ± 3.3 WHR -0.11 NS 
Pasquali  et al. 1993 138 Premenopausal 27.9 ± 8.1 WHR -0.064 NS 
Zamboni et al. 1994 19 Premenopausal 37.1 ± 13.8 CT - VAT 0.23 NS 
Pedersen et al. 1995 25 Premenopausal 33.2 ± 1.5a DXA- Trunk fat -0.02 NS 

Phillips et al. 2008 78 58 Premenopausal 32.9 ± 1.2a MRI - VAT 0.11 NS 
20 Postmenopausal 61.4 ± 2.4a 0.42 NS 

Casson et al. 2010 29 Postmenopausal 60.1 ± 1.0a CT - VAT -0.11 NS 

Janssen et al. 2010 359 
48 Premenopausal 

50.6  ± 3.9 CT - VAT 0.062 NS 177 Perimenopausal 
134 Postmenopausal 

Keller et al. 2011 30 Premenopausal 27.3  ± 0.8a CT - VAT -0.38 NS 
Liedtke et al. 2012 1180 Postmenopausal 64.1 ± 5.8 WC 0.01 NS 

Cao et al. 2013 105 Early Postmenopausal 54.58 ± 2.98 DXA - Trunk/leg fat 0.076 NS 
107 Late Postmenopausal 69.41 ± 7.28 -0.055 NS 

       
Longitudinal studies       
Vaydia et al. 2012 1678 Postmenopausal 65.6 ± 9.2 WHR NS NS 
Goss et al. 2012 53 Postmenopausal 45-55b CT - VAT NS NS 
       
Significant correlation 
Cross-sectional studies  

  
   

Armellini et al. 1994 36 Premenopausal 34 ± 11 CT - VAT -0.513 <0.01 
De Pergola et al. 1994 40 Premenopausal 29.5 ± 8,1 Sonography - IAT -0.324 <0.05 
Cigolini et al. 1996 18 Premenopausal 38 ± 0 CT - VAT 0.48 <0.05 
De Pergola et al. 1996 28 Premenopausal 33.8 ± 9.61 CT - VAT -0.401 <0.05 

Turcato et al. 1997 41 26 Premenopausal 33.7 ± 10.2 CT - VAT -0.41 <0.01 15 Postmenopausal 57.9 ± 5.9 

Garaulet et al. 2000 55 22 Premenopausal 38 ± 8 WC 0.31 <0.05 33 Postmenopausal 61 ± 6 
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De Simonne et al. 2001 29 Premenopausal 14.19 ± 1.05 MRI - VAT 0.993 <0.00001 
Boyapati et al. 2004 420 Postmenopausal 56.6 WC 0.29 0.05 
Carranza-Lira et al. 2006 125 Postmenopausal 53.0 ± 6.5 WHR 0.297 <0.005 
Vaydia et al. 2012 1678 Postmenopausal 65.6 ± 9.2 WHR + S 

 
The data are presented as mean ± SD unless otherwise indicated. a Mean ± SEM, b Min-Max Range.  
CT: computed tomography; VAT: visceral adipose tissue; DXA: dual-energy X-ray absorptiometry; MRI: magnetic resonance 
imaging; WHR: waist-to-hip ratio; WC: waist circumference; IAT: intra-abdominal thickness; NS: non-significant; S: significant; +: 
positive correlation.  
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Table 4: Selected studies that tested the relation between free testosterone and body fat distribution indices in women without 
androgen excess. 

Study n Menopausal 
status 

Age Body fat distribution 
measurement 

Correlation 
coefficient 

p-Value 

Non-significant correlation       
Cross-sectional studies       
Kaye et al. 1991 88 Postmenopausal 61.0  ± 3.3 WHR 0.2 NS 
Armellini et al. 1994 36 Premenopausal 34 ± 11 CT - VAT -0.18 NS 
De Pergola et al. 1994 40 Premenopausal 29.5 ± 8.1 Sonography - IAT 0.286 NS 

