# Early Growth Technology Analysis: Case Studies in Solar Energy and Geothermal Energy

by

Ayse Kaya Firat

M.Eng. Texas A&M University, 2006

| M | ASSACHUSETTS INSTITU<br>OF TECHNOLOGY | TE |
|---|---------------------------------------|----|
|   | SEP 2 0 2010                          |    |
|   | LIBRARIES                             |    |

B.S. Bogazici University, 2004

**ARCHIVES** 

Submitted to the Engineering Systems Division in Partial Fulfillment of the Requirements for the Degree of Master of Science in Technology and Policy

> at the Massachusetts Institute of Technology

> > September 2010

© 2010 Massachusetts Institute of Technology. All rights reserved.

|                      | 1. Sti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.         | /     |         |               |             |                      |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------|---------|---------------|-------------|----------------------|
| Signature of author: | -F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |       |         |               |             |                      |
|                      | Technology a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | and Polic  | y Pro | ogram,  | Engineerin    |             | Division<br>27, 2010 |
|                      | d'an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |       |         | Ĺ             |             |                      |
| Certified by:        | ₹.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |       |         | حساب<br>د مرد |             |                      |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |       |         |               | Stuart ]    | Madnick              |
| John Norris          | Maguire Professo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | r of Infor | mati  | on Tec  | hnology, N    | 1IT Sloan S | chool of             |
|                      | nent & Professor of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |       |         | <b>.</b>      |             |                      |
| •                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •          | •     | •       |               | Thesis Su   | pervisor             |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |       | -       |               | ·           | •                    |
|                      | - Alexandre - Alex |            |       |         |               |             |                      |
| Accepted by:         | 97.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | 1     | ١       |               | د           |                      |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | C     |         |               | Dava J. ]   | Newman               |
|                      | Professor of Aero                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nautics a  | ind A | strona  | utics and E   | ngineering  | Systems              |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | Dire  | ctor, T | echnology     | and Policy  | Program              |

[back of title page]

.

# Early Growth Technology Analysis: Case Studies in Solar Energy and Geothermal Energy

by

# Ayse Kaya Firat

Submitted to the Engineering Systems Division on August 27, 2010 in Partial Fulfillment of the Requirements For the Degree of Master of Science in Technology and Policy at the Massachusetts Institute of Technology

# ABSTRACT

Public and private organizations try to forecast the future of technological developments and allocate funds accordingly. Based on our interviews with experts from MIT's Entrepreneurship Center, Sloan School of Management, and IBM, and review of literature, we found out that this important fund allocation process is dominated by reliance on expert opinions, which has important drawbacks alongside its advantages.

In this Thesis, we introduce a data-driven approach, called early growth technology analysis, to technology forecasting that utilizes diverse information sources to analyze the evolution of promising new technologies. Our approach is based on bibliometric analysis, consisting of three key steps: extraction of related keywords from online publication databases, determining the occurrence frequencies of these keywords, and identifying those exhibiting rapid growth. Our proposal goes beyond the theoretical level, and is embodied in software that collects the required inputs from the user through a visual interface, extracts data from web sites on the fly, performs an analysis on the collected data, and displays the results. Compared to earlier software within our group, the new interface offers a much improved user experience in performing the analysis.

Although these methods are applicable to any domain of study, this Thesis presents results from case studies on the fields of solar and geothermal energy. We identified emerging technologies in these specific fields to test the viability of our results. We believe that data-driven approaches, such as the one proposed in this Thesis, will increasingly be used by policy makers to complement, verify, and validate expert opinions in mapping practical goals into basic/applied research areas and coming up with technology investment decisions.

### Thesis Supervisor: Stuart Madnick

John Norris Maguire Professor of Information Technology, MIT Sloan School of Management & Professor of Engineering Systems, MIT School of Engineering

# ACKNOWLEDGMENTS

I am grateful to my Thesis advisor and a true leader, Prof. Stuart Madnick, for his guidance, support, and patience as I traveled in the thorny path of scholarship. Prof. Madnick taught me how to ask the right questions, and showed immense understanding and patience during my difficult times. Thanks to Prof. Woon of Masdar Institute for Science and Technology (MIST) from whom I have received salient advice and feedback; and to Skype for making our virtual meetings possible.

The fine staff, faculty, and students of the Technology and Policy Program kept me focused and joyful during my time at MIT. Special thanks to Sydney Miller, and Ed Ballo of TPP. Thanks to my fellow students Blaine Ziegler, and Steven Camina with whom I have been able to talk about my ideas and receive helpful feedback whenever I hit a dead end. I am also thankful to Allen Moulton, Michelle Cole, and Michael Siegel from the COIN Group.

I am grateful to Prof. Howard Anderson, Prof. Bill Aulet, and Satwik Seshasai, who agreed to interview with me, and occupied a Chapter in my Thesis.

Finally, I would like to acknowledge my inspirational parents Necla and Halil Kaya, amazing siblings Hatice and Mikail Kaya, and my compassionate husband, Aykut Firat, who encouraged me along the entire path, never showed anything but confidence in me, and taught me the most important things I know.

| ABSTRACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3                                                                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| ACKNOWLEDGMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4                                                                        |
| CHAPTER 1: INTRODUCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11                                                                       |
| <ul> <li>1.1 MOTIVATION</li> <li>1.2 EARLY GROWTH TECHNOLOGY ANALYSIS</li> <li>1.3 PURPOSE: IDENTIFY CANDIDATE RESEARCH TOPICS TO CONSIDER</li> <li>1.4 RELATIONSHIP TO TRADITIONAL METHODS</li> <li>1.5 CASE STUDIES IN SOLAR AND GEOTHERMAL ENERGY</li> <li>1.6 THESIS STRUCTURE</li></ul>                                                                                                                                                                                                                                                                         | 11<br>11<br>12<br>13                                                     |
| CHAPTER 2: POLICY MOTIVATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14                                                                       |
| <ul> <li>2.1 KURZWEIL AND ISRAEL'S ENERGY POLICY</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                          |
| 2.3 ANALYSIS AND CRITIQUE OF THE CURRENT APPROACHES IN USE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20                                                                       |
| CHAPTER 3: LITERATURE REVIEW.<br>3.1 TECHNOLOGY FORECASTING.<br>3.1.1 Forms of Technology Forecasting and Related Terminology.<br>3.1.2 Trend in TF Publications.<br>3.1.3 TF and Access to Information.<br>3.1.4 TF Methods.<br>Expert Opinion.<br>Trend Analysis.<br>Monitoring and Intelligence Methods.<br>Statistical Methods.<br>Modeling and Simulation.<br>Scenarios.<br>Valuing/Decision/Economics Methods.<br>Descriptive and Matrices Methods.<br>3.1.5 How to Evaluate the Quality of TF Methods?<br>Choosing a Forecasting Method.<br>3.1.6 Conclusion. | 23<br>23<br>24<br>26<br>26<br>26<br>27<br>28<br>28<br>28<br>28<br>30<br> |
| 3.2 MIT/MIST APPROACH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 35                                                                       |
| <ul> <li>CHAPTER 4: EARLY GROWTH TECHNOLOGY ANALYSIS</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                          |

# TABLE OF CONTENTS

| Black-Box Approach                                                    | 42 |
|-----------------------------------------------------------------------|----|
| Modular Approach                                                      | 42 |
| Declarative Approach                                                  |    |
| 4.2.2 Comparison                                                      | 47 |
| A. Authoring                                                          | 47 |
| Authoring wrappers for "difficult pages"                              |    |
| Visual support                                                        |    |
| Special-purpose debugging                                             | 47 |
| B. Maintenance                                                        | 48 |
| Object-Oriented Design Principle: Encapsulate what varies             | 48 |
| C. Teachability                                                       |    |
| D. Capability                                                         |    |
| Flexibility                                                           |    |
| SQL Interface                                                         |    |
| Excel Integration                                                     |    |
| Error Handling                                                        |    |
| Java Script Interpretation                                            |    |
| Summary                                                               |    |
| CHAPTER 5: EARLY GROWTH ANALYSIS SOFTWARE TOOLS                       | 52 |
|                                                                       |    |
| 5.1 HIT AGGREGATOR                                                    |    |
| 5.2 CAMELEON SCHEDULER                                                |    |
| 5.2.1 Managing Tasks                                                  |    |
| 5.2.2 Technical Specifications                                        | 57 |
| 5.3 THE EGTA TOOL                                                     | 58 |
| 5.3.1 Software Design Details                                         | 60 |
| 5.3.2 Software Implementation                                         |    |
| Local vs Remote Cameleon Access                                       |    |
| Concurrency in Web Source Access                                      |    |
| Formulas for Top Term Calculation                                     |    |
| Progress Bar in Web Application                                       | 62 |
| Adding New Sources                                                    |    |
| CHAPTER 6: SOLAR ENERGY CASE STUDY                                    | 63 |
| 6.1 MANUALLY CREATED EMERGING SOLAR TECHNOLOGIES LIST                 | () |
|                                                                       |    |
| 6.2 BACKTESTING                                                       |    |
| 6.3 COMPARISON OF SOURCES.                                            |    |
| 6.4 CASE STUDY RESULTS                                                |    |
| 6.4.1 Metals                                                          |    |
| 6.4.2 Nanotechnology                                                  |    |
| 6.4.4 Formation of intermediate band gap                              |    |
| 6.4.5 Thin films                                                      | 68 |
| 6.4.6 General solar energy related terms                              | 69 |
| 6.5 CONCLUSION                                                        | 69 |
| CHAPTER 7: GEOTHERMAL CASE STUDY                                      | 70 |
| 7.1 CATEGORIZATION OF THE CASE STUDY RESULTS                          | 70 |
| 7.2 BRIEF ANALYSIS OF THE EMERGING TECHNOLOGIES IN GEOTHERMAL ENERGY. | 70 |
|                                                                       |    |
| 7.3 CONCLUSION                                                        | 75 |
| CHAPTER 8: EXPERT INTERVIEWS                                          | 76 |
| 8.1 INTERVIEW TRANSCRIPTS                                             | 76 |
| CHAPTER 9: CONCLUSION                                                 | 83 |
| 9.1 CONTRIBUTIONS                                                     | 83 |
| 9.2 FUTURE WORK                                                       |    |
|                                                                       |    |
| REFERENCES                                                            | 85 |

| APPENDIX 1: INFORMATION ABOUT ONLINE PUBLICATION DATA SOURCES    |     |
|------------------------------------------------------------------|-----|
| APPENDIX 2: HIT AGGREGATOR EXCEL VERSION                         | 93  |
| APPENDIX 3- CAMELEON SCHEDULER                                   | 99  |
| APPENDIX 4 – EGTA TOOL INSTALLATION INSTRUCTIONS                 |     |
| APPENDIX 5 - CODE FOR THE EARLY GROWTH TECHNOLOGY ANALYSIS TOOL  |     |
| APPENDIX 6 -COMPLETE RANKED TERM LIST FOR SOLAR CASE STUDY       | 150 |
| APPENDIX 7 - COMPLETE RANKED TERM LIST FOR GEOTHERMAL CASE STUDY | 167 |

# **TABLE OF FIGURES**

| Figure 1: The process decision makers go through for investment/funding allocation decisions                                                                                                                                                                                                                                                                                                                                                        | 12         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Figure 2: The map (left) of commercial attractiveness vs. technical strength for seven therapeutic areas the central nervous system (CNS), inflammatory disorders (INF), cardiorespiratory disorders (RD), metabolic disease (MD), cardiovascular disease (CV), gastrointestinal disease (GI), and anti-infection agents (AI)—was redrawn based on the use of scientometrics (right). GI was then dropped from the R& program [Norling et al. 2000] | D          |
| Figure 3: Number of hit counts for "Technology Forecasting" OR "Technological Forecasting from We Science between 1996 and 2009.                                                                                                                                                                                                                                                                                                                    | b of<br>25 |
| Figure 4: Three keys steps for Early Growth Technology Analysis                                                                                                                                                                                                                                                                                                                                                                                     | 37         |
| Figure 5: Term Collection from Compendex & Inspec                                                                                                                                                                                                                                                                                                                                                                                                   | 38         |
| Figure 6: Term Collection from Scirus                                                                                                                                                                                                                                                                                                                                                                                                               | 39         |
| Figure 7: Hitcount Collection from Scirus, Compendex & Inspec                                                                                                                                                                                                                                                                                                                                                                                       | 40         |
| Figure 8: An example wrapper in Python is shown for the Scirus online database                                                                                                                                                                                                                                                                                                                                                                      | 43         |
| Figure 9: Simple SQL query against the wrapped Scirus Search Engine                                                                                                                                                                                                                                                                                                                                                                                 | 44         |
| Figure 10: Cameleon# Spec File for Scirus Database                                                                                                                                                                                                                                                                                                                                                                                                  | 45         |
| Figure 11: Hit Aggregator we developed for our technology forecasting project                                                                                                                                                                                                                                                                                                                                                                       | 46         |
| Figure 12: Cameleon Studio Interface                                                                                                                                                                                                                                                                                                                                                                                                                | 48         |
| Figure 13: Hit Aggregator in Excel                                                                                                                                                                                                                                                                                                                                                                                                                  | 52         |
| Figure 14: Hit Aggregator Web Version                                                                                                                                                                                                                                                                                                                                                                                                               |            |
| Figure 15: Login Page                                                                                                                                                                                                                                                                                                                                                                                                                               | 53         |
| Figure 16: Main Cameleon Scheduler Web Interface                                                                                                                                                                                                                                                                                                                                                                                                    | 54         |
| Figure 17: Execution results for the CIA Factbook example                                                                                                                                                                                                                                                                                                                                                                                           | 56         |
| Figure 18: Manage Tasks Link                                                                                                                                                                                                                                                                                                                                                                                                                        | 56         |
| Figure 19: Task Management Interface                                                                                                                                                                                                                                                                                                                                                                                                                | 57         |
| Figure 20: Data model for Cameleon Scheduler                                                                                                                                                                                                                                                                                                                                                                                                        | 57         |
| Figure 21: EGTA tool web version                                                                                                                                                                                                                                                                                                                                                                                                                    | 58         |
| Figure 22: EGTA tool desktop version                                                                                                                                                                                                                                                                                                                                                                                                                | 59         |
| Figure 23: The MVC design pattern –                                                                                                                                                                                                                                                                                                                                                                                                                 | 60         |
| Figure 24: The Model Classes                                                                                                                                                                                                                                                                                                                                                                                                                        |            |
| Figure 25: RFID Hitcount Growth between 1996-2009                                                                                                                                                                                                                                                                                                                                                                                                   | 64         |
| Figure 26: Hit counts for twelve emerging technologies from Google Scholar for the last ten years                                                                                                                                                                                                                                                                                                                                                   | 66         |
| Figure 27: RFID Popularity/Adoption vs. Time Curve                                                                                                                                                                                                                                                                                                                                                                                                  | 77         |
| Figure A1.1: Excel allows users to pull data from Access, Web, Text & other sources                                                                                                                                                                                                                                                                                                                                                                 | 93         |
| Figure A1.2: Importing data into Excel from Yahoo Finance                                                                                                                                                                                                                                                                                                                                                                                           |            |
| Figure A1.3: Retrieving data that is in tables or preformatted areas.                                                                                                                                                                                                                                                                                                                                                                               |            |
| Figure A1.4: A user can also make queries against XML files.                                                                                                                                                                                                                                                                                                                                                                                        |            |
| Figure A1.5: Cameleon.iqy                                                                                                                                                                                                                                                                                                                                                                                                                           |            |
| Figure A1.6: Excel Hit Aggregator v1 and its query sheet                                                                                                                                                                                                                                                                                                                                                                                            |            |

| Figure A1.7: Calling Cameleon from Excel            | 96 |
|-----------------------------------------------------|----|
| Figure A1.8: Using Form Controls in Excel Developer |    |
| Figure A1.9: Excel Hit Aggregator v2                | 97 |
| Figure A1.10: Excel Hit Aggregator v2 query sheet   |    |
| Figure A1.11: Excel Hit Aggregator v0               |    |
| Figure A1.12: Changing Registry Directory           |    |

# LIST OF TABLES

| Table 1: The companies included in "Technology Intelligence Processes in Leading European and North         American Multinationals." study [Lichtenthaler 2004b]           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Table 2: Intensity of use of different information sources in the industries studied [Lichtenthaler 2004b]19                                                                |
| Table 3: Leading Authoring Organizations by Sector [Porter 2007]                                                                                                            |
| Table 4: Leading FTA Journals [Porter 2007]    25                                                                                                                           |
| Table 5: Forecasting methods for particular situations                                                                                                                      |
| Table 6: A summary of the comparison of between black-box, modular, and declarative approaches51                                                                            |
| Table 7: Overlap percentage of results for seed terms "Photovoltaics", "Solar energy", and "Renewableenergy" with different term sizes between Compendex, Scirus and Inspec |
| Table 8: Overlap percentage of results from Compendex, Inspec and Scirus for term size 2100 for pairs         with similar or same meaning (e.g. Gasoline and Petrol)       |

# **CHAPTER 1: INTRODUCTION**

### **1.1 MOTIVATION**

Identifying novel technologies that have the potential to generate high commercial returns at an early stage is critical to venture capital firms, entrepreneurs, and policy makers alike. Decision makers and strategy setters have to track current state of research by sifting through volumes of data, and weigh future scenarios by seeking in-depth expert opinions. The Internet is both a friend and foe in this process, as it offers ever-growing amounts of information for richer yet more timeconsuming analysis. Clearly, new automated methods are needed to aid decision makers in this challenging process.

### **1.2 EARLY GROWTH TECHNOLOGY ANALYSIS**

In this study, we investigate the efficacy of one such automated method in identifying potentially promising set of technologies in a given area of interest using online databases of scientific publications. We provide a set of software tools that implement this method, and we present two case studies by applying the methodology to the fields of solar and geothermal energy. We evaluate the utility of this automated approach by conducting interviews with subject-area experts and noting their reactions.

We call the method used in this Thesis, Early Growth Technology Analysis (EGTA), since we try to locate technologies that are in the early, low-prevalence phase of their life cycle and are likely to exhibit high growth. With EGTA, we take advantage of the knowledge buried in online scientific publications to perform bibliometric analysis, consisting of three key steps:

- 1. Term collection by extracting related keywords from articles for a given area of interest
- 2. Determining the occurrence frequencies of these keywords (hit counts)
- 3. Identifying those exhibiting rapid growth, particularly if starting from a low base

Term collection starts with a seed term such as "solar energy" that acts as a proxy for the general technology area of interest. We then utilize online publication databases such as Compendex, Inspec, and Scirus to find terms relevant to this seed term. Some of these online databases are freely available (e.g. Scirus), some require subscription (e.g. Compendex and Inspec), and yet others require permission for programmatic access (e.g. Google Scholar) (See Appendix 1 for a detailed description of these sources).

After collecting the related terms from a set of sources, the next step is to find out hit counts of each term over a number of years. For this task, we use the hit counts returned by a set of data sources, which in our case are the same sources we use for collecting terms. Finally, we narrow down our original list to a subset of terms that seem to fit the early growth description by ranking our list using these hit counts.

# **1.3 PURPOSE: IDENTIFY CANDIDATE RESEARCH TOPICS TO CONSIDER**

The top technologies produced by this method are not necessarily "the best" of their kind or "the answer" to a particular question, but merely are interesting emerging directions for decision makers to consider. To be more concrete, our algorithm is not going to help organizations like Masdar or IBM, sponsors of our research, to decide which specific projects to fund, which is Phase 3 of the overall funding process as shown towards the right in Figure 1. Both Masdar and

IBM have their own decision criteria to work on this step such as quality of research, past track record of the researchers/employees, cost-benefit analysis, expert opinions, and fit with organizational goals. Our goal is to help the decision makers in the former step, Phase 2 (see Figure 1, Left), that involves going from a broad area of interest such as energy or photovoltaics to a few possible themes that are believed hold a lot of promise. With the help of EGTA, decision makers will only face a modest list of promising ideas, or in other terms, options to consider. The decision makers may already have their own 'promising ideas' list, and may use our results to add to that list or validate their options. After this initial step, these decision makers may use criteria of their choice to make their final decision.

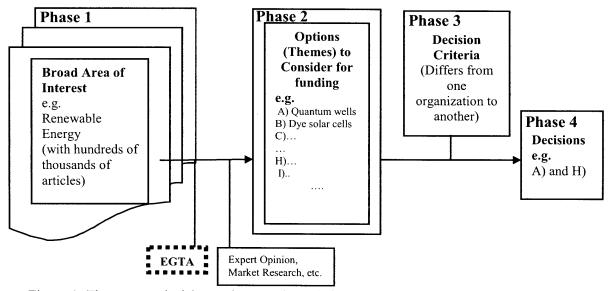



Figure 1: The process decision makers go through for investment/funding allocation decisions 1.4 RELATIONSHIP TO TRADITIONAL METHODS

Our interviews with entrepreneurs and venture capitalists, and the review of literature on technology investments reveal that decision makers widely rely on the subject area experts' predictions in both of the decision steps discussed in Figure 1. The first of these two steps (narrowing down a broad area of interest to a few promising options) requires an in-depth knowledge of the area as well as its relationship with other fields. Although experts in a field could have a detailed understanding of their field, it would be unreasonable to expect them to have exhaustive knowledge of every facet of their field. Emerging technologies, in particular, are unfortunately the ones of which they are most likely unaware. With this project, our main contribution is to help decision makers and experts identify emerging technologies in a field they are interested in; ensure that they do not miss an important development; augment and validate their already established ideas on options to consider for investment and fund allocation.

Apart from this contribution, we also advance the state of data collection within our group with a new set of software tools. Although effective in producing results, earlier software developed in our group by fellow researchers were not initially designed with "user friendliness" or ease of extendibility in mind. The new set of tools, including the Hit Aggregator, Cameleon Scheduler and Early Growth Technology Analysis (EGTA) tool, all have visual interfaces. Moreover, extending the analysis with new publication databases can be done without any coding. The most significant software, EGTA tool, was built using the Model-View-Controller (MVC) design pattern, which makes further development much easier.

### **1.5 CASE STUDIES IN SOLAR AND GEOTHERMAL ENERGY**

To provide a focus for subsequent discussions and evaluations, we conducted two case studies in solar and geothermal energy by using our set of software tools. These two case studies and our interviews with subject area experts indicate that our proposed approach can be an important decision aid for policy makers.

We believe that data-driven approaches, such as the one proposed in this Thesis, will increasingly be used by policy makers to complement, verify, and validate expert opinions in mapping practical goals into basic/applied research areas and coming up with funding allocation and technology investment decisions.

### **1.6 THESIS STRUCTURE**

This chapter has presented a brief overview and the objective of our project, along with a brief description of the methods and tools used to achieve these objectives. Chapter 2 explains the policy motivation for the project followed by a Literature Review in Chapter 3, which presents a review of the research and literature in the fields of technology forecasting, and bibliometrics.

Chapter 4, Early Growth Technology Analysis, describes how we extract keywords from online publication search engines, how the associated publication counts are extracted, and how we use these counts to identify fast-growing technologies. It also provides a comparison of the data gathering approaches adopted within our research group, and why we believe the approach presented in this Thesis is superior.

Chapter 5, Tool Development, describes the software tools we created to make our approach more "user friendly" in detail.

Chapter 6 and 7, Solar Energy and Geothermal Energy Case Study Results, presents results of our software to analyze the fields of solar and geothermal energies.

In Chapter 8, we discuss our interviews with subject-area experts and how they view the method we outlined in this Thesis, before concluding in Chapter 9, with a summary of the main findings of the project and areas left for future research.

# **CHAPTER 2: POLICY MOTIVATION**

Technology policy makers widely rely on subject area experts in making their funding allocation decisions. Experts, with their experience and domain knowledge, are invaluable resources in helping decision makers, but even they may not be fully aware of all the promising developments in broad and complex fields of technology. In the fast paced Internet age, it is no longer possible for a human to wake up every morning and read every blog post, news and journal article in their domain of interest and not miss an important development before it becomes a headline. There is an obvious need for a computer to process vast amounts of relevant information out there, and present a summary in human digestible format.

One of our primary goals in this thesis is to create and experiment with an automated datadriven method that helps experts acquire a more complete understanding of their area of expertise. The promise of this goal can be better understood, if the reader is first told how these decisions are currently made in policy circles. We start with an anecdote, and continue with a background on the policy making process in the rest of this chapter.

## 2.1 KURZWEIL AND ISRAEL'S ENERGY POLICY

I am at "The VC Portfolio in 2030", a panel discussion organized by the MIT Sloan Venture Capital Club. World-renowned futurist, author, and inventor, Ray Kurzweil, is discussing his controversial views of the immediate future and its dramatic implications to our everyday life and taking questions from two technology investors to determine the best way to deploy capital in a future that we can't yet imagine.

Kurzweil is an avid proponent of regularity in technological progress, a hard core technodeterminist. According to Kurzweil, the biggest problem today is that people do not recognize this regularity in technological progress enough. But if they did, if they had a sense and vision to recognize the power of technologies, this would eliminate impediments to further development, adoption and diffusion. Not recognizing these changes prevents harvesting the benefits rapidly and adequately.

In today's discussion, Kurzweil talks about investing in renewable energy. He says the field of energy is being transformed by exponential growth, just like information technology (IT) has been for several decades. In IT, most of us are familiar with the Moore's law that describes a long-term trend in the history of computing hardware, in which the number of transistors that can be placed inexpensively on an integrated circuit has doubled approximately every two years. Energy is currently a field dominated by fossil fuels, which is a 19th century technology. Kurzweil's claim on doubling the performance of clean energy technologies every two years, as the semiconductor industry has seen with Moore's Law, seems like a tough goal to hit.

### Solar To Rule in the Next 16 Years

Kurzweil mentions a recent study where a panel of experts including Google Co-Founder Larry Page and Kurzweil himself convened by the National Academy of Engineering. The panel investigated all the emerging energy technologies and picked solar as having the most potential because of its applicability to nanotechnology. The reason why solar energy technologies will advance exponentially, Kurzweil says, is because it is an "information technology" (one for which we can measure the information content), and thereby subject to the "Law of Accelerating Returns". Solar and wind power currently supply about one percent of the world's energy needs, but advances in technology are about to expand with the introduction of nano-engineered materials for solar panels, making them far more efficient, lighter and easier to install.

"We also see an exponential progression in the use of solar energy," he says. "It is doubling now every two years. Doubling every two years means multiplying by 1000 in 20 years. At that rate we'll meet 100 percent of our energy needs in the next 16 years."

# A Conversation Changing a Country's Energy Technology Roadmap

Right after these statements, comes the most interesting part of the Kurzweil speech. Kurzweil says he shared his views on solar energy with the Prime Minister of Israel a couple of months ago at the Israeli Presidential Conference. He reports that the Prime Minister said "Well, that's great. Is there enough sun light to double eight more times?" Kurzweil explained to him that there is 10,000 times more sunlight than we need to meet 100 percent of our energy needs: "We could place the efficient solar panels 16 years from now on just a couple percent of the world's unused lands and meet all of the world's energy needs"

*Based on their conversation*, Kurzweil says, the Prime Minister announced a day later a 10year-plan harvesting the best scientists and engineers in Israel to completely replace fossil fuels with solar energy not just for Israel but for the world. Kurzweil said he told the Prime Minister afterwards that this was overly optimistic as it is going to take at least 16 years.

As a student of Technology Policy, I am quite surprised by the power and consequences of a single conversation. Even Kurzweil himself confesses that he was surprised. This anecdote is a vivid example of the enormous role expert opinions play in guiding decision makers in public and private organizations.

Next, we explore why policy makers rely so much on unstructured processes by understanding the difficulty of setting research and investment priorities.

### 2.2 DIFFICULTY OF SETTING RESEARCH AND INVESTMENT PRIORITIES

Policy makers at public and private organizations try to forecast the future of technological developments and are instructed to allocate funds to different areas of research using "practical objectives or goals serving as a motivation" (Government Performance and Results Act, GPRA of 1993). In research and development, however, "practical objectives or goals" can be very ambiguous. How exactly do these decision makers and organizations, then, go about mapping practical goals into applied research topics?

According to Ken Oye, MIT Professor of Political Science and Engineering Systems, such mapping decisions drive policy makers insane more than anything else. Oye mentions the struggle of Larry McCray, currently at MIT's Program On Emerging Technologies (POET), with such mapping decisions when he was heading the Policy Division of the National Research Council (NRC). As part of his job, McCray was asked to instruct and guide federal activity on shaping research priorities at the NRC. He had to provide objective guidance on the processes through which American research priorities should be set. Larry McCray was bothered because he concluded he did not have much in the way of good guidance to offer to the federal government on how to set research priorities with reference to practical objectives.

The National Science and Technology Council (NSTC) guidance or Government Performance and Results Act (GPRA) of 1993 are all these bits and pieces of regulation that are results oriented. Decision makers look at a program or a broad field and try to see what results would follow from it to give more money to promising programs or emerging technologies in a broad field.

Companies face a similar challenge like governments. How are corporate decisions, such as investing millions of dollars to a new technology in the field solar energy, being made? Are funding allocation decisions based on "objective, repeatable, and quantifiable" decision parameters? As Jerome C. Glenn, the director of the Millennium Project indicates in his reply to the above-mentioned questions, "Corporations tend not to share that information." Alan Porter, a leading figure in technology forecasting (TF), states that "These decisions are most often based on 'tacit knowledge' without much systematic TF or competitive technical intelligence (CTI) being utilized."

Let us briefly look into some public and private organizations such as European Commission, National Science Foundation, IBM and Novartis to understand how they set their research and investment priorities.

## **Public Institutions**

### **European Commission**

The European Commission determines research priorities by sending a questionnaire to a panel of about 1300 experts in all countries of the enlarged Europe. These experts represent the totality of European countries and the science and technology fields. Two thirds of the experts interviewed are from public research while the remaining one third comes from the private sector. Most of the participants are high level experts and more than two thirds of the experts interviewed are directors / heads of department in their organization [European Commission 2006].

European commission faces several difficulties in this process. The directors in the participating organizations might have prior interests and be inclined to advancing the technologies they are interested in. Timelines projected by directors may be very different from what the people working underneath the director are thinking. Furthermore, the composition of experts because of country quota reasons may diminish the quality of the panel.

### **National Science Foundation (NSF)**

NSF apportions its funds by creating panels of reviewers. What follows is a description of going from Phase 3 to Phase 4 mentioned earlier in Figure 1. We believe, based on informal talks, NSF uses a similar procedure in going from Phase 1 to Phase 2 of the funding process.

First, fund seekers complete proposals and send them back to NSF. NSF creates a panel from a list of reviewer applicants to assess the proposals. To understand the potential difficulties of this process, we need to look at the composition of expert reviewers in these panels. Are people that seek out the reviewing positions necessarily the people that are most oriented towards the latest advances? The ones who volunteer might have prior interests, and be inclined to interpret knowledge to make projections and evaluate risks to benefit themselves. Consequently, claims of interpretative authority may influence fund allocation decisions possibly in a non-optimal way when there is no data-driven mechanism to substantiate expert claims [National Science Foundation 2010].

### **Private Institutions**

#### Novartis

Novartis' approach to setting research priorities and investments at the corporate level is a good example of the strong trend in systematic technology intelligence (TI) undertaken in many technology-intensive large companies [Lichtenthaler 2004a], [Lichtenthaler 2004b]. Novartis

uses 180 globally distributed participants, including specialist teams, informal discussion groups and several fulltime technology intelligence specialists, to communicate during the year via intranet, where new trends are discussed. Furthermore, three to four times a year they meet physically in order to integrate the information gathered into a holistic and shared picture and in order to create an atmosphere of trust with their colleagues. This process somewhat resembles IBM's Horizon Watch.

#### IBM

HorizonWatch<sup>1</sup> is an internal IBM 'Grass-Roots' community that has been in place for over nine years. HorizonWatch Community was started to provide executive, strategy, and marketing teams with an early warning identification system of new, emerging opportunities, threats and trends in the marketplace. The community has over 1800 members from all types of functions, all divisions, and all geographies in IBM. Within IBM, and HorizonWatch, there are also employees whose full time job is to research, analyze, and write about emerging topics that will have an impact on IBM's ability to grow.

HorizonWatch community members are interested in learning, and collaborating on emerging business issues, trends and technologies. They meet via conference calls. Topics are presented to the community by subject matter experts. In between conference calls, they collaborate via the HorizonWatch blog, which is open to IBM employees only. The community has evolved into a collaborative network of people who are interested in hearing about and discussing emerging technology topics.

### GlaxoSmithKline

GlaxoSmithKline faced the research priority and investment setting problem immediately after the merger of SmithKline & French with Beecham (1990) [Norling et al. 2000]. The new corporate senior management faced the challenge of reallocating the combined \$1 billion R&D budget.

After the merger, a team from R&D and central marketing was assembled to look at the company's existing portfolio of therapeutic area research. The goal was to assess the viability of each research area and to explore new areas of unmet medical conditions or needs that could be profitably explored. A consulting firm, which had also been called upon, proposed locating the various therapeutic areas within a typical positional map of commercial attractiveness vs. technical feasibility or strength (see Figure 2, left). The firm was unwilling to recommend the discontinuation of work in any one of the therapeutic areas.

The head of R&D, however, was not satisfied, and asked the small, four-person intelligence group in the R&D section to look at another tool to guide the company in refocusing its R&D resources. That led to the application of scientometrics<sup>2</sup> or science mapping, a technique of using computer algorithms to identify connection patterns within the recently published scientific literature.Based on these patterns, a structural map of the scientific community can be created, showing the interrelationships between disciplines and the distribution of research communities.

<sup>&</sup>lt;sup>1</sup> http://horizonwatching.typepad.com/horizonwatching/2007/04/the\_horizonwatc.html

<sup>&</sup>lt;sup>2</sup> Scientometrics is concerned with the quantitative features and characteristics of science. Emphasis is placed on investigations in which the development and mechanism of science are studied by statistical mathematical methods. In practice, as in the SmithKline Beecham case, scientometrics is often done by measurement of (scientific) publications using bibliometrics. For purposes of this report, scientometrics and bibliometrics are used interchangeably.

A scientometric or knowledge map can identify the structure of a particular area of scientific research and measure its performance: How "hot" is this research area? How quickly are new discoveries being made? Is the field growing, or imploding upon itself? Maps can be drawn for each level in the hierarchy and color-coded according to performance measures.

SmithKline Beecham used this technique as one element in the redirection of its R&D resources. After generating scientometric maps of the seven research-based universes (or therapeutic areas) in which the merged company was active, they concluded that the field of gastrointestinal disease research in particular was not generating a significant amount of high-performance research. The positional map was redrawn (Figure 2, right). The company decided to close its research activities in this area, and to focus on research in the remaining six: the central nervous system, inflammatory disorders, cardiorespiratory disorders, metabolic disease, cardiovascular disease and anti-infection agents. The company then turned its attention to research platform (technology) areas, identifying networks of research communities common to the seven therapeutic areas. One such network constituted a technology universe working in the broad area of genomics, an interesting but uncertain field in the early 1990s.

Through scientometrics, it identified several university groups and small companies that were conducting high-momentum research in the genomics area. Further investigation of these high-momentum groups led to the first genomics agreement in the industry between SmithKline Beecham and Human Genome Sciences. Scientometrics also helped SmithKline Beecham to locate a multimillion-dollar research facility focusing on the central nervous system. Maps showed that centers of excellence in CNS research were located on the east and west coasts of the U.S. and in France, which was where the company ultimately built one of its research satellites. In short, scientometric technology gave the company an important intelligence perspective that enabled it to reshape its research portfolio for greater productivity, and to define a number of promising technology opportunities.

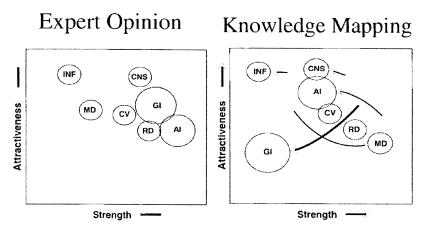



Figure 2: The map (left) of commercial attractiveness vs. technical strength for seven therapeutic areas — the central nervous system (CNS), inflammatory disorders (INF), cardiorespiratory disorders (RD), metabolic disease (MD), cardiovascular disease (CV), gastrointestinal disease (GI), and anti-infection agents (AI)—was redrawn based on the use of scientometrics (right). GI was then dropped from the R&D program [Norling et al. 2000].

### Other technology intensive companies

In a recent study by [Lichtenthaler 2004b], a total of 147 interviews were performed, in 26 technology intensive large companies in Europe and North America (Table 1). Interviewed were

specialists of the technology intelligence units and the technology acquisition intelligence units, as well as customers of these intelligence units from top management including in each case: the head of research or the chief technology officer, a member of middle management and a few individual researchers. Companies from the pharmaceutical, telecommunication equipment and automotive/machinery industries were examined with the goal of exploring industry differences in the management of technology intelligence processes.

|        | Pharmaceuticals             | Telecommunications equipment | Automobile/Machinery | Total |
|--------|-----------------------------|------------------------------|----------------------|-------|
| Europe | Novartis                    | Nokia                        | Sulzer               | 17    |
| •      | Roche                       | Ascom                        | DaimlerChrysler      |       |
|        | Bayer                       | Siemens                      | Hilti                |       |
|        | Zeneca                      | Swisscom                     | Schindler            |       |
|        | Boehringer Ingelheim        | Philipps                     | Landis & Gyr         |       |
|        | Hoechst Marion Roussel      |                              | Bosch                |       |
| USA    | Pfizer                      | Lucent Technologies          | Ford                 | 9     |
|        | Merck                       | Nortel Networks              |                      |       |
|        | Glaxo Wellcome <sup>1</sup> | Cisco                        |                      |       |
|        | SmithKline Beecham          |                              |                      |       |
|        | DuPont                      |                              |                      |       |
| Total  | 11                          | 8                            | 7                    | 26    |

 Table 1: The companies included in "Technology Intelligence Processes in Leading European and North American Multinationals." study [Lichtenthaler 2004b]

According to this study, the selection of the TF methods in a company were influenced by the objective of individual or organizational learning sought, time horizon of planning, and industry. Table 2 shows the intensity of different information source use in the industries studied.

|                                  | Pharmaceuticals | Electronics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Auto/Machinery |  |
|----------------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--|
| Publication frequency analyses   |                 | <ul> <li>A second s</li></ul> |                |  |
| Publication citation analyses    | • • •           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - Conception   |  |
| Quantitative conference analyses | • •             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ٠              |  |
| Patent frequency analyses        | • •             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |  |
| Patent citation analyses         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ٠              |  |
| S-curve analyses                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |  |
| Benchmarking studies             | • • •           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |  |
| Portfolios                       | • • •           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |  |
| Delphi studies                   |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |  |
| Expert panels                    | • • •           | ٠                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | • •            |  |
| Flexible expert interviews       | • • •           | • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |  |
| Technology roadmaps              | • •             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -10%           |  |
| Product technology roadmaps      |                 | • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ٠              |  |
| Product roadmaps                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |  |
| Experience curves                | ٠               | • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | • •            |  |
| Simulations                      | • •             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | vadit,         |  |
| Option pricing models            | • •             | -100000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 'ages          |  |
| Scenario analyses                | • • •           | • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | • • •          |  |
| Lead user analyses               |                 | • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | • •            |  |
| Quality function deployment      |                 | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |  |

• • • = often used • • = sometimes used • = rarely used -= not used

Table 2: Intensity of use of different information sources in the industries studied [Lichtenthaler2004b].

Take the science-driven pharmaceutical industry as an example. Starting from fixed customer needs, which can be determined in the form of long-term epidemiological studies, the scientific environment is scanned for most promising innovations. New scientific research results

are often of high competitive relevance and are immediately used. Publication citation analyses are therefore quite important in the pharmaceutical industry.

Many pharmaceutical companies combine publication citation analyses with an iterative marketing process of ideal product identification. As the projects move forward in the product pipeline, techno-economic, time and competitive aspects especially start to dominate assessments. Quantitative assessments are increasingly used. Pharmaceutical companies try to handle the technological uncertainty and the high failure rate of R&D projects by using options pricing methods. The large R&D budgets and the rising pressure to increase effectiveness in the selection of R&D projects are the root cause of the use of expensive and complex methods, such as simulations and publication citation analyses.

On the other hand, the telecommunications equipment industry is a market-driven industry. Technological progress and market development are closely coupled. This is reflected by the importance of lead user analyses, technology product roadmaps and scenario analyses. The integrated technology and market planning is seen as necessary because of the high rate of technological and market change. In the automotive industry in contrast, there is a slow rate of technological and market change.

In the telecommunications equipment industry, normally several technologies compete to become a standard and often imply different markets. At the same time, these technologies are only unstable dominant designs, which are substituted after a comparably short time. Besides the identification of innovation impulses from science, monitoring of the changing techno-economic importance in order to select the right technology and the right time to invest in a technology is of great importance. The importance of the monitoring of the techno-economic changes is mirrored by the intensive use of quantitative monitoring of conferences, experience curves and patent frequency analyses. Publication citation analyses and patent citation analyses are not used because scientific advances often take many years to become competitively relevant and the rate of change is too fast.

The automobile and machinery industries are more mature and less dynamic industries than the pharmaceutical and telecommunications equipment industries. Technological as well as market uncertainty are comparably low. The main focus is on the integration of customer needs in products and incremental innovations. Radical innovations are mainly triggered by the regulatory environment. Very often, therefore, scenario analyses, quality function deployment and lead user analyses are used. Changes in the scientific environment are perceived to be of less competitive importance compared to the telecommunications equipment and pharmaceutical industries. Patent citation analyses are mainly used to scan for new technologies.

### 2.3 ANALYSIS AND CRITIQUE OF THE CURRENT APPROACHES IN USE

Although there are advanced data driven approaches undertaken especially in the private industry to determine research priorities and investment decisions, our interviews with subjectmatter experts reveal that entrepreneurs and investment makers often employ similar approaches to organizations like European Commission, IBM and Novartis. When making investment decisions, they tend to rely on a small number of data sources, experts and friends. As discussed before, an expert may not be fully aware of all the promising developments in broad and complex fields of technology. It is hard to imagine an expert who can remain up to date in all relevant areas, process all the information out there and ensure not to miss an important development.

Furthermore, such decisions are prone to confirmation bias. Confirmation bias (also called confirmatory bias) is a tendency for people to favor information that confirms their preconceptions or hypotheses, independent of their truth. This results in people selectively collecting new evidence, interpreting evidence in a biased way, or selectively recalling information from memory. Instead of investigating in a neutral, scientific way, people tend to test hypotheses in a one-sided way, focusing on one possibility and neglecting alternatives. Wishful thinking and information processing limitations also contribute to the overall issue. Confirmation bias and overconfidence in personal beliefs strengthen beliefs in the face of contrary evidence, and can lead to disastrous decisions, especially in organizational, military and political contexts.

In policy making, we even have critiques who question the good will of experts and thus, the validity of expert opinions. Techno-constructivism is a school of thought composed of techno-constructivists exemplified by Paul Rabinow of University of California, Berkeley, an extremely distinguished anthropologist who has studied with the famous post-modernist critic, Michel Foucault. Rabinow sees these debates on technological forecasting, and efforts on prioritization of research and cost benefit analyzes as fundamentally corrupt. He argues that the claims of expertise are often amplified, exaggerated, and manipulated to claim power in debates [Rabinow 2004].

Availability of data is also an important factor in technological forecasting. Levary and Han [Levary and Han 1995] argues that given a small amount of low or medium validity data, and no similarity between proposed technology and existing technologies, a reasonable choice is a method based on information obtained from a panel of experts (i.e., Delphi method or interviews). Given a moderate to large amount of medium to high validity data and a high degree of similarity between proposed technology and existing technologies, they propose using correlation analysis. When there is medium or large amount of high validity data, trend analysis is the most appropriate method. Yet, in practice, independent of these factors, expert opinion affects funding allocation decisions more than any other method.

Time horizon is also a critical factor in how organizations go about setting research priorities and funding allocation. According to [Lichtenthaler 2004b], the longer the time horizons, the more the studied companies try not to forecast the development of a technology as precisely as possible, but rather tend to determine a commonly shared and supported, partly normative future, starting from an intensive analysis of the environment.

Organizational attempts to base funding allocation decisions on "objective, repeatable, and quantifiable" decision parameters are usually unsuccessful. In a 2001 study, [Reger 2001] made interviews in 25 multinational companies<sup>3</sup>. More than half the firms investigated emphasized that

<sup>&</sup>lt;sup>3</sup> Fifteen of the companies interviewed were in the fields of computers, electronics, energy, or aviation, and four companies in the automobile industry. The telecommunication/network operators sector was represented by four companies and the chemical industry by three. Sixteen of the corporations in the survey have their headquarters in Western Europe, five in Japan and five in the United States. The following persons were interviewed within the companies:

<sup>•</sup> The head of technology foresight, or those responsible for technology foresight processes,

<sup>•</sup> Heads of the technology planning/technology strategy group or department,

technology intelligence is an unstructured and unsystematic process – which illustrates the opportunity for improvement.

Our goal with this thesis is not to reshape the process of setting research priorities and investment decisions, but to offer a method that complements an expert's ability to predict the future of technological developments. With the tools we developed, experts will acquire a more complete and up to date understanding of their area of expertise. Our data-driven tools will help decision makers and experts identify emerging technologies in a field they are interested in, and ensure that they do not miss an important development in its early stage.

• Customers' such as, e. g. the head of an R&D/technology centre or the head of corporate research, the head of technology development in a business field or a member of a strategic committee.

Most interviews were conducted with senior managers responsible for the technology foresight process or for corporate R&D/technology strategy. All companies interviewed described their competitive environment as highly dynamic. The budget for research and development (R&D) in the interviewed firms was between 80 million and 4. 5 billion Euro.

# **CHAPTER 3: LITERATURE REVIEW**

Our research is part of the "Technology Forecasting using Data Mining and Semantics" (TFDMS) [Woon & Madnick 2008(2] project undertaken collaboratively by Massachusetts Institute of Technology (MIT) and Masdar Institute of Science and Technology (MIST). The methods we use in our research are derived from the field of technology forecasting (TF) and data mining, also known as tech mining. We, thus, first provide a review of the literature surrounding the field of technology forecasting in this chapter.

### **3.1 TECHNOLOGY FORECASTING**

TF, in general, applies to all purposeful and systematic attempts to anticipate and understand the potential direction, rate, characteristics, and effects of technological change. It especially focuses on invention, innovation, adoption, and use of technology. One imperfect yet useful analogy for TF is weather forecasting: TF enables better plans and decisions. A good forecast can help maximize gain and minimize loss from future conditions. Additionally, TF is no more avoidable than weather forecasting. All people implicitly forecast the weather, for example, by choosing to wear a raincoat, or carry an umbrella. Any individual, organization, or nation that can be affected by technological change, inevitably engages in forecasting technology, explicitly or implicitly, with every decision that allocates resources to particular purposes.

Ability to forecast emerging technologies inform critical choices at organizations of all sizes, from large multinational unions, such as the European Union, to small start-up companies. Large organizations need TF to:

- Prioritize R&D,
- Plan new product development,
- Make strategic decisions on technology licensing, joint ventures, and so forth.

Small organizations depend on technological innovation for their existence. In these companies, TF methods are used to forecast adoption or diffusion of innovations, where parameters such as rate of imitation by other adopters or rate of response to advertising can be measured. TF studies in companies are often called Competitive Technological Intelligence (CTI or TI).

In addition to mapping out commercially viable roadmaps for technological development, the TF field includes more social and diffuse measurements as well. For example, governments use national foresight studies to assess the course and impact of technological change for the purposes of effecting public policy. This includes what is known as technology assessment (TA) or social impact analysis, which examines the likely long-term effects of technological development as its impact spreads throughout society.

Furthermore, technology foresight studies are used as an awareness-raising tool, alerting industrialists to opportunities emerging in science and technology, and alerting researchers to the social or commercial significance and potential of their work [Coates et al. 2001].

### 3.1.1 Forms of Technology Forecasting and Related Terminology

There are many overlapping forms of forecasting technological developments, such as technology intelligence, forecasting, roadmapping, assessment, and foresight. There has been little systematic attention to the conceptual development of the field as a whole. Since 2003, the Technology Futures Analysis Methods Working Group (TFAMWG) has sought to lay a

framework from which to advance the processes and the methods. They combined different forms of technology forecasting studies under the term technology futures analysis (TFA) and classified different forms as follows [TFAMWG 2004]:

- Gathering and interpreting information: Technology monitoring, technology watch, technology alerts.
- **Converting that information into actionable intelligence**: Technical intelligence and competitive intelligence.
- Anticipating the direction and pace of changes: Technology forecasting.
- Relating anticipated advances in technologies and products to generate plans: Technology roadmapping.
- Anticipating the unintended, indirect, and delayed effects of technological changes: Technology assessment, and forms of impact assessment, including strategic environmental assessment.
- Effecting development strategy, often involving participatory mechanisms: Technology foresight, also national and regional foresight.

Many of these forms of forecasting use similar tools to accomplish similar ends. But there is a general tendency in government to use phrases that separate thought from action, such as "assessment" and "foresight," while in industry there is a tendency to use phrases that link thought and action, such as "roadmapping" and "competitive technological intelligence." There are cross-national differences as well, propelled by the differences of societal expectations from markets and governments. Industrial roadmapping, a largely private sector led initiative, originated and became prevalent in the United States, while foresight, a government sponsored activity, became the preferred alternative in Europe. These forms of forecasting—national technology foresight, roadmapping, and competitive technological intelligence—came into prominence at different times, and with relatively little effort to clarify their similarities and differences.

TF usually focuses on specific technologies, but sometimes the scope is more encompassing. A firm might roadmap a set of related technologies and products; an industry association might roadmap the gamut of emerging technologies potentially affecting its sector; or a nation could roadmap technologies across its economic base. For example, a U.S. semiconductor industry association roadmap, regularly updated to support industry planning, had as its early objective as regaining global market share in semiconductors. If semiconductor technologies were addressed in a national foresight study, the scope might also include the needs and capabilities of the relevant sciences at the input end, and the possible societal costs and benefits at the outcome end.

Methodologically, both national foresight studies and roadmapping usually bring together people representing different expertise and interests, and use instruments and procedures that allow participants to simultaneously adopt a micro view of their own disciplines and a systems view of overriding or shared objectives [TFAMWG 2004].

In this thesis, we use TF in its broadest sense covering all of the activities mentioned in the framework mentioned above.

### **3.1.2 Trend in TF Publications**

How much TF research publication is out there? Figure 3 shows the results of querying Web of Science for "Technological forecasting" or "Technology forecasting". The activity seems encouraging for TF.

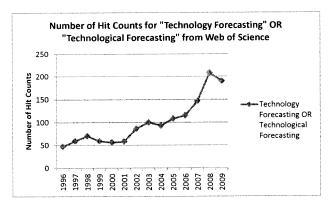



Figure 3: Number of hit counts for "Technology Forecasting" OR "Technological Forecasting from Web of Science between 1996 and 2009.

In 2006, Alan Porter prepared a literature profile of the TF domain helping to characterize the growing body of knowledge [Zhu and Porter 2002], [Porter 2007]. This study shows that the number of scholarly articles relating to TF is increasing. The study also examines the sectoral mix of institutions involved in TF as shown in Table 3 below. Note that the second grouping consolidates several difficult to distinguish types – governmental and non-governmental organizations, and other such institutes. Not surprisingly, publication of TF articles is strongly led by the academic community--which has the greatest stake in such publication-- but the substantial participation by government and industry is also notable.

| Туре                   | # of Articles | # of Authorships | % of Articles |
|------------------------|---------------|------------------|---------------|
| Academic               | 567           | 779              | 58%           |
| Gov't/NGO's/Institutes | 174           | 210              | 18%           |
| Industry               | 109           | 142              | 11%           |
| Other                  | 128           | _                | 13%           |

Table 3: Leading Authoring Organizations by Sector [Porter 2007]

Where is TF work being published? Alan Porter's study lists 11 journals with 10 or more publications, where "Technological Forecasting & Social Change" is the leader, amidst strong representation from leading technology management journals (Table 4). The "Journal of Cleaner Production" focuses on sustainable development, while "Solid State Technology" shows a number of technology roadmapping articles.

| Leading FTA Journals (# of Articles)                |
|-----------------------------------------------------|
| Technological Forecasting & Social Change (114)     |
| International Journal of Technology Management (52) |
| Futures (49)                                        |
| ResearchTechnology Management (26)                  |
| Abstracts of Papers, American Chemical Society (14) |
| Technovation (13)                                   |
| Journal of Cleaner Production (12)                  |
| Journal of Forecasting (12)                         |
| R & D Management (11)                               |
| Solid State Technology (11)                         |
| Technology Analysis & Strategic Management (11)     |

Table 4: Leading FTA Journals [Porter 2007]

### 3.1.3 TF and Access to Information

Forecasters have long had complex algorithmic approaches at their disposal, but their ability to effectively execute those approaches has been limited by the availability of information and costs of manual information manipulation and analysis.

A defining characteristic of the Internet age has been the tremendously enhanced access to information. This offers particular promise to improve TF. There are many web sites that provide useful information, including projects, research opportunities, publications, citations, and patents.

Worldwide research and development activity results in explosive growth in the amount of scientific and engineering literature. For instance, Science Citation Index contains almost 15 million abstracts of journal and conference papers published since 1987. US, Japanese, and European patents are searchable online [Zhu & Porter 2002]. More importantly, many organizations license diverse R&D databases for unlimited searching, e.g., universities for their students and faculty.

### 3.1.4 TF Methods

There are hundreds of TF Methods, which can be fit into 9 families [Coates et al. 2001], [Gordon and Glenn 2003] as follows (areas marked with \* show where our research fits in):

## 1) Expert Opinion

- Delphi [iterative survey]
- Focus Groups [panels, workshops]
- Interviews
- Participatory Techniques

### 2) Trend Analysis

- Trend Extrapolation [Growth Curve Fitting]\*
- Trend Impact Analysis
- Precursor Analysis
- Long Wave Analysis

### 3) Monitoring and Intelligence Methods

- Monitoring [environmental scanning, technology watch]
- Bibliometrics [research profiling; patent analysis, text mining]\*

### 4) Statistical Methods

- Correlation Analysis
- Demographics
- Cross Impact Analysis
- Risk Analysis
- Bibliometrics [research profiling; patent analysis, text mining]\*

### 5) Modeling and Simulation

- Agent Modeling
- Cross Impact Analysis
- Sustainability Analysis [life cycle analysis]
- Causal Models
- Diffusion Modeling
- Complex Adaptive System Modeling (CAS) [Chaos]
- Systems Simulation [System Dynamics, KSIM]

- Technological Substitution
- Scenario-simulation [gaming; interactive scenarios]
- Economic base modeling [input-output analysis]
- Technology Assessment
- 6) Scenarios
  - Scenarios [scenarios with consistency checks; scenario management]
  - Scenario-simulation [gaming; interactive scenarios]
  - Field Anomaly Relaxation Method [FAR]
- 7) Valuing/Decision/Economics Methods
  - Relevance Trees [futures wheel]
  - Action [options] Analysis
  - Cost-benefit analysis
  - Decision analysis [utility analyses]
  - Economic base modeling [input-output analysis]

### 8) Descriptive and Matrices Methods

- Analogies
- Backcasting
- Checklist for Impact Identification
- Innovation System Modeling
- Institutional Analysis
- Mitigation Analysis
- Morphological Analysis
- Roadmapping [product-technology roadmapping]
- Social Impact Assessment
- Multiple perspectives assessment
- Organizational analysis
- Requirements Analysis [needs analysis]
- 9) Creativity
  - Brainstorming [brainwriting; nominal group process (NGP)]
  - Creativity Workshops [future workshops]
  - TRIZ
  - Vision Generation
  - Science Fiction Analysis

We will briefly review some of the most popular methods in each category. Note that some of the methods fit into more than one family. For example, bibliometrics – which is a major focus of the MIT/MIST project – is listed under Trend Analysis, Statistical, and Monitoring/Intelligence Methods.

#### **Expert Opinion**

Expert Opinion methods include forecasting or understanding technological development via intensive consultation with subject-matter experts. The most popular method in this family is the Delphi Method. This method combines expert opinions concerning the likelihood of realizing the proposed technology as well as expert opinions concerning the expected development time into a single position. In Delphi, a sequence of individual interrogations is followed by

information and opinion feedback derived from analyzing the initial response data. This feedback, which includes the reasoning and/or justification behind each individual expert's forecast, allows the other experts to revise their forecast in light of the new information. A single acceptable forecast is typically agreed upon after several rounds of this process [Levary and Han 1995]. Delphi, being the most widely used technique, has been subjected to scrutiny by many authors. Woundenberg, for instance, [Woundenberg 1991] questioned the accuracy and reliability of the Delphi method drawing upon the work of many other researchers like Campbell [Campbell 1966], Pfeiffer [Pfeiffer 1968], Dalkey [Dalkey 1969], Dalky and Helmer [Dalky et al. 1963], Farquhar [Farquhar 1970], Gustafson [Gustafson et al. 1973], Parente [Parente et al. 1984], Hill and Fowles [Hill and Fowles 1975] and Martino [Martino 1970].

### **Trend Analysis**

Trend analysis involves prediction via the continuation of quantitative historical data into the future. Trend analysis is a broad term that encompasses economic forecasting models and techniques such as regression, exponential smoothing and Box-Jenkins' ARINA model and growth curve fitting [Levary and Han 1995]. A technology usually has a life cycle composed of several distinct stages. The stages typically include an initial adoption stage, a growth stage, a maturity stage and a declining final stage. Growth curve forecasting is based on the parameter estimation of a technology's life cycle curve. The growth curve forecasting method is helpful in estimating the upper limit of the level of technology growth or decline at each stage of the life cycle. This method of forecasting is also helpful in predicting when the technology will reach a particular life cycle stage.

One type of growth curve forecasting method is the Fisher-Pry Analysis. It is a mathematical technique used to project the rate of market adoption of technically superior new technologies and, when appropriate, to project the loss of market share by old technologies [Sahlo and Cuhls 2003]. The technique is based on the fact that the adoption of such new technologies normally follows the "logistic curve" pattern (also known as the S-curve), defined by two parameters. One of these parameters determines the time at which adoption begins, and the other determines the rate at which adoption will occur. These parameters can be determined from early adoption data, and the resulting pattern can be used to project the time at which market takeover will reach any given level. Results produced by this technique are highly quantitative. The technique is used to make forecasts such as how the installed base of telecommunications equipment will change over time, how rapidly a new chemical production process will be adopted, and the rate at which digital measuring devices will replace analog devices in petroleum refineries.

### **Monitoring and Intelligence Methods**

Monitoring and its variations such as the Environmental Scanning and Technology Watch, are suitable for making one aware of changes on the horizon that could impact the penetration or acceptance of the technologies in the marketplace [Phillips et al. 2005]. Environmental scanning is considered as a central input to futures research [Woon & Madnick 2008(2)], but its output is seen as too general to support a specific decision. Its objectives then is to find early indications of important future developments to gain as much lead time as possible [Woon & Madnick 2008(2)].

Resource availability is one of the scoping issues associated with these methods since a number of the scanning approaches require the use of experts. Expert panels are created to look

out for changes on the horizon that could be important to implement or accomplish plans. Experts are also tracked in a "scan the scanners" manner. TF analysts identify the experts in a field and keep track of those individuals by making occasional contact with them, observing them at conferences or searching the Internet for insights they may have posted.

#### **Bibliometrics**

Bibliometrics is a set of tools for analyzing publication data. Some of the bibliometric information associated with a publication includes author, affiliation, citations from other publications, co-citations with other publications, reader usage, and associated keywords. Bibliometrics can be used as a measure to describe research output of organizations, evaluate the impact of a technology or track the level of activity in a research field over time.

According to Porter and Cunningham [Porter and Cunningham 2005], "social scientists have applied methods of content analysis for decades. Counting scientific publication activity dates back at least to the pioneering work of Derek de Solla Price (1963)... With the advent of electronic text sources and analytical software, content analysis has matured into text mining... Data mining seeks to extract useful information from any form of data, but common usage emphasizes numeric data analysis...Text data mining or text mining exploits text sources of various sorts".

One of the most important aspects of bibliometric analysis is that it goes beyond the experts' biases, allowing the discovery of new facts and patterns that sometimes are not perceived due to the limit of knowledge or prejudiced visions. Some authors point out certain limitations of bibliometric analysis [Porter and Detampel 1995],[Porter 1998], considering that not all R&D activities are published or patented: much of the activity of technological development is not included either in journals, conferences, papers or patents in a timely fashion; the counting of publications does not distinguish the quality from its content; each institution has its own patenting policy; and there is no perfect system of classification and indexation of publications.

Besides these limitations, there are essential points for obtaining good results in text mining [de Miranda Santo et al. 2006]:

• Knowledge of the subject under study: it is important to have a good knowledge of the subject to define the search strategy in databases and analyze its results.

• Knowledge of the databases to be used: to know their contents and their structure, their level of standardization and the existing possibilities of data recovery are factors that define the success or failure of the task. The lack of standardization, for example, sometimes makes good text mining very hard due to low trustworthiness of the data.

• **Knowledge of patent information**: if patents are under study, it is important to know about the patents information structure, since they have rules of their own. Patent is a wide field, where techniques, products, applications and legal considerations are strongly mixed. This is also a field most of the time dedicated to industry people and, for example, the academic community does not cite patents very much. Nevertheless, patents are a unique source of information since most of the data and information published in patents are not published elsewhere.

• **Definition of search strategy**: it is an essential step and it is linked to the three previous ones, that is: knowledge of the subject and knowledge of databases and patents.

The use of restricted or extremely ample terms, for example, can lead to results that induce to errors of evaluation.

• Usage of analytical tools: it is important to have good text mining softwares and also to really know how to use them. Some commercial databases are beginning to provide analytical tools together with the search facilities, but they still have limited possibilities.

• **Results analysis**: experts must analyze the results trying to extract the best interpretation of the histograms, matrices and networks looking for strategic information.

The usage of text mining techniques must, necessarily, involve the experience of information professionals and of domain experts to be successful. The knowledge of information professionals on the available information sources, their contents and structure, and the opinion of experts to define the search strategy and to interpret the results are crucial for the quality of the final work.

### **Statistical Methods**

In the Statistical Methods family, the most popular methods are correlation analysis and bibliometrics. Correlation analysis forecasts the development pattern of a new technology when the development pattern of the new technology is similar to those of existing technologies. Use of this method presupposes that data regarding the development patterns of the existing technologies are available [Phillips et al. 2005].

In 1983, when Martino published [Martino 1983], there was a correlation between the total installed steam turbine capacity in the United States and the maximum size of a single steam turbine electric generator. This would allow one to forecast the largest size of a steam turbine electric generator based on the forecast total industry capacity.

Many new or potential tools, currently used in future studies, have resulted from advances in information technology and science. Bibliometrics, and its specialized form scientometrics<sup>4</sup>, for example, are two tools used traditionally by the information science experts to measure scientific productivity and to identify science and technology networks [de Miranda Santo et al. 2006].

#### **Modeling and Simulation**

A model is a simplified representation of the structure dynamics of some part of the real world. Models can exhibit future behavior of complex systems simply by isolating important system aspects from the inessential detail. Modeling requires a good understanding of interactions between these forecasts and the underlying variables or determinants.

One example in this family is agent modeling. An agent model involves the creation of computer generated "agents" that "populate" a computer screen, and interact with one another according to a set of behavioral rules [Gordon 2003]. The agents may be of different species; that is, they may have different attributes and may be assigned different rules. Their interaction over time is usually simulated by successive "plays" of the rules as the evolving attributes and spatial

<sup>&</sup>lt;sup>4</sup> The term scientometrics is used to describe the study of science: growth, structure, interrelationships and productivity. [Hood and Wilson 2001] states that there has been considerable confusion in the terminology of the two closely related metric terms bibliometrics and scientometrics. Bibliometrics is a more general term referring to the statistical analysis of a document without the actual extraction of each document's fulltext. Scientometrics, on the other hand, is mainly used for the study of all aspects of the literature of science and technology, as the name would imply.

positions of the agents are computed. The spaces in the environment in which the agents are placed may also contain rules.

