

ÉTUDE D'UN COAGULANT ORGANIQUE NATUREL POUR LE TRAITEMENT DES EAUX POTABLE ET USÉES : LE *TANFLOC*

Mémoire

Nora AOUBA

Maîtrise en Génie des eaux

Maître ès sciences (M. Sc.)

Québec, Canada ©Nora AOUBA, 2017

ÉTUDE D'UN COAGULANT ORGANIQUE NATUREL POUR LE TRAITEMENT DES EAUX POTABLE ET USÉES : LE *TANFLOC*

Mémoire

Nora AOUBA

Sous la direction de :

Caetano Chang DOREA, directeur de recherche Christian BOUCHARD, codirecteur

RÉSUMÉ

Le *Tanfloc* est un coagulant organique naturel à base d'extrait de tanin. Ce produit est issu du métabolisme de certaines plantes, dont l'*Acacia mearnsii*, qui est utilisé pour sa production. Selon certaines études, le *Tanfloc* présenterait des performances d'abattement de la matière organique dissoute comparables à celles de l'alun dans le traitement des eaux de surface, avec l'avantage de ne pas être influencé par le pH. Il pourrait être également utilisé comme l'alun, dans le traitement des eaux usées, pour l'abattement de la DCO (Demande chimique en Oxygène), de la MES (Matière En Suspension) et de la demande biologique en oxygène. Contrairement aux autres coagulants organiques naturels, tels que le *Moringa*, le *Tanfloc* est présenté comme le coagulant organique qui pourrait être un alternatif aux coagulants inorganiques tels que l'alun, dont l'utilisation présente quelques inconvénients.

Les objectifs de cette étude, sont d'améliorer les connaissances sur ce coagulant : ses mécanismes de coagulation, ses performances, et d'étudier les possibilités de son utilisation dans le traitement des eaux usées et dans la potabilisation en comparaison avec l'alun.

En eau potable, les résultats de séries de jar tests réalisées avec des sources d'eau différentes (Fleuve Saint Laurent et la Rivière Chaudière), montrent que le résiduel de COD (Carbone organique dissous) du *Tanfloc* en plus de dégrader la qualité de l'eau traitée, implique une demande en chlore plus élevée. Cependant, il semble que cet apport de COD ne soit pas précurseur des sous-produits de désinfection. En outre, tout comme l'alun, ses performances sont influencées par la variation du pH, de la dose et des caractéristiques de l'eau brute.

En eaux usées, bien qu'il ne permette pas l'abattement de l'azote total et du phosphore total, le *Tanfloc* pourrait être utilisé dans le traitement des eaux usées (traitement primaire), car il permet selon nos résultats un meilleur abattement de la DCO et de la MES que l'alun. En outre, le caractère organique des boues produites suite à l'utilisation du *Tanfloc* pourrait améliorer leurs valorisations.

ABSTACT

Tanfloc is a tannin extracts-based natural and organic coagulant. Tannin is derived from the metabolism of some plants like *Acacia mearnsii* which is used in its production. Some studies suggest that *Tanfloc* offers a reduction performance of dissolved organic matter similar to that of alum for the treatment of surface waters, with the advantage that the pH has no impact on it. Like alum, it can be used in waste water treatment to reduce Chemical Oxygen Demand (COD), Suspended Solids (SS), and Biological Oxygen Demand. Unlike other natural organic coagulants such as *Moringa*, *Tanfloc* is seen as the organic coagulant which might be a suitable alternative to inorganic coagulants like alum whose use presents some disadvantages.

The objectives of this research were to improve on the knowledge about this coagulant: how it works, its performance; and to investigate its potential use in waste and potable water treatment as compared to alum.

As far as potable water is concerned, the results of jar tests on different water sources (St. Lawrence River and Chaudière River) show that *Tanfloc*'s DOC (Dissolved Organic Carbon) residual does not only degrade treated water quality, but also involves a higher chlorine demand. However, it appears that this COD residue is not a harbinger of disinfection by-products. Moreover, as it is the case with alum, pH variation, dosing, and raw water characteristics have an impact on *Tanfloc*'s performance.

As far as waste water is concerned, although *Tanfloc* does not reduce total nitrogen and total phosphorus, it can be used in waste water treatment (primary treatment) because our results suggest that it enables a better reduction of COD and SS than alum. Furthermore, the resulting sludge from *Tanfloc*'s use is organic and this can add to its valuation.

TABLE DES MATIÈRES

Résumé	iii
Abstact	iv
Table des Matières	v
Liste des Tableaux	viii
Liste des Figures	X
Liste des Abréviations	xii
REMERCIEMENTS	Xiii
I. INTRODUCTION	1
II. REVUE DE LITTERATURE	3
II.1. La coagulation dans le traitement de l'eau	3
II.1.1. Eau potable	3
II.1.2. Eaux usées domestiques	5
II.2. Un Coagulant organique naturel à base d'extraits de plante : le Tanfloc	8
II.2.1. Le Tanfloc dans le traitement de l'eau	10
II.2.1.a. Eau potable	10
II.2.1.b. Eaux usées	13
II.3. Tableau récapitulatif et de comparaison du Tanfloc et de l'alun	15
II.4. Valorisation des boues d'épuration	18
II.4.1. L'épandage	18
II.4.2. La biométhanisation	18
III PROBLÉMATIOUE ET OBJECTIES DE L'ÉTUDE	22
IV. MÉTHODOLOGIE	25
IV.1. Caractérisation du Tanfloc	26
	_
IV.1.1.a. L'analyse élémentaire du Tanfloc	26
IV.1.1.b. Essais de solubilité et de caractérisation du carbone du Tanfloc	27
IV.1.1.c. Essais de caractérisation de la charge électrique du Tanfloc	27
IV.2. Eau potable	27
IV.2.1. Caractéristiques des eaux brutes	30
IV.2.2. Jar test type Eau Potable (EP)	30
IV.2.3. Chloration et potentiel de formation des Sous-Produits de Désinfection	32
IV.2.3.a. Essai type de chloration	32

IV.2.3.b. Analyse du potentiel de formation des SPD	34
IV.2.4. Protocoles analytiques	34
IV.2.4.a. Turbidité	34
IV.2.4.b. Potentiel zêta	35
IV.2.4.c. Absorbance UV _{254nm}	35
IV.2.4.d. Carbone organique dissous	35
IV.2.4.e. Chlore libre	35
IV.2.4.f. Sous-Produits de Désinfection	35
IV.2.4.g. pH	36
IV.2.4.h. Volume des boues	36
IV.3. Eaux usées	36
IV.3.1. Caractéristiques des eaux usées brutes	38
IV.3.2. Jar-test type Eaux Usées (EU)	38
IV.3.3. La biodégradation aérobie	39
IV.3.4. La valorisation des boues	39
IV.3.5. Protocoles analytiques	40
IV.3.5.a. MES, ST, STV et alcalinité	40
IV.3.5.b. DBO	40
IV.3.5.c. DCO totale, Azote total, et Phosphore total	40
IV.3.5.d. Volume des boues	41
V. RÉSULTATS ET ANALYES V.1. Caractérisation du Tanfloc	42 42
V.1.1.a. Composition élémentaire du Tanfloc	42
V.1.1.b. Solubilité du Tanfloc	43
V.1.1.c. La charge électrique du Tanfloc	47

V.2. Eau potable
V.2.1. Effet du pH et de la dose sur les performances d'abattement de la MOD, du Tanfloc
V.2.2. Comparaison des deux coagulants (Tanfloc et Alun)
V.3. Eaux usées
V.3.1. Performances du Tanfloc pour l'abattement de la MES, de la DCO totale, du phosphore total et de l'azote total en comparaison avec l'alun
V.3.1.a. Abattement de la DCO totale et de la MES67
V.3.1.b. Abattement du phosphore total72
V.3.1.c. Abattement de l'azote total
V.3.2. Valorisation des boues76
V.3.2.a. Volume et biodégradation des boues76
V.3.2.b. L'épandage
V.3.2.c. La biométhanisation
VI. CONCLUSION
RÉFÉRENCES
ANNEXE A : Caractérisation du tanfloc
ANNEXE B : Performances du Tanfloc (EAU POTABLE)
ANNEXE C : Chloration et SPD95
ANNEXE D : DCO, MES, P, N (EAU USÉES)101
ANNEXE E : Caractérisation des boues : DBO5105
ANNEXE F : Caractérisation des boues : ST, STV, DCO, Constante cinétique127

LISTE DES TABLEAUX

Tableau 1: Enlèvement moyen du phosphore total en fonction du ratio molaire Al :P (Metcalf et al 2003)
Tableau 2 : Composition álámentaire du Tanfloc (Hameed, et al. 2016)
Tableau 2 : Máthada da (Graham, at al. 2000) pour l'analyse da l'abattament du COD par la
Tableau 5 .Wethode de (Oraliani, et al. 2009) pour 1 anaryse de 1 abauement du COD par le
Talliou
Tableau 4 : Tableau recapitulatif et de comparaison du Tannoc et de Latur
Tableau 5 : Caracteristiques des eaux brutes
Tableau 6 : Caracteristiques des echantillons d'eaux brutes (nombre d'echantillons, $n=3$) 38 Tableau 7 : Protocles de mesure des MES_ST ET STV 40
Tableau 8 : Protocoles de mesure de la DCO Totale de l'Azote total et du Phosphore total
selon les protocoles HACH
Tableau 9 : Analyse élémentaire partielle du Tanfloc (% massique)
Tableau 10 : Analyse des performances du Tanfloc selon la méthode de Graham et al., 2009
(II 2 1 a) 57
Tableau 11 : Résultats de l'abattement de la MOD de l'eau du Fleuve Saint Laurent par le
Tanfloc 59
Tableau 12 : Résultats de l'abattement de la MOD de l'eau de la Rivière Chaudière par le
Tanfloc
Tableau 13 : Résultats de l'abattement de la MOD de l'eau du Fleuve Saint-Laurent par
l'alun
Tableau 14 : Résultats de l'abattement de la MOD de l'eau de la Rivière Chaudière par
l'alun
Tableau 15 : Doses de chlore avant conduit à un résiduel de 0 3mg/L Clalibre 63
Tableau 16 : Caractéristiques des boues issues du traitement avec le Tanfloc et l'alun 80
Tableau 17 : Solubilité du Tanfloc en fonction de la variation de pH et de doses de Tanfloc
89
Tableau 18 · COD Absorbance UV _{254m} SUVA du Tanfloc à pH 6 en fonction de la
variation de la dose de Tanfloc
Tableau 19 : Analyse élémentaire de 500mg de Tanfloc dissous dans 11 d'eau déionisée 90
Tableau 20 : Potentiel Zêta des floss formés après la coagulation à pH 6 de l'eau du Fleuve
(échantillon 1) avec le Tanfloc
Tableau 21 : Potentiel Zâta des floss formés après la coagulation à pH 7 de l'eau du Eleuve
(échaptillon 1) avoi la Tanflog
Tablacy 22 : Potential 72ta das floos formás après la coogulation à pH 7.7 (pH cou bruta)
da l'aqui du Elavua (áchantillan 1) avec la Tanflac
Tablacu 22 : Caractéristiques cour brutes (Eleuve Spint Lourant et Divière Cheudière) 02
Tableau 25. Caracteristiques eaux brutes (Fleuve Saint Laurent et Riviere Chaudiere)
rabieau 24. Abattement de la MOD de l'eau du Fieuve (echantinon 2) en fonction de la voriation du pH at de la desa de Tanflea
Tablacy 25 : Abottomant de la MOD de l'acu de la Divière (échantillan 1) an fonction de la
voriation du pH at de la dose de Tanflee
Tableau 26 : Chloration d'agu du Elauve traitée (échantillon 2) avec le Tanflee et l'alum 00
Tableau 27 : Chloration d'agu de la Rivière traitée (échantillon 2) avec le Tannoc et l'alun98
rabieau 27. Chioration u cau de la Riviere nance (echantinon 2) avec le rannoc et l'alun

Tableau 28 : Potentiel de formation des SPD de l'eau du Fleuve traitée (échantillon 3) avec
le Tanfloc et l'alun
Tableau 29 : Potentiel de formation des SPD de l'eau de la Rivière traitée (échantillon 2)
avec le Tanfloc et l'alun
Tableau 30 : Caractéristiques eaux brutes usées domestiques
Tableau 31 : Abattement de la DCO, de la MES, du Phosphore total, et de l'Azote total de
l'échantillon nº1 d'eaux usées par le Tanfloc et l'alun
Tableau 32 : Abattement de la DCO, de la MES, du Phosphore total, et de l'Azote total de
l'échantillon nº 2 d'eaux usées par le Tanfloc et l'alun103
Tableau 33 : Abattement de la DCO, de la MES, du Phosphore total, et de l'Azote total de
l'échantillon nº3 d'eaux usées par le Tanfloc et l'alun104
Tableau 34 : DBO ₅ des boues issues du traitement de l'Échantillon 1 des eaux usées avec le
Tanfloc
Tableau 35 : DBO ₅ des boues issues du traitement de l'Échantillon nº 2 des eaux usées avec
le Tanfloc108
Tableau 36 : DBO ₅ des boues issues du traitement de l'Échantillon nº3 de l'eau usée avec le
Tanfloc
Tableau 37 : DBO ₅ des boues issues du traitement de l'Échantillon nº1 des eaux usées avec
l'alun
Tableau 38 : DBO ₅ des boues issues du traitement de l'Échantillon nº2 des eaux usées avec
l'alun
Tableau 39 : DBO ₅ des boues issues du traitement de l'Échantillon nº3 des eaux usées avec
l'alun
Tableau 40 : Caractérisation des boues issues du traitement des eaux usées avec l'alun et le
Tanfloc
Tableau 41 : Détermination avec le solveur de la constante cinétique de biodégradation des
boues issues du traitement avec l'alun
Tableau 42 : Constantes cinétiques de biodégradation des boues issues du traitement avec
l'alun
Tableau 43 : Détermination avec le solveur de la constante cinétique de biodégradation des
boues issues du traitement avec le Tanfloc
Tableau 44 : Constantes cinétiques de biodégradation des boues issues du traitement avec le
Tanfloc129

LISTE DES FIGURES

Figure 1 : Monomère de la molécule de Tanfloc (Lamb, et al. 2002)	.9
Figure 2 : Schéma simplifié des quatre étapes de la biométhanisation (Brodeur 2008)2	20
Figure 3 Méthodologie générale eau potable	29
Figure 4 : Méthodologie générale eaux usées	37
Figure 5 : Effet du pH sur la solubilité du Tanfloc	14
Figure 6 : Absorbance UV _{254nm} (m ⁻¹) du Tanfloc en fonction de la variation de la dose à pH	H
6 (UV _{254nm}) après filtration à 0,7 μm	45
Figure 7 : Solubilité du Tanfloc en fonction de la variation de la dose à pH 6	46
Figure 8 : Effet du pH sur le potentiel zêta des particules après la coagulation, la floculation	n
(Tanfloc) et la sédimentation de l'eau du Fleuve.	47
Figure 9 : Turbidité résiduelle de l'eau du Fleuve coagulée/floculée avec le Tanfloc à pH 6	5
et sédimentée	48
Figure 10 : Effet du pH de coagulation et de la dose de Tanfloc sur l'abattement du COD o	du
Fleuve	50
Figure 11 : Effet du pH de coagulation et de la dose de Tanfloc sur l'abattement du COD o	de
la Rivière	50
Figure 12 : Schéma conceptuel de l'abattement du COD en fonction de la variation de la	
dose de Tanfloc	51
Figure 13 : Effet du pH de coagulation et de la dose de Tanfloc sur la réduction de	
l'absorbance UV_{254nm} (m ⁻¹) du Fleuve	53
Figure 14 : Effet du pH de coagulation et de la dose de Tanfloc sur la réduction de	
l'absorbance UV _{254nm} (m ⁻¹) de la Rivière	53
Figure 15 : Demande en chlore des échantillons d'eau du Fleuve traitée avec le Tanfloc (T	'
5mg/L et T 15mg/L) et l'alun (A 20mg/L et A 40mg/L) après 24H	51
Figure 16 : Demande en chlore des échantillons d'eau de la Rivière traitée avec le Tanfloc	;
(T 20mg/L et T 30mg/L) et l'alun (A 20mg/L et A 40mg/L) après 24H	51
Figure 17 : Potentiel de formation des THM4 des échantillons d'eau de la Rivière traitée	
avec le Tanfloc	54
Figure 18 : Potentiel de formation des THM4 des échantillons d'eau du Fleuve traitée avec	C
le Tanfloc	54
Figure 19 : Comparaison du potentiel de formation des AHA5 des échantillons d'eau de la	l
Rivière traitée avec le Tanfloc	56
Figure 20 : Comparaison du potentiel de formation des AHA5 des échantillons d'eau du	
Fleuve traitée avec le l'anfloc	56
Figure 21 : Abattement de la DCO totale en fonction de la variation des doses de	~0
Coagulants.	38
Figure 22 : Abattement de la MES, en fonction de la variation des doses de coagulants 6	38
Figure 23 : Effet de la variation de la dose de l'anfloc et d'alun sur l'alcalinité de l'éau	71
traitee	/1
Figure 24 : Adattement du prosphore total, en fonction de la variation des doses de	72
Coagunalits	12
rigure 25. Adamement de l'azore rotar, en fonction de la variation des doses de coagulants	> 75
Figure 26 : Volumes (mI /I. d'aqui brute traitá) das bouas issuas du traitament avec la	15
Tigure 20. volumes (mL/L a cau orace name) des boues issues du tranement avec le	77
	11

Figure 27 : DBO des boues issues du traitement avec l'alun (100mg/L) et le Tanfloc	
(100mg/L)	79

LISTE DES ABRÉVIATIONS

AH	: Acides humiques
AHA	: Acides haloacétiques
COD	: Carbone organique dissous
DBO	: Demande biologique en oxygène
DCO	: Demande chimique en oxygène
MES	: Matière en suspension
MO	: Matière organique
MOD	: Matière organique dissoute
RQEP	: Règlement sur la qualité de l'eau potable
ST	: Solides totaux
STV	: Solides totaux volatils
SPD	: Sous-produits de désinfection
THM	: Trihalométhanes

REMERCIEMENTS

La réalisation de ce projet de maîtrise n'aurait pu se concrétiser sans le concours de certaines personnes, à qui je voudrais dire ma gratitude.

Tous mes sincères remerciements à mon Directeur Monsieur **Caetano Dorea** et mon codirecteur **Monsieur Christian Bouchard** pour leurs conseils, leur soutien et surtout leur patience. Merci pour cette confiance et cette opportunité qui m'a été donnée pour m'affirmer et surtout me dépasser. Mes sincères remerciements, également au Conseil de Recherches en Sciences Naturelles et en Génie du Canada pour son aide financière.

J'adresse mes remerciements à Monsieur Michel Bisping, Monsieur Sey-Hana Saing, et Madame Sabrina Simard pour leurs conseils durant mes essais au laboratoire.

Merci à Monsieur Nicolas Mercier pour les échantillonnages réguliers, sans quoi mes essais en eau potable n'auraient pas été possibles, et au groupe SPD de la chaire en eau potable de l'Université de Laval pour l'analyse des sous-produits de chloration.

J'adresse enfin mes remerciements à ma famille, à mes amis et à toutes ces personnes de la communauté étudiante de l'Université Laval, qui ont de près ou de loin contribué à la réalisation de ce projet.

I. INTRODUCTION

Le traitement des eaux (eaux usées et potabilisation) est indispensable pour la préservation des sources d'eau, la santé et le bien-être des populations et des écosystèmes. Il s'est amélioré avec l'évolution des sciences et des technologies, avec la population grandissante et le développement économique qui ont imposé des objectifs de traitement plus sévères. La coagulation est l'un des procédés de traitement qui permet l'amélioration de la qualité de l'eau traitée. Sa mise en œuvre nécessite l'utilisation de coagulants, dont les plus utilisés actuellement sont les coagulants inorganiques. Ils permettent en effet d'atteindre les objectifs de traitement, mais présentent des inconvénients. L'alun est le coagulant inorganique le plus utilisé, mais son utilisation peut nécessiter en eau potable, un ajustement du pH et entraine aussi une consommation de l'alcalinité (Crittenden 2012) qui a pour conséquence des coûts d'opération supplémentaires (Clark, et al. 1982). En outre, en hiver son efficacité est limitée par les températures qui sont basses (<5 °C) (Morris, et al. 1984, Mamchenko, et al. 2011). Afin d'y remédier, la dose de traitement peut être augmentée, mais il y a alors un risque de précipitation dans le réseau de distribution (Srinivasan, et al. 1999). Ces précipités peuvent à la longue constituer des surfaces d'accrochage du biofilm (LeChevallier 1990, (USEPA) 2002) et détériorer la qualité de l'eau distribuée (Srinivasan, et al. 1999). En eaux usées, son utilisation peut altérer le pH et affecter le développement des microorganismes responsable du traitement biologique (Dorea, et al. 2008). En outre, les mécanismes d'hydrolyse de l'alun entrainent la formation de précipités qui contribuent à augmenter le volume de boues issues du traitement (en eau potable également). Ce résiduel d'aluminium présent dans les boues limite leurs valorisations (Lucas, et al. 1994).

Pour toutes ces raisons, la communauté scientifique s'est de plus en plus intéressée à la recherche de coagulants alternatifs, comme les coagulants organiques naturels à base d'extraits de plantes. Le *Moringa* est l'un des coagulants organiques naturels les plus étudiés (Dorea 2006) comme alternatifs aux coagulants inorganiques. Il permet en effet le traitement des eaux de surface, mais présente des inconvénients tels que l'apport de carbone (Camacho, et al. 2017). Son efficacité est également influencée par le pH (Pritchard, et al. 2010) et

nécessite dans certains cas des doses (mg/L *Moringa* et mg/L alun sec ou mg/L chlorure ferrique) plus élevées que les coagulants inorganiques (Pritchard, et al. 2010).