Turcato et al. 1997  41 26 Premenopausal 33.7 ± 10.2 CT - VAT -0.16 NS 15 Postmenopausal 57.9 ± 5.9 
Ivandic et al. 1998 49 Premenopausal 34.6 ± 7.7 WHR 0.179 NS 
Ivandic et al. 2002 74 Premenopausal NA WHR 0.195 NS 
Cao et al. 2013 107 Late Postmenopausal 69.41 ± 7.28 DXA - Trunk/leg fat -0.05 NS 
       
Significant correlation       
Cross-sectional studies       
Evans et al. 1983 80 Premenopausal 19-49b WHR 0.44 0.001 
Seidell et al. 1990 434 Premenopausal 38 ± 0 WC 0.21 0.01 
Pedersen et al. 1995 25 Premenopausal 33.2 ± 1.5a DXA- Trunk fat 0.46 0.05 
Cigolini et al. 1996 18 Premenopausal 38 ± 0 CT - VAT 0.58 0.01 

Guthrie et al. 2003 102 53 Perimenopausal NA DXA - Trunk fat + S 49 Postmenopausal 
Korhonen et al. 2003 63 Premenopausal 44 WC 0.259 <0.001 

Phillips et al. 2008  78 58 Premenopausal 32.9 ± 1.2a MRI - VAT 0.41 
0.53 

0.001 
0.05 20 Postmenopausal 61.4 ± 2.4a 

Janssen et al. 2010 359 
48 Premenopausal 

50.6  ± 3.9 CT - VAT 0.345 0.001 177 Perimenopausal 
134 Postmenopausal 

Liedtke et al. 2012 1180 Postmenopausal 64.1 ± 5.8 WC 
DXA - Trunk/leg fat 

0.1 
0.339 

0.01 
0.001 Cao et al. 2013 105 Early Postmenopausal 54.58 ± 2.98 

Mongraw-Chaffin et al. 2015 855 Postmenopausal NA CT - VAT + S 
       
Longitudinal studies       

Guthrie et al. 2003 102 53 Perimenopausal NA DXA - Trunk fat + S 
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49 Postmenopausal 
Goss et al. 2012 53 Postmenopausal 45-55b CT - VAT + S 

Janssen et al. 2015 243 
28 Premenopausal  

CT - VAT + S 127 Perimenopausal 51.1 ± 3.7 
88 Postmenopausal  

 
The data are presented as mean ± SD unless otherwise indicated. a Mean ± SEM, b Min-Max Range. 
CT: computed tomography; VAT: visceral adipose tissue; DXA: dual-energy X-ray absorptiometry; MRI: magnetic resonance 
imaging; WHR: waist-to-hip ratio; WC: waist circumference; IAT: intra-abdominal thickness; NS: non-significant; S: significant; + 
positive correlation; NA: not available. 
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Table 5: Selected studies that tested the relation between androstenedione and body fat distribution indices in women without 
androgen excess. 

Study n Menopausal 
status 

Age Body fat distribution 
measurement 

Correlation 
coefficient 

p-Value 

Non-significant correlation       
Cross-sectional studies       
Evans et al. 1983 80 Premenopausal 19-49b WHR -0.13 NS 
Kaye et al. 1991 88 Postmenopausal 61.0  ± 3.3 WHR -0.07 NS 
Pasquali  et al. 1993 100 Premenopausal 27.9 ± 8.1 WHR 0.117 NS 
De Pergola et al. 1994 40 Premenopausal 29.5 ± 8.1 Sonography - IAT 0.01 NS 
Pedersen et al. 1995 25 Premenopausal 33.2 ± 1.5a DXA- Trunk fat 0.02 NS 
De Pergola et al. 1996  28 Premenopausal 33.8 ± 9.61 CT - VAT NA NS 

Turcato et al. 1997  41 26 Premenopausal 33.7 ± 10.2 
CT - VAT -0.15 NS 15 Postmenopausal 57.9 ± 5.9 

Ivandic et al. 2002 74 Premenopausal NA WHR 0.008 NS 
Casson et al. 2010 29 Postmenopausal 60.1 ± 1.0a CT - VAT -0.19 NS 
Keller et al. 2011 30 Premenopausal 27.3  ± 0.8a CT - VAT -0.41 NS 