[Gordon 2003] describes an agent model that simulates the spread of an infection in a population, but explains that the model could be used to simulate any attribute that is passed from one person to others in society, such as a disease, an idea or belief, a fad, a market or a behavioral pattern. Using the model provided in the paper as a starting point, [Phillips et al. 2005] claims it may be possible to apply this concept to simulate the growth of use of sustainable energy technologies such as clean coal technology, tidal power and photovoltaics, if each sustainable energy technology is modeled as an agent. Each agent would have its own attributes and be governed by different rules. For example, an attribute of clean coal may be that it has a negative connotation while an attribute of photovoltaics may bet that it has a positive connotation while that of tidal power has a neutral connotation. Assuming that one set up the spaces to be in some way representative of society; filled with experts, private companies, "the public", government, etc., rules could be set up such that, for example, if a clean coal technology agent met a public space, the rule could require that the infection is retarded. However, if a clean coal technology agent met an expert space, the rule could require that the infection is advanced.

Systems simulation is another popular method in this family. The major benefit of systems simulation is to "allow users to search for the best approaches to an opportunity, facing a challenge, or solving a problem, without the risk or price of costly mistakes" [Woon and Madnick 2008(2)]. Given this benefit, it is possible to imagine configuring a system which contains all (or as many as reasonably possible) sustainable energy technologies and running a simulation to determine which technology will have the highest future value [Phillips et al. 2005]. However, although it is possible to imagine this model theoretically, the practical aspects of implementing such a model would be daunting because the accuracy of the pictures that system simulations create depends entirely on the quality of the data and on the realism of the way the relationships are expressed in the model. [Woon & Madnick 2008(2)].

#### Scenarios

Scenario writing proposes different conceptions of future technology. Each conception of the characteristics of the future technology is based on a well-defined set of assumptions. A scenario represents alternative characteristics of the future technology, with each alternative being based on certain assumptions and conditions. The forecaster evaluates the validity of the assumptions. The results of this evaluation are used to determine the scenario most likely to occur [Levary and Han 1995].

Most often, scenarios are used by top management to provide a better understanding of the range of possible business environments they must contend with in the future. As a tool for imagining alternative futures, scenario projects have helped many leaders gain perspective to guide their search for competitive advantage.

In the 1950s, Herman Kahn and his associates at the RAND Corporation adapted the meaning and method of theatrical scenarios to war planning [Millett 2003]. Kahn used scenarios to mean alternative paths resulting in alternative outcomes, such as his four scenarios of how nuclear war might erupt between the US and the Soviet Union.

Based on Kahn's work at RAND and later at his own Hudson Institute, war-planning scenarios were adapted by companies as a business planning tool in the early 1970s. Ian Wilson at GE, Pierre Wack at Shell, and Peter Schwarz at SRI International redefined scenarios as

alternative outcomes of trends and events by a target year regardless of the precise sequence of events [Millett 2003]. Their scenarios were descriptions of future conditions rather than accounts of how events might unfold. Scenarios offered a set of distinct alternative futures to emphasize that the business environment was uncertain and could evolve in totally different ways. The scenarios provided a context for the development of long-term corporate strategic plans and near-term contingency plans. For example, Wilson led perhaps the first major corporate scenario project at GE that produced in 1971 four alternative scenarios of global and US economic and socio-political conditions in the year 1980: benchmark (with a 50 percent probability), more inward-looking societies (25 percent), more integrated societies (15 percent), and more disarrayed societies (10 percent) [Millett 2003].

### Valuing/Decision/Economics Methods

The most popular method in this category is the "relevance tree approach". This is a normative approach to TF. The goals and objectives of a proposed technology are broken down into lower level goals and objectives in a tree-like format. In this way, the hierarchical structure of the technological development is identified. The probabilities of achieving the goals and objectives at the various levels of technological development must be estimated. The probabilities can then be used to forecast the likelihood of achieving the stated goals and objectives of the proposed technology [Levary and Han 1995].

### **Descriptive and Matrices Methods**

A growing activity in this category is technology roadmapping, which projects major technological elements of product design and manufacturing together with strategies for reaching desirable milestones efficiently. Roadmaps typically run several technology or product generations (e.g., 2 to 10 years) ahead. In its broadest context, a science and technology roadmap provides a consensus view or vision of the future science and technology landscape available to decision makers. Thus, the predictive element emphasized in early TF is supplemented with a normative element, that is, narrower, more targeted, and more directly actionable than is the normative element implicit in TA. In the past, the institutional champions for roadmapping were mainly military industrial organizations; more recently, they have been other large corporations and industry associations [Coates et al. 2001].

UK Department of Trade and Industry 's Foresight Vehicle Technology Roadmap is a good example for technology roadmapping. The UK Foresight Vehicle roadmapping initiative involved 10 workshops over 10 months, with 130 people participating from over 60 organisations who tried to chart the future for road vehicles from a multistakeholder perspective in 2001. One of the technology elements of the roadmap shows how the fuel cell is expected to develop and challenge the internal combustion engine, highlighting how transitional phases involving hybrid vehicles may bridge the gap while the technology and necessary infrastructure develop. The overall roadmap provides a common framework and resource for the sector to collectively address the challenges facing the road transport system [Brown and Phaal 2001].

Analogies are also widely popular descriptive methods. The use of analogies in forecasting involves a systematic comparison of the technology to be forecast with some earlier technology that is believed to have been similar in all or most important respects. According to Martino in [Martino 1983], one of the shortcomings with analogies is that they "...are based on the assumption that there is a 'normal' way for people to behave and that given similar situations,

they will act in similar ways. However, there is no guarantee that people today will act as people did in the model situation. Hence the forecast is at most probable, never certain".

### 3.1.5 How to Evaluate the Quality of TF Methods?

Evaluation of TF methods is quite challenging. Evaluation should establish, how much the method appears to be achieving its intended outcomes. Yet, there is no general-purpose toolkit for evaluating TF studies' influence and outcomes. A key challenge is establishing where a TF process begins and ends. Also, determining the extent to which an activity would have taken place without the intervention of the TF is problematic.

The Technology Futures Analysis Methods Working Group (TFAMWG) [TFAMWG 2004] gives a brief study that focuses on the evaluation of national Tech Foresight programs.<sup>5</sup> They choose Tech Foresight, as it has a mission of informing specific decisions. Tech Foresight also seeks to enlarge excessively short-term horizons and facilitate the formation of new networks around technologically and socially innovative activities.

TFAMWG [TFAMWG 2004] draws attention to two aspects of evaluation, product and process. *Product-oriented* work results, for example, in priority lists, reports arguing the case for a strategy in a particular field of science and technology (S&T), proposals for reform of educational systems, etc. It is possible to count and document products (reports, web pages, etc.), to examine their diffusion (readership, citations, etc.), and even to get some estimate of their use.

*Process-oriented* work results in network building, shared understanding, the formation of new alliances, bringing new participants into the innovation policy debate, etc. These consequences are harder to measure and monitor and will typically require more explicit examination - they will rarely be available as by-product data from the administration of a program.

TFAMWG [TFAMWG 2004] examines evaluation and use of Tech Foresight in terms of:

**Futures:** The assessment depends on the period that Tech Foresight addressed. In a short horizon (say, 5 years) critical technology exercise, this is not too serious a delay. But when Tech Foresight involves a time scale of 15 or more years, assessment is difficult—and its utility more problematic.

**Participation and Networks:** Examination of many aspects of the engagement of people in the Tech Foresight process and of the formation and consolidation of networks is best carried out in real time—memories get hazy rapidly and many of these activities go unrecorded. But many of the outputs and outcomes of such activities will take time to mature and require ex post investigation.

Action: A major question here is that of attribution. [TFAMWG 2004] claims that actions are often packaged as resulting from Tech Foresight, while in reality the decision makers use the reference to the study merely as a means of legitimation. Similarly, many actions may be taken that have their origins in the study but are not attributed to that source.

<sup>&</sup>lt;sup>5</sup> Technology foresight is a term used for national TF activities in general. [Reger 2001] states that much of the pioneering work in technology foresight in the industry and at national level was done in the USA. Large think tanks, such as Rand and Hudson, made many technological forecasts since 1960s. The studies basically intended to help large corporations and government agencies to adjust their technological investment. Since the early 1970s, various ministries and agencies in Japan have been conducting repeated technological foresight studies (among them the Ministry of Trade and Industry (MITI), Economic Planning Agency (EPA) and the Science and Technology Agency (STA)). Western European countries followed with systematic technology foresight activities in the 1990s [Farquhar 1970].

#### **Choosing a Forecasting Method**

A large number of methods have evolved for TF, but the quality of forecasts greatly depends on proper selection and application of appropriate methods. The application demands that the technique used need to be time-, space- and technology-specific. Yet, there is little research done on matching the TF methods techniques to a particular technology.

One such study comes from, Levary and Han [Levary and Han 1995], who have considered several basic factors such as the extent of data availability, the degree of data validity and degree of similarity between proposed technology and existing technologies. Each factor has been categorized into cases as small/low, medium/moderate, large/high and their combinations, and an appropriate forecasting method has been suggested. A summary of these suggestions are shown in Table 5 below.

| Case<br>Number | Extent of Data<br>availability | Degree of data<br>validity | Number of Variables<br>affecting technology<br>development | Degree of similarity between<br>proposed technology and<br>existing technologies | Forecasting method                                         |
|----------------|--------------------------------|----------------------------|------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------|
| 1              | small                          | low or medium              | medium                                                     | low                                                                              | Delphi Method<br>Nominal group process<br>Scenario writing |
| 2              | small                          | low                        | small                                                      | medium                                                                           | Case study                                                 |
| 3              | moderate or large              | medium or high             | small or medium                                            | high                                                                             | Correlation Analysis                                       |
| 4              | moderate or large              | medium or high             | small or medium                                            | low or medium                                                                    | Regression Analysis                                        |
| 5              | moderate                       | medium or high             | small                                                      | low or medium                                                                    | Growth curve                                               |
| 6              | moderate                       | high                       | medium or large                                            | low                                                                              | AHP Relevance trees                                        |
| 7              | moderate or large              | medium or high             | medium or large                                            | medium or high                                                                   | Systems dynamics                                           |
| 8              | large                          | medium or high             | one                                                        | low                                                                              | ARIMA                                                      |
| 9              | moderate                       | medium                     | one                                                        | low                                                                              | Exponential Smoothing                                      |
| 10             | moderate or large              | medium or high             | small or medium                                            | medium or high                                                                   | Cross impact analysis                                      |

Table 5: Forecasting methods for particular situations

A more recent study [Mishra et al. 2002] provides a comprehensive procedure to pick the right TF method. First they identify the characteristics of a technology that need to be considered (rate of change, ease of diffusion, number of alternatives available, etc). Next, using a 10-point scale, experts of the selected technology rate each of the characteristics for the selected technology. Then, using the same characteristics, experts of TF methods rate every method in the same manner. Finally, the profiles for the TF methods and technology profiles are superimposed to ascertain the "best fit," i.e., the technique profile that closely matches the technology profile. By using this procedure, for example, they match normative technique to forecast Defense Weapon Systems, and Delphi method for IT (software for ecommerce).

An important element of the MIT/MIST TFDMS project is bibliometric analysis. As we defined earlier, bibliometrics is the statistical analysis of text documents, typically publications and patents. Since publications in this case refer mainly to academic publications and patents, science and technology intensive industries would logically be a better fit for this type of analysis. As patents and publications often deal with ideas and techniques in the relatively early stages of development, this is the stage at which bibliometric methods are most useful. Also, in the early stages of development, technical merit is probably the key determinant of success. Later on many other factors would influence the success of a technology or product, so there is a lot more complexity and noise. In such situations, "higher-level" features and pattern recognition techniques become more appropriate.

Many articles state that, because of the complexity of TF and because each forecasting method can deal with only limited aspects of a forecasting case, it is often advantageous to use several different forecasting methods simultaneously. In line with this, the MIT/MIST TFDMS research project extends and improves "tech-mining" techniques and introduces semantic enabled features. The performance of programs and tools are tested and fine-tuned with case studies on renewable energy and sustainability [Ziegler 2009], solar energy and geothermal energy.

### **3.1.6 Conclusion**

This section presented many overlapping forms of forecasting technology developments and their impacts, including technology intelligence, forecasting, roadmapping, assessment, and foresight. Although there has been little systematic attention to the conceptual development of the TF field as a whole, the literature profile of the TF field in general shows increasing research activity and interest in TF as the need for TF increases.

There are hundreds of methods being used for TF. Many experts in the field agree that it is advantageous to use several methods simultaneously, as each method can only deal with limited aspects of a forecasting case. The quality of forecasts greatly depends on proper selection and application of appropriate method.

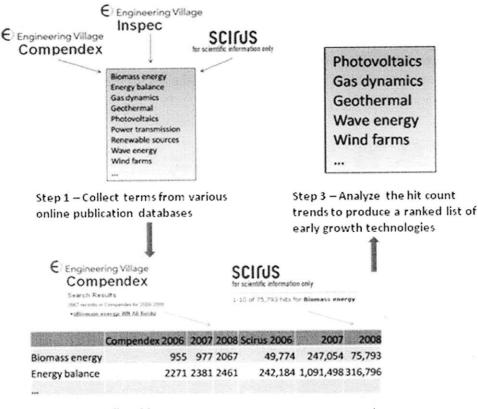
Several studies emphasize that TF in practice, especially in companies, is an unstructured and unsystematic process – which illustrates the opportunity for improvement. Enhanced access to information offers particular promise to improve TF. In an era when tremendous research and development activity worldwide results in explosive growth in the amount of scientific and engineering literature, the MIT/MIST research on developing novel methods for automatically mining science and technology information sources will contribute to this improvement.

### **3.2 MIT/MIST APPROACH**

To facilitate the formation of research strategies with the greatest potential, MIT and MIST started a collaborative research project called "Technological Forecasting using Data Mining and Semantics" (TFDMS). The study focuses on novel methods for automatically mining science and technology information sources with the aim of extracting patterns and trends. The goals include (but are not limited to) generating growth forecasts for technologies of interest, intuitive representations of interrelationships between technology areas, identification of influential researchers or research groups and the discovery of underlying factors, which may affect or stimulate technological growth. The aim is to develop a suite of techniques, which will significantly extend and improve existing methods for performing so-called "tech-mining" [Woon & Madnick 2008], [Woon et al 2009(1)], [Woon et al. 2009(2)].

The work described in this thesis applies bibliometric analysis techniques mentioned in the TF literature above. As a novelty, we automatically generate the terms we analyze by using online information sources without asking experts to come up with them. We then use a hit count trend analysis to create a list of technology areas that are likely to grow exponentially. These lists are presented to experts for further review to complement their analysis.

From the technical perspective, our main focus in this thesis, however, is more on developing a better data access platform to collect the information needed in TF analyses than on advancing an algorithmic aspect of a particular TF technique, which is being done by other researchers in our group. For example, [Woon & Madnick 2008(1)] presents a novel method for automatically constructing taxonomies for specific research domains. The proposed methodology uses term co-occurence frequencies as an indicator of the semantic closeness between terms.


[Ziegler et al. 2008] presents an approach to bibliometric analysis in the context of technology mining using Latent Semantic Analysis (LSA) to reveal the concepts that underlie the terms relevant to a field. [Ziegler 2009] presents methods and software implementation for analyzing a field of research through the use of bibliometrics. [Camiña 2010] investigates the modeling of research landscapes through the automatic generation of hierarchical structures (taxonomies) comprised of terms related to a given research field. Several different taxonomy generation algorithms are discussed and analyzed within this paper, each based on the analysis of a data set of bibliometric information obtained from a credible online publication database.

The set of tools we created for this thesis separate generic and specific aspects of Web data access to make the data collection process as easy and extendible as possible and are discussed in more detail in the following chapters.

# **CHAPTER 4: EARLY GROWTH TECHNOLOGY ANALYSIS**

We mentioned in the introduction that early growth technology analysis consists of three key steps (also illustrated in Figure 4 below):

- 1. Term collection by extracting related keywords from articles for a given area of interest
- 2. Determining the occurrence frequencies of these keywords (hit counts)
- 3. Identifying those exhibiting rapid growth, particularly if starting from a low base



Step 2 – Collect hit counts over time for the collected terms

Figure 4: Three keys steps for Early Growth Technology Analysis In this chapter, we are going to describe each step in more detail.

## 4.1 ANALYSIS STEPS

#### **4.1.1 Collection of Relevant Terms**

Term collection starts with a seed term such as "renewable energy" that acts as a proxy for the general technology area of interest. We then utilize online publication databases such as Compendex, Inspec, and Scirus to find terms relevant to this seed term. Some of these online databases are freely available (e.g. Scirus), some require subscription (e.g. Compendex and Inspec), and yet others require permission for programmatic access (e.g. Google Scholar).

In order to be useful for term collection, a data source must have a way of returning relevant terms given a seed term. This can be a one step process, when the site simply returns a relevant term list given a query with the seed term, or may involve merging the results of multiple queries that traverse multiple pages. As it will be explained in more detail in the following chapters, we treat these online sources as if they are databases that can respond to queries in SQL (Structured Query Language) via web wrappers. Thus each data source, appropriately wrapped, is accessed uniformly from our software tools. This access uniformity enables us to easily add new data sources into our system.

Below we explain how the Compendex, Inspec and Scirus data sources are used for term collection.

#### **Compendex & Inspec**

Compendex and Inspec are data sources provided by Engineering Village, and we can access both sources via the same interface. In Figure 5 below, we illustrate how terms can be collected from these data sources. A search term submitted to the data source returns a number of articles with links to abstracts. When the abstract is accessed, two term lists, controlled and uncontrolled, can be seen. These term lists describe the contents of the article, thus presumably are relevant to our original search term.



#### 1-Enter the search term

## 2-Get the Results

Abstract: A carbon-free fuel can be generated from water by combination of artificial photosynthesis and r oxygen atom in water, suggesting that this is an oxygen fuel. The energy stored in the fuel is a form of pote relative positions and arrangements of atoms within a given substance. Therefore, water molecules throu methylene carbene, a building block of hydrocarbon. The building blocks of oxygen fuel are isoelectronic s the modified photosynthesis, and oxygen fuel is the nanostructured assemblies on nanometer scales tha products of oxygen fuel are water and isoelectronic species of carbon dioxide that will be converted into ox

Inspec controlled terms: soelectronic series - nanotechnology - photosynthesis - solar energy conversion

Uncontrolled terms: solar emergy conversion - oxygen fuel - carbon-free fuel - artificial photosynthesis - nar species - carbon dioxide

## 3-Collect controlled and uncontrolled terms

Figure 5: Term Collection from Compendex & Inspec

The Engineering Village site makes the distinction between controlled and uncontrolled terms as follows:

"Uncontrolled terms, also known as free language terms, are additional subject terms assigned by indexers. These terms are not selected from the Inspec Thesaurus, but can reflect new expressions and terminology used in a particular discipline. These terms allow for further specificity in indexing that is not available using controlled vocabulary. Uncontrolled terms may subsequently become part of Inspec's controlled vocabulary."

Thus, including the uncontrolled terms to the relevant term list may make the resulting term list more interesting for the analysis by increasing the specificity of the individual terms. Term collection this way can be done until a pre-specified maximum number of abstracts are reached.

#### Scirus

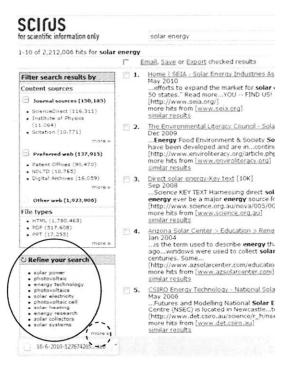
solar energy

Collecting terms from the Scirus data source involves a recursive process as illustrated in Figure 6 below. Searching a term in Scirus not only brings links to articles, but also a list of 80 relevant terms that are added to our term list. We then repeat this process for the top 20 terms in our term list, each bringing 80 terms that are added to the term list. At this level we will have about 1680 terms assuming no duplicates. If we want still more terms, we take the top 10 terms of the result-sets returned by the first 20 terms in previous step, and repeat the whole process again. This results in 20\*10\*80 = 16000 more terms and is often more than enough. The choice of 20 and 10 ensures a good balance of depth vs. breadth in our search process and can be adjusted easily. It is also possible to specify additional levels in the process.

# 1-Enter the search term

SCILUS

Advanced search Preferences


ion only

Search

3-Repeat steps 1 & 2 for the top 20 of the terms from step 2 and add the newly obtained terms to the collection list.

4. Repeat steps 1 & 2 for the top 10 of the terms from each result set in step 2 and add the newly obtained terms to the collection list.

## 2-Collect terms from "refine your search" Clicking more reveals about 80 terms



#### Figure 6: Term Collection from Scirus

During term collection, we eliminate duplicates and provide the option to combine results from different databases together. Our observation is that there is not much overlap between these three databases, and merging results may offer a richer term list.

In some cases, term collection can be polluted by irrelevant terms. In those situations, we offer a refinement strategy that allows terms to be added to the list only if a term's direct relevancy term list contains our original seed term. For example, for the seed term solar power, "photovoltaics" is returned as a relevant term in the first 80 results. To ascertain it is indeed a

relevant term, we collect a new term list for the seed term photovoltaics and check that solar power exists in the first 80 terms of its relevancy term list. While this feature is quite helpful in cutting the number of irrelevant terms, it also limits the diversity of our list. Another option to reduce irrelevant terms is to add the seed term to the recursive searches. For example, instead of searching for the term list of "photovoltaics", we can search the term list of "solar power photovoltaics". The trade-off between relevancy and diversity also exists in this technique.

## 4.1.2 Collection of Hitcounts

After collecting the terms from a set of sources, our next step is to find out hit counts of each term over a number of years. For this task, we use the hit counts returned by a set of data sources, which in our case are the same sources we use for collecting terms. Note that these two tasks are separate and the data sources need not be same. In Figure 7 below, we show where we get our hit counts in Scirus, Compendex and Inspec data sources. Note that Engineering Village has a uniform interface for accessing hitcounts from Compendex and Inspec data sources. It is possible to get hitcounts separately from each source, or in combined form. These data sources provide hitcounts for a time interval, and by narrowing these intervals to single years, we can extract hitcounts for a particular year.

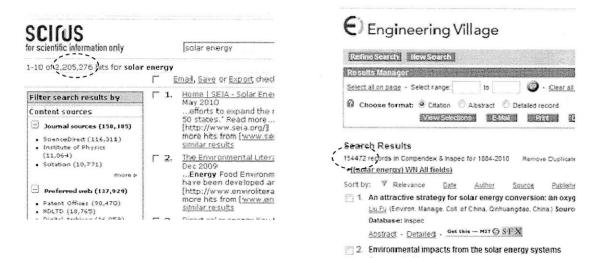



Figure 7: Hitcount Collection from Scirus, Compendex & Inspec

Hit count collection is a slow process, because it involves fetching pages over the network. For a term list size of 5000, and a time span of three years, we would need to send 15000 queries to the databases. Although we use parallel execution, the sites accept limited number of concurrent queries at a time, so we have to do much of the task sequentially. It takes about 2 hours to complete the 15000 queries mentioned above. In section 4.4 we explain the details of extracting data from websites.

#### 4.1.3 Ranking Terms According To Their Hitcounts

Our goal in this step is to narrow down our original list to a subset of terms that seem to fit the early growth description. Although there are many different ways to identify an early growth technology in terms of its hit count trend, we currently rank each term according to the percentage increase of its hitcounts from initial to final year, or by looking at the log ratio of final year hit counts to initial year hitcounts. More specifically both formulas are defined as follows:

# Formula 1(Early Growth) = Log(hits in End Year) / Log(hits in Beginning Year) Formula 2(Total growth) = (hits in End Year – hits in Beginning Year)/hits in Beginning Year

By ranking terms according to the log ratio of final hit count to initial hit count, we favor terms with low initial hit counts. For example, a term whose hit counts increased from 1 to 3 will be ranked higher than a term whose hit counts increased from 1000 to 2000 over the same time period. This is in line with our interest in identifying technologies that are not yet well-known, but are on the steepest part of their growth curve.

Both of these formulas need an adjustment when the initial year hitcounts is zero to avoid division by zero. In that case we use a small number such as 0.0001 to avoid this error, and also assign significance to this rare event. The choice of this number is unfortunately somewhat arbitrary, but the smaller it is defined to be, the higher the ranking zero-hit count terms will receive.

As this research progresses, other metrics besides those described above will be added. Our goal at this point is to create an automated and extendible approach to technology forecasting. When new formulas are desired, the system need to be easy to extend to accommodate the new approaches.

## **4.2 IMPLEMENTATION APPROACH**

As explained in the steps above, the majority of our work is about extraction of data from web sites of interest. In our research group, researchers have used three different approaches to accomplish this task. These approaches can be characterized as follows:

(1) BLACK-BOX: Developing a program from scratch.

(2) MODULAR: Developing a parameterizable program with generic and web-site specific modules.

(3) DECLARATIVE: Developing a customable package that hides the generic program logic, and only exposes the declaratively specified web-site specific logic.

We chose to follow approach three, and believe that it is superior to other two approaches. With the hope of aiding future researchers, who may undertake the web data extraction task in this or other domains, we present a comparison of these three methods along the following dimensions:

1) Authoring: The process of creating a wrapper for a web source.

2) Maintainability: The process of updating an existing wrapper.

3) Teachability: The process of teaching wrapper development to a new comer.

4) Capability: The power and flexibility of the wrappers.

Although we try to conduct the comparison in an abstract way, from time to time we will refer to actual programs that represent these approaches especially in the capability comparison part. First, we provide some background on the three approaches.

## 4.2.1 Background

#### **Black-Box Approach**

This approach was used by John Baker [Baker 2008] with the objective of leveraging pre-existing wrapper software to meet our project needs without too much effort. Specifically, John used an open source Perl tool called WebSearch.pl which leverages the back-end WWW::Search Perl libraries. With these tools he was able to submit queries against the following search engines on the right. Unfortunately, none of these files correspond to the publication databases online.

These ".pm" files already existed on the web, and each corresponds to a large program dedicated to a single web site. In order to wrap other web sources of interest, similar programs needed to be devised from scratch. If the user wanted a specific output format, the .pm file must be modified. An example output of the AltaVista wrapper, only outputting 5 URLs, and in verbose mode gives a title and description as shown below:

• AltaVista.pm

- CraigsList.pm
- Crawler.pm
- Excite/News.pm
- ExciteForWebServers.p m
- Fireball.pm
- FolioViews.pm
- Gopher.pm
- HotFiles.pm
- Livelink.pm
- MetaCrawler.pm
- Metapedia.pm
- MSIndexServer.pm
- NetFind.pm
- Newturfers.pm
- PLweb.pm
- Profusion.pm
- Search97.pm
- SFgate.pm
- Timezone.pm
- Verity.pm

Request:

jab@jabTab][17:41 GMT]=> WebSearch -e AltaVista -m 5 "alternate energy" -verbose

#### Output:

```
    2. (title: Alternate Energy Resource Network,
description: We provide the latest information about alternative energy,
solar energy and fuel cells with daily updated industry news, articles and
renewable energy resources)
http://www.alternate-energy.net/
    3. (title: Alternate Energy Solutions,
description: Alternate Energy Solutions Inc. Energy Solutions, Which Work ...
photovoltaic modules and alternate energy solutions powering industrial and ...)
```

#### **Modular Approach**

Prof. Woon [Woon & Madnick 2008(2)] took this approach and developed wrappers for Google Scholar, IngentaConnect, Scirus, ACM Guide, SpringerLink and IEEExplore using Python. Unlike the black-box approach, generic functions of data extraction are separated from the web-site specific logic in this approach. When one needs to wrap new sites, these generic utility functions are copied and only the web-site specific parts of the code are modified. Each wrapper is implemented as a program dedicated to a single web site. An example wrapper in Python is shown in Figure 8 for Scirus.

| # This file contains all functions specific to the individual data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | abases                                                        |                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------|
| import re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                               |                                          |
| import urllib                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                               |                                          |
| import pdb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                               |                                          |
| import numpy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                               |                                          |
| # Making the bot look like firefox                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                               |                                          |
| class myurlopener(urllib.FancyURLopener):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                               |                                          |
| version="Firefox/2.0.0.7"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                               |                                          |
| urlliburlopener=myurlopener()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                               |                                          |
| #######################################                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                               |                                          |
| # Utility functions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                               | a state the same                         |
| #######################################                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                               |                                          |
| def re_func(result_string,re_string):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                               | the fame see a                           |
| try:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                               |                                          |
| return int(re.sub("\D","",re.compile(re_string).findall(r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | esult_string)[0]));                                           | Constant Press                           |
| except IndexError:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                               | and an a state of the                    |
| return 0;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                               | (1.17)) (T))                             |
| ######################################                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                               |                                          |
| # Functions to generate search terms and regular expressions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | s to extract number of hits                                   | and the second proves the second         |
| # (database specific bits should be restricted to this part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                               | and the arts                             |
| # Returns [string to pass to urllib,function to extract number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | of hits from returned webpage                                 | a second for                             |
| # Scirus search                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                               |                                          |
| #def gen_scirus_search(search_term,search_year=2007);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nputs                                                         | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                               |                                          |
| #<br>["http://www.scirus.em/srsapp/search?t=all&q="+search_t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | erm+"&cn=all&co=AND&t=all                                     | return<br>ka=&cn=all&g                   |
| =a&fdt="+str(search_year)+"&tdt="+str(search_year)+"&tdt="+str(search_year)+"&tdt="+str(search_year)+"&tdt="+str(search_year)+"&tdt="+str(search_year)+"&tdt="+str(search_year)+"&tdt="+str(search_year)+"&tdt="+str(search_year)+"&tdt="+str(search_year)+"&tdt="+str(search_year)+"&tdt="+str(search_year)+"&tdt="+str(search_year)+"&tdt="+str(search_year)+"&tdt="+str(search_year)+"&tdt="+str(search_year)+"&tdt="+str(search_year)+"&tdt="+str(search_year)+"&tdt="+str(search_year)+"&tdt="+str(search_year)+"&tdt="+str(search_year)+"&tdt="+str(search_year)+"&tdt="+str(search_year)+"&tdt="+str(search_year)+"&tdt="+str(search_year)+"&tdt="+str(search_year)+"&tdt="+str(search_year)+"&tdt="+str(search_year)+"&tdt="+str(search_year)+"&tdt="+str(search_year)+"&tdt="+str(search_year)+"&tdt="+str(search_year)+"&tdt="+str(search_year)+"&tdt="+str(search_year)+"&tdt="+str(search_year)+"&tdt="+str(search_year)+"&tdt="+str(search_year)+"&tdt="+str(search_year)+"&tdt="+str(search_year)+"&tdt="+str(search_year)+"&tdt="+str(search_year)+"&tdt="+str(search_year)+"&tdt="+str(search_year)+"&tdt="+str(search_year)+"&tdt="+str(search_year)+"&tdt="+str(search_year)+"&tdt="+str(search_year)+"&tdt="+str(search_year)+"&tdt="+str(search_year)+"&tdt="+str(search_year)+"&tdt="+str(search_year)+"&tdt="+str(search_year)+"&tdt="+str(search_year)+"&tdt="+str(search_year)+"&tdt="+str(search_year)+"&tdt="+str(search_year)+"&tdt="+str(search_year)+"&tdt="+str(search_year)+"&tdt="+str(search_year)+"&tdt="+str(search_year)+"&tdt="+str(search_year)+"&tdt="+str(search_year)+"&tdt="+str(search_year)+"&tdt="+str(search_year)+"&tdt="+str(search_year)+"&tdt="+str(search_year)+"&tdt="+str(search_year)+"&tdt="+str(search_year)+"&tdt="+str(search_year)+"&tdt="+str(search_year)+"&tdt="+str(search_year)+"&tdt="+str(search_year)+"&tdt="+str(search_year)+"&tdt="+str(search_year)+"&tdt="+str(search_year)+"&tdt="+str(search_year)+"&tdt="+str(search_year)+"&tdt="+str(search_year)+"&tdt="+str(search_year)+"&tdt="+str(search_year)+"&tdt="+str(search_year)+"+str(search_year)+" | It=all&ff=all&ds=jnl&sa=all",l                                | ambda                                    |
| x:re_func(x," <b>(\S+)\stotal")]</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                               |                                          |
| def gen_scirus_search(search_term,search_year=2007):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Reg av nettorn                                                |                                          |
| if search_year="":<br>return                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Reg ex pattern                                                |                                          |
| ["http://www.scirus.com/srsapp/search?t=all&q="+search_t<br>=a&dt=all&ff=all&ds=jnl&sa=all",lambda x:re_func(x,"ofs<br>else:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <del>erm+"&amp;cn</del> =all&co=AND&t=all<br>:(\S+?)\shits"}} | l&q=&cn=all&g                            |
| return                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                               | 10 0                                     |
| ["http://www.scirus.com/srsapp/search?t=all&q="+search_t<br>=a&fdt="+str(search_year)+"&tdt="+str(search_year)+"&t<br>x:re_func(x,"of\s(\S+?)\shits")]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | erm+"&cn=all&co=AND&t=al<br>dt=all&ff=all&ds=jnl&sa=all",l    | ambda                                    |
| # "Registering" the search functions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                               |                                          |
| search funcs={};                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                               |                                          |
| search_funcs["scirus"]=gen_scirus_search;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                               |                                          |
| def search(search_term,search_year=2007,db="ACM"):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                               |                                          |
| [search_string,search_re]=search_funcs[db.lower()](search_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | h_term,search_year);                                          |                                          |
| return search re(urllib.urlopen(search_string).read());                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                               |                                          |

Figure 8: An example wrapper in Python is shown for the Scirus online database.

#### **Declarative Approach**

The declarative approach was proposed and implemented by the MIT Context Interchange (COIN) group. Web wrappers in the COIN group are used to treat semi-structured web data as ordinary relational data sources that can be processed using the standard SQL query language (with some capability restrictions) as shown in Figure 9. Wrapper development efforts in the group date back to 1995 and earlier with wrapper development toolkits such as Generic Screen Scraper, Grenouille in Perl, and Cameleon in Java.

Currently, Cameleon#, a reimplementation of Cameleon in .NET, is the toolkit commonly used by the group members. Cameleon# also has a helper tool called Cameleon Studio, which is used to generate wrappers visually. The common element of all of the COIN wrapper development toolkits is that they separate the extraction knowledge from the code (whether in Perl, Java, or C#) by expressing the former in a separate specification file (spec file). The code remains untouched and web sources are wrapped by creating a simple text file expressing extraction rules such as what URL(s) to visit, and what patterns to apply, and so on.

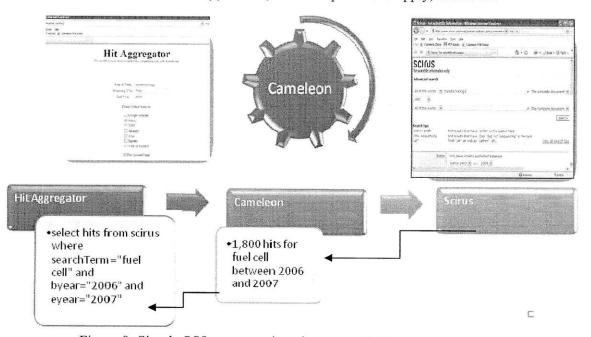



Figure 9: Simple SQL query against the wrapped Scirus Search Engine.

A sample Cameleon# spec file is shown in Figure 10 in XML format. In this spec file, the Web address of Scirus is indicated in the SOURCE tag. The input attributes (searchTerm, bYear, and eYear) are enclosed within # signs, and are expected from the user. The BEGIN and END tags specify (in regular expressions) landmarks preceding and following the data of interest. Finally the pattern specifies the regular expression for the data to be extracted. Figure 10 also shows an actual snapshot from the Scirus web site.

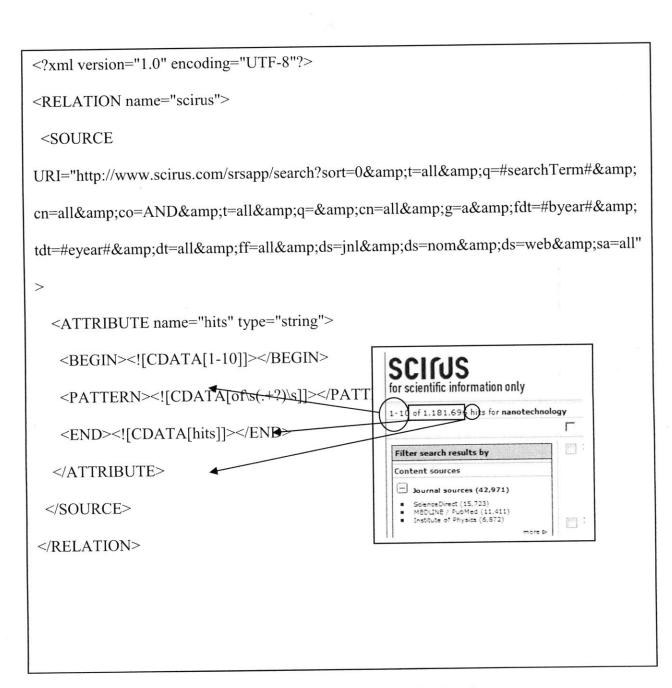



Figure 10: Cameleon# Spec File for Scirus Database

The Cameleon data, then can be used in application programs such as the Hit Aggregator we developed for our technology forecasting project as shown in Figure 11.

| ://www.aykutfirat.com/hit2/                                                                                    | ✓  4 <sub>7</sub>   ×  G0 |
|----------------------------------------------------------------------------------------------------------------|---------------------------|
| vorites Tools Help                                                                                             | E Demo                    |
| MIT ebooks 🖉 Cameleon POE Demo                                                                                 |                           |
|                                                                                                                |                           |
| Page and the second | 1                         |

# Hit Aggregator (To use the system enter a search term, a beginning year, and an end year)

| Search Term:    | nanotechnology |
|-----------------|----------------|
| Beginning Year: | 2000           |
| End Year:       | 2008           |

Please Select Sources:

| Google Scholar   |
|------------------|
| 🗹 Scirus         |
| □ IEEE           |
| Springer         |
| □Acm             |
| 🗌 Ingenta        |
| □ Web of Science |
|                  |

Plot Annual Chart

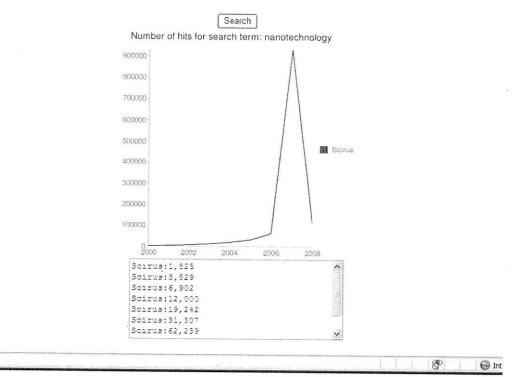



Figure 11: Hit Aggregator we developed for our technology forecasting project.

#### 4.2.2 Comparison

#### A. Authoring

#### Authoring wrappers for "difficult pages"

Developing a wrapper from scratch or using a modular approach requires basic knowledge of programming languages, regular expressions, and intimate knowledge of its web related libraries. Wrapping is relatively straight forward, if the data resides in a single page that can be accessed with a static and standard URL. When the developer needs to deal with "a difficult page" involving cookie handling, redirects, form submission, SSL, Javascript interpretation, and passing data from one web page to another, even more code, libraries and external programs are needed. Although these libraries and external programs are available, the final Python/Perl program to wrap a "difficult page" will be complex. Under the declarative approach, the wrapper developer need not know any programming language. With the help of visual tools such as Cameleon Studio, the wrapper developer only needs to learn regular expressions, and the structure of a specification file.

#### Visual support

One of the most time-consuming aspects of web wrapping is the identification of form elements manually when the target page requires form submission. Without visual tools, the developer using a black-box or modular approach needs to use a text editor to identify form elements manually, and potentially introduce errors into the wrapper code. Using Cameleon Studio, a visual application that aids the development of Cameleon spec files, and converting them into web services, this process is more automatic and forms can be added to the spec file with a single click. Furthermore, with a built-in browser Cameleon Studio provides visual support for identifying landmark text and patterns easily.

As shown in Figure 12, Cameleon Studio has a built in browser on its left that also shows the source of a web page, and the forms that are in that web page. On its upper right it shows the spec file in tree form, and original form, and the auto produced web service code. On the lower right, it has several tabs for surfing web sites (Sources), defining attributes (Attributes), providing values for input attributes (Input Attributes), displaying messages from the program (Messages), displaying scripts from the web sites, and authoring custom forms (forms). Test results can also be viewed via the Results tab.

## Special-purpose debugging

The wrapper developer may sometimes encounter errors when trying to wrap web pages. When the wrapper is developed using Python/Perl, the user is limited to the debugging support of the programming environment. Users of Cameleon Studio, however, are provided with special purpose debugging support. They can, for instance, visually find out what text the regular expression patterns match with a single click, and observe a simulated run of the specification file. This special-purpose debugging support is an important element in speeding up the wrapper development.

| Cameleon Studio                                                                                                   |                                                                                                                     |             |
|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-------------|
| Spec File Search Web Service                                                                                      |                                                                                                                     | 1912 Date 1 |
| Browser Source Forms                                                                                              | SpecFile Tree Spec File Source WebService Code                                                                      |             |
| web Images Maps News Shopping Gmail Google   Sign in Google   Sign in                                             | •                                                                                                                   |             |
| Google Search I'm Feeling Lucky<br>Advertising Programs - Business Solutions - About<br>Google<br>#2008 - Erivacy | Source Attribute Input Attributes Messages Scripts Forms URL: http://www.google.com/ Fetch Back Forward Add to Spec |             |
| ×                                                                                                                 | Fiesults                                                                                                            |             |

Figure 12: Cameleon Studio Interface.

## **B.** Maintenance

One of the fragile aspects of wrapper development is the autonomy of web pages, and their tendency to change their page structure frequently. Wrappers, therefore, need to be updated when the patterns no longer match the desired information in the page. Maintainability of wrappers thus needs to be considered in comparing wrapper development approaches.

## **Object-Oriented Design Principle: Encapsulate what varies**

One of the well-known principles of object oriented software development is separating parts of the code that varies from the parts that stay the same. The primary consequence of applying this principle is better maintainability. In wrapper development, parts that vary from one wrapper to another are extraction knowledge, such as URLs, patterns, form elements, and so on. In Cameleon#, the declarative approach, these varying parts have been separated from the core code that stays the same for all wrappers. This design enables superior maintenance, because updates are limited to the specification files. Developers cannot introduce any unintended errors to the core hidden code.

This is not the case when both the code and extraction knowledge are lumped together in adopting a black-box approach. Modular approach is clearly superior to black-box approach, because changes will be limited to the web-specific parts of the code. In either case, however, there is the danger of wrongly modifying part of the code and making the whole process more time-consuming and error-prone. The convolution of code and knowledge hinders automatic maintenance approaches as well. It is hard to automate maintenance, when there is no fixed structure in a wrapper file. When the extraction knowledge is separated from the code, however, automatic maintenance approaches can be devised utilizing the well-defined structure of the specification file.

#### C. Teachability

A wrapper development approach will not gain acceptance if it is not easy to teach and learn. One important criticism against popular programming languages used in wrapper development like Perl is that it allows its developers to author obfuscated code more easily than other languages. The following code, which uses a rendition of rotated 90 degree Mayan numerals to extract the required text, from the 2000 Obfuscated Perl Contest is a testimony to the obscurity potential of this language.

```
#:: ::-| ::-| .-. :||-:: 0-| .-| ::||-| .:|-. :||
open(Q,$0);while(<Q>) {if(/^#(.*)$/) {for(split('',$1)) {$q=0; for(split) {s/\|
/:.:/xg;s/:/../g;$Q=$_?length:$_;$q+=$q?$Q:$Q*20;}print chr($q);}}print"\n";
#.: ::||-| .||-| :|||-| ::||-| ||-:: :|||-| .:|
```

While Python is a more readable language than Perl, it does not fare well in terms of readability when compared to the specification files used in Cameleon#. What is more, specification files are displayed in a tree like structure in Cameleon Studio making it even easier to understand. For novice users, learning Cameleon would be much faster than learning a full programming language.

## **D.** Capability

#### Flexibility

Capabilities of a declarative wrapper engine like Cameleon# are pre-defined and its code is closed to modification as far as the wrapper developer is concerned. New versions of the code can be released by Cameleon# developers, and its capabilities can be expanded, but the wrapper developer is not expected to undertake this task. This is not the case when developing a wrapper using a programming language such as Python/Perl under the black-box or modular approaches. Code is open to modification all the time; therefore the developer has the full flexibility of a programming language. If a page with unforeseen intricacies is encountered, the Python/Perl developer can find a way to overcome the problem. For example, certain types of Google search results are divided in multiple pages, and Cameleon# currently does not offer an easy way to wrap results dispersed over an unknown number of pages. This is, however, quite easy to do in Python/Perl by using a loop. Another example can be given concerning the use of session IDs. While session IDs are extracted from the web page itself when wrapping with Cameleon#, there are no mechanisms to auto generate these Session IDs. A python based wrapper, on the other hand, can easily embed a function to generate legitimate session IDs.

#### **SQL** Interface

Cameleon# primary interface accepts simple SQL queries and returns results in table or XML formats. This has several important advantages: (1) Many programmers are familiar with SQL, so writing requests to extract data from web sites is easy to do (assuming that the spec file has already been created for that web site and (2) there are many software systems and tools that have been developed that use the SQL interface (The Excel spreadsheet software is such an example and explained in the next section.) Wrappers developed in Python/Perl usually have custom-designed interfaces (usually simpler and more limited than SQL) or would need to

implement similar SQL communication patterns, which would add considerable complexity, in order to be compatible with existing systems.

## **Excel Integration**

Microsoft Excel 2007 allows users to retrieve data from the Web and databases in several ways. By using a web query file, we can include SQL queries directed to web sites (which have Cameleon# spec files) and import the Cameleon# results into Excel. This enables Cameleon# users to easily create elaborate Excel based applications similar to the Hit Aggregator (see Appendix 2). As Excel is frequently used in business settings and is very familiar to many people who do not view themselves as "programmers," being able to use simple SQL queries to selectively import web data into Excel is an important advantage. Wrappers developed in Python/Perl need to function as a server, and be able to return results in HTML/XML format in order to replicate this capability.

## **Error Handling**

When a page changes, or something goes wrong during the wrapping process, elegant error handling becomes important. Cameleon#, unfortunately, does not have such good error handling routines. Errors like "Specified cast is invalid" does not tell much about what went wrong. The user needs to go through the debugging process to get an idea about the error. Perl and Python based approaches can have custom error handling as each wrapper is a program by itself, but this, of course, needs to be programmed. A typical hastily written wrapper program will not have much error handling either.

## Java Script Interpretation

Some web pages are based on Javascript, and sometimes the data of interest may be generated during run time via the execution of some Javascript on the web page. In those cases the wrapper needs to be capable of interpreting JavaScript code and utilizing its output. Cameleon# has already some built in JavaScript interpretation support, but it has not been used in many cases. The code takes advantage of .NET framework's ability to mix languages, and can be extended easily. The Perl and Python based wrapper approaches would need to utilize JavaScript libraries that are being made available by the larger Perl and Python community to accomplish the same task.

## Summary

For our purposes, wrapper development using Cameleon# is a better approach than either the black-box or modular approaches when we consider the ease of authoring, maintainability, and Teachability, even though both Python and Perl based modular programming approaches are more flexible especially in dealing with pages that are idiosyncratic and cannot be currently handled by Cameleon#. (A summary of the comparison of between Cameleon# and Python/Perl programming approach can be found in Table 6.)

Because we would like to develop a user-friendly tool which can be used by executives at IBM/Masdar, we need to use an approach that is easily maintainable and extensible. For that reason, we believe that the declarative approach to data collection using Cameleon# would best fit this set of requirements. In the next chapter we describe the implementation of a user friendly EGTA tool that builds upon this declarative data collection approach.

|                     | Black-Box                                                                                                                                                                                                                                      | Modular                                                                                                                                                                                                           | Declarative                                                                                                                                                                                                                                                        |  |  |  |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                     | Code and knowledge is lumped together and exposed.                                                                                                                                                                                             | Code and knowledge is<br>separated, but code is not<br>hidden from the user.                                                                                                                                      | Code and knowledge are<br>separated, code is hidden,<br>and knowledge is<br>declaratively specified.                                                                                                                                                               |  |  |  |
| Authoring           | Developing a wrapper in Pyth<br>knowledge of these program<br>expressions, and knowledge of its<br>To deal with "a difficult page"<br>redirects, form submission, SSI<br>and passing data from one web<br>code, libraries and external program | The wrapper developer ne<br>not know any programmin<br>language. With the help<br>Cameleon Studio, t<br>wrapper developer on<br>needs to learn regul<br>expressions, and t<br>grammar of a specification<br>file. |                                                                                                                                                                                                                                                                    |  |  |  |
|                     | Updates to code and extraction knowledge are needed.                                                                                                                                                                                           | Updates are limited to the web-specific parts of the code.                                                                                                                                                        | Updates are limited to the declarative specification files.                                                                                                                                                                                                        |  |  |  |
| Maintanence         | Automatic maintenance approache impossible, to implement.                                                                                                                                                                                      | Automatic maintenance<br>approaches can be devised<br>utilizing the well-defined<br>structure of the specification<br>file.                                                                                       |                                                                                                                                                                                                                                                                    |  |  |  |
| <b>Feachability</b> | Popular web wrapping languages<br>its developers to author obfuscated<br>languages. They are hard to under                                                                                                                                     | d code more than other                                                                                                                                                                                            | Specification files are<br>displayed in a tree like<br>structure in Cameleon<br>Studio making it easier to<br>understand. For novice<br>users, it is clear that<br>teaching Cameleon would<br>be much faster than teachin<br>fledged real programming<br>language. |  |  |  |
| Capability          | Code is open to modification, ther<br>full flexibility of a programming l                                                                                                                                                                      |                                                                                                                                                                                                                   | Capabilities are pre-defined<br>and closed to modification<br>until a new version is<br>released.                                                                                                                                                                  |  |  |  |

Table 6: A summary of the comparison of between black-box, modular, and declarative approaches

## **CHAPTER 5: EARLY GROWTH ANALYSIS SOFTWARE TOOLS**

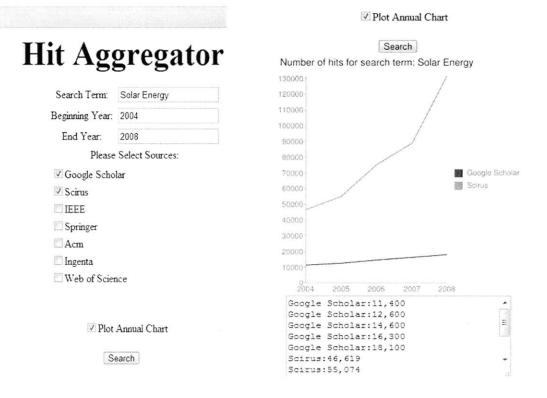
In this section, we describe the software tools we developed to support our approach to technology forecasting described in this Thesis. All of our tools use Cameleon Web Wrapper engine [Firat et al. 2005] to query web sources as if they are structured databases using SQL. We started with a simple tool that showed the trend of a technology term over the years from selected scientific databases, before finally developing a much more sophisticated tool that identifies technologies with high growth potential from a seed term.

The first tool we created, called hit aggregator, collects and graphs the "hit counts" of terms obtained from different sources over a specified time interval. Hit counts refer to the number of results relevant for a term in a scientific database such as Google Scholar. With this tool we are able to visualize the popularity of technological terms in scientific databases. This tool has Web and Excel versions (see Figures 13 and 14).

The second tool we developed, called Cameleon Scheduler, is used to schedule Cameleon queries to run automatically at periodic intervals between specified dates. The tool is generic and can be used to run any Cameleon query. We use it to collect hit counts of terms provided as a list. The tool also has the capability to automatically build Cartesian product of terms using columns in a given file.

Finally, we created the Early Growth Technology Analysis (EGTA) tool that starts with a seed term to create a term list, collect the hit count of each term over time, and apply a formula to pinpoint the most promising terms. This tool has both desktop and Web versions. Below, we provide an overview of these tools leaving most of the technical details in the Appendices.

#### 5.1 HIT AGGREGATOR


The Hit Aggregator allows users to see how the hit counts trend over the years in different scientific databases. As shown in Figure 14, we use Google Scholar, Scirus, IEEE, Springer, ACM, Ingenta, and Web of Science as our primary scientific databases. The user selects one or many of these databases, enters a term to act as a proxy for a technology, and specify the time interval before the graph of the hit counts are shown. We also created an Excel version of this tool by taking advantage of the Excel integration of the underlying web wrapper engine Cameleon. The details of the Excel version and how it can be set up can be found in Appendix 2.

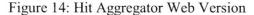

| Terris Boote anterior                 | Search Engra | HRs ys Time |
|---------------------------------------|--------------|-------------|
| Number of Kits                        |              |             |
| 2000 7740<br>2001 9940<br>2002 9120   |              |             |
| 2054 (140)<br>2006 12500              |              | 6000        |
| 2002 9120<br>2003 1(500<br>2004 11430 |              |             |

Figure 13: Hit Aggregator in Excel

**INPUT SCREEN** 

## OUTPUT SCREEN





## **5.2 CAMELEON SCHEDULER**

Cameleon Scheduler (CS) is a web application that allows users to register Cameleon queries and execute them according to a schedule specified through its web interface. The query results are recorded in a text file and can be downloaded by the user. CS can also be used to automate the execution of a parameterized query by supplying the parameters in a text file. Furthermore, CS offers automatic derivation of some parameter data. Details of these are explained below from the operational point of view.

CS can be accessed using a Web browser and the user first needs to login to the scheduler with an e-mail and password provided by the administrator (See Figure 15). The system will keep the user logged in for 30 minutes after a successful entry.



Figure 15: Login Page

Next, the user views the main CS web page. A snapshot of this page is shown in Figure 16 below. The first line in the figure is the address of the Cameleon engine the scheduler will utilize for execution of the query specified in the query box.

| http://                                                |                               | Jui                                                                 | ner                                                                 | eor                                   | 1 2                                    | ched                                        | uler                                                                             |                                                                                         |                                                                                            |                                                                                                 |                                                                                                      |                                           |                                                                                |
|--------------------------------------------------------|-------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------|----------------------------------------|---------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------|
| http://interchange.mit.edu/cameleon_sharp/camserv.aspx |                               |                                                                     |                                                                     |                                       |                                        |                                             |                                                                                  |                                                                                         |                                                                                            |                                                                                                 |                                                                                                      |                                           |                                                                                |
|                                                        |                               |                                                                     |                                                                     |                                       |                                        |                                             |                                                                                  |                                                                                         |                                                                                            |                                                                                                 |                                                                                                      |                                           |                                                                                |
| Sele                                                   | ct ca                         | pita                                                                | l, ec                                                               | onomy                                 | ,loc                                   | ation,                                      | coordin                                                                          | nates,                                                                                  | , tot                                                                                      | calar                                                                                           | ea,                                                                                                  | 6100 00 00 00<br>6100 00 00 00 00         |                                                                                |
|                                                        |                               |                                                                     | latio                                                               | n, tel                                | lepho                                  | ne, GDP                                     | from d                                                                           | ia wł                                                                                   | nere                                                                                       | Coun                                                                                            | cz7=.                                                                                                | Papu                                      | a                                                                              |
|                                                        | χ.                            |                                                                     |                                                                     |                                       |                                        |                                             |                                                                                  |                                                                                         |                                                                                            |                                                                                                 |                                                                                                      |                                           |                                                                                |
|                                                        |                               |                                                                     |                                                                     |                                       |                                        |                                             | 11.1                                                                             |                                                                                         |                                                                                            |                                                                                                 |                                                                                                      |                                           |                                                                                |
|                                                        |                               |                                                                     |                                                                     |                                       |                                        |                                             |                                                                                  |                                                                                         |                                                                                            |                                                                                                 |                                                                                                      |                                           |                                                                                |
| Cho                                                    | ose Fil                       | e No                                                                | o file ch                                                           | nosen                                 |                                        |                                             |                                                                                  |                                                                                         |                                                                                            |                                                                                                 |                                                                                                      |                                           |                                                                                |
|                                                        |                               |                                                                     |                                                                     |                                       |                                        | Elimi                                       | nate Iden                                                                        | tities 1                                                                                | Or                                                                                         | dering                                                                                          | Unim                                                                                                 | porta                                     | ıt                                                                             |
| ≤ February 2                                           |                               |                                                                     |                                                                     |                                       |                                        | ≥                                           | <                                                                                |                                                                                         | M                                                                                          | March 2009                                                                                      |                                                                                                      |                                           | 2                                                                              |
| $\leq$                                                 | i Start                       | Feb                                                                 | nuary .                                                             | 2009                                  |                                        | 2                                           | $\geq$                                                                           |                                                                                         | 1910                                                                                       |                                                                                                 | 103                                                                                                  |                                           | È                                                                              |
|                                                        | Mon                           | SALAS CONT                                                          | wed                                                                 | Constant.                             | Fri                                    | ≥<br>Sat                                    |                                                                                  | Mon                                                                                     |                                                                                            | Wed                                                                                             |                                                                                                      |                                           | Sat                                                                            |
| Sun<br><u>25</u>                                       | 26                            | Tue<br>27                                                           | Wed<br>28                                                           | Thu<br>29                             | <u>30</u>                              | Sat<br><u>31</u>                            | Sun<br>22                                                                        | 23                                                                                      | Tue<br>24                                                                                  | Wed<br>25                                                                                       | Thu<br><u>26</u>                                                                                     | 27                                        | Sat<br>28                                                                      |
| Sun<br>25<br>1                                         | <u>26</u><br>2                | Tue                                                                 | Wed                                                                 | Thu                                   |                                        | Sat                                         | Sun<br>22<br>1                                                                   | <u>23</u><br>2                                                                          | Tue<br><u>24</u><br><u>3</u>                                                               | Wed<br><u>25</u><br><u>4</u>                                                                    | Thu                                                                                                  | <u>27</u><br><u>6</u>                     | Sat<br>28<br><u>7</u>                                                          |
| Sun<br>25<br>1<br>8                                    | 26                            | Tue<br>27                                                           | Wed<br>28                                                           | Thu<br>29                             | <u>30</u>                              | Sat<br><u>31</u>                            | Sun<br>22                                                                        | 23                                                                                      | Tue<br>24                                                                                  | Wed<br><u>25</u><br><u>4</u><br><u>11</u>                                                       | Thu<br><u>26</u>                                                                                     | 27<br>6<br>13                             | Sat<br>28<br>2<br>14                                                           |
| Sun<br>25<br>1<br>8<br>15                              | 26<br>2<br>2<br>2<br>16       | Tue<br><u>27</u><br><u>3</u>                                        | Wed<br><u>28</u><br><u>4</u><br><u>11</u><br><u>18</u>              | Thu<br>29<br>5                        | 30<br>6<br>13<br>20                    | Sat<br>31<br>7<br>14<br>21                  | Sun<br>22<br>1<br>8<br>15                                                        | 23<br>2<br>9<br>16                                                                      | Tue<br>24<br>3<br>10<br>17                                                                 | Wed<br><u>25</u><br><u>4</u><br><u>11</u><br><u>18</u>                                          | Thu<br><u>26</u><br><u>5</u>                                                                         | 27<br>6<br>13<br>20                       | Sat<br>28<br>2<br>1<br>1<br>4<br>21                                            |
| Sun<br>25<br>1<br>8                                    | <u>26</u><br>2<br>2<br>2      | Tue<br>27<br>3<br>10                                                | Wed<br><u>28</u><br><u>4</u><br><u>11</u>                           | Thu<br>29<br>5<br>12                  | <u>30</u><br><u>6</u><br><u>13</u>     | Sat<br>31<br>Z<br>14                        | Sun<br>22<br>1<br>8                                                              | 23<br>2<br>2<br>2                                                                       | Tue<br><u>24</u><br><u>3</u><br><u>10</u>                                                  | Wed<br><u>25</u><br><u>4</u><br><u>11</u>                                                       | Thu<br>26<br>5<br>12                                                                                 | 27<br>6<br>13                             | Sat<br>28<br>2<br>14                                                           |
| Sun<br>25<br>1<br>8<br>15                              | 26<br>2<br>2<br>2<br>16       | Tue<br><u>27</u><br><u>3</u><br><u>10</u><br><u>17</u>              | Wed<br><u>28</u><br><u>4</u><br><u>11</u><br><u>18</u>              | Thu<br>29<br>5<br>12<br>19            | 30<br>6<br>13<br>20                    | Sat<br>31<br>7<br>14<br>21                  | Sun<br>22<br>1<br>8<br>15                                                        | 23<br>2<br>9<br>16                                                                      | Tue<br>24<br>3<br>10<br>17                                                                 | Wed<br><u>25</u><br><u>4</u><br><u>11</u><br><u>18</u>                                          | Thu<br>26<br>5<br>12<br>19                                                                           | 27<br>6<br>13<br>20                       | Sat<br>28<br>7<br>14<br>21                                                     |
| Sun<br>25<br>1<br>8<br>15<br>22                        | 26<br>2<br>9<br>16<br>23<br>2 | Tue<br><u>27</u><br><u>3</u><br><u>10</u><br><u>17</u><br><u>24</u> | Wed<br><u>28</u><br><u>4</u><br><u>11</u><br><u>18</u><br><u>25</u> | Thu<br>29<br>5<br>12<br>19<br>26<br>5 | 30<br>6<br>13<br>20<br>27              | Sat<br>31<br>7<br>14<br>21<br>28            | Sun<br>22<br>1<br>8<br>15<br>22                                                  | 23<br>2<br>9<br>16<br>23<br>30                                                          | Tue<br>24<br>3<br>10<br>17<br>24                                                           | Wed<br>25<br>4<br>11<br>18<br>25                                                                | Thu<br>26<br>5<br>12<br>19<br>26<br>2                                                                | 27<br>6<br>13<br>20<br>27                 | Sat<br>28<br>7<br>14<br>21<br>28                                               |
|                                                        | clim<br>New 4                 | climate,<br>New Guine                                               | climate, popu<br>New Guinea"                                        | climate, populatio<br>New Guinea"     | climate, population,tel<br>New Guinea" | climate, population, telepho<br>New Guinea" | climate, population, telephone, GDP<br>New Guinea"<br>Choose File No file chosen | climate, population, telephone, GDP from o<br>New Guinea"<br>Choose File No file chosen | climate, population,telephone, GDP from cia w<br>New Guinea"<br>Choose File No file chosen | climate, population, telephone, GDP from cia where<br>New Guinea"<br>Choose File No file chosen | climate, population, telephone, GDP from cia where Coun<br>New Guinea"<br>Choose File No file chosen | New Guinea"<br>Choose File No file chosen | climate, population,telephone, GDP from cia where Country="Papu<br>New Guinea" |

Figure 16: Main Cameleon Scheduler Web Interface

In the registry box the user can enter a custom web accessible registry location in which the spec files referred in the query can be accessed. When left empty the registry points to the default registry location of the Cameleon engine specified in the first line.