(Bongiovani, et al. 2016) présente un coagulant organique naturel à base d'extrait de plante, le *Tanfloc* qui pourrait être le coagulant organique naturel alternatif aux coagulants inorganiques. Ce coagulant présente des performances comparables à l'alun pour le traitement des eaux de surface. Son efficacité n'est pas influencée par le pH et contrairement au *Moringa*, il n'apporterait pas de carbone selon (Bongiovani, et al. 2016). En outre, il peut être utilisé dans le traitement des eaux usées (Hameed, et al. 2016). L'un des objectifs de cette étude est d'évaluer les possibilités d'utilisation du *Tanfloc* dans le traitement de l'eau, en comparaison avec l'alun. Le second objectif est de combler les lacunes de la littérature et d'améliorer les connaissances sur ce coagulant. Le mémoire est structuré en trois grandes parties, dont une revue de littérature qui est d'abord indispensable pour déterminer les lacunes, les connaissances actuelles du *Tanfloc* et savoir dans quelle mesure, cette étude pourrait être une contribution. Ensuite, l'élaboration d'une méthodologie permet de réaliser les différentes expériences nécessaires à l'étude. Enfin, les résultats de l'étude sont présentés à la suite des expériences réalisées. Une conclusion donnera les différentes possibilités d'utilisation du *Tanfloc* dans le traitement des eaux en comparaison avec l'alun.

II. REVUE DE LITTÉRATURE

II.1. La coagulation dans le traitement de l'eau

II.1.1. Eau potable

La production d'eau potable est composée de différentes étapes de traitement, qui dépendent de la qualité de l'eau brute, et des normes sur la qualité de l'eau potable telles que le Règlement sur la Qualité de l'Eau Potable (RQEP) au Québec. En effet, les eaux de surfaces contiennent des Matières En Suspension (MES) organiques et inorganiques responsables de la turbidité. Elles contiennent aussi de la MOD, qui peut être responsable du goût, des odeurs, de la couleur (qualité esthétique de l'eau (Matilainen, et al. 2010, Edzwald 2011)), et qui peut être précurseur de Sous-Produits de Désinfection (SPD) (Singer 1999, Karanfil 2008). L'objectif du traitement de potabilisation de l'eau est de réduire la turbidité, d'enlever la MOD et d'inactiver les microorganismes surtout ceux pathogènes, afin de fournir une eau d'une qualité esthétique satisfaisante et surtout sans danger pour la consommation. La chaîne de traitement conventionnel est l'une des chaînes de traitement utilisée pour le traitement de l'eau. Elle est composée des étapes de traitement physique et chimique suivantes : le dégrillage et/ou tamisage, la coagulation, la floculation, la sédimentation, la filtration, et la désinfection primaire. La coagulation est un procédé chimique rapide, qui a pour rôle de conditionner les contaminants (MES, MOD), afin d'en réduire la concentration à travers la sédimentation et la filtration. C'est une étape, dont l'efficacité est déterminante pour la suite du traitement. Les mécanismes de coagulation, les conditions physiques et chimiques pour rendre optimal le procédé, sont surtout connus pour l'utilisation des coagulants inorganiques tels que l'alun, qui est le plus utilisé. Cette étude s'intéresse principalement à la coagulation de la MOD, car en plus d'être responsable des problèmes cités plus haut (Au, et al. 2011), elle contrôle dans certains cas, la dose de coagulation ((USEPA) 1999, Crittenden 2012), implique une demande en chlore plus élevée, et peut contribuer à la prolifération du biofilm dans le réseau de distribution ((USEPA) 2002).

L'alun est un coagulant inorganique, qui permet d'obtenir jusqu'à 70% d'abattement de la MOD, exprimée en Carbone organique dissous (COD) (Crittenden 2005). Les performances et les mécanismes de coagulation avec l'alun varient en fonction de la qualité de l'eau brute, des conditions de traitement dont la dose, le pH de coagulation, et la température.

En effet, en fonction des caractéristiques de l'eau brute, la MOD peut contrôler la dose de coagulation, et déterminer l'efficacité du traitement (Edzwald 2011). La MOD présente dans les eaux de surface est composée de COD facilement coagulable dont les Acides humiques (AH), les Acides Fulviques (AF), et de COD moins coagulable. En fonction de la proportion de ce COD facilement coagulable, la MOD peut contrôler la dose de coagulation, car il existerait une stœchiométrie entre la MOD et l'alun. (Edzwald, et al. 1999) ont établi une stœchiométrie et des modèles théoriques (Edzwald 2011) pour déterminer la dose en fonction des mécanismes de coagulation. Dans la pratique, les doses de coagulation varient entre 10 et 150mg/L d'alun sec (Crittenden 2005), selon les objectifs de traitement (normes sur la qualité de l'eau potable à respecter) et la qualité de l'eau brute.

Très rapidement après son ajout dans l'eau, l'alun interagit avec les molécules d'eau et forme des espèces hydrolysées solubles de charges négatives ou positives et des espèces hydrolysées solides. La présence de chaque espèce est fonction du pH de l'eau, car la solubilité de l'alun en dépend (Edzwald, et al. 1999, Edzwald 2011). Dans la pratique, le pH de coagulation est généralement fixé entre 6 et 8, en fonction de la température et de la qualité de l'eau brute qu'impliquent la variation des saisons, afin de limiter l'effet corrosif du pH en dessous de 6 sur les équipements et les infrastructures, et de limiter le résiduel d'aluminium dans l'eau traitée. L'abattement de la MOD est meilleur lorsque le pH est inférieur à 7, et surtout entre les pH 5.5 et 6.5 dépendamment de la température et de la qualité de l'eau brute (Edzwald, et al. 1999, Crittenden 2012). Le pH détermine à la fois la spéciation de l'alun et influence la densité de charges négatives de la MOD facilement coagulable. Ainsi dans cette gamme de pH (entre 5.5 et 6.5) la densité des charges négatives de la MOD facilement coagulable est réduite, et les espèces hydrolysées solubles (de l'alun) de charges positives sont prépondérantes (Edzwald, et al. 1999). Les interactions entre la MOD et les espèces hydrolysées sont présentées par les mécanismes de coagulation suivants(Van Benschoten, et al. 1990, Edzwald 1993, Rebhun, et al. 1993, Edzwald, et al. 1999, Matilainen, et al. 2010) :

- <u>Complexation/neutralisation des charges et précipitation :</u> il se forme des complexes
 (à l'exemple des grosses molécules Al-AH) entre les espèces hydrolysées solubles
 cationiques et les molécules d'AH ou d'AF. Cette complexation permet la
 neutralisation des charges négatives des AH et des AF, et la formation de plus gros
 flocs pour la sédimentation.
- <u>Adsorption et précipitation</u> : les espèces hydrolysées solides (telle qu'Al (OH)₃) représentent des sites d'adsorption du COD et des complexes précédemment formés.

Les précipités constituent la majeure partie des boues, d'où le volume important de boues issues du traitement avec l'alun. Après la coagulation, il y a souvent un ajout d'alcalinité et un accroissement du pH en fin de traitement, car l'hydrolyse de l'alun entraine une consommation de l'alcalinité (Crittenden 2012). Cette consommation de l'alcalinité peut impliquer des coûts d'opération supplémentaires tels que le coût d'achat des produits pour ajuster le pH, le coût des infrastructures de stockage ou de préparation (des solutions) de ces produits. (Clark, et al. 1982).

Enfin, l'alun est un coagulant sensible à la variation de la température. Dans les périodes froides (hiver), la cinétique d'hydrolyse de l'alun est plus lente, et cela implique souvent l'augmentation de la dose du coagulant (Morris, et al. 1984). Cette augmentation de la dose présente des risques de précipitation dans les conduites de distribution et un résiduel d'aluminium élevé dans l'eau traitée (Srinivasan, et al. 1999). Pour remédier à cette sensibilité à la température et aux inconvénients, des coagulants inorganiques préhydrolysés, tels que le polychlorure d'aluminium peut être utilisé. Ces coagulants préhydrolysés sont moins sensibles aux températures hivernales (Van Benschoten, et al. 1990, Edzwald 1993), et consomment moins d'alcalinité par rapport à l'alun.

II.1.2. Eaux usées domestiques

Les eaux usées domestiques contiennent entre autres des MES inorganiques et organiques. Elles contiennent également des matières organiques et inorganiques dissoutes (dont les nutriments que sont le phosphore et l'azote). En eaux usées, la matière organique est généralement caractérisée par la DBO (Demande Biochimique en Oxygène) et la DCO (Demande Chimique en Oxygène). La DCO inclut la matière organique facilement biodégradable (dont la DBO) et celle difficilement biodégradable. Le traitement des eaux usées a pour objectif de réduire la concentration des contaminants (MES, DCO, DBO, nutriments,) avant le rejet dans le milieu récepteur. Le traitement est nécessaire, car ces contaminants sont responsables entre autres de l'eutrophisation et du vieillissement rapide des cours d'eau (causes : phosphore et azote), de la détérioration de la flore et de la faune, et des odeurs dues aux activités biochimiques (Horan 1990, Mihelcic, et al. 2010). Ils peuvent également dégrader la qualité de certains cours d'eau qui sont utilisés comme sources d'eau pour la production d'eau potable ((MDDELCC) 2015). Le choix de la chaîne de traitement dépend des caractéristiques de l'eau brute, des objectifs de traitement, des normes en vigueur ((MDDELCC) 2014). Une chaîne de traitement type d'eaux usées domestiques est généralement composée respectivement de prétraitement (enlèvement de toute la pollution grossière, ou la pollution pouvant endommager les équipements), de traitement primaire (décantation primaire), de traitement secondaire (traitement biologique et décantation secondaire) (Metcalf, et al. 2014). La coagulation, dont les objectifs sont de permettre l'abattement du phosphore et de la charge organique (MES, DCO) est un procédé qui peut être intégré dans la chaîne de traitement. En effet, elle peut être mise en œuvre avant le décanteur primaire, avant ou après le traitement biologique, après la décantation secondaire (Metcalf, et al. 2014). La mise en œuvre de la coagulation après la décantation secondaire implique un traitement tertiaire (un décanteur pour permettre la sédimentation des polluants conditionnés).

L'un des coagulants les plus utilisés dans le traitement des eaux usées domestiques est l'alun et les mêmes mécanismes (que dans le traitement de l'eau potable) de coagulation de la MES sont observés (Metcalf, et al. 2014). Le pH et la dose de coagulation, la qualité de l'eau brute (charge organique) et la température, sont des variables qui influencent les performances de l'alun. Son utilisation peut permettre l'abattement (traitement primaire) de 80 à 90% de la concentration en MES, de 30 à 60% de la DCO (Metcalf, et al. 2003) et jusqu'à 95% du phosphore total (Tableau 1). Dans l'eau usée, le phosphore se présente sous les formes soluble (inorganique) et solide (qui compose la MES organique). La forme soluble qui représente la majorité du phosphore total est composée d'orthophosphates et de

polyphosphates (Gray 2010). La forme solide est coagulée en même temps que la MES, tandis que les espèces inorganiques (les orthophosphates sont ceux facilement coagulables (Metcalf, et al. 2014)) sont coagulées selon les mécanismes suivants :

- <u>La précipitation</u> : réaction entre certaines espèces solubles cationiques de l'alun et le phosphore pour former des précipités.
- <u>L'adsorption</u> : l'espèce hydrolysée solide Al(OH)₃ représentent des sites d'adsorption du phosphore.

Le Tableau 1 présente l'abattement du phosphore total en fonction du ratio molaire (stœchiométrie) Aluminium : Phosphore.

 Abattement Phosphore (%)
 Ratio molaire (AI:P)

 75
 1,25 :1-1,5 :1

 85
 1,6 :1-1,9 :1

 95
 2,1 :1-2,6 :1

Tableau 1: Enlèvement moyen du phosphore total en fonction du ratio molaire Al :P (Metcalf, et al. 2003)

Malgré les avantages de l'alun dans le traitement des eaux usées, son utilisation présente quelques inconvénients. L'hydrolyse de l'alun entraine la consommation de l'alcalinité, qui peut avoir pour conséquence la baisse du pH. Si la coagulation est mise en œuvre avant le traitement biologique (traitement secondaire), la variation du pH pourrait en perturber l'efficacité (pH optimal nécessaire pour la croissance des microorganismes (Birkett, et al. 2002, Dorea, et al. 2008)). En outre, son hydrolyse conduit à la formation d'espèces hydrolysées solubles (telles que Al³⁺) et solides (telles que Al(OH)₃), qui se retrouvent dans les boues sédimentées. Ce résiduel d'aluminium en plus d'augmenter le volume des boues, en limite la valorisation, surtout par épandage (Lucas, et al. 1994, (CCME) 2012).

II.2. Un Coagulant organique naturel à base d'extraits de plante : le *Tanfloc*

Dans le traitement de l'eau, et plus précisément en coagulation, les tanins désignent généralement les coagulants naturels produits à partir d'extrait de tanin. Les tanins sont des composés phénoliques, issus du métabolisme des plantes. Certaines plantes, telles qu'*Acacia mearnsii* (espèce de *mimosa*), *Schinopsis balansae* (ou « *Quebracho* »), et certaines espèces de chêne sont cultivées spécialement pour leur tanin. Il existe deux types de tanins : les tanins hydrolysables et les tanins condensés encore appelés flavonoïdes (Pizzi 2008). Ils se différencient entre autres par leur chaîne moléculaire (nombre de répétitions du monomère, *n*), leurs groupements fonctionnels, leurs applications chimiques (production de vin, de cuir, de produits pharmaceutiques, etc.) (Haslam 1989). Le tanin condensé est utilisé pour la production de coagulants naturels commercialisés tels que le *Tanfloc*, et le *Silvafloc* (Sánchez-Martín, et al. 2010), et le tanin hydrolysable pour la production également de coagulants naturels commercialisés tels que le *Valonia* (Özacar, et al. 2003).

Le *Tanfloc* est commercialisé sous forme liquide et solide par la compagnie brésilienne **TANAC**. Il est produit à partir d'extrait de tanin condensé d'*Acacia mearnsii* (une plante tropicale cultivée au Brésil), selon la réaction de Mannich (Cummings, et al. 1960, Vollhardt, et al. 2009), qui a pour objectif de polymériser le tanin et d'obtenir un coagulant cationique (Graham, et al. 2008). Selon le brevet du *Tanfloc* (Lamb, et al. 2002), il est issu de la réaction entre le formaldéhyde (CH₂O), le chlorure d'ammonium (NH₄Cl) et le flavan-3-ol (tanin condensé). Le monomère du produit obtenu est présenté à la Figure 1.

Figure 1 : Monomère de la molécule de *Tanfloc* (Lamb, et al. 2002)

Ce monomère se répète plusieurs fois, pour former le polymère qu'est la molécule de Tanfloc. La structure du monomère correspond à la structure de certains flavonoïdes qui composent le tanin condensé des espèces de Mimosa, dont l'Acacia mearnsii (Pizzi 2008). Selon le brevet (Lamb, et al. 2002), le caractère cationique du coagulant provient du groupement ammonium possiblement quaternaire obtenu suite à la réaction de Mannich (Vollhardt, et al. 2009). En fonction des mécanismes de la réaction de Mannich (Tramontini, et al. 1994), des réactifs qu'elle peut impliquer et d'après les brevets de quelques coagulants naturels organiques à base de tanin, des structures hypothétiques de la molécule de Tanfloc, sont proposées dans la littérature. Celles-ci ont en commun la nature phénolique et le caractère cationique du *Tanfloc*. Mais ces structures hypothétiques diffèrent sur la nature des radicaux (R) liés à l'atome d'azote (Graham, et al. 2008, Sánchez-Martín, et al. 2010). Ces mêmes études s'accordent à dire que le Tanfloc est une espèce amphotère, car les groupements hydroxyles (OH) lui donneraient également un caractère anionique selon le pH de l'eau. Le Tanfloc est ainsi un polymère cationique, dont l'agent actif de coagulation est le groupement amine (possiblement quaternaire selon (Lamb, et al. 2002)). Contrairement aux coagulants inorganiques tels que l'alun, son efficacité ne serait pas altérée par la variation de pH (Lamb, et al. 2002) à cause de cette amine quaternaire. Cependant, l'étude de (Graham, et al. 2008),

montre que contrairement aux affirmations du fabriquant, la densité de charges positives du *Tanfloc* et sa solubilité sont plus élevées à pH acide (\leq 6). Selon la même étude, le caractère cationique est effectivement dû à la présence d'un groupement amine, mais non quaternaire, d'où la variation de la densité de charges en fonction du pH. (Graham, et al. 2008) soutiennent ses affirmations en comparant le *Tanfloc* au polychlorure diméthylammonium dont le caractère cationique est également dû à la présence d'un groupement amine. Ce coagulant (polychlorure diméthylammonium) est connu pour ne pas être sensible au pH parce que le groupement amine est quaternaire (Kam, et al. 2001, Graham, et al. 2008).

La complexité de la chimie des tanins (Haslam 1989, Hemingway, et al. 1992), la connaissance partielle du *Tanfloc*, sous brevet (Lamb, et al. 2002), font que la molécule et la formule chimique exacte ne sont pas connues. (Graham, et al. 2008) a estimé sa masse molaire à environ 6.10⁵ g.mol⁻¹, en supposant que le *Tanfloc* n'est constitué que d'azote, de carbone, d'oxygène et d'hydrogène. Tandis que (Hameed, et al. 2016) en donne une composition élémentaire présentée dans le Tableau 2.

 Tableau 2 : Composition élémentaire du Tanfloc (Hameed, et al. 2016)

Éléments chimiques	С	0	Ν	Cl	Autres
Composition (% massique)	32,32	41,67	11,21	13,46	1,34

II.2.1. Le Tanfloc dans le traitement de l'eau

II.2.1.a. Eau potable

Le *Tanfloc*, pour la production d'eau potable présente un potentiel de réduction de la turbidité comparable (Graham, et al. 2008) à l'alun, à des doses massiques inférieures ou équivalentes à l'alun (mg alun sec et mg *Tanfloc*) (Sánchez-Martín, et al. 2010, Bongiovani, et al. 2016). Cependant tout comme l'alun, la performance du *Tanfloc* est influencée par la variation du pH. En effet lorsque le pH est acide (≤ 6), la performance du *Tanfloc* est meilleure (Graham, et al. 2008, Sánchez-Martín, et al. 2009) qu'à pH basique (pH>6). Toutefois, les performances dans les conditions neutre à basique peuvent être améliorées par

l'augmentation de la dose du coagulant. Les caractéristiques de la molécule de Tanfloc permettent d'émettre des hypothèses sur les mécanismes de fonctionnement. Selon (Graham, et al. 2008), lorsque les conditions de traitement sont acides ($pH \le 6$), la densité de charges positives du *Tanfloc* est plus élevée, et favorise la coagulation des particules par la neutralisation des charges négatives. Tandis que, lorsque le pH>6, dans certains cas le coagulant peut perdre jusqu'à 93% de la densité des charges positives (la densité des charges diminue de 3meq.g⁻¹ à pH 4 à 0,2meq.g⁻¹ à pH 9) (Graham, et al. 2009), les mécanismes de pontage, d'adsorption ou de piégeage sont prépondérants. Tout comme l'alun, sa performance est également influencée par la qualité de l'eau brute : plus l'eau est turbide, meilleur est le traitement (Sánchez-Martín, et al. 2009). Des études menées sur un coagulant organique naturel à base de tanin condensé comme le *Tanfloc* (le *Silvafloc*) présentent des performances de réduction de la turbidité similaires au Tanfloc, et une influence de la dose, du pH et de la qualité de l'eau brute sur ses performances (Sánchez-Martín, et al. 2010). Le *Tanfloc* pourrait être également utilisé comme floculant, avec l'alun comme coagulant. En effet, les caractéristiques du *Tanfloc* (polymère de masse molaire : 6.10⁵g.mol⁻¹)(Bolto, et al. 2007), font de ce produit un floculant qui permettrait la réduction de la dose d'alun, et du résiduel d'aluminium présent dans l'eau traitée (Özacar, et al. 2003).

Selon (Bongiovani, et al. 2016), le *Tanfloc* permet un abattement de la MOD aussi bon que celui avec l'alun, avec l'avantage de ne nécessiter aucun ajustement du pH (pH eau brute 7,5). Selon cette étude, le *Tanfloc* permet l'abattement de 57% du COD et la réduction de 90% de l'absorbance UV_{254nm} (cm⁻¹). Les résultats de (Graham, et al. 2009) confirment en apparence ces affirmations. En effet, le *Tanfloc* (Sánchez-Martín, et al. 2009), comme certains coagulants organiques naturels tels que le *Moringa* apportent de la MOD à l'eau traitée. Cette MOD pourrait entrainer une demande en chlore élevée de l'eau traitée ou être précurseur de Sous-Produits de Désinfection (SPD). (Graham, et al. 2009) présentent d'une part dans leur étude, des résultats d'abattement de la MOD (*par Tanfloc*), qui sont comparables à ceux obtenus avec l'alun. À la suite d'essais (jar test) à partir d'une eau brute synthétique (contenant de l'acide humique) dont le COD_{Eau Brute} est connu (9,9mg/L), (Graham, et al. 2009) calculent l'abattement du COD de l'eau brute en négligeant le résiduel de COD apporté par le *Tanfloc*. Ils considèrent tout le carbone apporté par le *Tanfloc* comme faisant partie du COD_{Total} de l'eau brute à enlever. Le COD_{Total}=COD_{Tanfloc}+COD_{Eau Brute}. Ils considèrent également que le COD_{Tanfloc}=0,55*Dose de coagulation. Le Tableau 3 présente et explique (méthode utilisée) les résultats du Tableau 5 de (Graham, et al. 2009). Les résultats du Tableau 5 ont été choisis comme exemple, parce qu'ils ont été obtenus à la suite d'essais à pH 7 (le pH de traitement dans l'étude de (Bongiovani, et al. 2016) est de 7,5).