Cote et al. 2012 60 50 Premenopausal 47.1 ± 5.1 CT - VAT -0.18 NS 10 Postmenopausal 
Liedtke et al. 2012 1180 Postmenopausal 64.1 ± 5.8 WC 0.01 NS 
 

Longitudinal studies 

      

Goss et al. 2012 53 Postmenopausal 45-55b CT - VAT 0.05 NS 
       
Significant correlation       
Cross-sectional studies       

Garaulet et al. 2000  55 22 Premenopausal 38 ± 8 WC 0.34 0.05 33 Postmenopausal 61 ± 6 
 
The data are presented as mean ± SD unless otherwise indicated. a Mean ± SEM, b Min-Max Range. 
CT: computed tomography; VAT: visceral adipose tissue; DXA: dual-energy X-ray absorptiometry; WHR: waist-to-hip ratio; WC: 
waist circumference; IAT: intra-abdominal thickness; NS: non-significant; NA: not available. 
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Table 6: Selected studies that tested the relation between androgens and body fat distribution indices in women with PCOS. 
Study n Ageb BMI category Body fat distribution 

measurement 
Correlation 
coefficient 

p-Value 

Total testosterone       

Pasquali et al. 1993 100 20.8 ± 5.9 Overweight WHR 0.091 NS 
Holte et al. 1994 67 NA Overweight DXA - trunk/leg fat 0.5 <0.001 
Douchi et al. 1995 40 25.8 ± 6.2 Normal DXA - trunk/leg fat 0.585 <0.05 
Douchi et al. 2001 67 28.8 ± 6.6 Normal DXA - trunk/leg fat 0.5 <0.001 
Lord et al. 2006 40 29.1 ± 5.0 Severely obese CT - VAT -0.15 NS 
Dong et al. 2012 408 27 (23-29)a Normal WC NA NS 
Borruel et al. 2013 55 26.0 ± 6.0 Obese Sonography – P-VC 0.297 <0.01 
       
Free testosterone       
       
Glintborg et al. 2006 51 NA Overweight DXA - Trunk fat 0.305 <0.05 
Lord et al. 2006 40 29.1 ± 5.0 Severely obese CT - VAT 0.14 NS 
Yucel et al. 2006 33 27.6 ± 3.9 Overweight DXA - trunk fat 0.227 NS 
Godoy-Matos et al. 2009 24 28.3 ± 8.4 Obese DXA - trunk/leg fat 0.411 NS 
Dong et al. 2012 408 27 (23-29)a Normal WC 0.162 <0.05 
Aydin et al. 2013 28 21.4 ± 4.2 Normal BIA - Trunk fat 0.402 <0.05 
Borruel et al. 2013 55 26.0 ± 6.0 Obese Sonography – P-VC 0.32 <0.001 
Jin et al. 2015 90 26.3 ± 6.3 Normal CT - VAT 0.326 <0.05 
Tosi et al. 2015 116 24.3 ± 5.3 Overweight DXA - trunk/leg fat 0.367 <0.001 
       
Androstenedione       
       
Pasquali et al. 1993 100 20.8 ± 5.9 Overweight WHR + <0.05 
Douchi et al. 1995 40 25.8 ± 6.2 Normal DXA - Trunk/leg fat 0.253 NS 
Borruel et al. 2013 55 26.0 ± 6.0 Obese Sonography – P-VC 0.099 NS 
The data are presented as mean ± SD unless otherwise indicated. a Median (Interquartile range). 
CT: computed tomography; VAT: visceral adipose tissue; DXA: dual-energy X-ray absorptiometry; WHR: waist-to-hip ratio; WC: 
waist circumference; P-VC: peritoneum-vertebral column; NS: non-significant; +: positive correlation; NA: not available. 
BMI category description: Normal: 20.0-24.9 kg/m2; Overweight: 25.0-29.9 kg/m2; Obese: 30.0-34.9 kg/m2; Severely obese: ≥ 35.0 
kg/m2;  bMenopausal status is considered to be premenopausal in PCOS groups.
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Table 7: Selected studies that compared abdominal or visceral fat accumulation in women with PCOS versus 
women without androgen excess. 
 PCOS groupb    