In the query box the user specifies the query to be executed with a schedule. This query can be completely static: the same query is executed on specified intervals. Presumably, this could be desirable when the changing results of a query are to be tracked. Users can also express dynamic queries, which are parameterized and parameter values are obtained from a file. Consider for example the query:

```
Select capital, economy, location, coordinates, totalarea, climate, population, telephone, GDP from cia where Country="$1"
```

and a countries.txt text file that contains the following entries:

Algeria France Germany Poland Turkey The \$1 parameter in the query refers to the first column of the countries.txt file, which needs to be specified as a batch file. In general \$X refers to the Xth column of the batch file. Sometimes the user may supply a Cartesian product specification that transforms an existing file into another. If we specify 1x as our Cartesian specification for the above countries.txt file, the file is transformed into a new one with two columns through Cartesian product as follows:

| No box is checked | Eliminate identities box is checked | 1 Ordering unimportant box is checked |
|-------------------|-------------------------------------|---------------------------------------|
| Algeria, Algeria  | Algeria, Algeria                    | Algeria, Algeria                      |
| Algeria, France   | Algeria, France                     | Algeria, France                       |
| Algeria, Germany  | Algeria, Germany                    | Algeria, Germany                      |
| Algeria, Poland   | Algeria, Poland                     | Algeria, Poland                       |
| Algeria, Turkey   | Algeria, Turkey                     | Algeria, Turkey                       |
| France, Algeria   | France, Algeria                     | France, Algeria                       |
| France, France    | France, France                      | France, France                        |
| France, Germany   | France, Germany                     | France, Germany                       |
| France, Poland    | France, Poland                      | France, Poland                        |
| France, Turkey    | France, Turkey                      | France, Turkey                        |
| Germany, Algeria  | Germany, Algeria                    | Germany, Algeria                      |
| Germany, France   | Germany, France                     | Germany, France                       |
| Germany, Germany  | Germany, Germany                    | Germany, Germany                      |
| Germany, Poland   | Germany, Poland                     | Germany, Poland                       |
| Germany, Turkey   | Germany, Turkey                     | Germany, Turkey                       |
| Poland, Algeria   | Poland, Algeria                     | Poland, Algeria                       |
| Poland, France    | Poland, France                      | Poland, France                        |
| Poland, Germany   | Poland, Germany                     | Poland, Germany                       |
| Poland, Poland    | Poland, Poland                      | Poland, Poland                        |
| Poland, Turkey    | Poland, Turkey                      | Poland, Turkey                        |
| Turkey, Algeria   | Turkey, Algeria                     | <del>Turkey, Algeria</del>            |
| Turkey, France    | Turkey, France                      | Turkey, France                        |
| Turkey, Germany   | Turkey, Germany                     | Turkey, Germany                       |
| Turkey, Poland    | Turkey, Poland                      | Turkey, Poland                        |
| Turkey, Turkey    | <del>Turkey, Turkey</del>           | <del>Turkey, Turkey</del>             |
| Total: 25         | Total:20                            | Total: 10                             |

The user can then treat this transformed file as the loaded file and refer to its columns in the query. The Cartesian product is not limited to self product as in 1x1 but can also take the forms such as 1x2, 1x3, 1x2x3, etc. assuming the referred columns exist in the loaded batch file. Note that columns in batch files are separated by commas.

Run it between line has two calendar selections that allow the user to specify the beginning and end dates of the schedule. These dates are coupled with the exact time of the execution listed just beneath them with default values of 12:00 AM.

The run interval will indicate how often the query (or queries as in the case of batch file specification) will be executed. This interval can be specified in seconds, minutes, hours, or days. If the run interval is greater than the difference between the beginning and end dates of the schedule, the query/queries are executed only once.

Note that when a batch file is specified, a list of queries is scheduled to execute periodically. If the intention of the user is to simply run a list of queries dynamically generated from a batch file once, the run interval should be a value that is larger than the difference between the beginning and end dates of the schedule.

The results of the execution are sent to the user as an attachment in an email in Excel (csv) format. For example, the results of the execution for the cia example are shown in Figure 17 below:

| F         | Ham       | Insert Page Layout                               | Formulas        | Data Review        | View      |                          | esunovi9 - M | licrosoft Excel |                  |                                                        |
|-----------|-----------|--------------------------------------------------|-----------------|--------------------|-----------|--------------------------|--------------|-----------------|------------------|--------------------------------------------------------|
| 1         | H<br>X Cu | t Calibri - 1                                    | M               | A                  | W         | Wrop Text                | Gen          | eral            | -                |                                                        |
| Pa        | -che      | mat Painter B I U -                              | -) & - <u>A</u> |                    | 律律 室      | Merge & Cen              | ter • \$     | - % , .         |                  | nditional Format Cell<br>matting * as Table * Styles * |
|           | Clipbos   | rd 🕤 Font                                        |                 | 7 <b>3</b>         | Alignment |                          | 6            | Number          | - 1 <sub>2</sub> | Styles                                                 |
|           | A1        | - 🖉 🍂 caj                                        | pital           |                    |           |                          |              |                 |                  |                                                        |
| The state | А         | B                                                | C               | D                  | E         | F                        | G            | Н               | 1                | 1                                                      |
| E.        | capital   | leconomy                                         | location        | coordinates        | totalarea | climate                  | populatio    | telephone       | gdp              | ExecutionTime                                          |
|           |           |                                                  |                 |                    |           |                          |              |                 |                  |                                                        |
|           |           | The hydrocarbons sector                          | Nort            |                    |           | arid                     | 33,76        | 3.063           | \$24             |                                                        |
|           |           | is the backbone of the                           | hern<br>Africa. | 28 00 N, 3<br>00 E |           | to                       | 9,668        | million         | 0.2<br>billion   |                                                        |
| ,         | Algiers   | economy, accounting for<br>roughly 60% of budget | borderin        | 00 E               | 2.381.74  | semiarid;<br>0 mild, wet |              | (2007)          | (2008            | 2/8/2009 20:37                                         |
|           |           |                                                  |                 |                    |           |                          |              |                 |                  |                                                        |
|           | Paris     | France is in the midst of                        |                 |                    |           |                          |              | 35.533          | \$2.0            |                                                        |
| }         |           | transition from a well-to-do                     | <i></i>         | <i>metrop</i>      | 643,42    | 7 <i></i>                | <i>t</i>     | million;        | 97 trillion      | n 2/8/2009 20:37                                       |
|           | Ankara    |                                                  |                 |                    |           |                          |              |                 |                  |                                                        |
|           | AUDOCO    | Turkey's dynamic                                 | Sout            | 39 00 N, 35        | 780,58    | 0 tem                    | 71,89        | 18.413          | \$93             | 2/8/2009 20:37                                         |
|           | Warsaw    |                                                  |                 |                    |           |                          |              |                 |                  |                                                        |
|           | 11012020  | Poland has pursued a                             | Centr           | 52.00 N, 20        |           | tem                      | 38,50        | 10.336          | \$68             |                                                        |
|           |           | policy of economic                               | al              | 00 E               | 312,67    | 9 perate                 | 0,696        | million         | 4.5              | 2/8/2009 20:37                                         |
|           | Berlin    |                                                  |                 |                    |           |                          |              | 3               |                  |                                                        |
| 5         | Dentiti   | The German economy -                             | Centr           | 51 00 N, 9         | 357,02    | 1 tem                    | 82,36        | 53.75           | \$2.8            | 2/8/2009 20:31                                         |
|           |           |                                                  |                 |                    |           |                          |              |                 |                  |                                                        |

Figure 17: Execution results for the CIA Factbook example

## 5.2.1 Managing Tasks

Currently, the system has a very simple task management system that allows users to delete existing tasks by clicking on the Manage Tasks link at the bottom of the interface (see Figure 18).

| 1.1.1.1.1.1.1.1 |                                 |                                           |                                                      | n.                                                           | Q                                                                    | 1                                                                                                                                                                                                             | 1                                                                                                                                              | <i>t</i>                                                                                                                                                                                                                                                                                                                                                 | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                                                                                                                                                                                                                                                             | Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------------|---------------------------------|-------------------------------------------|------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10.250          | 2                               | 10                                        | 11                                                   | 12                                                           | 13                                                                   | 14                                                                                                                                                                                                            | <u>s</u>                                                                                                                                       | 2                                                                                                                                                                                                                                                                                                                                                        | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12                                                                                                                                                                                                                                                            | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 15              | 16                              | 17                                        | 18                                                   | 19                                                           | 20                                                                   | 21                                                                                                                                                                                                            | 15                                                                                                                                             | 16                                                                                                                                                                                                                                                                                                                                                       | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 19                                                                                                                                                                                                                                                            | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 22              | 23                              | 24                                        | 25                                                   | 26                                                           | 27                                                                   | 28                                                                                                                                                                                                            | 22                                                                                                                                             | 23                                                                                                                                                                                                                                                                                                                                                       | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 26                                                                                                                                                                                                                                                            | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1               | 2                               | 3                                         | 4                                                    | 5                                                            | 6                                                                    | Z                                                                                                                                                                                                             | 29                                                                                                                                             | <u>30</u>                                                                                                                                                                                                                                                                                                                                                | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                                                                                                                                                                                                                                                             | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 12:00           |                                 |                                           |                                                      | AN                                                           | 1 -                                                                  |                                                                                                                                                                                                               | 12:00                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| L 1 days 🖵      |                                 |                                           |                                                      |                                                              |                                                                      |                                                                                                                                                                                                               |                                                                                                                                                | 3                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| aykutf          | irat@                           | gmail.                                    | com                                                  |                                                              |                                                                      |                                                                                                                                                                                                               |                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                 | Concern from                    | - Jun-                                    |                                                      | R                                                            | egiste                                                               | 1                                                                                                                                                                                                             | all sheet i                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                          | sue uit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.0.18                                                                                                                                                                                                                                                        | Side of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ccessfu         | 11y                             | regis                                     | stere                                                | d!Tas                                                        | k ha                                                                 | s been .                                                                                                                                                                                                      | 3100233                                                                                                                                        | fully                                                                                                                                                                                                                                                                                                                                                    | / reg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | istei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | red!                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | elipione                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                 | 22<br>1<br>12:00<br>1<br>aykutt | 22 23<br>1 2<br>12:00<br>1<br>aykutfirat@ | 22 23 24<br>1 2 3<br>12:00<br>1<br>aykutfirat@gmail. | 22 23 24 25<br>1 2 3 4<br>12:00<br>1<br>aykutfirat@gmail.com | 22 23 24 25 26<br>1 2 3 4 5<br>12 00 AN<br>1<br>aykutfirat@gmail.com | 22         23         24         25         26         27           1         2         3         4         5         6           12:00         AM         1           aykutfirat@grmail.com         Register | 22     23     24     25     26     27     28       1     2     3     4     5     6     7       12:00     AM 💌       1     avkutfirat@gmail.com | 22         23         24         25         26         27         28         22           1         2         3         4         5         6         7         29           12:00         AM          AM          12:00         10         0         0           1         aykutfirat@gmail.com         Register         Register         10         10 | 22     23     24     25     26     27     28     22     23       1     2     3     4     5     6     7     29     30       12:00     Image: state | 22         23         24         25         26         27         28         22         23         24           1         2         3         4         5         6         7         29         20         31           12:00         AM         Item         12:00         12:00         12:00         12:00         12:00         Item         Item | 22     23     24     25     26     27     28     22     23     24     25       1     2     3     4     5     6     7     22     20     31     1       12:00     AMI ➡     12:00     1     12:00     1     12:00       1     aykutfirat@gmail.com     Register | 22       23       24       25       26       27       28       22       23       24       25       26         1       2       3       4       5       6       7       22       20       31       1       2         12:00       AM        12:00       A       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       < | 22       23       24       25       26       27       28       22       23       24       25       26       27         1       2       3       4       5       6       7       29       30       31       1       2       3         12:00       AM       AM       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4 |

Figure 18: Manage Tasks Link

Task management allows users to view detailed information on already scheduled tasks and delete them. A sample snapshot is shown below in Figure 19.

| € ⇒ C            | f ttp://localhost:3746/CameleonSchedule                | ny rasks. | golyy                                                                                                                                       |               |                            |                            |           |       |                         |
|------------------|--------------------------------------------------------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------------------|----------------------------|-----------|-------|-------------------------|
| taskid           | cameleonServer                                         | registry  | query                                                                                                                                       | cartesianSpec | oeginTime                  | endTime                    | interval  | email | lastRunTin              |
| <u>Delete</u> 39 | http://interchange.mit.edu/cameleon_sharp/camserv.aspx |           | select hits from scirus<br>where<br>searchTerm="\$1"<br>and byear="2006"<br>and eyear="2007"                                                |               | 2/6/2009<br>12:00:00<br>AM | 2/7/2009<br>12:00:00<br>AM | 889032704 |       | 2/6/2009<br>8:19:09 AM  |
| <u>Delete</u> 40 | http://interchange.mit.edu/cameleon_sharp/camserv.aspx |           | select hits from scirus<br>where<br>searchTerm="\$1"<br>and byear="2006"<br>and eyear="2007"                                                |               | 2/7/2009<br>12:00:00<br>AM | 2/8/2009<br>12:00:00<br>AM | 600000    |       | 2/7/2009<br>11:03:08 PN |
| <u>Delete</u> 41 | http://interchange.mit.edu/cameleon_sharp/camserv.aspx |           | select hits from scirus<br>where<br>searchTerm="\$1"<br>and byear="2006"<br>and eyear="2007"                                                |               | 2/7/2009<br>12:00:00<br>AM | 2/8/2009<br>12:00:00<br>AM | 600000    |       | 2/7/2009<br>11:03:09 PN |
| Delete 42        | http://interchange.mit.edu/cameleon_sharp/camserv.aspx |           | Select capital,<br>economy.location,<br>coordinates,<br>totalarea, climate,<br>population,telephone,<br>GDP from cia where<br>Country="\$1" |               | 2/7/2009<br>12:00:00<br>AM | 2/8/2009<br>12:00:00<br>AM | 600000    |       | 2/7/2009<br>11:03:09 PM |
| <u>Delete</u> 43 | http://interchange.mit.edu/cameleon_sharp/camserv.aspx |           | Select capital,<br>economy,location,<br>coordinates,<br>totalarea, climate,<br>population,telephone,<br>GDP from cia where<br>Country="\$1" |               | 2/7/2009<br>12:00:00<br>AM | 2/8/2009<br>12:00:00<br>AM | 600000    |       | 2/7/2009<br>11:07:43 PM |

Figure 19: Task Management Interface

## **5.2.2 Technical Specifications**

Cameleon Scheduler is a web application using ASP .NET. We used Access as the database to store task information mostly for ease of portability and lack of need for high concurrency. In the current version the data model in Access is shown in Figure 20 below.

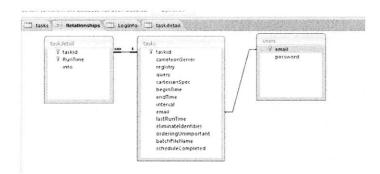



Figure 20: Data model for Cameleon Scheduler

The *tasks* table stores task information and *taskdetail* table stores information about each run (i.e. whether it was successful or failed). Users table will later be used to implement a more sophisticated user authentication system.

At a very high level, the scheduler operates as follows. When the user enters the necessary information and clicks on the register button, the data is recorded in the database. If a batch file was specified this file is uploaded to the server. If Cartesian specification was entered the file is transformed before being uploaded.

At the same time a timer event is running in the background that pools the data from the database every 30 seconds (this can be changed) and checks if there is any task that needs to be executed. If there is, the task is executed and its results are appended to its results file. If a batch file was specified, a list of queries is created first using the parameters and each of them are executed one by one.

Finally, when a task fulfills its lifetime, the results are sent to the user via email as an attachment. (See Appendix 3 to see how to set the email server in a configuration file.)

## 5.3 THE EGTA TOOL

The early growth technology analysis (EGTA) tool collects the required inputs from the user through a visual interface, extracts data from web sites on the fly, performs an analysis on the collected data, and displays the results. The user can interact with the tool either through a web-based or a desktop application interfaces (see Figures 21 & 22 below).

|                                                                                                       | Early                                                          | y Growth Te   | chnology Ana                                | lysis         |
|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|---------------|---------------------------------------------|---------------|
| Seed Term:<br>Term Generation<br>Sources:<br>Term List Size:<br>Hit Count Source:<br>Begin-End Years: | renewable energy scirus compendex inspec 100 scirushits 2006 - | 2008          | Enter a new sour<br>Enter a new sour<br>+ • |               |
| Analysis Method:                                                                                      | Early Growth                                                   |               |                                             |               |
| Max $\neq$ of threads:                                                                                | 10                                                             |               | particular contraction of the second second |               |
| Registry:                                                                                             | http://www.mit.edu/~ayshe/                                     |               |                                             |               |
|                                                                                                       | Save Results                                                   | Get           | All                                         |               |
| Get Te                                                                                                | erms <sub>s and</sub> Refine                                   | Get Hitcounts | add seed term                               | Get Top Terms |
| Term List                                                                                             |                                                                | Hit C         | ounts                                       | Top Terms     |
|                                                                                                       |                                                                |               |                                             |               |
| EI                                                                                                    | apsed time:                                                    | Elapse        | d time:                                     | Elapsed time: |

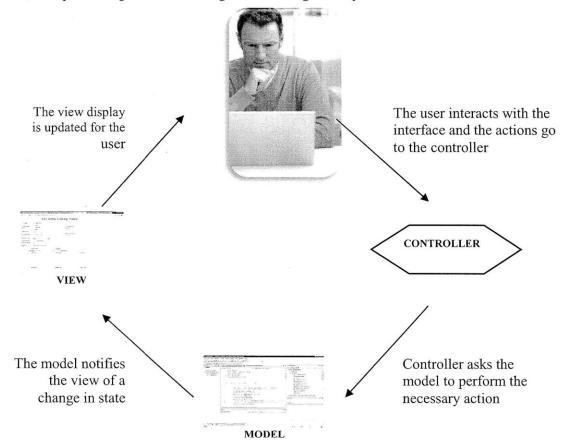
Figure 21: EGTA tool web version

When the user enters a seed term, selects one or more term generation sources, a maximum term list size parameter, and hits the "Get Terms" button, related terms collected from the specified sources are shown in the term list box. When the user selects a single hit count source, specifies an interval in years, and hits the "Get Hitcounts" button, hit count of each term from the term list box and for each year that falls in the time interval are displayed inside the hit counts box. Finally, by hitting the "Get Top Terms" button, terms are listed in the top terms box in descending order of importance defined by the analysis method. Maximum number of threads limits outgoing parallel connections, and registry specifies where to get the spec files for external sources. The user can add new sources; save results; refine the results in the term box. Seed term

| Seed Term:                                                                                                                                                                                                      | renewable energy | Term Gene<br>Add New                                                                                                                                                                                                                                                                                                         |                                                                                                                                       | pendex                                                                                                                                                                                                                                                                                                                                                                                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Approximate Term List Size:                                                                                                                                                                                     | 100              | Hit Count S<br>Add New                                                                                                                                                                                                                                                                                                       | SCHUSHILS                                                                                                                             | 3                                                                                                                                                                                                                                                                                                                                                                                              |
| Begin-End Years:                                                                                                                                                                                                | 2006 200         | 8 Analysis Me                                                                                                                                                                                                                                                                                                                | thod: Early Gro                                                                                                                       | with 👻                                                                                                                                                                                                                                                                                                                                                                                         |
| Number of Threads:                                                                                                                                                                                              | 10               | Registry:                                                                                                                                                                                                                                                                                                                    | Cameleo                                                                                                                               | n#                                                                                                                                                                                                                                                                                                                                                                                             |
| Location to store result files:                                                                                                                                                                                 | Results          | Messages:                                                                                                                                                                                                                                                                                                                    | Total of                                                                                                                              | 100 terms                                                                                                                                                                                                                                                                                                                                                                                      |
| Get Terms R                                                                                                                                                                                                     | Save Results     | Get All                                                                                                                                                                                                                                                                                                                      | add seed term                                                                                                                         | Get Top Terms                                                                                                                                                                                                                                                                                                                                                                                  |
| renewable energy<br>energy technology<br>renewable energy sources<br>energy resource<br>energy resource<br>geothermal<br>energy system<br>wind power<br>wind energy<br>renewable energy systems<br>wind turbine | s w              | ind power,72244,2006<br>ind power,86805,2007<br>ind power,131456,2008<br>ind turbine,8575,2006<br>ind turbine,17936,2008<br>orld bank,158553,2006<br>orld bank,152051,2008<br>orld bank,132091,2007<br>orld bank,132091,2008<br>orld wildlife fund,14600,200<br>orld wildlife fund,19249,200<br>orld wildlife fund,35012,200 | 6<br>16<br>17<br>16<br>16<br>17<br>16<br>16<br>17<br>16<br>17<br>16<br>16<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17 | ergy, 1.12841577751586<br>obic digesters, 1.10711250877147<br>ons trading, 1.10231789978064<br>house gas emissions, 1.09382871<br>ipal utilities, 1.09282382260626<br>wildlife fund, 1.09121803006759<br>ced portfolio, 1.08157385397919<br>urbine, 1.08148293644569<br>s, 1.0804891272516<br>able energy resources, 1.08039318<br>rable energy, 1.07991021259907<br>mewable, 1.07681440481749 |
| Elapsed time:9.0985204 secor                                                                                                                                                                                    | ids El           | apsed time:253.2684862 se                                                                                                                                                                                                                                                                                                    | conds Elapse                                                                                                                          | d time:0.0040003 seconds                                                                                                                                                                                                                                                                                                                                                                       |

can optionally be included in the queries sent to the hit count source, and all of the steps can be executed sequentially by clicking the Get all button.

Figure 22: EGTA tool desktop version


The desktop version is almost identical to the web version in terms of interface. A notable difference is that it includes a progress bar at the very bottom, displaying progress as the tool runs. Also the registry can be either a local or web directory, and the results are stored in a local directory.

Although the interfaces of the web and desktop versions are nearly identical, the applications have different uses. Through the web-based interface the user can access it from anywhere with an Internet connection. The desktop application, however, offers more control on the resources and can be run in a non-shared medium.

In the rest of this document we are going to describe the architecture of the system and provide installation and implementation details. The interested reader may find the code details in Appendices 4 and 5.

## **5.3.1 Software Design Details**

We used the Model-View-Controller (MVC) design pattern<sup>6</sup> in developing the EGTA tool. MVC decouples the user interface (view) from the core code (model) by minimizing the dependencies between them using a controller. This process is illustrated in Figure 23 below. Using an MVC design pattern allows us to easily implement different interfaces without touching the model; thus preventing maintenance nightmares along the way.



The model contains all the state, data, and application logic needed to maintain and execute early growth analysis.

Figure 23: The MVC design pattern –

MVC allows us to exchange one view with another without touching the core

In both systems the model part of the code is identical and organized as shown in Figure 24. We used several sub design patterns within the MVC such as the observer pattern that allows subscribed listeners to be notified for errors and progress.

<sup>&</sup>lt;sup>6</sup> In software engineering, a design pattern is a general reusable solution to a commonly occurring problem in software design. (Wikipedia)

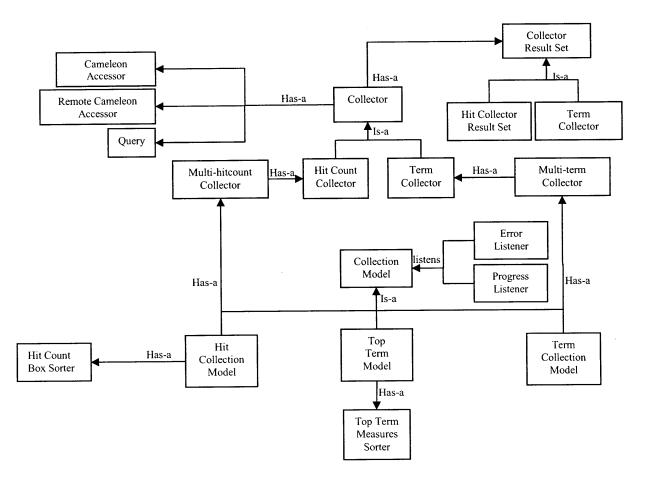



Figure 24: The Model Classes

Both the Controller and the View consists of one class(not shown in Figure 24), which are different for the desktop and web applications.

## 5.3.2 Software Implementation

We have implemented both applications in C# under the freely available Visual Studio Express (C# and Web) integrated development environments (IDE). The system runs in ASP .Net 3.5 framework. The applications also run under Unix environments with the help of Mono project. The complete code can be found in Appendix 5. We will discuss below some of the implementation issues.

#### Local vs Remote Cameleon Access

Cameleon is a web extraction tool we utilize in our applications. Currently, we use a local Cameleon (as a dll) to access remote sources, except in the cases of sources that can only be accessed through MIT. For those sources our applications use the Cameleon server that is in Interchange.mit.edu.

#### **Concurrency in Web Source Access**

Originally we were using both the POE (parallel version of Cameleon) and Cameleon for access to the web sources. Because of some technical issues related to POE and the desire to hide

implementation details from the user we currently only use Cameleon with a default thread size of 10.

## Formulas for Top Term Calculation

We currently use the following formulas for the calculation of top term ranks.

Early Growth = Log(hits in End Year) / Log(hits in Beginning Year)
Total Growth = (hits in End Year - hits in Beginning Year)/hits in
Beginning Year)

## **Progress Bar in Web Application**

Although we have a progress bar in the desktop application, we do not have an equivalent one in the web application. Because of the difficulty of asynchronous web programming, using a progress bar is not very straightforward, thus left out in the current implementation.

## **Adding New Sources**

New sources can be added by uploading spec files to the registry directory. This can be done locally in the desktop application, or remotely for the desktop application. The specFiles.txt and specFilesHit.txt files (found under the registry directory in the desktop application, and the root folder in the web application) keep track of existing spec files in the system. When the user adds new sources through the interfaces these files are updated. Note, however, that in the desktop application we rely on the user putting the appropriate files in the registry directory after doing the add operation.

# **CHAPTER 6: SOLAR ENERGY CASE STUDY**

Case studies using our tool enable us showcase the promise of our approach. It is also a chance to evaluate the relevancy of results, and offer clues about further improvement. Case study results also offer a chance to compare the sources used in the analysis. By comparing the intersection of term lists, for example, we can judge whether the sources are complementary or substitutes of each other. This chapter presents the results of applying Early Growth Technology Analysis (EGTA) to the field of solar energy.

We present two term lists related to the solar energy. We manually and painstakingly created the first list by sifting through many online data sources<sup>7</sup>, journal articles, and taking the opinions of experts on solar energy. Our aim was to find a list of solar technologies that are currently novel and emerging. We also perform back-testing by examining the hit counts of these technologies in the last decade. Our expectation is to catch an early growth pattern for the technologies that are currently hot.

The second list is automatically generated by our EGTA tool. We compare this autogenerated list to the manually created list to understand how much overlap there is. Although, the auto generated list my point to technologies that are yet to be hot, we still expect to find some level of overlap.

We also compare our term-generation data sources (Scirus, Inspec and Compendex), by analyzing how the generated term lists correlate. Finally, we discuss the emerging research topics that are uncovered by our software tool.

# 6.1 MANUALLY CREATED EMERGING SOLAR TECHNOLOGIES LIST

Since we did not have expertise in the solar energy field, finding emerging and novel solar technologies was an arduous process that required countless hours. Identifying technologies that are not yet commercialized and still in the lab is not an easy task for the novice of the field. After sifting through online sources and expert opinions, we came up with the following solar technology list as the hot solar technologies of today:

- 1. Copper-indium-gallium di-selenide (CIGS) pv cells
- 2. Quantum wells
- 3. Quantum wires
- 4. Quantum dot solar cells
- 5. Hot carrier solar cells
- 6. Formation of intermediate band gaps
- 7. Flexible high-performance silver metallization
- 8. Amorphous silicon thin film solar cells

"Technology Roadmap Solar photovoltaic energy." The International Energy Agency (IEA), 2010

<sup>&</sup>lt;sup>7</sup> Some of the sources used are:

<sup>&</sup>quot;A Strategic Research Agenda for Photovoltaic Solar Energy Technology." Working Group 3 "Science, Technology and Applications" of the EU PV Technology Platform, 2007

<sup>&</sup>quot;Special Report: Solar Power." MIT Technology Review, 2010

<sup>&</sup>quot;EU PVSEC: Fraunhofer ISE develops new solar PV technologies with greater efficiency". RenewableEnergyFocus.com News, September 2009

<sup>&</sup>quot;Flexible Thin-Film Technology: A Novel Metallization Paste." RenewableEnergyWorld.com Article, March 2009

9. Cadmium telluride (CdTe) thin film cells

10. Cadmium telluride (CdTe) with silicon thin film cells

11. n-type silicon solar photovoltaics (PV)

12. Advanced inorganic thin films

- Spherical copper indium di-selenide (CIS) approach

- Polysilicon thin film (polysilicon Si solar cell)

13. Organic solar cells / organic PV

a. Hybrid approaches in which organic solar cells retain an inorganic component (e.g. the Graetzel cell)

- Dye solar cells

- Nanocrystalline dye-sensitised solar cell modules
- b. Full-organic approaches

- Bulk donor-acceptor heterojunction solar cells,

- Full-organic bulk heterojunction solar cells made with screen-printed

transparent contact and active layer (requires improved and stable polymers,

stabilization of nanomorphology, organic multi-junctions)

14. Thermophotovoltaics (TPV)

15. Flexible array of light-absorbing silicon microwires and light-reflecting metal nanoparticles

16. Solar Air Conditioning

17. Direct wafer making

#### 6.2 BACKTESTING

An important question to ask about our manually constructed hot solar technology list of the previous section is as follows: "Do these technologies display a growth behavior that can be caught with a hit count analysis?" To find an answer to this question, we collected hit counts for most of the technologies in our list by using our hitcount aggregator and Google Scholar as our hit count provider. It is interesting to note that this type of hitcount analysis describes the prevalence of well-known technologies such as RFID remarkably well. For example, the hitcount curve of RFID as shown below in Figure 25 indicates that RFID had limited prevalence prior to 2001, then underwent "early growth" from roughly 2001-2003, rapid growth between 2003-2006, and has been relatively flat afterward.

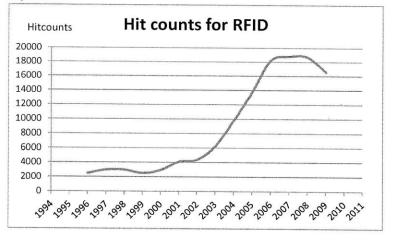



Figure 25: RFID Hitcount Growth between 1996-2009

The hit count charts for 12 of the technologies listed in the previous section in the last 10 years are shown in Figure 25. Note that x-axis represents year, and y-axis corresponds to hitcounts in the graphs.

When we examine these graphs, we easily find the early growth pattern in 7 of the 12 cases ("Quantum dot solar cells", "Copper Indium Gallium di Selenide", "Hot carrier solar cells", "Amorphous Thin Silicon Solar Cells", "Cadmium Telluride", "Silver Metallization", "Dye solar cells"). In 4 of the 12 cases, we see flattish behavior ("Quantum wells", "Quantum wires", "N-type Silicon", "Poly-silicon thin film". The case of "thermophotovoltaics" is inconclusive because there are relatively very few (<100) hitcounts over the years. This result answers the question in the opening mostly affirmatively, and signals that our assumptions about early growth do indeed have the potential to uncover emerging technologies through hit count analysis.

# **6.3 COMPARISON OF SOURCES**

We used three different online journal databases, Scirus, Compendex and Inspec, to collect the solar energy related terms for the case study presented in this chapter. In this section, we analyze the similarity of the term lists generated by these sources. Understanding similarities and differences between online databases of scientific publications may be important in calibrating future studies.

To perform this analysis, we used seed terms with different target term-list sizes and calculated the overlap percentage of the results in Compendex, Scirus and Inspec. As shown in Table 7 below, the overlap percentages are very low for these three resources, ranging from 4% to 26%. This might mean that these resources index very different types of information, and they can be treated as complementary sources.

| Seed Term – Term Size  | Compendex/Inspec | Compendex/Scirus | Inspec/Scirus |
|------------------------|------------------|------------------|---------------|
| Photovoltaics -100     | 11%              | 4%               | 8%            |
| Photovoltaics - 1000   | 18.6%            | 7.9%             | 6.9%          |
| Photovoltaics -10000   | 25%              | 6.3%             | 5%            |
| Solar energy - 500     | 16.4%            | 6%               | 4.4%          |
| Solar energy - 3000    | 26.1%            | 6.5%             | 4.2%          |
| Renewable Energy - 100 | 13%              | 4%               | 4%            |

Table 7: Overlap percentage of results for seed terms "Photovoltaics", "Solar energy", and

"Renewable energy" with different term sizes between Compendex, Scirus and Inspec.

In a secondary analysis, we also found out differences in the way data are organized in these databases. We chose seed terms with similar meanings (such as gasoline and petrol, PV and Photovolatcis) and generated term lists for each of the seed terms. Then we calculated the intersection of the related term lists of each seed term. Higher intersection is more desirable because we expect similar terms to return approximately similar results. We found out that term lists generated by Scirus with related terms had less intersection than Compendex and Inspec as shown in Table 8. From this brief analysis, it is clear that differences in the collection methods as well as in the underlying data sources can result in very different keyword sets.

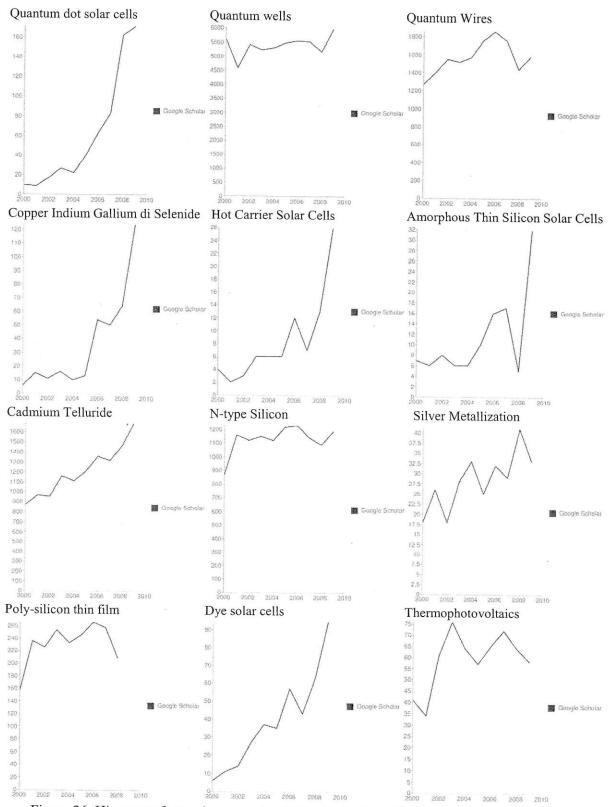



Figure 26: Hit counts for twelve emerging technologies from Google Scholar for the last ten years.

| Source         | Solar Energy and<br>Photovoltaics | PV and<br>Photovoltaics | Gasoline and Petrol |
|----------------|-----------------------------------|-------------------------|---------------------|
| Compendex 2100 | 74%                               | 54%                     | 64%                 |
| Inspec 2100    | 65%                               | 48%                     | 75%                 |
| Scirus 2100    | 30%                               | 34%                     | 33%                 |

Table 8: Overlap percentage of results from Compendex, Inspec and Scirus for term size 2100 for pairs with similar or same meaning (e.g. Gasoline and Petrol)

# **6.4 CASE STUDY RESULTS**

In this section, we compare the manually created emerging solar technologies term list of section 6.1 with the term list we obtained automatically from our EGTA tool. As reported below, there are important overlaps between the two lists, which is an encouraging sign for our research. There is, however, also room for improvement especially in getting rid of irrelevant terms from the list, finding better ranking schemes, and combining relevant terms together using hierarchies.

Below we report some of our observations:

#### 6.4.1 Metals

The literature review on emerging and novel solar technologies reveal that metals like Gallium, Selenium and Copper are quite important for the field. In our manually created list we had:

Copper-indium-gallium di-selenide (CIGS) pv cells Cadmium telluride (CdTe) thin film cells Cadmium telluride (CdTe) with silicon thin film cells Spheral copper indium diselenide (CIS) approach

Our EGTA tool lists these metals several times:

#### Rank Term

- 228 Selenium
- 450 Cadmium Compounds
- 814 Gallium
- 884 Copper Compounds
- 893 Gallium Alloys
- 909 Gallium Arsenide
- 929 Semiconducting Selenium Compounds
- 946 Semiconducting Gallium
- 1011 Gallium Nitride
- 1186 Cadmium Alloys
- 1405 Indium Sulfide
- 1416 Indium
- 1432 Semiconducting Indium

#### 6.4.2 Nanotechnology

Improvements in the field of nanotechnology are quite important for solar energy. Emerging technologies of section 6.1 list *nanostructures* and *nanoparticles*. Ray Kurzweil's reported talk in Chapter 2 also emphasized the intersection of nanotechnology and solar energy. Our EGTA tool lists nanotechnology related terms very often and with high ranks:

#### Rank Term

- 8 Nanophotonics
- 20 Nanosheets
- 39 Nanotechnology
- 66 Nanocomposites
- 125 Nanostructured Materials
- 156 Nanowires
- 172 Nanocrystals
- 264 Nanorods
- 362 Nanoparticles
- 368 Nanostructures

## 6.4.3 Quantum dots, wires and wells

Quantum dots, wires and wells that are mentioned in our manually constructed emerging technologies list come up in our EGTA results:

#### Rank Term

- 186 Quantum Chemistry
- 199 Quantum Optics
- 377 Semiconductor Quantum Dots
- 818 Quantum Well Lasers
- 950 Semiconductor Quantum Wells
- 955 Quantum Theory
- 1005 Quantum Well Infrared Photodetectors
- 1292 Quantum Efficiency

# 6.4.4 Formation of intermediate band gap

Terms related to "formation of intermediate band gap"s in our emerging technologies list can also be tracked in our results:

Rank Term

- 798 Ultra-Wideband (Uwb)
- 846 Photonic Band Gap
- 1958 Optical Band Gaps

## 6.4.5 Thin films

Terms similar to the emerging technologies 'Amorphous silicon thin film solar cells', 'Polysilicon thin films', 'Full-organic bulk heterojunction solar cells', 'Direct wafer making', 'Hot carrier cells' appear in our list.

#### Rank Term

- 14 Organometallics
- 38 Semiconducting Intermetallics
- 133 Photorefractive Crystals
- 576 Heterojunctions
- 1119 Wafer Bonding
- 1156 Organic Polymers
- 1175 Semiconducting Organic Compounds
- 1399 Semiconductor Junctions
- 1414 Silicon Wafers
- 1544 Amorphous Silicon
- 1738 Polysilicon
- 1776 Microcrystalline Silicon
- 1821 Carrier Concentration

#### 6.4.6 General solar energy related terms

Our results also have general solar energy related terms such as:

#### Rank Term

- 132 Solar Water Heaters
- 197 Solar Power Generation
- 206 Silicon Solar Cells
- 207 Solar Energy
- 212 Solar Concentrators
- 220 Mirrors
- 236 Solar Power Plants
- 274 Solar System
- 312 Solar Collectors
- 318 Solar Equipment
- 380 Ultrathin Films
- 399 Solar Refrigeration
- 658 Solar Heating
- 677 Solar Buildings
- 705 Solar Radiation
- 949 Solar Absorbers
- 1059 Solar Cell Arrays
- 1157 Thin Films
- 1586 Passive Solar Buildings
- 1653 Thin Film Transistors
- 1659 Concentration (Process)

## **6.5 CONCLUSION**

In this chapter we compared a manually created term list corresponding to emerging solar technologies with the term list auto generated by our EGTA tool. We found out that there is a great degree of overlap between these lists, which is an encouraging sign for our research. We also performed a limited back testing, which indicated that in most cases we can expect to find the early growth pattern by examining the hitcounts of an emerging technology over the years. Furthermore, we identified that the sources we used return largely different result term lists for the same seeed term; therefore can be treated as complementary sources. Compendex and Inspec also seem to handle synonyms more effectively compared to Scirus. Understanding the differenced and similarities of data sources may be important in designing future studies. Complete term list returned by our EGTA tool can be viewed in Appendix 6.

# **CHAPTER 7: GEOTHERMAL CASE STUDY**

In this chapter, we present the results of applying Early Growth Technology Analysis (EGTA) to the field of geothermal energy. In Appendix 7, we present 2000 terms found and ranked by the EGTA tool for the seed term "geothermal". We have larger data to report (for 4000 terms, and for 5000 terms), but by eyeballing the results, it seems that after 2000 terms, the list starts including more generic terms and less interesting technologies.

The term list was created using Compendex and the hit counts were created by Scirus. We selected Compendex for term generation, because the term list included more specific technologies than generic terms when compared to the term lists generated by Scirus. For hit counts, however, we preferred Scirus, because it has a wider collection of scientific publications. We categorize the results of geothermal case study into 4 main areas and discuss them below. These four categories indicate whether the automatically generated terms from the EGTA tool are related to the geothermal field, related but generic terms, unrelated generic terms, or totally unrelated terms. Such a classification helps us understand the quality of the results returned by the EGTA tool.

# 7.1 CATEGORIZATION OF THE CASE STUDY RESULTS

## A. Technologies that might be related to the geothermal field

These results are promising in that they include many relevant terms we would hope to find on such a list based on our brief analysis of the field as reported in Section 7.2.

| Rank | Term                                                     |
|------|----------------------------------------------------------|
| 180  | Osmosis                                                  |
| 460  | Ammonia                                                  |
| 488  | Supercritical Fluids                                     |
| 511  | High Performance Liquid Chromatography                   |
| 727  | Solvent Extraction                                       |
| 774  | Water Cooling systems                                    |
| 1128 | Protective Coatings                                      |
| 1180 | Flow simulation                                          |
| 1251 | Ion Exchange Resins                                      |
| 1374 | Enhanced Recovery                                        |
| 1385 | Multi/Single-Walled Carbon Nanotubes (Swcn) <sup>8</sup> |
| 1508 | Large Eddy Simulation <sup>9</sup>                       |
| 1509 | Thermal Logging                                          |
| 1531 | Hydraulic Fracturing <sup>10</sup> ,                     |
|      |                                                          |

<sup>&</sup>lt;sup>8</sup> *Carbon nanotubes (CNTs)* are allotropes of carbon with a cylindrical nanostructure. Nanotubes have been constructed with length-to-diameter ratio of up to 28,000,000:1 which is significantly larger than any other material. These cylindrical carbon molecules have novel properties that make them potentially useful in many applications in nanotechnology, electronics, optics and other fields of materials science, as well as potential uses in architectural fields.

<sup>&</sup>lt;sup>9</sup> Large eddy simulation (LES) is a numerical technique used to solve the partial differential equations governing turbulent fluid flow (Wikipedia)

<sup>&</sup>lt;sup>10</sup> *Hydraulic fracturing* is a method used to create fractures that extend from a borehole into rock formations, which are typically maintained by a proppant, a material such as grains of sand or other material which prevent the fractures from closing. The method is informally called fracking or hydro-fracking.

- 1761 Plasma Enhanced Chemical Vapor Deposition
- 1848 Evaporative Cooling Systems
- 1991 Fins (Heat Exchange)

## B. Generic terms related to the geothermal field:

We also find terms whose level of generality makes them undesirable.

#### Rank Term

- 111 Fossil Fuels
- 112 Earth (planet)
- 140 Earthquakes
- 174 Turbines
- 1715 Volcanic rock

While these terms are all somehow relevant to geothermal, the connection may be loose or apply equally well to unrelated seed terms or be far from specific technologies that are in their early growth stages.

## C. Technologies unrelated to the geothermal field

Our list also includes specific terms that are unrelated to the geothermal field:

| Rank | Term                       |
|------|----------------------------|
| 175  | Wireless Sensor Networks   |
| 472  | Particle Accelerators      |
| 728  | Cellular Telephone Systems |
| 783  | Computer Operating Systems |

## D. Generic terms unrelated to the geothermal field

We also observe generic terms that are unrelated to the geothermal field:

| Rank | Term        |
|------|-------------|
| 68   | Surgery     |
| 72   | Education   |
| 77   | Housing     |
| 91   | Linguistics |
| 102  | Insulin     |
| 168  | Metabolism  |
| 181  | Antibiotics |
| 943  | Body Fluids |

We then looked at the top 20 terms returned by our EGTA tool, and assigned one of the four categories we described above. This helps us understand the relevancy of our EGTA results. Note that we do not have expertise in geothermal energy, and our classification is a based on a best-effort understanding of the domain using online sources.

| Rank | Terms                                  | Category |
|------|----------------------------------------|----------|
| 1    | Myoelectrically Controlled Prosthetics | С        |
| 2    | Refractometers                         | В        |
| 3    | Magnetrons                             | А        |

| 4 Fragrances                                 | D |
|----------------------------------------------|---|
| 5 Phototransistors                           | С |
| 6 Nanofibers                                 | А |
| 7 Nanofluidics <sup>11</sup>                 | Α |
| 8 Quartz Crystal Microbalances <sup>12</sup> | A |
| 9 Abrasives                                  | Α |
| 10 Aneroid Altimeters                        | В |
| 11 Electron Microscopes                      | С |
| 12 Navigation                                | В |
| 13 Microscopes                               | D |
| 14 Observatories                             | D |
| 15 Plastic Molds                             | В |
| 16 Steel Metallography                       | A |
| 17 Tsunamis                                  | В |
| 18 Adsorbents                                | A |
| 19 Tanning                                   | В |
| 20 Navigation Systems                        | В |

Although the list includes some items that are not directly related to what we are looking for, it is encouraging to find 7 highly relevant terms in the top 20 list. For a more comprehensive examination of the results, we present in the next section, a brief survey on promising geothermal technologies, which can be compared to the complete term list returned by the EGTA tool and presented in Appendix 7.

<sup>&</sup>lt;sup>11</sup> *Nanofluidics* is the study of the behavior, manipulation, and control of fluids that are confined to structures of nanometer (typically 1-100 nm) characteristic dimensions (1 nm = 10-9 m). Fluids confined in these structures exhibit physical behaviors not observed in larger structures, such as those of micrometer dimensions and above, because the characteristic physical scaling lengths of the fluid, (e.g. Debye length, hydrodynamic radius) very closely coincide with the dimensions of the nanostructure itself.

<sup>&</sup>lt;sup>12</sup> Quartz Crystal Microbalances A quartz crystal microbalance (QCM) measures a mass per unit area by measuring the change in frequency of a quartz crystal resonator. The resonance is disturbed by the addition or removal of a small mass due to oxide growth/decay or film deposition at the surface of the acoustic resonator. The QCM can be used under vacuum, in gas phase ("gas sensor", first use described by King[1]) and more recently in liquid environments. It is useful for monitoring the rate of deposition in thin film deposition systems under vacuum.

# 7.2 BRIEF ANALYSIS OF THE EMERGING TECHNOLOGIES IN GEOTHERMAL ENERGY

We can classify the promising new developments in geothermal surface technology<sup>13</sup> as follows:

**I. Incremental technology improvements** that marginally increase the efficiency of a particular power plant component, for example—might prove most valuable in the near term. Geothermal power plants can always benefit from reduced parasitic load, reduced power expenditures related to cooling fans, improvements to the power substation, and other modest technological advances.

**II. Increasingly Standardized, Modular Geothermal Conversion Systems:** *Modularity* allows developers to more easily add capacity after a reservoir has been found to be capable of additional production.

Related terms in our automatically generated list were:

| Rank | Term                    |
|------|-------------------------|
| 1273 | Phase Modulation        |
| 1803 | Multicarrier Modulation |
| 1875 | Pulse Width Modulation  |

**III. Mineral Recovery:** Further research and development could make the separation of minerals from geothermal water, known as mineral recovery, a viable technology. Some geothermal fluids contain significant concentrations of dissolved minerals, while others are virtually mineral free. Mineral recovery offers several benefits, which generally fall into categories of either improving the function of the power plant (reducing scaling, allowing greater power production by lowering the injection temperature), or increasing profits (through the sale of mineral byproducts). Often a variety of benefits will result. Minerals found at geothermal power plants include zinc, silica, lithium, manganese, boron, lead, silver, antimony and strontium.

(eg. a combination of already existing technologies modified for the task: ion exchange, *solvent extraction*, and "electrowinning" to extract *zinc* from the used geothermal liquid.)

(eg. Preliminary results suggested in 2006 that *silica* recovery at Mammoth Lakes could reduce the cost of geothermal electricity production by 1.0¢/kWh. The market value of silica that could be produced from the Mammoth Lakes site if silica is removed from all geothermal liquid is estimated to total \$11,000,000/year.) LLNL is also considering using *reverse osmosis* to separate lithium, cesium, rubidium and tungsten. However, these activities have not yet been pursued.

Related terms in our automatically generated list were:

| Rank | Term              |
|------|-------------------|
| 66   | Biomineralization |
| 127  | Minerals          |
| 162  | Mineralogy        |
| 180  | Osmosis           |
|      |                   |

<sup>&</sup>lt;sup>13</sup> The State of Geothermal Technology, Part II: Surface Technology, Geothermal Energy Association for the U.S. Department of Energy, 2008.

| 0.50 |                               |
|------|-------------------------------|
| 253  | Organic Minerals              |
| 587  | Zinc                          |
| 599  | Silicate Minerals             |
| 711  | Oxide Minerals                |
| 727  | Solvent Extraction            |
| 1028 | Mineral Oils                  |
| 1140 | Silica                        |
| 1158 | Zinc Sulfide                  |
| 1213 | Zinc Oxide                    |
| 1347 | Sulfate Minerals              |
| 1458 | Organic Solvents              |
| 1459 | Semiconducting Zinc Compounds |
| 1466 | Fused Silica                  |
| 1520 | Phosphate Minerals            |
| 1978 | Tantalate Minerals            |
|      |                               |

**IV. Working Fluids for Rankine Cycle Power Plants:** Studies at National Renewable Energy Laboratory (NREL), Idaho National Laboratory(INL), and elsewhere have shown that mixed working fluids in binary-cycle geothermal power plants can potentially reduce thermodynamic inefficiencies in the boiler and condenser, thereby improving overall plant efficiency. Researchers have investigated various pure and mixed working fluids to optimize power conversion efficiency. One potential working fluid, especially suitable for lower temperature resources, is *ammonia* water as used in the Kalina cycle.

Related terms in our automatically generated list were:

| Rank | Term                         |
|------|------------------------------|
| 23   | Nanofluidics                 |
| 72   | Microfluidics                |
| 150  | Superfluid Helium            |
| 460  | Ammonia                      |
| 488  | Supercritical Fluids         |
| 585  | Computational Fluid Dynamics |
| 781  | Fluidized Beds               |
| 1093 | Cascades (Fluid Mechanics)   |
| 1698 | Fluid Structure Interaction  |

**V. Hybrid Cooling Systems:** Experts cite hybrid *cooling* as one of the most important areas for surface improvements. Due to the increasing demand for both efficiency and water resources, NREL and INL investigated ways to improve the heat transfer effectiveness of air-cooled condensers. The NREL concept, according to the lab's R&D website, "involves the use of perforated fins in which all air flows through the perforations. Tests of two prototypes at NREL and associated computer modeling indicated that 30 to 40 percent more heat transfer could be obtained for the same fan power with a hybrid as opposed to a stand-alone air cooling system."

Related terms in our automatically generated list were:

#### Rank Term

- 661 Cooling Systems
- 1848 Evaporative Cooling Systems

VI. Coatings: Corrosion and deposition of mineral scale (known as fouling) can occur at geothermal resource areas with high concentrations of dissolved and suspended solids. When scale accumulates over time, it can clog pipes or vessels and decrease the effectiveness of heat exchangers.

In order to reduce the cost of maintaining open flow paths and efficient heat transfer, Brookhaven National Laboratory (BNL) developed durable, scale-resistant *polyphenyl sulfide*-based coatings for carbon steel. These coatings can be used for heat exchangers—devices which transfer heat through a conducting wall from one fluid to another—as well as for binary cycle power plants, piping, flash vessels, and other plant components.

Related terms in our automatically generated list were:

| Rank | Term             |
|------|------------------|
| 954  | Phenolic Resins  |
| 1265 | Thiophene        |
| 1611 | Phenols          |
| 1877 | Sulfide Minerals |

#### 7.3 CONCLUSION

Like the solar case study, the results for the geothermal study are very promising. We find many highly relevant terms in the top results returned by our EGTA tool, and few generic, and unrelated terms. Having generic and unrelated terms, unfortunately, cannot be avoided entirely when using an automated process; however there have only been relatively few occurrences of such terms. Also, the relevance of some terms may not be immediately obvious, but there might actually be some relationship. Haptic interfaces, for example, are widely used in virtual environments and tele-operator applications, and these could probably be quite useful for geothermal exploration.

Having implemented the EGTA approach and completed two case studies we talked to some local experts to get their reaction to our work. This is presented next, in Chapter 8.

# **CHAPTER 8: EXPERT INTERVIEWS**

To better understand the utility of the work we described in this Thesis, we conducted interviews with three MIT affiliated experts in the technology forecasting area: William K. Aulet, Howard Anderson, and Satwik Seshasai. William K. Aulet, the acting managing director of MIT's entrepreneurship center, is a serial entrepreneur who has raised over \$100 million in funding for his companies and directly created hundreds of millions of dollars of market value. Aulet believes that execution and implementation is more important than the selection of a particular technology, but he was quite excited about our work. He considers the ability to map technology landscape through bibliometric analysis as an important decision aid in the technology selection process.

Howard Anderson, the founder of The Yankee Group and the Co-Founder of Battery Venture Capital, is a Senior Lecturer at the MIT Entrepreneurship Center. He sits on several high technology boards in the communications, computing, and advanced materials industries, and recently was voted one of the top 25 people in the communications industry by Network World magazine. In our interview, Anderson stressed the importance of pattern recognition. He believes that VCs and scientists all use pattern recognition to make decisions, and the ability to pick up patterns with less and less data and use them as early predictors is of paramount importance to technology forecasting. He considers the work we have done as a good starting point that can attract considerable attention if we can show some positive correlation through back-testing.

Satwik Seshasai is a Senior Manager at IBM and also a PhD Candidate at Massachusetts Institute of Technology focusing on technology forecasting. Seshasai offers a different perspective on the utility of our work and other similar efforts. He believes that they are more useful on identifying how to craft a market message around the technology, on identifying how to reorganize existing groups to deliver the technology, and on deciding which companies to acquire as opposed to deciding what to do. For example, when building a medical product, this type of work can be useful in identifying complementary products; hence influence acquisition decisions. We learn more about interesting topics, the terminology of those topics, and other topics related to those topics.

Below we provide partial transcripts of two of the interviews to provide a more detailed account of their thoughts on technology forecasting in general, and our work in particular.

#### **8.1 INTERVIEW TRANSCRIPTS**

HOWARD ANDERSON - is the founder of The Yankee Group and the Co-Founder of Battery Venture Capital. He is a Senior Lecturer and MIT Entrepreneurship Center. At MIT, he teaches 15.390 New Enterprises, 15.398 Companies at the Crossroads, 15.386 Managing in Adversity and 15.387 High Technology Sales and Sales Management. He sits on several high technology boards in the communications, computing, and advanced materials industries. He recently was voted on of the top 25 people in the communications industry by Network World. His commentary can often be read in such publications as The Wall Street Journal, Forbes Magazine and Technology Investor.

#### [We start with a brief explanation of our research]

Howard Anderson: So your assumption is that the buzz for new technology shows up early in emails, searches, databases and that is a good predictor.

Ayse Kaya Firat: Our hypothesis is that prevalence might be a good indicator. We not only look at hit counts (prevalence) in online journal databases but also the growth rates. We look at historical trends in search for what the "emerging technologies" of the past looked like and try to learn and extrapolate from them. We are after "obscure" terms, the technologies even experts in a field may not be aware of.

HA: Sometimes the hype as a backlash and the actuality might be different. Let's take something like RFID: [HA draws a figure like the following]

Popularity/Adoption

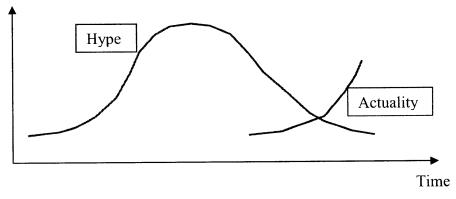



Figure 27: RFID Popularity/Adoption vs. Time Curve

As the hype levels of a technology goes down and reality goes up, people start saying "This is not really working." The transition from hype to reality might take 10 years. 5-6 years ago everyone was saying RFID was a great new technology, then they turned around and said "Hey, it is very expensive, and it does not work". Be careful when you see something and think it is a good leading indicator. I see this sometimes in standards and in communication where everyone is supposedly behind this and then nothing happens.

# AKF: Do you think sources might make a difference? We look at online journal databases, academic articles. Not blogs or newspapers.

HA: What happens often is the academic community comes first, industry the second. Something will come out of chemical engineering department and we, venture capitalists will eventually catch onto it, and now we start to talk about it and once we made an investment into a company, we hype it ourselves. If someone calls me up from a magazine asking what the three new great emerging technologies are, I'll say "Lithium ion batteries", because I just put 2 million dollars in it. So that kind of gets along a life of its own. It starts with technical articles, then finds its way into the business articles, then all of a sudden it is on the cover of Business Week.

#### AKF: In your own experience, how is technology forecasting being done in companies?

HA: I ran a group called Yankee Group, and Yankee Group was in that business. I started the company in 1970 and sold it in 2000. By the time I left, I had 200,000 clients who would pay as much as \$50,000 a year to get our view of which new companies and technologies were important. One of my company's job was to tell users about new technology inventors they should pay attention to, and tell the vendors what smart users were doing. So, kind of an information switch.

I was a popularizer. Why is a company paying this much amount of money to do this? Should not they be doing it themselves? Let's say a company like Goldman Sachs which has an IT budget that's almost \$2 Billion. They say they want to know about a new technology that can be a differentiator, where do we learn that from? Do we read the journal articles ourselves? Probably not. But we pay other people to be forward scouts: Yankee Group, Gartner Group and Forrester being some of them. They influence other users and publications that write an article like "The Best 15 New Technologies".

#### AKF: How do you come up with such a list? Do you use any quantitative methods?

HA: Absolutely not. One area that I look is where I think there is going to be some unique companies. I look where I am putting venture capital, and where I think the market is going to be very good for some time, and what I think is going to be commercially successful. It's like a play. There is a lot of data running back and forth. Sometimes things will catch fire, sometimes there is a whole new platform, like the Internet. And sometimes there is false information that people think it's true: e.g. 'internet is doubling every year''. More and more money goes in, then there is a vicious cycle.

AKF: But let's say IBM is thinking of investing in 10 technologies and there are millions of technologies out there. How do they go from a million to the top 100? I understand that once they have the top 100, they might use many methods, like cost-benefit analysis to go to top 10.

HA: I don't think there are millions. There are basic categories and subclasses. I do not know how exactly it is done, but IBM, for example makes a billion dollars a year in licensing fees. How do they do it? What they do is they say to all their divisions "You keep track of the competition and whatever licensing revenue we get goes to your profit center." What they do is, they rely on the engineers and scientists' in the divisions to keep track of what is going on in the market.

# AKF: IBM has a team called HorizonWatch composed of about 1600 people who discuss the newest technologies on internal blogs, conference calls, etc.

HA: President of AT&T is a friend of mine, he called up and said "IBM is making a billion dollars, how do I do the same thing? I've got all these patents, too". I said "You need an organization to do this. Not full-time, that's not a full-time job." He just said "I don't have the time and the effort to do it". So there is a semi-formal way the people keep track.

Sometimes a company will say "Alright, there is this new technology, we have some corporate money to sponsor trial for 6 months. After that one of the divisions has to adopt it. If nobody wants it, move on to something else. So what you have is a kind of a trial and error method.

# AKF: Do you think that these technology investment decisions are based on repeatable, objective criteria? How robust are they?

HA: Most of the innovations do not come from big companies, they come from little companies. I divide the world into two groups: Attackers and defenders. The defenders are the big technology companies. Let's say there is a new technology that comes up. Let's call it VoIP. The big companies probably get a few people playing with it a few years, but it's not doing too well; mainly because, it threatens the financial viability of their existence. They keep trying on it, but they do not push it. Little company pushes it, and they get some attraction. Now, the big company's first inclination is denial. The second inclination is anger. And the third thing is "Maybe we should oem the product, and put our label on it" and then, in the end they wind up selling it through an investment banker to a big company.

If you look at a company like Cisco, you'll see that they have done hundreds of acquisitions. Microsoft does the same thing. Corporate development guys always keep their eye on new technologies. This is what Boston Scientific is trying to do. They say "We're not smart enough to know which of these dozens of technologies are important. What we will do is we'll pick maybe 10 or 20 things that we think have high potential. We'll put in \$5 million in each of these technologies.

#### AKF: So, experts come together and decide...

HA: Yeah, I've got a CTO, or a CMO who says this is kind of interesting. There is some risk. Let's put a few little bets out here. Maybe we'll have an agreement that we have the right to buy out 50% at three times sales in five years. So they say let's not smother the poor company. Let's give them some money, and if they are successful, we'll pay them a lot of money but not so much that it becomes unaffordable. And that sometimes works. The idea that I want to plant a lot of seeds and a few of them will grow. And no one is smart enough to know which particular seed is going to work. And sometimes they are dead wrong; they may make five bad investments.

If you look at companies like Pfizer or Merck, they spend 10 billion dollars a year on R&D for 10 years, and never have any great new products out there. Why? They just chose wrong, they were too risk averse, they bet on the wrong horse. They would do anything including buying your master thesis to find if there is a better way of predicting here. And maybe looking at blogs would be very worthwhile. They try bunches of things, but had not been successful.

Do you know how penguins find out if it is safe to go into water?

#### AKF: They push each other...

HA: Right, they push each other until somebody falls in and if the shark does not eat them, they all jump in. That's kind of what happens here. We exchange the same information, we go listen to Robert Langer speak. His investments count five times anybody else's. He is someday going to have more patents than Thomas Edison. We'll look through the patent applications and then we'll say this is the hot area. Then the investment money comes. If it turns out to be worthwhile, now there are 20 companies doing the same thing.

# AKF: I talked to William K. Aulet of MIT's Entrepreneurship Center and, although he was quite excited about this project, he said technology is a little bit overrated. He said what really matters, especially in the energy sector is execution and implementation.

HA: Everyone says the same words. When you look at the energy sector, you may see a curve. Everyone gets really excited about certain things, and then it tails off. He is right in his way.

# AKF: But let's say you carry out the same successful execution/implementation steps for two different scenarios. For the first one you start with a better portfolio of technologies than the second. Don't you think it will make a difference?

HA: You never have the same execution; the costs are different, the timing is different. I had a great idea for a new turbine engine. But now the government has price supports: Let's take Arnold Schwarzenegger says that if you drive an electric car, you can get in the high-speed lane in California. And all of a sudden the battery guys are doing a lot better. Now, the technologies that were marginally not worth doing, become more worth doing.

### AKF: One last question: Do you think automated approaches like ours might be interesting to people out there? Are they even aware of approaches like bibliometric analysis and technology mining?

HA: I think the answer is it would be of interest if you can show some positive correlation. If not, it's a good first start. Everyone is smart enough to know that they better pay attention to staff that comes out of a university. It may not be perfect the first time, but maybe it gets better.

We're all in the business of pattern recognition. I wrote an article about why VCs and scientists both use pattern recognition to make decisions. Can we pick up patterns with less and less data? And you are looking if there is an early predictor. And it might be a trailing indicator. You'll look at that and see if you can use your data to do a simulation. You'll go back to 2003 and see what you would have predicted and then you look at reality. Was that a decent predictor? And if it works out, then we'll pay money for you to do more research.

#### AKF: Thanks a lot, Prof Anderson.

# SATWIK SESHASAI - Senior Manager at IBM and PhD Candidate at Massachusetts Institute of Technology

# Ayse Kaya Firat: My first question is about how technological forecasting is done in practice.

Satwik Seshasai: Many companies use terms like 'Market analysis', 'Market Intelligence' and 'Insight' instead of calling it technology forecasting. The market intelligence groups are very disconnected from the product groups. They produce reports and suggestions, and the product groups build products independently. I think this is general in the industry. What market intelligence does almost by accident can influence product groups.

#### AKF: Who does the market intelligence group report to?

SS: That's the thing right. They report separately. By the way, reporting structure does not mean anything in those companies. Let's say Polycom who is producing telephones may have an engineering team, which is building the next version of the desktop phone. And then they have a market analysis group that is looking at devices in general, the strategy: should it be small, should it be big, should it be mobile, so forth. By the time they influence the product group, the product group may have already made certain decisions. You asked how decisions are made. It is not like everybody sits down in a room and say "Alright. Now we're going to make a decision." There is never actually a decision point, things just happen. The strategy group might say "We think you should make these devices wireless with 3G enabled, so you do not need to hook it up to a wire". For that to get from there to the product group, it is kind of by accident. They produce a report and say "Let's experiment with that". In parallel some customer may hear about it and says "I really want it", and request a prototype. As the engineers are already building the prototype, the prototype goes to the customer, and if they like it, the prototype enters the product line. But it is not like there was a decision point.

#### AKF: How do they justify the existence of a market intelligence group, then?

SS: By the size. A small company would not do this. But a large company says 'we should spend X% of our budget on this, because it is generally good to have.

#### AKF: IBM has a group called Horizon Watch. Can you explain what Horizon does?

Basically, they are a group inside IBM's market intelligence that identifies specific areas to look into such as intelligent transportation. These areas are not aligned with the product groups. They are more looking outwards. They are saying what is happening in the industry. Based on what is happening in the industry, let's go explore. They do not care if IBM already has a product in the area or not.