Tableau 3 :Méthode de (Graham, et al. 2009) pour l'analyse de l'abattement du COD par le *Tanfloc*

Coagulants	Doses (mg/L)	COD _{Coagulant} (mg/L)	CODEau brute (mg/L)	COD _{Total} (mg/L)	CODrésiduel (mg/L)	Abattement COD _{Total} (%) [*]
Tanfloc	58	(58*0,55) =31,9	9,9	(31,9+9,9) =41,8	6,85	((41,8-6,85) /41,8) *100 =83,61%
Alun (mg Al)	6,8		9,9	9,9	1,19	((9,9-1,19) /9,9) *100 =88%

Équation 1 : *Abattement COD_{Total} (%) = $\left(\frac{COD_{Total} - Résiduel COD}{COD_{Total}}\right) * 100$

En fonction de cette méthode de calcul (Graham, et al. 2009) confirment en apparence les performances du *Tanfloc* obtenus par (Bongiovani, et al. 2016). D'autre part, l'étude (Graham, et al. 2009) présente également, les performances du *Tanfloc* telles qu'obtenues qui sont inférieures à l'alun, avec une détérioration de la qualité de l'eau due à l'apport de carbone par le *Tanfloc*. En outre, en plus d'être influencée par le pH, la réduction de la MOD nécessite des doses massiques de *Tanfloc* plus élevées que les coagulants inorganiques. Ce sont les résultats de (Bongiovani, et al. 2016) qui ont suscité l'intérêt de la présente étude pour le *Tanfloc*, car contrairement aux autres coagulants organiques naturels, ce coagulant est présenté comme un coagulant alternatif aux coagulants inorganiques : abattement de la

MOD, des précurseurs des SPD, aucun ajustement de pH. Cependant la littérature (Graham, et al. 2008, Graham, et al. 2009, Sánchez-Martín, et al. 2009) présente des résultats selon lesquels, le *Tanfloc* est moins efficace que l'alun pour l'abattement de la MOD, et tout comme l'alun, ses performances sont influencées par le pH. En plus, son utilisation détériorerait la qualité de l'eau traitée, par un apport de COD.

II.2.1.b. Eaux usées

Dans le traitement des eaux usées domestiques, l'objectif est de réduire la concentration des contaminants (MES, DBO, DCO, azote, phosphore, microorganismes pathogènes) de l'eau brute, afin de minimiser l'impact de l'eau traitée rejetée dans l'environnement (II.1.2). Selon les études de : (Beltrán-Heredia, et al. 2009, Sánchez-Martín, et al. 2010, Hameed, et al. 2016, Singh, et al. 2016), le *Tanfloc* présente un potentiel pour le traitement (coagulation-floculation-décantation) des eaux usées domestiques brutes. Il permet la réduction d'au moins 50% de la DCO et de la DBO, et au moins 90% de la MES, à l'issue de jar test ou de traitement pilote à l'échelle de laboratoire. Ces performances sont comparables à celles de l'alun (Metcalf, et al. 2014), et dans certains cas, sont meilleures à des doses massiques équivalentes à l'alun (Hameed, et al. 2016). Elles sont influencées par les caractéristiques de l'eau brute dont la charge organique (MES, DCO), la dose de coagulation et la température.

En effet, la dose de coagulant peut améliorer la qualité de l'eau traitée, mais aussi la détériorer (augmentation de la turbidité). Cette augmentation de la turbidité est due, comme dans le cas du traitement des eaux de surfaces, à une augmentation du résiduel de *Tanfloc* dans l'eau traitée. Selon (Hameed, et al. 2016), la MES est coagulée à travers les mécanismes de neutralisation des charges négatives des particules de piégeage et de pontage. Cependant, selon leurs conclusions, le mécanisme de neutralisation des charges pourrait être priorisé par rapport aux autres mécanismes, de telle sorte qu'à partir d'une dose donnée (40mg/L de *Tanfloc* dans le cadre de leur étude) toutes les charges des particules seraient neutralisées. Ainsi, les doses de coagulation supérieures à la dose donnée apporteraient du *Tanfloc* inefficace à la coagulation (à cause de la restabilisation des particules), d'où l'augmentation du résiduel de *Tanfloc*.

En outre, des expériences (Beltrán-Heredia, et al. 2009) réalisés entre 10 et 40 °C, montrent que les performances du *Tanfloc* sont négativement affectées, lorsque la température est supérieure à 20 °C. Selon l'étude, cette observation serait due à la dissociation thermique des flocs lors de la sédimentation. Cela n'est pas seulement spécifique au *Tanfloc*, car la température (froide <5 °C) affecte également les performances de l'alun. Elle ralentie l'hydrolyse de l'alun, mais cela n'empêche pas le conditionnement (coagulation) des particules ou de la MOD. Cependant, elle influence négativement la formation des flocs en entrainant une réduction du taux d'agrégation des petits flocs ou des particules (Xiao, et al. 2009). La formation des flocs est plus longue et les flocs formés ne sont pas assez compacts pour sédimenter rapidement (Xiao, et al. 2009).

Enfin, le traitement des eaux usées semble ne pas nécessiter d'ajustement de pH, car ces études (Beltrán-Heredia, et al. 2009, Sánchez-Martín, et al. 2010, Hameed, et al. 2016, Singh, et al. 2016) ont obtenu des résultats comparables à l'alun sans l'ajustement de ce paramètre. Lorsque le pH est supérieur à 7, comme dans le cas de ces études, les mécanismes d'adsorption, de piégeage et de pontage sont prépondérants (<u>II.2.1.a</u>), et permettent la coagulation et l'abattement des polluants.

Comparativement aux coagulants inorganiques tels que le polychlorure d'aluminium, le *Tanfloc* est moins efficace pour la coagulation du phosphore soluble (Hameed, et al. 2016). Cependant, il permet la réduction du phosphore organique présent dans la MES, et pourrait améliorer la réduction du phosphore soluble à travers une utilisation conjointe avec l'alun. (Özacar, et al. 2003), ont montré qu'il est possible d'améliorer la réduction du phosphore en utilisant en plus de l'alun, un coagulant organique naturel à base de tanin hydrolysable. Ce coagulant organique naturel et le *Tanfloc* sont différents entre autres par leur structure moléculaire (extrait tanin différent), mais ils présentent des performances similaires (Özacar, et al. 2003). L'utilisation conjointe du *Tanfloc* et de l'alun pourrait en permettre la réduction de la dose d'alun, la réduction de la production de boues et améliorer leur épaississement pour le conditionnement (Özacar 2000). En outre, le *Tanfloc* peut être utilisé pour la réduction de certains polluants présents dans les eaux usées industrielles tels que certains colorants (teinture) ou tensioactifs (Sánchez-Martín, et al. 2010, Beltrán-Heredia, et al. 2011, Sánchez-Martín, et al. 2011). D'autres coagulants organiques naturels à base de tanin condensé tels que le *Silvafloc*, ou l'*Acquapol S5T* peuvent être également utilisés pour les mêmes fins.

II.3. Tableau récapitulatif et de comparaison du Tanfloc et de l'alun

Le Tableau 4 résume les caractéristiques, les performances de l'alun et du Tanfloc présentées dans les sections précédentes (II.1, II.2). Ce tableau permettra surtout de comparer les deux coagulants. Le Tanfloc et l'alun sont deux coagulants de nature différente ; l'un organique naturel et l'autre inorganique qui peuvent être utilisé dans le traitement des eaux usées et dans le traitement de potabilisation de l'eau. Les performances du *Tanfloc* présentées dans cette revue de littérature ont été obtenues à l'issue d'expériences à l'échelle de laboratoire. Leurs efficacités (le Tanfloc et l'alun) pour l'abattement des différents contaminants varient d'un contaminant à un autre. Mais à première vue, selon le Tableau 4, dans le traitement des eaux, l'alun est seulement plus efficace pour l'abattement du phosphore que le *Tanfloc*. En ce qui concerne l'abattement de la MOD, la littérature présente à la fois des performances comparables entre les deux coagulants (Bongiovani, et al. 2016), et des performances de l'alun meilleures que le *Tanfloc* (Graham, et al. 2009), dû à un apport de COD par le Tanfloc. Le Tanfloc aurait pour avantages par rapport à l'alun d'être un coagulant organique naturel qui puisse être utilisé pour le traitement des eaux, qui ne consommerait pas d'alcalinité (donc pas de coûts d'opération supplémentaires), et dont l'utilisation produit des boues organiques qui pourraient être mieux valorisées(Lucas, et al. 1994). Cependant, cet apport de COD par le Tanfloc pourrait avoir des conséquences sur la qualité de l'eau à travers sa demande en produits désinfectants et son potentiel de formation de SPD.

Leurs performances (alun et *Tanfloc*) sont influencées par le pH, la dose, la température et les caractéristiques de l'eau brute (eaux usées, eaux de surface). En effet, leurs solubilités et leurs densités de charges sont fonction du pH. Ainsi, ils sont tous les deux plus efficaces à pH<7 (Edzwald, et al. 1999, Graham, et al. 2008). En outre, tout comme la dose (stœchiométrie entre la MOD et l'alun (Edzwald 2011)) affecte les performances de l'alun,

elle affecte également celles du *Tanfloc*, jusqu'à détériorer la qualité de l'eau traitée (apport de COD par le *Tanfloc*). Cependant contrairement au *Tanfloc*, les mécanismes de coagulation de l'alun sont connus ; et cela permet l'optimisation de son utilisation. Tandis que ceux du *Tanfloc* ne sont qu'au stade d'hypothèses. La température affecte la cinétique d'hydrolyse de l'alun, et le taux d'agrégation des flocs après la coagulation avec l'alun (Xiao, et al. 2009, Xiao, et al. 2009) ou avec le *Tanfloc* (Beltrán-Heredia, et al. 2009).

	Coagulants	Alun	Tanfloc			
	Nature	Inorganique	Organique naturel			
	Formule chimique	Al ₂ (SO ₄) ₃ 18H ₂ O, M=666g/mole	$M \sim 6.10^5 \text{ g/mole}^*$			
	Paramètres d'influence	pH, dose, température, carac	téristiques des eaux brutes			
	Mécanismes de	Adsorption et complexation(MOD)				
	coagulation connus	Neutralisation, piégeage, et pontage (MES)	Hypotheses			
Performances	Abattement Turbidité	Alun ≤ 7	<i>Canfloc</i>			
Eau potable	Enlèvement	Différente régultate obte	nue dans la littératura			
	de la MOD	Differents resultats obtenus dans la litterature				
Performances	Abattement MES, DCO	Alun < Tanfloc				
Four usées	Réduction P total	Alun > Tanfloc				
Laux usees	Réduction N total	Non documenté				
	Avantages	Efficace pour le traitement des eaux potable et usées (coagulant le plus utilisé)	Réduction MES, DCO, Turbidité Pas de consommation de l'alcalinité Boues organiques (meilleure valorisation),			
		Consommation alcalinité, résiduel aluminium				
	Inconvénients	(précipitation dans le réseau de distribution et	Apport de MOD,			
		limitation à la valorisation des boues),	Mauvaise réduction du phosphore			
		Volume de boues élevé				
*	*Massa malaina du Tauffas astimás que la basa d'humathàsas (II-2)					

Tableau 4 : Tableau récapitulatif et de comparaison du Tanfloc et de l'alun

*Masse molaire du *Tanfloc* estimée sur la base d'hypothèses (<u>II.2</u>)

II.4. Valorisation des boues d'épuration

II.4.1. L'épandage

La composition des boues en MO, en nutriments tels que l'azote et le phosphore font d'elles une matière résiduelle qui peut être valorisée dans le domaine de l'agriculture, de la foresterie, et de la restauration des sols à travers l'épandage (Gray 2010, (CCME) 2012). Mais avant d'être épandues, les boues doivent subir un traitement visant la stabilisation, l'enlèvement ou l'inactivation des pathogènes, la déshydratation, et le conditionnement des nutriments afin d'en faciliter l'adsorption par les plantes ou le sol ((CCME) 2012, Metcalf, et al. 2014). L'épandage est soumis à des réglementations souvent très strictes, qui dans certains pays (Gray 2010) limitent la valorisation des boues par cette voie. Cependant ces réglementations visent à éviter la contamination des sources d'eau par les pathogènes, à protéger la faune et la flore contre certaines substances qui pourraient être toxiques, à éviter la contamination des sols par certains métaux lourds. L'aluminium présent dans les boues issues du traitement avec l'alun, n'est pas un élément soumis à une règlementation au Canada ((CCME) 2012) , en Europe (Gray 2010) ou aux États-Unis ((Eddy 2014). Cependant la présence de l'aluminium dans les boues limite la disponibilité du phosphore pour les plantes (Lucas, et al. 1994, (CCME) 2012).

II.4.2. La biométhanisation

La biométhanisation ou la digestion anaérobie est une technique de stabilisation des boues issues du traitement des eaux usées urbaines ou industrielles, qui conduit à formation de biogaz. Elle est également un moyen d'assainissement de l'environnement, car la majorité des matières résiduelles organiques solides ou liquides présentant un potentiel de biométhanisation peuvent être recyclées. Ce procédé peut être inscrit dans le cycle d'une économie industrielle circulaire, car les matières résiduelles organiques issues d'activités industrielles ou domestiques sont une matière première pour la production de biogaz, et les résidus de cette production peuvent être également des matières premières pour l'amendement et fertilisation des sols (Kacprzak, et al. 2017). En effet, la digestion anaérobie par rapport aux autres méthodes de traitement des boues a l'avantage d'aboutir à la production d'un biogaz, qui est une source d'énergie. En plus de cet avantage, et de la stabilisation des boues (réduction de la putréfaction, des odeurs), le processus permet d'obtenir un digestat dont la concentration en pathogènes respecte les normes d'épandage (Gray 2010). Il existe différentes techniques de digestion anaérobie qui ont été améliorées au cours des années, parmi lesquels se distinguent les techniques les plus utilisées :

- La digestion est réalisée dans un seul réservoir appelé le digesteur, qui peut être brassé ou non (Metcalf, et al. 2014). Dans ce digesteur se trouve respectivement de la base vers le haut le digestat, les boues en digestion, le surnagent, l'écume et le gaz qui est récupéré à la tête du digesteur. Le digesteur peut être chauffé en fonction de la température de traitement. Le digesteur brassé est plus efficace en termes de volume de traitement et de production de gaz.
- Le digesteur est branché en série avec un réservoir qui sert au stockage et à l'épaississement du digestat par la sédimentation.

Au-delà de l'aspect technique, la biométhanisation est un processus biologique qui se déroule en quatre étapes présentées sur la Figure 2. Chaque étape est assurée par un groupe de microorganismes (Riffat 2013).

Figure 2 : Schéma simplifié des quatre étapes de la biométhanisation (Brodeur 2008)

- L'hydrolyse : est la transformation des macromolécules en molécules simples, facilement assimilables pour certains microorganismes. (1)
- L'acidogène : est la conversion des molécules simples en acides gras (2)
- L'acétogénèse : est la transformation des acides gras d'une part en acétate, et d'autre part en eau et en dioxyde de carbone (3)
- La méthanogénèse : est la principale transformation de l'acétate en biogaz composé de méthane et de dioxyde de carbone. L'eau et le dioxyde de carbone sont également des produits qui conduisent à la production de méthane.

Les technologies de biométhanisation citées ci-dessus permettent d'optimiser le processus biologique ainsi que la production de biogaz, par la prise en compte et le contrôle de certains facteurs importants tels que : le pH, la température, l'alcalinité, les caractéristiques du substrat (Riffat 2013). Les caractéristiques du substrat sont en effet un facteur qui influence la production de biogaz. Les boues issues du traitement des eaux usées urbaines présentent généralement un potentiel (concentration et qualité) de biométhanisation. Elles sont riches en MO assimilable par les microorganismes anaérobies, et caractérisées par

la DCO et les STV. Selon (Moletta 2011), les déchets caractérisés par une DCO >2000 mg/l et des STV > 50% ST, sont des déchets qui pourraient présenter un potentiel pour la biométhanisation, et selon le tableau 8-10 de (Metcalf, et al. 2003), les déchets industriels ayant une DCO \geq 1500 mg/L sont valorisables par biométhanisation. Il existe des essais qui permettent de déterminer le Potentiel de BioMéthanisation (PBM) des boues issues du traitement. En effet, il existe de la MO difficilement assimilable par les microorganismes anaérobies (Buffiere, et al. 2006). Cette MO n'est donc pas un bon substrat pour la production de biométhane. Le test de PBM permet de caractériser le substrat à travers la production de biogaz.

III. PROBLÉMATIQUE ET OBJECTIFS DE L'ÉTUDE

Le traitement de l'eau a pour objectif de rendre l'eau propre à la consommation, ou de l'assainir avant le rejet dans le milieu récepteur. Il est composé de différentes étapes parmi lesquelles se trouve la coagulation, dont la mise en œuvre nécessite entre autres l'utilisation de coagulants. L'alun, de nature inorganique, est l'un des coagulants les plus utilisés pour le traitement de potabilisation de l'eau et le traitement des eaux usées. Il permet d'atteindre les objectifs de traitement, a un coût d'achat abordable, est facilement disponible et de nombreuses études ont permis d'optimiser son utilisation. Cependant, il présente quelques inconvénients. L'hydrolyse de l'alun entraine une consommation de l'alcalinité lors du traitement qui en eau potable peut nécessite des coûts d'opérations supplémentaires pour l'ajustement du pH à la fin du traitement (Crittenden 2012), et en eaux usées peut compromettre le traitement biologique (variation du pH optimal pour la croissance des microorganismes (Birkett, et al. 2002, Dorea, et al. 2008)). En outre, le résiduel d'aluminium présent dans l'eau après le traitement peut précipiter dans le réseau de distribution (Srinivasan, et al. 1999, Dorea 2006), et dans les boues limite leurs valorisations (Lucas, et al. 1994). Face à ces inconvénients, de nombreuses recherches ont été menées sur les coagulants organiques naturels à base d'extraits de plantes. Par contre, le faible enlèvement et même l'apport de MOD constituent le principal obstacle pour l'utilisation de ce type de produit dans le traitement de l'eau. Le Moringa est un exemple (Camacho, et al. 2017) de coagulant organique naturel dont l'apport en COD limite son utilisation dans le traitement des eaux.

La publication de (Bongiovani, et al. 2016), présente à première vue, un coagulant organique naturel du nom commercial *Tanfloc*, qui serait aussi efficace que l'alun pour la réduction de la turbidité et l'enlèvement de la MOD. Ce produit ne consommerait pas d'alcalinité, ces performances ne seraient pas influencées par le pH et il n'apporterait pas de COD. Le même produit aurait aussi démontré de bonnes performances en ce qui concerne le traitement des eaux usées domestiques, tel que décrit par (Beltrán-Heredia, et al. 2009, Sánchez-Martín, et al. 2010). Ces études présentent le *Tanfloc* comme étant le coagulant organique naturel qui pourrait être un alternatif aux coagulants inorganiques, contrairement aux autres coagulants organiques tels que le Moringa (Camacho, et al. 2017). Cependant, d'autres études (Beltrán-Heredia, et al. 2009, Sánchez-Martín, et al. 2010, Bongiovani, et al. 2016) présentent des performances obtenues avec des échantillons d'eaux brutes, dont la gamme des caractéristiques est restreinte (étude sur un seul type d'échantillon d'eaux brutes de surface ou usées). Cela ne permet pas de conclure sur l'utilisation du Tanfloc dans le traitement de l'eau, car en fonction des saisons (eaux de surface), des activités humaines ou des périodes de grande consommation d'eau (eaux usées) les caractéristiques de l'eau brute peuvent changer. En outre, elles ne donnent pas d'explications sur les mécanismes de coagulation du Tanfloc, notamment sur l'influence de certains paramètres physico-chimiques (dose, pH). Elles concluent que ces paramètres physiques (dose, pH) influencent l'efficacité du traitement avec le Tanfloc, mais sans expliquer leurs effets. Enfin, les études actuelles se limitent à conclure sur la qualité de l'eau traitée obtenue par traitement avec le *Tanfloc* après un jar test (coagulation, floculation, sédimentation). Pourtant la demande en chlore d'une eau traitée, ainsi que son potentiel de formation de SPD, font partie des critères d'efficacité de la chaîne de traitement ((MDDELCC) 2014). Les limites d'application de ce coagulant n'ont pas été clairement établies jusqu'à maintenant.

Les objectifs de ce mémoire sont de combler les lacunes sur les connaissances du *Tanfloc*, et d'évaluer également les possibilités d'utiliser le *Tanfloc* comme coagulant en eau potable et pour le traitement primaire en eaux usées, et ce, en comparaison avec l'alun. En eau potable, les objectifs spécifiques sont :

- De déterminer les performances de traitement du *Tanfloc* sur une gamme variée d'eaux brutes de surface.
- De déterminer les effets de la dose, du pH, et des caractéristiques de l'eau brute sur ses performances et de déterminer ses limites d'applications.
- De caractériser le résiduel de MOD dans l'eau traitée, à travers la demande en chlore de cette eau traitée et le potentiel de formation des Sous-Produits de Désinfection (SPD).