Study n Mean BMI 
category 

Body fat distribution 
measurement 

Group with 
higher value of 
abdominal fat 

p-Value 

No significant difference      
      
Holte et al. 1994 67 Overweight WHR - NS 
Yildirim et al. 2003 30 Normal WHR - NS 
Glintborg et al. 2006 51 Overweight DXA - Trunk fat - NS 

Svendsen et al. 2008 18 Obese DXA - Trunk/leg fat 
ratio - NS 

Barber et al. 2008 50 Obese MRI - VAT - NS 
Oh et al. 2009 39 Normal CT - VAT - NS 
Dolfing et al. 2011 10 Normal MRI - VAT - NS 
Manneras-Holm et al. 2011 31 Obese MRI - VAT - NS 
Penaforte et al. 2011 30 Severely obese CT - VAT - NS 
Karabulut et al. 2012 46 Overweight WHR - NS 
Aydin et al. 2013 28 Normal BIA – Trunk fat - NS 
Jin et al. 2015 90 Normal CT - VAT - NS 
      
Significant difference      
      
Evans et al. 1988 84 NA WHR PCOS <0.001 
Hauner et al. 1988 20 Severely obese WC PCOS <0,05 
Pasquali et al. 1993 100 NA WHR PCOS <0.05 

Douchi et al. 1995 40 Normal DXA - Trunk/leg fat 
ratio PCOS <0.01 

Kirchengast et al. 2001 10 Normal DXA - Trunk fat PCOS <0.001 
Dixon et al. 2002 30 Severely obese WC PCOS <0.001 
Puder et al. 2005 20 Overweight WHR PCOS <0.01 
Yucel et al. 2006 33 Overweight WHR PCOS <0.05 
Cosar et al. 2008 31 Overweight WHR PCOS <0.05 

Svendsen et al. 2008 17 Normal DXA - Trunk/leg fat 
ratio PCOS <0.05 

Borruel et al. 2013 55 Normal WC PCOS <0.05 
MRI: magnetic resonance imaging; VAT: visceral adipose tissue; DXA: dual-energy X-ray absorptiometry; CT: 
computed tomography; WHR: waist-to-hip ratio; WC: waist circumference; BIA: bioelectrical impedance 
analysis; NS: non-significant; NA: not available. 
BMI category description: Normal: 20.00-24.99 kg/m2; Overweight: 25.00-29,99 kg/m2; Obese: 30.00-34.99 
kg/m2; Severely obese: ≥ 35.00 kg/m2 
bMenopausal status is considered to be premenopausal in PCOS groups.  
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FIGURE HEADINGS 

Figure 1: Illustration of the interindividual variability in visceral fat accumulation for a 

given total body fat mass in women. Computed tomography axial images were obtained at the 

L4-L5 vertebrae level in four women examined in the supine position. The visceral cavity was 

delineated and adipose tissue was highlighted and quantified as described in (73). VAT is shown 

in grey on the bottom scan of each panel. Total body fat mass was measured by dual-energy x-

ray absorptiometry. For consistency, waist circumference (WC) values were obtained by 

measuring the perimeter of each scan by image analysis. Other anthropometric measurements 

were obtained in a standardized manner. The image in Panel A shows a cross-section of the 

abdomen of a woman with low visceral adipose tissue (VAT) accumulation and a propensity for 

subcutaneous adipose tissue storage. She is characterized by the highest BMI value and also has 

the highest subcutaneous adipose tissue (SAT) area (367 cm2). Images in Panels B and C show 

abdominal cross-sections from women with intermediary amounts of VAT. Their SAT areas are 

260 and 327 cm2 respectively. The image in Panel D shows a cross-section of the abdomen of a 

woman with a high propensity for visceral adipose tissue (VAT) storage. SAT area is 281 cm2. 

These substantial differences in VAT accumulation are noted in four women with similar heights 

(±5cm) and rigorously similar body fat mass values (±100g, 0.4% difference). 