#### AKF: How do they identify the areas?

SS: By feeling. Once they identify the areas, they say who is interested among the whole company. People who are interested or who has expertise, participate in discussion groups, in online forums and conference calls. It is a very ad hoc aggregation of data. Someone might say "I read this, have you seen this article?" But there is no rigorous methodology behind how they operate. At the end, all they produce is some aggregation and analysis of the information in that domain.

# AKF: Are you aware of any systematic studies like bibliometric analysis, publication citation analysis, etc?

SS: There may be individuals within the company who choose that as a methodology to provide their own points. I may choose to browse the web. And we both speak up at the conference call.

#### AKF: What about IBM's market intelligence? Do they use quantitative methods?

SS: They do, but it is usually reusing what analyst firms like Gartner or IDC do. These analyst firms look at spend, interview customers and different vendors, and so forth.

If they look at which technologies are better than the other, that's all expert opinion with very tactical quantitative inputs. Should we invest in this chemical or that chemical? There will be people who say this is better or that is better. Then, there may be some study that says the market for products based on that chemical is this big. There is nothing like 'because this has grown in citation versus that, we're going to invest in that instead of that'.

### AKF: Some say selection of technology is overrated and what matters is implementation and execution. How do you think your own thesis and our work in general will contribute?

SS: I believe all of this work is not useful for deciding on the technology, it's more useful on identifying how to craft a market message around the technology, on identifying how to reorganize existing groups to deliver the technology, on deciding which companies to acquire and so forth. All of those types of decisions are where this type of work is useful as opposed to deciding what to do. Let's say you are building this medical product, is there a complementary product that's built by a company that you need to acquire? Such questions can be answered by this. What this says is more people are talking about this topic versus that topic, they are using this term as opposed to this term, when they talk about this they also talk about that.

#### **AKF: Thanks, Satwik.**

### **CHAPTER 9: CONCLUSION**

In this Thesis, we presented Early Growth Technology Analysis (EGTA), an automated bibliometrics based method to aid decision makers in identifying novel technologies that have the potential to generate high commercial returns at an early stage.

#### 9.1 CONTRIBUTIONS

Our main contribution is the creation and implementation of a decision aid tool that takes advantage of the knowledge buried in online scientific publications to help decision makers and experts identify emerging technologies in a field they are interested in; ensure that they do not miss an important development; augment and validate their already established ideas on options to consider for investment and fund allocation.

Given the expectation that this decision aid tool may be used by executives at our sponsoring organizations, IBM and Masdar, ease of maintenance and extendibility of the software was a primary goal. We accomplished this goal by adopting design patterns in software design, which make further development and maintenance much easier. Although there is still a lot of room for improvement, we augmented the decision aid tool with visual interfaces to improve the total user experience.

We also advanced the state of the data collection within our group by separating the generic and source-specific aspects of data collection, which are no longer buried together in some blackbox program; and are cleanly separated. Ability to declare source-specific data collection knowledge without coding improves the extendibility and maintenance of the EGTA software tools.

The two case-studies we performed using the EGTA indicate that our methodology is promising in identifying technologies that are in their early growth phase. Emerging technologies identified by EGTA mostly contained the hot technologies we found via an arduous process of sifting through many relevant publications, and expert opinions in the solar and geothermal energy fields. We got encouraging responses from the experts we interviewed with on the applicability of our approach as a decision aid tool in technology forecasting.

#### **9.2 FUTURE WORK**

The work presented in this Thesis can be followed up with additional work in several directions. First, a thorough study can be done to compare different formulas to measure early growth. In our study, we relied on a formula that measured the growth using a base and a final year. Deriving the shape of the growth curve by including intermediate years, for example, may improve the ranking of the resulting technologies even though it comes with a performance penalty because of increased data collection.

Similarly, the quality of term collection can be improved by finding an optimum combination of depth and breadth parameters; including more sources for term collection; and by utilizing the knowledge about the coverage of sources for different domains.

An important area being investigated by researchers in our group is automatically constructing taxonomies for the collected terms. A related effort can be undertaken on how to use taxonomies to improve the EGTA. Taxonomies may improve the ranking schemes, for example, by aggregating the hit counts of terms that are synonyms or closely related, or part of a term

group. They can also be utilized to guide the term collection process. Although we did not elaborate in this Thesis, we extended the EGTA tool to interact with the automatic taxonomy creation algorithms, but we did not experiment with it extensively.

Finally, we view using alternative sources as another avenue to build upon our research. In addition to online databases of scientific publications, alternative sources such as patent databases, and faster changing online data sources such as blogs can be used to improve the performance of EGTA.

With further enhancements, we believe that EGTA will be a promising data-driven approach to be used by policy makers to complement, verify, and validate expert opinions in coming up with funding allocation and technology investment decisions.

# REFERENCES

[Baker 2008] Baker, J. "Masdar Tools Report," Internal Memorandum, MIT Sloan School of Management, April 2008.

[Brown and Phaal 2001] Brown R., Phaal, R. The use of technology roadmaps as a tool to manage technology developments and maximize the value of research activity, IMechE Mail Technology Conference (MTC), Brighton, 2001.

[Camiña 2010] Camiña, S., A Comparison of Taxonomy Generation Techniques Using Bibliometric Methods: Applied to Research Strategy Formulation. Composite Information Systems Laboratory (CISL), Massachusetts Institute of Technology, 2008.

[Campbell 1966] Campbell, R., A methodological study of the utilization of experts in business forecasting, PhD Dissertation, UCLA, 1966.

[Coates et al. 2001] Coates, V., Faroque, M., Klavins, R., Lapid, K., Linstone, H.A., Pistorius, C., and Porter, A.L. On the future of technological forecasting, Technol. Forecast. Soc. Change 67 (1) 1 - 17, 2001.

[De Miranda Santo et al. 2006] De Miranda Santo, M., Coelhno, G. M., Dos Santos, D.M., and Filho, L. F. Text mining as a valuable tool in foresight exercises: a study on nanotechnology, Technol. Forecast. Soc. Change 73, pp. 1013–1027, 2006.

[Dalkey 1969] Dalkey, N. An experimental study of group opinion: The Delphi method, Futures 1 408 – 420, 1969.

[Dalky et al. 1963] Dalky, N., Helmer, O. An experimental application of the Delphi method to the use of experts, Manage. Sci. 9 458 – 467.

[European Commission 2006] European Commission, Emerging Science and Technology Priorities in Public Research Policies in EU, US and Japan, pp 13-24 and 25-35, 2006.

[Farquhar 1970] Farquhar, J.A., A Preliminary Inquiry into the Software Estimation Process, Rand, RM-6271-PR, 1970.

[Firat 2008] Firat, A. Cameleon#1 User Manual. Composite Information Systems Laboratory (CISL), Massachusetts Institute of Technology, 2008.

[Firat et al. 2005] Firat, A., Madnick, S., Yahaya, N.A., Kuan, C.W, and Bressan, S. "Information Aggregation using the Caméléon# Web Wrapper," Proceedings of the 6th International Conference on Electronic Commerce and Web Technologies (EC-Web 2005)," Copenhagen, Denmark, August 23 - August 26, 2005, also published in Springer Lecture Notes in Computer Science (LNCS) 3590, K. Bauknecht et al (Eds.), pp.76-86, Springer-Verlag Berlin, 2005.

[Gordon 2003] Gordon, T.J. "A simple agent model of an epidemic," Technological Forecasting & Social Change,vol. 70 pp. 397-417. 2003.

[Gordon and Glenn 2003] Gordon, T.J., Glenn J.C. (Eds.), Futures research methodology, Version 2.0 Millennium Project of the American Council for the United Nations University, 2003.

[Gustafson et al. 1973] Gustafson, D.H., Shukla, R.K., Delbecq, A., Walster, G.W. A comparative study of differences in subjective likelihood estimates made by individuals, interacting groups, Delphi groups, and nominal groups, Organ. Behav. Hum. Perform. 9, 280 – 291. 1973.

[Hill and Fowless 1975] Hill, K.Q., and Fowles, J. The methodological worth of Delphi forecasting technique, Technol. Forecast. Soc. Change 7, 179 – 192. 1975.

[Hood and Wilson 2001] Hood W., and Wilson, C.S. The Literature of Bibliometrics, Scientometrics, and Informetrics. Scientometrics 52(2):291–314, 2001.

[Levary and Han 1995] Levary, R., Han, D. Choosing a technological forecasting method. Industrial Management, 37(1), 14, 1995.

[Lichtenthaler 2004a] Lichtenthaler, E. Technological change and the technology intelligence process: a case study, J. Eng. Technol. Manag. 21 (4), pp. 331–348, 2004.

[Lichtenthaler 2004b] Lichtenthaler, E. Technology Intelligence Processes in Leading European and North American Multinationals. R&D Management 34 (2) 121–135, 2004.

[Martino 1970] Martino, J. The precision of Delphi estimates, Technol. Forecast. 1, 293 – 299. 1970

[Martino 1983] Martino, J. Technological Forecasting for Decision Making, 2nd ed. New York, NY: North-Holland, pp: 39, 40. 1983.

[Millett 2003] Millett, S. The future of scenarios: challenges and opportunities, Strategy and Leadership 31 (2)16–24, 2003.

[Mishra et al. 2002] Mishra, S. Deshmukh, S.G., Vrat, P., "Matching technological forecasting technique to a technology", Technol. Forecast. Soc. Change (TFSC) 69, pp. 1–27, 2002.

[National Science Foundation 2010] National Science Foundation, Proposal Review and Processing, <u>http://www.nsf.gov/bfa/dias/policy/meritreview/phase2.jsp</u> 2010.

[Norling et al. 2000] Norling P.M., Herring J.P., Rosenkrans, W.A., Stellpflug M, and Kaufman S.B., "Putting Competitive Technology Intelligence To Work" Research-Technology Management, Vol. 43, No. 5, pp. 23-28, 2000.

[Parente et al. 1984] Parente, F., Anderson, J., Myers, P., and O'Brien, T. An examination of factors contributing to Delphi accuracy, J. Forecast. 3 173 – 182, 1984.

[Pfeiffer 1968] Pfeiffer, J. New Look at Education: System Analysis in Our Schools and Colleges, Odyssey, New York, 1968.

[Phillips et al. 2005] Phillips, J.G., Heidrick, T.R., Potter, I. J. "Technology Futures Analysis Methodologies for Sustainable Energy Technologies", Technology Management: A Unifying Discipline for Melting the Boundaries 155-165. 2005.

[Porter 1998] Porter, A.L. Innovation forecasting using bibliometrics, Compet. Intell. Rev. 9 (4), pp. 11–19, 1998.

[Porter 2007] Porter, A.L. P. in van der Duin (ed.), Knowing Tomorrow? How Science Deals with the Future, Eburon Academic Publishers, Delft 183-201. 2007.

[Porter and Detampel 1995] Porter, A.L. and Detampel, M.J. Technology opportunities analysis, Technol. Forecast. Soc. Change 49, pp. 237–255. 1995.

[Porter and Cunningham 2005] Porter, A.L., and Cunningham, S.W. Tech Mining: Exploiting New Technologies for Competitive Advantage, John Wiley & Sons, Hoboken (New Jersey) 2005.

[Rabinow 2004] Rabinow, P. "Assembling Ethics in an Ecology of Ignorance" Presented as the closing plenary lecture of the First Conference on Synthetic Biology, MIT, 10-12 June 2004.

[Reger 2001] Reger, G. "Technology foresight in companies: from an indicator to a network and process perspective." Technology Analysis & Strategic Management, 13, 4, 533–553, 2001.

[Sahlo and Cuhls 2003] Sahlo, A., and Cuhls, K. "Technology foresight – past and future", Journal of Forecasting, Vol. 22. pp.79-82. 2003.

[TFAMWG 2004] Technology Futures Analysis Methods Working Group (TFAMWG), Technology futures analysis: toward integration of the field and new methods, Technol. Forecast. Soc. Change 71 (3), pp. 287–303. 2004.

[Woon and Madnick 2008(1)] Woon, W., Madnick. S. Asymmetric Information Distances for Automated Taxonomy Creation. Composite Information Systems Laboratory (CISL), Massachusetts Institute of Technology, 2008.

[Woon and Madnick 2008(2)] Woon, W., Madnick. S. Technology Forecasting Using Data Mining and Semantics, MIT/MIST Collaborative Research, 2008-2009.

[Woon et al 2009(1)] Woon, W., Henschel, A., Madnick, S. A Framework for Technology Forecasting and Visualization. Composite Information Systems Laboratory (CISL), Massachusetts Institute of Technology, 2009.

[Woon et al. 2009(2)] Woon W., Zeineldin, H., Madnick, S. Bibliometric Analysis of Distributed Generations. Composite Information Systems Laboratory (CISL), Massachusetts Institute of Technology, 2009.

[Woundenberg 1991] Woundenberg, F. An evaluation of Delphi, Technol. Forecast. Soc. Change 40 131-150. 1991.

[Ziegler 2009] Ziegler, B. Methods for Bibliometric Analysis of Research: Renewable Energy Case Study. Composite Information Systems Laboratory (CISL), Massachusetts Institute of Technology, 2009.

[Ziegler 2009] Ziegler B., Methods for Bibliometric Analysis of Research: Renewable Energy Case Study. Composite Information Systems Laboratory (CISL), Massachusetts Institute of Technology, 2009.

[Zhu and Porter 2002 ] Zhu, D., and Porter, A.L. Automated extraction and visualization of information for technological intelligence and forecasting, Technological Forecasting and Social Change 69, pp. 495–506, 2002.

# APPENDIX 1: INFORMATION ABOUT ONLINE PUBLICATION DATA SOURCES

This appendix describes the databases that are used to collect terms and hit counts for the purposes of early growth. The sources that will be analyzed are ACM, Compendex, Google Scholar, IEEE Explore, IngentaConnect, Inspec, Scirus, SpringerLink, and Web of Science.

#### ACM

The ACM Digital Library is an extensive collection of all of ACM's journals, magazines, peerreviewed articles, conference proceedings, ACM SIG Newsletters, and multimedia. It contains the largest full-text archive of articles on computing. This archive contains over two million pages of text, with full-text articles from ACM publications dating back to the1950s, and thirdparty content with selected archives. 20,000 New full-text articles added each year with 34 Special Interest Groups contributing content. It currently has:

2.0+ Million pages of full-text articles 260,000 Articles

45+ High-impact journals

270+ Conference proceeding titles

2.000+ Conference proceedings volumes

6 ACM magazines (including the flagship Communications of the ACM)

800+ Multimedia files containing audio, video, and more<sup>14</sup>.

#### Compendex

*Scope of coverage:* Compendex contains a compilation of comprehensive engineering literature databases available for engineers. It currently has 11.3 million records, with over 650,000 new ones added annually, across 190 engineering disciplines gathered from 1970 to the present. 98% of the top 50 U.S. engineering schools currently subscribe to Compendex. New information is gathered weekly from engineering conferences, journals and trade magazines from over 55 countries. Every entry is indexed according to the Engineering Index Thesaurus and indexed according to the precise engineering discipline.

Compendex covers topics from several engineering disciplines, including:

Chemical Engineering (15% of Compendex content) Civil Engineering (15% of Compendex content) Mining Engineering (12% of Compendex content) Mechanical Engineering (12% of Compendex content) Electrical Engineering (35% of Compendex content) General Engineering (12% of Compendex content)<sup>15</sup>

#### Keyword/indexing system:

- Controlled terms: keywords related to the article coming from a list of controlled vocabulary composed of agreed-upon technical terms made by the compilers of the database.
- Uncontrolled terms: uncontrolled vocabulary indexing containing terms not in the controlled vocabulary list

<sup>&</sup>lt;sup>14</sup> Source: http://portal.acm.org/dl.cfm

<sup>&</sup>lt;sup>15</sup> Source: http://www.ei.org/compendex

#### Search Customization Options:

- Document type: journal articles, conference articles/proceedings, monograph chapters/reviews, report chapters/reviews, and dissertations.
- Treatment type: application, biographical, economic, experimental, general review, historical, literature review, management aspects, numerical, or theoretical
- Language
- Publication Year

#### **Google Scholar**

*Scope of coverage:* Google Scholar provides peer-reviewed papers, theses, books, abstracts and articles, from academic publishers, professional societies, preprint repositories, universities and other scholarly organizations. Note however that Google Scholar is specifically focused on scholarly documents, and everything covered by Google Scholar is also covered by Google<sup>16</sup>.

#### Search Customization Options:

- Author
- Publication Field
- Date of Publication
- Subject Area

#### Keyword/indexing system: Google full-text algorithm

#### **IEEE Xplore**

IEEE Xplore is an online resource for accessing scientific and technical publications produced by the Institute of Electrical and Electronics Engineers (IEEE) and its publishing partners. IEEE Xplore provides access to a comprehensive collection of full-text PDF documents comprising the world's most highly cited journals in electrical engineering, computer science, and electronics. The content repository supporting IEEE Xplore contains more than 2 million articles from over 12,000 publications that encompass journals, conference proceedings, and technical standards, with select content dating back to 1893.

IEEE Xplore provides access to content from other publishers through the CrossRef Search feature. IEEE Xplore also facilitates federated searching of major science and technology society digital libraries via its integrated Scitopia® search feature.In addition to journals, conference proceedings, and technical standards content, IEEE Xplore provides access to the IEEE Press book collection<sup>17</sup>.

#### IngentaConnect

IngentaConnect is a website that hosts scholarly books and journals from a range of different publishers. IngentaConnect provides researchers with a comprehensive collection of citation data - some 4 million articles from 11,000 publications and online access to the full text of electronic articles, through online purchase of individual articles, or through subscriptions to publications.<sup>18</sup>

Feature-rich online content offers:

- Reference linking
- Forward citation linking

<sup>&</sup>lt;sup>16</sup> Source: http://scholar.google.com/

<sup>&</sup>lt;sup>17</sup> Source: http://ieeexplore.ieee.org/Xplorehelp/Help\_Welcome\_to\_IEEE\_Xplore.html

<sup>&</sup>lt;sup>18</sup> Source: http://www.ingentaconnect.com/

- Supplementary Data
- FastTrack articles (pre-publication)

#### Inspec

#### Scope of coverage:

Inspec is an abstracting and indexing database for physics, electrical engineering, electronics and computer science information. Updated weekly, it currently has 11 million specially-selected records gathered from 1969 to the present that are precise, targeted and relevant, with over 600,000 new records added annually<sup>19</sup>. Content is available for:

Physics (47% of Inspec content)
Electronics & Electrical Engineering (26% of Inspec content)
Computing & Control (20% of Inspec content)
Manufacturing & Production Engineering (5% of Inspec content)
Information Technology, Networking and Security (2% of Inspec content)

#### Keyword/indexing system:

- Controlled terms: keywords related to the article coming from a list of controlled vocabulary composed of agreed-upon technical terms made by the compilers of the database.
- Uncontrolled terms: uncontrolled vocabulary indexing containing terms not in the controlled vocabulary list

Search Customization Options:

- Document type: journal articles, conference articles/proceedings, monograph chapters/reviews, report chapters/reviews, and dissertations.
- Treatment type: application, biographical, economic, experimental, general review, historical, literature review, management aspects, numerical, or theoretical
- Language
- Publication Year

#### Scirus

*Scope of coverage:* Scirus contains scientific topics in found web sites, news, journals, web articles and academic papers. It searches over 485 million science-specific web pages, filtering out non-scientific sites, and finds peer-reviewed articles such as pdf and postscript files. Scirus searches the most comprehensive combination of web information, preprint servers, digital archives, repositories and patent and journal databases.

Scirus currently covers over web pages including156 million .edu sites, 54 million .org sites, 9 million .ac.uk sites, 52 million .com sites, 36 million .gov sites, and over 143 million other relevant STM and University sites from around the world<sup>20</sup>.

Scirus also indexes these sources (the numbers are approximate):

447,000 articles from American Physical Society

536,000 e-prints from ArXiv.org

42,000 full-text articles from BioMed Central

19,000 documents from Caltech Coda

3,300 e-prints from Cogprints

<sup>&</sup>lt;sup>19</sup> Source: http://www.ei.org/inspec\_inspecarchive

<sup>&</sup>lt;sup>20</sup> Source: http://www.scirus.com/srsapp/aboutus/

81,800 full-text articles from Crystallography Journals Online 24.000 documents from CURATOR 2.1 million documents from Digital Archives 24,000 documents from DiVa 98,500 full-text articles from Project Euclid 3,200 documents from HKUST Institutional Repository 56,000 documents from The University of Hong Kong 12,700 full-text documents available from IISc 11,000 full-text documents available from Humboldt Universität 284,000 full-text articles from Institute of Physics Publishing 23.1 million patent data from LexisNexis 16,000 full-text articles from Maney Publishing 40,000 full-text documents from MD Consult 585,000 full-text documents from Nature Publishing Group 18.1 million Medline citations via PubMed 72,000 documents from MIT OpenCourseWare 24,700 technical reports from NASA 792,000 full-text theses and dissertations via NDLTD 8,900 documents from Organic Eprints 1,690 documents from PsyDok 1.5 million articles from PubMed Central 738,000 documents from RePEc 63,000 full-text articles from Royal Society Publishing 619,000 full-text articles from SAGE Publications 8.0 million full-text articles from ScienceDirect 463,000 full-text journal articles from Scitation 9,100 articles from SIAM 16,600 documents from University of Toronto T-Space 21,800 full-text documents from WaY.

*Keyword/indexing system:* 'Keywords' can be seen in the 'refine your search' box in the lower left side of the website. Scirus uses an automated extraction algorithm to calculate ranking by relevance. This ranking is determined by two basic values:

- Words the location and frequency of a search term within a result account for one half of the algorithm. This is known as static ranking.
- Links the number of links to a page account for the second half of the algorithm the more often a page is referred to by other pages, the higher it is ranked. This is known as dynamic ranking. Overall ranking is the weighted sum of the static and dynamic rank values. Scirus does not use metatags, as these are subject to ranking-tweaking by users.

Search Customization Options:

- Information Types: abstracts, articles, books, company homepages, conferences, patents, preprints, scientist homepages, theses/dissertations
- Content Sources
- Subject Areas

#### Springerlink

Springerlink covers topics in Architecture, Life Science, Behavior Science, Business/Econ, Chemistry/Materials, Computer Science, Environmental Science, Engineering, Humanities,

Social Science, Law, Math/Statistics, Medicine, Physics, Astronomy, and Applied Computing from journals, books, reference works, protocols, academic publications. It contains over 1,750 peer reviewed journals and 27,000 eBooks online. 3,500 eBooks, eReference Works and eBook Series titles are scheduled to be added each year.

Keywords are pulled from publishers, some articles have none. Search uses frequency analysis as well as keywords. Search customization options include the title, the author, the editor, ISSN / ISBN / DOI and the date of publication<sup>21</sup>.

#### Web of Science

Web of Science has authoritative, multidisciplinary content that covers over 10,000 of the highest impact journals worldwide, including Open Access journals and over 110,000 conference proceedings. Topics in agriculture, biological sciences, engineering, medical and life sciences, physical and chemical sciences, anthropology, law, library sciences, architecture, dance, music, film, and theater with coverage available to 1900. It contains articles, proceedings, papers, reviews, editorials, news<sup>22</sup>.

Web of Science offers access to six comprehensive citation databases:

- Science Citation Index Expanded: Over 7,100 major journals across 150 disciplines, to 1900.
- Social Sciences Citation Index: Over 2,474 journals across 50 social science disciplines, as well as 3,500 of the world's leading scientific and technical journals, to 1956.
- Arts & Humanities Citation Index: Over 1,395 arts and humanities journals, as well as selected items from over 6,000 scientific and social sciences journals.
- Conference Proceedings Citation Index: Over 110,000 journals and book-based proceedings in two editions: Science and Social Science and Humanities, across 256 disciplines.
- Index Chemicus: Over 2.6 million compounds, to 1993.
- Current Chemical Reactions: Over one million reactions, to 1986, plus INPI archives from 1840 to 1985.

#### Search Customization Options:

- Topic
- Title
- Author
- Publication Name
- Year Published
- Address
- Time past since publication

<sup>&</sup>lt;sup>21</sup> Source: http://www.springer.com/e-content?SGWID=0-113-12-286799-0

<sup>&</sup>lt;sup>22</sup> Source: http://wos.isitrial.com/help/helpdefs.html

# **APPENDIX 2: HIT AGGREGATOR EXCEL VERSION**

This Appendix starts by introducing the capabilities of Excel in pulling data from the Web, and continues to explain how to create a hit aggregator application in Excel.

### Pulling Data into MS Excel using Web Queries:

MS Excel 2007 allows users to use a Web query to retrieve refreshable data that is stored on the Internet, such as a

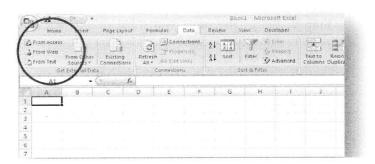



Figure A1.1: Excel allows users to pull data from Access, Web, Text & other sources.

single table, multiple tables, or all of the text on a Web page. For example, you can retrieve and update stock quotes from a public Web page or retrieve and update a table of sales information from a company Web page.

Web queries are especially useful for retrieving data that is in tables or preformatted areas. (Tables are defined with the HTML <TABLE> tag. Preformatted areas are often defined with the HTML <PRE> tag.) The retrieved data does not include pictures, such as .gif images, and does not include the contents of scripts.To create a Web query, the user needs access to the World Wide Web (WWW). Below is a step by step guide to import data into Excel from Yahoo! Finance (http://finance.yahoo.com).

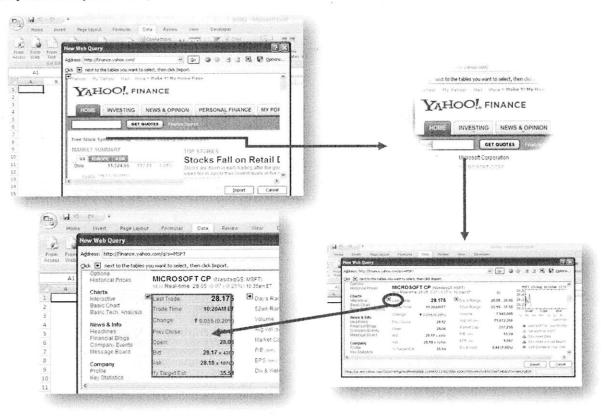



Figure A1.2: Importing data into Excel from Yahoo Finance.

**Step 1:** Go to Data > From Web > New Web Query... Enter the Web address for the page you want to use in the Address box (such as Yahoo! Finance - <u>http://finance.yahoo.com</u>), hit Enter or click Go to load the page (in the Yahoo example, enter a company name to get quotes) as in Figure A1.2.

**Step 2: Select the table you want to extract:** When the page appears in the New Web Query window, Excel adds yellow arrow boxes next to every table you can import. As you hover over each arrow box with the mouse, Excel draws a bold blue outline around the related table. Once you find the table you want to extract, click the arrow box (which then changes into a green checkmark). To deselect a table, just click it again.

**Step 3:** When you've finished selecting all the tables you want, click the Import button at the bottom of the New Web Query window. Select where you want to put the data. You can do this for any static web site with tables in it. Once you click OK, Excel begins to fetch the information it needs. During this time, you'll see an information message appear in your worksheet (...Getting data...) Excel then replaces this message with the downloaded data, as shown in Figure A1.3.

|                                           | (FB) *  | A ab - Carris     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------------------------------------------|---------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C Garagest.                               |         | Home Insert       | Page Layout Formulas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Home Insert Page Layout Formulas Data Rej |         | & Cut             | Calibn - 11 - A' A'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| A Comemon                                 | (Carte) | # Format Pairster | $ \mathbf{B} - \mathbf{z} - \underline{\mathbf{u}}  =  \mathbf{w} - \underline{\mathbf{v}}  -  \mathbf{w} - \underline{\mathbf{v}}  +  \mathbf{w} - \mathbf{w}  +  \mathbf{w} - \mathbf{w}$ |
|                                           | C0)     | stoard Tr         | Fost                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Arcars Web Yest Import Data               |         | F12 🕶             | S. Je                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Get El Where do you want to put the data? |         | 8                 | C D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| A1 © Existing worksheet:                  | 1       |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                           | 2       | Last Tra          | de: 28.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| O New worksheet                           | 4       | Trade Tin         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2 Properties OK Cancel                    | 5       | Chan              | ge: Up 0.03 (0.11%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                           | 6       | Prev Clo          | se: 28.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 4                                         | 7       | Op-               | en: 28.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                           | 8       | 8                 | lid: 29.14 x 8100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                           | 9       | A                 | sk: 28.15 x 14100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                           | 10      | 1y Target 8       | ist: 35.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                           | 1.2     |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

Figure A1.3: Retrieving data that is in tables or preformatted areas.

#### Working with XML Files

Similarly, a user can also make query against XML Files. Excel will create a schema based on the XML source data. As in the example in Figure A1.4, by clicking Data > From Web > New Web Query, and entering the address of the XML file on the left, the data can easily be imported to MS

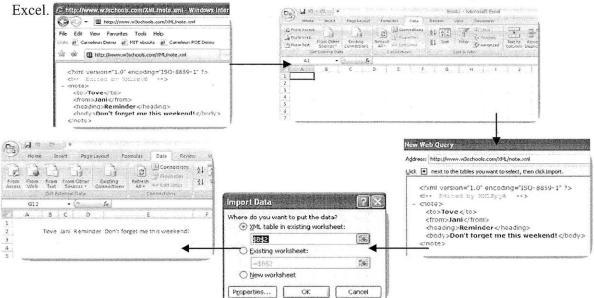
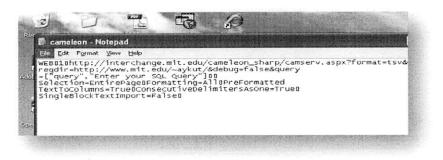




Figure A1.4: A user can also make queries against XML files.

#### Calling Cameleon from Excel:

First step calling Cameleon in Excel is to download or create the web query file for Cameleon (cameleon.iqy) (Figure A1.5). A web query file is a text file where each line of text is separated by a carriage return. Web query files can be created in any text editor, such as Notepad, and they are saved with the .iqy extension.



#### Figure A1.5: Cameleon.iqy

The rest will be explained by using the Excel Hit Aggregator, a tool that allows users to get the number of hits (the number of academic papers) for a specific search term from several academic search engines. Below is a screen shot of Excel Hit Aggregator v1 and its query sheet .

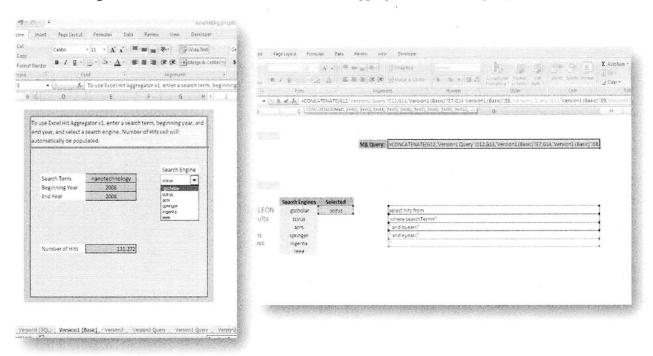



Figure A1.6: Excel Hit Aggregator v1 and its query sheet.

#### To create Excel Hit Aggregator v1:

Step 1: Creating a dynamic query: As in Figure A1.6, write the static portions of your SQL query in Excel cells (such as "select hits from", "where searchTerm=", etc). Then use the concatenate function in

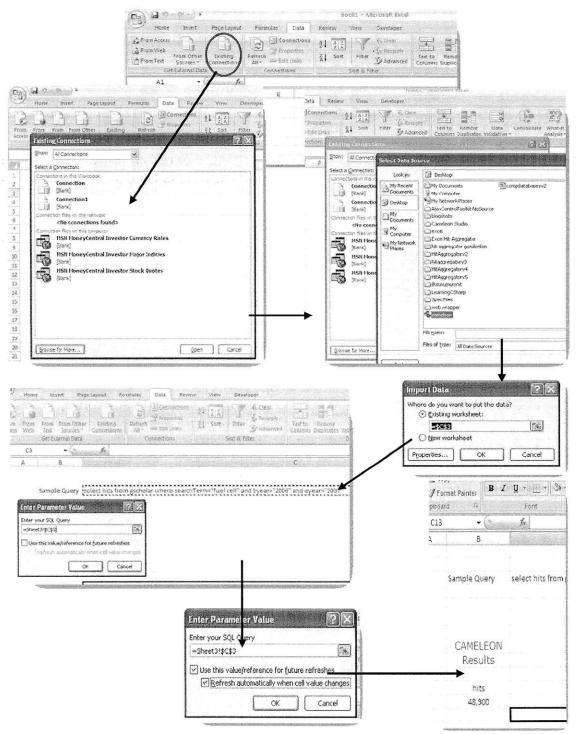



Figure A1.7: Calling Cameleon from Excel

Excel, to combine the static portions of the query with the parameters the user will enter (Figure A1.6, left).

**Step 2: Calling Cameleon:** Use Data > Existing Connections > Browse for More. Choose cameleon.iqy. Choose the cell you put your dynamic query in Step 1. Click "Use this value/reference for future refreshes" and "Refresh automatically when cell value changes". You will have Cameleon Results in Excel (Figure A1.7.)

We used Excel developer form controls to add more functionality to our tool. (Figure A1.8)

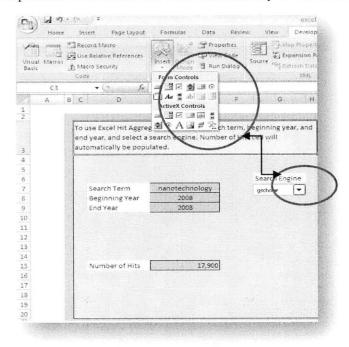




Figure A1.8: Using Form Controls in Excel Developer

We have also created Excel Hit Aggregator v2 which uses of the Excel graph capability (Figure A1. 9) and v0 where the end user enters the query (Figure A1.11). You can also see v2 query sheet in Figure A1.10.

|                                                              | ggregistor v2, enter a sear<br>sputated and the related g |                             | Aurricer of Hits cells                   | for each year between 2000 | I and 2009 well |
|--------------------------------------------------------------|-----------------------------------------------------------|-----------------------------|------------------------------------------|----------------------------|-----------------|
| Search Taxes                                                 | 52/8.00FR                                                 | Search Engine<br>Taschillar |                                          | Hits vs Time               |                 |
| Year 2000                                                    | Number of Nits<br>37.40                                   |                             | 9000<br>98000<br>98200<br>98200<br>98200 |                            |                 |
| 2001<br>2002<br>2003<br>2003<br>2004                         | 1915<br>9130<br>10500<br>11400                            |                             | 52052<br>52050<br>8000                   |                            |                 |
| 2003<br>2024<br>2026<br>2026<br>2026<br>2026<br>2026<br>2026 | 10600<br>14600<br>16000                                   |                             | 4000<br>4000<br>2000                     |                            |                 |

Figure A1.9: Excel Hit Aggregator v2

| Nome in             | nast Pag | rtayoet Fonsi | in Date Review View Developer                                                                                    |                 |                  |
|---------------------|----------|---------------|------------------------------------------------------------------------------------------------------------------|-----------------|------------------|
| S & Cat             | Calibra  | •  11 •       | A' x' =                                                                                                          | · > 1           | Σ 44             |
| It Format Pa        | B /      | U - U - O     | > △· ▲ · · · · · · · · · · · · · · · · ·                                                                         | t Delete Formet | 00               |
| (ipased)            | 6        | Fort          | The Alignment G Monmer To Spiles                                                                                 | Cetts           |                  |
| Pd.                 | • (1     | A 2000        |                                                                                                                  |                 | al design of the |
| ¢                   | 0        | ε             | B                                                                                                                | H               | 1 1              |
| CONT. CON           |          |               |                                                                                                                  |                 |                  |
| CAMELEON<br>Results |          |               |                                                                                                                  | Search Engine   |                  |
| 10000102            |          | SQL Query     | 2000 select hits from gscholar where searchTerms"solar energy" and byears"2000" and eyear="2000"                 | Escholar        | esche            |
| bits                |          | Lote electry  | solo score not and prover constant of the score go dynam zoou and system zoou                                    | scirus          | Escare           |
| 31,600              | (y 2000) |               |                                                                                                                  | acm             |                  |
|                     |          |               | 2001 select hits from escholar where searchTerm="solar energy" and byear="2001" and eyear="2001"                 | springer        |                  |
| CAMELEON            |          |               |                                                                                                                  | ingenta         | i - 1            |
| Results             |          |               |                                                                                                                  | ieee            |                  |
|                     |          |               | 2002 select hits from gscholar where searchTerm="solar energy" and byear="2002" and eyear="2002"                 |                 | -                |
| hits<br>36.200      | (y 2001) |               | and the second |                 | s =              |
| 30,200              | (A court |               | 2003 select hits from gscholar where searchTerm="solar energy" and byear="2003" and eyear="2005"                 |                 |                  |
| CAMELEON            |          |               | sees reservers considering and search statistical for the statistical statistics and statistics                  |                 | . 1              |
| Results             |          |               | the state of the second of the product of the second of the                                                      |                 | -                |
|                     |          |               | 2004 select hits from gscholar where searchTerm="solar energy" and byear="2004" and eyear="2004"                 |                 |                  |
| hits                |          |               |                                                                                                                  |                 | . 11             |
| 39,700              | (y 2502) |               | the second se  |                 |                  |
| CAMELEON            |          |               | 2005 select hits from gscholar where searchTerm="solar energy" and byear="2005" and eyear="2005"                 |                 | 1                |
| Results             |          |               | [1] S. M. M. Markell, M. M. M. Markell, Nucl. Phys. Rev. Lett. 19, 14                                            |                 | 8 I              |
| MEDGIES             |          |               | 2006 select hits from gscholar where searchTerms"solar energy" and byears"2006" and eyears"2006"                 |                 | 8 I I            |
| hits                |          |               | soon search und under Parianal America search letter 2019, suid stiel 2, aug shéarta 7000, suid shéarta 7000.    |                 |                  |
| 45,500              | (y 2003) |               | 이 같다. 그는 바람은 것 것 같아요. 정말을 했는 것 같아요. 이 것                                                                          |                 |                  |
|                     |          |               | 2007 salart bits from escholar where searchTerms" solar energy" and hypars" 2007" and avears" 2007"              |                 | 11 1             |



| 2g) 🖬 "  | 9-18                               |                                   |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | excelHitAggn                                           | gatorv2 - M | ecrosoft Exc | .el                       |                 |
|----------|------------------------------------|-----------------------------------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-------------|--------------|---------------------------|-----------------|
| Hom      | se Bysert                          | Page Layout                       | Eormulas De                             | ta Review V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | New Developer                                          |             |              |                           |                 |
| - × 0.   |                                    | Calibri                           | • 11 • A *                              | = = **-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Se Wrap Text                                           | General     | •            | H CA                      |                 |
| aster Fo | opy<br>orreat Painter              | в / Ц -                           | E • [ & • <u>A</u> • ]                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 📰 🔠 Merge & Center -                                   | s · %       | ·            | Conditional<br>Formatting |                 |
| Clipbos  | ad is                              | FQ.                               | nt 🧐                                    | Aliç                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ວາເອະດາໃ                                               | Numb        | er 5         | , on a starting           | Shier           |
| DS       | -                                  | °∽ ∫x                             |                                         | Charles and the second s |                                                        |             |              |                           |                 |
| A        | έ.                                 | -                                 |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                        |             |              |                           |                 |
| · · ·    | 5                                  | c                                 |                                         | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | D                                                      |             |              |                           |                 |
|          | Enter you                          | r sql query bel                   |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | D<br>i automatically be popu<br>Ferm="fuel cell" and b |             | and eyear:   | ="2007"                   |                 |
|          | Enter you<br>A sample              | r sal query bel<br>guery is: selt | ect hits from gscho                     | lar where search1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Term="fuel cell" and by                                | ear="2006"  |              |                           |                 |
|          | Enter you<br>A sample              | r sal query bel<br>guery is: selt | ect hits from gscho                     | lar where search1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                        | ear="2006"  |              |                           | <u>(="2008"</u> |
|          | Enter you<br>A sample<br>Enter the | r sal query bel<br>guery is: selt | ect hits from gscho<br>select hits from | lar where search1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Term="fuel cell" and by                                | ear="2006"  |              |                           | r="2008"        |

Figure A1.11: Excel Hit Aggregator v0

**Changing Registry Directory:** You can create dynamic queries by replacing the value of the parameter in the web query file with:["paramname","Enter the value for paramname:"]. In cameleon.iqy, instead of using (**regdir=**http://www.mit.edu/~aykut/), you can write ( regdir=["regdir", "Enter registry directory"]. When this modified .iqy file is used, Excel will ask the user to enter registry directory (Figure A1.12)

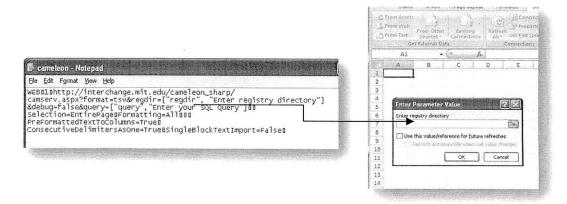



Figure A1.12: Changing Registry Directory

# **APPENDIX 3- CAMELEON SCHEDULER**

#### User management

The system currently has a very simple user management scheme that is specified inside the Web.config file as follows:

New user names can be added by simply adding new <user> tag inside the credentials.

#### Setting up the email server

The smtp server needed for sending emails is specified in the Web config file under application settings and currently set to outgoing.mit.edu.

```
<appSettings>
    <add key="UploadFolder" value="~/UploadedFiles/" />
    <add key="smtpServer" value="outgoing.mit.edu" />
    <add key="AllowedFileExtensions" value=".csv,.txt"/>
  </appSettings>
File List
<cameleonscheduler>
    Default.aspx
    Default.aspx.cs
    Login.aspx
    Tasks.aspx
    Tasks.aspx.cs
    Web.config
   <App_Code>
         Task.cs
   <App_Data>
         Taskaccessdb.mdb
   <ResultFiles>
   <UploadedFiles>
```

# **APPENDIX 4 – EGTA TOOL INSTALLATION INSTRUCTIONS**

#### Instructions for setting up the Desktop Application

- 1. Download the zip file LongTailDeskTopApp.zip
- 2. Unzip the files
- 3. Go to \LongTailApp\bin\Debug directory
- 4. Click on LongTailApp.exe (note that if file extensions are hidden in your folder you should see that this file has Application extension, and has 40KB size. Do not mix it with the similarly named XML configuration and Application Manifest files)
- 5. The default registry directory is \LongTailApp\bin\Debug\Cameleon#
- 6. The default Results directory where the result files are stored is LongTailApp\bin\Debug\Results

#### Instructions for setting up the Web Application

- 1. Download the zip file from LongTailWebProject.zip
- 2. Unzip the files
- 3. Upload all of the files and directory structure to your web server's appropriate directory

# **APPENDIX 5 - CODE FOR THE EARLY GROWTH TECHNOLOGY ANALYSIS TOOL**

# 1. Model Files

- CameleonAccessor.cs
- CollectionModel.cs
- Collector.cs
- CollectorResultSet.cs
- ErrorListener.cs
- HitCollectionModel.cs
- HitCountCollector.cs
- HitCountCollectorResultSet.cs
- MultiHitCountCollector.cs
- MultiTermCollector.cs
- ProgressListener.cs
- Query.cs
- RemoteCameleonAccessor.cs
- SortHitCountBox.cs
- SortTopTermMeasures.cs
- TermCollectionModel.cs
- TermCollector.cs
- TermCollectorResultSet.cs
- TopTermModel.cs

#### CameleonAccessor.cs

```
using System;
using System.Collections.Generic;
using System.Text;
using System.Collections;
using System.Collections.Specialized;
using System.Data;
using System. Threading;
    public class CameleonAccessor
    {
        Query query;
        List<ArrayList> results;
        bool useRemote = false;
        string defaultRemote = "http://interchange.mit.edu/cameleon_sharp/camserv.aspx";
        private void checkIfSpecialSourcesExist(Query q) {
            if (q.Source.ToLower().Contains("inspec")
||q.Source.ToLower().Contains("compendex"))
                useRemote = true;
        }
        public CameleonAccessor(Query q) {
            query = q;
            checkIfSpecialSourcesExist(q);
            results = new List<ArrayList>();
        }
        public void setDefaultRemote(string val){
            defaultRemote = val;
        }
        public void setUseRemote(bool val){
            useRemote = val;
        public List<ArrayList> getResults(){
        if (useRemote)
        £
```

```
RemoteCameleonAccessor remote = new RemoteCameleonAccessor(defaultRemote,
query.ToString(), query.Registry);
                return remote.getResults();
            3
            else
                convertTableResultstoList(getCameleonResults());
            return results;
        }
       private DataTable getCameleonResults() {
                Cameleon.QueryHandler q = new Cameleon.QueryHandler(query.Source,
query.Registry, false, query.Requested, query.Bound);
                try
                {
                    q.setDataTable2();
                    return q.getDataTable();
                3
                catch (Exception ex)
                {
                    //Forml.txtMessageBox.Text = ex.Message;
                }
                return new DataTable();
        }
       protected void convertTableResultstoList(DataTable dt) {
            for (int i = 0; i < dt.Rows.Count; i++) {
                ArrayList row = new ArrayList();
                for (int j=0; j < dt.Columns.Count;j++) {</pre>
                    row.Add((string)dt.Rows[i].ItemArray.GetValue(j));
                }
                results.Add(row);
            }
       }
    }
```

### CollectionModel.cs

```
using System;
using System.Collections.Generic;
using System.Ling;
using System.Text;
using System.Collections;
    abstract public class CellectionModel
                                           {
        protected List<string> generatedTerms = new List<string>();
        protected ArrayList sourceList = new ArrayList();
        protected string registry = "";
        protected string message = "";
        protected int maxTermListSize = 80;
        protected int maxThreads = 10;
        protected string seedTerm;
        protected int progress = 0;
        List<ProgressListener> progressListeners = new List<ProgressListener>();
        List<ErrorListener> errorListeners = new List<ErrorListener>();
        public int getUnitProgress() {
            return progress;
        3
        public void registerProgressListener(ProgressListener listener) {
            progressListeners.Add(listener);
        }
        public void removeProgressListener(ProgressListener listener) {
             progressListeners.Remove(listener);
        3
        public void updateProgress(int value) {
            progress = value;
            for (int i = 0; i < progressListeners.Count; i++)</pre>
                progressListeners[i].update(progress);
        }
```

```
public void registerErrorListener(ErrorListener listener) {
            errorListeners.Add(listener);
                                                }
        public void removeErrorListener(ErrorListener listener)
                                                                        {
            errorListeners.Remove(listener);
        3
        public void updateErrors(string message) {
           for (int i = 0; i < errorListeners.Count; i++)</pre>
                errorListeners[i].updateError(message);
        }
        public CollectionModel() { }
        public CollectionModel(string seedTerm, ArrayList sourceList, string registry,
int maxThreads, int maxTermListSize) {
            this.seedTerm = seedTerm;
            this.sourceList = sourceList;
            this.registry = registry;
            this.maxTermListSize = maxTermListSize;
            this.maxThreads = maxThreads;
        }
        public List<string> getGeneratedTerms() {
            return generatedTerms;
        }
        public void setGeneratedTerms(List<string> generatedTerms) {
            this.generatedTerms = generatedTerms;
        }
    }
```

#### Collector.cs

```
using System.Text;
using System.Collections;
using System.Collections.Specialized;
using System.Data;
using System. Threading;
    abstract class Collector
    {
        protected CameleonAccessor cameleon;
        protected string registry;
        protected ArrayList sourceList;
        protected abstract void collectfromaSingleSource(object source);
        protected abstract Query initializeQuery(string source);
        protected List<ArrayList> getCameleonResults(string source)
        {
            cameleon = new CameleonAccessor(initializeQuery(source));
                return cameleon.getResults();
        }
        public void collect()
            Thread[] th = new Thread[sourceList.Count];
            for (int i = 0; i < sourceList.Count; i++)</pre>
            {
                th[i] = new Thread(new
FarameterizedThreadStart(collectfromaSingleSource));
                    th[i].Start(sourceList[i]);
            for (int i = 0; i < th.Length; i++)
```

th[i].Join();

# CollectorResultSet.cs

```
using System;
using System.Collections.Generic;
```

using System.Text;

```
abstract class CollectorResultSet {
    protected string source;
    public string getSource() { return source; }
}
```

# ErrorListener.cs

```
using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
public interface ErrorListener{
    void updateError(string message);
}
```

# HitCollectionModel.cs

```
using System;
using System.Collections.Generic;
using System.Ling;
using System.Text;
using System.Collections;
using System.IO;
```

```
public class HitCollectionModel : CollectionModel
    {
        List<string[]> generatedHitCounts = new List<string[]>();
        List<string[]> hitCountInput = new List<string[]>();
        public HitCollectionModel(string seedTerm, ArrayList sourceList, string registry,
int maxThreads, int maxTermListSize, List<string[]> hitCountInput) :
            base(seedTerm, sourceList, registry, maxThreads, maxTermListSize)
        {
            this.hitCountInput = hitCountInput;
        }
        private List<string[]> getNextTermYearBatch(int index, int size)
            List<string[]> termYearBatch = new List<string[]>();
            for (int i = index; i < index + size; i++)</pre>
                termYearBatch.Add(hitCountInput[i]);
            return termYearBatch;
        }
        private void appendToGeneratedHitCounts(List<string[]> results)
        {
            try
            {
                for (int i = 0; i < results.Count; i++)</pre>
                {
                    string[] row = results[i];
                    if (row != null)
                    {
                        row[0] = row[0].Replace(", ", "");
                        row[0] = row[0].Replace("\"", "");
```

```
row[2] = row[2].Replace(",", "");
row[2] = row[2].Replace("\"", "");
                        generatedHitCounts.Add(row);
                    }
                }
            }
            catch (Exception e)
            {
                message=e.Message;
                updateErrors(message);
            }
        }
        public void collectResults()
        {
            generatedHitCounts.Clear();
            List<string[]> termYearBatch = new List<string[]>(); ;
            int i = 0;
            for (i = 0; i < hitCountInput.Count - maxThreads; i = i + maxThreads)
            {
                termYearBatch = getNextTermYearBatch(i, maxThreads);
                MultiHitCountCollector multiHitCountCollector = new
MultiHitCountCollector(termYearBatch, sourceList, registry);
                multiHitCountCollector.collect();
appendToGeneratedHitCounts(multiHitCountCollector.getHitCountsAsAnArray());
                updateProgress((int)(100*Math.Min(1,( (double)(i + maxThreads) /
(double)(hitCountInput.Count))));
            }
            if (i < hitCountInput.Count)
                termYearBatch = getNextTermYearBatch(i, hitCountInput.Count - i);
            MultiHitCountCollector multiHitCountCollector2 = new
MultiHitCountCollector(termYearBatch, sourceList, registry);
            multiHitCountCollector2.collect();
            appendToGeneratedHitCounts(multiHitCountCollector2.getHitCountsAsAnArray());
            updateProgress(100);
            sort();
        }
        private void sort(){
            ArrayList hitCounts = new ArrayList();
            for (int i = 0; i < generatedHitCounts.Count; i++)</pre>
            {
                 string[] r = generatedHitCounts[i];
                hitCounts.Add(r);
            }
            hitCounts.Sort(new SortHitCountBox());
            generatedHitCounts = new List<string[]>();
            for (int i = 0; i < hitCounts.Count; i++)</pre>
             {
                 string[] r = (string[])hitCounts[i];
                 generatedHitCounts.Add(r);
             }
        }
        public List<string[]> getGeneratedHitCounts()
        {
            return generatedHitCounts;
        }
        public void setHitCountInput(List<string[]> hitCountInput)
        {
             this.hitCountInput = hitCountInput;
        }
```

}

### HitCountCollector.cs

```
using System;
using System.Collections.Generic;
using System.Text;
using System.Collections;
using System.Collections.Specialized;
using System.Data;
    class HitCountCollector : Collector
    {
        protected string term;
        private List<HitCountCollectorResultSet> results;
        private int year;
        public HitCountCollector(string term, ArrayList sourceList, string registry, int
year)
        £
            this.term = term;
            this.sourceList = sourceList;
            this.registry = registry;
            this.year = year;
            results = new List<HitCountCollectorResultSet>();
        }
        protected override Query initializeQuery(string source)
            ArrayList requested = new ArrayList();
           NameValueCollection bound = new NameValueCollection();
            requested.Add("searchTerm");
            requested.Add("bYear");
            requested.Add("hits");
            bound.Add("searchTerm", term);
            bound.Add("byear", year.ToString());
            bound.Add("eyear", year.ToString());
            return new Query(registry, source, requested, bound);
        }
       protected HitCountCollectorResultSet
convertArrayListResultstoHitCountCollectorResultSet(List<ArrayList> cameleonResults,
string source)
        {
           HitCountCollectorResultSet list = new HitCountCollectorResultSet(source);
            if (cameleonResults.Count>0)
                list.SetResultSet((string)cameleonResults[0][0],
(string)cameleonResults[0][2], (string)cameleonResults[0][1]);
           return list;
        }
        protected override void collectfromaSingleSource(object source)
        {
               List<ArrayList> cameleonResults = getCameleonResults((string)source);
results.Add(convertArrayListResultstoHitCountCollectorResultSet(cameleonResults,
(string)source));
        public List<HitCountCollectorResultSet> getResults() { return results; }
    }
```

# HitCountCollectorResultSet.cs

```
using System;
using System.Collections.Generic;
using System.Text;
   class HitCountCollectorResultSet : CollectorResultSet
    {
        string[] termHitCounts;
        public HitCountCollectorResultSet(string source)
        {
            this.source = source;
            termHitCounts = new string[3];
        }
        public string[] getTermHitCounts() { return termHitCounts; }
        public void SetResultSet(string term, string hitCount, string year)
        {
            termHitCounts[0] = term;
            termHitCounts[1] = hitCount;
            termHitCounts[2] = year;
```

# MultiHitCountCollector.cs

```
using System;
using System.Collections.Generic;
using System.Text;
using System.Collections;
using System.Collections.Specialized;
using System.Data;
using System. Threading;
    class MultiHitCountCollector
    {
        List<string[]> termYearList;
        ArrayList sourceList;
        string registry;
        List<HitCountCollectorResultSet> hitCounts;
       public MultiHitCountCollector(List<string[]> termYearList, ArrayList sourceList,
string registry)
        {
            this.termYearList = termYearList;
            this.sourceList = sourceList;
            this.registry = registry;
        }
        private void collectHitCountsFromMultipleSources(object termYear)
            HitCountCollector hitCountCollector = new
HitCountCollector(((string[])termYear)[0], sourceList,
registry, int.Parse(((string[])termYear)[1]));
            hitCountCollector.collect();
            lock (this)
            {
                hitCounts.AddRange(hitCountCollector.getResults());
            }
        }
        public void collect()
        {
            hitCounts = new List<HitCountCollectorResultSet>();
            Thread[] th = new Thread[termYearList.Count];
            for (int i = 0; i < termYearList.Count; i++)</pre>
```

```
{
                th[i] = new Thread(new
ParameterizedThreadStart(collectHitCountsFromMultipleSources));
                th[i].Start(termYearList[i]);
            }
            for (int i = 0; i < th.Length; i++)
                th[i].Join();
        }
        public List<HitCountCollectorResultSet> getHitCounts()
        {
            return hitCounts;
        }
        public List<string[]> getHitCountsAsAnArray()
        {
            List<string[]> terms = new List<string[]>();
            for (int i = 0; i < hitCounts.Count; i++)</pre>
            {
                HitCountCollectorResultSet t = hitCounts[i];
                terms.Add(t.getTermHitCounts());
            }
            return terms;
        }
    }
```

### MultiTermCollector.cs

```
using System;
using System.Collections.Generic;
using System.Text;
using System.Collections;
using System.Collections.Specialized;
using System.Data;
using System. Threading;
    class MultiTermCollector
    {
        ArrayList seedTermList;
        ArrayList sourceList;
        string registry;
        List<TermCollectorResultSet> relatedTerms;
        public string reverseTerm;
        public List<string> termsContainingReverseTerm = new List<string>();
       public MultiTermCollector(ArrayList seedTermList, ArrayList sourceList, string
registry)
        {
            this.seedTermList = seedTermList;
            this.sourceList = sourceList;
            this.registry = registry;
        }
        private bool contains(List<string> results, string term)
        ſ
            for (int i = 0; i < results.Count; i++)</pre>
            {
                string r = results[i];
                if (r.ToLower().Contains(term)) return true;
            3
            return false;
        }
       private void collectRelatedTermsFromMultipleSources(object term)
        {
            TermCollector termCollector = new TermCollector((string)term, sourceList,
registry);
            termCollector.collect();
```

108

```
List<string> results = termCollector.getResultsAsAList();
            if (reverseTerm!=null)
            if (contains(results,reverseTerm))
termsContainingReverseTerm.Add((string)term);
            lock (this)
            {
                relatedTerms.AddRange(termCollector.getResults());
            }
        }
        public void collect()
        {
            relatedTerms = new List<TermCollectorResultSet>();
            Thread[] th = new Thread[seedTermList.Count];
            for (int i=0; i < seedTermList.Count; i++) {</pre>
                th[i] = new Thread(new
ParameterizedThreadStart(collectRelatedTermsFromMultipleSources));
                th[i].Start(seedTermList[i]);
            }
            for (int i = 0; i < th.Length; i++)
                th[i].Join();
        }
        public List<TermCollectorResultSet> getRelatedTerms()
            return relatedTerms;
        }
        public List<string> getRelatedTermsAsAnArray()
        {
            List<string> terms = new List<string>();
            for (int i = 0; i < relatedTerms.Count; i++)</pre>
                TermCollectorResultSet t = relatedTerms[i];
                terms.AddRange(t.getTerms());
            }
            return terms;
        }
```

}

## ProgressListener.cs

```
using System;
using System.Collections.Generic;
using System.Ling;
using System.Text;
    public interface ProgressListener
    {
        void update(int value);
    }
```

# Query.cs

```
using System;
using System.Collections.Generic;
using System.Text;
using System.Collections;
using System.Collections.Specialized;
```

```
public class Query
    {
        public string Registry;
        public string Source;
        public ArrayList Requested;
        public NameValueCollection Bound;
        public Query(string registry, string source, ArrayList requested,
NameValueCollection bound)
        {
            Registry = registry;
            Source = source;
            Requested = requested;
            Bound = bound;
        }
        public override string ToString()
        {
            string requested = "";
            for (int i = 0; i < Requested.Count; i++)</pre>
            {
                if (i!=0)
                requested =", "+ Requested[i].ToString();
                else
                    requested = Requested[i].ToString();
            }
            string bound = "";
            for (int i = 0; i < Bound.Count; i++)</pre>
            {
                if (i != 0)
                    bound = " AND " + Bound.GetKey(i) + "=\"" + Bound.GetValues(i)[0] +
"\"";
                else
                    bound = Bound.GetKey(i) + "=\"" + Bound.GetValues(i)[0]+"\"";
            }
            return "select " + requested + " from " + Source + " where " + bound;
        }
    3
RemoteCameleonAccessor.cs
using System;
using System.Collections.Generic;
using System.Ling;
using System.Web;
using System.Net;
using System.Text;
using System.Xml.XPath;
using System. IO;
using System.Collections;
/// <summary>
/// Summary description for RemoteCameleonAccessor
/// </summary>
public class RemoteCameleonAccessor
{
    string remoteServer;
       string query;
    string registry;
   public RemoteCameleonAccessor(string remoteServer, string query, string registry)
    {
        this.remoteServer = remoteServer;
        this.query = query;
        if (!registry.ToLower().StartsWith("http"))
            registry = "http://www.mit.edu/~ayshe/";
        this.registry = registry;
```

```
}
```

```
110
```

```
public List<ArrayList> getResults()
{
    //This is good for single return queries
    List<ArrayList> results = new List<ArrayList>();
   WebClient wc = new WebClient();
    byte[] bPageData;
    string url = remoteServer + "?query=" + query + "&format=xml&regdir=" + registry;
    bPageData = wc.DownloadData(url);
    UTF8Encoding utf8 = new UTF8Encoding();
    string pageData = utf8.GetString(bPageData);
    XPathDocument doc = new XPathDocument (new StringReader (pageData));
    XPathNavigator nav;
    nav = doc.CreateNavigator();
    XPathExpression expr;
    expr = nav.Compile("/DOCUMENT/ELEMENT/*");
    XPathNodeIterator iterator = nav.Select(expr);
    while (iterator.MoveNext())
    {
        ArrayList row = new ArrayList();
        row.Add(iterator.Current.Value);
        results.Add(row);
    }
    return results;
```

3

## SortHitCountBox.cs

```
using System;
using System.Collections.Generic;
```

using System.Text;

```
/// Summary description for CMySort
public class SortHitCountBox : System.Collections.IComparer
{
   public SortHitCountBox()
    {
    }
   public int Compare(object x, object y)
        string[] d1 = (string[])x;
        string[] d2 = (string[])y;
        int comp = string.Compare(d1[0], d2[0], true);
        if (comp == 0)
        {
            if (double.Parse(d1[2]) < double.Parse(d2[2])) return -1;
            else if (double.Parse(d1[2]) == double.Parse(d2[2])) return 0;
            else return 1;
        }
        else return comp;
    }
```