En eaux usées les objectifs spécifiques sont :

• De déterminer les performances de traitement du *Tanfloc* sur une gamme d'eaux brutes usées de charges organiques différentes.
- De déterminer l'effet de la dose et des caractéristiques de l'eau brute usée sur les performances du *Tanfloc* et ses limites d'application.
- D'évaluer de manière préliminaire la biodégradation des boues issues du traitement et d'analyser le potentiel de biométhanisation pour la valorisation des boues d'épuration

IV. MÉTHODOLOGIE

Des essais préliminaires pour la caractérisation du *Tanfloc* ont été d'abord réalisés, afin de mieux connaître les caractéristiques du coagulant et d'expliquer ses performances dans le traitement des eaux de surface et des eaux usées. Ces essais ont consisté à déterminer sa composition élémentaire, sa solubilité dans de l'eau déionisée (18 M Ω), et son caractère cationique. Notre étude étant menée dans le domaine de l'eau potable et des eaux usées, la méthodologie principale est composée de deux grandes parties : celle de l'eau potable et des eaux usées.

Dans le traitement de potabilisation de l'eau, des séries de jar test ont été réalisées à partir d'échantillons d'eau brute de sources différentes. Ces expériences ont été réalisées afin d'étudier une gamme d'échantillons de caractéristiques variées, et d'observer l'effet de cette variation sur les performances du Tanfloc. Selon (Graham, et al. 2008, Graham, et al. 2009) le pH et la dose sont des paramètres qui influencent l'efficacité du Tanfloc pour le traitement de l'eau. Tandis que (Bongiovani, et al. 2016) affirment que la dose a bien une influence, mais le pH (pH eau brute) ne nécessite pas d'être ajusté pour obtenir l'efficacité du traitement. Les séries de jar test ont été donc réalisées avec des variations de pH et de dose (Tanfloc et alun), afin d'observer l'effet de ces paramètres sur les performances du Tanfloc. La température n'a pas été une variable dans nos expériences. Elle a été fixée à 20°C. Cependant (Beltrán-Heredia, et al. 2009, Sánchez-Martín, et al. 2011), montre que les températures comprises entre 10°C et 20°C n'ont pas une influence sur les performances du Tanfloc. En outre, l'utilisation du Tanfloc apporte du COD dans l'eau (Graham, et al. 2009, Sánchez-Martín, et al. 2009) qui pourrait dégrader la qualité de l'eau traitée (augmentation du résiduel de COD). Des essais de chloration (demande en chlore) et de mesure de SPD ont été également réalisés afin de caractériser cet apport de COD et de déterminer les conséquences de l'apport sur la qualité de l'eau traitée. Les jars tests, les essais de chloration et les mesures de SPD ont été réalisés à la fois pour le Tanfloc et l'alun à partir des mêmes échantillons d'eaux dans un objectif de comparaison des deux coagulants.

En eaux usées, des séries de jar test ont été également réalisées avec des échantillons d'eau brute de la même source, à des doses de Tanfloc variables, afin d'observer l'influence de ce paramètre (dose) sur ses performances. L'un des objectifs était d'observer l'influence des caractéristiques des eaux brutes sur les performances du *Tanfloc*, mais l'échantillonnage de la même source d'approvisionnement n'a pas permis d'obtenir des échantillons de caractéristiques différentes. Le pH dans nos expériences n'a pas été une variable. Les jars tests ont été réalisés sans ajustement du pH. Des études (Beltrán-Heredia, et al. 2009, Hameed, et al. 2016) montrent l'efficacité du traitement avec le Tanfloc sans ajustement du pH, même s'il pourrait être amélioré en l'ajustant (Sánchez-Martín, et al. 2011). En outre, des essais de DBO ont été réalisés avec les boues issues des jars tests, afin d'en évaluer la biodégradation. Tout comme les boues issues du traitement avec l'alun sont composées de résiduel d'aluminium, les boues issues du traitement avec le Tanfloc sont certainement composées de résiduel de Tanfloc. Les mesures de DBO servent à déterminer l'influence de ce résiduel de Tanfloc sur la biodégradation des boues, et de discuter de sa conséquence. Enfin, la valorisation des boues surtout par rapport à la plus-value que la nature organique du *Tanfloc* pourrait apporter est discutée sur la base de la littérature.

IV.1. Caractérisation du *Tanfloc*

IV.1.1.a. L'analyse élémentaire du Tanfloc

L'analyse élémentaire du *Tanfloc* a été réalisée par le laboratoire de Radiochronologie du Centre d'Études Nordiques (C.E.N) de l'Université Laval. La poudre de *Tanfloc* a été pesée (102 mg) et placée dans un analyseur de carbone, d'hydrogène et d'azote qui utilise un procédé de combustion (Leco, CHN628 Series Elemental Determinators). La poudre est entièrement consumée et transformée en gaz (CO₂, NO_x) et en eau (H₂O). Le carbone, l'hydrogène et l'azote présent dans l'échantillon se retrouvent respectivement sous forme de CO₂, de H₂O et de NO_x (NO_x réduit ensuite en N₂). Chaque élément chimique est rapporté en pourcentage massique.

26

IV.1.1.b. Essais de solubilité et de caractérisation du carbone du Tanfloc

Les essais de solubilité du *Tanfloc* ont été réalisés en fonction des variables suivantes : dose et pH. Des séries de jar test correspondant à différents pH ont été réalisées à cet effet selon les étapes suivantes :

<u>Étape 1</u> : Préparation de la solution de *Tanfloc*, et des solutions d'acide chlorhydrique et de soude qui servent à l'ajustement du pH. Pour la préparation des différentes voire l'annexe B.

Étape 2 : Ajustement du pH

Chaque série de jar test est composée de cinq béchers de 1L remplis d'eau déionisée ($18M\Omega$), et ajusté au même pH. Le pH est ajusté avec les solutions d'acide chlorhydrique ou de soude précédemment préparées. Quatre séries de jar test sont réalisées à pH 4,5,6, et 7. Chaque bécher représente une dose donnée de *Tanfloc*.

<u>Étape 3</u> : Coagulation/floculation/sédimentation/filtration

Après l'ajustement du pH et l'ajout du coagulant dans chaque bécher, le mélange est agité, sédimenté et filtré selon les étapes 3 et 4 de la procédure d'un jar test type en eau potable (IV.2.2). Le filtrat est utilisé pour l'analyse du COD avec un analyseur de COT (IV.2.4.d) et de l'absorbance UV_{254nm} avec un spectrophotomètre (IV.2.4.c). L'analyse de COD sert à discuter de la solubilité du *Tanfloc* et la mesure d'absorbance à caractériser le COD du coagulant.

IV.1.1.c. Essais de caractérisation de la charge électrique du Tanfloc

Les essais pour la caractérisation de la charge électrique du *Tanfloc* ont consisté à mesurer le potentiel zêta (<u>IV.2.4.b</u>) de particules (matières en suspension) présents dans l'eau traitée (eau du Fleuve) après un jar test. Des séries de jar test ont été réalisées selon le protocole d'un jar test type (<u>IV.2.2</u>) à pH 6,7, et 7,7 (pH eau brute). Chaque pH représente une série de jar test avec des doses variables.

IV.2. Eau potable

La Figure 3 présente la méthodologie générale utilisée dans la partie eau potable. Elle comprend une synthèse des protocoles de jar test type Eau Potable (EP) (<u>IV.2.2</u>), et des essais

de chloration. Dans un jar test type EP, le pH de l'eau brute (Fleuve Saint Laurent ou Rivière Chaudière) est d'abord ajusté selon l'objectif du traitement. Ensuite, elle subit une coagulation, une floculation, une sédimentation (selon les durées et les vitesses marquées sur la Figure 3) et une filtration. L'eau filtrée sert à l'analyse du COD résiduel, de l'absorbance UV_{254nm}, aux essais de chloration et de détermination du potentiel de formation des SPD. Après la sédimentation, les boues sont quantifiées. Les variables dans un jar test type EP sont la source d'eau brute (Fleuve ou Rivière), le pH et la dose du coagulant.

Un essai de chloration type est composé d'une étape de prétest de chloration pour la détermination de la demande en chlore de l'eau traitée et la dose de chloration pour la mesure des SPD. Ensuite, il y a l'étape des tests de chloration avec la dose de chlore précédemment déterminé (aux prétests de chloration). Les SPD sont mesurés à l'issue de cette étape de chloration. Le temps de contact (tests de chloration et prétest de chloration) est de 24h et la température d'incubation est de 20°C. De plus amples explications sur cette méthodologie (Figure 3) sont données aux points IV.2.2 et IV.2.3.

Prétest de chloration :

doses de Chlore

Figure 3 Méthodologie générale eau potable

IV.2.1. Caractéristiques des eaux brutes

Les essais ont été réalisés avec des échantillons d'eau brute provenant du Fleuve Saint-Laurent et de la Rivière Chaudière. Les échantillonnages ont toujours été effectués (au même endroits) aux usines de production d'eau potable de Charny (Rivière Chaudière) de la Ville de Lévis et de Sainte Foy (Fleuve Saint-Laurent) de la Ville de Québec, et ce avant le traitement de l'eau. Cependant, les échantillons de la Rivière Chaudière ont subi un tamisage (diamètre du tamis : 1mm). Les échantillons ont été conservés dans une chambre froide (4°C) pendant au plus une semaine.

Les caractéristiques moyennes de chaque type d'eau sont présentées dans le Tableau 5 (3 échantillons/ source) et les caractéristiques de chaque échantillon sont dans l'annexe B (Tableau 23).

Sources	Rivière Chaudière	Écartype (n*=3)	Fleuve Saint Laurent	Écartype (n*=3)	
рН	7,7	0,1	7,8	0,1	
Absorptivité UV _{254nm} (m ⁻¹)	25,42	3,90	13,80	1,00	
COD (mg/L)	6,9	1,3	4,8	0,4	
SUVA (L/m.mg)	3,69	0,48	2,99	0,28	
Potentiel Zêta (mV)	-15,21	2,04	-15,39	0,89	

Tableau 5 : Caractéristiques des eaux brutes

*n= nombre d'échantillons

IV.2.2. Jar test type Eau Potable (EP)

Le jar test type en eau potable présenté dans la méthodologie générale de la <u>Figure 3</u> est réalisé selon les quatre étapes suivantes :

Étape 1 : La préparation des réactifs

Deux types de réactifs sont utilisés dans un jar test type. L'un pour l'ajustement du pH qui sont l'acide chlorhydrique ou la soude, et l'autre qui sont les coagulants : le *Tanfloc* ou l'alun.

Tous les réactifs sont dissous ou dilués avec de l'eau nano déionisée ($18M\Omega$). Les protocoles de préparation de ses réactifs sont en annexe B

Étape 2 : Ajustement du pH

Des béchers de 1L ou 2L chacun au nombre de cinq sont remplis d'eau brute à l'aide d'une fiole jaugée de 1L. L'eau brute utilisée pour les essais est conservée dans une chambre froide à 4°C, pendant une durée maximum d'une semaine. Le pH est ajusté avec les solutions d'acide ou de soude précédemment préparées. L'opération est réalisée au fur et à mesure pour les cinq béchers. Avant le passage à l'étape suivante (étape 3), le pH de l'eau est à nouveau vérifié. À noter qu'avant l'étape d'ajustement du pH, les volumes d'acide ou de soude nécessaires à l'opération sont déterminés par des prétests. Pour les prétests, des béchers de 1L ou 2L sont remplis de la même eau brute qui est utilisée pour le jar test type EP, et des volumes successifs d'acide ou de base y sont ajoutés, jusqu'à l'obtention du pH adéquat. Ces prétests permettent de bien ajuster le pH, et sont importants lorsque l'alun est le coagulant utilisé.

Étape 3 : La coagulation/floculation

Des floculateurs (*Floculator 2000*, *KEMIRA Chemical*) reliés à un boîtier de contrôle sont plongés dans les béchers. L'avantage de ce boîtier est qu'il permet de fixer les durées et les vitesses d'agitation pour les différentes étapes, et de contrôler ces paramètres indépendamment pour chaque bécher.

- L'eau subit une coagulation de 2,5min à 120 tr/min. L'injection du coagulant (alun ou *Tanfloc*) marque le début de la durée de coagulation. Ensuite, la vitesse des floculateurs est réduite à 40 tr/min pendant 20min pour la floculation.
 Étape 4 : La sédimentation et la filtration
- Les floculateurs sont arrêtés après l'étape précédente, afin de permettre la sédimentation des flocs formés, pendant 20min. Après ce temps de sédimentation, un échantillon d'eau peut être prélevé à 2cm en dessous de la surface d'eau et au centre de chaque bécher. Il sert à la mesure de la turbidité (IV.2.4.a) ou du potentiel zêta.
- Le surnageant filtré, sert aux analyses du COD, de l'absorbance UV_{254nm} et pour la suite des essais de chloration. La filtration se fait avec un montage composé : d'un Erlenmeyer, d'un entonnoir Buchner, de filtres (*Whatman*) à fibres de verre de 0,7μm

pour limiter l'apport en carbone lors de la filtration (préalablement carbonisés à 500°C pendant 2h), et d'une pompe.

 Le volume de boues est mesuré après la sédimentation dans un cône Imhoff (IV.2.4.h).

IV.2.3. Chloration et potentiel de formation des Sous-Produits de Désinfection

Lors du traitement de l'eau, le *Tanfloc* apporte un résiduel de carbone qui augmente le COD résiduel de l'eau traitée. Afin de déterminer les conséquences de cet apport sur la qualité de l'eau traitée et de caractériser le carbone du *Tanfloc*, des essais de chloration et des mesures de SPD ont été réalisés. Les mécanismes de coagulation du *Tanfloc* n'étant pas connus (II.2), il n'est pas assez rigoureux de comparer les deux coagulants seulement sur une base massique (par rapport à leurs performances). Ces essais (demande en chlore et SPD) permettent une comparaison plus pratique et plus rigoureuse. Les essais de chloration à partir des eaux traitées permettent de déterminer leur demande en chlore et leur potentiel de formation des SPD (mesure des THM4 et des AHA5).

IV.2.3.a. Essai type de chloration

Un essai type de chloration, présenté dans la méthodologie générale de la <u>Figure 3</u> est composé de trois grands points dont : les pré-jar test et jar test, la préchloration et la chloration. Ces différents points sont détaillés dans les étapes suivantes :

<u>Étape 1</u> : Premier jar test

Un premier jar test est réalisé avec des doses variables de *Tanfloc*, à pH 6, selon le même protocole qu'un jar test type EP (IV.2.2). L'objectif est de déterminer les doses de *Tanfloc* qui servent à la comparaison des performances et de la qualité de l'eau traitée avec l'alun. Les mécanismes de coagulation, et la stœchiométrie (*Tanfloc*/COD) du *Tanfloc* n'étant pas connus (II.2), ce premier jar test est nécessaire pour déterminer les doses adéquates pour la comparaison. La dose de traitement permettant la meilleure réduction de COD, ainsi que celle permettant une réduction similaire (au plus 5% inférieure à la meilleure réduction de COD) seront déterminées pour la comparaison. Le pH de coagulation est ajusté à 6, à la suite des résultats de jar test obtenus sur l'effet du pH sur l'efficacité du *Tanfloc*, et aussi pour simuler

des conditions de traitement réelles lorsque l'alun est utilisé comme coagulant et lorsque l'on cherche à optimiser l'enlèvement de la MOD (pH de coagulation entre 5,5 et 7 pour l'alun).

Étape 2 : Deuxième jar test

Deux séries de jar-test type EP sont réalisées : l'une avec les doses de *Tanfloc* retenues à l'issue du premier jar test, et l'autre avec des doses d'alun de 20mg/L et de 40mg/L alun sec. Les mécanismes de coagulation et les conditions d'utilisation de l'alun étant mieux connus (II.1.1) par rapport au *Tanfloc*, des jar tests n'ont pas été nécessaires pour la détermination des doses d'alun. Afin d'avoir des conditions de traitement qui reflètent les conditions réelles, la dose de 40mg/L d'alun sec a été choisie, car elle représente la dose moyenne annuelle de coagulant utilisée pour certaines usines de production d'eau potable. La dose de 20mg/L d'alun a été choisie comme seconde dose de comparaison, parce qu'elle représente la dose moyenne de coagulant utilisée à certaines périodes de l'année (hiver), également pour certaines usines de production d'eau potable.

Étape 3 : Vérification de la qualité de la solution mère de chlore

Les essais de chloration sont réalisés à partir d'une solution d'acide hypochloreux (HOCl) d'une concentration de 50g/L (*RICCA Chimical Compagny*), qui est préalablement disposée dans des microflacons en verre teinté. Cette disposition en facilite l'utilisation et permet de réduire la dégradation rapide du chlore, car le prélèvement est fait avec des seringues adéquates de 25μ L et 100μ L. Le caractère volatil de la solution nécessite avant de commencer l'expérience, la vérification de sa qualité à travers la mesure du chlore initial (protocole de mesure en annexe C). Une solution fille de chlore utilisée pour les essais de chloration est préparée à partir de la solution de 50g/L (après la vérification de sa qualité).

Étape 4 : Prétests de chloration

L'objectif des prétests de chloration est d'une part de connaître la demande en chlore des eaux traitées à partir des deux coagulants (alun et *Tanfloc*), et d'autre part de déterminer la dose de chlore qui sert aux tests de potentiel de formation des SPD. Cette dose devra correspondre à un résiduel de chlore libre de 0,3mg/L après 24h de temps de contact. Dans une procédure pour le suivi et la validation du bon fonctionnement des systèmes de production d'eau potable recommandée par le Ministère du Développement Durable de l'Environnement et de la Lutte contre les Changements Climatiques, la détermination du potentiel de formation des SPD nécessite des essais de chloration, dont le temps de contact

est de 24h et le résiduel de chlore est compris entre 0,3 et 0,7mgCl₂/L ((MDDELCC) 2014). C'est en tenant compte de cette recommandation que ces essais ont été planifiés.

L'eau traitée à l'issue des jar tests (étape 2) est entreposée par échantillon de 40ml et 250 ml dans des flacons de verre. Ces flacons sont remplis à ras bord afin d'éviter que le dégazage du chlore influence les mesures. Un volume donné de chlore est ajouté à l'aide d'une seringue de 25μ L ou 100μ L dans chaque flacon de 40 mL. Les volumes ajoutés varient d'un flacon à un autre et correspondent à des doses de chlore qui ont été préalablement fixées. Après 30min et 24h (après l'ajout de chlore) dans un incubateur à 20°C, le résiduel de chlore libre est mesuré. Pour limiter la perte du chlore sous forme de gaz, ce ne sont pas les mêmes flacons qui servent pour les deux mesures (à 30min et 24h).

Étape 5 : Tests de chloration

Les échantillons d'eau traitée entreposés dans les flacons de 250mL sont chlorés à la dose ayant conduit à un résiduel de chlore libre de 0,3mg/L. Après un temps de contact de 24h dans un incubateur à 20°C le chlore résiduel libre est de nouveau mesuré, ainsi que le potentiel de formation des SPD.

IV.2.3.b. Analyse du potentiel de formation des SPD

L'analyse du potentiel de formation des SPD est réalisée par le groupe SPD de la Chaire en eau potable du département de génie civil et de génie des eaux, chapeauté par Madame Sabrina Simard. Les SPD analysés sont les THM4 et les AHA5, qui sont les sousproduits de chloration les plus rencontrés, et contrôlés par des normes (Richardson 2011).

IV.2.4. Protocoles analytiques

IV.2.4.a. Turbidité

La turbidité est mesurée avec un turbidimètre 2100 N (HACH). Avant son utilisation, la bonne calibration de l'appareil est vérifiée avec des solutions standards de turbidité connues fournies par la compagnie. L'appareil est bien calibré, lorsque les valeurs mesurées correspondent aux valeurs attendues avec un écart de +/- 5%.

IV.2.4.b. Potentiel zêta

Le potentiel zêta des particules est mesuré avec un appareil, le ZETASIZER NANO SERIES de Malvern. L'échantillon d'eau est introduit dans l'appareil par une cellule munie d'électrodes (positive et négative). Ces électrodes permettent de conduire un champ électrique émis par l'appareil à l'intérieur de la cellule. Le potentiel zêta est déterminé en fonction du mouvement des particules induit par ce champ électrique (Malvern. Feb, 2004).

IV.2.4.c. Absorbance UV_{254nm}

L'absorbance est mesurée avec un spectrophotomètre Cary 100 UV-VIS (*Agilent Technologies*). Une mesure avec de l'eau déionisée (18 M Ω) avant le début des analyses, permet la vérification de la calibration de l'appareil. Les mesures sont faites avec des cellules en quartz de 10cm.

IV.2.4.d. Carbone organique dissous

Le COD est mesuré avec un analyseur de COT (*Sievers 5310C*). Cette technologie allie une oxydation chimique et une radiation ultraviolet afin d'oxyder le carbone organique en CO₂. Le COD est donc obtenu par l'intermédiaire du CO₂. Les mesures obtenues sont validées par des solutions de contrôle de COD avec un écart de +/-15% de la valeur de contrôle.

IV.2.4.e. Chlore libre

Le chlore libre est mesuré avec un colorimètre HACH, DR/890, selon le protocole de la Chaire de recherche en eau potable de l'Université Laval pour la mesure du Chlore (protocole en annexe C)

IV.2.4.f. Sous-Produits de Désinfection

Les protocoles d'analyses des THM4 (groupe SPD) et des AHA5 ((USEPA) 2003) se trouvent en annexe C.