 

Figure 2: Contrasting effects of available randomized control trials (RCTs) and 

observational studies describing the effect of testosterone replacement therapy (TRT) on 

the body mass index (BMI). Studies included in this figure were identified as described in the 

text. Most RCTs reported a non-significant effect of TRT on BMI whereas a higher proportion of 

observational studies reported a significant decrease in BMI following TRT. Numerical values 

on the charts indicate the number of study treatment groups in each category. 
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Figure 3: Contrasting effects of available randomized control trials (RCTs) and 

observational studies describing the effect of testosterone replacement therapy (TRT) on 

waist circumference (WC). Studies included in this figure were identified as described in the 

text. Most RCTs reported a non-significant effect of TRT on WC whereas a much higher 

proportion of observational studies reported a significant decrease in WC following TRT. 

Numerical values on the charts indicate the number of study treatment groups in each category. 

 

Figure 4: Correlation between average baseline total testosterone concentration and initial 

BMI in trials on testosterone replacement therapy (TRT) that observed either a decrease in 

waist circumference (WC) (grey squares), or no change in WC (black circles). Data were 

extracted from randomized control trials and observational studies as described in the text. 

Statistical significance of the change in WC was used as described in each publication. The 

correlation was significant (Spearman rank correlation coefficient -0.41, p<0.01). None of the 

studies reporting a significant effect of TRT on WC had average baseline total testosterone 

values above 11 nmol/L. 

 

Figure 5: Correlation between average baseline total testosterone concentration and initial 

waist circumference (WC) in trials on testosterone replacement therapy (TRT) that 

observed either a decrease in WC (grey squares), or no change in WC (black circles). Data 

were extracted from randomized control trials and observational studies as described in the text. 

Statistical significance of the change in WC was used as described in each publication. The 

correlation was close to significance (Spearman rank correlation coefficient -0.30, p<0.06). None 
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of the studies reporting a significant effect of TRT on WC had average baseline total testosterone 

values above 11 nmol/L. 

 

Figure 6: Schematic representation of the pathways of androgen synthesis and inactivation 

in adipose tissue. This is a partial version of the figure in our recent review article (265). HSD: 

hydroxysteroid dehydrogenase; P450 arom: P450 aromatase; E1: estrone; E2: estradiol; 5α-red: 

5α-reductase; UGT2B15: UDP-glucuronosyltransferase 2B15; G: glucuronide (two isomers of 

the glucuronide derivative are formed, 3α and 17β).  

 

Figure 7: Tridimensional confocal imaging of 17β-HSD type 2 in human adipose tissues. 

Panel A, CD31 labelling an endothelial cell marker; Panel B, 17β-HSD type 2 labelling; Panel C, 

Merging of the labellings; and Panel D, isotype controls. The experiment shows a clear co-

localization of CD31 and 17β-HSD type 2 in the blood vessels of the tissue (97). Permission to 

reprint pending. 

 

Figure 8: Activity, expression and localization of 17β-HSD type 2 in human adipose 

microvascular endothelial cells. Panel A, Androstenedione formation rate after 24h incubation 

with 0.03µM 14C-testosterone and inhibition with EM-919 (EM); Panel B, mRNA expression 

level of CD31 and 17β-HSD type 2 expressed as number of copies/µg total RNA; Panels C and 

D, immunohistochemical localization of 17β-HSD type 2; Panels E and F, rabbit antiserum. 

Scale bar 20 µm. Mean ± SEM are shown. *p<0.05 (97). Permission to reprint pending. 
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Figure 9: Activity of 5α-reductases types 1, 2 or 3 and inhibitory effects of 4-MA or 

finasteride in HEK-293 stably overexpressing each isoenzyme. Panel A, Untransfected cells; 

Panel B, 5α-reductase type 1-expressing cells; Panel C, 5α-reductase type 2-expressing cells; and 

Panel D, 5α-reductase type 3-expressing cells. Thin-layer chromatogarphy images and 

corresponding densitometric analyses are shown for each cell line. A-dione: androstanedione; 4-

dione: androstenedione; FINA: finasteride. Mean ± SEM. (98). 4-MA corresponds to 17β-N,N-

diethylcarbamoyl-4-methyl-4-aza-5α-androstan-3-one. Permission to reprint pending. 