}

## SortTopTermMeasures.cs

#### using System; using System.Collections.Generic;

```
/// <summary>
/// Summary description for CMySort
```

```
// </summary>
```

```
public class SortTopTernMeasures : System.Collections.IComparer
    public SortTopTermMeasures()
    {
    }
    public int Compare(object x, object y)
    {
        string[] d1 = (string[])x;
        string[] d2 = (string[])y;
        if (double.Parse(d1[1]) < double.Parse(d2[1])) return 1;</pre>
        else if (double.Parse(d1[1]) == double.Parse(d2[1])) return 0;
        else return -1;
    3
TermCollectionModel.cs
using System;
using System.Collections.Generic;
using System.Ling;
using System.Text;
using System.Collections;
using System.IO;
    public class TermCollectionModel : CollectionModel
        List<int> levels = new List<int>();
        const int maxNumberOfEmptyQueryRepeatAttempts = 4;
        int numberOfEmptyQueryRepeatAttempts = 0;
        List<string> termsToExpand = new List<string>();
        List<string> refinedList = new List<string>();
        public TermCollectionModel(string seedTerm, ArrayList sourceList, string
registry, int maxThreads, int maxTermListSize):
            base( seedTerm, sourceList, registry, maxThreads, maxTermListSize)
        {
            levels.Add(20);
            levels.Add(10);
        }
        public void initialize()
            termsToExpand.Clear();
            generatedTerms.Clear();
            generatedTerms.Add(seedTerm);
            numberOfEmptyQueryRepeatAttempts = 0;
        }
        private ArrayList getNextTermList(int startIndex, int size)
        {
            ArrayList termList = new ArrayList();
            for (int i = 0; i < size; i++)
                termList.Add(generatedTerms[startIndex + i]);
            return termList;
        }
        public void refine()
        {
            generatedTerms.RemoveAt(0);
            for (int startIndex = 0; startIndex < generatedTerms.Count; startIndex +=</pre>
maxThreads)
            {
                int n = Math.Min(maxThreads, generatedTerms.Count - startIndex);
                MultiTermCollector multiTermCollector = new
MultiTermCollector(getNextTermList(startIndex,n), sourceList, registry);
                multiTermCollector.reverseTerm = this.seedTerm;
```

```
multiTermCollector.collect();
```

```
updateProgress( (int) (100*((double) (startIndex + maxThreads) /
(double)(generatedTerms.Count))));
                for (int i = 0; i < multiTermCollector.termsContainingReverseTerm.Count;</pre>
i++)
                {
                    refinedList.Add(multiTermCollector.termsContainingReverseTerm[i]);
                }
            }
           generatedTerms = new List<string>();
            generatedTerms.Add(seedTerm);
            generatedTerms.AddRange(refinedList);
        }
       public void collectTerms()
        {
            initialize();
            addInitialResultsToGeneratedTerms();
            updateProgress((int)(100*Math.Min(1, ((double)generatedTerms.Count /(double)
maxTermListSize))));
            addRemainingResultsToGeneratedTerms();
        }
        private void addInitialResultsToGeneratedTerms()
        {
            TermCollector termCollector = new TermCollector(seedTerm, sourceList,
registry);
            termCollector.collect();
            generatedTerms.AddRange(termCollector.getResultsAsAList());
            termsToExpand.AddRange(getPermittedByLevel(termCollector.getResultsAsAList(),
0));
        }
        private bool isNotDone(int index)
        {
            if (index < (termsToExpand.Count - maxThreads) && generatedTerms.Count <
maxTermListSize) return true;
            else return false;
        }
        private ArrayList getNextTermListToExpand(int startIndex, int size)
            ArrayList termList = new ArrayList();
            for (int i = 0; i < size && i < termsToExpand.Count - startIndex; i++)
                termList.Add(termsToExpand[startIndex + i]);
            return termList;
        }
        private List<string> getNextResultsFromStartIndex(int startIndex)
        {
            MultiTermCollector multiTermCollector = new
MultiTermCollector(getNextTermListToExpand(startIndex, maxThreads), sourceList,
registry);
            multiTermCollector.collect();
            return multiTermCollector.getRelatedTermsAsAnArray();
        }
        private void appendResults(List<string> nextResults)
            int nadd = 0;
            for (int i = 0; i < nextResults.Count; i++)</pre>
                if (!generatedTerms.Contains(nextResults[i]))
                 {
                     generatedTerms.Add(nextResults[i]);
                     if (termsToExpand.Count < levels[0] * levels[1])
                         if (nadd < levels[1] * maxThreads)
```

```
termsToExpand.Add(nextResults[i]);
                    nadd++;
                }
        }
        private void addRemainingResultsToGeneratedTerms()
        {
            int index = 0;
            while (isNotDone(index))
             {
                List<string> nextResults = getNextResultsFromStartIndex(index);
                if (nextResults.Count < 1 && numberOfEmptyQueryRepeatAttempts <=
maxNumberOfEmptyQueryRepeatAttempts)
                    numberOfEmptyQueryRepeatAttempts++;
                else
                {
                    index += maxThreads;
                    appendResults (nextResults);
                    numberOfEmptyQueryRepeatAttempts = 0;
                3
                updateProgress((int)(100*Math.Min(1,((double)generatedTerms.Count /
(double)maxTermListSize))));
            }
        }
        private List<string> getPermittedByLevel(List<string> list, int level)
        {
            List<string> newList = new List<string>();
            try
            {
                for (int i = 0; i < levels[level]; i++)</pre>
                    newList.Add(list[i]);
            }
            catch (Exception ex)
            {
                updateErrors("No rows were returned from Cameleon");
            }
            return newList;
        }
    }
TermCollector.cs
using System;
using System.Collections.Generic;
using System.Text;
using System.Collections;
using System.Collections.Specialized;
using System.Data;
    class TermCollector : Collector
    {
        protected string seedTerm;
        private List<TermCollectorResultSet> results;
        protected List<string> flattenedResults;
        public TermCollector(string seedTerm, ArrayList sourceList, string registry)
        {
            this.seedTerm = seedTerm;
            this.sourceList = sourceList;
            this.registry = registry;
            results = new List<TermCollectorResultSet>();
            flattenedResults = new List<string>();
```

```
}
       protected override Query initializeQuery(string source)
        {
            ArrayList requested = new ArrayList();
            NameValueCollection bound = new NameValueCollection();
            requested.Add("relatedTerms");
            bound.Add("searchTerm", seedTerm);
           return new Query(registry, source, requested, bound);
        }
        protected TermCollectorResultSet
convertArrayListResultstoTermCollectorResultSet(List<ArrayList> cameleonResults, string
source)
        {
            TermCollectorResultSet list = new TermCollectorResultSet(source, seedTerm);
            for (int i = 0; i <cameleonResults.Count; i++)</pre>
                list.Add((string)(cameleonResults[i][0]));
            return list;
        }
        private void setflattenedResults(List<ArrayList> cameleonResults)
        {
            for (int i = 0; i < cameleonResults.Count; i++)</pre>
                flattenedResults.Add((string)cameleonResults[i][0]);
        }
        protected override void collectfromaSingleSource(object source)
        {
            List<ArrayList> cameleonResults;
            cameleonResults = getCameleonResults((string)source);
            setflattenedResults(cameleonResults);
            results.Add(convertArrayListResultstoTermCollectorResultSet(cameleonResults,
(string) source));
        }
        public List<string> getResultsAsAList()
            return flattenedResults;
        }
        public List<TermCollectorResultSet> getResults() { return results; }
    }
```

## TermCollectorResultSet.cs

```
using System;
using System.Collections.Generic;
using System.Text;
using System.Collections;
class TermCollectorResultSet : CollectorResultSet
{
   List<string> terms;
   string seedTerm;
   public TermCollectorResultSet(string source, string seedTerm)
   {
      terms = new List<string>();
      this.source = source;
      this.seedTerm = seedTerm;
   }
   public List<string> getTerms() { return terms; }
```

public string getSeedTerm() { return seedTerm; }

```
public void Add(string term) { terms.Add(term); }
    }
TopTermModel.cs
using System;
using System.Collections.Generic;
using System.Ling;
using System.Text;
using System.Collections;
    public class TopTermModel: CollectionModel
    {
        private ArrayList hitCounts;
        private int bYear;
        private int eYear;
        public ArrayList logs;
        public TopTermModel(List<string[]> hitCountList, int bYear, int eYear)
        {
            hitCounts = new ArrayList();
            for (int i=0; i<hitCountList.Count;i++)</pre>
            {
                 string[] r = hitCountList[i];
                 hitCounts.Add(r);
            hitCounts.Sort(new SortHitCountBox());
            this.bYear = bYear;
            this.eYear = eYear;
        }
        public ArrayList getRanks()
        {
            return logs;
        }
        public void calculateRanksUsingLogRatio()
        {
            logs = new ArrayList();
            int dif = (eYear-bYear);
            for (int i=0; i <hitCounts.Count-dif;i+=(dif+1))</pre>
            {
               string[] r1=(string[])hitCounts[i];
               string[] r2=(string[])hitCounts[i+dif];
                //put error handling
               double hitsB = (double)(int.Parse(r1[1].Replace(",","")));
               if (hitsB == 0) hitsB = 0.00001;
               double hitsE = (double)(int.Parse(r2[1].Replace(",", "")));
               string[] logrank = { r1[0], (Math.Log(hitsE) / Math.Log(hitsB)).ToString()
};
               logs.Add(logrank);
            3
            logs.Sort(new SortTopTermMeasures());
        }
       public void calculateRanksUsingPercentage()
        {
            logs = new ArrayList();
            int dif = (eYear - bYear);
            for (int i = 0; i < hitCounts.Count - dif; i+=(dif+1))</pre>
            {
                string[] r1 = (string[])hitCounts[i];
                string[] r2 = (string[])hitCounts[i + dif];
```

```
double hitsB = (double)(int.Parse(r1[1].Replace(",", "")));
if (hitsB == 0) hitsB = 0.00001;
double hitsE = (double)(int.Parse(r2[1].Replace(",", "")));
string[] logrank = { r1[0], ((hitsE - hitsB)/hitsB).ToString() };
logs.Add(logrank);
}
logs.Sort(new SortTopTermMeasures());
```

## DeskTopApplication Controller LongTailController.cs

}

```
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
namespace LongTailApp.Controller
    class LongTailController : ProgressListener
    {
        protected Form1 view;
        TopTermModel topTermModel;
        HitCollectionModel hitCollectionModel;
        TermCollectionModel termModel;
        public LongTailController(Form1 appForm)
            view = appForm;
        }
        public void update(int value)
            view.updateProgressBar(value);
        }
        public void getTermsClickedEvent()
        {
            view.resetProgressBar();
            view.clearDisplayBox("term");
            view.clearElapsedTimeLabel("term");
            view.disableButtonsNextToTerm();
            termModel =
                new TermCollectionModel(view.getSeedTerm(), view.getTermSourceList(),
view.getRegistry(), view.getMaxThreads(), view.getMaxTermListSize());
            termModel.registerProgressListener(this);
            System.DateTime startTime = System.DateTime.Now;
            view.setTermModel(termModel);
            termModel.collectTerms();
            view.showElapsedTimeinaLabel("term", (System.DateTime.Now -
startTime).TotalSeconds.ToString());
            view.updateTermListBox();
            view.updateMessage("Total of " +
Math.Min(termModel.getGeneratedTerms().Count, view.getMaxTermListSize()) + " terms");
            if (termModel.getGeneratedTerms().Count > 0)
            view.enableButtonsNextToTerm();
            if (view.isSaveChecked())
                view.writeTermListResults();
            view.updateProgressBar(100);
        }
        public void getHitCountsClickedEvent()
        {
            view.resetProgressBar();
            view.clearDisplayBox("hit");
            view.clearElapsedTimeLabel("hit");
            view.disableButtonsNextToHit();
```

```
hitCollectionModel =
                new HitCollectionModel(view.getSeedTerm(), view.getHitSourceList(),
view.getRegistry(), view.getMaxThreads(), view.getMaxTermListSize(),
view.getHitCountInput());
            hitCollectionModel.registerProgressListener(this);
            System.DateTime startTime = System.DateTime.Now;
            view.setHitModel(hitCollectionModel);
            hitCollectionModel.collectResults();
            view.showElapsedTimeinaLabel("hit", (System.DateTime.Now -
startTime).TotalSeconds.ToString());
            view.updateHitCountListBox();
            if (hitCollectionModel.getGeneratedHitCounts().Count > 1)
                view.enableButtonsNextToHit();
            if (view.isSaveChecked())
                view.writeHitCountResults();
            view.updateProgressBar(100);
        }
        public void getTopTermsClickedEvent()
        {
            view.resetProgressBar();
            view.clearDisplayBox("topterm");
            view.clearElapsedTimeLabel("topterm");
            topTermModel = new TopTermModel(view.getHitCountList(), view.getBeginYear(),
view.getEndYear());
            view.setTopTermModel(topTermModel);
            System.DateTime startTime = System.DateTime.Now;
            if (view.getTopTermMethodName().Equals("Early Growth"))
                topTermModel.calculateRanksUsingLogRatio();
            else
                topTermModel.calculateRanksUsingPercentage();
            view.showElapsedTimeinaLabel("topterm", (System.DateTime.Now -
startTime).TotalSeconds.ToString());
            view.updateTopTermListBox();
            if (view.isSaveChecked())
                view.writeTopTermResults();
            view.updateProgressBar(100);
        }
        public void getRefineTermsClickedEvent()
            view.resetProgressBar();
            view.clearElapsedTimeLabel("term");
            view.disableButtonsNextToTerm();
            System.DateTime startTime = System.DateTime.Now;
            termModel =
                new TermCollectionModel(view.getSeedTerm(), view.getTermSourceList(),
view.getRegistry(), view.getMaxThreads(), view.getMaxTermListSize());
            termModel.setGeneratedTerms(view.getGeneratedTerms());
            termModel.registerProgressListener(this);
            view.clearDisplayBox("term");
            view.setTermModel(termModel);
            termModel.refine();
            view.showElapsedTimeinaLabel("term", (System.DateTime.Now -
startTime).TotalSeconds.ToString());
            view.updateTermListBox();
            if (termModel.getGeneratedTerms().Count > 0)
                view.enableButtonsNextToTerm();
            if (view.isSaveChecked())
                view.writeTermListResults();
            view.updateProgressBar(100);
        }
        public void updateMessage(string message)
            view.updateMessage(message);
        3
```

```
DeskTopApplication View
Form1.cs
```

using System.ComponentModel;

using LongTailApp.Controller;

using System.IO;

}

}

{

```
using System.Data;
using System.Drawing;
using System.Text;
using System.Windows.Forms;
using System.Collections;
using System.Collections.Specialized;
```

```
namespace LongTailApp
    public partial class Form1 : Form
        string specFileListFileName = "specFiles.txt";
        string specHitFileListFileName = "specFilesHit.txt";
        LongTailController controller;
        TermCollectionModel termModel;
        private HitCollectionModel hitModel;
        private TopTermModel topTermModel;
        string executablePath = Application.StartupPath;
        string pathSeparator = ""+Path.DirectorySeparatorChar;
        public Form1()
        {
            InitializeComponent();
            controller = new LongTailController(this);
        }
        public void setTermModel(TermCollectionModel model){
           termModel = model;
        3
        public void setTopTermModel(TopTermModel model)
        {
            topTermModel = model;
        }
        public void setHitModel(HitCollectionModel model)
        {
            hitModel = model;
        }
        private string getHitCountFileLocation()
        {
            string fileLocation = txtResultFileLocation.Text;
            if (!fileLocation.EndsWith("\\"))
                fileLocation += "\\";
            return fileLocation + "hitcounts" + DateTime.Now.ToFileTimeUtc() + ".csv";
        }
        public List<string[]> getHitCountList()
        {
            List<string[]> hitCountList = new List<string[]>();
            for (int i = 0; i < lstBoxHitCounts.Items.Count; i++)</pre>
            {
                string[] row = lstBoxHitCounts.Items[i].ToString().Split(',');
                hitCountList.Add(row);
            3
            return hitCountList;
        }
        public int getBeginYear()
```

119

```
{
    int bYear = 0;
    try
    {
        bYear = int.Parse(txtBeginYear.Text);
    }
    catch (Exception ex)
    {
        txtMessageBox.Text = ex.Message;
    }
    return byear:
}
public int getEndYear()
{
    int eYear = 0;
    try
    {
        eYear = int.Parse(txtEndYear.Text);
    }
    catch (Exception ex)
    {
        txtMessageBox.Text = ex.Message;
    }
    return eYear;
}
public string getTopTermMethodName()
{
    return ddlistAnalysisMethod.SelectedItem.ToString();
3
public void writeHitCountResults()
{
    List<string[]> generatedHitCounts = hitModel.getGeneratedHitCounts();
    if (!chkBoxSave.Checked) return;
    string hitCountListFile = getHitCountFileLocation();
    try
    {
        StreamWriter sw = new StreamWriter(hitCountListFile, false);
        for (int i = 0; i < generatedHitCounts.Count; i++)</pre>
        {
            string[] row = generatedHitCounts[i];
            sw.WriteLine(row[0] + "," + row[1] + "," + row[2]);
        }
        sw.Close();
    }
    catch (Exception ex)
    {
        txtMessageBox.Text += ex.Message+"\n";
    }
}
public void updateTopTermListBox()
{
    ArrayList logs = topTermModel.getRanks();
    for (int i = 0; i < logs.Count; i++)</pre>
    {
        string[] r = (string[])logs[i];
        lstTopTerms.Items.Add(r[0] + "," + r[1]);
    }
}
public void updateTermListBox()
{
    int max = getMaxTermListSize();
    List<string> generatedTerms = termModel.getGeneratedTerms();
    for (int i = 0; i < generatedTerms.Count && i < max ; i++)</pre>
        lstBoxTermList.Items.Add(generatedTerms[i]);
}
public void enableButtonsNextToTerm()
{
```

```
btnGetHits.Enabled = true;
           btnRefine.Enabled = true;
       }
       public void disableButtonsNextToHit()
        {
           btnGetTop.Enabled = false;
       }
       public void enableButtonsNextToHit()
        {
           btnGetTop.Enabled = true;
       }
       public int getMaxThreads()
        {
           int maxThreads=10;
           try
            {
                maxThreads = int.Parse(txtPOETermNumber.Text);
            }
            catch (Exception ex)
            {
                txtMessageBox.Text = ex.Message;
            }
            return maxThreads;
        }
        public int getMaxTermListSize()
        {
            int maxTermListSize = 80;
            try
            {
                maxTermListSize = int.Parse(txtTermListSize.Text);
            }
            catch (Exception ex)
            {
                txtMessageBox.Text = ex.Message;
            }
            return maxTermListSize;
        }
        private List<int> getYears()
                  .
        {
            List<int> years = new List<int>();
            int bYear = 0;
            int eYear = 0;
            years = new List<int>();
            try
            {
                bYear = int.Parse(txtBeginYear.Text);
                eYear = int.Parse(txtEndYear.Text);
                if ((eYear - bYear) < 0)
                    throw new Exception ("eYear cannot be less than bYear");
                else if ((eYear - bYear) > 10)
                    throw new Exception ("eYear and bYear cannot be separated by more than
10 years for now");
            }
            catch (Exception ex)
            {
                txtMessageBox.Text= ex.Message;
            }
            for (int i = bYear; i < eYear + 1; i++)</pre>
            {
                years.Add(i);
            }
            return years;
```

```
}
public List<string[]> getHitCountInput()
{
    List<int> years = getYears();
    List<string[]> hitCountInput = new List<string[]>();
    List<string> generatedTerms = getGeneratedTerms();
    for (int i = 0; i < generatedTerms.Count; i++)</pre>
    {
        for (int j = 0; j < years.Count; j++)</pre>
        {
            string[] row = new string[2];
            if (chkBoxAddSeedTerm.Checked)
            £
                if (!generatedTerms[i].ToLower().Contains(txtSeedTerm.Text))
                    row[0] = txtSeedTerm.Text + " " + generatedTerms[i];
                else
                    row[0] = generatedTerms[i];
            }
            else
                row[0] = generatedTerms[i];
            row[1] = years[j].ToString();
            hitCountInput.Add(row);
        }
    }
    return hitCountInput;
}
public void updateMessage(string message)
{
    txtMessageBox.Text = message;
}
public void resetProgressBar()
{
    updateProgressBar(0);
}
public void updateProgressBar(int value)
{
    if (value > 100) value = 100;
    progressBar1.Value=value;
    progressBar1.Update();
    //progressBar1.Increment(value - progressBar1.Value);
}
private string getTopTermFileLocation()
{
    string fileLocation = txtResultFileLocation.Text;
    if (!fileLocation.EndsWith("\\"))
        fileLocation += "\\";
    return fileLocation + "toptermlist" + DateTime.Now.ToFileTimeUtc() + ".csv";
}
public void disableButtonsNextToTerm()
{
    btnGetHits.Enabled = false;
    btnRefine.Enabled = false;
}
public string getRegistry()
{
```

```
string registry = txtRegistry.Text;
    if (!registry.ToLower().StartsWith("http://"))
        registry = executablePath + pathSeparator + registry;
    if (!registry.EndsWith(" " + pathSeparator)) registry += pathSeparator;
    return registry;
}
public string getSeedTerm()
{
    return txtSeedTerm.Text;
3
public ArrayList getHitSourceList()
{
    ArrayList sourceList = new ArrayList();
    sourceList.Add(ddlistHitCountSource.SelectedItem.ToString());
    return sourceList;
}
public ArrayList getTermSourceList()
{
    ArrayList sourceList = new ArrayList();
    for (int i = 0; i < chkboxlistTermGenerationSources.CheckedItems.Count; i++)</pre>
        sourceList.Add(chkboxlistTermGenerationSources.CheckedItems[i]);
    return sourceList;
}
private string getTermFileLocation()
{
    string fileLocation = txtResultFileLocation.Text;
    if (!fileLocation.EndsWith("\\"))
         fileLocation += "\\";
    return fileLocation + "termlist" + DateTime.Now.ToFileTimeUtc() + ".csv";
}
public void writeTermListResults()
{
     List<string> generatedTerms = getGeneratedTerms();
    if (!chkBoxSave.Checked) return;
    string termListFile = getTermFileLocation();
     try
     {
         StreamWriter sw = new StreamWriter(termListFile, false);
         for (int i = 0; i < generatedTerms.Count; i++)</pre>
             sw.WriteLine(generatedTerms[i]);
         sw.Close();
     }
     catch (Exception ex)
     {
         txtMessageBox.Text = ex.Message;
     }
 }
public bool isSaveChecked()
 {
     return chkBoxSave.Checked;
 }
private void btnGetTerms_Click(object sender, EventArgs e)
{
    controller.getTermsClickedEvent();
}
  private void btnGetHits_Click(object sender, EventArgs e)
 {
     controller.getHitCountsClickedEvent();
 }
 private void btnGetTop_Click(object sender, EventArgs e)
 {
     controller.getTopTermsClickedEvent();
 }
 public void writeTopTermResults()
 {
     ArrayList logs = topTermModel.getRanks();
     if (!chkBoxSave.Checked) return;
```

```
string termListFile = getTopTermFileLocation();
            try
             {
                StreamWriter sw = new StreamWriter(termListFile, false);
                for (int i = 0; i < logs.Count; i++)</pre>
                 {
                    string[] r = (string[])logs[i];
                    sw.WriteLine(r[0] + "," + r[1]);
                }
                sw.Close();
            }
            catch (Exception ex)
            {
                txtMessageBox.Text = ex.Message;
            3
        3
        private void btnGetAll_Click(object sender, EventArgs e)
            this.btnGetTerms_Click(null, null);
            this.btnGetHits_Click(null, null);
            this.btnGetTop_Click(null, null);
        }
        private void Form1_Load(object sender, EventArgs e)
            loadSpecFileList();
            loadHitSpecFileList();
            ddlistAnalysisMethod.SelectedItem = "Early Growth";
            ddlistHitCountSource.SelectedItem = "scirushits";
            chkboxlistTermGenerationSources.SetItemChecked(0, true);
        3
        private void btnRefine_Click(object sender, EventArgs e)
        {
            controller.getRefineTermsClickedEvent();
        }
        public void updateHitCountListBox()
        {
            List<string[]> generatedHitCounts=hitModel.getGeneratedHitCounts();
            for (int i = 0; i < generatedHitCounts.Count; i++)</pre>
            {
                string[] row = generatedHitCounts[i];
                lstBoxHitCounts.Items.Add(row[0] + "," + row[1].Replace(",", "") + "," +
row[2]);
            }
        }
        public List<string> getGeneratedTerms()
        {
            List<string> generatedTerms = new List<string>();
            for (int i = 0; i < lstBoxTermList.Items.Count; i++)</pre>
                generatedTerms.Add(lstBoxTermList.Items[i].ToString());
            return generatedTerms;
        }
        public void clearElapsedTimeLabel(string label)
        {
            if (label.ToLower().Equals("term"))
               clearElapsedTimeLabel(lblTermsTime);
            else if (label.ToLower().Equals("hit"))
               clearElapsedTimeLabel(lblHitCountsTime);
            else if (label.ToLower().Equals("topterm"))
                clearElapsedTimeLabel(lblTopTermsTime);
        }
        public void showElapsedTimeinaLabel(string label, string time)
            if (label.ToLower().Equals("term"))
               showElapsedTimeinaLabel(lblTermsTime, time);
            else if (label.ToLower().Equals("hit"))
                showElapsedTimeinaLabel(lblHitCountsTime, time);
            else if (label.ToLower().Equals("topterm"))
```

```
showElapsedTimeinaLabel(lblTopTermsTime, time);
        }
       private void showElapsedTimeinaLabel(Label elapsedTimeLabel, string
elapsedTimeInSeconds)
        {
            elapsedTimeLabel.Text = "Elapsed time:" + elapsedTimeInSeconds + " seconds";
        3
       private void clearElapsedTimeLabel(Label elapsedTimeLabel)
        {
            elapsedTimeLabel.Text = "Elapsed time;";
        }
        public void clearDisplayBox(string label)
        {
            if (label.ToLower().Equals("term"))
                clearDisplayBox(lstBoxTermList);
            else if (label.ToLower().Equals("hit"))
                clearDisplayBox(lstBoxHitCounts);
            else if (label.ToLower().Equals("topterm"))
                clearDisplayBox(lstTopTerms);
        }
        private void clearDisplayBox(ListBox displayBox)
        ł
            displayBox.Items.Clear();
        }
        private void btnAddNewHitCountSource_Click(object sender, EventArgs e)
        {
            openFileDialogHit.ShowDialog();
        }
        private void btnAddNewTermSource_Click(object sender, EventArgs e)
        {
            openFileDialogTerm.ShowDialog();
        }
        private void openFileDialogTerm_FileOk(object sender, CancelEventArgs e)
        {
            File.Copy(openFileDialogTerm.FileName,
getRegistry()+openFileDialogTerm.SafeFileName,true);
chkboxlistTermGenerationSources.Items.Add(openFileDialogTerm.SafeFileName.Replace(".xml",
""));
            writeSpecFileList();
        }
        private void loadSpecFileList()
            chkboxlistTermGenerationSources.Items.Clear();
            try
            F
                StreamReader sr = new StreamReader(getRegistry() + specFileListFileName);
                do
                {
                    chkboxlistTermGenerationSources.Items.Add(sr.ReadLine());
                } while (sr.Peek() != -1);
                sr.Close();
            }
            catch (Exception ex)
                txtMessageBox.Text = ex.Message;
            }
        }
        private void writeSpecFileList()
        {
```

```
try
            {
                StreamWriter sw = new StreamWriter(getRegistry()+specFileListFileName,
false);
                for (int i = 0; i < chkboxlistTermGenerationSources.Items.Count; i++)</pre>
                    sw.WriteLine(chkboxlistTermGenerationSources.Items[i].ToString());
                sw.Close();
            }
            catch (Exception ex)
            {
                txtMessageBox.Text = ex.Message;
            }
        }
        private void loadHitSpecFileList()
        {
            ddlistHitCountSource.Items.Clear();
            try
            {
                StreamReader sr = new StreamReader(getRegistry() +
specHitFileListFileName);
                do
                {
                    ddlistHitCountSource.Items.Add(sr.ReadLine());
                } while (sr.Peek() != -1);
                sr.Close();
            }
            catch (Exception ex)
            {
                txtMessageBox.Text = ex.Message;
            }
        }
        private void writeHitSpecFileList()
        {
            try
            {
                StreamWriter sw = new StreamWriter(getRegistry() +
specHitFileListFileName, false);
                for (int i = 0; i < ddlistHitCountSource.Items.Count; i++)</pre>
                    sw.WriteLine(ddlistHitCountSource.Items[i].ToString());
                sw.Close();
            }
            catch (Exception ex)
            {
                txtMessageBox.Text = ex.Message;
            }
        3
       private void openFileDialogHit_FileOk(object sender, CancelEventArgs e)
        {
            File.Copy(openFileDialogHit.FileName, getRegistry() +
openFileDialogHit.SafeFileName, true);
            ddlistHitCountSource.Items.Add(openFileDialogHit.SafeFileName.Replace(".xml",
""));
            writeHitSpecFileList();
        }
        private void btnTermDelete_Click(object sender, EventArgs e)
        {
            for (int i = 0; i < chkboxlistTermGenerationSources.CheckedItems.Count; i++)</pre>
            {
chkboxlistTermGenerationSources.Items.Remove(chkboxlistTermGenerationSources.CheckedItems
[i]);
                i--;
            }
            writeSpecFileList();
```

```
126
```

```
}
       private void btnHitDelete_Click(object sender, EventArgs e)
            ddlistHitCountSource.Items.RemoveAt(ddlistHitCountSource.SelectedIndex);
            writeHitSpecFileList();
        }
   }
        }
Form1.Designer.cs
namespace LongTailApp
{
   partial class Forml
    {
        /// <summary>
        /// Required designer variable.
        /// </summarv>
        private System.ComponentModel.IContainer components = null;
        /// <summary>
        /// Clean up any resources being used.
        /// </summary>
        /// <param name="disposing">true if managed resources should be disposed;
otherwise, false.</param>
        protected override void Dispose (bool disposing)
        {
            if (disposing && (components != null))
            {
                components.Dispose();
            base.Dispose(disposing);
        }
        #region Windows Form Designer generated code
        /// Required method for Designer support - do not modify
        /// the contents of this method with the code editor.
        private void InitializeComponent()
        {
            this.label1 = new System.Windows.Forms.Label();
            this.label2 = new System.Windows.Forms.Label();
            this.label3 = new System.Windows.Forms.Label();
            this.label4 = new System.Windows.Forms.Label();
            this.label5 = new System.Windows.Forms.Label();
            this.label6 = new System.Windows.Forms.Label();
            this.label7 = new System.Windows.Forms.Label();
            this.label8 = new System.Windows.Forms.Label();
            this.txtSeedTerm = new System.Windows.Forms.TextBox();
            this.chkboxlistTermGenerationSources = new
System.Windows.Forms.CheckedListBox();
            this.txtTermListSize = new System.Windows.Forms.TextBox();
            this.ddlistHitCountSource = new System.Windows.Forms.ComboBox();
            this.txtBeginYear = new System.Windows.Forms.TextBox();
            this.txtEndYear = new System.Windows.Forms.TextBox();
            this.ddlistAnalysisMethod = new System.Windows.Forms.ComboBox();
            this.txtPOETermNumber = new System.Windows.Forms.TextBox();
            this.txtRegistry = new System.Windows.Forms.TextBox();
            this.lstBoxTermList = new System.Windows.Forms.ListBox();
            this.lstBoxHitCounts = new System.Windows.Forms.ListBox();
            this.lstTopTerms = new System.Windows.Forms.ListBox();
            this.btnGetTerms = new System.Windows.Forms.Button();
            this.btnGetHits = new System.Windows.Forms.Button();
            this.btnGetTop = new System.Windows.Forms.Button();
            this.btnGetAll = new System.Windows.Forms.Button();
            this.lblTermsTime = new System.Windows.Forms.Label();
            this.lblHitCountsTime = new System.Windows.Forms.Label();
```

```
this.lblTopTermsTime = new System.Windows.Forms.Label();
this.btnRefine = new System.Windows.Forms.Button();
this.label9 = new System.Windows.Forms.Label();
this.txtResultFileLocation = new System.Windows.Forms.TextBox();
this.txtMessageBox = new System.Windows.Forms.TextBox();
this.label10 = new System.Windows.Forms.Label();
this.chkBoxAddSeedTerm = new System.Windows.Forms.CheckBox();
this.progressBar1 = new System.Windows.Forms.ProgressBar();
this.chkBoxSave = new System.Windows.Forms.CheckBox();
this.btnAddNewHitCountSource = new System.Windows.Forms.Button();
this.btnAddNewTermSource = new System.Windows.Forms.Button();
this.openFileDialogTerm = new System.Windows.Forms.OpenFileDialog();
this.openFileDialogHit = new System.Windows.Forms.OpenFileDialog();
this.btnTermDelete = new System.Windows.Forms.Button();
this.btnHitDelete = new System.Windows.Forms.Button();
this.SuspendLayout();
11
// label1
11
this.label1.AutoSize = true;
this.label1.Location = new System.Drawing.Point(22, 24);
this.label1.Name = "label1";
this.label1.Size = new System.Drawing.Size(62, 13);
this.label1.TabIndex = 0;
this.label1.Text = "Seed Term:";
// label2
11
this.label2.AutoSize = true;
this.label2.Location = new System.Drawing.Point(335, 24);
this.label2.Name = "label2";
this.label2.Size = new System.Drawing.Size(131, 13);
this.label2.TabIndex = 1;
this.label2.Text = "Term Generation Sources:";
11
// label3
11
this.label3.AutoSize = true;
this.label3.Location = new System.Drawing.Point(22, 130);
this.label3.Name = "label3";
this.label3.Size = new System.Drawing.Size(137, 13);
this.label3.TabIndex = 2;
this.label3.Text = "Approximate Term List Size:";
11
// label4
this.label4.AutoSize = true;
this.label4.Location = new System.Drawing.Point(335, 129);
this.label4.Name = "label4";
this.label4.Size = new System.Drawing.Size(91, 13);
this.label4.TabIndex = 3;
this.label4.Text = "Hit Count Source:";
11
// labe15
11
this.label5.AutoSize = true;
this.label5.Location = new System.Drawing.Point(22, 188);
this.label5.Name = "label5";
this.label5.Size = new System.Drawing.Size(89, 13);
this.label5.TabIndex = 4;
this.label5.Text = "Begin-End Years:";
11
// label6
this.label6.AutoSize = true;
this.label6.Location = new System.Drawing.Point(335, 190);
this.label6.Name = "label6";
this.label6.Size = new System.Drawing.Size(87, 13);
this.label6.TabIndex = 5;
this.label6.Text = "Analysis Method:";
```

```
// label7
           this.label7.AutoSize = true;
           this.label7.Location = new System.Drawing.Point(22, 246);
           this.label7.Name = "label7";
           this.label7.Size = new System.Drawing.Size(101, 13);
           this.label7.TabIndex = 6;
           this.label7.Text = "Number of Threads:";
           // label8
           this.label8.AutoSize = true;
           this.label8.Location = new System.Drawing.Point(335, 246);
           this.label8.Name = "label8";
           this.label8.Size = new System.Drawing.Size(48, 13);
           this.label8.TabIndex = 7;
           this.label8.Text = "Registry:";
           11
           // txtSeedTerm
           this.txtSeedTerm.Location = new System.Drawing.Point(178, 24);
           this.txtSeedTerm.Name = "txtSeedTerm";
           this.txtSeedTerm.Size = new System.Drawing.Size(100, 20);
           this.txtSeedTerm.TabIndex = 8;
           this.txtSeedTerm.Text = "renewable energy";
           // chkboxlistTermGenerationSources
           this.chkboxlistTermGenerationSources.FormattingEnabled = true;
           this.chkboxlistTermGenerationSources.Location = new System.Drawing.Point(474,
           this.chkboxlistTermGenerationSources.Name =
"chkboxlistTermGenerationSources";
           this.chkboxlistTermGenerationSources.Size = new System.Drawing.Size(237, 94);
           this.chkboxlistTermGenerationSources.TabIndex = 10;
           // txtTermListSize
           this.txtTermListSize.Location = new System.Drawing.Point(178, 128);
           this.txtTermListSize.Name = "txtTermListSize";
           this.txtTermListSize.Size = new System.Drawing.Size(100, 20);
           this.txtTermListSize.TabIndex = 11;
           this.txtTermListSize.Text = "100";
           11
           // ddlistHitCountSource
            this.ddlistHitCountSource.DisplayMember = "scirushits";
            this.ddlistHitCountSource.FormattingEnabled = true;
            this.ddlistHitCountSource.Items.AddRange(new object[] {
            "scirushits",
            "gscholar"});
            this.ddlistHitCountSource.Location = new System.Drawing.Point(474, 130);
            this.ddlistHitCountSource.Name = "ddlistHitCountSource";
            this.ddlistHitCountSource.Size = new System.Drawing.Size(121, 21);
            this.ddlistHitCountSource.TabIndex = 12;
            // txtBeginYear
            this.txtBeginYear.Location = new System.Drawing.Point(178, 184);
            this.txtBeginYear.Name = "txtBeginYear";
            this.txtBeginYear.Size = new System.Drawing.Size(61, 20);
            this.txtBeginYear.TabIndex = 13;
            this.txtBeginYear.Text = "2006";
            // txtEndYear
            this.txtEndYear.Location = new System.Drawing.Point(245, 184);
            this.txtEndYear.Name = "txtEndYear";
            this.txtEndYear.Size = new System.Drawing.Size(61, 20);
            this.txtEndYear.TabIndex = 14;
            this.txtEndYear.Text = "2008";
```

9);

129

```
// ddlistAnalysisMethod
this.ddlistAnalysisMethod.FormattingEnabled = true;
this.ddlistAnalysisMethod.Items.AddRange(new object[] {
"Total Growth",
"Early Growth" });
this.ddlistAnalysisMethod.Location = new System.Drawing.Point(474, 183);
this.ddlistAnalysisMethod.Name = "ddlistAnalysisMethod";
this.ddlistAnalysisMethod.Size = new System.Drawing.Size(121, 21);
this.ddlistAnalysisMethod.TabIndex = 15;
11
// txtPOETermNumber
11
this.txtPOETermNumber.Location = new System.Drawing.Point(178, 240);
this.txtPOETermNumber.Name = "txtPOETermNumber";
this.txtPOETermNumber.Size = new System.Drawing.Size(100, 20);
this.txtPOETermNumber.TabIndex = 16;
this.txtPOETermNumber.Text = "10";
11
// txtRegistry
11
this.txtRegistry.Location = new System.Drawing.Point(474, 239);
this.txtRegistry.Name = "txtRegistry";
this.txtRegistry.Size = new System.Drawing.Size(225, 20);
this.txtRegistry.TabIndex = 17;
this.txtRegistry.Text = "Cameleon#";
11
// lstBoxTermList
11
this.lstBoxTermList.FormattingEnabled = true;
this.lstBoxTermList.Location = new System.Drawing.Point(19, 402);
this.lstBoxTermList.Name = "lstBoxTermList";
this.lstBoxTermList.Size = new System.Drawing.Size(214, 160);
this.lstBoxTermList.TabIndex = 18;
// lstBoxHitCounts
11
this.lstBoxHitCounts.FormattingEnabled = true;
this.lstBoxHitCounts.Location = new System.Drawing.Point(252, 402);
this.lstBoxHitCounts.Name = "lstBoxHitCounts";
this.lstBoxHitCounts.Size = new System.Drawing.Size(214, 160);
this.lstBoxHitCounts.TabIndex = 19;
11
// lstTopTerms
this.lstTopTerms.FormattingEnabled = true;
this.lstTopTerms.Location = new System.Drawing.Point(485, 402);
this.lstTopTerms.Name = "lstTopTerms";
this.lstTopTerms.Size = new System.Drawing.Size(214, 160);
this.lstTopTerms.TabIndex = 20;
11
// btnGetTerms
11
this.btnGetTerms.Location = new System.Drawing.Point(41, 370);
this.btnGetTerms.Name = "btnGetTerms";
this.btnGetTerms.Size = new System.Drawing.Size(75, 23);
this.btnGetTerms.TabIndex = 21;
this.btnGetTerms.Text = "Get Terms";
this.btnGetTerms.UseVisualStyleBackColor = true;
this.btnGetTerms.Click += new System.EventHandler(this.btnGetTerms_Click);
11
// btnGetHits
11
this.btnGetHits.Enabled = false;
this.btnGetHits.Location = new System.Drawing.Point(270, 370);
this.btnGetHits.Name = "btnGetHits";
this.btnGetHits.Size = new System.Drawing.Size(85, 23);
this.btnGetHits.TabIndex = 22;
this.btnGetHits.Text = "Get Hitcounts";
this.btnGetHits.UseVisualStyleBackColor = true;
```

```
this.btnGetHits.Click += new System.EventHandler(this.btnGetHits_Click);
// btnGetTop
11
this.btnGetTop.Enabled = false;
this.btnGetTop.Location = new System.Drawing.Point(547, 370);
this.btnGetTop.Name = "btnGetTop";
this.btnGetTop.Size = new System.Drawing.Size(89, 23);
this.btnGetTop.TabIndex = 23;
this.btnGetTop.Text = "Get Top Terms";
this.btnGetTop.UseVisualStyleBackColor = true;
this.btnGetTop.Click += new System.EventHandler(this.btnGetTop_Click);
// btnGetAll
11
this.btnGetAll.Location = new System.Drawing.Point(322, 341);
this.btnGetAll.Name = "btnGetAll";
this.btnGetAll.Size = new System.Drawing.Size(85, 23);
this.btnGetAll.TabIndex = 24;
this.btnGetAll.Text = "Get All";
this.btnGetAll.UseVisualStyleBackColor = true;
this.btnGetAll.Click += new System.EventHandler(this.btnGetAll_Click);
// lblTermsTime
this.lblTermsTime.AutoSize = true;
this.lblTermsTime.Location = new System.Drawing.Point(19, 569);
this.lblTermsTime.Name = "lblTermsTime";
this.lblTermsTime.Size = new System.Drawing.Size(70, 13);
this.lblTermsTime.TabIndex = 25;
this.lblTermsTime.Text = "Elapsed time:";
// lblHitCountsTime
11
this.lblHitCountsTime.AutoSize = true;
this.lblHitCountsTime.Location = new System.Drawing.Point(249, 572);
this.lblHitCountsTime.Name = "lblHitCountsTime";
this.lblHitCountsTime.Size = new System.Drawing.Size(70, 13);
this.lblHitCountsTime.TabIndex = 26;
this.lblHitCountsTime.Text = "Elapsed time:";
// lblTopTermsTime
this.lblTopTermsTime.AutoSize = true;
this.lblTopTermsTime.Location = new System.Drawing.Point(482, 572);
this.lblTopTermsTime.Name = "lblTopTermsTime";
this.lblTopTermsTime.Size = new System.Drawing.Size(70, 13);
this.lblTopTermsTime.TabIndex = 27;
this.lblTopTermsTime.Text = "Elapsed time:";
// btnRefine
this.btnRefine.Enabled = false;
this.btnRefine.Location = new System.Drawing.Point(137, 370);
this.btnRefine.Name = "btnRefine";
this.btnRefine.Size = new System.Drawing.Size(75, 23);
this.btnRefine.TabIndex = 28;
this.btnRefine.Text = "Refine";
this.btnRefine.UseVisualStyleBackColor = true;
this.btnRefine.Click += new System.EventHandler(this.btnRefine_Click);
// label9
this.label9.AutoSize = true;
this.label9.Location = new System.Drawing.Point(25, 294);
this.label9.Name = "label9";
this.label9.Size = new System.Drawing.Size(138, 13);
this.label9.TabIndex = 29;
this.label9.Text = "Location to store result files:";
// txtResultFileLocation
```

```
11
            this.txtResultFileLocation.Location = new System.Drawing.Point(178, 286);
            this.txtResultFileLocation.Name = "txtResultFileLocation";
            this.txtResultFileLocation.Size = new System.Drawing.Size(100, 20);
            this.txtResultFileLocation.TabIndex = 30;
            this.txtResultFileLocation.Text = "Results";
            // txtMessageBox
            11
            this.txtMessageBox.Location = new System.Drawing.Point(474, 286);
            this.txtMessageBox.Multiline = true;
            this.txtMessageBox.Name = "txtMessageBox";
            this.txtMessageBox.Size = new System.Drawing.Size(225, 46);
            this.txtMessageBox.TabIndex = 31;
            11
            // label10
            11
            this.label10.AutoSize = true;
            this.label10.Location = new System.Drawing.Point(335, 286);
            this.label10.Name = "label10";
            this.label10.Size = new System.Drawing.Size(58, 13);
            this.label10.TabIndex = 32;
            this.label10.Text = "Messages:";
            11
            // chkBoxAddSeedTerm
            11
            this.chkBoxAddSeedTerm.AutoSize = true;
            this.chkBoxAddSeedTerm.Location = new System.Drawing.Point(370, 374);
            this.chkBoxAddSeedTerm.Name = "chkBoxAddSeedTerm";
            this.chkBoxAddSeedTerm.Size = new System.Drawing.Size(93, 17);
            this.chkBoxAddSeedTerm.TabIndex = 33;
            this.chkBoxAddSeedTerm.Text = "add seed term";
            this.chkBoxAddSeedTerm.UseVisualStyleBackColor = true;
            11
            // progressBar1
            this.progressBarl.Location = new System.Drawing.Point(0, 600);
            this.progressBar1.Name = "progressBar1";
            this.progressBarl.Size = new System.Drawing.Size(719, 23);
            this.progressBarl.TabIndex = 34;
            11
            // chkBoxSave
            11
            this.chkBoxSave.AutoSize = true;
            this.chkBoxSave.Location = new System.Drawing.Point(178, 326);
            this.chkBoxSave.Name = "chkBoxSave";
            this.chkBoxSave.Size = new System.Drawing.Size(89, 17);
            this.chkBoxSave.TabIndex = 36;
            this.chkBoxSave.Text = "Save Results";
            this.chkBoxSave.UseVisualStyleBackColor = true;
            // btnAddNewHitCountSource
            11
            this.btnAddNewHitCountSource.Location = new System.Drawing.Point(338, 145);
            this.btnAddNewHitCountSource.Name = "btnAddNewHitCountSource";
            this.btnAddNewHitCountSource.Size = new System.Drawing.Size(75, 23);
            this.btnAddNewHitCountSource.TabIndex = 37;
            this.btnAddNewHitCountSource.Text = "Add New...";
            this.btnAddNewHitCountSource.UseVisualStyleBackColor = true;
            this.btnAddNewHitCountSource.Click += new
System.EventHandler(this.btnAddNewHitCountSource_Click);
            11
            // btnAddNewTermSource
            11
            this.btnAddNewTermSource.Location = new System.Drawing.Point(338, 41);
            this.btnAddNewTermSource.Name = "btnAddNewTermSource";
            this.btnAddNewTermSource.Size = new System.Drawing.Size(75, 23);
            this.btnAddNewTermSource.TabIndex = 38;
            this.btnAddNewTermSource.Text = "Add New...";
            this.btnAddNewTermSource.UseVisualStyleBackColor = true;
```

```
132
```

```
this.btnAddNewTermSource.Click += new
System.EventHandler(this.btnAddNewTermSource_Click);
           11
            // openFileDialogTerm
            this.openFileDialogTerm.FileName = "openFileDialog1";
            this.openFileDialogTerm.FileOk += new
System.ComponentModel.CancelEventHandler(this.openFileDialogTerm_FileOk);
            11
            11
              openFileDialogHit
            this.openFileDialogHit.FileName = "openFileDialog2";
            this.openFileDialogHit.FileOk += new
System.ComponentModel.CancelEventHandler(this.openFileDialogHit_FileOk);
            // btnTermDelete
            11
            this.btnTermDelete.Location = new System.Drawing.Point(419, 40);
            this.btnTermDelete.Name = "btnTermDelete";
            this.btnTermDelete.Size = new System.Drawing.Size(26, 23);
            this.btnTermDelete.TabIndex = 39;
            this.btnTermDelete.Text = "X";
            this.btnTermDelete.UseVisualStyleBackColor = true;
            this.btnTermDelete.Click += new
System.EventHandler(this.btnTermDelete_Click);
            // btnHitDelete
            this.btnHitDelete.Location = new System.Drawing.Point(419, 145);
            this.btnHitDelete.Name = "btnHitDelete";
            this.btnHitDelete.Size = new System.Drawing.Size(26, 23);
            this.btnHitDelete.TabIndex = 40;
            this.btnHitDelete.Text = "X";
            this.btnHitDelete.UseVisualStyleBackColor = true;
            this.btnHitDelete.Click += new System.EventHandler(this.btnHitDelete_Click);
            // Form1
            this.AutoScaleDimensions = new System.Drawing.SizeF(6F, 13F);
            this.AutoScaleMode = System.Windows.Forms.AutoScaleMode.Font;
            this.ClientSize = new System.Drawing.Size(718, 623);
            this.Controls.Add(this.btnHitDelete);
            this.Controls.Add(this.btnTermDelete);
            this.Controls.Add(this.btnAddNewTermSource);
            this.Controls.Add(this.btnAddNewHitCountSource);
            this.Controls.Add(this.chkBoxSave);
            this.Controls.Add(this.progressBar1);
            this.Controls.Add(this.chkBoxAddSeedTerm);
            this.Controls.Add(this.label10);
            this.Controls.Add(this.txtMessageBox);
            this.Controls.Add(this.txtResultFileLocation);
            this.Controls.Add(this.label9);
            this.Controls.Add(this.btnRefine);
            this.Controls.Add(this.lblTopTermsTime);
            this.Controls.Add(this.lblHitCountsTime);
            this.Controls.Add(this.lblTermsTime);
            this.Controls.Add(this.btnGetAll);
            this.Controls.Add(this.btnGetTop);
            this.Controls.Add(this.btnGetHits);
            this.Controls.Add(this.btnGetTerms);
            this.Controls.Add(this.lstTopTerms);
            this.Controls.Add(this.lstBoxHitCounts);
            this.Controls.Add(this.lstBoxTermList);
            this.Controls.Add(this.txtRegistry);
            this.Controls.Add(this.txtPOETermNumber);
            this.Controls.Add(this.ddlistAnalysisMethod);
            this.Controls.Add(this.txtEndYear);
            this.Controls.Add(this.txtBeginYear);
            this.Controls.Add(this.ddlistHitCountSource);
            this.Controls.Add(this.txtTermListSize);
            this.Controls.Add(this.chkboxlistTermGenerationSources);
```

```
this.Controls.Add(this.txtSeedTerm);
this.Controls.Add(this.label8);
this.Controls.Add(this.label7);
this.Controls.Add(this.label6);
this.Controls.Add(this.label5);
this.Controls.Add(this.label4);
this.Controls.Add(this.label2);
this.Controls.Add(this.label2);
this.Controls.Add(this.label1);
this.Name = "Form1";
this.Text = "LongTail";
this.Load += new System.EventHandler(this.Form1_Load);
this.PerformLayout();
```

}

#endregion

private System.Windows.Forms.Label label1; private System.Windows.Forms.Label label2; private System.Windows.Forms.Label label3; private System.Windows.Forms.Label label4; private System.Windows.Forms.Label label5; private System.Windows.Forms.Label label6; private System.Windows.Forms.Label label7; private System.Windows.Forms.Label label8; private System.Windows.Forms.TextBox txtSeedTerm; private System.Windows.Forms.CheckedListBox chkboxlistTermGenerationSources; private System.Windows.Forms.TextBox txtTermListSize; private System.Windows.Forms.ComboBox ddlistHitCountSource; private System.Windows.Forms.TextBox txtBeginYear; private System.Windows.Forms.TextBox txtEndYear; private System.Windows.Forms.ComboBox ddlistAnalysisMethod; private System.Windows.Forms.TextBox txtPOETermNumber; private System.Windows.Forms.TextBox txtRegistry; private System.Windows.Forms.ListBox lstBoxTermList; private System.Windows.Forms.ListBox lstBoxHitCounts; private System.Windows.Forms.ListBex lstTopTerms; private System.Windows.Forms.Button btnGetTerms; private System.Windows.Forms.Button btnGetHits; private System.Windows.Forms.Button btnGetTop; private System.Windows.Forms.Button btnGetAll; private System.Windows.Forms.Label 1blTermsTime; private System.Windows.Forms.Label lblHitCountsTime; private System.Windows.Forms.Label lblTopTermsTime; private System.Windows.Forms.Button btnRefine; private System.Windows.Forms.Label label9; private System.Windows.Forms.TextBox txtResultFileLocation; private System.Windows.Forms.Label label10; private System.Windows.Forms.CheckBox chkBoxAddSeedTerm; private System.Windows.Forms.ProgressBar progressBar1; public System.Windows.Forms.TextBox txtMessageBox; private System.Windows.Forms.CheckBox chkBoxSave; private System.Windows.Forms.Button btnAddNewHitCountSource; private System.Windows.Forms.Button btnAddNewTermSource; private System.Windows.Forms.OpenFileDialog openFileDialogTerm; private System.Windows.Forms.OpenFileDialog openFileDialogHit; private System.Windows.Forms.Button btnTermDelete; private System.Windows.Forms.Button btnHitDelete;

}

}

Program.cs
using System;
using System.Collections.Generic;

using System.Windows.Forms;

namespace LongTailApp
{

```
static class Program
{
    /// <summary>
    /// The main entry point for the application.
    /// </summary>
    [STAThread]
    static void Main()
    {
        Application.EnableVisualStyles();
        Application.SetCompatibleTextRenderingDefault(false);
        Application.Run(new Form1());
    }
}
```

# Web Application View & Controller

```
using System;
using System.Collections.Generic;
using System.Ling;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Data;
using System.Configuration;
using System.Web.Security;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;
using System.Xml;
using System.Xml.XPath;
using System.Text;
using System. IO;
using System.Collections;
using System.Net;
using System. Threading;
    public partial class MainView : System.Web.UI.Page
    {
        string specFileListFileName = "specFiles.txt";
        string specHitFileListFileName = "specFilesHit.txt";
        LongTailController controller;
        TermCollectionModel termModel;
        private HitCollectionModel hitModel;
        private TopTernModel topTernModel;
        string pathSeparator = "" + Path.DirectorySeparatorChar;
        public void setTermModel(TermCollectionModel model)
        £
            termModel = model;
        }
        public void setTopTermModel(TopTermModel model)
        {
            topTermModel = model;
        }
        public void setHitModel(HitCollectionModel model)
        {
            hitModel = model;
        }
        private string getHitCountFileLocation()
        {
            string fName = "hitcounts" + DateTime.Now.ToFileTimeUtc() + ".csv";
            HyperLink2.NavigateUrl = "~/ResultFiles/" + fName;
            return Server.MapPath("~\\ResultFiles\\" + fName);
```

```
}
public List<string[]> getHitCountList()
{
    List<string[]> hitCountList = new List<string[]>();
    for (int i = 0; i < lstBoxHitCounts.Items.Count; i++)</pre>
  . {
        string[] row = lstBoxHitCounts.Items[i].Value.Split(',');
        hitCountList.Add(row);
    }
    return hitCountList;
}
public int getBeginYear()
{
    int bYear = 0;
    try
    {
        bYear = int.Parse(txtBeginYear.Text);
    }
    catch (Exception ex)
    {
        txtMessageBox.Text += ex.Message+"\n";
    }
    return bYear;
3
public int getEndYear()
{
    int eYear = 0;
    try
    {
        eYear = int.Parse(txtEndYear.Text);
    }
    catch (Exception ex)
    {
        txtMessageBox.Text += ex.Message+"\n";
    }
    return eYear;
}
public string getTopTermMethodName()
{
    return ddlistAnalysisMethod.SelectedItem.ToString();
}
private List<string[]> getGeneratedHitCounts()
{
    if (hitModel != null)
        return hitModel.getGeneratedHitCounts();
    else
    {
        List<string[]> hitCounts = new List<string[]>();
        for (int i = 0; i < lstBoxHitCounts.Items.Count; i++)</pre>
        {
            string[] row = lstBoxHitCounts.Items[i].Value.Split(',');
            hitCounts.Add(row);
        3
        return hitCounts;
    }
}
public void writeHitCountResults()
{
    if (!chkBoxSave.Checked) return;
    List<string[]> generatedHitCounts = getGeneratedHitCounts();
    string hitCountListFile = getHitCountFileLocation();
    try
    {
```

```
StreamWriter sw = new StreamWriter(hitCountListFile, false);
        for (int i = 0; i < generatedHitCounts.Count; i++)</pre>
        {
            string[] row = generatedHitCounts[i];
            sw.WriteLine(row[0] + "," + row[1] + "," + row[2]);
        }
        sw.Close();
        HyperLink2.Visible = true;
    }
    catch (Exception ex)
    {
        txtMessageBox.Text += ex.Message + "\n";
    }
}
public void updateTopTermListBox()
{
    ArrayList logs = topTermModel.getRanks();
    for (int i = 0; i < logs.Count; i++)</pre>
    {
        string[] r = (string[])logs[i];
        lstTopTerms.Items.Add(r[0] + "," + r[1]);
    }
}
public void updateTermListBox()
    int max = getMaxTermListSize();
    List<string> generatedTerms = termModel.getGeneratedTerms();
    for (int i = 0; i < generatedTerms.Count && i < max; i++)</pre>
        lstBoxTermList.Items.Add(generatedTerms[i]);
}
public void enableButtonsNextToTerm()
{
    btnGetHits.Enabled = true;
    btnRefine.Enabled = true;
3
public void disableButtonsNextToHit()
{
    btnGetTop.Enabled = false;
}
public void enableButtonsNextToHit()
{
    btnGetTop.Enabled = true;
}
public int getMaxThreads()
    int maxThreads = 10;
    try
    {
        maxThreads = int.Parse(txtPOETermNumber.Text);
    }
    catch (Exception ex)
    {
        txtMessageBox.Text += ex.Message+ "\n";
    }
    return maxThreads;
}
public int getMaxTermListSize()
{
    int maxTermListSize = 80;
    try
    {
        maxTermListSize = int.Parse(txtTermListSize.Text);
    }
```

```
catch (Exception ex)
            {
                txtMessageBox.Text += ex.Message+"\n";
            }
            return maxTermListSize;
        }
        private List<int> getYears()
        {
            List<int> years = new List<int>();
            int bYear = 0;
            int eYear = 0;
            years = new List<int>();
            try
            {
                bYear = int.Parse(txtBeginYear.Text);
                eYear = int.Parse(txtEndYear.Text);
                if ((eYear - bYear) < 0)
                    throw new Exception ("eYear cannot be less than bYear");
                else if ((eYear - bYear) > 10)
                    throw new Exception ("eYear and bYear cannot be separated by more than
10 years for now");
            }
            catch (Exception ex)
            {
                txtMessageBox.Text += ex.Message+ "\n";
            }
            for (int i = bYear; i < eYear + 1; i++)
            {
                years.Add(i);
            3
            return years;
        }
        public List<string[]> getHitCountInput()
        {
            List<int> years = getYears();
            List<string[]> hitCountInput = new List<string[]>();
            List<string> generatedTerms = getGeneratedTerms();
            for (int i = 0; i < generatedTerms.Count; i++)</pre>
            {
                for (int j = 0; j < years.Count; j++)</pre>
                {
                    string[] row = new string[2];
                    if (chkBoxAddSeedTerm.Checked)
                    {
                        if (!generatedTerms[i].ToLower().Contains(txtSeedTerm.Text))
                            row[0] = txtSeedTerm.Text + " " + generatedTerms[i];
                        else
                            row[0] = generatedTerms[i];
                    }
                    else
                        row[0] = generatedTerms[i];
                    row[1] = years[j].ToString();
                    hitCountInput.Add(row);
                }
            }
            return hitCountInput;
        }
        public void updateMessage(string message)
        {
            txtMessageBox.Text += message + "\n";
        }
```

public List<string> getGeneratedTerms()

```
{
    List<string> generatedTerms = new List<string>();
    for (int i = 0; i < lstBoxTermList.Items.Count; i++)</pre>
        generatedTerms.Add(lstBoxTermList.Items[i].Value);
    return generatedTerms;
}
private string getTopTermFileLocation()
    string fName = "toptermlist" + DateTime.Now.ToFileTimeUtc() + ".csv";
    HyperLink3.NavigateUrl = "~/ResultFiles/" + fName;
    return Server.MapPath("~\\ResultFiles\\" + fName);
}
public void disableButtonsNextToTerm()
{
    btnGetHits.Enabled = false;
    btnRefine.Enabled = false;
}
public string getRegistry()
{
    string registry = txtRegistry.Text;
    if (!registry.ToLower().StartsWith("http://"))
        registry = Server.MapPath("~/") + registry;
    if (!registry.EndsWith(" " + pathSeparator)) registry += pathSeparator;
    return registry:
}
public string getSeedTerm()
{
    return txtSeedTerm.Text;
}
public ArrayList getHitSourceList()
{
    ArrayList sourceList = new ArrayList();
    sourceList.Add(ddlistHitCountSource.SelectedItem.Value);
    return sourceList;
}
public ArrayList getTermSourceList()
    ArrayList sourceList = new ArrayList();
    for (int i = 0; i < chkboxlistTermGenerationSources.Items.Count; i++)</pre>
        if (chkboxlistTermGenerationSources.Items[i].Selected)
            sourceList.Add(chkboxlistTermGenerationSources.Items[i].Value);
    return sourceList;
}
private string getTermFileLocation()
{
    string fName = "termlist"+DateTime.Now.ToFileTimeUtc() + ".csv";
    HyperLink1.NavigateUrl = "~/ResultFiles/"+fName;
    return Server.MapPath("~\\ResultFiles\\"+fName);
}
public void writeTermListResults()
    if (!chkBoxSave.Checked) return;
    List<string> generatedTerms = getGeneratedTerms();
    string termListFile = getTermFileLocation();
    try
     {
        StreamWriter sw = new StreamWriter(termListFile, false);
        for (int i = 0; i < generatedTerms.Count; i++)</pre>
```

```
sw.WriteLine(generatedTerms[i]);
        sw.Close();
        HyperLink1.Visible = true;
    }
    catch (Exception ex)
    {
        txtMessageBox.Text += ex.Message +"\n";
}
public bool isSaveChecked()
{
    return chkBoxSave.Checked;
}
private ArrayList getLogs()
    if (topTermModel != null)
        return topTermModel.getRanks();
    else
    {
        ArrayList logs = new ArrayList();
        for (int i = 0; i < 1stTopTerms.Items.Count; i++)
        {
            string[] row = lstTopTerms.Items[i].Value.Split(',');
            logs.Add(row.Clone());
        }
        return logs;
    }
}
public void writeTopTermResults()
{
    ArrayList logs = getLogs();
    if (!chkBoxSave.Checked) return;
    string termListFile = getTopTermFileLocation();
    try
    {
        StreamWriter sw = new StreamWriter(termListFile, false);
        for (int i = 0; i < logs.Count; i++)</pre>
        {
            string[] r = (string[])logs[i];
            sw.WriteLine(r[0] + ", " + r[1]);
        }
        sw.Close();
        HyperLink3.Visible = true;
    }
    catch (Exception ex)
    {
        txtMessageBox.Text += ex.Message + "\n";
    }
}
private void saveFiles()
    if (lstBoxHitCounts.Items.Count>0)
    this.writeHitCountResults();
    if (lstBoxTermList.Items.Count>0)
    this.writeTermListResults();
    if (lstTopTerms.Items.Count>0)
    this.writeTopTermResults();
}
private void initialLoad()
{
    loadSpecFileList();
    loadHitSpecFileList();
    ddlistAnalysisMethod.SelectedValue = "Early Growth";
    ddlistHitCountSource.SelectedValue = "scirushits";
    chkboxlistTermGenerationSources.SelectedIndex = 0;
}
```

protected void btnRefine\_Click(object sender, EventArgs e)

```
{
            controller.getRefineTermsClickedEvent();
        3
       public void updateHitCountListBox()
        {
            List<string[]> generatedHitCounts = hitModel.getGeneratedHitCounts();
            for (int i = 0; i < generatedHitCounts.Count; i++)</pre>
            {
                string[] row = generatedHitCounts[i];
                lstBoxHitCounts.Items.Add(row[0] + "," + row[1].Replace(",", "") + "," +
row[2]);
            }
        }
        public void clearElapsedTimeLabel(string label)
            if (label.ToLower().Equals("term"))
                clearElapsedTimeLabel(lblTermsTime);
            else if (label.ToLower().Equals("hit"))
                clearElapsedTimeLabel(lblHitCountsTime);
            else if (label.ToLower().Equals("topterm"))
                clearElapsedTimeLabel(lblTopTermsTime);
        }
        public void showElapsedTimeinaLabel(string label, string time)
        {
            if (label.ToLower().Equals("term"))
                showElapsedTimeinaLabel(lblTermsTime, time);
            else if (label.ToLower().Equals("hit"))
                showElapsedTimeinaLabel(lblHitCountsTime, time);
            else if (label.ToLower().Equals("topterm"))
                showElapsedTimeinaLabel(lblTopTermsTime, time);
        }
        private void showElapsedTimeinaLabel(Label elapsedTimeLabel, string
elapsedTimeInSeconds)
        {
            elapsedTimeLabel.Text = "Elapsed time:" + elapsedTimeInSeconds + " seconds";
        }
        private void clearElapsedTimeLabel(Label elapsedTimeLabel)
        {
            elapsedTimeLabel.Text = "Elapsed time:";
        }
        public void clearDisplayBox(string label)
        {
            if (label.ToLower().Equals("term"))
                clearDisplayBox(lstBoxTermList);
            else if (label.ToLower().Equals("hit"))
                clearDisplayBox(lstBoxHitCounts);
            else if (label.ToLower().Equals("topterm"))
                clearDisplayBox(lstTopTerms);
        }
        private void clearDisplayBox(ListBox displayBox)
            displayBox.Items.Clear();
        }
        private void loadSpecFileList()
        {
            chkboxlistTermGenerationSources.Items.Clear();
            try
            {
                StreamReader sr = new StreamReader(Server.MapPath("~/") +
specFileListFileName);
                do
                {
```