IV.2.4.g. pH

Une sonde pH (*Thermo-Scientifique*) plongée dans le bécher permet la lecture des valeurs de pH. Au cours de la mesure de pH, une plaque agitatrice et un barreau aimanté maintiennent l'eau agitée. Avant son utilisation, la calibration du pH-mètre est contrôlée avec des solutions standards de pH connu. Il est bien calibré, lorsque les valeurs de pH mesurées correspondent aux valeurs attendues avec un écart de +/- 10%.

IV.2.4.h. Volume des boues

Le volume des boues issues du traitement est mesuré avec un cône de sédimentation imhoff gradué de 1000ml après le prélèvement du surnageant (après la sédimentation). Le volume d'eau et de boues restant dans le bécher est délicatement transvasé dans le cône de sédimentation. La lecture du volume de boues est faite après un temps de sédimentation dans le cône de 60 min.

IV.3. Eaux usées

Les objectifs en eaux usées sont d'évaluer les performances du *Tanfloc* pour le traitement des eaux usées domestiques en comparaison avec l'alun, et aussi de déterminer la biodégradation des boues, de discuter du potentiel de valorisation des boues entre autres par la biométhanisation. La Figure 4 présente de façon générale la méthodologie qui a été utilisée. Elle résume le protocole de jar test type EU (Eaux Usées). L'eau brute (échantillonnée au pilote de traitement des eaux usées du département de génie civil et de génie des eaux de l'Université Laval) subit une coagulation, une floculation et une décantation selon les durées et les vitesses d'agitation marquées sur la Figure. Après la décantation, le surnageant est prélevé pour l'analyse de la MES, du phosphore total, de l'azote total, de la DCO totale et de l'alcalinité. Les boues issues du traitement sont quantifiées et également prélevées pour l'analyse des Solides Totaux (ST), Solides Totaux Volatils (STV) et de la DBO. Les variables dans ce jar test type EU sont la dose de coagulant et la qualité de l'eau usée (charge organique : MES et DCO totale) De plus amples explications sur cette méthodologie (Figure 4) sont données aux points <u>IV.3.2</u> et <u>IV.3.3</u>.

Figure 4 : Méthodologie générale eaux usées

IV.3.1. Caractéristiques des eaux usées brutes

Les essais ont été réalisés à partir d'échantillons d'eaux usées brutes prélevées dans le bassin tampon du pilote de traitement d'eaux usées du département de génie civil et de génie des eaux de l'Université Laval. Ce bassin fait office de tampon (de débit) entre la station de pompage et le décanteur primaire. Ces eaux usées proviennent de la résidence étudiante Agathe-Lacerte qui est située sur le campus à proximité du pilote. L'eau brute a toujours été échantillonnée au même endroit et utilisée le même jour pour éviter la dégradation de la qualité de l'eau à cause des activités biologiques. Le Tableau 6 présente les caractéristiques (moyennes) des échantillons prélevés. Les caractéristiques de chaque échantillon se trouvent en annexe D.

1		
	Valeurs moyennes	Ecartype
рН	7,7	0,1
Alcalinité (mg CaCO ₃ /L)	200	25
MES (mg/L)	2533,3	417,4
DCO Totale (mg/L)	605,3	54,9
Phosphore total (mg/L P)	4,79	0,7
Azote total (mg/L N)	38,6	6,6

Tableau 6 : Caractéristiques des échantillons d'eaux brutes (nombre d'échantillons, n=3)

IV.3.2. Jar-test type Eaux Usées (EU)

Le jar test type EU présenté dans la méthodologie générale de la <u>Figure 4</u> est réalisé selon les trois étapes suivantes :

Étape 1 : Préparation des réactifs

Les solutions de coagulants (*Tanfloc* ou alun) sont toujours préparées avant chaque essai, en fonction des doses de traitement et du volume d'eau à traiter. Elles sont préparées selon le protocole de préparation des réactifs en annexe B.

<u>Étape 2</u> : Coagulation/floculation

Six béchers de 1L chacun, sont remplis d'eau brute à l'aide une fiole jaugée du même volume. Des floculateurs (étape 3, <u>IV.2.2</u>) plongés dans chaque bécher permettent une coagulation à une vitesse de rotation de 100 tr/min pendant 2min. L'ajout du coagulant, dont la dose est variable d'un bécher à un autre, marque le décompte du temps de coagulation. Les doses de coagulations sont : 5, 10, 20, 40, 60, et 100mg/L. La vitesse des floculateurs est ensuite réduite à 30 tr/min pendant 20min, afin d'assurer une bonne floculation.

Étape3 : La sédimentation

Après la floculation, l'eau sédimente pendant 60 min, après lesquelles le surnageant est prélevé pour les analyses de : la DCO totale, du Phosphore total, l'Azote total, la MES, l'alcalinité. Les boues sont quantifiées avec un cône Imhoff, et prélevées pour l'analyse de la DBO, de la DCO, des ST et des STV.

IV.3.3. La biodégradation aérobie

Les essais de DBO₅ sont réalisés selon le protocole 5210 B du (American Public Health Association 1998). La biodégradation des boues issues du traitement avec l'alun et le *Tanfloc* sera discutée sur la base de la mesure de la DBO₅. L'objectif est de savoir si le carbone apporté par le *Tanfloc* a un effet sur la biodégradation aérobie (cinétique de dégradation) des boues par rapport à l'alun.

IV.3.4. La valorisation des boues

Les boues organiques produites par le traitement avec le *Tanfloc* pourraient être un meilleur substrat pour la biométhanisation, ou pour la valorisation par l'épandage par rapport à l'alun dont les boues sont en partie inorganiques. Ce sujet sur la valorisation des boues constitue un point de discussion dans la suite du mémoire. L'analyse des ST, des STV et de la DCO des boues sert à la discussion, car ces paramètres sont utilisés pour la caractérisation du substrat (Metcalf, et al. 2014).

IV.3.5. Protocoles analytiques

IV.3.5.a. MES, ST, STV et alcalinité

Les MES (eau brute) les ST, les STV (boues) et l'alcalinité (eau brute, eau traitée) ont été analysés selon les protocoles présentés dans le Tableau 7 :

Paramètres	Protocoles	Référence		
MES	2540 D			
ST	2540 B	(American Public Health		
STV	2540 E	Association 1998)		
Alcalinité	2320 B			

Tableau 7 : Protocles de mesure des MES, ST ET STV

IV.3.5.b. DBO

La DBO des boues a été mesurée selon le protocole 5210 B du (American Public Health Association 1998). Douze bouteilles d'incubation munies d'une tête composée de capteur mesurant la variation de pression dans les bouteilles ont été utilisées pour les essais. Ce matériel utilisé est le modèle OxiTop IS12 du fabricant WTW (WTW 1997, WTW 2017). Ce matériel permet la mesure de la DBO en fonction de la différence de pression occasionnée par la consommation de l'oxygène par les microorganismes et le rejet du CO₂ qui est adsorbé par la NaOH. Les têtes qui font office de capteur et de bouchon permettent l'enregistrement des données (de DBO) tout au long de l'expérience (cinq jours dans le cas de notre étude).

IV.3.5.c. DCO totale, Azote total, et Phosphore total

La DCO totale, l'Azote total et le Phosphore total ont été analysés avec des réactifs industriels, selon la méthode du fabricant (HACH 2017). Le Tableau 8 présente les différents réactifs utilisés, les protocoles, les références et l'appareil de mesure.

Paramètres	Réactifs	Protocoles HACH	Appareil de		
			mesure		
DCO	HR 20 1500	8000 Reactor Digestion			
DCO	mg/L	6000 Reactor Digestion			
A zoto total	TNT plus 827	10208 Spectrophotometer	Spectrophotomètre		
Azote total	TNT plus 627	HR TNT plus	HACH, DR 5000		
Dhaanhara tatal	TNT DI LIC 942	10210 Spectrophotometer	-		
i nosphore total	11N1 FLUS 645	LR, TNT plus			

Tableau 8 : Protocoles de mesure de la DCO Totale, de l'Azote total, et du Phosphore totalselon les protocoles HACH.

IV.3.5.d. Volume des boues

Le volume des boues a été mesuré selon la même méthode décrite au point <u>IV.2.4.h</u> (partie eau potable)

V. RÉSULTATS ET ANALYES

V.1. Caractérisation du Tanfloc

V.1.1.a. Composition élémentaire du Tanfloc

Les résultats de l'analyse élémentaire partielle du *Tanfloc* sont présentés dans le Tableau 9.

N%	C%	H%	Autres
6,13	41,48	6,51	45,88

 Tableau 9 : Analyse élémentaire partielle du Tanfloc (% massique)

L'analyseur (Leco, CHN628) utilisé dans cette étude ne permet que la mesure de l'azote, du carbone et de l'hydrogène. L'oxygène fait certainement partie de ces autres éléments, car l'extrait de tanin (Lamb, et al. 2002, Pizzi 2008) utilisé dans sa production en est composé. L'analyse élémentaire de (Hameed, et al. 2016), présentée dans le Tableau 2 montre également la présence d'oxygène et de chlore. La Figure 1, ainsi que l'étude de (Graham, et al. 2008) montrent la présence de carbone, d'oxygène, d'azote, d'hydrogène, mais pas de chlore. Cependant, selon le brevet du coagulant (Lamb, et al. 2002), le chlorure d'ammonium est l'un des réactifs utilisés dans la production du *Tanfloc*. Il est donc possible qu'il soit composé également de chlore selon la réaction de Mannich (Vollhardt, et al. 2009). En outre, la Figure 1 ne présente qu'une partie de la molécule et (Graham, et al. 2008) et (Hameed, et al. 2016) ont utilisé des méthodes d'analyses différentes pour la caractérisation du produit. L'analyse élémentaire de notre étude et de celle de (Hameed, et al. 2016) sont quantitativement différentes, particulièrement pour les éléments chimiques analysés en commun. Selon l'analyse (Tableau 2) de (Hameed, et al. 2016), le Tanfloc est composé de 32,32% de carbone et de 11,21% d'azote. Tandis que nos résultats montrent une composition de 41,48% de carbone et de 6,13% d'azote. Il pourrait être supposé que la différence soit due à la méthode d'analyse qui est différente (la combustion IV.1.1.a dans notre étude et la spectrophotométrie dans la leur). Mais en tenant compte de l'erreur de notre méthode qui est de +/-0.5% (du % massique de l'azote et du carbone), nos résultats restent encore différents.

Selon (Hameed, et al. 2016), des analyses élémentaires différentes du *Tanfloc* peuvent être observées en fonction des caractéristiques de l'extrait de tanin provenant de l'*Acacia mearnsii* utilisé pour la production du *Tanfloc*. Le tanin extrait provient du métabolisme de cette plante (Haslam 1989). Cela suppose donc qu'en fonction de certaines variations présentes dans l'environnement immédiat de la plante, son métabolisme peut être affecté et par conséquent les caractéristiques du tanin produit peuvent être également affectées. Cette hypothèse sur la variation des caractéristiques de l'extrait de tanin pourrait être vérifiée par une étude sur l'*Acacia mearnsii* et le milieu dans lequel elle est cultivée.

Afin de valider nos résultats (analyse élémentaire, <u>Tableau 9</u>), particulièrement le pourcentage massique en carbone, la mesure du COD d'une solution de *Tanfloc* de 500mg/L a permis d'estimer la proportion de carbone dans ce produit. Selon cette mesure, le *Tanfloc* est composé de 42,2% de carbone. Ce résultat est similaire à la proportion trouvée par l'analyse élémentaire du Tableau 9.

V.1.1.b. Solubilité du Tanfloc

La figure 5 représente le COD *Tanfloc* (le *Tanfloc* soluble) des solutions de différentes concentrations de *Tanfloc* (0mg/L à 30mg/L), à différents pH (4 à 7). Selon ces résultats, plus le pH de la solution de *Tanfloc* est acide (décroit de 7 à 4), plus le COD augmente. Le pH a donc une influence sur la solubilité du *Tanfloc*.

Figure 5 : Effet du pH sur la solubilité du Tanfloc

Notre hypothèse est que cette influence du pH est possiblement due au groupement amine qui compose la molécule de *Tanfloc* (Lamb, et al. 2002). La dissolution du produit solide dans l'eau est rendue possible par une interaction entre le groupement amine et les molécules d'eau. Cette interaction fait intervenir les liaisons Hydrogène (McMurry 2012), car l'atome d'azote confère aux amines (primaire et secondaire) un caractère hydrophile. Il permet de donner et d'accepter les protons H⁺. En outre, la solubilité des amines augmente en milieu acide, où ils se comportent comme des bases (McMurry 2012), d'où les résultats obtenus. (Graham, et al. 2008) ont conclu également que l'influence du pH sur la solubilité du *Tanfloc* est certainement due au groupement amine. De plus, en comparant le *Tanfloc* au polychlorure diméthylammonium, leur étude montre que le groupement amine du *Tanfloc* est affecté par le pH parce qu'il n'est pas quaternaire. Ainsi, tout comme l'alun (II.1.1), la solubilité du *Tanfloc* est fonction du pH.

Selon notre analyse élémentaire (<u>Tableau 9</u>), le *Tanfloc* est composé de 41,5% de carbone, représenté sur la <u>Figure 7</u>. Cependant, selon la Figure 5, en fonction de l'augmentation de la dose, à tous les pH, le COD par rapport à la dose diminue au fur et à mesure que la dose augmente, et semble même plafonné. En effet, à pH 6 (<u>Figure 7</u>), le

rapport COD *Tanfloc*/dose *Tanfloc* diminue de 41,5% (qui représente la totalité du carbone du *Tanfloc* dissout), à 9,1% (pourcentage obtenu selon la variation de l'absorbance UV_{254nm} Figure 6). Dans l'eau, tout le carbone du *Tanfloc* ne serait pas soluble. Une partie se trouverait sous la forme dissoute et l'autre partie sous la forme solide. En outre, selon les résultats des analyses du carbone soluble présentés par la Figure 6, le carbone soluble semble être caractérisé par du carbone aromatique, qui augmente en fonction de la dose de *Tanfloc*. La Figure 6 présente l'absorbance UV_{254nm} des solutions de *Tanfloc* aux mêmes doses que la Figure 7. Cette absorbance augmente quasi linéairement en fonction de l'augmentation de la dose de *Tanfloc*, contrairement au COD qui semble atteindre un maximum (Figure 7). Ces résultats (Figure 6) montrent que le COD *Tanfloc* est composé de carbone aromatique absorbant le rayonnement UV à 254nm, et que le carbone soluble du *Tanfloc* en est composé.

Figure 6 : Absorbance UV_{254nm} (m⁻¹) du *Tanfloc* en fonction de la variation de la dose à pH 6 (UV_{254nm}) après filtration à 0,7 µm

La molécule de *Tanfloc* est composée principalement de noyaux aromatiques et de radicaux (R) certainement carbonés (Lamb, et al. 2002). Il semble alors normal d'observer la présence de noyaux aromatiques. Cependant, le carbone aromatique semble être facilement plus soluble, bien qu'il soit formé de noyaux aromatiques hydrophobes. Cette solubilité est

certainement due aux groupements amines liés aux noyaux aromatiques dans la structure de la molécule (Lamb, et al. 2002).

La Figure 7 présente le COD *Tanfloc* des solutions de *Tanfloc* à doses variables (plus large gamme que la Figure 5) et à pH 6. Cette Figure montre la variation du carbone soluble et du carbone non soluble du *Tanfloc*, en fonction de la dose de *Tanfloc*. En tenant compte des résultats de la Figure 6 (droite correspondant au point 9,1%), la Figure 7 montre également la variation du carbone soluble aromatique en fonction de la dose de *Tanfloc*. Le carbone soluble aromatique pourrait composer tout le carbone soluble pour la dose expérimentale la plus élevée (70mg/L).

Figure 7 : Solubilité du *Tanfloc* en fonction de la variation de la dose à pH 6

Cette caractéristique du coagulant (variation de la proportion du carbone soluble et solide en fonction de la dose) pourrait influencer l'efficacité du traitement et dicter la dose de coagulation, dépendamment de la forme qui participe à la coagulation. Ces résultats, particulièrement à pH 6 (Figure 6 et Figure 7), sont importants pour la suite de la discussion sur les performances du *Tanfloc* dans le traitement de l'eau (V.2).

V.1.1.c. La charge électrique du Tanfloc

La Figure 8 présente le potentiel zêta des particules présentes dans l'eau du Fleuve après la coagulation/floculation et la sédimentation, en fonction de la variation de la dose de *Tanfloc* et du pH de coagulation. Le potentiel zêta est une mesure de la charge des particules (Crittenden 2005) présentes dans une eau.

Figure 8 : Effet du pH sur le potentiel zêta des particules après la coagulation, la floculation (*Tanfloc*) et la sédimentation de l'eau du Fleuve.

Quel que soit le pH, selon les résultats de la Figure 8, le potentiel zêta des particules augmente en fonction de l'augmentation de la dose de *Tanfloc*, jusqu'à la neutralité des charges et même la restabilisation à pH 6. Plus la dose augmente, plus la densité de charges positives du *Tanfloc* augmente, et réduit la densité des charges négatives des particules, jusqu'à la neutralité. La restabilisation des particules est due à un surdosage du coagulant, qui apporte un surplus de charges positives nécessaires à la coagulation. La Figure 9 présente le résiduel de turbidité du même échantillon du Fleuve sédimenté (que sur la Figure 8) en fonction de la dose de *Tanfloc* à pH 6. Le *Tanfloc* permet la réduction de la turbidité jusqu`à la dose de 20mg/L après laquelle, il y a une augmentation du résiduel de turbidité. La réduction de la turbidité semble être possible grâce à cette neutralisation des charges négatives (forces répulsives) des particules par les charges positives du *Tanfloc* qui en permettent l'agrégation et la sédimentation. Cependant après la dose de 20mg/L, il y a une augmentation du résiduel de turbidité qui s'explique probablement par une restabilisation des particules.

Figure 9 : Turbidité résiduelle de l'eau du Fleuve coagulée/floculée avec le *Tanfloc* à pH 6 et sédimentée

Le *Tanfloc* est un coagulant cationique (Bongiovani, et al. 2016, Hameed, et al. 2016). En outre, selon les résultats de la Figure 8, le pH pourrait avoir une influence sur la dose de coagulation, notamment sur la densité des charges positives du *Tanfloc*. En effet, la dose qui permet la neutralité du potentiel zêta à pH 6 (20mg/L) est inférieure à celle (25mg/L) à pH 7). La densité des charges positives du *Tanfloc* serait possiblement plus élevée à pH acide, d'où la dose plus faible à pH 6 pour la neutralité des charges des particules. Dans le point (V.1.1.b), il a été montré que l'influence du pH sur la solubilité du *Tanfloc*, serait due à la sensibilité du groupement amine à la variation du pH (il peut céder ou accepter des protons H⁺), d'où la variation de la densité de charges. Cependant, nos résultats (Figure 8) ne permettent pas de tirer une conclusion formelle sur l'influence du pH sur la densité des charges du *Tanfloc*. Les mêmes essais qui ont conduits aux résultats de la Figure 8 pourraient être à nouveau réalisés, mais avec une gamme de pH acide et basique plus large afin de confirmer cette hypothèse (densité de charge positive plus élevée à pH acide (\leq 6). (Graham,

et al. 2008, Graham, et al. 2009) ont montré que la densité de charges positives du coagulant, est plus élevée à pH≤6 à cause de la solubilité du groupement amine.

V.2. Eau potable

V.2.1. Effet du pH et de la dose sur les performances d'abattement de la MOD, du Tanfloc

Les résultats sur l'effet du pH et de la dose de *Tanfloc* sur l'abattement du COD pour les deux sources d'eau (Fleuve Saint Laurent et Rivière Chaudière) sont présentés par les Figure 10 et Figure 11. Selon ces résultats, l'abattement du COD des eaux brutes est meilleur à pH acide (5 et 6) et diminue au fur et à mesure de l'augmentation du pH. En outre, en fonction de la variation de la dose du coagulant, le traitement des eaux s'améliore (augmentation de l'abattement du COD), puis se dégrade (diminution de l'abattement du COD). Cette dégradation est plus visible dans le cas du Fleuve (Figure 10), et n'a pas lieu à partir de la même dose que la Rivière. La dégradation est visible après une dose de 10mg/L dans le cas du Fleuve et après 20mg/L pour la Rivière. Ces deux variables (pH et dose) ont un effet sur les performances du *Tanfloc* pour l'abattement du COD.

Indépendamment de l'effet du pH, la qualité de l'eau traitée se dégrade avec l'augmentation de la dose de coagulant, qui occasionne une augmentation du résiduel de COD du *Tanfloc*. Il semble que tout le *Tanfloc* soluble ne participe pas à la coagulation. La partie qui participe à la coagulation serait enlevée lors de la formation des flocs et de la sédimentation, et la partie qui ne participe pas à la coagulation constituerait le résiduel de *Tanfloc* dont la quantité varierait en fonction de la dose de *Tanfloc*. L'augmentation de la dose aurait pour avantage d'améliorer l'abattement de la MOD présente dans l'eau brute, mais aurait pour inconvénient d'augmenter également le résiduel de MOD venant du *Tanfloc*. La Figure 12 est un schéma conceptuel de l'abattement du COD de l'eau brute en fonction de la variation de la dose de *Tanfloc*. Elle permetra d'illustrer notre hypothèse. Ce schéma est composé de deux parties (A et B), et d'un point C qui fait la distinction entre ces deux parties.