 

Figure 10: Effect of 5α-reductase inhibitors on preadipocyte differentiation. G3PDH activity 

in differentiating subcutaneous preadipocytes treated with Panel A, androstenedione (4-dione, 

n=7) and Panel B, 500 nM of 4-MA or Panel C finasteride (FINA) over 14 days. G3PDH activity 

in differentiating subcutaneous preadipocytes treated with Panel D, testosterone (Testo, n=5) and 

Panel E, 500 nM of 4-MA or Panel F, finasteride (FINA) over 14 days. G3PDH activity 

expressed as % of control (CTL). Mean ± SEM. *P<0.05 (98). Permission to reprint pending. 
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DIDACTIC LEGENDS 

Figure 1. Teaching points: A large interindividual variability can be observed in visceral fat 

accumulation assessed by computed tomography. Computed tomography scans (top panels 

labeled A to D) were obtained at the L4-L5 vertebrae level in four women and visceral adipose 

tissue areas were measured (bottom panels). Despite the fact that all women have a very similar 

total body fat mass assessed by dual-energy x-ray absorptiometry (±100g difference) and a very 

similar height (≤5cm differences), the area of visceral adipose tissue varies from 48 cm2 to 130 

cm2. These differences are not perfectly reflected by the body mass index (BMI) or body weight. 

Although visceral fat accumulation is on average higher in men compared to women for a given 

level of adiposity, similar interindividual variability in visceral fat accumulation can be observed 

in men. 

 

Figure 2. Teaching points: There is a major difference between available randomized control 

trials (RCTs) and observational studies which examined the effects of testosterone replacement 

therapy (TRT) on the body mass index (BMI) in men. Most RCTs reported a non-significant 

effect of TRT on the body mass index (BMI) whereas a higher proportion of observational 

studies reported a significant decrease in BMI following TRT. Numerical values on the charts 

indicate the number of study treatment groups in each category. This may be explained in part by 

the lower average BMI values and higher testosterone values at baseline in RCTs compared to 

observational studies. 

   

Figure 3. Teaching points: There is a major difference between available randomized control 

trials (RCTs) and observational studies which examined the effects of testosterone replacement 
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therapy (TRT) on waist circumference (WC) in men. Most RCTs reported a non-significant 

effect of TRT on WC whereas a much higher proportion of observational studies reported a 

significant decrease in WC following TRT. Numerical values on the charts indicate the number 

of study treatment groups in each category. This may be explained in part by the lower average 

WC values and higher testosterone values at baseline in RCTs compared to observational studies.   

 

Figure 4. Teaching points: This is a logical follow-up to Figure 2. When using baseline body 

mass index (BMI) and total testosterone values at baseline from available RCTs and 

observational studies on testosterone replacement therapy (TRT) in men, a negative correlation is 

observed between BMI and total testosterone levels. Interestingly, the studies that reported a 

significant loss of WC in response to TRT generally segregated to the left of the regression, 

suggesting that independent of trial design, studies enrolling obese men with low baseline total 

testosterone are more likely to report a decrease in WC in response to TRT. 

 

Figure 5. Teaching points: This is a logical follow-up to Figure 3. When using baseline waist 

circumference (WC) and total testosterone values at baseline from available RCTs and 

observational studies on testosterone replacement therapy (TRT) in men, a negative correlation is 

observed between WC and total testosterone levels. Interestingly, the studies that reported a 

significant loss of WC in response to TRT generally segregated to the left of the regression, 

suggesting that independent of trial design, studies enrolling men with low baseline total 

testosterone and a high WC are more likely to report a decrease in WC in response to TRT. 
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Figure 6. Teaching points: This is a representation of the steroid conversions which can take 

place in adipose tissue under the action of steroidogenic enzymes targeting androgens. Steroid 

precursors such as DHEA or androstenedione may be locally transformed to active testosterone 

and/or DHT which then bind to the androgen receptor. Inactivation of testosterone to 

androstenedione may also be detected (see other figures). Additional reactions that were 

identified in adipose tissue include the inactivation of DHT by 3α-reduction and glucuronide 

conjugation as well as aromatisation of androstenedione or testosterone to 5α-reduced steroids. 