chkboxlistTermGenerationSources.Items.Add(sr.ReadLine());

```
} while (sr.Peek() != -1);
                sr.Close();
            }
            catch (Exception ex)
            {
                txtMessageBox.Text += ex.Message +"\n";
            }
        }
        private void writeSpecFileList()
            try
            {
                StreamWriter sw = new StreamWriter(getRegistry() + specFileListFileName,
false);
                for (int i = 0; i < chkboxlistTermGenerationSources.Items.Count; i++)</pre>
                     sw.WriteLine(chkboxlistTermGenerationSources.Items[i].Value);
                sw.Close();
            }
                                                    .
            catch (Exception ex)
            {
                txtMessageBox.Text += ex.Message + "\n";
            }
        }
        private void loadHitSpecFileList()
            ddlistHitCountSource.Items.Clear();
            try
            {
                StreamReader sr = new
StreamReader(Server.MapPath("~/")+specHitFileListFileName);
                do
                {
                     ddlistHitCountSource.Items.Add(sr.ReadLine());
                } while (sr.Peek() != -1);
                sr.Close();
            }
            catch (Exception ex)
            {
                txtMessageBox.Text += ex.Message +"\n";
            }
        }
        private void writeHitSpecFileList()
        {
            try
            {
                StreamWriter sw = new StreamWriter(getRegistry() +
specHitFileListFileName, false);
                for (int i = 0; i < ddlistHitCountSource.Items.Count; i++)</pre>
                     sw.WriteLine(ddlistHitCountSource.Items[i].Value);
                sw.Close();
            }
            catch (Exception ex)
            {
                txtMessageBox.Text += ex.Message+"\n";
            3
        }
```

```
private void btnHitDelete_Click(object sender, EventArgs e)
       {
       }
       protected void btnAnalyze_Click(object sender, EventArgs e)
       {
           controller.getTermsClickedEvent();
       }
       protected void btnHitCounts_Click(object sender, EventArgs e)
       {
           controller.getHitCountsClickedEvent();
       }
       protected void Button1_Click(object sender, EventArgs e)
       {
           controller.getTopTermsClickedEvent();
        }
       protected void Page_Load(object sender, EventArgs e)
        {
            if (!Page.IsPostBack) initialLoad();
           controller = new LongTailController(this);
       }
       protected void Button2_Click(object sender, EventArgs e)
        {
           btnAnalyze_Click(null, null);
           btnHitCounts_Click(null, null);
            Button1_Click(null, null);
        }
       public void setMessageText(string message)
        {
            txtMessageBox.Text += message+"\n";
        3
       protected void Button3_Click(object sender, EventArgs e)
        {
            chkboxlistTermGenerationSources.Items.Add(new
ListItem(txtNewTermSource.Text));
        3
       protected void btnAddNewHitSource_Click(object sender, EventArgs e)
        {
            ddlistHitCountSource.Items.Add(new ListItem(txtNewHitSource.Text));
        }
       protected void btnDeleteTermSource_Click(object sender, EventArgs e)
        {
            for (int i = 0; i < chkboxlistTermGenerationSources.Items.Count; i++)</pre>
            {
                if (chkboxlistTermGenerationSources.Items[i].Selected)
                    chkboxlistTermGenerationSources.Items.RemoveAt(i);
```

```
i--;
            3
        }
        protected void btnDeleteHitSource_Click(object sender, EventArgs e)
        {
            ddlistHitCountSource.Items.RemoveAt(ddlistHitCountSource.SelectedIndex);
        }
        protected void chkBoxSave_CheckedChanged(object sender, EventArds e)
        {
            if (chkBoxSave.Checked)
            {
                saveFiles();
            }
        }
}
    public class LongTailController : ErrorListener
    {
        protected MainView view;
        TopTernModel topTernModel;
        HitCollectionModel hitCollectionModel;
        TermCollectionModel termModel;
        public void updateError(string message)
            view.setMessageText(message);
        3
        public LongTailController(MainView appForm)
            view = appForm;
        3
        public void getTermsClickedEvent()
            view.clearDisplayBox("term");
            view.clearElapsedTimeLabel("term");
            view.disableButtonsNextToTerm();
            termModel =
                new TermCollectionModel(view.getSeedTerm(), view.getTermSourceList(),
view.getRegistry(), view.getMaxThreads(), view.getMaxTermListSize());
            termModel.registerErrorListener(this);
            System.DateTime startTime = System.DateTime.Now;
            view.setTermModel(termModel);
            termModel.collectTerms();
            view.showElapsedTimeinaLabel("term", (System.DateTime.Now -
startTime).TotalSeconds.ToString());
            view.updateTermListBox();
            view.updateMessage("Total of " +
Math.Min(termModel.getGeneratedTerms().Count, view.getMaxTermListSize()) + " terms");
            if (termModel.getGeneratedTerms().Count > 0)
                view.enableButtonsNextToTerm();
            if (view.isSaveChecked())
                view.writeTermListResults();
        }
        public void getHitCountsClickedEvent()
        {
            view.clearDisplayBox("hit");
            view.clearElapsedTimeLabel("hit");
            view.disableButtonsNextToHit();
            hitCollectionModel =
                new HitCollectionModel(view.getSeedTerm(), view.getHitSourceList(),
view.getRegistry(), view.getMaxThreads(), view.getMaxTermListSize(),
view.getHitCountInput());
            hitCollectionModel.registerErrorListener(this);
```

```
System.DateTime startTime = System.DateTime.Now;
           view.setHitModel(hitCollectionModel);
           hitCollectionModel.collectResults();
           view.showElapsedTimeinaLabel("hit", (System.DateTime.Now -
startTime).TotalSeconds.ToString());
           view.updateHitCountListBox();
           if (hitCollectionModel.getGeneratedHitCounts().Count > 1)
                view.enableButtonsNextToHit();
            if (view.isSaveChecked())
                view.writeHitCountResults();
        3
       public void getTopTermsClickedEvent()
        {
            view.clearDisplayBox("topterm");
           view.clearElapsedTimeLabel("topterm");
            topTermModel = new TopTermModel (view.getHitCountList(), view.getBeginYear(),
view.getEndYear());
            view.setTopTermModel(topTermModel);
            System.DateTime startTime = System.DateTime.Now;
            if (view.getTopTermMethodName().Equals("Early Growth"))
                topTermModel.calculateRanksUsingLogRatio();
            else
                topTermModel.calculateRanksUsingPercentage();
            view.showElapsedTimeinaLabel("topterm", (System.DateTime.Now -
startTime).TotalSeconds.ToString());
            view.updateTopTermListBox();
            if (view.isSaveChecked())
                view.writeTopTermResults();
        3
        public void getRefineTermsClickedEvent()
        {
            view.clearElapsedTimeLabel("term");
            view.disableButtonsNextToTerm();
            System.DateTime startTime = System.DateTime.Now;
            termModel =
                new TermCollectionModel(view.getSeedTerm(), view.getTermSourceList(),
view.getRegistry(), view.getMaxThreads(), view.getMaxTermListSize());
            termModel.setGeneratedTerms(view.getGeneratedTerms());
            view.clearDisplayBox("term");
            view.setTermModel(termModel);
            termModel.refine();
            view.showElapsedTimeinaLabel("term", (System.DateTime.Now -
startTime).TotalSeconds.ToString());
            view.updateTermListBox();
            if (termModel.getGeneratedTerms().Count > 0)
                view.enableButtonsNextToTerm();
            if (view.isSaveChecked())
                view.writeTermListResults();
        }
        public void updateMessage(string message)
        {
            view.updateMessage(message);
        }
    }
<%@ Page Language="C#" AutoEventWireup="true" CodeFile="Default.aspx.cs"
Inherits="MainView" %>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
    <title></title>
```

```
<style type="text/css">
       .style1
       {
          font-size: xx-large;
          text-align: center;
          width: 952px;
       }
       .style2
       {
          width: 74%;
      }
       .style3
       {
          font-size: xx-large;
          font-weight: bold;
      }
       .style4
       {
          width: 268435456px;
      }
       .style5
       {
          width: 190px;
      }
       .style6
      {
          width: 163px;
      }
       .style7
       {
          width: 452px;
      }
   </style>
</head>
<body>
   <form id="form1" runat="server">
   <div class="style1">
      <asp:ScriptManager ID="ScriptManager1" runat="server">
      </asp:ScriptManager>
      Early Growth Technology Analysis<br />
   </div>
   <br />
   Seed Term:
          <asp:TextBox ID="txtSeedTerm" runat="server">renewable</a>
energy</asp:TextBox>
           
      Term Generation Sources:
          <asp:CheckBoxList ID="chkboxlistTermGenerationSources" runat="server">
                 <asp:ListItem Selected="True" Value="scirus">Scirus</asp:ListItem>
                 <asp:ListItem Value="compendex">Compendex</asp:ListItem>
                 <asp:ListItem Value="inspec">Inspec</asp:ListItem>
             </asp:CheckBoxList>
          <asp:TextBox ID="txtNewTermSource" runat="server">Enter a new
source</asp:TextBox><br />
```

```
<asp:Button ID="btnAddNewTermSource" runat="server" Text="+"
              onclick="Button3_Click" />
           <asp:Button ID="btnDeleteTermSource" runat="server" Text="-"
              onclick="btnDeleteTermSource_Click" />
         Term List Size:
        <asp:TextBox ID="txtTermListSize" runat="server">100</asp:TextBox>
         
     >
        Hit Count Source:
        <asp:DropDownList ID="ddlistHitCountSource" runat="server">
              <asp:ListItem Value="scirushits">Scirus</asp:ListItem>
              <asp:ListItem Value="compendexhits">Compendex</asp:ListItem>
              <asp:ListItem Value="inspechits">Inspec</asp:ListItem>
           </asp:DropDownList>
        <asp:TextBox ID="txtNewHitSource" runat="server">Enter a new
source</asp:TextBox><br />
           <asp:Button ID="btnAddNewHitSource" runat="server" Text="+"
              onclick="btnAddNewHitSource_Click" />
           <asp:Button ID="btnDeleteHitSource" runat="server" Text="-"
              onclick="btnDeleteHitSource_Click" />
        Begin-End Years:
        <asp:TextBox ID="txtBeginYear" runat="server">2006</asp:TextBox>
           <span class="style3">-</span><asp:TextBox ID="txtEndYear"</pre>
runat="server">2008</asp:TextBox>
         
     Analysis Method:
              
     <asp:DropDownList ID="ddlistAnalysisMethod" runat="server" >
        <asp:ListItem>Total Growth</asp:ListItem>
        <asp:ListItem Selected="True">Early Growth</asp:ListItem>
     </asp:DropDownList>
         
     >
        Max # of threads:
         <asp:TextBox ID="txtPOETermNumber" runat="server">10</asp:TextBox>
          
     >
```

```
Registry:
        <asp:TextBox ID="txtRegistry" runat="server"
Width="307px">http://www.mit.edu/~ayshe/</asp:TextBox>
        <asp:TextBox ID="txtMessageBox" runat="server" style="float: left"</pre>
             TextMode="MultiLine" Width="367px"></asp:TextBox>
        >
                      <asp:CheckBox ID="chkBoxSave" runat="server"
Text="Save Results" AutoPostBack="True"
             oncheckedchanged="chkBoxSave_CheckedChanged" />
                      <asp:Button ID="btnGetAll" runat="server"
onclick="Button2_Click"
             Text="Get All" />
                       
                   <asp:Button ID="btnAnalyze" runat="server"
onclick="btnAnalyze_Click"
             style="text-align: center" Text="Get Terms" Width="128px" />
                        <asp:Button ID="btnRefine" runat="server"
Enabled="False"
             onclick="btnRefine_Click" Text="Refine" />
                      <asp:Button ID="btnGetHits" runat="server"
onclick="btnHitCounts_Click"
             Text="Get Hitcounts" Enabled="False" />
                        <asp:CheckBox ID="chkBoxAddSeedTerm" runat="server"
Text="add seed term" />
                      <asp:Button ID="btnGetTop" runat="server"
onclick="Button1_Click"
             Text="Get Top Terms" Enabled="False" />
                      </t.d>
                   >
                      Term List
                      Hit Counts
                      Top Terms
                   <asp:ListBox ID="lstBoxTermList" runat="server"
  Height="150px" Width="300px" style="margin-top: 0px"></asp:ListBox>
                      <asp:ListBox ID="lstBoxHitCounts" runat="server"
Height="150px"
  Width="300px"></asp:ListBox>
                      <asp:ListBox ID="lstTopTerms" runat="server"
Height="150px"
```

```
Width="300px" ></asp:ListBox>
                      <asp:HyperLink ID="HyperLink1" runat="server"
             NavigateUrl="~/ResultFiles/termlist.csv"
Visible="False">Download</asp:HyperLink>
                      <asp:HyperLink ID="HyperLink2" runat="server"
             NavigateUrl="~/ResultFiles/hitcounts.csv"
Visible="False">Download</asp:HyperLink>
                      <asp:HyperLink ID="HyperLink3" runat="server"
             NavigateUrl="~/ResultFiles/topterms.csv"
Visible="False">Download</asp:HyperLink>
                      <asp:Label ID="lblTermsTime" runat="server">Elapsed
time:</asp:Label>
                      <asp:Label ID="lblHitCountsTime" runat="server"
Text="Elapsed time:"></asp:Label>
                      <asp:Label ID="lblTopTermsTime" runat="server"
Text="Elapsed time:"></asp:Label>
                      </form>
</body>
</html>
                              .
```

## APPENDIX 6 -COMPLETE RANKED TERM LIST FOR SOLAR CASE STUDY

The list below shows the complete results we obtained from our EGTA tool for Solar Energy.

| 1                                                                                                               | Refractometers                | 37              | Terahertz Spectroscopy                   | 72  | Microfluidics          |
|-----------------------------------------------------------------------------------------------------------------|-------------------------------|-----------------|------------------------------------------|-----|------------------------|
| 2                                                                                                               | Nanomagnetics                 | 38              | Semiconducting<br>Intermetallics         | 73  | Disinfection           |
| 3                                                                                                               | Airfoils                      | (Alternational) |                                          | 74  | Biodiesel              |
| 4                                                                                                               | Ozonization                   | 39              | Nanotechnology                           | 75  | Oceanography           |
| 5                                                                                                               | Reactor Shutdowns             | 40              | Bioinformatics                           | 76  | Yeast                  |
| 6                                                                                                               | Decommissioning (Nuclear      | 41              | Navigation                               | 77  | Planets                |
| 6                                                                                                               | Reactors)                     | 42              | Molds                                    | 78  | Maleic Anhydride       |
| 7                                                                                                               | Polyaniline                   | 43              | Polyamides                               | 79  | Thermometers           |
| 8                                                                                                               | Nanophotonics                 | 44              | Sonochemistry                            | 80  | Superconductivity      |
| 9                                                                                                               | Limiters                      | 45              | Arctic Engineering                       | 81  | Photoreactivity        |
| 10                                                                                                              | Thermoanalysis                | 46              | Precious Metals                          | 82  | Biotechnology          |
| 11                                                                                                              | Bacteriology                  | 47              | Cryogenics                               | 83  | Photodynamic Therapy   |
| 12                                                                                                              | Hvdc Power Transmission       | 48              | Daylighting                              | 84  | Nitric Oxide           |
| 13                                                                                                              | Photoelectricity              | 49              | Microbiology                             | 85  | Cryogenic Equipment    |
|                                                                                                                 | Organometallics               | 50              | Microelectrodes                          |     | Metallorganic Chemical |
| 15                                                                                                              | Graphene                      |                 | High Resolution<br>Transmission Electron | 86  | Vapor Deposition       |
| 16                                                                                                              | Metamaterials                 | 51              | Microscopy                               | 87  | Carbon Nanotubes       |
|                                                                                                                 | Metallizing                   | 52              | Rockets                                  | 88  | Nanotubes              |
| 18                                                                                                              | photovoltaics                 | 53              | Microfiltration                          | 89  | Magnetoelectronics     |
| 19                                                                                                              | Vacancies                     | 54              | Composting                               | 90  | Climatology            |
| 20                                                                                                              | Nanosheets                    | 55              | Escherichia Coli                         | 91  | Phosphorylation        |
| 21                                                                                                              | Feedstocks                    | 56              | Cytology                                 | 92  | Education Computing    |
| 22                                                                                                              | Nuclear Fuel Reprocessing     | 57              | Mechatronics                             | 93  | Electron Optics        |
| 23                                                                                                              | Nanofluidics                  | 58              | Robotics                                 | 94  | Coagulation            |
|                                                                                                                 | Holographic Interferometry    | 59              | Ultrafiltration                          | 95  | Nitration              |
|                                                                                                                 | Aluminum Powder<br>Metallurgy | 60              | Fullerenes                               | 96  | Meteorology            |
|                                                                                                                 | Nanofibers                    | 61              | Quantum Electronics                      | 97  | Photometry             |
| Reisbertenen es                                                                                                 | Metallurgy                    | 62              | Phosphatases                             | 98  | Dust Collectors        |
|                                                                                                                 | Tribology                     | 63              | Atomic Force Microscopy                  | 99  | Cyclotrons             |
|                                                                                                                 | Feedwater Heaters             | 64              | Videodisks                               | 100 | Textiles               |
|                                                                                                                 | Photonics                     | 65              | Squids                                   | 101 | Ultrasonics            |
| terrena de la composición de la composi | Thermoelectric Equipment      | 66              | Nanocomposites                           | 102 | Nuclear Medicine       |
|                                                                                                                 | Exergy                        | 67              | Tensors                                  | 103 | Piezoelectricity       |
|                                                                                                                 | Rare Earths                   | 68              | Electromagnets                           | 104 | Biofilms               |
|                                                                                                                 |                               | 69              | Reflectometers                           | 105 | Logistics              |
| 2014-000-000                                                                                                    | Radio Navigation              | 70              | Hose Fittings                            | 106 | Radar                  |
|                                                                                                                 | Seismology                    | 71              | Feedback                                 | 107 | Global Warming         |
| 36                                                                                                              | Heat Exchangers               |                 |                                          |     |                        |

| 108 | Electron Microscopes                  |
|-----|---------------------------------------|
| 109 | Earth (Planet)                        |
| 110 | Pneumatic Drives                      |
| 111 | Pathology                             |
| 112 | Engineering Education                 |
| 113 | Technetium                            |
| 114 | Aluminum Metallurgy                   |
| 115 | Nanoindentation                       |
| 116 | Spice                                 |
| 117 | Plasma Diagnostics                    |
| 118 | Wind Turbines                         |
| 119 | Fossil Fuels                          |
| 120 | Oxidative Stress                      |
| 121 | Ozone Water Treatment                 |
| 122 | Polyesters                            |
| 123 | Genes                                 |
| 124 | Spacecraft                            |
| 125 | Nanostructured Materials              |
| 126 | Bioremediation                        |
| 127 | Metadata                              |
| 128 | Musical Instruments                   |
| 129 | Metabolism                            |
| 130 | Batch Reactors                        |
| 131 | Tin                                   |
| 132 | Solar Water Heaters                   |
| 133 | Photorefractive Crystals              |
| 134 | Atmospheric Aerosols                  |
| 135 | Plastics                              |
| 136 | Tellurium Compounds                   |
| 137 | Uranium                               |
| 138 | Biogeochemistry                       |
| 139 | Biochemistry                          |
| 140 | Xylose                                |
| 141 | Heterojunction Bipolar<br>Transistors |
| 142 | Dryers (Equipment)                    |
| 143 | Optical Microscopy                    |
| 144 | Wine                                  |
| 145 | Solar Cells                           |
| 146 | Bioreactors                           |
| 147 | Transmission Electron<br>Microscopy   |
| 148 | Dosimetry                             |

148 Dosimetry

| 149 | Oligonucleotides              |
|-----|-------------------------------|
| 150 | Superfluid Helium             |
| 151 | Polyelectrolytes              |
| 152 | Ozone                         |
| 153 | Transuranium Elements         |
| 154 | Robots                        |
| 155 | Ion Microscopes               |
| 156 | Nanowires                     |
| 157 | Peptides                      |
| 158 | Greenhouse Gases              |
| 159 | Acoustics                     |
| 160 | Compressors                   |
| 161 | Spectrum Analyzers            |
| 162 | Bioactivity                   |
| 163 | Microelectronics              |
| 164 | Fiber Bragg Gratings          |
| 165 | Electric Switchgear           |
| 166 | Energy Policy                 |
| 167 | Pneumatics                    |
| 168 | Antibiotics                   |
| 169 | Sales                         |
| 170 | Renewable Energy<br>Resources |
| 171 | Electromagnetism              |
| 172 | Nanocrystals                  |
| 173 | Surveying                     |
| 174 | Photocatalysis                |
| 175 | Nuclear Fuels                 |
| 176 | Forestry                      |
| 177 | Nuclear Industry              |
| 178 | Electrocatalysis              |
| 179 | Nitriding                     |
| 180 | Bioconversion                 |
| 181 | Gold Metallurgy               |
| 182 | Satellites                    |
| 183 | Nickel Alloys                 |
| 184 | Reentry                       |
| 185 | Monolayers                    |
| 101 |                               |

186 Quantum Chemistry

187 Mems

189 Tropics

190 Stars

188 Automation

| 191 | Galaxies                       |
|-----|--------------------------------|
| 192 | Gadolinium                     |
| 193 | Rna                            |
| 194 | Oxygenation                    |
| 195 | Pneumatic Control<br>Equipment |
| 196 | Dna                            |
| 197 | Solar Power Generation         |
| 198 | Magnetism                      |
| 199 | Quantum Optics                 |
| 200 | Photoelectrochemical Cells     |
| 201 | Coal Industry                  |
| 202 | Computer Crime                 |
| 203 | Abstracting                    |
| 204 | Interoperability               |
| 205 | Nuclear Reactors               |
| 206 | Silicon Solar Cells            |
| 207 | Solar Energy                   |
| 208 | Wimax                          |
| 209 | Hydroxylation                  |
| 210 | Siphons                        |
| 211 | Scintillation                  |
| 212 | Solar Concentrators            |
| 213 | Storms                         |
| 214 | Gas Emissions                  |
| 215 | Corrosion Protection           |
| 216 | Microwaves                     |
| 217 | Radio Astronomy                |
| 218 | Silver                         |
| 219 | Electrochemistry               |
| 220 | Mirrors                        |
| 221 | Rotors                         |
| 222 | Sols                           |
| 223 | Multiobjective<br>Optimization |
| 224 | Supply Chain Management        |
| 225 | Strontium                      |
| 226 | Gas Turbines                   |
| 227 | Virtual Reality                |
| 228 | Selenium                       |
| 229 | Nuclear Engineering            |
| 230 | Unsaturated Polymers           |
| 231 | Economics                      |

|            | •                                                                                                               |                  |
|------------|-----------------------------------------------------------------------------------------------------------------|------------------|
| 232        | Smart Antennas                                                                                                  |                  |
| 233        | Ethanol Fuels                                                                                                   |                  |
| 234        | Radioactive Waste Disposal                                                                                      |                  |
| 235        | Ecosystems                                                                                                      |                  |
| 236        | Solar Power Plants                                                                                              |                  |
| 237        | Wetlands                                                                                                        |                  |
| 238        | Cellulosic Ethanol                                                                                              |                  |
| 239        | Purification                                                                                                    |                  |
| 240        | Engines                                                                                                         |                  |
| 241        | Mass Spectrometry                                                                                               |                  |
| 242        | Feedback Control                                                                                                |                  |
| 243        | Scanning Electron<br>Microscopy                                                                                 | 12000            |
| 244        | Arsenic                                                                                                         | Land             |
| 245        | Plants (Botany)                                                                                                 | 1233             |
| 246        | State Feedback                                                                                                  |                  |
| 247        | Biology                                                                                                         | 1992             |
| 248        | Crack Tips                                                                                                      |                  |
| 249        | Balloons                                                                                                        | 19.25            |
| 250        | High Performance Liquid                                                                                         |                  |
| 250        | Chromatography                                                                                                  | and and a        |
| 251        | Climate Change                                                                                                  |                  |
| 252        | Fuels                                                                                                           | 2000             |
| 253        | Bacteria                                                                                                        | Provide second   |
| 254        | Pesticides                                                                                                      |                  |
| 255        | Cmos Integrated Circuits                                                                                        | 100000<br>100000 |
| 256        | Enzymes                                                                                                         |                  |
| 257<br>258 | Plutonium                                                                                                       |                  |
| NEWSTOR    | Radioactivity                                                                                                   |                  |
| 259<br>260 | Wireless Sensor Networks                                                                                        |                  |
| 261        | Teaching                                                                                                        |                  |
| 262        | Interferometry                                                                                                  |                  |
| 263        | Coal                                                                                                            |                  |
| 265        | Nanorods                                                                                                        |                  |
| 265        | Image Coding                                                                                                    |                  |
| 265        | Chitin                                                                                                          | 12445            |
| 267        | Flywheels                                                                                                       |                  |
| 267        | Human Engineering                                                                                               | alantes.         |
| 268        | A CARL AND A |                  |
| 269        | Safety Engineering                                                                                              |                  |
| 270        | Catalysts<br>Information Science                                                                                |                  |
|            | Probes                                                                                                          |                  |
| 272        | rioues                                                                                                          | ,                |

| 273 | Underwater Acoustics   |
|-----|------------------------|
| 274 | Solar System           |
| 275 | Glucose                |
| 276 | Polymers               |
| 277 | Seawater               |
| 278 | Spectrometry           |
| 279 | Photonic Crystals      |
| 280 | Biodegradation         |
| 281 | Agriculture            |
| 282 | Boiler Control         |
| 283 | Transparency           |
| 284 | Neurons                |
| 285 | Aerodynamics           |
| 286 | Recycling              |
| 287 | Gels                   |
| 288 | Nuclear Energy         |
| 289 | Platinum               |
| 290 | Amino Acids            |
| 291 | Superconducting Films  |
| 292 | Tunneling (Excavation) |
| 293 | Welding                |
| 294 | Cell Culture           |
| 295 | Wind Tunnels           |
| 296 | Rocket Engines         |
| 297 | Barium                 |
| 298 | Transportation         |
| 299 | Turbines               |
| 300 | Mooring                |
| 301 | Packaging Materials    |
| 302 | Ferroelectric Films    |
| 303 | Reheat Cycle           |
| 304 | Historic Preservation  |
| 305 | Microlenses            |
| 306 | Styrene                |
| 307 | Corrosion Resistance   |
| 308 | Gold                   |
| 309 | Chromatography         |
| 310 | Audio Systems          |
| 311 | Turbomachine Blades    |
| 312 | Solar Collectors       |
| 313 | Counting Circuits      |
| 314 | Biosensors             |
|     |                        |

| 315 | Plating                 |
|-----|-------------------------|
| 316 | Intermetallics          |
| 317 | Air Pollution           |
| 318 | Solar Equipment         |
| 319 | Scintillation Counters  |
| 320 | Authentication          |
| 321 | Caissons                |
| 322 | Steam                   |
| 323 | Internet                |
| 324 | Lakes                   |
| 325 | Pumps                   |
| 326 | Block Copolymers        |
| 327 | Rapid Thermal Annealing |
| 328 | Cell Membranes          |
| 329 | Fluorescence            |
| 330 | Sustainable Development |
| 331 | Energy Resources        |
| 332 | Harvesting              |
| 333 | Glycerol                |
| 334 | Enzyme Activity         |
| 335 | Technology              |
| 336 | Radio                   |
| 337 | Modulators              |
| 338 | Urea                    |
| 339 | Optical Resonators      |
| 340 | Nucleic Acids           |
| 341 | Biomass                 |
| 342 | Metabolites             |
| 343 | Digital Cameras         |
| 344 | Commerce                |
| 345 | Diamonds                |
| 346 | Remote Sensing          |
| 347 | Printing                |
| 348 | Artificial Intelligence |
| 349 | Greenhouses             |
| 350 | Nuclear Physics         |
| 351 | Flow Visualization      |
| 352 | Roofs                   |
| 353 | Proteins                |
| 354 | Hydrogen Peroxide       |
| 355 | Research                |
| 356 | Modems                  |
|     |                         |

| 357 | Photocatalysts                | 39 |
|-----|-------------------------------|----|
| 358 | Fermentation                  | 39 |
| 359 | Ice                           | 40 |
| 360 | Corrosion                     | 40 |
| 2(1 | Single-Walled Carbon          | 40 |
| 361 | Nanotubes (Swcn)              | 40 |
| 362 | Nanoparticles                 | 40 |
| 363 | Automobiles                   | 40 |
| 364 | Polypyrroles                  | 40 |
| 365 | Hydrophobicity                | 4( |
| 366 | Gravitation                   | 40 |
| 367 | Membrane Technology           | 4( |
| 368 | Nanostructures                | 41 |
| 369 | Calcium                       | 41 |
| 370 | Electroosmosis                | 4  |
| 371 | Hydrogels                     | 4  |
| 372 | Hydraulics                    | 4  |
| 373 | Ion Exchangers                | 4  |
| 374 | Fish                          | 4  |
| 375 | Crosstalk                     | 4  |
| 376 | Particle Detectors            |    |
| 377 | Semiconductor Quantum<br>Dots | 4  |
| 378 | Management                    | 4  |
| 379 | Towers                        | 43 |
| 380 | Ultrathin Films               | 4  |
| 381 | Coatings                      | 4  |
| 382 | Phospholipids                 | 4  |
| 383 | Rivers                        | 4  |
| 384 | Membranes                     | 4  |
| 385 | Water Resources               | 4  |
| 386 | Pressure Vessels              |    |
| 387 | Mesfet Devices                | 4  |
| 388 | Holmium                       | 4  |
| 500 | Surface Plasmon               | 4  |
| 389 | Resonance                     | 4  |
| 390 | Biogas                        | 4  |
| 391 | Curricula                     | 4  |
| 392 | Hydroxyapatite                | 4  |
| 393 | Ultrashort Pulses             | 4  |
| 394 | Superlattices                 | 4  |
| 395 | Nematic Liquid Crystals       | 4  |
| 396 | Neodymium Lasers              | 4  |
| 397 | Ytterbium                     | 4  |
|     |                               |    |

| 398 | Computer Science                                   |
|-----|----------------------------------------------------|
| 399 | Solar Refrigeration                                |
| 400 | Maltose                                            |
| 401 | Pollution                                          |
| 402 | Fatty Acids                                        |
| 403 | Landing                                            |
| 404 | Transesterification                                |
| 405 | Porphyrins                                         |
| 406 | Energy Management                                  |
| 407 | Ferritic Steel                                     |
| 408 | Gate Dielectrics                                   |
| 409 | Hydraulic Machinery                                |
| 410 | Imaging Systems                                    |
| 411 | Optical Multilayers                                |
| 412 | Resonant Tunneling Diodes                          |
| 413 | Superconducting Materials                          |
| 414 | Thermodynamics                                     |
| 415 | Composite Micromechanics                           |
| 416 | Copolymers                                         |
| 417 | Alloys                                             |
| 418 | Solid Oxide Fuel Cells<br>(Sofc)                   |
| 419 | Wind Power                                         |
| 420 | Microorganisms                                     |
| 421 | Clarification                                      |
| 422 | Lasers                                             |
| 423 | Adhesion                                           |
| 424 | Zinc                                               |
| 425 | Potentiometers (Electric<br>Measuring Instruments) |
| 426 | Sapphire                                           |
| 427 | Antigen-Antibody<br>Reactions                      |
| 428 | Nuclear Power Plants                               |
| 429 | Liquid Chromatography                              |
| 430 | Fuzzy Neural Networks                              |
| 431 | Farms                                              |
| 432 | Nonlinear Optics                                   |
| 433 | Software Engineering                               |
| 434 | Cryptography                                       |
| 435 | Gas Chromatography                                 |
| 436 | Accidents                                          |
| 437 | Pixels                                             |
| 438 | Turbidity                                          |
|     |                                                    |

| 439 | Petri Nets                   |
|-----|------------------------------|
| 440 | Quality Assurance            |
| 441 | Mortar                       |
| 442 | Electric Industry            |
| 443 | Fiber Optics                 |
| 444 | Plastic Products             |
| 445 | Lithium Batteries            |
| 446 | Steam Engineering            |
| 447 | Self Assembled<br>Monolayers |
| 448 | Denitrification              |
| 449 | Isotopes                     |
| 450 | Cadmium Compounds            |
| 451 | Microbial Fuel Cells         |
| 452 | Fuel Cells                   |
| 453 | Superconducting Wire         |
| 454 | Conservation                 |
| 455 | Mesoporous Materials         |
| 456 | Acids                        |
| 457 | Recovery                     |
| 458 | Galvanomagnetic Effects      |
| 459 | Electricity                  |
| 460 | Buildings                    |
| 461 | Sol-Gels                     |
| 462 | Mechanical Engineering       |
| 463 | Biofilters                   |
| 464 | Multilayers                  |
| 465 | Color                        |
| 466 | Stainless Steel              |
| 467 | Security Systems             |
| 468 | Computer Aided Design        |
| 469 | Cells                        |
| 470 | Controllers                  |
| 471 | Network Security             |
| 472 | Water Content                |
| 473 | Enclosures                   |
| 474 | Drug Delivery                |
| 475 | Ferroelectricity             |
| 476 | Pipe                         |
| 477 | Resonators                   |
| 478 | Presses (Machine Tools)      |
| 479 | Magnetohydrodynamics         |
| 480 | Forecasting                  |
|     |                              |

|     | High Temperature                     |
|-----|--------------------------------------|
| 481 | Superconductors                      |
| 482 | Detectors                            |
| 483 | Defects                              |
| 484 | Bicmos Technology                    |
| 485 | Ionizing Radiation                   |
| 486 | Biochemical Engineering              |
| 487 | Military Applications                |
| 488 | Materials Science                    |
| 489 | Photoelectron Spectroscopy           |
| 490 | Boilers                              |
| 491 | Learning Systems                     |
| 492 | Fluid Dynamics                       |
| 493 | Sedimentology                        |
| 494 | Power Electronics                    |
| 495 | Microchannels                        |
| 496 | Fracture                             |
| 497 | Spectrometers                        |
| 498 | Sensor Networks                      |
| 499 | Repair                               |
| 500 | Wireless Networks                    |
| 501 | Copper                               |
| 502 | Fault Tolerance                      |
| 503 | Mesh Networking                      |
| 504 | Water Recycling                      |
| 505 | Plasmons                             |
| 506 | Particle Swarm<br>Optimization (Pso) |
| 507 | Scanning                             |
| 508 | Iridium                              |
| 509 | Paramagnetic Resonance               |
| 510 | World Wide Web                       |
| 511 | Grid Computing                       |
| 512 | Sodium                               |
| 513 | Bridges                              |
| 514 | Standards                            |
| 515 | Data Mining                          |
| 516 | Image Analysis                       |
| 517 | Rheology                             |
| 518 | Planning                             |
| 519 | Photovoltaic Cells                   |
| 520 | Landforms                            |
| 521 | Computer Architecture                |

| 522                        | Soil Pollution                                |
|----------------------------|-----------------------------------------------|
| 523                        | Vlsi Circuits                                 |
| 523                        | Linearization                                 |
| 525                        | Plasmas                                       |
| 526                        | Mesh Generation                               |
| 527                        |                                               |
| 527                        | Laminar Flow                                  |
| 528                        | Raman Spectroscopy<br>Ceramic Materials       |
| 530                        |                                               |
| 531                        | Hydrodynamics                                 |
| 532                        | Magnets                                       |
| 533                        | Air Conditioning                              |
| ADDISION PROVIDED ADDISION | Hybrid Materials                              |
| 534                        | Polychlorinated Biphenyls<br>Nuclear Magnetic |
| 535                        | Resonance Spectroscopy                        |
| 536                        | Blending                                      |
| 537                        | Crops                                         |
| 538                        | Yttria Stabilized Zirconia                    |
| 539                        | Resonance                                     |
| 540                        | Design                                        |
| 541                        | Phosphorus                                    |
| 542                        | Soil Mechanics                                |
| 543                        | Krypton .                                     |
| 544                        | Catalysis                                     |
| 545                        | Ethanol                                       |
| 546                        | Synthetic Fuels                               |
| 547                        | Steam Power Plants                            |
| 548                        | Wastewater                                    |
| 549                        | Polystyrenes                                  |
| 550                        | Neodymium                                     |
| 551                        | Capillary Flow                                |
| 552                        | Sugar Substitutes                             |
| 553                        | Voltage Regulators                            |
| 554                        | Luminescence                                  |
| 555                        | Doppler Effect                                |
| 556                        | Water Pollution                               |
| 557                        | Scheduling                                    |
| 558                        | Ternary Systems                               |
| 559                        | Strategic Planning                            |
| 560                        | Retail Stores                                 |
| 561                        | Project Management                            |
| 562                        | Water Heaters                                 |
| 563                        | Superparamagnetism                            |
|                            |                                               |

| 564 | Chromatographic Analysis          |
|-----|-----------------------------------|
| 565 | Cultivation                       |
| 566 | Microelectromechanical Devices    |
| 567 | Fast Reactors                     |
| 568 | Wells                             |
| 569 | Glass                             |
| 570 | Hazards                           |
| 571 | Competition                       |
| 572 | Electrocatalysts                  |
| 573 | Table Lookup                      |
| 574 | Profitability                     |
| 575 | Sodium Sulfate                    |
| 576 | Heterojunctions                   |
| 577 | Hardware                          |
| 578 | Customer Satisfaction             |
| 579 | Fuel Economy                      |
| 580 | Distillation                      |
| 581 | Matlab                            |
| 582 | Security Of Data                  |
| 583 | Cables                            |
| 584 | Pyrolysis                         |
| 585 | Computational Fluid<br>Dynamics   |
| 586 | Software Design                   |
| 587 | Photoluminescence<br>Spectroscopy |
| 588 | Transmitters                      |
| 589 | Optical Waveguides                |
| 590 | Extraction                        |
| 591 | Wood Products                     |
| 592 | Vegetable Oils                    |
| 593 | School Buildings                  |
| 594 | Scanning Tunneling<br>Microscopy  |
| 595 | Risk Management                   |
| 596 | Photosensitizers                  |
| 597 | Product Design                    |
| 598 | Waveguides                        |
| 599 | Silicate Minerals                 |
| 600 | Gas Fuel Purification             |
| 601 | Waste Management                  |
| 602 | Radiation                         |
| 603 | Electric Utilities                |
|     |                                   |

|     |                         | -               |
|-----|-------------------------|-----------------|
| 604 | Hydrographic Surveys    | 6               |
| 605 | Iron                    | 6               |
| 606 | Electrolytes            | 6               |
| 607 | Quality Of Service      | 6               |
| 608 | Electric Vehicles       | 6               |
| 609 | Water Management        | 6               |
| 610 | Laws And Legislation    | 6               |
| 611 | Neural Networks         | 6               |
| 612 | Lithium                 | 6               |
| 613 | Fuzzy Logic             | 6               |
| 614 | Targets                 | 6               |
| 615 | Free Energy             | 6               |
| 616 | Thermoplastics          | 6               |
| 617 | Molecular Orientation   | 6               |
| 618 | Testing                 | 6               |
| 619 | Electrodeposition       | 6               |
| 620 | Laser Ablation          | 6               |
| 621 | Biological Materials    | e               |
| 622 | Photodegradation        | e               |
| 623 | Soils                   | e               |
| 624 | Accelerometers          | 6               |
| 625 | Multiphoton Processes   | (               |
| 626 | Delta Sigma Modulation  | 6               |
| 627 | Gas Plants              | (               |
| 628 | Carbon Steel            | (               |
| 629 | Materials               | (               |
| 630 | Anaerobic Digestion     | (               |
| 631 | Ducts                   | (               |
| 632 | Gamma Ray Spectrometers |                 |
| 633 | Power Plants            | 58735           |
| 634 | Computer Software       | Eles.           |
| 635 | Lanthanum               | (<br>1941 - 194 |
| 636 | Manganese               |                 |
| 637 | Metals                  |                 |
| 638 | Apatite                 |                 |
| 639 | Potassium               | 100             |
| 640 | Semiconductor Lasers    | (Eller          |
| 641 | Wire                    | 0645            |
| 642 | Molecular Dynamics      |                 |
| 643 | Reynolds Number         |                 |
| 644 | Drug Products Plants    | 19              |
| 645 | Methane                 | 0               |
|     |                         |                 |

| 646 | Chemical Sensors                          |
|-----|-------------------------------------------|
| 647 | Communication                             |
| 648 | Free Radicals                             |
| 649 | Paint                                     |
| 650 | Molybdenum                                |
| 651 | Creep                                     |
| 652 | Fabrics                                   |
| 653 | Knowledge Management                      |
| 654 | Production Engineering                    |
| 655 | Biological Membranes                      |
| 656 | Hydration                                 |
| 657 | Nutrients                                 |
| 658 | Solar Heating                             |
| 659 | Visual Communication                      |
| 660 | Network Architecture                      |
| 661 | Lipid Bilayers                            |
| 662 | Dust                                      |
| 663 | Dissociation                              |
| 664 | Natural Gas                               |
| 665 | Military Equipment                        |
| 666 | Cast Iron                                 |
| 667 | Multiprocessing Systems                   |
| 668 | Translation (Languages)                   |
| 669 | Spectroscopy                              |
| 670 | Lenses                                    |
| 671 | Silicon                                   |
| 672 | Air                                       |
| 673 | Gas Detectors                             |
| 674 | Quartz Crystal<br>Microbalances           |
| 675 | Rain                                      |
| 676 | Dyes                                      |
| 677 | Solar Buildings                           |
| 678 | Morphology                                |
| 679 | Fuzzy Systems                             |
| 680 | Tritium                                   |
| 681 | Water                                     |
| 682 | Water Conservation                        |
| 683 | Catchments                                |
| 684 | Uranium Dioxide                           |
| 685 | Maintenance                               |
| 686 | Rutherford Backscattering<br>Spectroscopy |

| 687   | Thermonuclear Reactions             |
|-------|-------------------------------------|
| 688   | Josephson Junction Devices          |
| 689   | Public Utilities                    |
| 690   | Induction Motors                    |
| 691   | Gas Hydrates                        |
| 692   | Gasoline                            |
| 693   | Energy Conservation                 |
| 694   | Gas Generators                      |
| 695   | Backscattering                      |
| 696   | Irrigation                          |
| 697   | Wheels                              |
| 698   | Machinery                           |
| (00   | Field Emission                      |
| 699   | Microscopes                         |
| 700   | Refractive Index                    |
| 701   | Emulsification                      |
| 702   | Transceivers                        |
| 703   | Terbium Alloys                      |
| 704   | Nuclear Propulsion                  |
| 705   | Solar Radiation                     |
| 706   | Software Testing                    |
| 707   | Fracture Mechanics                  |
| 708   | Hydrocarbons                        |
| 709   | Cobalt                              |
| 710   | Waste Incineration                  |
| 711   | Oxide Minerals                      |
| . 712 | Radiation Protection                |
| 713   | Fibers                              |
| 714   | Sieves                              |
| 715   | Gases                               |
| 716   | Industrial Applications             |
| 717   | Combustion                          |
| 718   | Climate Models                      |
| 719   | Pulsed Laser Deposition             |
| 720   | Buses                               |
| 721   | X Ray Photoelectron<br>Spectroscopy |
| 722   | Toxicity                            |
| 723   | Photolithography                    |
| 724   | Investments                         |
| 725   | Diesel Engines                      |
| 726   | Computer Programming                |
| 727   | Biodegradable Polymers              |
| 121   |                                     |

| 728 | Semiconductor Materials                 |
|-----|-----------------------------------------|
| 729 | Organic Light Emitting<br>Diodes (Oled) |
| 730 | Wastewater Treatment                    |
| 731 | Copolymerization                        |
| 732 | Backpropagation                         |
| 733 | Eutrophication                          |
| 734 | Interactive Computer<br>Systems         |
| 735 | Electric Energy Storage                 |
| 736 | Microwave Integrated<br>Circuits        |
| 737 | Offshore Structures                     |
| 738 | Modulation                              |
| 739 | Electrolytic Capacitors                 |
| 740 | Masks                                   |
| 741 | Image Segmentation                      |
| 742 | Genetic Algorithms                      |
| 743 | Europium                                |
| 744 | Organic Chemicals                       |
| 745 | Automobile Engines                      |
| 746 | Shrinkage                               |
| 747 | Ultraviolet Radiation                   |
| 748 | Floors                                  |
| 749 | Feeding                                 |
| 750 | Photoionization                         |
| 751 | Program Compilers                       |
| 752 | Tidal Power                             |
| 753 | Chitosan                                |
| 754 | Curing                                  |
| 755 | Nonlinear Feedback                      |
| 756 | Industrial Plants                       |
| 757 | Carbon Dioxide                          |
| 758 | Remediation                             |
| 759 | Developing Countries                    |
| 760 | Spectroscopic Analysis                  |
| 761 | Phosphorescence                         |
| 762 | Ruthenium                               |
| 763 | Biocompatibility                        |
| 764 | Biochemical Fuel Cells                  |
| 765 | Luminous Paint                          |
| 766 | Monitoring                              |
| 767 | Flexible Manufacturing<br>Systems       |

| 7(9           |                                 |
|---------------|---------------------------------|
| 768<br>769    | Photoluminescence<br>Poles      |
| 769           |                                 |
| 771           | Hydrolysis                      |
|               | Energy Storage                  |
| 772           | Public Works                    |
| 773           | Embedded Software               |
| 774           | Water Filtration                |
| 775           | Computer Hardware               |
| 777           | Fossil Fuel Power Plants        |
|               | Transient Analysis              |
| 778           | Fuel Storage                    |
| 779<br>780    | Xenon                           |
| 780           | Ac Motors                       |
|               | Fluidized Beds                  |
| 782           | Effluents                       |
| 783           | Fluids                          |
| 784<br>785    | Plastic Coatings                |
| 785           | Electric Rectifiers             |
| Distances and | Fracture Toughness              |
| 787           | Multicasting                    |
| 788<br>789    | Water Quality                   |
| 789           | Bayesian Networks               |
| 790           | Aluminum Alloys<br>Flocculation |
| 791           |                                 |
| 792           | Hybrid Computers<br>Inspection  |
| 794           | Acetylene                       |
| 795           | Throughput                      |
| 796           | Aluminum                        |
| 797           | Game Theory                     |
| 798           | Ultra-Wideband (Uwb)            |
| 799           | Electric Machinery              |
| 800           | Evapotranspiration              |
| 801           | Waves                           |
| 802           | Photovoltaic Effects            |
| 803           | Verification                    |
| 804           | Perovskite                      |
| 805           | Computer Simulation             |
| 806           | Ductility                       |
| 807           | Evolutionary Algorithms         |
| 808           | Cellular Neural Networks        |
| 809           | Coolants                        |
|               |                                 |

| 810 | Nitrification             |
|-----|---------------------------|
| 811 | Air Quality               |
| 812 | Energy Efficiency         |
| 813 | Pressure Transducers      |
| 814 | Gallium                   |
| 815 | Annealing                 |
| 816 | Optoelectronic Devices    |
| 817 | Moisture                  |
| 818 | Quantum Well Lasers       |
| 819 | Reinforced Concrete       |
| 820 | Electrochemical Corrosion |
| 821 | Office Buildings          |
| 822 | Magnetic Susceptibility   |
| 823 | Adatoms                   |
| 824 | Photopolymerization       |
| 825 | Ocean Currents            |
| 826 | Nucleate Boiling          |
| 827 | Fluidization              |
| 828 | Tall Buildings            |
| 829 | Deuterium                 |
| 830 | Gold Deposits             |
| 831 | Physical Optics           |
| 832 | Vehicles                  |
| 833 | Soil Conservation         |
| 834 | Solvent Extraction        |
| 835 | Irradiation               |
| 836 | Sodium Chloride           |
| 837 | X Rays                    |
| 838 | Sewage                    |
| 839 | Learning Algorithms       |
| 840 | Sulfur                    |
| 841 | Stress Analysis           |
| 842 | Chromium                  |
| 843 | Light Emission            |
| 844 | Power Converters          |
| 845 | Cements                   |
| 846 | Photonic Band Gap         |
| 847 | Chirality                 |
| 848 | Speed                     |
| 849 | Soil Moisture             |
| 850 | Optical Instruments       |
| 851 | Protective Coatings       |

| 852 | Intelligent Buildings  |     |
|-----|------------------------|-----|
| 853 | Molecules              |     |
| 854 | Stiffness              |     |
| 855 | Automata Theory        |     |
| 856 | Olefins                |     |
| 857 | Boron                  |     |
| 858 | Kinematics             |     |
| 859 | Semiconductor Growth   | 200 |
| 860 | Polarons               |     |
| 861 | Costs                  |     |
| 862 | Lactic Acid            |     |
| 863 | Fused Silica           |     |
| 864 | Fusion Reactors        |     |
| 865 | Graphite               |     |
| 866 | Polyethylenes          |     |
| 867 | Reliability            |     |
| 868 | Portable Equipment     |     |
| 869 | Esterification         |     |
| 870 | Polysaccharides        |     |
| 871 | Lanthanum Alloys       |     |
| 872 | Resins                 |     |
| 873 | Nitrogen Plasma        |     |
| 874 | Risk Assessment        |     |
| 875 | Radioisotopes          |     |
| 876 | Hardness               |     |
| 877 | Atomic Spectroscopy    |     |
| 878 | Excitons               |     |
| 879 | Ion Exchange Membranes |     |
| 880 | Retrofitting           |     |
| 881 | Specifications         |     |
| 882 | Standardization        |     |
| 883 | Zirconia               |     |
| 884 | Copper Compounds       |     |
| 885 | Amorphous Alloys       |     |
| 886 | Environmental Impact   |     |
| 887 | Chemisorption          |     |
| 888 | Dispersions            |     |
| 889 | Molecular Beam Epitaxy |     |
| 890 | Light                  |     |
| 891 | Cellulose              |     |
| 892 | Cosmic Ray Detectors   |     |
| 893 | Gallium Alloys         |     |
|     |                        |     |

| 894 | Internet Telephony                              |
|-----|-------------------------------------------------|
| 895 | Fabrication                                     |
| 896 | Reaction Kinetics                               |
|     | Telecommunication                               |
| 897 | Networks                                        |
| 898 | Leaching                                        |
| 899 | Synthesis (Chemical)                            |
| 900 | Networks (Circuits)                             |
| 901 | Magnesium                                       |
| 902 | Redox Reactions                                 |
| 903 | Land Use                                        |
| 904 | Infrared Detectors                              |
| 905 | Sensors                                         |
| 906 | Supply Chains                                   |
| 907 | Antiferromagnetism                              |
| 908 | Critical Current Density<br>(Superconductivity) |
| 909 | Gallium Arsenide                                |
| 910 | Silicon Carbide                                 |
| 911 | Thermodynamic Properties                        |
| 912 | Liquids                                         |
| 913 | Microstructure                                  |
| 914 | Electric Clocks                                 |
| 915 | Fuzzy Control                                   |
| 915 | Groundwater                                     |
| 917 | Dynamics                                        |
| 917 | Oxygen                                          |
| 919 | Ph Sensors                                      |
| 919 | Photodetectors                                  |
| 920 | Adsorption                                      |
| 921 | Schottky Barrier Diodes                         |
| 922 | Magnetic Materials                              |
| 923 | Rhodium                                         |
| 924 | Crosslinking                                    |
| 925 | Methanol Fuels                                  |
| 927 | Millimeter Wave Devices                         |
| 921 | Electrochemical Impedance                       |
| 928 | Spectroscopy                                    |
| 929 | Semiconducting Selenium<br>Compounds            |
| 930 | Automobile Parts And<br>Equipment               |
| 931 | Fiber Optic Sensors                             |
| 932 | Aquifers                                        |
| 933 | Roads And Streets                               |
|     |                                                 |

| 934 | Microwave Devices                        |
|-----|------------------------------------------|
| 935 | High Temperature Reactors                |
| 936 | Plasma Jets                              |
| 937 | Tensile Strength                         |
| 938 | Tuning                                   |
| 939 | Runoff                                   |
| 940 | Machine Design                           |
| 941 | Models                                   |
| 942 | Micelles                                 |
| 943 | Optimization                             |
| 944 | Water Treatment                          |
| 945 | Microwave Measurement                    |
| 946 | Semiconducting Gallium                   |
| 947 | Photolysis                               |
|     | Ultraviolet Photoelectron                |
| 948 | Spectroscopy                             |
| 949 | Solar Absorbers<br>Semiconductor Quantum |
| 950 | Wells                                    |
| 951 | Reinforcement                            |
| 952 | Infrared Spectroscopy                    |
| 953 | Carbon Fibers                            |
| 954 | Radioactive Wastes                       |
| 955 | Quantum Theory                           |
| 956 | Routers                                  |
| 957 | Laser Beams                              |
| 958 | Capillarity                              |
| 959 | Spray Pyrolysis                          |
| 960 | Formic Acid                              |
| 961 | Electron Guns                            |
| 962 | Cesium                                   |
| 963 | Molecular Oxygen                         |
| 964 | Ultraviolet Spectroscopy                 |
| 965 | Resonant Tunneling                       |
| 966 | Helium                                   |
| 967 | Electroluminescence                      |
| 968 | Antennas                                 |
| 969 | Strontium Alloys                         |
| 970 | Wireless<br>Telecommunication<br>Systems |
| 971 | Speech Recognition                       |
| 972 | Powders                                  |
| 973 | Iron Alloys                              |
| 15  |                                          |
|     |                                          |

| 974  | Heat Transfer                           |
|------|-----------------------------------------|
| 975  | Broadband Amplifiers                    |
| 976  | Electric Power Generation               |
| 977  | Gamma Rays                              |
| 978  | Welds                                   |
| 979  | Stabilization                           |
| 980  | Piezoelectric Actuators                 |
| 981  | Process Engineering                     |
| 982  | Contamination                           |
| 983  | Environmental Regulations               |
| 984  | Quality Control                         |
| 985  | Electric Power<br>Transmission          |
| 986  | Water Waves                             |
| 987  | Magnetron Sputtering                    |
| 988  | Methanol                                |
| 989  | Thermoelectric Power<br>Plants          |
| 990  | Crystals                                |
| 991  | Phosphorus Compounds                    |
| 992  | Microporosity                           |
| 993  | Reservoirs (Water)                      |
| 994  | Paraffins                               |
| 995  | Ethylene                                |
| 996  | Telecommunication<br>Systems            |
| 997  | Diesel Fuels                            |
| 998  | Negative Resistance                     |
| 999  | Pulsed Lasers                           |
| 1000 | Induction Heating                       |
| 1001 | Cracks                                  |
| 1002 | Acetone                                 |
| 1003 | Heat Resistance                         |
| 1004 | Neutrons                                |
| 1005 | Quantum Well Infrared<br>Photodetectors |
| 1006 | Film Growth                             |
| 1007 | Optical Materials                       |
| 1008 | Epitaxial Films                         |
| 1009 | Humidity Sensors                        |
| 1010 | Degradation                             |
| 1011 | Gallium Nitride                         |
| 1012 | Palladium                               |
| 1013 | Electric Generators                     |
|      |                                         |

| 1014         | Platinum Alloys                        |
|--------------|----------------------------------------|
| 1015         | Circuit Simulation                     |
| 1016         | Photocurrents                          |
| 1017         | Durability                             |
| 1018         | Lead                                   |
| 1019         | Electrolytic Cells                     |
| 1020         | Orbital Laboratories                   |
| 1021         | Mobile Ad Hoc Networks                 |
| 1022         | Microwave Irradiation                  |
| 1023         | District Heating                       |
| 1024         | Ph Effects                             |
| 1025         | Winding                                |
| 1026         | Optical Fibers                         |
| 1027         | Hybrid Systems                         |
| 1028         | Fading Channels                        |
| 1029         | Chromophores                           |
| 1030         | Mechanisms                             |
| 1031         | Electrochemical Cells                  |
| 1032         | Topology                               |
| 1033         | Substrates                             |
| 1034         | Electrospray Ionization                |
| 1035         | Sheet Metal                            |
| 1036         | Access Control                         |
| 1037         | Water Supply                           |
| 1038         | Radiation Effects                      |
| 1039         | Photoresists                           |
| 1040         | Waste Heat                             |
| 1041         | Global Optimization                    |
| 1042         | Crystallization                        |
| 1043         | Silica                                 |
| 1044         | Geologic Models                        |
| 1045         | Carbon Films                           |
| 1046         | Errors                                 |
| 1047         | Nitrogen                               |
| 1048         | Electric Power Systems                 |
| 1049         | Time Series                            |
| 1050         | Thiophene                              |
| 1051         | Diffusion                              |
| 1052         | Feature Extraction                     |
| 1053<br>1054 | Piezoelectric Materials                |
| 1034         | Deposition<br>Mobile Telecommunication |
| 1055         | Systems                                |
|              |                                        |

| 1056 | Polycondensation              |
|------|-------------------------------|
| 1057 | Flue Gases                    |
| 1058 | Electric Batteries            |
| 1059 | Solar Cell Arrays             |
| 1060 | Potable Water                 |
| 1061 | Complexation                  |
| 1062 | Laser Theory                  |
| 1063 | Organic Compounds             |
| 1064 | Feedback Amplifiers           |
| 1065 | Mathematical Programming      |
| 1066 | Experiments                   |
| 1067 | Underwater Soils              |
| 1068 | Water Tanks                   |
| 1069 | Binding Energy                |
| 1070 | Composite Membranes           |
| 1071 | X Ray Diffraction             |
| 1072 | Wind Effects                  |
| 1073 | Oxidation                     |
| 1074 | Digital Control Systems       |
| 1075 | Plasma Applications           |
| 1076 | Glass Lasers                  |
| 1077 | Systems Analysis              |
| 1078 | Sewage Treatment              |
| 1079 | Polymer Blends                |
| 1080 | Augmented Reality             |
| 1081 | Sugar (Sucrose)               |
| 1082 | Thermogravimetric<br>Analysis |
| 1083 | Radio Communication           |
| 1084 | Superconducting Magnets       |
| 1085 | Laser Pulses                  |
| 1086 | Polymer Films                 |
| 1087 | Cooling Systems               |
| 1088 | Water Cooling Systems         |
| 1089 | Spontaneous Emission          |
| 1090 | Energy Gap                    |
| 1091 | Phase Modulation              |
| 1092 | Silicon Alloys                |
| 1093 | Cascades (Fluid<br>Mechanics) |
| 1094 | Ionic Liquids                 |
| 1095 | Pressure Sensors              |
| 1096 | Thermocouples                 |
|      |                               |

| 1097 | Ito Glass                                  |
|------|--------------------------------------------|
| 1098 | Lanthanum Compounds                        |
| 1099 | Aldehydes                                  |
| 1100 | Magnetic Fields                            |
| 1101 | Fourier Transform Infrared<br>Spectroscopy |
| 1102 | Magnetic Films                             |
| 1103 | Decision Making                            |
| 1104 | Antimony                                   |
| 1105 | Dc-Dc Converters                           |
| 1106 | Domestic Appliances                        |
| 1107 | Stoichiometry                              |
| 1108 | Catalytic Oxidation                        |
| 1109 | Actuators                                  |
| 1110 | Environmental Protection<br>Agency         |
| 1111 | Personal Computers                         |
| 1112 | Embedded Systems                           |
| 1113 | Ac Generator Motors                        |
| 1114 | Crystal Growth                             |
| 1115 | Integrated Circuit Testing                 |
| 1116 | Direct Methanol Fuel Cells<br>(Dmfc)       |
| 1117 | Compressed Air                             |
| 1118 | Water Treatment Plants                     |
| 1119 | Wafer Bonding                              |
| 1120 | Niobium                                    |
| 1121 | Silicides                                  |
| 1122 | Electric Grounding                         |
| 1123 | Image Processing                           |
| 1124 | Wind Stress                                |
| 1125 | Human Computer<br>Interaction              |
| 1126 | Millimeter Waves                           |
| 1127 | Coastal Zones                              |
| 1128 | Materials Handling                         |
| 1129 | Pumping Plants                             |
| 1130 | Plasma Stability                           |
| 1131 | Optical Films                              |
| 1132 | Hydrogen                                   |
| 1133 | Aluminum Coatings                          |
| 1134 | Reaction Intermediates                     |
| 1135 | Power Generation                           |
| 1136 | Electric Converters                        |
|      |                                            |

| 1137 | Quenching                         |
|------|-----------------------------------|
| 1138 | Blooms (Metal)                    |
| 1139 | Atmospheric Humidity              |
| 1140 | Surface Chemistry                 |
| 1141 | X Ray Spectroscopy                |
| 1142 | Solidification                    |
| 1143 | Bearings (Structural)             |
| 1144 | Ferromagnetism                    |
| 1145 | Cyclic Voltammetry                |
| 1146 | Lithium Compounds                 |
| 1147 | Navier Stokes Equations           |
| 1148 | Radio Waves                       |
| 1149 | Heavy Metals                      |
| 1150 | Spin Glass                        |
| 1151 | Contact Angle                     |
| 1152 | Buoyancy                          |
| 1153 | Plasma Deposition                 |
| 1154 | Scattering                        |
| 1155 | Oxygen Vacancies                  |
| 1156 | Organic Polymers                  |
| 1157 | Thin Films                        |
| 1158 | Calibration                       |
| 1159 | Torque                            |
| 1160 | Activation Energy                 |
| 1161 | Grafting (Chemical)               |
| 1162 | Printed Circuit Boards            |
| 1163 | Stress Concentration              |
| 1164 | Telecommunication<br>Equipment    |
|      | Monolithic Microwave              |
| 1165 | Integrated Circuits               |
| 1166 | Phosphors                         |
| 1167 | Reluctance Motors                 |
| 1168 | Liquid Crystals                   |
| 1169 | Stresses                          |
| 1170 | Water Vapor<br>Programmable Logic |
| 1171 | Controllers                       |
| 1172 | Heating Equipment                 |
| 1173 | Film Preparation                  |
| 1174 | Digital Devices                   |
|      | Semiconducting Organic            |
| 1175 | Compounds                         |
| 1176 | Heat Radiation                    |
|      |                                   |

| 1177 | Semiconducting Aluminum<br>Compounds |
|------|--------------------------------------|
| 1178 | Underground Cables                   |
| 1179 | Energy Utilization                   |
| 1180 | Dissolution                          |
| 1181 | Gas Adsorption                       |
| 1182 | Wavelet Transforms                   |
| 1183 | Mercury (Metal)                      |
| 1184 | Body Fluids                          |
| 1185 | Sensitivity Analysis                 |
| 1186 | Cadmium Alloys                       |
| 1187 | Active Filters                       |
| 1188 | Reliability Analysis                 |
| 1189 | Oxidation Resistance                 |
| 1190 | Pilot Plants                         |
| 1191 | Plasma Display Devices               |
| 1192 | Ferrite                              |
| 1193 | Feedforward Neural<br>Networks       |
| 1194 | Linear Programming                   |
| 1195 | Organic Pollutants                   |
| 1196 | Geometry                             |
| 1197 | Epitaxial Growth                     |
| 1198 | Fault Tolerant Computer<br>Systems   |
| 1199 | Stochastic Systems                   |
| 1200 | Ray Tracing                          |
| 1201 | Measurements                         |
| 1202 | Sulfur Dioxide                       |
| 1203 | Cerium                               |
| 1204 | Isomers                              |
| 1205 | Polarization                         |
| 1206 | Pore Size                            |
| 1207 | Domain Walls                         |
| 1208 | Clustering Algorithms                |
| 1209 | Gold Coatings                        |
| 1210 | Calorific Value                      |
| 1211 | Partial Differential Equations       |
| 1212 | Classifiers                          |
| 1213 | Titanium                             |
| 1214 | Desorption                           |
| 1215 | Electron Tubes                       |
| 1216 | Dynamical Systems                    |
|      |                                      |

| 1217 | Bandwidth                    | 1    |
|------|------------------------------|------|
| 1218 | Industrial Water Treatment   | 1    |
| 1219 | Vacuum                       | 1    |
| 1220 | Aromatic Hydrocarbons        | 1    |
| 1221 | Ad Hoc Networks              | 1    |
| 1222 | High Energy Physics          | 1    |
| 1223 | Heat Pump Systems            | 1    |
| 1224 | Superconducting Cables       | 1    |
| 1225 | Physisorption                | 1    |
| 1226 | Grain Growth                 | 1    |
| 1227 | Reduction                    | 1    |
| 1228 | Point Defects                | 1    |
| 1229 | Tunnel Junctions             | 1    |
| 1230 | Frequency Synthesizers       | 1    |
| 1231 | Topography                   | 1    |
| 1232 | Sound Reproduction           | 1    |
| 1233 | Budget Control               | 1    |
| 1234 | Secondary Ion Mass           | 1    |
| 1234 | Spectrometry                 | 1    |
| 1235 | Electrochemical Sensors      | 1    |
| 1230 | Jitter<br>Computer Operating | 1    |
| 1237 | Systems                      | 1    |
| 1238 | Organic Acids                | 1    |
| 1239 | Electric Wire                | 1.   |
| 1240 | Bandpass Filters             | 1    |
| 1241 | Lithium Alloys               | 1    |
| 1242 | Light Transmission           | . 11 |
| 1243 | Transients                   | 1    |
| 1244 | Silicates                    | 1    |
| 1245 | Manganese Oxide              | - 12 |
| 1246 | Field Emission               | 12   |
| 1247 | Photoexcitation              | 12   |
| 1248 | Philosophical Aspects        | 11   |
| 1249 | Pulse Modulation             | .13  |
| 1250 | Stress Corrosion Cracking    | 1.   |
| 1251 | Optical Fiber Fabrication    | 12   |
| 1252 | Spheres                      | 1.   |
| 1253 | Crystal Structure            | 1.   |
| 1254 | Nucleation                   |      |
| 1255 | Coercive Force               | 12   |
| 1256 | Signal Detection             | 12   |
| 1257 | Electric Inverters           | 12   |
|      |                              | 12   |