Figure 12 : Schéma conceptuel de l'abattement du COD en fonction de la variation de la dose de *Tanfloc*.

Dans la partie A du schéma, plus la dose augmente, plus le traitement est meilleur jusqu'au point C et plus le résiduel de *Tanfloc* augmente. Le point C, correspondrait au point après

lequel, l'influence du résiduel de COD du Tanfloc est observé sur la qualité de l'eau traitée (augmentation du résiduel COD de l'eau traitée). En effet, dans la partie A, le résiduel de COD du Tanfloc est présent dans l'eau traitée. Mais l'effet de ce résiduel n'est pas observée sur la qualité de l'eau traitée, car il y a quand même une amélioration de l'abattement du COD de l'eau traitée. Il y a une amélioration du traitement parce que le résiduel de COD du Tanfloc (apport) est inférieur au COD de l'eau enlevé. Dans la partie B, il y a une détérioration de la qualité de l'eau traitée, car l'apport en COD du Tanfloc devient supérieur au COD de l'eau enlevée. Toutes les doses après le point C apporteraient un résiduel de COD du Tanfloc qui serait supérieur à l'enlèvement de COD de l'eau traitée. La dose correspondant au point C serait fonction de la qualité de l'eau brute, car plus l'eau est chargée, plus il faudra une dose élevée de coagulant pour assurer l'amélioration du traitement par rapport à une eau brute moins chargée en COD. La dose qui permettrait la meilleure réduction de COD (point C) pour l'eau brute chargée sera donc supérieure à celle de l'eau brute la moins chargée. Ainsi cette dose (point C) est plus élevée pour la Rivière qui est plus chargée (6.1 mg/L COD brute), que le Fleuve (4.5mg/L COD brute), comme le montre les Figure 10 et Figure 11. La dose correspondant au point C serait également fonction du pH de coagulation, car au point V.1.1.b il a été montré que le pH a une influence sur la solubilité du *Tanfloc*. (Graham, et al. 2009, Sánchez-Martín, et al. 2009) ont remarqué dans leurs études une dégradation de la qualité de l'eau traitée lorsque le Tanfloc est utilisé comme coagulant. Selon ces études, cette dégradation est due également à l'apport de carbone par le Tanfloc. D'autres coagulants naturels tels que le Moringa (Ndabigengesere, et al. 1998, Camacho, et al. 2017) présentent la même limite pour le traitement de potabilisation de l'eau.

La Figure 13 et la Figure 14 présentent l'effet du pH et la variation de la dose sur la réduction de l'absorbance UV_{254nm} . La réduction de l'absorbance est meilleure à pH acide (5 et 6) et diminue au fur et à mesure de l'augmentation du pH. Cependant, dans le cas de la réduction de l'absorbance, l'augmentation de la dose de *Tanfloc* améliore le traitement.

Figure 13 : Effet du pH de coagulation et de la dose de *Tanfloc* sur la réduction de l'absorbance UV_{254nm} (m⁻¹) du Fleuve

Figure 14 : Effet du pH de coagulation et de la dose de *Tanfloc* sur la réduction de l'absorbance UV_{254nm} (m⁻¹) de la Rivière

L'absorbance UV_{254nm} est la méthode la plus utilisée dans le traitement de l'eau pour caractériser les AH et les AF (Edzwald 2011, Matilainen, et al. 2011). Il a été remarqué que les composés aromatiques ou ceux à doubles liaisons comme les AH et AF absorbent particulièrement la lumière à cette longueur d'onde (Edzwald 2011). Malgré la dégradation de la qualité de l'eau observée dans la partie B du schéma conceptuel (Figure 12), l'enlèvement de la MOD de l'eau commencé dans la partie A, se poursuit toujours dans la partie B. La MOD facilement coagulable telle que les AH et les AF est enlevée. En effet selon la Figure 13 et la Figure 14, en fonction de l'augmentation de la dose de *Tanfloc*, il y a une réduction de l'absorbance. L'apport en COD par le Tanfloc n'affecte pas autant la réduction de l'absorbance UV_{254nm} que de l'enlèvement du COD. Pourtant, le COD du *Tanfloc* est composé de carbone aromatique (V.1). Il semble que le carbone aromatique apporté par le *Tanfloc* soit en majorité enlevé lors du traitement. Le carbone aromatique constituerait la partie soluble (Figure 6) du Tanfloc qui participe à la coagulation. Afin de vérifier l'hypothèse illustrée par le schéma conceptuel (Figure 12), et l'hypothèse sur la participation du carbone aromatique du Tanfloc à la coagulation, des analyses de caractérisation du COD résiduel de l'eau traitée à chaque dose pourraient être réalisées afin de connaître la nature du carbone apporté par le *Tanfloc*, et le traitement effectif du coagulant (abattement exact de la MOD présente dans l'eau brute).

Selon les Figure 10, Figure 11, Figure 13, et Figure 14, le pH, est une variable qui a autant un effet sur les performances du *Tanfloc*, que la dose. Le traitement de la MOD est plus efficace à pH<7. En effet à pH<7, la solubilité (Figure 5) et la densité des charges positives du *Tanfloc* (Figure 8) sont plus élevées. Ces caractéristiques permettent un meilleur abattement de la MOD à travers probablement la neutralisation des charges négatives des AH et des AF (Edzwald, et al. 1999) (II.1.1). La densité de charges négatives de ces composés (AH et AF) est influencée par le pH du milieu. Elle diminue à pH≤7 (Edzwald, et al. 1999). Ainsi les caractéristiques du *Tanfloc* (II.2.1.a) dans cette gamme de pH (≤7), permettraient l'amélioration de l'abattement de la MOD. Par contre à pH≥7 le traitement de la MOD deviens moins efficace. En effet, à pH≥7 il y a une diminution de la densité des charges (Figure 8) et de la solubilité du *Tanfloc* (Figure 5), qui entrainerait une réduction les charges positives qui sont nécessaires à la neutralisation des charges négatives de la MOD, d'autant

plus qu'à pH \geq 7 la densité des charges négatives des AH et des AF est plus élevée (Edzwald, et al. 1999). (Graham, et al. 2008) ont également montré que l'effet du pH sur la solubilité et la densité des charges du *Tanfloc* a une influence sur l'abattement de la MOD.

En ce qui concerne l'abattement de la turbidité avec le Tanfloc, nous n'avons pas réalisé autant d'essais que pour le traitement de la MOD (variation des sources d'eau, de la dose et du pH), car plusieurs études ont été déjà réalisées sur la réduction de la turbidité. Ces études (Graham, et al. 2008, Sánchez-Martín, et al. 2009, Sánchez-Martín, et al. 2010, Bongiovani, et al. 2016) montrent que le Tanfloc permet la réduction d'au moins 60% de la turbidité. Cette réduction est fonction de la qualité de l'eau brute, et de la dose. En outre, ces études ont obtenu de telles performances (au moins 60% de réduction) sans aucun ajustement de pH et à partir de doses≤15mg/L de *Tanfloc*. Les quelques essais réalisés dans notre étude confirment effectivement que le *Tanfloc* permet de réduire jusqu'à 85% de la turbidité sans ajustement du pH et avec des doses≤15mg/L de Tanfloc (annexe A, Tableau 22). Il semblerait que la réduction de la turbidité par le Tanfloc nécessite des doses inférieures à l'abattement de la MOD. Cela s'expliquerait par les mécanismes de coagulation. En effet, contrairement à la MOD qui serait enlevée par le mécanisme de neutralisation des charges par le *Tanfloc*, la turbidité serait réduite par les mécanismes de neutralisation des charges, et de pontage (Bolto, et al. 2007). Le Tanfloc agirait à la fois comme un coagulant (par son caractère cationique, à neutraliser les charges négatives des particules <u>V.1.1.c</u>) et comme un floculant (masse molaire élevée : 6.10⁵ g.mol⁻¹) (Bolto, et al. 2007, Graham, et al. 2008), d'où le mécanisme de pontage qui permet de former de plus gros flocs.

Le fabricant (Lamb, et al. 2002) affirme que la différence entre le *Tanfloc* et les coagulants inorganiques tels que l'alun est que son utilisation ne nécessite aucun ajustement du pH. Selon les fiches techniques du coagulant (TANAC 2017), il est efficace entre les pH 4.5 et 8. Cependant, le fabricant ne présente aucune étude ni aucun résultat qui prouve ses affirmations. Quelques études (Graham, et al. 2008, Graham, et al. 2009, Sánchez-Martín, et al. 2009) ont montré que ce coagulant permet la réduction en laboratoire d'au moins 60% de la turbidité dépendamment des doses et de la turbidité de l'eau brute, entre les pH 4 et 9. Les résultats de notre étude montrent une influence du pH sur les performances du *Tanfloc*, en ce qui concerne l'abattement de la MOD. Elles sont meilleures à pH 5 et 6. Les affirmations du

fabriquant sont à nuancer, car le *Tanfloc* est efficace pour la réduction de la turbidité entre les pH 4.5 et 8, et ne nécessite dans certains cas (Sánchez-Martín, et al. 2010, Bongiovani, et al. 2016) aucun ajustement du pH. Mais pour l'abattement de la MOD, l'ajustement du pH est nécessaire. L'efficacité du *Tanfloc* pour l'abattement de la MOD sera discutée au point (V.2.2), en fonction de comparaisons avec l'alun.

Selon, l'étude de (Bongiovani, et al. 2016), ce coagulant est aussi efficace que l'alun pour le traitement de l'eau et son utilisation ne nécessite aucun ajustement de pH comme l'a affirmé le fabricant. Cependant, les résultats obtenus dans notre étude sont différents de (Bongiovani, et al. 2016). Il se pourrait que le résiduel de carbone apporté par le Tanfloc ait été corrigé dans leurs analyses. En effet (Graham, et al. 2009), présentent dans leur étude des résultats sur les performances du *Tanfloc* pour l'abattement du COD, dans lesquels l'apport en COD du Tanfloc a été corrigé. La même méthode d'analyse a pu être utilisée par (Bongiovani, et al. 2016). Dans cette méthode, le COD de l'eau brute et le COD apporté par la dose du coagulant sont considérés comme le COD total brut (à enlever). Le COD de l'eau traitée est considéré uniquement comme le COD résiduel après le traitement ; le COD résiduel du Tanfloc est nul. Le Tableau 10 présente nos résultats sur l'abattement du COD des eaux brutes de la Rivière et du Fleuve, calculés en fonction de la méthode de (Graham, et al. 2009). Les performances ont été calculées à pH 7 (pour comparaison avec (Bongiovani, et al. 2016)) et pour les doses de traitement qui permettent les meilleurs abattements de COD pour le Fleuve (10mg/L) et la Rivière (20m/L). L'équation de calcul des performances est la suivante :

 $\acute{\text{Equation 2: COD}} (\%) = \frac{(COD_{eau\ brute} + COD_{Tanfloc}) - COD\ résiduel\ eau\ traitée}{(COD_{eau\ brute} + COD_{Tanfloc})}$

Le COD Tanfloc a été calculé selon l'équation suivante :

Équation 3 : COD *Tanfloc*= 0,415. Dose Tanfloc $\left(\frac{\text{mg}}{\text{L}}\right)$

L'analyse élémentaire (V.1) a montré que le *Tanfloc* est composé de 41.5% de carbone, d'où le facteur 0.415 dans l'Équation 2.

		(<u>II.2.1.a</u>)		
Eaux brutes:	COD	COD Tanfloc	Résiduel COD	%
	(mg/L)	(mg/L)	(mg/L)	COD
Fleuve 2	4,6	4,2	3,5	60,3
Rivière 1	6,1	8,3	4,8	66,6

Tableau 10 : Analyse des performances du Tanfloc selon la méthode de Graham et al., 2009

Lorsque nos résultats sont calculés selon cette méthode (Tableau 10), ils sont similaires à ceux de (Bongiovani, et al. 2016) pour lesquels l'abattement de COD est de 57% à pH 7.5. Avec cette méthode de calcul, selon les résultats de (Graham, et al. 2009) le *Tanfloc* permet un abattement de 83% du COD. Leur abattement est plus élevée que le nôtre (Tableau 10), certainement parce que (Graham, et al. 2009) ont réalisés leurs essais avec de l'eau synthétique dont le COD est l'AH, qui est facilement coagulable (Edzwald 2011). Tandis que nos essais ont été réalisés à partir d'eau de surface composée à la fois de carbone facilement coagulable (AH et AF) et de carbone difficilement coagulable (<u>Tableau 5</u>).

V.2.2. Comparaison des deux coagulants (Tanfloc et Alun).

Le *Tanfloc* est un coagulant qui présente des limites pour le traitement de l'eau potable, particulièrement pour l'abattement du COD. Au Québec, il n'y a pas de norme visant l'abattement du COD, mais les objectifs entre autres de la coagulation sont d'enlever au mieux la MOD, afin d'éviter une demande en chlore élevée et la formation des SPD. Bien que le *Tanfloc* présente des limites, ses performances pourraient être suffisantes pour obtenir une eau traitée qui soit moins demandante en chlore, avec un potentiel de formation de SPD qui respecte les normes. L'alun étant le coagulant le plus utilisé pour le traitement de l'eau, il est nécessaire d'évaluer la qualité de l'eau traitée avec le *Tanfloc* par rapport à l'alun.

Les Tableaux 11, 12, 13 et 14 présentent les résultats obtenus sur l'abattement de la MOD par le *Tanfloc* et l'alun pour les mêmes échantillons d'eaux brutes : le Fleuve Saint

Laurent et la Rivière Chaudière à pH 6. L'abattement de la MOD a été calculé sans négliger l'apport en MOD du *Tanfloc*. Il a été calculé selon l'équation suivante :

Équation 4 : % *MOD* (*COD et UV*_{254nm}) = $\frac{MOD_{eau \, brute} - MOD_{eau \, traitée}}{MOD_{eau \, brute}} * 100$

La **MOD** _{eau} traitée</sub> est composée du résiduel de *Tanfloc* et du résiduel de MOD de l'eau qui n'a pas été enlevé par le traitement. Selon ces résultats, le *Tanfloc* permet au plus 25% d'abattement du COD et au moins 65% de réduction de l'absorbance UV_{254nm} (Tableaux 11 et 12). Tandis que l'alun permet un abattement d'au moins 50% du COD et une réduction d'au moins 70% de l'absorbance UV_{254nm} (Tableaux 13 et 14). L'alun est plus efficace pour l'abattement du COD par rapport au *Tanfloc*, pour les deux sources d'eau.

		Fleuve			-	Fleuve Saint	t-Laurent pa	ar l'alun	
Tanfloc	Résiduel	COD	UV_{254nm}	UV_{254nm}			Fleuve		
$\frac{(mg/L)}{0}$	5,12	(%)	(m-*) 14,30	(%)	- Alun (mg/L)	Résiduel	COD	UV_{254nm}	UV _{254nm}
5	4,18	18,36	10,42	27,13	0	5,12	(/0)	14,30	(/0)
10	4,00	21,88	6,46	54,83	20	2,38	53,52	3,54	75,24
15	3,92	23,44	4,62	67,69	40	2,12	58,59	2,84	80,14
20	4,18	18,36	4,52	68,39	_				
25	4,47	12,70	4,88	65,87					

Tableau 11 : Résultats de l'abattement de la MOD de l'eau du

Fleuve Saint Laurent par le *Tanfloc*

Tableau 13 : Résultats de l'abattement de la MOD de l'eau du

Tableau 12 : Résultats de l'abattement de la MOD de l'eau de

la Rivière Chaudière par le *Tanfloc*

Tableau 14 : Résultats de l'abattement de la MOD de l'eau de

la Rivière Chaudière par l'alun

		Rivière			_		induciore pr		
Tanfloc	Résiduel	COD	UV _{254nm}	UV _{254nm}	-		Rivière		
(mg/L)	COD(mg/L)	(%)	(m^{-1})	(%)	Alun	Résiduel	COD	UV_{254nm}	UV _{254nm}
0	8,47	0	28,5		(mg/L)	COD(mg/L)	(%)	(m^{-1})	(%)
10	7 32	13 58	16.98	40.42	- 0	8,47		28,5	
10	7,52	15,50	10,00	10,12	- 20	7.15	15.58	25.46	10.67
15	7,08	16,41	14,28	49,89	20	7,10	10,00	20,10	
20	6,74	20,43	12,06	57,68	40	3,16	62,69	7,54	73,54
25	6,72	20,66	10,3	63,86	-				
30	6,62	21,84	9,28	67,44	_				
35	6,82	19,48	8,64	69,68	-				
En effet, la variation de la dose de Tanfloc permet moins de 25% d'abattement du COD, par rapport à l'alun qui en permet au moins 50% pour les deux sources d'eau. Selon les caractéristiques des eaux brutes (SUVA, IV.2.1), la coagulation devrait permettre un abattement de 40 % à 60% du carbone organique (Edzwald 2011), car la MOD est composée de carbone facilement coagulable : les AH et les AF. L'apport en carbone et la faible densité de charges (Graham, et al. 2009) (par rapport à l'alun) sont des raisons qui expliqueraient que le Tanfloc ne permet pas d'atteindre ces objectifs par rapport à l'alun. Cependant, tout comme l'alun, le Tanfloc permet la coagulation des AH et des AF (réduction absorbance UV_{254nm}) et présente des performances comparables. La comparaison entre l'alun et le *Tanfloc* n'est pas seulement faite sur la base de leurs performances sur l'abattement du COD, car bien que le *Tanfloc* soit moins efficace pour l'abattement du COD, l'enlèvement des AH et des AF pourrait quand même donner un intérêt pour ce coagulant. Les résultats sur la demande en chlore et le potentiel de formation des SPD (THM4 et AHA5) de l'eau traitée permettront de conclure sur cela. Les Figures 15 et 16 présentent les résultats obtenus pour la demande en chlore des eaux traitées avec le Tanfloc et l'alun. Le résiduel de chlore libre en fonction de la variation de la dose de chloration permettent de déterminer les demandes en chlore des échantillons d'eau traitée avec les doses de 20mg/L et 40mg/L d'alun (Tableau 13 Tableau 14) ainsi que des échantillons d'eau traitée avec les doses de 5mg/L et 15mg/L (Fleuve) et de 20mg/L et 30mg/L (Rivière) de Tanfloc (Tableau 11, Tableau 12). Le choix des doses de coagulants pour la comparaison de la demande en chlore et du potentiel de formation de SPD des eaux traitées est expliqué au point IV.2.3.

Figure 15 : Demande en chlore des échantillons d'eau du Fleuve traitée avec le *Tanfloc* (T 5mg/L et T 15mg/L) et l'alun (A 20mg/L et A 40mg/L) après 24H

Figure 16 : Demande en chlore des échantillons d'eau de la Rivière traitée avec le *Tanfloc* (T 20mg/L et T 30mg/L) et l'alun (A 20mg/L et A 40mg/L) après 24H

Les Figures 15 et 16 montrent que dans le cas du Fleuve ou de la Rivière, les échantillons d'eau traitée avec le Tanfloc ont une demande en chlore (intersection entre l'axe des abscisses et la courbe de tendance) plus élevée que ceux traités avec l'alun. En outre, les doses de Tanfloc (15mg/L Fleuve et 30mg/L Rivière) qui permettent le meilleur traitement (abattement COD) pour les deux sources d'eau, sont-elles qui produisent des eaux avec des demandes en chlore plus élevées. L'apport en carbone serait plus important lorsque la dose de traitement est élevée. Selon la Figure 7 et nos hypothèses sur les mécanismes de coagulation du *Tanfloc* (Figure 12), l'apport en carbone augmenterait en fonction de la dose de traitement, d'où la demande en chlore plus élevée pour les doses de Tanfloc les plus élevées. Cette observation permet également de caractériser indirectement le COD du Tanfloc, qui semble être facilement oxydable par le chlore. Le résiduel de COD étant supérieur (Tableau 11 Tableau 12) dans les échantillons d'eau traitée de la Rivière, leurs demandes en chlore sont plus élevées que ceux du Fleuve (traités avec le Tanfloc). La demande en chlore des échantillons d'eau traités avec l'alun est inférieure à ceux traités avec le Tanfloc parce que l'alun est plus efficace pour l'abattement du COD. Les demandes en chlore des échantillons d'eau traitée de la Rivière avec l'alun sont supérieures aux échantillons du Fleuve, à cause des doses de coagulation. L'eau brute de la Rivière est plus chargée en COD, d'où le traitement moins efficace avec les mêmes doses d'alun que le Fleuve, et les demandes en chlore plus élevées.

Le potentiel de formation des SPD (THM4 et AHA5) de ces échantillons d'eau traités et chlorés (Figure 15 Figure 16) a été déterminé et est présenté par les Figures 17 et 18 (THM4), et les Figures 19 et 20 (AHA5). Ces valeurs ont été déterminées après un temps de contact de 24h, pour une dose de chlore permettant un résiduel de 0,3mg/L Cl₂ libre (IV.2.3). Les doses de chlore ayant conduit à un résiduel de 0,3mg/L Cl₂ libre pour les différents échantillons des Figures 15 et 16 sont dans le Tableau 15 :

	Échantillong	А	А	Т	Т
Fleuve Saint		40mg/L	20mg/L	5mg/L	15mg/L
Laurent	Chlore (mg/L Cl ₂)	1,4	1,5	3,8	5,7
D! !`	Échantillana	А	А	Т	Т
Riviere	Echantinons	40mg/L	20mg/L	20mg/L	30mg/L
Chaudiere -	Chlore (mg/L Cl ₂)	2,1	5,1	9,5	10,7

Tableau 15 : Doses de chlore ayant conduit à un résiduel de 0,3mg/L Cl₂ libre

Les Figures 17 et 18 présentent respectivement les valeurs des THM4 obtenus après chloration des échantillons d'eau traitée de la Rivière et du Fleuve, en fonction des doses des coagulants choisies pour la comparaison.