Abbreviations are the following: HSD: hydroxysteroid dehydrogenase; P450 arom: P450 

aromatase; E1: estrone; E2: estradiol; 5α-red: 5α-reductase; UGT2B15: UDP-

glucuronosyltransferase 2B15; G: glucuronide (two isomers of the glucuronide derivative are 

formed, 3α and 17β).  

 

Figure 7. Teaching points: We have reported that the conversion of testosterone to 

androstenedione could be detected in adipose tissue homogenates and adipose tissue explants. 

We have shown that 17β-hydroxysteroid dehydrogenase type 2 (17β-HSD-2) was likely 

responsible for this activity. However, when examining isolated primary cultures of 

preadipocytes or mature adipocytes, this activity was generally low. Using tridimensional 

confoncal imaging of 17β-HSD type 2 in human adipose tissue samples, we demonstrated that 

the enzyme clearly co-localized with CD31, an endothelial cell marker, in the blood vessels of 

adipose tissue. 

 

Figure 8. Teaching points: This is a logical follow-up to Figure 7. We further confirmed the 

cellular localization of the 17β-hydroxysteroid dehydrogenase type 2 (17β-HSD-2) isoenzyme in 
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human adipose tissue-derived microvascular endothelial cells. Panel A shows androstenedione 

(4-dione) formation in these cells using testosterone as a substrate. The activity is blocked by 

17β-HSD-2 inhibitor EM-919 (EM). Panel B shows expression of the endothelial cell marker 

CD31 and the HSD2B mRNA coding for 17β-HSD-2. Histological analysis in Panels E and F 

show strong expression of the enzyme in this cell type. Panels C and D are the negative controls.  

 

Figure 9. Teaching points: We tested the effects of two 5α-reductase inhibitors on each 5α-

reductase isoenzyme using three HEK-293 cell lines each overexpressing one of the 5α-reductase 

isoenzymes (5α-reductase type 1, type 2 or type 3). The inhibitors were finasteride (FINA) and 

4-MA. Thin-layer chromatography images and corresponding densitometry analyses are shown 

for each cell line. CTL: control; A-dione: androstanedione; 4-dione: androstenedione. Cells 

overexpressing 5α-reductase type 1 showed very strong androstenedione-to-androstanedione 

activity that was slightly blunted by 4-MA, but not by finasteride. Strong activity was detected 

also in the 5α-reductase type 2 cell line, but was inhibited by both inhibitors. Cells 

overexpressing 5α-reductase type 3 had lower activity which was blocked completely by both 4-

MA and finasteride. With the exception of the type 2 enzyme, which is not expressed in adipose 

tissue, inhibitors were effective against the type 3 isoenzyme, but not against type 1. Taken 

together with other evidence, this experiment provides indirect support for a role of 5α-reductase 

type 3 in adipose tissue. 

 

Figure 10. Teaching points: This is a logical follow-up to Figure 9. We tested the effect of 5α-

reductase inhibitors on human primary preadipocyte differentiation. Cells were incubated with 

either testosterone or androstenedione, and with or without 5α-reductase inhibitors 4-MA or 
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finasteride (FINA). The extent of preadipocyte differentiation was assessed by glyceraldehyde-3-

phosphate dehydrogenase activity (G3PDH). The 5α-reductase inhibitors completely reversed 

the inhibitory effect of androstenedione and testosterone on preadipocyte differentiation. We had 

shown that testosterone and DHT both inhibit preadipocyte differentiation in visceral and 

subcutaneous primary preadipocyte cultures of both sexes. These findings support the notion that 

DHT generated through 5α-reductase action may be responsible for an important portion of the 

effect of both androstenedione and testosterone on preadipocyte differentiation. G3PDH activity 

expressed as % of control (CTL). *P<0.05 
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Morphology of adipose tissue: a microscopic anatomy of fat 

Metabolism of human adipose tissue in vitro (legacy) 
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