| 1258 | Heavy Water                               |
|------|-------------------------------------------|
| 1259 | Structural Design                         |
| 1260 | Organic Carbon                            |
| 1261 | Materials Properties                      |
| 1262 | Data Transfer                             |
| 1263 | Vapors                                    |
| 1264 | Zinc Oxide                                |
| 1265 | Mass Transfer                             |
| 1266 | Heating                                   |
| 1267 | Temperature                               |
| 1268 | Logic Design                              |
| 1269 | Energy Transfer                           |
| 1270 | Glassy Carbon                             |
| 1271 | Galerkin Methods                          |
| 1272 | Computational Methods                     |
| 1273 | Hydrogen Production                       |
| 1274 | Semiconducting Silicon                    |
| 1275 | Surface Morphology                        |
| 1276 | Electrochemical Properties                |
| 1277 | Ionization                                |
| 1278 | Electric Network Analysis                 |
| 1279 | Ion Exchange                              |
| 1280 | Molecular Beams                           |
| 1281 | Groundwater Pollution                     |
| 1282 | Algorithms                                |
| 1283 | Image Sensors                             |
| 1284 | Sun Hoods .                               |
| 1285 | Metal Recovery                            |
| 1286 | Salts                                     |
| 1287 | Pulsed Laser Applications                 |
| 1288 | Total Quality Management                  |
| 1289 | Stability                                 |
| 1290 | Removal                                   |
| 1291 | Permanent Magnets                         |
| 1292 | Quantum Efficiency<br>Electronic Guidance |
| 1293 | Systems                                   |
| 1294 | Support Vector Machines                   |
| 1295 | Oscillators (Electronic)                  |
| 1296 | Vacuum Technology                         |
| 1297 | Reflection                                |
| 1298 | Sensor Nodes                              |
| 1299 | Oxygen Sensors                            |
|      |                                           |

| 1300 | Estimation                      |
|------|---------------------------------|
| 1301 | Analog Circuits                 |
| 1302 | Friction                        |
| 1303 | Solids                          |
| 1304 | Self Assembly                   |
| 1305 | Atmospheric Temperature         |
| 1306 | Emission Spectroscopy           |
| 1307 | Stators                         |
| 1308 | Ordinary Differential Equations |
| 1309 | Digital Integrated Circuits     |
| 1310 | Hall Mobility                   |
| 1311 | Surface Waters                  |
| 1312 | Dissolved Oxygen Sensors        |
| 1313 | Propylene                       |
| 1314 | Fuzzy Sets                      |
| 1315 | Salinity Measurement            |
| 1316 | Pressure Effects                |
| 1317 | Humidity Control                |
| 1318 | Optical Systems                 |
| 1319 | Optical Kerr Effect             |
| 1320 | Protonation                     |
| 1321 | Electric Inductors              |
| 1322 | Power Amplifiers                |
| 1323 | Tungsten                        |
| 1324 | Waste Disposal                  |
| 1325 | Failure Analysis                |
| 1326 | Data Processing                 |
| 1327 | Cerium Alloys                   |
| 1328 | Grain (Agricultural<br>Product) |
| 1329 | Ketones                         |
| 1330 | Ion Exchange Resins             |
| 1331 | Predictive Control Systems      |
| 1332 | Differential Equations          |
| 1333 | Functional Groups               |
| 1334 | Dewatering                      |
| 1335 | Cooling                         |
| 1336 | Emission Control                |
| 1337 | Semiconductor Devices           |
| 1338 | Atmospheric Pressure            |
| 1339 | Stochastic Control Systems      |
| 1340 | Titanium Alloys                 |
|      |                                 |

| 1341 | Absorption                        | 1  |
|------|-----------------------------------|----|
| 1342 | Control System Analysis           | 1. |
| 1343 | Specific Heat                     | 1  |
| 1344 | Temperature Control               | 1  |
| 1345 | Metal Analysis                    | 1  |
| 1346 | Oxygen Supply                     | 1  |
| 1347 | Conformal Mapping                 | 1  |
| 1348 | Energy Conversion                 | 1  |
| 1349 | Photodiodes                       | 1  |
| 1350 | Brittle Fracture                  | 1  |
| 1351 | Alkalinity                        | 1  |
| 1352 | Chemical Water Treatment          | 1  |
| 1353 | Temperature Sensors               | 1  |
| 1354 | <b>Biological Water Treatment</b> | 1  |
| 1355 | Switching                         | 1  |
| 1356 | Combinatorial<br>Optimization     | 1  |
| 1350 | Esters                            | 1  |
| 1357 | Industrial Waste Treatment        | 1  |
| 1359 | Optical Sensors                   | 1  |
| 1359 | Scheduling Algorithms             | 1  |
| 1361 | Monomers                          | 1  |
| 1362 | Glow Discharges                   | 1  |
| 1363 | Ventilation Exhausts              | 1  |
| 1364 | Torque Control                    | 1  |
| 1365 | Metal Working                     | 1  |
| 1505 | Differential Scanning             | 1  |
| 1366 | Calorimetry                       | 1  |
| 1367 | Model Predictive Control          | 1  |
| 1368 | Nonlinear Systems                 | 1  |
| 1369 | Doping (Additives)                | 1  |
| 1370 | Concurrency Control               | 1  |
| 1371 | Mach Number                       | 1  |
| 1372 | Anodes                            | 1  |
| 1373 | Electrodes                        | 1  |
| 1374 | Vectors                           | 1  |
| 1375 | Regression Analysis               | 1  |
| 1376 | Quartz                            | 1  |
| 1377 | Polymerization                    | 1  |
| 1378 | Potential Energy                  | 1  |
| 1379 | Moisture Control                  | 1  |
| 1380 | Light Water Reactors              | 1  |
| 1381 | Agglomeration                     | 1  |
|      |                                   |    |

| 382  | Elementary Particles           |
|------|--------------------------------|
| 383  | Sintering                      |
| 384  | Thermal Conductivity Of Gases  |
| 385  | Hafnium                        |
| 386  | Germanium                      |
| 387  | Acoustic Waves                 |
| 388  | Manganese Compounds            |
| 389  | Economic And Social<br>Effects |
| 390  | Laser Excitation               |
| 391  | Model Buildings                |
| 392  | Mechanical Properties          |
| 1393 | Optical Properties             |
| 394  | Heat Sinks                     |
| 1395 | Porous Silicon                 |
| 1396 | Turbulence Models              |
| 1397 | Stearic Acid                   |
| 1398 | Fluorine                       |
| 1399 | Semiconductor Junctions        |
| 1400 | Green'S Function               |
| 1401 | Inductance                     |
| 1402 | Flow Of Fluids                 |
| 1403 | Optical Constants              |
| 1404 | Problem Solving                |
| 1405 | Indium Sulfide                 |
| 1406 | Message Passing                |
| 1407 | Plastic Films                  |
| 1408 | Valves (Mechanical)            |
| 1409 | Composite Films                |
| 1410 | Oxide Films                    |
| 1411 | Adaptive Control Systems       |
| 1412 | Zinc Sulfide                   |
| 1413 | Capacitors                     |
| 1414 | Silicon Wafers                 |
| 1415 | Integrated Circuits            |
| 1416 | Indium                         |
| 1417 | Thermal Conductivity           |
| 1418 | Rapid Thermal Processing       |
| 1419 | Organic Conductors             |
| 1420 | Chemical Oxygen Demand         |
| 1421 | Excited States                 |
| 1422 | Computer Control Systems       |

| 1423 | Condensation                     |
|------|----------------------------------|
| 1424 | Backpropagation<br>Algorithms    |
| 1425 | Reactive Power                   |
| 1426 | Data Communication<br>Systems    |
| 1427 | Dc Power Transmission            |
| 1428 | Network Protocols                |
| 1429 | Decision Theory                  |
| 1430 | Bipolar Transistors              |
| 1431 | Organic Coatings                 |
| 1432 | Semiconducting Indium            |
| 1433 | Cost Effectiveness               |
| 1434 | Interconnection Networks         |
| 1435 | Crossbar Equipment               |
| 1436 | Silver Alloys                    |
| 1437 | Real Time Systems                |
| 1438 | Data Flow Analysis               |
| 1439 | Anisotropy                       |
| 1440 | Coalescence                      |
| 1441 | Cobalt Compounds                 |
| 1442 | Liquid Nitrogen                  |
| 1443 | Electrons                        |
| 1444 | Wave Power                       |
| 1445 | Digital Image Storage            |
| 1446 | User Interfaces                  |
| 1447 | Metastable Phases                |
| 1448 | Electronic Structure             |
| 1449 | Leakage Currents                 |
| 1450 | Electromagnetic Waves            |
| 1451 | Cold Storage                     |
| 1452 | Magnetic Properties              |
| 1453 | Iron Compounds                   |
| 1454 | Semiconductor Diodes             |
| 1455 | Zirconium                        |
| 1456 | Selective Catalytic<br>Reduction |
| 1457 | Beam Plasma Interactions         |
| 1458 | Organic Solvents                 |
| 1459 | Spin Dynamics                    |
| 1460 | Natural Convection               |
| 1461 | Semiconducting Silicon           |
| 1461 | Compounds<br>Error Correction    |
| 1462 | Error Correction                 |

| 1463         | Heat Convection                    |
|--------------|------------------------------------|
| 1464         | Ground State                       |
| 1465         | Heat Storage                       |
| 1466         | Ionization Chambers                |
| 1467         | Dynamic Programming                |
| 1468         | Mathematical Models                |
| 1469         | Ion Beams                          |
| 1470         | Water Supply Systems               |
| 1471         | Iridium Compounds                  |
| 1472         | Engine Cylinders                   |
| 1473         | Light Polarization                 |
| 1474         | Molybdenum Oxide                   |
| 1475         | Single Crystals                    |
| 1476         | Data Structures                    |
| 1477         | Electronic Properties              |
| 1478         | Frequency Modulation               |
| 1479         | Electron Gas                       |
| 1480         | Process Control                    |
| 1481         | Surface Reactions                  |
| 1482         | Semiconducting Lead<br>Compounds   |
| 1483         | Routing Algorithms                 |
| 1484         | Boron Nitride                      |
| 1485         | Multilayer Films                   |
| 1486         | Fuzzy Inference                    |
| 1487         | Liquid Films                       |
| 1488         | Diodes                             |
| 1489         | Cantilever Beams                   |
|              | Pulse Amplitude                    |
| 1490         | Modulation                         |
| 1491         | Numerical Analysis                 |
| 1492         | Thermodynamic Stability            |
| 1493<br>1494 | Spectrum Analysis                  |
| 1494         | Capacitance                        |
| 1495         | Decoding<br>Robust Control         |
| 1490         |                                    |
| 1497         | Amorphous Films<br>Electric Drives |
| 1498         | Temperature Measurement            |
| 1499         | Non Newtonian Flow                 |
| 1500         | Activated Carbon                   |
| 1501         |                                    |
| 1502         | Signal Processing<br>Cathodes      |
| 1303         | Calloues                           |

| 1504 | Formal Methods                         |
|------|----------------------------------------|
| 1505 | Time Series Analysis                   |
| 1506 | Nuclear Reactor Accidents              |
| 1507 | Charge Transfer                        |
| 1508 | Nusselt Number                         |
| 1509 | Electromagnetic Fields                 |
| 1510 | Light Emitting Diodes                  |
| 1511 | Catalyst Selectivity                   |
| 1512 | Design Of Experiments                  |
| 1513 | Flash Memory                           |
|      | Proton Exchange<br>Membrane Fuel Cells |
| 1514 | (Pemfc)                                |
| 1515 | Flow Control                           |
| 1516 | Time Measurement                       |
| 1517 | Encoding (Symbols)                     |
| 1518 | Ethylene Glycol                        |
| 1519 | Voltage Control                        |
| 1520 | Solenoids                              |
| 1521 | Time Domain Analysis                   |
| 1522 | Transport Properties                   |
| 1523 | Polynomials                            |
| 1524 | Electron Mobility                      |
| 1525 | Numerical Methods                      |
| 1526 | Suspensions (Fluids)                   |
| 1527 | Adsorption Isotherms                   |
| 1528 | Resource Allocation                    |
| 1529 | Velocity                               |
| 1530 | Tubes (Components)                     |
| 1531 | Phonons                                |
| 1532 | Normal Distribution                    |
| 1533 | Transistors                            |
| 1534 | Phase Change Materials                 |
| 1535 | Alcohols                               |
| 1536 | Electric Potential                     |
| 1537 | Cracking (Chemical)                    |
| 1538 | Thermal Energy                         |
| 1539 | Flow Of Gases                          |
| 1540 | Dielectric Properties                  |
| 1541 | Pressure Drop                          |
| 1542 | Coding Errors                          |
| 1543 | Crack Propagation                      |
| 1544 | Amorphous Silicon                      |

| 1545 | Internet Protocols                |
|------|-----------------------------------|
| 1546 | Nitrides                          |
| 1547 | Electron Beams                    |
| 1548 | Harmonic Analysis                 |
| 1549 | Forced Convection                 |
| 1550 | Light Sources                     |
| 1551 | Dielectric Materials              |
| 1552 | Phenols                           |
| 1553 | Sulfur Compounds                  |
| 1554 | Absorption Spectroscopy           |
| 1555 | Glass Transition                  |
| 1556 | Plates (Structural<br>Components) |
| 1557 | Adaptive Algorithms               |
| 1558 | Ions                              |
| 1559 | Protons                           |
| 1560 | Electrochemical Electrodes        |
| 1561 | Activated Sludge Process          |
| 1562 | Structural Properties             |
| 1563 | Surface Testing                   |
| 1564 | Solubility                        |
| 1565 | Water Absorption                  |
| 1566 | Surfaces                          |
| 1567 | Leakage (Fluid)                   |
| 1568 | Electric Fields                   |
| 1569 | Amplitude Modulation              |
| 1570 | Zinc Compounds                    |
| 1571 | Tantalum                          |
| 1572 | Photons                           |
| 1573 | Functional Polymers               |
| 1574 | Polymeric Films                   |
| 1575 | Ion Implantation                  |
| 1576 | Conducting Polymers               |
| 1577 | Passive Networks                  |
| 1578 | Thermal Expansion                 |
| 1579 | Sol-Gel Process                   |
| 1580 | Catalyst Supports                 |
| 1581 | System Stability                  |
| 1582 | Pumping (Laser)                   |
| 1583 | Timing Jitter                     |
| 1584 | Metallic Compounds                |
| 1585 | Traffic Surveys                   |
| 1586 | Passive Solar Buildings           |
|      |                                   |

| 16 |
|----|
| 16 |
| 16 |
| 16 |
| 16 |
| 16 |
| 16 |
| 16 |
| 16 |
| 16 |
| 16 |
| 16 |
| 16 |
| 16 |
| 16 |
| 16 |
| 16 |
| 16 |
| 16 |
| 16 |
| 16 |
| 10 |
| 10 |
|    |
| 10 |
| 10 |
| 10 |
| 10 |
| 10 |
| 10 |
| 10 |
| 10 |
| 10 |
| 1  |
| 10 |
| 1  |
| 1  |
| 1  |
| 1  |
|    |
| 1  |
|    |

| 1628 | Barium Compounds                |
|------|---------------------------------|
| 1629 | Electric Discharges             |
| 1630 | Probability                     |
| 1631 | Reforming Reactions             |
| 1632 | Yttrium Barium Copper<br>Oxides |
| 1633 | Ammonium Compounds              |
| 1634 | Mathematical Operators          |
| 1635 | Mixed Convection                |
| 1636 | Porous Materials                |
| 1637 | Titanium Dioxide                |
| 1638 | Paper Sheeting                  |
| 1639 | Orbital Transfer                |
| 1640 | Tunnel Diodes                   |
| 1641 | Evaporation                     |
| 1642 | Ionization Of Gases             |
| 1643 | Atoms                           |
| 1644 | Mos Devices                     |
| 1645 | Formal Logic                    |
| 1646 | Dynamic Response                |
| 1647 | Fermions                        |
| 1648 | Isotherms                       |
| 1649 | Silicon Nitride                 |
| 1650 | Atmospheric Boundary<br>Layer   |
| 1651 | Distributed Computer<br>Systems |
| 1652 | Ferromagnetic Materials         |
| 1653 | Thin Film Transistors           |
| 1654 | Signal Interference             |
| 1655 | Iron Oxides                     |
| 1656 | Hysteresis                      |
| 1657 | X Ray Diffraction Analysis      |
| 1658 | Temporal Logic                  |
| 1659 | Concentration (Process)         |
| 1660 | Molten Materials                |
| 1661 | Voltage Dividers                |
| 1662 | Transmissions                   |
| 1663 | Tin Compounds                   |
| 1664 | Atmospheric Movements           |
| 1665 | Relaxation Processes            |
| 1666 | Stochastic Models               |
| 1667 | Activated Carbon<br>Treatment   |
|      |                                 |

| 1668 | Microprocessor Chips                         |
|------|----------------------------------------------|
| 1669 | Electric Load Forecasting                    |
| 1670 | Dissimilar Metals                            |
| 1671 | Toluene                                      |
| 1672 | Insulated Gate Bipolar<br>Transistors (Igbt) |
| 1673 | Uncertain Systems                            |
| 1674 | Packet Networks                              |
| 1675 | Mosfet Devices                               |
| 1676 | Model Structures                             |
| 1677 | Impurities                                   |
| 1678 | Incompressible Flow                          |
| 1679 | Phase Locked Loops                           |
| 1680 | Conjugated Polymers                          |
| 1681 | Ethers                                       |
| 1682 | Optical Instrument Lenses                    |
| 1683 | Monte-Carlo Methods                          |
| 1684 | Three Dimensional<br>Computer Graphics       |
| 1685 | Metallic Films                               |
| 1686 | Transconductance                             |
| 1687 | Electric Current Control                     |
| 1688 | Temperature Distribution                     |
| 1689 | Space Heating                                |
| 1690 | Numerical Control Systems                    |
| 1691 | Differential Amplifiers                      |
| 1692 | Cost Reduction                               |
| 1693 | Parallel Architectures                       |
| 1694 | Fiber Optic Components                       |
| 1695 | Biochemical Oxygen<br>Demand                 |
| 1696 | Luminescence Of Organic<br>Solids            |
| 1697 | Fermi Level                                  |
| 1698 | Fluid Structure Interaction                  |
| 1699 | Surface Topography                           |
| 1700 | Electrolytic Reduction                       |
| 1701 | Magnetic Flux                                |
| 1702 | Cost Benefit Analysis                        |
| 1703 | Electric Contactors                          |
| 1704 | Cutoff Frequency                             |
| 1705 | X Ray Absorption                             |
| 1706 | Frequency Response                           |
| 1707 | Asymptotic Stability                         |

| 1708 | Control System Stability                |                      |
|------|-----------------------------------------|----------------------|
| 1709 | Crystalline Materials                   |                      |
| 1710 | Phase Interfaces                        |                      |
| 1711 | Chemicals Removal (Water<br>Treatment)  |                      |
| 1712 | Surface Tension                         |                      |
| 1713 | Linear Systems                          | -                    |
| 1714 | Inlet Flow                              |                      |
| 1715 | Uncertainty Analysis                    |                      |
| 1716 | Shells (Structures)                     |                      |
| 1717 | Switching Networks                      |                      |
| 1718 | Wave Filters                            |                      |
| 1719 | Grain Boundaries                        |                      |
| 1720 | Epitaxial Layers                        |                      |
| 1721 | Cerium Compounds                        |                      |
| 1722 | Particles (Particulate Matter)          |                      |
| 1723 | Walls (Structural Partitions)           |                      |
| 1724 | Precipitation (Chemical)                |                      |
| 1725 | Switching Systems                       |                      |
| 1726 | <b>Boiling Water Reactors</b>           |                      |
| 1727 | Surface Properties                      |                      |
| 1728 | Adders                                  |                      |
| 1729 | Heuristic Algorithms                    |                      |
| 1730 | Phase Separation                        |                      |
| 1731 | Nitrogen Oxides                         |                      |
| 1732 | Coordination Reactions                  |                      |
| 1733 | Conversion Efficiency                   |                      |
| 1734 | Light Absorption                        |                      |
| 1735 | Buffer Layers                           | an./1.445            |
| 1736 | Wastewater Reclamation                  |                      |
| 1737 | Nitrogen Removal                        | 5.8380               |
| 1738 | Polysilicon                             |                      |
| 1739 | Thermal Noise                           |                      |
| 1740 | Semiconductor Device<br>Manufacture     | 1797<br>1797<br>1797 |
| 1741 | Electrostatic Discharge                 | ţ                    |
| 1742 | Magnetic Field<br>Measurement           |                      |
| 1743 | Optimal Systems                         |                      |
| 1744 | Electric Properties                     |                      |
| 1745 | Transistor Transistor Logic<br>Circuits |                      |
| 1746 | Analog To Digital<br>Conversion         |                      |
|      |                                         |                      |

|      | Robustness (Control                  |
|------|--------------------------------------|
| 1747 | Systems)                             |
| 1748 | Crystal Orientation                  |
| 1749 | Field Effect Transistors             |
| 1750 | Ion Bombardment                      |
| 1751 | Graphite Electrodes                  |
| 1752 | Network Components                   |
| 1753 | Magnetic Devices                     |
| 1754 | Operational Amplifiers               |
| 1755 | Passivation                          |
| 1756 | Transition Metals                    |
| 1757 | Threshold Voltage                    |
| 1758 | Damping                              |
| 1759 | Measurement Theory                   |
| 1760 | Extrapolation                        |
| 1761 | Wave Propagation                     |
| 1762 | Magnetic Moments                     |
| 1763 | Silicon Compounds                    |
| 1764 | Metal Ions                           |
| 1765 | Heat Conduction                      |
| 1766 | Moisture Determination               |
| 1767 | Coincidence Circuits                 |
| 1768 | Variable Frequency<br>Oscillators    |
| 1769 | Gas Permeable Membranes              |
| 1770 | Surface Structure                    |
| 1771 | Radio Receivers                      |
| 1772 | Titanium Nitride                     |
| 1773 | Semiconductor Doping                 |
| 1774 | Magnetic Field Effects               |
| 1775 | Surface Active Agents                |
| 1776 | Microcrystalline Silicon             |
| 1777 | Two Dimensional                      |
| 1778 | Crystal Atomic Structure             |
| 1779 | Sewage Pumping Plants                |
| 1780 | Electron Energy Loss<br>Spectroscopy |
| 1781 | Flow Fields                          |
| 1782 | Logic Circuits                       |
| 1783 | Ionization Of Liquids                |
| 1784 | Cationic Polymerization              |
| 1785 | Hydrophilicity                       |
| 1786 | Frequency Bands                      |
| 1787 | Pulse Position Modulation            |

|      | Electric Power                        |
|------|---------------------------------------|
| 1788 | Measurement                           |
| 1789 | Drain Current                         |
| 1790 | Surface Roughness                     |
| 1791 | Catalyst Deactivation                 |
| 1792 | Magnetic Storage                      |
| 1793 | Infrared Devices                      |
| 1794 | Vapor Deposition                      |
| 1795 | Flow Patterns                         |
| 1796 | Electric Conductivity                 |
| 1797 | Tungsten Compounds                    |
| 1798 | Free Radical<br>Polymerization        |
| 1799 | Pressurized Water Reactors            |
| 1800 | Cyclic Loads                          |
| 1801 | Distribution Functions                |
| 1802 | Power Spectrum                        |
| 1803 | Electric Lines                        |
| 1804 | Flexible Displays                     |
| 1805 | High Electron Mobility<br>Transistors |
| 1806 | Electromagnetic Pulse                 |
| 1807 | Hole Mobility                         |
| 1808 | Residual Stresses                     |
| 1809 | Electric Network Topology             |
| 1810 | Negative Ions                         |
| 1811 | Logic Gates                           |
| 1812 | Effluent Treatment                    |
| 1813 | Phase Transitions                     |
| 1814 | Low Noise Amplifiers                  |
| 1815 | Two Phase Flow                        |
| 1816 | Rough Set Theory                      |
| 1817 | Electric Signal Systems               |
| 1818 | Exhaust Gases                         |
| 1819 | Routing Protocols                     |
| 1820 | Continuous Time Systems               |
| 1821 | Carrier Concentration                 |
| 1822 | Partial Pressure                      |
| 1823 | Terminals (Electric)                  |
| 1824 | Calcination                           |
| 1825 | Trace Elements                        |
| 1826 | Parallel Flow                         |
| 1827 | Chlorine Compounds                    |
| 1828 | Packet Switching                      |

| 1829  | Chemical Vapor Deposition                     | 1    |
|-------|-----------------------------------------------|------|
| 1830  | Sound Insulating Materials                    | 1    |
| 1831  | Positive Ions                                 | 1    |
| 1832  | Phase Noise                                   | 1    |
| 1833  | Tensile Stress                                | 1    |
| 1834  | Bit Error Rate                                | 1    |
| 1835  | Voltage Distribution<br>Measurement           | 1    |
| 1836  | Water Cooled Reactors                         | 1    |
| 1837  | Telephone Sets                                | ]    |
| 1838  | Computer Software<br>Selection And Evaluation | 1    |
| 1839  | Carrier Lifetime                              | 1000 |
| 1840  | Waste Heat Utilization                        |      |
| 1841  | Photoelectrons                                | 1000 |
| 1842  | Optical Switches                              | No.  |
| 1843  | Permittivity                                  |      |
| 1844  | Radial Basis Function<br>Networks             |      |
| 1845  | Gateways (Computer<br>Networks)               | 1000 |
| 1846  | Gas Mixtures                                  |      |
| 1847  | Fourier Transforms                            |      |
| 1848  | Logic Devices                                 |      |
| 1849  | Conductive Films                              |      |
| 1850  | Electric Current<br>Measurement               |      |
| 1851  | Grounding Electrodes                          |      |
| 1852  | Wave Energy Conversion                        |      |
| 1853  | Plasma Enhanced Chemical<br>Vapor Deposition  |      |
| 1854  | Delay Control Systems                         |      |
| 1855  | Size Separation                               |      |
| 1856  | Integer Programming                           |      |
| 1857  | Lyapunov Functions                            |      |
| 1858  | Two Dimensional Electron<br>Gas               |      |
| 1859  | Dielectric Devices                            |      |
| 1860  | Pulse Code Modulation                         |      |
| 1861  | Core Disruptive Accidents                     |      |
| 1862  | Two Term Control Systems                      |      |
| 1863  | Silicon Oxides                                |      |
| 1864  | Sliding Mode Control                          |      |
| 10.00 | Three Term Control                            |      |
| 1865  | Systems<br>Chamical Banda                     |      |
| 1866  | Chemical Bonds                                |      |
|       |                                               |      |

| 1867 | Nonlinear Equations                           |
|------|-----------------------------------------------|
| 1868 | Quadratic Programming                         |
| 1869 | Optical Flows                                 |
| 1870 | Ohmic Contacts                                |
| 1871 | Phase Shift                                   |
| 1872 | Welded Steel Structures                       |
| 1873 | Transmission Control<br>Protocol              |
| 1874 | Phase Diagrams                                |
| 1875 | Signal To Noise Ratio                         |
| 1876 | Q Factor Measurement                          |
| 1877 | Electric Field Measurement                    |
| 1878 | Titanium Compounds                            |
| 1879 | Tensile Strain                                |
| 1880 | Electric Breakdown                            |
| 1881 | Nonlinear Distortion                          |
| 1882 | Elementary Particle<br>Sources                |
| 1883 | Polydispersity                                |
| 1884 | Principal Component<br>Analysis               |
| 1885 | X Ray Powder Diffraction                      |
| 1886 | Polyimides                                    |
| 1887 | Curve Fitting                                 |
| 1888 | Natural Frequencies                           |
| 1889 | Fused Salts                                   |
| 1890 | Carboxylic Acids                              |
| 1891 | Diffusion In Gases                            |
| 1892 | Linear Matrix Inequalities                    |
| 1893 | Delay Circuits                                |
| 1894 | Combined Sewers                               |
| 1895 | Discrete Time Control<br>Systems              |
| 1896 | Transformer Windings                          |
| 1897 | Harmonic Distortion                           |
| 1898 | Crystallité Size                              |
| 1899 | Electric Fault Currents                       |
| 1900 | Asymptotic Analysis                           |
| 1901 | Orthogonal Frequency<br>Division Multiplexing |
| 1902 | Random Processes                              |
| 1903 | Asynchronous Generators                       |
| 1904 | Energy Dissipation                            |
| 1905 | Digital Signal Processors                     |
| 1906 | Electrostatic Devices                         |
|      |                                               |

| 1907 | Periodic Structures                   |
|------|---------------------------------------|
| 1908 | Semiconductor Insulator<br>Boundaries |
| 1909 | Amides                                |
| 1910 | Rate Constants                        |
| 1911 | Density Functional Theory             |
| 1912 | Measurement Errors                    |
| 1913 | Flywheel Propulsion                   |
| 1914 | Pulse Width Modulation                |
| 1915 | Current Voltage<br>Characteristics    |
| 1916 | Thick Films                           |
| 1917 | Multiplexing Equipment                |
| 1918 | Inert Gases                           |
| 1919 | Power Supply Circuits                 |
| 1920 | Vector Spaces                         |
| 1921 | Phase Change Memory                   |
| 1922 | Drop Formation                        |
| 1923 | Heat Transfer Coefficients            |
| 1924 | Equations Of State                    |
| 1925 | Electric Power Factor                 |
| 1926 | Constrained Optimization              |
| 1927 | Boundary Conditions                   |
| 1928 | Fins (Heat Exchange)                  |
| 1929 | Switching Circuits                    |
| 1930 | Shape Optimization                    |
| 1931 | Bandpass Amplifiers                   |
| 1932 | Timing Devices                        |
| 1933 | Electromagnetic Wave<br>Absorption    |
| 1934 | Grain Size And Shape                  |
| 1935 | Parameter Extraction                  |
| 1936 | Transmission Line Theory              |
| 1937 | Parameter Estimation                  |
| 1938 | Timing Circuits                       |
| 1939 | Convex Optimization                   |
| 1940 | Differentiating Circuits              |
| 1941 | Shape Memory Effect                   |
| 1942 | Cylinders (Shapes)                    |
| 1943 | Voltage Stabilizing Circuits          |
| 1944 | Approximation Theory                  |
| 1945 | Gates (Transistor)                    |
| 1946 | Wave Equations                        |
| 1947 | Mos Capacitors                        |
|      |                                       |

| 1948 | Real Variables                              |
|------|---------------------------------------------|
| 1949 | Boundary Layers                             |
| 1950 | Equivalent Circuits                         |
| 1951 | Open Circuit Voltage                        |
| 1952 | Proportional Counters                       |
| 1953 | Scattering Parameters                       |
| 1954 | Maximum Likelihood<br>Estimation            |
| 1955 | Metal Insulator Boundaries                  |
| 1956 | Semiconductor Device<br>Structures          |
| 1957 | Noise Figure                                |
| 1958 | Optical Band Gaps                           |
| 1959 | Aspect Ratio                                |
| 1960 | Equations Of Motion                         |
| 1961 | Boltzmann Equation                          |
| 1962 | Bond Strength (Chemical)                    |
| 1963 | Shift Registers                             |
| 1964 | Time Varying Systems                        |
| 1965 | Application Specific<br>Integrated Circuits |
| 1966 | Hard Disk Storage                           |

.

| 1967 | Probability Distributions           |
|------|-------------------------------------|
| 1968 | Bias Voltage                        |
| 1969 | Printed Circuit Manufacture         |
| 1970 | Time Varying Networks               |
| 1971 | Polyethers                          |
| 1972 | Hysteresis Loops                    |
| 1973 | Disks (Structural<br>Components)    |
| 1974 | Convergence Of Numerical<br>Methods |
| 1975 | Carrier Sense Multiple<br>Access    |
| 1976 | Proportional Control<br>Systems     |
| 1977 | Covariance Matrix                   |
| 1978 | Threshold Logic                     |
| 1979 | Paraffin Waxes                      |
| 1980 | Lagrange Multipliers                |
| 1981 | Born Approximation                  |
| 1982 | Random Access Storage               |
| 1983 | Probability Density<br>Function     |
| 1984 | Saturation Magnetization            |
|      |                                     |

|                | 1985 | Acrylic Monomers                        |
|----------------|------|-----------------------------------------|
|                | 1986 | Static Random Access<br>Storage         |
|                | 1987 | Integrated Circuit<br>Manufacture       |
|                | 1988 | Electric Power Supplies To<br>Apparatus |
|                | 1989 | Flip Flop Circuits                      |
|                | 1990 | Zero Voltage Switching                  |
|                | 1991 | Polyethylene Oxides                     |
|                | 1992 | Polyethylene<br>Terephthalates          |
|                | 1993 | Glycols                                 |
|                | 1994 | Quadrature Amplitude<br>Modulation      |
| Contraction of | 1995 | Lattice Mismatch                        |
|                | 1996 | Telluric Prospecting                    |
|                | 1997 | Distributed Parameter<br>Networks       |
|                | 1998 | Polyvinyl Chlorides                     |
|                | 1999 | Frequency Dividing<br>Circuits          |
|                | 2000 | Polyethylene Glycols                    |
|                |      |                                         |

## APPENDIX 7 - COMPLETE RANKED TERM LIST FOR GEOTHERMAL CASE STUDY

| 1  | Myoelectrically<br>Controlled Prosthetics |
|----|-------------------------------------------|
| 2  | Refractometers                            |
| 3  | Magnetrons                                |
| 4  | Fragrances                                |
| 5  | Phototransistors                          |
| 6  | Nanofibers                                |
| 7  | Nanofluidics                              |
| 8  | Quartz Crystal<br>Microbalances           |
| 9  | Abrasives                                 |
| 10 | Aneroid Altimeters                        |
| 11 | Electron Microscopes                      |
| 12 | Navigation                                |
| 13 | Microscopes                               |
| 14 | Observatories                             |
| 15 | Plastic Molds                             |
| 16 | Steel Metallography                       |
| 17 | Tsunamis                                  |
| 18 | Adsorbents                                |
| 19 | Tanning                                   |
| 20 | Navigation Systems                        |
| 21 | Nanotechnology                            |
| 22 | Cams                                      |
| 23 | Photonics                                 |
| 24 | Radiology                                 |
| 25 | Diagnostic<br>Radiography                 |
| 26 | Photography                               |
| 27 | Oncology                                  |
| 28 | Porcelain                                 |
| 29 | Textiles                                  |
| 30 | Hidden Markov Models                      |
| 31 | Spacecraft Propulsion                     |
| 32 | Robotics                                  |
| 33 | Cytology                                  |

| 34 | Broadband Networks              |
|----|---------------------------------|
| 35 | Platinum                        |
| 36 | Prosthetics                     |
| 37 | Implants (Surgical)             |
| 38 | Optical Projectors              |
| 39 | Dosimetry                       |
| 40 | Feedback                        |
| 41 | Climatology                     |
| 42 | Wind Turbines                   |
| 43 | Medical Imaging                 |
| 44 | Nanowires                       |
| 45 | Positron Emission               |
| 46 | Tomography<br>Zircon            |
| 47 | Museums                         |
| 48 | Multimedia Services             |
| 49 | Recreation Centers              |
| 50 | Mergers And                     |
|    | Acquisitions                    |
| 51 | Electron Probe<br>Microanalysis |
| 52 | Precious Metals                 |
| 53 | Patient Rehabilitation          |
| 54 | Atmospherics                    |
| 55 | Biodiversity                    |
| 56 | Biometrics                      |
| 57 | Radiography                     |
| 58 | Robots                          |
| 59 | Weather Information<br>Services |
| 60 | Bacteriology                    |
| 61 | Color Photography               |
| 62 | Cameras                         |
| 63 | Nuclear Medicine                |
| 64 | Glass Ceramics                  |
| 65 | Radar                           |
|    |                                 |

| 66 | Biomineralization              |
|----|--------------------------------|
| 67 | Calorimeters                   |
| 68 | Surgery                        |
| 69 | Bioremediation                 |
| 70 | Microbiology                   |
| 71 | Fallout                        |
| 72 | Education                      |
| 73 | Radiotherapy                   |
| 74 | Mice (Computer<br>Peripherals) |
| 75 | Photonic Crystal Fibers        |
| 76 | Pumps                          |
| 77 | Housing                        |
| 78 | Nanocrystalline Alloys         |
| 79 | Metallurgy                     |
| 80 | Satellite Imagery              |
| 81 | Tumors                         |
| 82 | Magnets                        |
| 83 | Sun                            |
| 84 | Furnaces                       |
| 85 | Intermetallics                 |
| 86 | Geomagnetism                   |
| 87 | Biogeochemistry                |
| 88 | Mobile Computing               |
| 89 | Climate Change                 |
| 90 | Nanocomposites                 |
| 91 | Linguistics                    |
| 92 | Cosmology                      |
| 93 | Crack Tips                     |
| 94 | Haptic Interfaces              |
| 95 | Bioreactors                    |
| 96 | Reefs                          |
| 97 | Diamond Deposits               |
| 98 | Plants (Botany)                |

| 99  | Tobacco                                                           |
|-----|-------------------------------------------------------------------|
| 100 | Military Photography                                              |
| 101 | Petrology                                                         |
| 102 | Insulin                                                           |
| 103 | Biomechanics                                                      |
| 104 | Carbon Nanotubes                                                  |
| 105 | Innovation                                                        |
| 106 | Lathes                                                            |
| 107 | Mems                                                              |
| 108 | Power Transformers                                                |
| 109 | Controllers                                                       |
| 110 | Biochemistry                                                      |
| 111 | Fossil Fuels                                                      |
| 112 | Earth (Planet)                                                    |
| 113 | Nanotubes                                                         |
| 114 | Sol-Gels                                                          |
| 115 | Nitric Oxide                                                      |
| 116 | Stars                                                             |
| 117 | Solar Cells                                                       |
| 118 | Teaching                                                          |
| 119 | Radon                                                             |
| 120 | Diagnostic Products                                               |
| 121 | Acoustics                                                         |
| 122 | Nanostructured                                                    |
| 123 | Network Security                                                  |
| 124 | Drought                                                           |
| 125 | Seismology                                                        |
| 126 | Multimedia Systems                                                |
| 127 | Minerals                                                          |
| 128 | geothermal                                                        |
| 129 | Research                                                          |
| 130 | Mining                                                            |
| 131 | Watermarking                                                      |
| 132 | Zirconia                                                          |
| 133 | Genes                                                             |
| 134 | Plastics                                                          |
| 135 | Fabrics                                                           |
|     | a management i kan bereken an |

| 136 | Superalloys                    |
|-----|--------------------------------|
| 137 | Volcanoes                      |
| 138 | Phosphorylation                |
| 139 | Quantum Electronics            |
| 140 | Earthquakes                    |
| 141 | Lasers                         |
| 142 | Radiometry                     |
| 143 | Gadolinium                     |
| 144 | Digital Watermarking           |
| 145 | Nanocrystals                   |
| 146 | Oceanography                   |
| 147 | Engineering Geology            |
| 148 | Silver                         |
| 149 | Muscle                         |
| 150 | Repair                         |
| 151 | Tomography                     |
| 152 | Signaling                      |
| 153 | Escherichia Coli               |
| 154 | Information                    |
| 155 | Management<br>Power Converters |
| 156 | Astrophysics                   |
| 157 | Welding                        |
| 158 | Charcoal                       |
| 159 | Nanoparticles                  |
| 160 | Ontology                       |
| 161 | Robot Programming              |
| 162 | Mineralogy                     |
| 163 | Internet                       |
| 164 | Signal Transduction            |
| 165 | Earth Sciences                 |
| 166 | Photographic                   |
| 167 | Equipment<br>Reentry           |
| 168 | Metabolism                     |
| 169 | Forestry                       |
| 170 | Polyaniline                    |
| 171 | Gas Welding                    |
| 172 | Plastic Products               |
|     |                                |

| 173 | Spark Plasma Sintering        |
|-----|-------------------------------|
| 174 | Turbines                      |
| 175 | Wireless Sensor<br>Networks   |
| 176 | Parks                         |
| 177 | Gold                          |
| 178 | Magnetic Resonance<br>Imaging |
| 179 | Virtual Reality               |
| 180 | Osmosis                       |
| 181 | Antibiotics                   |
| 182 | Ultrasonic Testing            |
| 183 | Safety Engineering            |
| 184 | Tribology                     |
| 185 | Nanorods                      |
| 186 | Cloning                       |
| 187 | Geophysics                    |
| 188 | Ecology                       |
| 189 | Hip Prostheses                |
| 190 | Architecture                  |
| 191 | Bioactivity                   |
| 192 | Organic Conductors            |
| 193 | Stainless Steel               |
| 194 | Transcription                 |
| 195 | Imaging Systems               |
| 196 | Cell Death                    |
| 197 | Railroads                     |
| 198 | Mobile Devices                |
| 199 | Bone                          |
| 200 | Water Resources               |
| 201 | Fatty Acids                   |
| 202 | Wireless Networks             |
| 203 | Quantum Optics                |
| 204 | Hydraulics                    |
| 205 | Bayesian Networks             |
| 206 | Inductively Coupled<br>Plasma |
| 207 | Target Drones                 |
| 208 | Rock Products                 |
|     |                               |

| 209 | Lighting              |
|-----|-----------------------|
| 210 | Pelletizing           |
| 211 | Dc Motors             |
| 212 | Shot Peening          |
| 213 | Granite               |
| 214 | Interferometry        |
| 215 | Coagulation           |
| 216 | Ultrasonography       |
| 217 | Nanoclusters          |
| 218 | Statistics            |
| 219 | Ocean Engineering     |
| 220 | Probes                |
| 221 | Batch Reactors        |
| 222 | Skin                  |
| 223 | Photocatalysts        |
| 224 | Security Systems      |
| 225 | Dendrimers            |
| 226 | Fuels                 |
| 227 | Coatings              |
| 228 | Microspheres          |
| 229 | Organometallics       |
| 230 | Aluminum Castings     |
| 231 | Glaciers              |
| 232 | Visualization         |
| 233 | Dyes                  |
| 234 | Cell Adhesion         |
| 235 | Polymer Blends        |
| 236 | Peptides              |
| 237 | Diamond Cutting Tools |
| 238 | Macrophages           |
| 239 | Software Design       |
| 240 | Agriculture           |
| 241 | Atomic Force          |
| 242 | Microscopy<br>Motors  |
| 243 | Windows               |
| 244 | Gas Industry          |
| 245 | Aerial Photography    |
|     | S. P. M.              |

| $\gamma_{i}^{(d)}$ |                               |  |
|--------------------|-------------------------------|--|
| 246                | Benchmarking                  |  |
| 247                | Synchrotrons                  |  |
| 248                | Design                        |  |
| 249                | Authentication                |  |
| 250                | Mass Spectrometry             |  |
| 251                | Fillers                       |  |
| 252                | Dna                           |  |
| 253                | Organic Minerals              |  |
| 254                | Cathodic Protection           |  |
| 255                | Hydrogeology                  |  |
| 256                | Surveying                     |  |
| 257                | Integrated<br>Optoelectronics |  |
| 258                | Engines                       |  |
| 259                | Rna                           |  |
| 260                | Gold Deposits                 |  |
| 261                | Wetlands                      |  |
| 262                | Textile Industry              |  |
| 263                | Hydrophobicity                |  |
| 264                | Electrochemistry              |  |
| 265                | Geology                       |  |
| 266                | X Ray Cameras                 |  |
| 267                | Tides                         |  |
| 268                | Ecosystems                    |  |
| 269                | Solutions                     |  |
| 270                | Lakes                         |  |
| 271                | Marine Pollution              |  |
| 272                | Conservation                  |  |
| 273                | Pesticides                    |  |
| 274                | Water Content                 |  |
| 275                | Fatigue Testing               |  |
| 276                | Electrophoresis               |  |
| 277                | Supply Chain<br>Management    |  |
| 278                | Learning Systems              |  |
| 279                | Gas Emissions                 |  |
| 280                | Buildings                     |  |
| 281                | Fluidized Beds                |  |
| 282                | Smoke                         |  |

| 284Diamonds285Computer Graphics286Cell Proliferation287Data Mining288Nuclear Magnetic<br>Resonance289Surveys290Research Laboratories291Hydrology292Spacecraft Instruments293Computerized<br>Tomography294Simulators295Coal296Spectrometry297Standards298Optical Filters299Nanosheets300Magnetohydrodynamics301Osteoblasts302Radar Imaging303Risk Management304Coastal Engineering305Rapid Prototyping306Offishore Petroleum<br>Prospecting307Snow308Systems Engineering309Optical Instruments310Blood Vessels311Water Management312Steel313Heat Exchangers314Equipment315Quality Of Service316Transcription Factors317Galaxies318Geochemistry | 283 | Polarimeters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 286Cell Proliferation287Data Mining288Nuclear Magnetic<br>Resonance289Surveys290Research Laboratories291Hydrology292Spacecraft Instruments293Computerized<br>Tomography294Simulators295Coal296Spectrometry297Standards298Optical Filters299Nanosheets300Magnetohydrodynamics301Osteoblasts302Raidar Imaging303Risk Management304Coastal Engineering305Rapid Prototyping306Offishore Petroleum<br>Prospecting307Snow310Blood Vessels311Water Management312Steel313Heat Exchangers314Equipment315Quality Of Service316Transcription Factors317Galaxies                                                                                          | 284 | Diamonds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 286Cell Proliferation287Data Mining288Nuclear Magnetic<br>Resonance289Surveys290Research Laboratories291Hydrology292Spacecraft Instruments293Computerized<br>Tomography294Simulators295Coal296Spectrometry297Standards298Optical Filters299Nanosheets300Magnetohydrodynamics301Osteoblasts302Raidar Imaging303Risk Management304Coastal Engineering305Rapid Prototyping306Offishore Petroleum<br>Prospecting307Snow310Blood Vessels311Water Management312Steel313Heat Exchangers314Equipment315Quality Of Service316Transcription Factors317Galaxies                                                                                          | 285 | Computer Graphics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 287Data Mining288Nuclear Magnetic<br>Resonance289Surveys290Research Laboratories291Hydrology292Spacecraft Instruments293Computerized<br>Tomography294Simulators295Coal296Spectrometry297Standards298Optical Filters299Nanosheets300Magnetohydrodynamics301Osteoblasts302Radar Imaging303Risk Management304Coastal Engineering305Rapid Prototyping306Offishore Petroleum<br>Prospecting307Snow308Systems Engineering310Blood Vessels311Water Management312Steel313Heat Exchangers314Equipment315Quality Of Service316Transcription Factors317Galaxies                                                                                          |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 288Nuclear Magnetic<br>Resonance289Surveys290Research Laboratories291Hydrology292Spacecraft Instruments293Computerized<br>Tomography294Simulators295Coal296Spectrometry297Standards298Optical Filters299Nanosheets300Magnetohydrodynamics301Osteoblasts302Radar Imaging303Risk Management304Coastal Engineering305Rapid Prototyping306Offishore Petroleum<br>Prospecting307Snow308Systems Engineering309Optical Instruments310Blood Vessels311Water Management312Steel313Heat Exchangers314Equipment315Quality Of Service316Transcription Factors317Galaxies                                                                                  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Resonance289Surveys290Research Laboratories291Hydrology292Spacecraft Instruments293Computerized<br>Tomography294Simulators295Coal296Spectrometry297Standards298Optical Filters299Nanosheets300Magnetohydrodynamics301Osteoblasts302Radar Imaging303Risk Management304Coastal Engineering305Rapid Prototyping306Offshore Petroleum<br>Prospecting307Snow308Systems Engineering309Optical Instruments310Blood Vessels311Water Management312Steel313Heat Exchangers314Equipment315Quality Of Service316Transcription Factors317Galaxies                                                                                                          |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 290Research Laboratories291Hydrology292Spacecraft Instruments293Computerized<br>Tomography294Simulators295Coal296Spectrometry297Standards298Optical Filters299Nanosheets300Magnetohydrodynamics301Osteoblasts302Radar Imaging303Risk Management304Coastal Engineering305Rapid Prototyping306Offishore Petroleum<br>Prospecting307Snow308Systems Engineering309Optical Instruments310Blood Vessels311Water Management312Steel313Heat Exchangers314Equipment315Quality Of Service316Transcription Factors317Galaxies                                                                                                                            | 200 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 291Hydrology292Spacecraft Instruments293Computerized<br>Tomography294Simulators295Coal296Spectrometry297Standards298Optical Filters299Nanosheets300Magnetohydrodynamics301Osteoblasts302Radar Imaging303Risk Management304Coastal Engineering305Rapid Prototyping306Offshore Petroleum<br>Prospecting307Snow308Systems Engineering310Blood Vessels311Water Management312Steel313Heat Exchangers314Equipment315Quality Of Service316Transcription Factors317Galaxies                                                                                                                                                                           | 289 | Surveys                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 292Spacecraft Instruments293Computerized<br>Tomography294Simulators295Coal296Spectrometry297Standards298Optical Filters299Nanosheets300Magnetohydrodynamics301Osteoblasts302Radar Imaging303Risk Management304Coastal Engineering305Rapid Prototyping306Offshore Petroleum<br>Prospecting307Snow308Systems Engineering309Optical Instruments310Blood Vessels311Water Management312Steel313Heat Exchangers314Equipment315Quality Of Service316Transcription Factors317Galaxies                                                                                                                                                                 | 290 | Research Laboratories                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 293Computerized<br>Tomography294Simulators295Coal296Spectrometry297Standards298Optical Filters299Nanosheets300Magnetohydrodynamics301Osteoblasts302Radar Imaging303Risk Management304Coastal Engineering305Rapid Prototyping306Offshore Petroleum<br>Prospecting307Snow308Systems Engineering309Optical Instruments310Blood Vessels311Water Management312Steel313Heat Exchangers314Equipment315Quality Of Service316Transcription Factors317Galaxies                                                                                                                                                                                          | 291 | Hydrology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Tomography294Simulators295Coal296Spectrometry297Standards298Optical Filters299Nanosheets300Magnetohydrodynamics301Osteoblasts302Radar Imaging303Risk Management304Coastal Engineering305Rapid Prototyping306Offshore Petroleum<br>Prospecting307Snow308Systems Engineering309Optical Instruments310Blood Vessels311Water Management312Steel313Heat Exchangers314Equipment315Quality Of Service316Transcription Factors317Galaxies                                                                                                                                                                                                             | 292 | Spacecraft Instruments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 295Coal296Spectrometry297Standards298Optical Filters299Nanosheets300Magnetohydrodynamics301Osteoblasts302Radar Imaging303Risk Management304Coastal Engineering305Rapid Prototyping306Offshore Petroleum<br>Prospecting307Snow308Systems Engineering309Optical Instruments310Blood Vessels311Water Management312Steel313Heat Exchangers314Equipment315Quality Of Service316Transcription Factors317Galaxies                                                                                                                                                                                                                                    | 293 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 296Spectrometry297Standards298Optical Filters299Nanosheets300Magnetohydrodynamics301Osteoblasts302Radar Imaging303Risk Management304Coastal Engineering305Rapid Prototyping306Offshore Petroleum<br>Prospecting307Snow308Systems Engineering309Optical Instruments310Blood Vessels311Water Management312Steel313Heat Exchangers314Equipment315Quality Of Service316Transcription Factors317Galaxies                                                                                                                                                                                                                                           | 294 | Simulators                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 297Standards298Optical Filters299Nanosheets300Magnetohydrodynamics301Osteoblasts302Radar Imaging303Risk Management304Coastal Engineering305Rapid Prototyping306Offshore Petroleum<br>Prospecting307Snow308Systems Engineering309Optical Instruments310Blood Vessels311Water Management312Steel313Heat Exchangers314Equipment315Quality Of Service316Transcription Factors317Galaxies                                                                                                                                                                                                                                                          | 295 | Coal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 298Optical Filters299Nanosheets300Magnetohydrodynamics301Osteoblasts302Radar Imaging303Risk Management304Coastal Engineering305Rapid Prototyping306Offshore Petroleum<br>Prospecting307Snow308Systems Engineering309Optical Instruments310Blood Vessels311Water Management312Steel313Heat Exchangers314Equipment315Quality Of Service316Transcription Factors317Galaxies                                                                                                                                                                                                                                                                      | 296 | Spectrometry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 299Nanosheets300Magnetohydrodynamics301Osteoblasts302Radar Imaging303Risk Management304Coastal Engineering305Rapid Prototyping306Offshore Petroleum<br>Prospecting307Snow308Systems Engineering309Optical Instruments310Blood Vessels311Water Management312Steel313Heat Exchangers314Equipment315Quality Of Service316Transcription Factors317Galaxies                                                                                                                                                                                                                                                                                        | 297 | Standards                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 300Magnetohydrodynamics301Osteoblasts302Radar Imaging303Risk Management304Coastal Engineering305Rapid Prototyping306Offshore Petroleum<br>Prospecting307Snow308Systems Engineering309Optical Instruments310Blood Vessels311Water Management312Steel313Heat Exchangers314Equipment315Quality Of Service316Transcription Factors317Galaxies                                                                                                                                                                                                                                                                                                     | 298 | Optical Filters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 301Osteoblasts302Radar Imaging303Risk Management304Coastal Engineering305Rapid Prototyping306Offshore Petroleum<br>Prospecting307Snow308Systems Engineering309Optical Instruments310Blood Vessels311Water Management312Steel313Heat Exchangers314Equipment315Quality Of Service316Transcription Factors317Galaxies                                                                                                                                                                                                                                                                                                                            | 299 | Nanosheets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 302Radar Imaging303Risk Management304Coastal Engineering305Rapid Prototyping306Offshore Petroleum<br>Prospecting307Snow308Systems Engineering309Optical Instruments310Blood Vessels311Water Management312Steel313Heat Exchangers314Equipment315Quality Of Service316Transcription Factors317Galaxies                                                                                                                                                                                                                                                                                                                                          | 300 | Magnetohydrodynamics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 303Risk Management304Coastal Engineering305Rapid Prototyping306Offshore Petroleum<br>Prospecting307Snow308Systems Engineering309Optical Instruments310Blood Vessels311Water Management312Steel313Heat Exchangers314Equipment315Quality Of Service316Transcription Factors317Galaxies                                                                                                                                                                                                                                                                                                                                                          | 301 | Osteoblasts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 304Coastal Engineering305Rapid Prototyping306Offshore Petroleum<br>Prospecting307Snow308Systems Engineering309Optical Instruments310Blood Vessels311Water Management312Steel313Heat Exchangers314Equipment315Quality Of Service316Transcription Factors317Galaxies                                                                                                                                                                                                                                                                                                                                                                            | 302 | Radar Imaging                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 305Rapid Prototyping306Offshore Petroleum<br>Prospecting307Snow308Systems Engineering309Optical Instruments310Blood Vessels311Water Management312Steel313Heat Exchangers314Equipment315Quality Of Service316Transcription Factors317Galaxies                                                                                                                                                                                                                                                                                                                                                                                                  | 303 | Risk Management                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 306Offshore Petroleum<br>Prospecting307Snow308Systems Engineering309Optical Instruments310Blood Vessels311Water Management312Steel313Heat Exchangers314Equipment315Quality Of Service316Transcription Factors317Galaxies                                                                                                                                                                                                                                                                                                                                                                                                                      | 304 | Coastal Engineering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Prospecting307Snow308Systems Engineering309Optical Instruments310Blood Vessels311Water Management312Steel313Heat Exchangers314Equipment315Quality Of Service316Transcription Factors317Galaxies                                                                                                                                                                                                                                                                                                                                                                                                                                               | 305 | Rapid Prototyping                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 308Systems Engineering309Optical Instruments310Blood Vessels311Water Management312Steel313Heat Exchangers314Equipment315Quality Of Service316Transcription Factors317Galaxies                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 306 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 309Optical Instruments310Blood Vessels311Water Management312Steel313Heat Exchangers314Equipment315Quality Of Service316Transcription Factors317Galaxies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 307 | In The submittee of the |
| <ul> <li>310 Blood Vessels</li> <li>311 Water Management</li> <li>312 Steel</li> <li>313 Heat Exchangers</li> <li>314 Equipment</li> <li>315 Quality Of Service</li> <li>316 Transcription Factors</li> <li>317 Galaxies</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                           | 308 | Systems Engineering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 311Water Management312Steel313Heat Exchangers314Equipment315Quality Of Service316Transcription Factors317Galaxies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 309 | Optical Instruments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <ul> <li>312 Steel</li> <li>313 Heat Exchangers</li> <li>314 Equipment</li> <li>315 Quality Of Service</li> <li>316 Transcription Factors</li> <li>317 Galaxies</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 310 | Blood Vessels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <ul> <li>313 Heat Exchangers</li> <li>314 Equipment</li> <li>315 Quality Of Service</li> <li>316 Transcription Factors</li> <li>317 Galaxies</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 311 | Water Management                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 314Equipment315Quality Of Service316Transcription Factors317Galaxies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 312 | Steel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <ul> <li>315 Quality Of Service</li> <li>316 Transcription Factors</li> <li>317 Galaxies</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 313 | Heat Exchangers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 316Transcription Factors317Galaxies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 314 | Equipment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 317 Galaxies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 315 | Quality Of Service                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 316 | Transcription Factors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 318 Geochemistry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 317 | Galaxies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 318 | Geochemistry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

| 319 | Computer Software              |
|-----|--------------------------------|
| 320 | Radar Systems                  |
| 321 | Multiobjective<br>Optimization |
| 322 | Sieves                         |
| 323 | Color                          |
| 324 | Ice                            |
| 325 | Steel Research                 |
| 326 | Silanes                        |
| 327 | Metal Detectors                |
| 328 | Nucleic Acids                  |
| 329 | Nasa                           |
| 330 | Precast Concrete               |
| 331 | Interoperability               |
| 332 | Nanospheres                    |
| 333 | Electric Circuit<br>Breakers   |
| 334 | Glucose                        |
| 335 | Fluorescence                   |
| 336 | Cell Culture                   |
| 337 | Photocatalysis                 |
| 338 | Plant Management               |
| 339 | Remote Sensing                 |
| 340 | Proteins                       |
| 341 | Physics                        |
| 342 | Crystallography                |
| 343 | Particle Spectrometers         |
| 344 | Software Architecture          |
| 345 | Plasma Diagnostics             |
| 346 | Optical Microscopy             |
| 347 | Drilling                       |
| 348 | Testing                        |
| 349 | Architectural Design           |
| 350 | Dosimeters                     |
| 351 | Polishing                      |
| 352 | Bacteria                       |
| 353 | Petroleum Geology              |
| 354 | Wastewater                     |
| 355 | Nanocrystalline                |

| Constant | Materials                         |
|----------|-----------------------------------|
| 356      | Petroleum Industry                |
| 357      | Photonic Crystals                 |
| 358      | Technetium                        |
| 359      | Disinfection                      |
| 360      | Tissue Engineering                |
| 361      | Superconductivity                 |
| 362      | Transmission Electron             |
| 363      | Microscopy<br>Conductive Plastics |
| 364      | Nonlinear Optics                  |
| 365      | Launching                         |
| 366      | Tin                               |
| 367      | Plant Shutdowns                   |
| 368      | Geochronology                     |
| 369      | Quantum Interference              |
| 507      | Devices                           |
| 370      | Nitrates                          |
| 371      | Robot Applications                |
| 372      | Solar Energy                      |
| 373      | Solar Heating                     |
| 374      | Space Optics                      |
| 375      | Wireless Mesh<br>Networks (Wmn)   |
| 376      | Scaffolds                         |
| 377      | Quality Assurance                 |
| 378      | Towers                            |
| 379      | Iron                              |
| 380      | Friction Stir Welding             |
| 381      | Remediation                       |
| 382      | Calcium                           |
| 383      | Scanning                          |
| 384      | Spectrometers                     |
| 385      | Intelligent Robots                |
| 386      | Speckle                           |
| 387      | Ultrasonics                       |
| 388      | Sedimentology                     |
| 389      | Mammals                           |
| 390      | Wells                             |

| 391 | Magnetic Resonance                 |
|-----|------------------------------------|
| 392 | Food Additives                     |
| 393 | Composite<br>Micromechanics        |
| 394 | Air                                |
| 395 | Photovoltaic Cells                 |
| 396 | Petroleum Reservoir<br>Engineering |
| 397 | Sensors                            |
| 398 | Lime                               |
| 399 | Lubricants                         |
| 400 | Enzyme Activity                    |
| 401 | Rivers                             |
| 402 | Image Classification               |
| 403 | Nuclear Energy                     |
| 404 | Nitration                          |
| 405 | Enzymes                            |
| 406 | Communication                      |
| 407 | Microphase Separation              |
| 408 | Powder Metallurgy                  |
| 409 | Information Systems                |
| 410 | Ultrasonic Imaging                 |
| 411 | Joint Prostheses                   |
| 412 | Mass Spectrometers                 |
| 413 | Clouds                             |
| 414 | Diesel Fuels                       |
| 415 | Materials                          |
| 416 | Infrared Detectors                 |
| 417 | Detectors                          |
| 418 | Mesoporous Materials               |
| 419 | Scanning Electron<br>Microscopy    |
| 420 | Glycoproteins                      |
| 421 | Radio Altimeters                   |
| 422 | Magnetism                          |
| 423 | Electron Optics                    |
| 424 | Computer Hardware                  |
| 425 | Viscoplasticity                    |
| 426 | Jets                               |
|     |                                    |

| 427 | Polymers                             |
|-----|--------------------------------------|
| 428 | Clay                                 |
| 429 | Ultrasonic Applications              |
| 430 | Computer<br>Programming<br>Languages |
| 431 | Electric Motors                      |
| 432 | Gels                                 |
| 433 | Recovery                             |
| 434 | Ferrite                              |
| 435 | Multiphoton Processes                |
| 436 | Strain                               |
| 437 | Computer Simulation<br>Languages     |
| 438 | Restoration                          |
| 439 | Image Quality                        |
| 440 | Transparency                         |
| 441 | Gasoline                             |
| 442 | Plasmas                              |
| 443 | Herbicides                           |
| 444 | Nanofiltration                       |
| 445 | Fracture                             |
| 446 | Forecasting                          |
| 447 | Water                                |
| 448 | Storms                               |
| 449 | Acids                                |
| 450 | Copper                               |
| 451 | Aircraft                             |
| 452 | Natural Resources<br>Management      |
| 453 | Tracking Radar                       |
| 454 | Gears                                |
| 455 | Coal Industry                        |
| 456 | Lubrication                          |
| 457 | Wind Power                           |
| 458 | Mechanics                            |
| 459 | Computer<br>Programming              |
|     | Ammonia                              |
| 460 | Ammonia                              |

| 462 | Pollution                       |
|-----|---------------------------------|
| 463 | Steel Construction              |
| 464 | Hydroxyapatite                  |
| 465 | Rheology                        |
| 466 | Pathogens                       |
| 467 | Wire                            |
| 468 | Mines                           |
| 469 | Vehicles                        |
| 470 | Coal Gas                        |
| 471 | Plasticity                      |
| 472 | Particle Accelerators           |
| 473 | Ethanol                         |
| 474 | Pixels                          |
| 475 | Image Analysis                  |
| 476 | Ultra-Wideband (Uwb)            |
| 477 | Melamine<br>Formaldehyde Resins |
| 478 | Rock Mechanics                  |
| 479 | Amino Acids                     |
| 480 | Satellites                      |
| 481 | Chitin                          |
| 482 | Program Interpreters            |
| 483 | Mortar                          |
| 484 | Tankers (Ships)                 |
| 485 | Fracture Mechanics              |
| 486 | Ferroelectricity                |
| 487 | Seed                            |
| 488 | Supercritical Fluids            |
| 489 | Chitosan                        |
| 490 | Weldability                     |
| 491 | Activation Analysis             |
| 492 | Adhesion                        |
| 493 | Tectonics                       |
| 494 | Joints (Anatomy)                |
| 495 | Rubber                          |
| 496 | Radiation                       |
| 497 | Abrasion                        |
| 498 | Molecular Dynamics              |