Figure 18 : Potentiel de formation des THM4 des échantillons d'eau du Fleuve traitée avec le *Tanfloc*(T 5mg/L et T 15mg/L) et l'alun (A 20mg/L et A 40mg/L) Selon ces résultats, les THM4, sont formés en fonction de l'efficacité des doses des coagulants. Pour les deux sources d'eaux et quels que soient les coagulants utilisés pour le traitement, plus le résiduel d'absorbance est élevée, plus le potentiel de formation des THM4 est élevé. Contrairement à la demande en chlore, l'apport en carbone par le *Tanfloc* ne semble pas contribuer à la formation des THM4, car les doses les plus élevées ne produisent pas des eaux traitées (Fleuve et Rivière) avec des valeurs de THM4 les plus élevées. La caractérisation du *Tanfloc* (V.1.1.b) a montré que du carbone aromatique compose le COD apporté par le *Tanfloc*. Mais, il semblerait que ce carbone aromatique ne soit pas précurseur de THM4. Afin de confirmer cette hypothèse, des essais sur le potentiel de formation des THM4 du *Tanfloc*, tout comme l'alun, pourrait permettre de maintenir le taux de THM4 en dessous de la norme de $80\mu g/L$ (moyenne annuelle des mesures trimestrielles). (Bongiovani, et al. 2016) ont également montré que le *Tanfloc* peut réduire les précurseurs des THM4, lorsque la dose de traitement est optimale.

Les Figures 19 et 20 présentent les valeurs des AHA5 obtenus après la chloration des eaux traitées respectivement de la Rivière et du Fleuve. Ces valeurs sont présentées en fonction des doses de *Tanfloc* et d'alun, choisies pour la comparaison.

AHA5 Absorptivité

Figure 19 : Comparaison du potentiel de formation des AHA5 des échantillons d'eau de la Rivière traitée avec le Tanfloc (T 20mg/L et T 30mg/L) et l'alun (A 20mg/L et A 40mg/L)

Figure 20 : Comparaison du potentiel de formation des AHA5 des échantillons d'eau du Fleuve traitée avec le Tanfloc (T 5mg/L et T 15mg/L) et l'alun (A 20mg/L et A 40mg/L)

Selon ces résultats, le potentiel de formation des AHA5 est également fonction de l'efficacité du traitement (réduction de l'absorbance par le *Tanfloc* et l'alun) pour les deux sources d'eaux. Cependant, il se forme moins de AHA5 que de THM4, sauf pour les échantillons d'eau traitée du Fleuve, avec le *Tanfloc*. Il pourrait être supposé que le *Tanfloc* ne permet pas de réduire les précurseurs des AHA5, mais dans le cas de la Rivière, le *Tanfloc* présente des performances comparables à celles de l'alun (40mg/L). En outre, le carbone apporté par le *Tanfloc* ne semble pas être précurseurs des AHA5, car les échantillons d'eau traitée avec les doses les plus élevées (15 mg/L Fleuve et 30mg/L Rivière), ne forment pas plus de AHA5. La détermination du potentiel de formation des AHA5 du *Tanfloc* pourrait donner une explication et permettre de caractériser le carbone apporté par le coagulant. Le *Tanfloc*, tout comme l'alun pourrait permettre de réduire les pressureurs des AHA5 et de respecter la norme annuelle de 60µg/L (moyenne annuelle), dépendamment de la dose de coagulation et de la qualité de l'eau brute

V.3. Eaux usées

V.3.1. Performances du *Tanfloc* pour l'abattement de la MES, de la DCO totale, du phosphore total et de l'azote total en comparaison avec l'alun

Les résultats obtenus à la suite de séries de jars tests réalisées à partir de différents échantillons d'eaux usées brutes (<u>IV.2.1</u>) montrent des avantages et des limites du *Tanfloc* pour le traitement des eaux usées, comparativement à l'alun. Les résultats qui sont présentés sont la moyenne des résultats obtenus pour chaque échantillon.

V.3.1.a. Abattement de la DCO totale et de la MES

Les Figures 21 et 22 présentent respectivement les résultats obtenus sur l'abattement de la DCO totale et de la MES en fonction de la variation des doses de *Tanfloc* et d'alun.

Figure 21 : Abattement de la DCO totale en fonction de la variation des doses de coagulants.

Figure 22 : Abattement de la MES, en fonction de la variation des doses de coagulants.

Selon ces résultats (Figures 21 et 22), plus la dose de *Tanfloc* augmente, meilleurs sont les abattements de DCO totale et de la MES. En effet, le Tanfloc permet l'abattement d'au moins 90% de la MES à partir de la dose de 20mg/L et au moins 80% de la DCO totale entre les doses de 20mg/L et de 60mg/L. Cependant, après la dose de 40mg/L, qui est la dose qui permet le meilleur traitement (abattement DCO totale et MES), il y a une diminution progressive de l'abattement des polluants jusqu'à la dose expérimentale la plus élevée (100mg/L). Comme dans le cas de l'eau potable, cette dégradation de la qualité de l'eau traitée est probablement due aussi à un résiduel de *Tanfloc*, qui augmenterait avec la dose de coagulant. En effet, notre hypothèse émise en eau potable (V.2.1), suivant laquelle une partie du *Tanfloc* ne participerait pas à la coagulation pourrait également s'appliquer en eaux usées. La partie qui participe à la coagulation serait enlevée en même temps que les polluants, et la partie qui ne participe pas à la coagulation représenterait le résiduel de *Tanfloc*. Ce résiduel augmenterait en fonction de la variation de la dose de coagulant, d'où la dégradation de la qualité de l'eau traitée (Figure 12 : Schéma conceptuel de l'abattement du COD en fonction de la variation de la dose de *Tanfloc*. Figure 12). D'autres coagulants organiques naturels tels que Moringa (Ndabigengesere, et al. 1998, Camacho, et al. 2017), apporte un résiduel dont la concentration varierait en fonction de la dose du coagulant. Notre hypothèse permet d'expliquer l'effet de l'apport de MOD par le *Tanfloc*, sur l'augmentation de la DCO totale de l'eau traitée. Cependant, l'augmentation de la MES (Figure 22) montre que cet apport n'est pas seulement dissous. Dans le point (V.1) de caractérisation du *Tanfloc*, il a été montré que tout le *Tanfloc* ne serait pas soluble et que cette solubilité est fonction de la dose et du pH. Le *Tanfloc* apporterait de la MOD et de la MES qui en fonction de la dose, augmenterait la MES et la DCO totale de l'eau traitée, d'où la diminution de l'abattement de la MES et de la DCO totale. (Hameed, et al. 2016) et (Beltrán-Heredia, et al. 2009) ont également observé l'amélioration de la qualité de l'eau (abattement DCO et MES), suivi d'une dégradation, en fonction de l'augmentation de la dose de Tanfloc. Des analyses de l'eau traitée par ((Beltrán-Heredia, et al. 2009, Sánchez-Martín, et al. 2009) à des doses variées, ont montré que cette détérioration est due à la présence d'un résiduel de *Tanfloc*, qui agit comme de la matière organique polluante.

Selon les Figures 21 et 22, l'alun permet également l'abattement de la DCO totale et de la MES. En effet, en fonction de l'augmentation de la dose d'alun, la qualité de l'eau traitée est améliorée. Il permet ainsi d'atteindre un abattement de 75% de la DCO totale et de 95% de la MES, pour la dose expérimentale la plus élevée (100mg/L). Selon (Eddy 2014), l'utilisation de coagulants inorganiques tels que l'alun, permettent une réduction de la MES comprise entre 80 et 90%, et une réduction d'au moins 50% de la DBO. Ils soulignent également que ces performances sont fonction entre autres de la charge de l'eau brute et de la dose appliquée. (Guida, et al. 2007), obtiennent en effet une réduction de 70% de DCO pour une eau brute ayant une DCO moyenne d'environ 400mg/l, traitée avec une dose de 150mg/l d'alun sec.

Comparativement au *Tanfloc*, l'augmentation de la dose d'alun n'entraine pas une dégradation de la qualité de l'eau traitée (augmentation du résiduel de la DCO totale et de la MES) dans notre étude. Les deux coagulants ont une efficacité de traitement comparable pour l'abattement des polluants. Mais l'utilisation du *Tanfloc* est plus efficiente que celle l'alun (sur une base de dose massique), car le *Tanfloc* permet un traitement comparable, voir meilleur que l'alun à des doses qui sont deux (40mg/L) à cinq fois (20mg/L) inférieures à la dose d'alun (100mg/L) qui permet le meilleur traitement. La Figure 23 montre la variation de l'alcalinité de l'eau traitée en fonction de la dose, l'alcalinité des eaux traitées avec le *Tanfloc* semble ne pas varier. Tandis que l'alcalinité de celles traitées avec l'alun diminue. Contrairement à l'alun dont l'hydrolyse entraine la consommation de l'alcalinité (Edzwald 2011), le *Tanfloc* ne semble pas altérer l'alcalinité de l'eau traitée.

Figure 23 : Effet de la variation de la dose de *Tanfloc* et d'alun sur l'alcalinité de l'eau traitée

(Hameed, et al. 2016) et (Beltrán-Heredia, et al. 2009), montrent que les performances (abattement DCO et MES) du *Tanfloc* sont comparables (mg/L *Tanfloc* et mg/L alun sec) ou meilleures à celles de l'alun, en fonction des doses de traitement et de la qualité de l'eau brute. Dans notre étude, l'échantillonnage n'a pas permis de réaliser des essais avec des eaux brutes de charges organiques différentes.

Selon les résultats de notre étude (Figures 21 et 22) le *Tanfloc* pourrait être utilisé dans le traitement des eaux usées domestiques pour l'abattement de la DCO et de la MES dans le décanteur primaire. En plus d'être plus efficace que l'alun sur une base massique, son utilisation n'altère pas le pH de l'eau traitée (Figure 23), qui est important pour la suite du traitement secondaire. Le *Tanfloc* pourrait être également utilisé pour le traitement des eaux usées domestiques. Certaines eaux usées industrielles ont besoin d'être traitées (afin de respecter les normes en vigueurs) avant le rejet dans l'environnement ou dans le système d'égouts. Le *Tanfloc* pourrait être utilisé pour la MES. Cependant des

études doivent être menées sur le type d'eaux usées industrielles que le *Tanfloc* peut traiter, car les caractéristiques de l'eau brute ont une influence sur ses performances.

V.3.1.b. Abattement du phosphore total

La Figure 24 présente les résultats obtenus sur l'abattement du phosphore total en fonction de la variation des doses de *Tanfloc* et d'alun. Selon cette figure, plus la dose d'alun augmente, meilleur est l'abattement du phosphore total.

Figure 24 : Abattement du phosphore total, en fonction de la variation des doses de coagulants

L'alun permet l'abattement de 70% du phosphore total pour la dose expérimentale la plus élevée (100mg/L). La dose de 100mg/L correspond à un ratio molaire de 2 :1 Al : P. Selon le <u>Tableau 1</u>, ce ratio molaire devrait correspondre à un abattement de 95% du phosphore total. Mais l'efficacité du traitement est fonction de la charge de l'eau brute, du pH de coagulation, des espèces phosphorées. En effet, les orthophosphates sont les espèces phosphorées solubles (phosphore inorganique) facilement coagulables. Le traitement est souvent meilleur après le passage de l'eau dans le bassin de boues activées, car les

polyphosphates y sont transformés en orthophosphates (Eddy 2014). Des séries de jars tests réalisées par ((USEPA) 1976) à la station de traitement d'eaux usées de la Ville de Springfield, dont le phosphore total moyen est de 5mg/L montre un abattement de 80% du phosphore total pour un ratio molaire moyen de 2.2 :1 Al :P. Ces résultats sont semblables aux résultats obtenus dans notre étude. Dans notre étude, la concentration moyenne de phosphore total est comparable à celle de Springfield (4.8 mg/L P). Le traitement avec un ratio molaire moyen de 2 :1 Al : P (100mg/L Alun sec) a permis un abattement moyen de 70% du phosphore total.

Selon la Figure 24, l'augmentation de la dose de *Tanfloc* permet une amélioration de l'abattement du phosphore total. Cependant, le *Tanfloc* ne permet que 15% d'abattement du polluant. Comparativement à l'alun, le Tanfloc ne permet pas un bon abattement du phosphore total. En effet, le phosphore total est en majorité composé de phosphore soluble, dont l'abattement nécessite des cations métalliques multivalents qui formeront avec le phosphore soluble des précipités (Gray 2010). La connaissance sur les mécanismes de solubilité des produits tels que, l'alun, le fer, la chaux, ainsi que des espèces phosphorées solubles permettent d'optimiser le traitement du phosphore. Les mécanismes de solubilité du *Tanfloc* ne sont pas bien connus. Mais par hypothèse, en fonction des résultats obtenus sur la caractérisation du Tanfloc (V.1) dans notre étude, des études de (Graham, et al. 2008, Graham, et al. 2009) et le brevet du coagulant (Lamb, et al. 2002), la solubilisation du *Tanfloc* conduirait à des molécules cationiques dont les caractéristiques organiques et la faible densité de charges ne permettent pas d'enlever le phosphore soluble. L'abattement de phosphore obtenue dans cette étude avec le *Tanfloc* correspondrait à la coagulation et la sédimentation du phosphore organique (MES composée de phosphore) (Hameed, et al. 2016). Le phosphore organique peut composer jusqu'à 20% du phosphore total (Gray 2010). L'utilisation du Tanfloc seul ne permet pas un bon abattement du phosphore comparativement à l'alun, mais une co-utilisation avec l'alun pourrait améliorer le traitement. Des études (Özacar, et al. 2003, Zhou, et al. 2008), montrent qu'une utilisation combinée de coagulant à base de tanin et d'alun ou de chlorure ferrique améliore l'abattement du phosphore, et permet de réduire les doses de coagulants (alun et chlorure ferrique). En effet, le *Tanfloc* est un polymère cationique (Lamb, et al. 2002), qui selon (Graham, et al.

2008) aurait une masse molaire d'au moins 6.10^5 g.mol⁻¹. Selon l'étude de (Bolto, et al. 2007) qui présente les polyélectrolytes organiques utilisés dans le traitement de l'eau, le *Tanfloc* pourrait également être utilisé comme floculant, dont l'un des mécanismes serait le pontage. Ainsi pour l'abattement du phosphore, l'alun pourrait être d'abord utilisé pour former des précipiter avec le phosphore, et ensuite l'ajout du *Tanfloc*, comme floculant permettrait par le mécanisme de pontage de former de plus gros flocs et ainsi d'améliorer l'abattement du phosphore. Les coagulants expérimentés dans ces études sont différents du *Tanfloc* par la nature du tanin et certainement par les autres produits qui entre dans leurs compositions. Ces différences pourraient avoir une influence sur le traitement. Des essais devront donc être réalisés avec l'utilisation conjointe du *Tanfloc* et de l'alun, afin de confirmer l'efficacité de la combinaison des deux coagulants pour l'abattement du phosphore total (surtout inorganique).

V.3.1.c. Abattement de l'azote total

La Figure 25 présente les résultats obtenus sur l'abattement de l'azote total en fonction de la variation des doses de *Tanfloc* et d'alun. Selon ces résultats, l'alun permet l'abattement de l'azote total entre les doses de 20mg/L et de 100mg/L. Cependant, il ne permet que 10% d'abattement du polluant (azote total). En outre, l'augmentation de la dose d'alun après 40mg/L n'améliore pas l'efficacité du traitement.

Figure 25 : Abattement de l'azote total, en fonction de la variation des doses de coagulants

L'alun est utilisé dans le traitement des eaux usées urbaines pour la réduction du phosphore, de certains métaux lourds ou autres composés, pour l'amélioration du traitement biologique par l'enlèvement de la DCO et de la MES. Lors de l'utilisation de l'alun pour les objectifs cités, il est possible de réduire l'azote organique à travers la coagulation et la sédimentation de la MES composée d'azote. Cependant, l'essentiel de l'azote total est réduit durant le processus biologique de nitrification/dénitrification, car il est composé majoritairement d'azote soluble (Metcalf, et al. 2003). Le fait que l'augmentation de la dose après 40mg/L n'améliore pas l'abattement de l'azote total montrerait en effet qu'une seule partie de l'azote est coagulable par l'alun. Cette partie coagulable correspondrait à l'azote organique qui est réduit à travers la coagulation et la sédimentation de la MES.

Selon la Figure 25, le *Tanfloc* permet un abattement de l'azote total <10%. En outre, cette variation entraine la dégradation de la qualité de l'eau traitée après la dose de 20mg/L. Dans le point <u>V.1</u>, il a été montré à la suite d'une analyse élémentaire (<u>Tableau 9</u>) que l'azote est un des éléments chimiques qui compose le *Tanfloc*. Le résiduel de *Tanfloc* présent dans l'eau traitée, dont la proportion varierait en fonction de la dose (**Erreur ! Source du renvoi introuvable.**) est composé d'azote, d'où la dégradation de la qualité de l'eau après la dose

de 20mg/L. Tout comme l'alun, le *Tanfloc* n'est pas efficace pour l'abattement de l'azote total. Il se pourrait que l'abattement obtenu par le *Tanfloc* corresponde également à la coagulation de l'azote organique. En effet, les eaux usées domestiques brutes sont composées d'azote soluble et d'azote organique (qui compose les MES) dont les proportions peuvent varier entre autres, selon les saisons et les zones de rejet d'eaux usées (destinées au traitement) (Metcalf, et al. 1991, Gray 2010). En plus comparativement à l'alun, le *Tanfloc* en fonction des conditions de traitement (dose, pH, charge organique de l'eau brute) est une source de pollution azotée. Les deux coagulants ne peuvent être utilisés dans le traitement des eaux usées dans un objectif d'abattement de l'azote total en majorité soluble.

V.3.2. Valorisation des boues

V.3.2.a. Volume et biodégradation des boues

La Figure 26 présente le volume des boues issues du traitement des eaux usées avec le *Tanfloc* et l'alun en fonction des doses de coagulation. Selon les résultats obtenus, l'utilisation du *Tanfloc* produirait plus de boues que l'alun, malgré les précipités qui contribuent à augmenter le volume des boues lorsque l'alun est utilisé comme coagulant. Ces résultats pourraient s'expliquer par le fait que le *Tanfloc* permet un meilleur abattement de la MES par rapport à l'alun, qui se retrouve concentrée dans les boues. Cette production de boues plus élevée en volume par le *Tanfloc* pourrait avoir des inconvénients tels que des coûts supplémentaires pour le stockage, le transport ou le traitement. Mais selon (Özacar 2000), certains coagulants à base de tanin, permettraient d'améliorer l'épaississement des boues. Cela permettra de réduire le volume de transport, de stockage ou d'autres traitements supplémentaires (tel que la biométhanisation). Les résultats de (Hameed, et al. 2016) montrent également une production de boues du *Tanfloc* supérieure ou équivalente au polychlorure d'aluminium.

Figure 26 : Volumes (mL/L d'eau brute traité) des boues issues du traitement avec le *Tanfloc* et l'alun

La Figure 27 présente l'évolution de la DBO mesurée sur cinq jours des boues issues du traitement avec le *Tanfloc* et l'alun. Dans la suite de la discussion les termes : boues *Tanfloc* et boues alun désignent les boues issues respectivement du traitement des eaux usées avec le *Tanfloc* et l'alun. Selon la Figure 27, l'évolution de la DBO₅ semble similaire pour les deux types de boues. Les constantes cinétiques (K_{alun} et K_{Tanfloc}) calculées, montrent en effet une vitesse de biodégradation similaire (K_{alun}=0.22 j⁻¹ +/- 0.01 et K_{Tanfloc}=0.23 j⁻¹ +/- 0.01). La constante cinétique est une mesure de la dégradation de la MO (Mihelcic, et al. 2010). L'objectif de la détermination de la constante cinétique est d'observer un quelconque effet de la MO apportée par le *Tanfloc* dans les boues, sur leur biodégradation. Les constantes cinétiques ont été déterminées à partir des mesures de DBO sur les cinq jours et de l'Équation 5 de calcul de la DBO à un temps t donné (Metcalf, et al. 2014) :

Équation 5 : $DBO_t = DBO_u(1 - e^{-Kt})$

DBO_t= DBO au temps t (jour); DBO_u= DBO ultime; K=constante cinétique; t=jour

Dans cette équation, seule la DBOt est connue. Le solveur (Excel) est l'outil qui a été utilisé pour déterminer K. Le solveur permet de trouver une valeur de K optimale en fonction des contraintes que nous avons établies. La valeur de la constante est déterminée de telle sorte que K \leq 1 pour la première contrainte et que le rapport DBO₅/DBO_u=0.6 pour la deuxième contrainte. Selon (Metcalf, et al. 2014) la DBO₅ serait équivalente à 60%-70% de la DBO pour la dégradation complète de la MO biodégradable. Le résumé des calculs se trouvent en annexe F (<u>Tableau 41</u> à <u>Tableau 44</u>). Les deux types de boues analysées ont une proportion similaire de STV (Tableau 16) et il semblerait que la MO présente dans ces boues ait à peu près la même vitesse de biodégradation (constante cinétique similaire) et des DBO5 similaires. En fonction de ses résultats (vitesse de biodégradation et DBO₅ similaires) il peut être supposé que la MO apporté par le Tanfloc serait certainement difficilement biodégradable, car la constante cinétique et la DBO₅ des boues *Tanfloc* ne sont pas plus élevées que celles de l'alun. Cependant, Il est difficile de tirer une telle conclusion, car il se pourrait que l'apport en MO par le Tanfloc ne soit pas suffisant pour observer une différence de dégradation (constante cinétique), de DBO par rapport aux boues alun. En effet, les boues *Tanfloc* utilisées pour les essais de DBO sont issues du traitement avec la dose de coagulation de 100mg/L de Tanfloc. Selon la Figure 22 à cette dose, il y a une diminution de l'abattement de la MES. Cette diminution de l'abattement de la MES est due à un résiduel de Tanfloc dans l'eau traitée. Il y a donc une partie du Tanfloc qui reste dans l'eau traitée au lieu des boues, d'où certainement l'apport en MO dans les boues insuffisantes pour observer un effet sur la biodégradation des boues Tanfloc. (Hameed, et al. 2016) ont montrées la biodégradation de la MO apportée par le *Tanfloc*, par la mesure de la DBO d'une solution de *Tanfloc*.