| 499 | Toxicity                                  |
|-----|-------------------------------------------|
| 500 | Microwaves                                |
| 501 | Shale Oil                                 |
| 502 | Oil Shale                                 |
| 503 | Monolayers                                |
| 504 | Targets                                   |
| 505 | Computer Systems<br>Programming           |
| 506 | Laser Ablation                            |
| 507 | Chemical Sensors                          |
| 508 | Glass                                     |
| 509 | Monitoring                                |
| 510 | Specifications                            |
| 511 | High Performance<br>Liquid Chromatography |
| 512 | Neodymium                                 |
| 513 | Natural Gas                               |
| 514 | Fractography                              |
| 515 | Titanium                                  |
| 516 | Explosions                                |
| 517 | Electromagnetism                          |
| 518 | Land Use                                  |
| 519 | Fruits                                    |
| 520 | Reclamation                               |
| 521 | Ellipsometry                              |
| 522 | Raman Spectroscopy                        |
| 523 | Electrospray Ionization                   |
| 524 | Water Pollution                           |
| 525 | Thermoelectric<br>Equipment               |
| 526 | Mapping                                   |
| 527 | Metals                                    |
| 528 | Genetic Algorithms                        |
| 529 | Nanocapsules                              |
| 530 | Crops                                     |
| 531 | Drives                                    |
| 532 | Resins                                    |
| 533 | Image Sensors                             |
| 534 | Ac Motors                                 |

| 535   | Hydrogels                    |
|-------|------------------------------|
| 536   | Visual Communication         |
| 537   | Well Stimulation             |
| 538   | Satellite Observatories      |
| 539   | Electric Inverters           |
| 540   | Oil Fields                   |
| 541   | Thermoplastics               |
| 542   | Floors                       |
| 543   | Water Conservation           |
| 544   | Water Quality                |
| 545   | Optical Radar                |
| 546   | X Ray Radiography            |
| 547   | Capacitors                   |
| 548   | Strontium                    |
| 549   | Formaldehyde                 |
| 550   | Powders                      |
| 551   | Java Programming<br>Language |
| 552   | Binding Sites                |
| 553   | Optical Sensors              |
| 554   | Control                      |
| 555   | Deposits                     |
| 556   | Software Reliability         |
| 557   | Cell Membranes               |
| 558 · | Hydrogen Peroxide            |
| 559   | Cobalt                       |
| 560   | Pressure Vessels             |
| 561   | Fluid Dynamics               |
| 562   | Rails                        |
| 563   | Turbidity                    |
| 564   | Biochemical<br>Engineering   |
| 565   | Plasma Interactions          |
| 566   | Radar Measurement            |
| 567   | Ion Exchangers               |
| 568   | Recreational Facilities      |
| 569   | Interactive Computer         |
| 570   | Systems<br>Resonance         |
| 570   | resonance                    |

| 571 | Water Filtration                    |
|-----|-------------------------------------|
| 572 | Lithium                             |
| 573 | Laser Applications                  |
| 574 | Phytoplankton                       |
| 575 | Energy Efficiency                   |
| 576 | Ligands                             |
| 577 | Electron Diffraction                |
| 578 | Catalysis                           |
| 579 | Regulatory Compliance               |
| 580 | Defects                             |
| 581 | Size Exclusion                      |
| 582 | Chromatography<br>Global System For |
|     | Mobile<br>Communications            |
| 583 | Catalysts                           |
| 584 | Motor Transportation                |
| 585 | Diesel Engines                      |
| 586 | Neural Networks                     |
| 587 | Zinc                                |
| 588 | Alarm Systems                       |
| 589 | Wireless                            |
|     | Telecommunication<br>Systems        |
| 590 | Synthetic Aperture<br>Radar         |
| 591 | Lead                                |
| 592 | Network Performance                 |
| 593 | Crystal Whiskers                    |
| 594 | Fibers                              |
| 595 | Risk Analysis                       |
| 596 | Semiconductor<br>Quantum Dots       |
| 597 | Antennas                            |
| 598 | X Ray Diffraction                   |
| 599 | Analysis<br>Geological Surveys      |
| 600 | Glycerol                            |
| 601 | Solar Power Generation              |
| 602 | Biodegradation                      |
| 603 | Photoacoustic                       |
|     | Spectroscopy                        |
| 604 | Image Retrieval                     |

| 605 | Sodium                    |
|-----|---------------------------|
| 606 | Cadmium                   |
| 607 | Reservoirs (Water)        |
| 608 | Biomass                   |
| 609 |                           |
|     | Open Systems              |
| 610 | Processing                |
| 611 | Biological Materials      |
| 612 | Calorimetry               |
| 613 | Query Languages           |
| 614 | Machine Design            |
| 615 | Coal Mines                |
| 616 | Speech Communication      |
| 617 | Chlorophyll               |
| 618 | Sugars                    |
| 619 | Radioactivity             |
| 620 | Couplings                 |
| 621 | Oil Wells                 |
| 622 | Nuclear Magnetic          |
|     | Resonance<br>Spectroscopy |
| 623 | Fuzzy Logic               |
| 624 | Explosives                |
| 625 | Potassium                 |
| 626 | Aerodynamics              |
| 627 | Rayon                     |
| 628 | Arsenic                   |
| 629 | Charge Transfer           |
| 630 | Reinforced Plastics       |
| 631 | Corrosion                 |
| 632 | Gases                     |
| 633 | Access Control            |
| 634 | Light                     |
| 635 | Harvesting                |
| 636 | Optimization              |
| 637 | Building Materials        |
| 638 | Quality Control           |
| 639 | Augmented Reality         |
| 640 | Well Drilling             |
|     | ~                         |

| 641 | Oil Sands                            |
|-----|--------------------------------------|
| 642 | Phosphorus                           |
| 643 | Rocks                                |
| 644 | Irrigation                           |
| 645 | Water Treatment                      |
| 646 | Speed                                |
| 647 | Image Coding                         |
| 648 | Phospholipids                        |
| 649 | Coal Ash                             |
| 650 | Extrusion                            |
| 651 | Scintillation                        |
| 652 | Film Growth                          |
| 653 | Milling (Machining)                  |
| 654 | Energy Balance                       |
| 655 | Brazing                              |
| 656 | Laws And Legislation                 |
| 657 | Dynamics                             |
| 658 | Thermoanalysis                       |
| 659 | Dissociation                         |
| 660 | Pollution Control                    |
| 661 | Cooling Systems                      |
| 662 | Optical Materials                    |
| 663 | Photosynthesis                       |
| 664 | Morphology                           |
| 665 | Roofs                                |
| 666 | Curing                               |
| 667 | Linear Accelerators                  |
| 668 | Models                               |
| 669 | Fluids                               |
| 670 | Asynchronous<br>Generators           |
| 671 | Acoustic Noise                       |
| 672 | Ceramic Materials                    |
| 673 | Timber                               |
| 674 | Platinum Compounds                   |
| 675 | Petroleum                            |
| 676 | Transportation<br>Sand Consolidation |
| 677 | Thermogravimetric                    |
| 0// | Thermogravimente                     |

|     | Analysis                          |  |
|-----|-----------------------------------|--|
| 678 | Salvaging                         |  |
| 679 | Hydrates                          |  |
| 680 | Communication<br>Systems          |  |
| 681 | Relaxation Time                   |  |
| 682 | Isotopes                          |  |
| 683 | Wastewater Treatment              |  |
| 684 | Engine Cylinders                  |  |
| 685 | Earth Atmosphere                  |  |
| 686 | Cellulose                         |  |
| 687 | Weather Forecasting               |  |
| 688 | Distillation                      |  |
| 689 | Digital Image Storage             |  |
| 690 | Denitrification                   |  |
| 691 | Integration                       |  |
| 692 | Extraction                        |  |
| 693 | Gallium                           |  |
| 694 | Magnesium                         |  |
| 695 | Geographic Information<br>Systems |  |
| 696 | Palladium                         |  |
| 697 | Silicon                           |  |
| 698 | Association Rules                 |  |
| 699 | Evolutionary<br>Algorithms        |  |
| 700 | Soil Mechanics                    |  |
| 701 | Carbon Dioxide                    |  |
| 702 | Particle Detectors                |  |
| 703 | Contact Angle                     |  |
| 704 | Ionizing Radiation                |  |
| 705 | Nickel                            |  |
| 706 | Synchrotron Radiation             |  |
| 707 | Biological Systems                |  |
| 708 | Ytterbium                         |  |
| 709 | Ocean Habitats                    |  |
| 710 | Magnetic Materials                |  |
| 711 | Aluminum                          |  |
| 712 | Toughening                        |  |

| 713 | Groundwater                         |
|-----|-------------------------------------|
| 714 | Mobile Ad Hoc<br>Networks           |
| 715 | X Ray Analysis                      |
| 716 | Refining                            |
| 717 | Groundwater Resources               |
| 718 | Strain Energy                       |
| 719 | Zeta Potential                      |
| 720 | Molecular<br>Spectroscopy           |
| 721 | Composite Coatings                  |
| 722 | Fires                               |
| 723 | Petroleum Refineries                |
| 724 | Spacecraft                          |
| 725 | Opacity                             |
| 726 | Ceramic Coatings                    |
| 727 | Solvent Extraction                  |
| 728 | Cellular Telephone<br>Systems       |
| 729 | Focusing                            |
| 730 | Program Compilers                   |
| 731 | Alignment                           |
| 732 | Developing Countries                |
| 733 | Modulation                          |
| 734 | Chromium                            |
| 735 | Stiffness                           |
| 736 | Biological Membranes                |
| 737 | Pipe                                |
| 738 | Quantum Theory                      |
| 739 | Image Processing                    |
| 740 | Classifiers                         |
| 741 | Carbon Fiber<br>Reinforced Plastics |
| 742 | Speech Processing                   |
| 743 | Nanocrystalline<br>Powders          |
| 744 | Gas Chromatography                  |
| 745 | Resonators                          |
| 746 | Papermaking                         |
| 747 | Plasma Applications                 |
| 748 | Speech Analysis                     |

| 749 | Cryptography                  |
|-----|-------------------------------|
| 750 | Bone Cement                   |
| 751 | Milling Machines              |
| 752 | Methane                       |
| 753 | Lanthanum                     |
| 754 | Viscoelasticity               |
| 755 | Speech Transmission           |
| 756 | Synthesis (Chemical)          |
| 757 | Water Supply                  |
| 758 | Liquids                       |
| 759 | Carbon Steel                  |
| 760 | Computer Simulation           |
| 761 | Water Recycling               |
| 762 | Textile Processing            |
| 763 | Ferroelectric Films           |
| 764 | Life Cycle                    |
| 765 | Data Transfer                 |
| 766 | Multilayer Neural<br>Networks |
| 767 | Optical Communication         |
| 768 | Parallel Architectures        |
| 769 | Calcium Phosphate             |
| 770 | Thermodynamics                |
| 771 | Maleic Anhydride              |
| 772 | Image Segmentation            |
| 773 | Metallic Glass                |
| 774 | Water Cooling Systems         |
| 775 | Combustion Synthesis          |
| 776 | Silicon Sensors               |
| 777 | Corrosion Fatigue             |
| 778 | Urea                          |
| 779 | Risk Assessment               |
| 780 | Apatite                       |
| 781 | Blending                      |
| 782 | Soils                         |
| 783 | Computer Operating<br>Systems |
| 784 | Energy Transfer               |
| 785 | Carbon Monoxide               |

| 786 | Offshore Oil Wells              |
|-----|---------------------------------|
| 787 | X Ray Diffraction               |
| 788 | Optoelectronic Devices          |
| 789 | Semiconductor Growth            |
| 790 | Batch Cell Culture              |
| 791 | Barium                          |
| 792 | Drag                            |
| 793 | Molecules                       |
| 794 | Systems Analysis                |
| 795 | Computer Aided<br>Analysis      |
| 796 | Fatigue Of Materials            |
| 797 | Waves                           |
| 798 | Real Time Systems               |
| 799 | Semantics                       |
| 800 | Mechanical Testing              |
| 801 | Geomorphology                   |
| 802 | Rhenium                         |
| 803 | Ball Mills                      |
| 804 | Stratigraphy                    |
| 805 | Atmospheric Chemistry           |
| 806 | Sea Level                       |
| 807 | Natural Gas Well<br>Drilling    |
| 808 | Environmental Impact            |
| 809 | Silver Deposits                 |
| 810 | Luminescence                    |
| 811 | Plasma Theory                   |
| 812 | Analytical<br>Geochemistry      |
| 813 | Reliability                     |
| 814 | Hydrodynamics                   |
| 815 | Embedded Systems                |
| 816 | Oxygen                          |
| 817 | Water Analysis                  |
| 818 | Chromatographic<br>Analysis     |
| 819 | Microorganisms                  |
| 820 | Computational Fluid<br>Dynamics |
| 821 | Drops                           |

| 822 | Chemical Analysis                                  |
|-----|----------------------------------------------------|
| 823 | Real Time Control                                  |
| 824 | Infrared Devices                                   |
| 825 | Stress Analysis                                    |
| 826 | Inductively Coupled<br>Plasma Mass<br>Spectrometry |
| 827 | Soil Pollution                                     |
| 828 | Diffusers (Optical)                                |
| 829 | Ternary Systems                                    |
| 830 | Computational Methods                              |
| 831 | Underwater Structures                              |
| 832 | Scanning Tunneling<br>Microscopy                   |
| 833 | Chemical Attack                                    |
| 834 | Land Fill                                          |
| 835 | Organic Chemicals                                  |
| 836 | Telecommunication<br>Networks                      |
| 837 | Clustering Algorithms                              |
| 838 | Aluminum Metallurgy                                |
| 839 | Fault Detection                                    |
| 840 | Diffraction                                        |
| 841 | Cavity Resonators                                  |
| 842 | Heating                                            |
| 843 | Polarographic Analysis                             |
| 844 | Traffic Control                                    |
| 845 | Population Statistics                              |
| 846 | Decision Making                                    |
| 847 | Organic Acids                                      |
| 848 | Radioactive Waste<br>Disposal                      |
| 849 | Fracture Testing                                   |
| 850 | Fluidization                                       |
| 851 | Synchronous Motors                                 |
| 852 | Dust                                               |
| 853 | Active Filters                                     |
| 854 | Manganese                                          |
| 855 | Calcium Chloride                                   |
| 856 | Refractory Materials                               |

| 0.57 | Trading                        |
|------|--------------------------------|
| 857  | Erosion                        |
| 858  | Errors                         |
| 859  | Field Emission<br>Microscopes  |
| 860  | Differential Equations         |
| 861  | Molding                        |
| 862  | Piezoelectric<br>Transducers   |
| 863  | Substrates                     |
| 864  | Auger Electron<br>Spectroscopy |
| 865  | Data Processing                |
| 866  | Cluster Analysis               |
| 867  | Cooling                        |
| 868  | Electric Generators            |
| 869  | Vegetation                     |
| 870  | Remote Control                 |
| 871  | Algorithms                     |
| 872  | Motion Control                 |
| 873  | Superconducting Films          |
| 874  | Sand                           |
| 875  | Mosfet Devices                 |
| 876  | Plasma Sources                 |
| 877  | Fabrication                    |
| 878  | Activation Energy              |
| 879  | Speech Recognition             |
| 880  | Optical Systems                |
| 881  | Diamond Films                  |
| 882  | Heat Treatment                 |
| 883  | Sulfur                         |
| 884  | Stabilization .                |
| 885  | Photovoltaic Effects           |
| 886  | Well Logging                   |
| 887  | Rain                           |
| 888  | Petrography                    |
| 889  | Vibration Control              |
| 890  | Calibration                    |
| 891  | Alloys                         |
| 892  | High Energy Physics            |
|      |                                |

|     | - 12 (W.                            |
|-----|-------------------------------------|
| 893 | Optical Properties                  |
| 894 | Interfaces (Computer)               |
| 895 | Sandstone                           |
| 896 | Erbium                              |
| 897 | Chemical Activation                 |
| 898 | Structural Geology                  |
| 899 | Heat Transfer                       |
| 900 | Meteorological Radar                |
| 901 | Near Infrared<br>Spectroscopy       |
| 902 | Infrared Spectroscopy               |
| 903 | X Ray Photoelectron<br>Spectroscopy |
| 904 | Torque                              |
| 905 | Hydrothermal Synthesis              |
| 906 | Optical Design                      |
| 907 | Rare Earths                         |
| 908 | Freezing                            |
| 909 | Sols                                |
| 910 | Cooling Water                       |
| 911 | Hydration                           |
| 912 | Molecular Beams                     |
| 913 | Bioactive Glass                     |
| 914 | Magnesium Castings                  |
| 915 | Crosslinking                        |
| 916 | X Rays                              |
| 917 | Electronic Properties               |
| 918 | Hydrogen                            |
| 919 | Sewage                              |
| 920 | Oil Field Development               |
| 921 | Copolymers                          |
| 922 | Polymer Matrix<br>Composites        |
| 923 | Particle Beams                      |
| 924 | Packet Networks                     |
| 925 | Oxygen Vacancies                    |
| 926 | Atomic Spectroscopy                 |
| 927 | Mica                                |
| 928 | Radar Antennas                      |

| 929 | Surface Chemistry                          |
|-----|--------------------------------------------|
| 930 | Crystals                                   |
| 931 | Molybdenum                                 |
| 932 | Photoelectricity                           |
| 933 | Ocean Currents                             |
| 934 | Iron Alloys                                |
| 935 | Optical Fibers                             |
| 936 | Scandium                                   |
| 937 | Removal                                    |
| 938 | Nickel Cadmium<br>Batteries                |
| 939 | Radioisotopes                              |
| 940 | Diodes                                     |
| 941 | Plasma Turbulence                          |
| 942 | Laser Heating                              |
| 943 | Body Fluids                                |
| 944 | Lactic Acid                                |
| 945 | Petroleum Refining                         |
| 946 | Silicon Detectors                          |
| 947 | Shale                                      |
| 948 | Image Enhancement                          |
| 949 | Nuclear Propulsion                         |
| 950 | Radiation Detectors                        |
| 951 | Polycyclic Aromatic<br>Hydrocarbons        |
| 952 | Radiation Effects                          |
| 953 | Solid Solutions                            |
| 954 | Phenolic Resins                            |
| 955 | Atmospheric Aerosols                       |
| 956 | Irradiation                                |
| 957 | Petroleum Analysis                         |
| 958 | Soil Conservation                          |
| 959 | Sodium Sulfate                             |
| 960 | Natural Gas Wells                          |
| 961 | Glass Fibers                               |
| 962 | Fourier Transform<br>Infrared Spectroscopy |
| 963 | Image Reconstruction                       |
| 964 | Nitrogen                                   |

| 965        | Plasma Waves                    |
|------------|---------------------------------|
| 966        | Heavy Metals                    |
| 967        | Telecommunication<br>Equipment  |
| 968        | Magnetic Devices                |
| 969        | Carbon Films                    |
| 970        | Graphite                        |
| 971        | Textures                        |
| 972        | Weathering                      |
| 973        | Inertial Confinement<br>Fusion  |
| 974        | Water Injection                 |
| 975        | Matlab                          |
| 976        | Ph Effects                      |
| 977        | Hardening                       |
| 978        | Experiments                     |
| 979        | Creep                           |
| 980        | Functional Polymers             |
| 981        | Semiconductor<br>Quantum Wires  |
| 982        | Cements                         |
| 983        | Object Oriented<br>Programming  |
| 984        | Hydrocarbons                    |
| 985        | Ordinary Differential           |
| 986        | Equations<br>Fuel Oils          |
| 987        | Geologic Models                 |
| 988        | Electric Instrument             |
| 989        | Transformers<br>Magnetic Fields |
| 990        | Thermoelectricity               |
| 991        | Green'S Function                |
| 992        | Martensitic                     |
| 993        | Transformations<br>Diffusion    |
| 995<br>994 |                                 |
|            | Organic Carbon<br>Dc Generators |
| 995        |                                 |
| 996        | Stability                       |
| 997        | Doppler Radar                   |
| 998<br>999 | Solar Radiation                 |
|            | Photodegradation                |

| 1000 | Radiometers                      |
|------|----------------------------------|
| 1001 | Data Compression                 |
| 1002 | Plasma Jets                      |
| 1003 | Cracks                           |
| 1004 | Seismic Design                   |
| 1005 | Pressure Effects                 |
| 1006 | Sodium Chloride                  |
| 1007 | Lignin                           |
| 1008 | Phosphates                       |
| 1009 | Plasma Torches                   |
| 1010 | Electric Power                   |
| 1011 | Generation<br>Geothermal Springs |
| 1012 | Sensor Networks                  |
| 1013 | Activated Carbon                 |
| 1014 | River Pollution                  |
| 1015 | Mercury (Metal)                  |
| 1016 | Titanium Dioxide                 |
| 1017 | Structural Design                |
| 1018 | Hardness                         |
| 1019 | Graphical User<br>Interfaces     |
| 1020 | Contamination                    |
| 1021 | Binding Energy                   |
| 1022 | Mathematical<br>Morphology .     |
| 1023 | Petroleum Prospecting            |
| 1024 | Crystal Growth                   |
| 1025 | Compression Testing              |
| 1026 | Runoff                           |
| 1027 | Microelectromechanical Devices   |
| 1028 | Mineral Oils                     |
| 1029 | Tellurium Compounds              |
| 1030 | Acoustic Fields                  |
| 1031 | Soil Moisture                    |
| 1032 | Refractive Index                 |
| 1033 | Heterogeneous<br>Networks        |
| 1034 | Fuzzy Control                    |
| 1035 | Process Control                  |

| 1036 | Solid Oxide Fuel Cells       |
|------|------------------------------|
| 1037 | (Sofc)<br>Pore Size          |
| 1038 | Adaptive Control             |
|      | Systems                      |
| 1039 | Thin Films                   |
| 1040 | Temperature                  |
| 1041 | Catalytic Oxidation          |
| 1042 | Film Preparation             |
| 1043 | Europium                     |
| 1044 | Specific Heat                |
| 1045 | Vacuum                       |
| 1046 | Local Area Networks          |
| 1047 | Moisture Control             |
| 1048 | Raman Scattering             |
| 1049 | Temperature Control          |
| 1050 | Materials Handling           |
| 1051 | Alumina                      |
| 1052 | Germanium                    |
| 1053 | Highway Systems              |
| 1054 | Spectroscopic Analysis       |
| 1055 | Acetone                      |
| 1056 | Ionic Liquids                |
| 1057 | Electric Network<br>Analysis |
| 1058 | Porphyrins                   |
| 1059 | Durability                   |
| 1060 | Structural Analysis          |
| 1061 | Materials Properties         |
| 1062 | Metal Casting                |
| 1063 | Hydrogen Storage             |
| 1064 | Epitaxial Growth             |
| 1065 | Titanium Alloys              |
| 1066 | Surface Testing              |
| 1067 | Bicmos Technology            |
| 1068 | Signal Detection             |
| 1069 | Solvents                     |
| 1070 | Mechanical Properties        |
| 1071 | Propane                      |
|      |                              |

| 1072 | Degradation                              |
|------|------------------------------------------|
| 1073 | Degassing                                |
| 1074 | Societies And<br>Institutions            |
| 1075 | Debris                                   |
| 1076 | Gamma Rays                               |
| 1077 | High Resolution<br>Transmission Electron |
| 1070 | Microscopy                               |
| 1078 | Polymer Films                            |
| 1079 | Sensor Nodes                             |
| 1080 | Hydrogen Storage<br>Alloys               |
| 1081 | Total Quality<br>Management              |
| 1082 | Mass Transfer                            |
| 1083 | Colliding Beam<br>Accelerators           |
| 1084 | Ion Exchange                             |
| 1085 | Garnets                                  |
| 1086 | Knowledge Based<br>Systems               |
| 1087 | Dynamic Programming                      |
| 1088 | Pyroelectricity                          |
| 1089 | Signal Processing                        |
| 1090 | Energy Conversion                        |
| 1091 | Reaction Kinetics                        |
| 1092 | Transient Analysis                       |
| 1093 | Oxidation                                |
| 1094 | Zeolites                                 |
| 1095 | Environmental<br>Protection Agency       |
| 1096 | Methanol                                 |
| 1097 | Knowledge Acquisition                    |
| 1098 | Vibration Analysis                       |
| 1099 | Water Levels                             |
| 1100 | Conformations                            |
| 1101 | Solidification                           |
| 1102 | Magnetic Properties                      |
| 1103 | Strain Rate                              |
| 1104 | Multilayers                              |
| 1105 | High Pressure Liquid<br>Chromatography   |

| 1106 | Emission Spectroscopy                |
|------|--------------------------------------|
| 1107 | Smelting                             |
| 1108 | Styrene                              |
| 1109 | Differential Scanning<br>Calorimetry |
| 1110 | Optical Films                        |
| 1111 | Propellants                          |
| 1112 | Cellular Radio Systems               |
| 1113 | Plasticizers                         |
| 1114 | Beryllium                            |
| 1115 | Silicon Carbide                      |
| 1116 | Flocculation                         |
| 1117 | Control System<br>Analysis           |
| 1118 | Boron                                |
| 1119 | Combustion                           |
| 1120 | Induction Motors                     |
| 1121 | Sensitivity Analysis                 |
| 1122 | Helium                               |
| 1123 | Waveform Analysis                    |
| 1124 | Global Positioning<br>System         |
| 1125 | Acceleration                         |
| 1126 | Hydrogen Production                  |
| 1127 | Inorganic Coatings                   |
| 1128 | Protective Coatings                  |
| 1129 | Neodymium Lasers                     |
| 1130 | Fuel Additives                       |
| 1131 | Nonlinear Analysis                   |
| 1132 | Mathematical Models                  |
| 1133 | Epitaxial Films                      |
| 1134 | Electrodes                           |
| 1135 | Seismic Prospecting                  |
| 1136 | Flow Of Fluids                       |
| 1137 | Thermochemistry                      |
| 1138 | Magnetoresistance                    |
| 1139 | Quartz                               |
| 1140 | Silica                               |
| 1141 | Multivariant Analysis                |
|      |                                      |

| 1142 | Interferometers                |
|------|--------------------------------|
| 1143 | Electric Automobiles           |
| 1144 | Pinch Effect                   |
| 1145 | Problem Solving                |
| 1146 | Charge Trapping                |
| 1147 | Information Fusion             |
| 1148 | Silicon Alloys                 |
| 1149 | Internet Protocols             |
| 1150 | Chemical Reactions             |
| 1151 | Voltage Control                |
| 1152 | Electromagnetic Fields         |
| 1153 | Process Monitoring             |
| 1154 | Stress Concentration           |
| 1155 | Tensors                        |
| 1156 | Suspensions (Fluids)           |
| 1157 | Stoichiometry                  |
| 1158 | Zinc Sulfide                   |
| 1159 | Submarine Geology              |
| 1160 | Oil Resistance                 |
| 1161 | Cost Benefit Analysis          |
| 1162 | Feature Extraction             |
| 1163 | Metal Analysis                 |
| 1164 | Leaching                       |
| 1165 | Grafting (Chemical)            |
| 1166 | Microstructure .               |
| 1167 | Safety Factor                  |
| 1168 | Concrete Buildings             |
| 1169 | Dispersions                    |
| 1170 | Reynolds Number                |
| 1171 | Photoacoustic Effect           |
| 1172 | Unsaturated Polymers           |
| 1173 | Graphic Methods                |
| 1174 | Magnetic Anisotropy            |
| 1175 | High Pressure Effects          |
| 1176 | Dynamic Mechanical<br>Analysis |
| 1177 | Pulsed Laser                   |
| 1178 | Deposition<br>Metal Extrusion  |
|      |                                |

| 1179 | Alkylation                             |
|------|----------------------------------------|
| 1180 | Flow Simulation                        |
| 1181 | Heavy Water                            |
| 1182 | Serpentine                             |
| 1183 | Surface Analysis                       |
| 1184 | Edge Detection                         |
| 1185 | Nucleation                             |
| 1186 | Structural Dynamics                    |
| 1187 | Decision Support                       |
|      | Systems                                |
| 1188 | Network Protocols                      |
| 1189 | Seawater                               |
| 1190 | Reinforcement                          |
| 1191 | Compaction                             |
| 1192 | Electric Drives                        |
| 1193 | Estimation                             |
| 1194 | Structural Optimization                |
| 1195 | Vanadium                               |
| 1196 | Epoxy Resins                           |
| 1197 | Metal Recovery                         |
| 1198 | Traffic Surveys                        |
| 1199 | Electric Wire                          |
| 1200 | Traffic Congestion                     |
| 1201 | Plasma Deposition                      |
| 1202 | Soldering Alloys                       |
| 1203 | Organic Compounds                      |
| 1204 | Wireless Local Area<br>Networks (Wlan) |
| 1205 | Adsorption                             |
| 1206 | Fusion Reactors                        |
| 1207 | Coal Combustion                        |
| 1208 | Wind Stress                            |
| 1209 | Regression Analysis                    |
| 1210 | Estuaries                              |
| 1211 | Crystallization                        |
| 1212 | Routing Algorithms                     |
| 1213 | Zinc Oxide                             |
| 1214 | Water Waves                            |
| 1215 | Deposition                             |
|      |                                        |

| 1216 | Functional Groups                  |
|------|------------------------------------|
| 1217 | Chemical Oxygen<br>Demand          |
| 1218 | Agricultural Chemicals             |
| 1219 | Plastic Films                      |
| 1220 | Logging (Forestry)                 |
| 1221 | Crystal Structure                  |
| 1222 | Wear Of Materials                  |
| 1223 | Surface Treatment                  |
| 1224 | Neodymium Alloys                   |
| 1225 | Ores                               |
| 1226 | Photoresists                       |
| 1227 | Oxide Minerals                     |
| 1228 | Sampling                           |
| 1229 | Microchannels                      |
| 1230 | Vibrators                          |
| 1231 | Synchronization                    |
| 1232 | Desorption                         |
| 1233 | Reflection                         |
| 1234 | Tungsten                           |
| 1235 | Ferritic Steel                     |
| 1236 | Polyethylenes                      |
| 1237 | Hafnium                            |
| 1238 | Ethylene                           |
| 1239 | Computational<br>Complexity        |
| 1240 | Organic Polymers                   |
| 1241 | Target Tracking                    |
| 1242 | Permanent Magnets                  |
| 1243 | Fault Tolerant<br>Computer Systems |
| 1244 | Photoluminescence                  |
| 1245 | Lanthanum Alloys                   |
| 1246 | Calculations                       |
| 1247 | Reconstruction<br>(Structural)     |
| 1248 | Temperature                        |
|      | Programmed<br>Desorption           |
| 1249 | Dynamic Analysis                   |
| 1250 | Redox Reactions                    |
|      |                                    |

| 1251 | Ion Exchange Resins                      |
|------|------------------------------------------|
| 1252 | Melting                                  |
| 1253 | Redundancy                               |
| 1254 | Soil Testing                             |
| 1255 | Flue Gases                               |
| 1256 | Liquefaction                             |
| 1257 | Power Transmission                       |
| 1258 | Ignition                                 |
| 1259 | Molecular Beam<br>Epitaxy                |
| 1260 | Structural Properties                    |
| 1261 | Niobium                                  |
| 1262 | Field Programmable<br>Gate Arrays (Fpga) |
| 1263 | Surface Morphology                       |
| 1264 | Mobile<br>Telecommunication<br>Systems   |
| 1265 | Thiophene                                |
| 1266 | Structural Frames                        |
| 1267 | Concrete Construction                    |
| 1268 | Crystallization Kinetics                 |
| 1269 | Earthquake Effects                       |
| 1270 | Torque Control                           |
| 1271 | Supply Chains                            |
| 1272 | Annealing                                |
| 1273 | Phase Modulation                         |
| 1274 | Agglomeration                            |
| 1275 | Adsorption Isotherms                     |
| 1276 | Optical Emission<br>Spectroscopy         |
| 1277 | Toluene                                  |
| 1278 | Alkalinity                               |
| 1279 | Pyrolysis                                |
| 1280 | Data Structures                          |
| 1281 | Tungsten Carbide                         |
| 1282 | Cesium                                   |
| 1283 | Artificial Limbs                         |
| 1284 | Magnetic Domains                         |
| 1285 | Microwave Irradiation                    |
|      |                                          |

| 1286 | Benzene                                      |
|------|----------------------------------------------|
| 1287 | Spectrum Analysis                            |
| 1288 | Failure Analysis                             |
| 1289 | Polarization                                 |
| 1290 | Electric Load<br>Forecasting                 |
| 1291 | Spin Dynamics                                |
| 1292 | Ad Hoc Networks                              |
| 1293 | Scattering                                   |
| 1294 | Piezoelectric Ceramics                       |
| 1295 | Control Theory                               |
| 1296 | Ferroelectric Ceramics                       |
| 1297 | Light Emission                               |
| 1298 | Acetic Acid                                  |
| 1299 | Oxidation Resistance                         |
| 1300 | Petroleum Reservoir<br>Evaluation            |
| 1301 | Well Completion                              |
| 1302 | Exploratory<br>Geochemistry                  |
| 1303 | Biological Water<br>Treatment                |
| 1304 | Self Assembly                                |
| 1305 | Absorption                                   |
| 1306 | Thin Film Devices                            |
| 1307 | Iron Compounds                               |
| 1308 | Percolation (Fluids)                         |
| 1309 | High Temperature<br>Applications             |
| 1310 | Ore Deposits                                 |
| 1311 | Electric Fields                              |
| 1312 | Gadolinium Alloys                            |
| 1313 | Separation                                   |
| 1314 | Electrochemical<br>Impedance<br>Spectroscopy |
| 1315 | Metal Refining                               |
| 1316 | Electrochemical<br>Corrosion                 |
| 1317 | Propylene                                    |
| 1318 | Esterification                               |
| 1319 | Pressure Drop                                |

| 1320 | Nozzles                         |
|------|---------------------------------|
| 1321 | Rare Earth Alloys               |
| 1322 | Thermal Conductivity            |
| 1323 | Linear Programming              |
| 1324 | Oil Field Equipment             |
| 1325 | System Stability                |
| 1326 | Esters                          |
| 1327 | Titanium Carbide                |
| 1328 | Magnesium Alloys                |
| 1329 | Stresses                        |
| 1330 | Electric Properties             |
| 1331 | Risk Perception                 |
| 1332 | Wind Effects                    |
| 1333 | Dissolved Oxygen                |
| 1334 | Atmospheric Radiation           |
| 1335 | Tensile Testing                 |
| 1336 | Lithology                       |
| 1337 | Coal Deposits                   |
| 1338 | Readout Systems                 |
| 1339 | Diamond Like Carbon<br>Films    |
| 1340 | Structural Metals               |
| 1341 | Simulated Annealing             |
| 1342 | Concretes                       |
| 1343 | Magnetic Field Effects          |
| 1344 | Electrochemical<br>Properties   |
| 1345 | Seismic Response                |
| 1346 | Water Vapor                     |
| 1347 | Sulfate Minerals                |
| 1348 | Monte Carlo Methods             |
| 1349 | Inclusions                      |
| 1350 | Pore Pressure                   |
| 1351 | Free Radical Reactions          |
| 1352 | Paraffins                       |
| 1353 | Digital To Analog<br>Conversion |
| 1354 | Silicon Wafers                  |
| 1355 | Aldehydes                       |
|      |                                 |

| 1356 | Aluminum Powder<br>Metallurgy          |
|------|----------------------------------------|
| 1357 | Laser Pulses                           |
| 1358 | Cerium                                 |
| 1359 | Field Emission                         |
| 1360 | Aniline                                |
| 1361 | Groundwater Pollution                  |
| 1362 | Perovskite                             |
| 1363 | Potable Water                          |
| 1364 | Fracture Toughness                     |
| 1365 | Laser Excitation                       |
| 1366 | Gallium Alloys                         |
| 1367 | Neutron Radiography                    |
| 1368 | Numerical Methods                      |
| 1369 | Water Treatment Plants                 |
| 1370 | Surface Measurement                    |
| 1371 | Tubes (Components)                     |
| 1372 | Ultraviolet                            |
| 1373 | Spectroscopy<br>Numerical Analysis     |
| 1374 | Enhanced Recovery                      |
| 1375 | Gallium Nitride                        |
| 1376 | Amines                                 |
| 1377 | Reliability Analysis                   |
| 1378 | Tantalum                               |
| 1379 | Number Theory                          |
| 1380 | Aromatic Hydrocarbons                  |
| 1381 | Surface Waves                          |
| 1382 | Surfaces                               |
| 1383 | Steel Structures                       |
| 1384 | Ocean Structures                       |
| 1385 | Multiwalled Carbon<br>Nanotubes (Mwcn) |
| 1386 | Taxonomies                             |
| 1387 | Amorphous Alloys                       |
| 1388 | Spontaneous Emission                   |
| 1389 | Molecular Sieves                       |
| 1390 | Petroleum Reservoirs                   |
| 1391 | Particle Size                          |
|      |                                        |

| 1392 | Catalyst Activity                    |
|------|--------------------------------------|
| 1393 | Associative Processing               |
| 1394 | Coupling Agents                      |
| 1395 | Olefins                              |
| 1396 | Hamiltonians                         |
| 1397 | Aromatic Compounds                   |
| 1398 | Zirconium Alloys                     |
| 1399 | Oxide Films                          |
| 1400 | Stochastic Models                    |
| 1401 | Pulsed Laser<br>Applications         |
| 1402 | Chemical Stability                   |
| 1403 | Scintillation Counters               |
| 1404 | Particle Interactions                |
| 1405 | Ketones                              |
| 1406 | Dynamic Models                       |
| 1407 | Chromophores                         |
| 1408 | Support Vector<br>Machines           |
| 1409 | Rubidium                             |
| 1410 | Atomic Absorption<br>Spectrometry    |
| 1411 | Piezoelectricity                     |
| 1412 | Fire Hazards                         |
| 1413 | Landforms                            |
| 1414 | Brittle Fracture                     |
| 1415 | Physical Properties                  |
| 1416 | Temperature Measuring<br>Instruments |
| 1417 | Paper Sheeting                       |
| 1418 | Harmonic Analysis                    |
| 1419 | Yttrium                              |
| 1420 | Crystal Atomic<br>Structure          |
| 1421 | Induction Heating                    |
| 1422 | Piezoelectric Materials              |
| 1423 | Soil Pollution Control               |
| 1424 | Size Distribution                    |
| 1425 | X Ray Powder<br>Diffraction          |
| 1426 | Decision Theory                      |

| 1427 | Microcrystalline Silicon         |
|------|----------------------------------|
| 1428 | Catalyst Selectivity             |
| 1429 | Atmospheric<br>Temperature       |
| 1430 | Tensile Strength                 |
| 1431 | Optimal Systems                  |
| 1432 | Dewatering                       |
| 1433 | Sediments                        |
| 1434 | Grain Growth                     |
| 1435 | Hysteresis                       |
| 1436 | Photons                          |
| 1437 | Slags                            |
| 1438 | Electric Potential               |
| 1439 | Wetting                          |
| 1440 | Argon                            |
| 1441 | Industrial Waste<br>Treatment    |
| 1442 | Fault Tolerance                  |
| 1443 | Surface Defects                  |
| 1444 | Silicon Compounds                |
| 1445 | Gelation                         |
| 1446 | Function Evaluation              |
| 1447 | Power Spectrum                   |
| 1448 | Complexation                     |
| 1449 | Correlation Methods              |
| 1450 | Gas Adsorption                   |
| 1451 | Organic Solvents                 |
| 1452 | Viscosity                        |
| 1453 | Evaporation                      |
| 1454 | Polymer Melts                    |
| 1455 | Electromagnetic Waves            |
| 1456 | Potassium Compounds              |
| 1457 | Porous Materials                 |
| 1458 | Time Domain Analysis             |
| 1459 | Semiconducting Zinc<br>Compounds |
| 1460 | Silica Gel                       |
| 1461 | Surface Properties               |
| 1462 | Thermodynamic<br>Properties      |

| 1463 | Quenching                           |
|------|-------------------------------------|
| 1464 | Sintering                           |
| 1465 | Zirconium                           |
| 1466 | Fused Silica                        |
| 1467 | Plasma Heating                      |
| 1468 | Semiconducting<br>Bismuth Compounds |
| 1469 | Ethylene Glycol                     |
| 1470 | Piles                               |
| 1471 | Amorphous Materials                 |
| 1472 | Solid Lubricants                    |
| 1473 | Light Sources                       |
| 1474 | Gas Condensates                     |
| 1475 | Zinc Compounds                      |
| 1476 | Sorption                            |
| 1477 | Metallic Films                      |
| 1478 | Effluents                           |
| 1479 | Three Dimensional                   |
| 1480 | Liquid Crystals                     |
| 1481 | Calcium Alloys                      |
| 1482 | Indium Arsenide                     |
| 1483 | Ionization Of Liquids               |
| 1484 | Calcination                         |
| 1485 | Infrared Radiation                  |
| 1486 | Press Load Control ·                |
| 1487 | Refraction                          |
| 1488 | Yield Stress                        |
| 1489 | Mixtures                            |
| 1490 | Concentration (Process)             |
| 1491 | Laser Produced<br>Plasmas           |
| 1492 | Absorption                          |
| 1493 | Spectroscopy<br>Transfer Functions  |
| 1494 | Multiplexing                        |
| 1495 | Dynamic Response                    |
| 1496 | Martensite                          |
| 1497 | Cerium Alloys                       |
| 1498 | Surface Waters                      |
|      |                                     |

| 1499 | Atoms                            |
|------|----------------------------------|
| 1500 | Aquifers                         |
| 1501 | Sedimentation                    |
| 1502 | Phase Diagrams                   |
| 1503 | Statistical Tests                |
| 1504 | Mechanical Alloying              |
| 1505 | Sol-Gel Process                  |
| 1506 | Boron Compounds                  |
| 1507 | Amorphous Carbon                 |
| 1508 | Large Eddy Simulation            |
| 1509 | Thermal Logging                  |
| 1510 | Nickel Alloys                    |
| 1511 | Ferromagnetic<br>Materials       |
| 1512 | Decision Trees                   |
| 1513 | Discriminant Analysis            |
| 1514 | Strength Of Materials            |
| 1515 | Pressure Distribution            |
| 1516 | Electric Impedance<br>Tomography |
| 1517 | Ultraviolet Radiation            |
| 1518 | Ball Milling                     |
| 1519 | Waste Disposal                   |
| 1520 | Phosphate Minerals               |
| 1521 | Particle Size Analysis           |
| 1522 | Semiconducting<br>Gallium        |
| 1523 | Piezoelectric Actuators          |
| 1524 | Rock Bursts                      |
| 1525 | Ion Implantation                 |
| 1526 | Crystalline Materials            |
| 1527 | Cracking (Chemical)              |
| 1528 | Curve Fitting                    |
| 1529 | Ions                             |
| 1530 | Fly Ash                          |
| 1531 | Hydraulic Fracturing             |
| 1532 | Face Recognition                 |
| 1533 | Catchments                       |
| 1534 | Cyclic Voltammetry               |

| 1535 | Magnetron Sputtering                          |
|------|-----------------------------------------------|
| 1536 | Amorphous Silicon                             |
| 1537 | Neutrons                                      |
| 1538 | Water Absorption                              |
| 1539 | Impact Strength                               |
| 1540 | Doping (Additives)                            |
| 1541 | Underground<br>Explosions                     |
| 1542 | Hydrogenation                                 |
| 1543 | Monomers                                      |
| 1544 | Electric Lines                                |
| 1545 | Conversion Efficiency                         |
| 1546 | Nitrides                                      |
| 1547 | Unmanned Aerial<br>Vehicles (Uav)             |
| 1548 | Optical Flows                                 |
| 1549 | Dissolution                                   |
| 1550 | Domes                                         |
| 1551 | Linear Control Systems                        |
| 1552 | Orthogonal Frequency<br>Division Multiplexing |
| 1553 | Two Dimensional                               |
| 1554 | Semiconducting Silicon                        |
| 1555 | Corrosion Resistance                          |
| 1556 | Phosphate Coatings                            |
| 1557 | Polycrystalline<br>Materials                  |
| 1558 | Atmospheric Pressure                          |
| 1559 | Seismic Waves                                 |
| 1560 | Bentonite                                     |
| 1561 | Electric Power<br>Transmission                |
| 1562 | Pulse Modulation                              |
| 1563 | Pumping Plants                                |
| 1564 | Electric Power<br>Transmission Networks       |
| 1565 | Approximation<br>Algorithms                   |
| 1566 | Frequency Response                            |
| 1567 | Cmos Integrated<br>Circuits                   |
| 1568 | Liquid Metals                                 |
| 1569 | Melting Point                                 |

| 1570 | Impurities                             |
|------|----------------------------------------|
| 1571 | Non Newtonian Flow                     |
| 1572 | Surface Reconstruction                 |
| 1573 | Subsidence                             |
| 1574 | Copper Deposits                        |
| 1575 | Heat Flux                              |
| 1576 | Shielding                              |
| 1577 | Lithium Alloys                         |
| 1578 | Nitrogen Compounds                     |
| 1579 | Radioactive Elements                   |
| 1580 | Amorphous Films                        |
| 1581 | Semiconducting Indium                  |
| 1582 | Conducting Polymers                    |
| 1583 | Stimulated Raman<br>Scattering         |
| 1584 | Electron Beams                         |
| 1585 | Space Debris                           |
| 1586 | Ostwald Ripening                       |
| 1587 | Copper Alloys                          |
| 1588 | Shear Stress                           |
| 1589 | Crystallite Size                       |
| 1590 | Bubbles (In Fluids)                    |
| 1591 | Vectors                                |
| 1592 | Deformation                            |
| 1593 | Resource Allocation                    |
| 1594 | Velocity                               |
| 1595 | Magnetic Flux                          |
| 1596 | Friction                               |
| 1597 | Neutron Sources                        |
| 1598 | Secondary Batteries                    |
| 1599 | Catalyst Supports                      |
| 1600 | Sulfur Compounds                       |
| 1601 | Trace Analysis                         |
| 1602 | Wafer Bonding                          |
| 1603 | Heavy Oil Production                   |
| 1604 | Polystyrenes                           |
| 1605 | Copolymerization                       |
| 1606 | Three Dimensional<br>Computer Graphics |
|      |                                        |

| 1607                                  | Silicon Oxides                        |
|---------------------------------------|---------------------------------------|
| 1608                                  | Iridium                               |
| 1609                                  | Single Crystals                       |
| 1610                                  | Sediment Transport                    |
| 1611                                  | Phenols                               |
| 1612                                  | Oxides                                |
| 1613                                  | Hydrochloric Acid                     |
| 1614                                  | Mechanical<br>Permeability            |
| 1615                                  | X Ray Scattering                      |
| 1616<br>1617                          | Temperature<br>Distribution<br>Amides |
| · · · · · · · · · · · · · · · · · · · |                                       |
| 1618                                  | Modal Analysis                        |
| 1619                                  | Network Layers                        |
| 1620                                  | Thermal Effects                       |
| 1621                                  | Particle Beam Tracking                |
| 1622                                  | Welds                                 |
| 1623                                  | Proton Beams                          |
| 1624                                  | Superconducting<br>Magnets            |
| 1625                                  | Dendrites<br>(Metallography)          |
| 1626                                  | Electron Energy Loss<br>Spectroscopy  |
| 1627                                  | Industrial Wastes                     |
| 1628                                  | Technological<br>Forecasting          |
| 1629                                  | Backscattering                        |
| 1630                                  | Surface Active Agents                 |
| 1631                                  | Metallic Compounds                    |
| 1632                                  | Ceramic Capacitors                    |
| 1633                                  | Nickel Oxide                          |
| 1634                                  | Navier Stokes<br>Equations            |
| 1635                                  | Spheres                               |
| 1636                                  | Fretting Corrosion                    |
| 1637                                  | Phase Stability                       |
| 1638                                  | Stiffness Matrix                      |
| 1639                                  | Flow Patterns                         |
| 1640                                  | Mechanical Stability                  |
| 1641                                  | Heptane                               |

| 1642 | Error Analysis                           |
|------|------------------------------------------|
| 1643 | Stress Corrosion<br>Cracking             |
| 1644 | Two Phase Flow                           |
| 1645 | Azo Dyes                                 |
| 1646 | Leakage (Fluid)                          |
| 1647 | Isotherms                                |
| 1648 | Millimeter Waves                         |
| 1649 | Surface Structure                        |
| 1650 | Graph Theory                             |
| 1651 | Two Term Control<br>Systems              |
| 1652 | Cement Manufacture                       |
| 1653 | Electric Fault Location                  |
| 1654 | Gas Permeability                         |
| 1655 | Melt Spinning                            |
| 1656 | Semiconducting<br>Germanium<br>Compounds |
| 1657 | Wastewater<br>Reclamation                |
| 1658 | Optical Transfer<br>Function             |
| 1659 | Bit Error Rate                           |
| 1660 | Powder Magnetic Cores                    |
| 1661 | Optical Phase<br>Conjugation             |
| 1662 | Carboxylic Acids                         |
| 1663 | Elasticity                               |
| 1664 | Hydrophilicity                           |
| 1665 | Ammonium<br>Compounds                    |
| 1666 | Reliability Theory                       |
| 1667 | Set Theory                               |
| 1668 | Electromagnetic Wave<br>Diffraction      |
| 1669 | Computer Software                        |
|      | Selection And<br>Evaluation              |
| 1670 | Metal Ions                               |
| 1671 | Solid State Reactions                    |
| 1672 | Glass Transition                         |
| 1673 | Transients                               |
| 1674 | X Ray Apparatus                          |

| 1675 | τ                                   |
|------|-------------------------------------|
|      | Linearization                       |
| 1676 | Volatile Organic<br>Compounds       |
| 1677 | Thermodynamic Stability             |
| 1678 | Agricultural Runoff                 |
| 1679 | Encapsulation                       |
| 1680 | Phase Interfaces                    |
| 1681 | Photolysis                          |
| 1682 | Cerium Compounds                    |
| 1683 | Semiconductor Device<br>Manufacture |
| 1684 | Probability                         |
| 1685 | Polycondensation                    |
| 1686 | Rotation                            |
| 1687 | Carbides                            |
| 1688 | Polypropylenes                      |
| 1689 | Triangulation                       |
| 1690 | Basalt                              |
| 1691 | Object Recognition                  |
| 1692 | Manganese Compounds                 |
| 1693 | Plasma Spraying                     |
| 1694 | Igneous Rocks                       |
| 1695 | Orbits                              |
| 1696 | Highway Traffic<br>Control          |
| 1697 | Clay Minerals                       |
| 1698 | Dielectric Properties               |
| 1699 | Hydrogen Bonds                      |
| 1700 | Semiconducting<br>Organic Compounds |
| 1701 | Stream Flow                         |
| 1702 | Random Number<br>Generation         |
| 1703 | Residual Fuels                      |
| 1704 | Chemical Vapor<br>Deposition        |
| 1705 | Precipitation                       |
| 1706 | (Chemical)                          |
| 1706 | Reinforced Concrete                 |
| 1707 | Iron Ores                           |
| 1708 | Rigidity                            |
| 1709 | Field Effect Transistors            |

| 1710 | Sublimation                           |
|------|---------------------------------------|
| 1711 | Light Absorption                      |
| 1712 | Aluminum Alloys                       |
| 1713 | Motion Compensation                   |
| 1714 | Protons                               |
| 1715 | Volcanic Rocks                        |
| 1716 | Surface Diffusion                     |
| 1717 | Roads And Streets                     |
| 1718 | Solid Electrolytes                    |
| 1719 | Silicon On Insulator<br>Technology    |
| 1720 | Electrons                             |
| 1721 | Air Permeability                      |
| 1722 | Distribution Functions                |
| 1723 | Viscous Flow                          |
| 1724 | Photomultipliers                      |
| 1725 | Phase Transitions                     |
| 1726 | Nickel Deposits                       |
| 1727 | Titanium Oxides                       |
| 1728 | Wear Resistance                       |
| 1729 | Lubricating Oils                      |
| 1730 | Heterojunction Bipolar<br>Transistors |
| 1731 | Coordination Reactions                |
| 1732 | Cobalt Compounds                      |
| 1733 | Strontium Compounds                   |
| 1734 | Size Determination                    |
| 1735 | Uncertainty Analysis                  |
| 1736 | Negative Ions                         |
| 1737 | Positive Ions                         |
| 1738 | Electric Resistance                   |
| 1739 | Plates (Structural<br>Components)     |
| 1740 | Arid Regions                          |
| 1741 | Electrochemical<br>Electrodes         |
| 1742 | Phase Separation                      |
| 1743 | Neutron Emission                      |
| 1744 | Troposphere                           |
| 1745 | Ethers                                |

| 1746 | Rietveld Analysis                               |
|------|-------------------------------------------------|
| 1747 | Rapid Solidification                            |
| 1748 | Polyethylene Glycols                            |
| 1749 | Velocity Measurement                            |
| 1750 | Groundwater Flow                                |
| 1751 | Sodium Alloys                                   |
| 1752 | Sprayed Coatings                                |
| 1753 | Meteorological<br>Instruments                   |
| 1754 | Buoyancy                                        |
| 1755 | Random Processes                                |
| 1756 | Austenite                                       |
| 1757 | Density Functional<br>Theory                    |
| 1758 | Fading Channels                                 |
| 1759 | Salinity Measurement                            |
| 1760 | Zirconium Compounds                             |
| 1761 | Plasma Enhanced<br>Chemical Vapor<br>Deposition |
| 1762 | Coastal Zones                                   |
| 1763 | Capillarity                                     |
| 1764 | Positrons                                       |
| 1765 | Approximation Theory                            |
| 1766 | Hexane                                          |
| 1767 | Titanium Nitride                                |
| 1768 | Nickel Compounds                                |
| 1769 | Chemicals Removal<br>(Water Treatment)          |
| 1770 | Yttrium Alloys                                  |
| 1771 | Sulfur Deposits                                 |
| 1772 | Iron Oxides                                     |
| 1773 | Shoulders (Road)                                |
| 1774 | Dielectric Properties Of<br>Solids              |
| 1775 | Combustion Chambers                             |
| 1776 | Silicon Nitride                                 |
| 1777 | Horizontal Wells                                |
| 1778 | Semiconducting Silicon<br>Compounds             |
| 1779 | Compressive Strength                            |
| 1780 | Vapors                                          |

| 1781 | Porosity                               |
|------|----------------------------------------|
| 1782 | Atmospheric Spectra                    |
| 1783 | Coupled Circuits                       |
| 1784 | Electromagnetic Wave<br>Backscattering |
| 1785 | Shear Strain                           |
| 1786 | Electric Rectifiers                    |
| 1787 | Hydraulic Structures                   |
| 1788 | Radiative Transfer                     |
| 1789 | Hydrostatic Pressure                   |
| 1790 | Bearings (Structural)                  |
| 1791 | Strengthening (Metal)                  |
| 1792 | Principal Component<br>Analysis        |
| 1793 | Electric Conductivity                  |
| 1794 | Olivine                                |
| 1795 | Phosphors                              |
| 1796 | Capacitance                            |
| 1797 | Crystal Lattices                       |
| 1798 | Gas Permeable<br>Membranes             |
| 1799 | Carbonates                             |
| 1800 | Copper Oxides                          |
| 1801 | Effluent Treatment                     |
| 1802 | Frequency Bands                        |
| 1803 | Multicarrier<br>Modulation             |
| 1804 | Forced Convection                      |
| 1805 | Fatigue Crack<br>Propagation           |
| 1806 | Stators                                |
| 1807 | Charge Coupled<br>Devices              |
| 1808 | Silicates                              |
| 1809 | Torsional Stress                       |
| 1810 | Radar Target<br>Recognition            |
| 1811 | Iron Removal (Water<br>Treatment)      |
| 1812 | Hole Concentration                     |
| 1813 | Mullite                                |
| 1814 | Nitrogen Oxides                        |
| 1815 | Dielectric Waveguides                  |

| 1816 | Rapid Thermal<br>Annealing            |
|------|---------------------------------------|
| 1817 | Eutectics                             |
| 1818 | Finite Element Method                 |
| 1819 | Soil Structure<br>Interactions        |
| 1820 | Geometrical Optics                    |
| 1821 | Magnetite                             |
| 1822 | Vapor Pressure                        |
| 1823 | Radiation Shielding                   |
| 1824 | Chlorine Compounds                    |
| 1825 | Electric Power Factor                 |
| 1826 | Plastic Deformation                   |
| 1827 | Calcite                               |
| 1828 | Solid Wastes                          |
| 1829 | Deposition Rates                      |
| 1830 | Quality Function                      |
| 1831 | Deployment<br>Bending Strength        |
| 1832 | Surface Tension                       |
| 1833 | Dynamic                               |
| 1834 | Recrystallization<br>Lead Alloys      |
| 1835 | Crystal Impurities                    |
| 1836 | Earthquake Resistance                 |
| 1837 | Grouting                              |
| 1838 | Shells (Structures)                   |
| 1839 | Nonionic Surfactants                  |
| 1840 | Paraffin Waxes                        |
| 1841 | Routing Protocols                     |
| 1842 | Shear Strength                        |
| 1843 | Surface Roughness                     |
| 1844 | Counting Circuits                     |
| 1845 | Electromagnetic Pulse                 |
| 1846 | Heuristic Algorithms                  |
| 1847 | Transpiration                         |
| 1848 | Evaporative Cooling<br>Systems        |
| 1849 | Positron Annihilation<br>Spectroscopy |
| 1850 | Maintainability                       |
|      |                                       |

| 1851 | Reluctance Motors                              |
|------|------------------------------------------------|
| 1852 | Passivation                                    |
| 1853 | Mixed Convection                               |
| 1854 | Excavation                                     |
| 1855 | Ductility                                      |
| 1856 | Electromagnetic Wave<br>Scattering             |
| 1857 | Application<br>Programming Interfaces<br>(Api) |
| 1858 | Rate Constants                                 |
| 1859 | Sedimentary Rocks                              |
| 1860 | Signal To Noise Ratio                          |
| 1861 | Interpolation                                  |
| 1862 | Random Variables                               |
| 1863 | Polymethyl<br>Methacrylates                    |
| 1864 | Polyvinyl Alcohols                             |
| 1865 | Radioactive Wastes                             |
| 1866 | Dislocations (Crystals)                        |
| 1867 | Chromium Compounds                             |
| 1868 | Finite Difference Time<br>Domain Method        |
| 1869 | Aspect Ratio                                   |
| 1870 | Trace Elements                                 |
| 1871 | Damping                                        |
| 1872 | Fourier Transforms                             |
| 1873 | Transmission Line<br>Theory                    |
| 1874 | Optical Resolving<br>Power                     |
| 1875 | Pulse Width<br>Modulation                      |
| 1876 | Seepage                                        |
| 1877 | Sulfide Minerals                               |
| 1878 | Elastic Waves                                  |
| 1879 | Inverse Problems                               |
| 1880 | Parameter Estimation                           |
| 1881 | Polyethylene Oxides                            |
| 1882 | Soil Surveys                                   |
| 1883 | Wave Equations                                 |
| 1884 | Negative Temperature<br>Coefficient            |

| 1885 | Atmospheric<br>Movements         |
|------|----------------------------------|
| 1886 | Natural Gas Well<br>Completion   |
| 1887 | Bearing Capacity                 |
| 1888 | Elastoplasticity                 |
| 1889 | Density (Specific<br>Gravity)    |
| 1890 | Cadmium Compounds                |
| 1891 | Amination                        |
| 1892 | Ion Bombardment                  |
| 1893 | Permittivity                     |
| 1894 | Carbonate Minerals               |
| 1895 | Aerodynamic Loads                |
| 1896 | Equations Of Motion              |
| 1897 | Polyvinyl Chlorides              |
| 1898 | Rain Gages                       |
| 1899 | Semiconducting Lead<br>Compounds |
| 1900 | Well Spacing                     |
| 1901 | Binary Codes                     |
| 1902 | Open Circuit Voltage             |
| 1903 | Convolution                      |
| 1904 | Rare Earth Elements              |
| 1905 | Bending (Deformation)            |
| 1906 | Corundum                         |
| 1907 | Electric Impedance               |
| 1908 | Backpropagation                  |
| 1909 | Conjugate Gradient<br>Method     |
| 1910 | Probability<br>Distributions     |
| 1911 | Residual Stresses                |
| 1912 | Internal Friction                |
| 1913 | Biochemical Oxygen<br>Demand     |
| 1914 | Frequency Allocation             |
| 1915 | Synchronous<br>Generators        |
| 1916 | Electromagnetic Wave<br>Emission |
| 1917 | Crack Initiation                 |
| 1918 | Electric Discharges              |
|      |                                  |

| 1919 | Surface Topography                                |
|------|---------------------------------------------------|
| 1920 | Method Of Moments                                 |
| 1921 | Moisture Determination                            |
| 1922 | Heat Affected Zone                                |
| 1923 | Percolation (Solid<br>State)                      |
| 1924 | Shear Waves                                       |
| 1925 | Silver Alloys                                     |
| 1926 | Shear Bands                                       |
| 1927 | Boltzmann Equation                                |
| 1928 | Permittivity<br>Measurement                       |
| 1929 | Fracturing Fluids                                 |
| 1930 | Boundary Layers                                   |
| 1931 | Remanence                                         |
| 1932 | Energy Dissipation                                |
| 1933 | Integer Programming                               |
| 1934 | Guided<br>Electromagnetic Wave<br>Propagation     |
| 1935 | Radar Cross Section                               |
| 1936 | Nanocantilevers                                   |
| 1937 | Brittleness                                       |
| 1938 | Proportional Control<br>Systems                   |
| 1939 | Communication<br>Channels (Information<br>Theory) |
| 1940 | Electromagnetic Wave<br>Polarization              |
| 1941 | Flammability                                      |
| 1942 | Overpasses                                        |
| 1943 | Temperature Indicating<br>Cameras                 |
| 1944 | Silicate Minerals                                 |
| 1945 | Elastic Moduli                                    |
| 1946 | Inductance                                        |

| 1947 | Turbogenerators                             |
|------|---------------------------------------------|
| 1948 | Convergence Of<br>Numerical Methods         |
| 1949 | Percolation (Computer<br>Storage)           |
| 1950 | Electric Network<br>Topology                |
| 1951 | Grain Size And Shape                        |
| 1952 | Kaolinite                                   |
| 1953 | Synthetic Apertures                         |
| 1954 | Feldspar                                    |
| 1955 | Probability Density<br>Function             |
| 1956 | Grain Boundaries                            |
| 1957 | Thermionic Emission                         |
| 1958 | Refuse Disposal                             |
| 1959 | Slip Forming                                |
| 1960 | Molecular Orbitals                          |
| 1961 | Crystalline Rocks                           |
| 1962 | Metal Vapor Lamps                           |
| 1963 | Radioactive<br>Prospecting                  |
| 1964 | Alloying                                    |
| 1965 | Metallorganic Chemical<br>Vapor Deposition  |
| 1966 | Leachate Treatment                          |
| 1967 | Spontaneous Potential<br>Logging            |
| 1968 | Rayleigh Fading                             |
| 1969 | Pyrites                                     |
| 1970 | Transformer Windings                        |
| 1971 | Compression Ratio<br>(Machinery)            |
| 1972 | Ultrahigh Molecular<br>Weight Polyethylenes |
| 1973 | Covariance Matrix                           |
| 1974 | Grain Refinement                            |

| Geodetic Satellites                      |
|------------------------------------------|
| Ore Deposit Geology                      |
| Settling Tanks                           |
| Tantalate Minerals                       |
| Electric Fault Currents                  |
| Refuse Incinerators                      |
| Pollution Induced<br>Corrosion           |
| Directional Patterns<br>(Antenna)        |
| Magnesium Printing<br>Plates             |
| Pile Foundations                         |
| Nonmetallic Matrix<br>Composites         |
| Grain Boundary Sliding                   |
| Bombs (Ordnance)                         |
| Eigenvalues And<br>Eigenfunctions        |
| Low Permeability<br>Reservoirs           |
| Weibull Distribution                     |
| Fins (Heat Exchange)                     |
| Rock Bolting                             |
| Least Squares<br>Approximations          |
| Radioactivity Logging                    |
| Railroad Plant And<br>Structures         |
| Clay Alteration                          |
| Moire Fringes                            |
| Alloying Elements                        |
| Recharging<br>(Underground Waters)       |
| Single-Walled Carbon<br>Nanotubes (Swcn) |
|                                          |