Figure 27 : DBO des boues issues du traitement avec l'alun (100mg/L) et le *Tanfloc* (100mg/L)

V.3.2.b. L'épandage.

L'un des avantages de l'utilisation du *Tanfloc* pour le traitement des eaux usées, est la production de boues organiques. L'utilisation de ces boues organiques permettrait d'éviter la limitation de la disponibilité du phosphore pour les plantes. Cependant comparativement à l'alun, ces boues pourraient être pauvres en phosphore (Figure 24), qui est un nutriment indispensable pour les plantes. L'utilisation conjointe du *Tanfloc* et de l'alun pour le traitement des eaux usées est un des moyens qui permettrait d'avoir des boues riches en phosphore, plus disponible pour les plantes, en réduisant la dose d'alun et par conséquent le résiduel d'aluminium (Özacar, et al. 2003). Il est également possible d'ajouter dans les boues issues du traitement avec le *Tanfloc* du phosphore industriel pour en augmenter la teneur. Le choix de l'un ou l'autre moyen pour enrichir les boues de *Tanfloc* de phosphore sera à étudier en fonction notamment des coûts d'opérations et/ou d'achat des coagulants et du phosphore industriel.

V.3.2.c. La biométhanisation

Dans cette étude, les boues issues du traitement avec le *Tanfloc* et l'alun ont été caractérisées par la mesure des ST, STV, de la DCO. Le Tableau 15 présente les résultats de ces analyses.

Dose : 100 mg/L	Volume boues fraîches (ml)	ST boues fraîches (mg/L)	STV boues fraîches (mg/L)	Proportion STV (%)	DCO boues fraîches (mg/L)
Tanfloc	40	3,9	3,2	80,5	7624,5
Ecartype		0,9	0,8	1,8	393,0
Alun	40	6,5	5,2	81,2	7446,0
Ecartype		1,0	0,6	2,4	385,0

Tableau 16 : Caractéristiques des boues issues du traitement avec le *Tanfloc* et l'alun

Selon (Moletta 2011), les matières résiduelles caractérisées par une DCO >2000 mg/l et des STV > 50% ST, sont des matières qui pourraient présenter un potentiel pour la biométhanisation. En outre, selon le tableau 8-10 de (Metcalf, et al. 2003), les déchets industriels ayant une DCO≥1500 mg/L sont valorisable par biométhanisation. Selon les résultats du Tableau 16, les boues issues du traitement avec le Tanfloc et l'alun ont une DCO>2000mg/L et des STV>0.5*ST (DCO>7000mg/l, STV=80%). Ces deux types de boues pourraient être valorisées par la biométhanisation. Par analogie au test de DBO pour connaître la concentration en MO biodégradable par les microorganismes aérobies, il est aussi possible de réaliser un test de Potentiel de BioMéthanisation (PBM), afin de caractériser la MO biodégradable par les microorganismes anaérobies, qui sera transformée en méthane (Riffat 2013). La réalisation de ce test aurait permis la comparaison des PBM des deux types de boues. En effet, l'un des avantages du Tanfloc pour le traitement des eaux usées est la production de boues organiques, par rapport à l'alun dont les boues sont composées de matière inorganique (aluminium). Cette différence pourrait faire des boues de Tanfloc un meilleur substrat par rapport à l'alun. Pour se faire, il faudra que la MO apportée par le *Tanfloc* dans les boues soit assimilable par les microorganismes anaérobies, car certaines matières organiques ne permettent pas la production de biométhane (Buffiere, et al. 2006).

Une analyse sur la base des caractéristiques présentées dans le Tableau 15 ne permet pas de tirer une conclusion sur la qualité des STV, et donc sur le PBM du *Tanfloc*. La digestion anaérobie est sensible à la présence et à la concentration de certaines substances. Le tableau 11.2 de (Riffat 2013) présente des substances inhibitrices du processus. L'alun qui n'apparait pas dans ce tableau semble ne pas être un élément inhibiteur. Cependant, la digestion des boues concentre l'aluminium dans le digestat, qui épandu peut limiter la disponibilité du phosphore pour les plantes ((CCME) 2012).

VI. CONCLUSION

Le *Tanfloc* est un coagulant organique naturel composé (% massique) de carbone (41,48%), d'hydrogène (6,51%) et d'azote (6,13%) et d'autres éléments chimiques non déterminés (45.88%). Le *Tanfloc* tout comme l'alun est un coagulant, dont les performances sont influencées par la dose, le pH et la qualité de l'eau brute. En effet, le *Tanfloc* est plus efficace à pH \leq 6 pour l'abattement de la MOD. Cela serait dû à la variation de la densité des charges positives du *Tanfloc* (Figure 8), suite à l'hydrolyse du groupement amine (McMurry 2012) qui est l'agent actif (Lamb, et al. 2002, Graham, et al. 2008). Les performances du *Tanfloc* à pH \leq 6 seraient également favorisées par la variation de la densité des charges négatives de la MO en fonction du pH (Edzwald, et al. 1999), d'où la densité de charges positives du *Tanfloc* suffisante pour assurer un meilleur enlèvement.

En eau potable, contrairement aux affirmations de (Bongiovani, et al. 2016), nos résultats montrent que l'alun permet un meilleur abattement du COD (au moins 50% d'abattement) que le Tanfloc (au plus 35% d'abattement). La faible densité de charges positives (Graham, et al. 2008) du Tanfloc (par rapport à l'alun) et son apport en carbone, sont des raisons qui limitent probablement son efficacité. En effet, (V.2.1), il y aurait une partie du *Tanfloc* qui ne participerait pas à la coagulation et qui représenterait le résiduel de *Tanfloc* qui dégrade la qualité de l'eau traitée. Cette partie varierait en fonction de la dose de coagulation. En outre, des essais de chloration des eaux traitées ont montré que cet apport de carbone implique une demande en chlore plus élevée que les échantillons d'eau traitée avec l'alun. Malgré l'apport de MOD, le *Tanfloc*, permet l'abattement des précurseurs des SPD, dont les AH et les AF (tout comme l'alun), et il semble que le carbone apporté par le Tanfloc ne soit pas précurseur de THM4 et AHA5. Il pourrait même permettre de respecter les normes annuelles de ces SPD. D'après nos résultats, et tout comme le Moringa (Ndabigengesere, et al. 1998), le Tanfloc est un coagulant organique naturel qui ne peut être utilisé dans le traitement de l'eau potable à cause de l'apport de carbone qui dégrade la qualité de l'eau et qui implique une demande en chlore. Cependant, une étude sur la possibilité d'utiliser le Tanfloc en combinaison avec un désinfectant dans des zones où les populations ont difficilement accès à l'eau potable pourrait être réalisée. Ce coagulant permet une bonne

réduction (90%) de la turbidité (Sánchez-Martín, et al. 2009, Bongiovani, et al. 2016) sans ajustement du pH et par ce biais pourrait permettre aussi l'enlèvement des pathogènes. (Pritchard, et al. 2010, Sánchez-Martín, et al. 2010) ont montré que la réduction de la turbidité permet un abattement d'au moins 80% des pathogènes, dont *E.coli*. Aujourd'hui encore de nombreuses personnes sont affectées par des maladies hydriques liées au manque d'eau potable. Le *Tanfloc* pourrait aider à réduire les risques microbiologiques d'origine hydrique.

En eaux usées selon nos résultats, le *Tanfloc* permet un abattement de 80% de la DCO totale, et au moins 90% de la MES. L'alun présente des performances comparables au *Tanfloc*. Cependant, pour les mêmes performances, l'utilisation du *Tanfloc* est plus efficiente que l'alun sur une base massique, car les doses de *Tanfloc* qui permettent les meilleurs enlèvements (DCO totale et MES) sont inférieures à celles de l'alun. En outre l'utilisation du *Tanfloc* ne consomme pas l'alcalinité de l'eau, donc n'altère pas le pH dont la variation peut affecter le traitement biologique. Le *Tanfloc* produit des boues organiques qui pourraient être un meilleur substrat pour la biométhanisation comparativement aux boues produites par l'alun qui sont en partie inorganiques. Des tests de PBM sont à réaliser pour confirmer cette hypothèse. Cependant l'alun, comparativement au *Tanfloc* ne permet qu'un abattement de 15% du phosphore total, et cet abattement correspondrait essentiellement au phosphore organique présent dans les MES. L'alun et le *Tanfloc* sont deux coagulants qui ne permettent pas de traiter l'azote total. Malgré son faible potentiel pour l'abattement du phosphore et de l'azote, et son apport en carbone, le *Tanfloc* pourrait être utilisé dans le traitement des eaux usées :

- En prétraitement dans le décanteur primaire, pour l'abattement de la DCO et de la MES.
- Avec l'alun pour améliorer l'abattement du phosphore (à tous les points de la chaîne de traitement où l'alun est utilisé pour l'abattement du phosphore (Metcalf, et al. 2014)), pour réduire le résiduel d'aluminium dans les boues qui limite la disponibilité du phosphore pour les plantes, lorsqu'elles sont valorisées en épandage.
- Pour le traitement des eaux pluviales, pour l'abattement de la DCO et de la MES

RÉFÉRENCES

(CCME), Conseil Canadien des Ministres de l'Environnement (2012). Guide pour la valorisation des biosolides municipaux des boues municipales et des boues de fosses septiques traitées: 118.

(MDDELCC), Ministère du Développement durable de l'Environnement et de la Lutte contre les Changements Climatiques (2014). Procédure de validation de la performance des technologies de traitement des eaux usées d'origine domestique

(MDDELCC), Ministère du Développement durable de l'Environnement et de la Lutte contre les Changements Climatiques (2014). Procédure de validation de la performance des technologies de traitement en eau potable 27.

(MDDELCC), Ministère du Développement durable de l'Environnement et de la Lutte contre les Changements Climatiques (2015). Guide de conception des installations de production d'eau potable. EAU POTABLE. 1 et 2.

(USEPA), U.S Environmental Protection Agency (1976). Process Design Manual For Phosphorus Removal, National Service Center for Environmental Publications (NSCEP).

(USEPA), U.S. Environmental Protection Agency (2002). Health Risks from Microbial Growth and Biofilms in Drinking Water Distribution Systems Standards and Risk Management Division Office of Ground Water and Drinking Water: 52.

(USEPA), U.S. Environmental Protection Agency (2003). Method 552.3 :determination of haloacetic acids and dalapon in dringing water by liquid-liquid microextraction derivation and gas chromatography with electron capture detection: 55.

(USEPA), US Environmental Protection Agency (1999). Enhanced coagulation and enhanced precipitative softening.

American Public Health Association (1998). <u>Standard Methodes for the examination of</u> <u>water and wastewater</u>, American Public Health Association, American Water Works Association.

Au, KK, Scott M Alpert etDavid J Pernitsky (2011). "Particle and natural organic matter removal in drinking water." <u>Operational Control of Coagulation and Filtration Processes</u>-Manual of Water Supply Practices, M37: 1-16.

Beltrán-Heredia, J etJ Sánchez-Martín (2009). "Municipal wastewater treatment by modified tannin flocculant agent." <u>Desalination</u> **249**(1): 353-358.

Beltrán-Heredia, J, J Sánchez-Martín etMT Rodriguez-Sanchez (2011). "Textile wastewater purification through natural coagulants." <u>Applied Water Science</u> **1**(1-2): 25-33.

Birkett, Jason etJohn Lester (2002). <u>Microbiology and chemistry for environmental scientists</u> and engineers, CRC Press.

Bolto, Brian etJohn Gregory (2007). "Organic polyelectrolytes in water treatment." <u>Water</u> <u>Research</u> **41**(11): 2301-2324.

Bongiovani, Milene Carvalho, Franciele Pereira Camacho, Priscila Ferri Coldebella, Karina Cardoso Valverde, Leticia Nishi etRosangela Bergamasco (2016). "Removal of natural organic matter and trihalomethane minimization by coagulation/flocculation/filtration using a natural tannin." <u>Desalination and Water Treatment</u> **57**(12): 5406-5415.

Brodeur, Catherine (2008). La Biométhanisation à la ferme. Québec, Centre de référence en agriculture et agroalimentaire du Québec.

Buffiere, P., D. Loisel, N. Bernet etJ. P. Delgenes (2006). "Towards new indicators for the prediction of solid waste anaerobic digestion properties." <u>WATER SCIENCE AND</u> <u>TECHNOLOGY</u> **53**(8): 233-241.

Camacho, Franciele Pereira, Vânia Serrão Sousa, Rosângela Bergamasco etMargarida Ribau Teixeira (2017). "The use of Moringa oleifera as a natural coagulant in surface water treatment." <u>Chemical Engineering Journal</u> **313**: 226-237.

Clark, Robert M. etPaul Dorsey (1982). "A model of costs for treating drinking water." Journal (American Water Works Association) **74**(12): 618-627.

Crittenden, John C. (2005). <u>Water treatment principles and design</u>. Hoboken, N.J, John Wiley & Sons, Inc.

Crittenden, John C. (2012). MWH's water treatment principles and design. Hoboken, N.J, John Wiley and Sons.

Cummings, Thomas F. etJ. Reid Shelton (1960). "Mannich Reaction Mechanisms." <u>The</u> Journal of Organic Chemistry **25**(3): 419-423.

Dorea, Caetano etBrian Clarke (2008). "Effect of Aluminium on Microbial Respiration." Water, Air, and Soil Pollution **189**(1): 353-358.

Dorea, CC (2006). "Use of Moringa spp. seeds for coagulation: a review of a sustainable option." <u>Water Science and Technology: Water Supply</u> 6(1): 219-227.

Eddy, Metcalf et (2014). Chimical Unit Process. <u>Wastewater Engineering, Treatment and</u> <u>Ressource Recovery</u>. New York, NY :, McGraw-Hill Education: 473-478.

Edzwald, James K. (2011). <u>Water quality & treatment : a handbook on drinking water</u>. New York, McGraw-Hill.

Edzwald, James K. etJohn E. Tobiason (1999). "Enhanced coagulation: US requirements and a broader view." <u>Water Science and Technology</u> **40**(9): 63-70.

Edzwald, JK (1993). "Coagulation in drinking water treatment: particles, organics and coagulants." <u>Water Science and Technology</u> **27**(11): 21-35.

Graham, Nigel, Gang Fang, Geoffrey Fowler, Mark Watts etRob Camm (2009). "Evaluation of a tannin-based cationic polymer as a coagulant for coloured humic water." Journal of Water Supply: Research and Technology-Aqua **58**(2): 75-84.

Graham, Nigel, Fang Gang, Geoffrey Fowler etMark Watts (2008). "Characterisation and coagulation performance of a tannin-based cationic polymer: a preliminary assessment." <u>Colloids and surfaces A: Physicochemical and engineering aspects</u> **327**(1): 9-16.

Gray, N. F. (2010). Water technology : an introduction for environmental scientists and engineers. Oxford, Butterworth-Heinemann.

Guida, Marco, Marialuisa Mattei, Clauido Della Rocca, Giovanni Melluso etSüreyya Meriç (2007). "Optimization of alum-coagulation/flocculation for COD and TSS removal from five municipal wastewater." <u>Desalination</u> **211**(1-3): 113-127.

HACH. (2017). from https://ca.hach.com/.

Hameed, Yasir Talib, Azni Idris, Siti Aslina Hussain etNorhafizah Abdullah (2016). "A tannin-based agent for coagulation and flocculation of municipal wastewater: Chemical composition, performance assessment compared to Polyaluminum chloride, and application in a pilot plant." Journal of Environmental Management **184**: 494-503.

Haslam, Edwin (1989). <u>Plant polyphenols : vegetable tannins revisited</u>. Cambridge, Cambridge University Press.

Hemingway, Richard W., Peter Edward Laks etSusan J. Branham (1992). <u>Plant polyphenols</u> : synthesis, properties, significance. New York, Plenum Press.

Horan, N. J. (1990). <u>Biological wastewater treatment systems : theory and operation</u>. Chichester, Wiley.

Kacprzak, Małgorzata, Ewa Neczaj, Krzysztof Fijałkowski, Anna Grobelak, Anna Grosser, Małgorzata Worwag, Agnieszka Rorat, Helge Brattebo, Åsgeir Almås etBal Ram Singh (2017). "Sewage sludge disposal strategies for sustainable development." <u>Environmental Research</u> **156**: 39-46.

Kam, Sang-Kyu etJohn Gregory (2001). "The interaction of humic substances with cationic polyelectrolytes." <u>Water Research</u> **35**(15): 3557-3566.

Karanfil, Tanju (2008). Disinfection by-products in drinking water occurrence, formation, health effects, and control. Washington, D.C, American Chemical Society.

Lamb, Luiz Henrique etOtávio Guimarães Decusati (2002). Manufacturing process for quaternary ammonium tannate, a vegetable coagulating/flocculating agent, Google Patents.

LeChevallier, Mark W (1990). "Coliform regrowth in drinking water: a review." <u>Journal-American Water Works Association</u> **82**(11): 74-86.

Lucas, Jay B, Theo A Dillaha, Raymond B Reneau, John T Novak etWilliam R Knocke (1994). "Alum sludge land application and its effect on plant growth." Journal of the American Water Works Association; (United States) **86**(11).

Malvern. (Feb, 2004). Zetasizer Nano Series User Manual: 270.

Mamchenko, A., N. Gerasimenko etT. Pakhar' (2011). "The impact of temperature on the efficiency of the coagulation process of titanyl sulfate and aluminum sulfate." Journal of Water Chemistry and Technology **33**(5): 315-322.

Matilainen, Anu, Egil T. Gjessing, Tanja Lahtinen, Leif Hed, Amit Bhatnagar etMika Sillanpää (2011). "An overview of the methods used in the characterisation of natural organic matter (NOM) in relation to drinking water treatment." <u>Chemosphere</u> **83**(11): 1431-1442.

Matilainen, Anu, Mikko Vepsäläinen etMika Sillanpää (2010). "Natural organic matter removal by coagulation during drinking water treatment: A review." <u>Advances in Colloid and Interface Science</u> **159**(2): 189-197.

McMurry, John (2012). <u>Organic chemistry</u>. Belmont, Calif, Brooks/Cole Cengage Learning. Metcalf, Eddy, George Tchobanoglous etFranklin L. Burton (1991). <u>Wastewater engineering</u> : treatment disposal reuse. New York, McGraw-Hill.

Metcalf, Eddy, George Tchobanoglous, Franklin L. Burton etH. David Stensel (2003). Wastewater engineering : treatment and reuse. Boston, McGraw-Hill.

Metcalf, Eddy, George Tchobanoglous, H. David Stensel, Ryujiro Tsuchihashi, Franklin L. Burton, Mohammad Abu-Orf, Gregory Bowden etWilliam Pfrang (2014). <u>Wastewater</u> engineering : treatment and resource recovery. New York, NY, McGraw-Hill Education.

Mihelcic, James R., Julie Beth Zimmerman etMartin T. Auer (2010). <u>Environmental</u> engineering : fundamentals, sustainability, design. Hoboken, N.J, Wiley.

Moletta, René (2011). La méthanisation. Paris, Tec & Doc.

Morris, Juli K. etWilliam R. Knocke (1984). "Temperature Effects on the Use of Metal-Ion Coagulants for Water Treatment." Journal (American Water Works Association) **76**(3): 74-79.

Ndabigengesere, Anselme etK. Subba Narasiah (1998). "Quality of water treated by coagulation using Moringa oleifera seeds." <u>Water Research</u> **32**(3): 781-791.

Özacar, Mahmut (2000). "Effectiveness of tannins obtained from valonia as a coagulant aid for dewatering of sludge." <u>Water Research</u> **34**(4): 1407-1412.

Özacar, Mahmut etİ Ayhan Şengil (2003). "Enhancing phosphate removal from wastewater by using polyelectrolytes and clay injection." Journal of Hazardous Materials **100**(1): 131-146.

Özacar, Mahmut etİ Ayhan Şengil (2003). "Evaluation of tannin biopolymer as a coagulant aid for coagulation of colloidal particles." <u>Colloids and Surfaces A: Physicochemical and Engineering Aspects</u> **229**(1): 85-96.

Özacar, Mahmut etİ Ayhan Şengil (2003). "Evaluation of tannin biopolymer as a coagulant aid for coagulation of colloidal particles." <u>Colloids and Surfaces A: Physicochemical and Engineering Aspects</u> **229**(1–3): 85-96.

Pizzi, Antonio (2008). Chapter 8 - Tannins: Major Sources, Properties and Applications A2
Belgacem, Mohamed Naceur. <u>Monomers, Polymers and Composites from Renewable</u> <u>Resources</u>. Alessandro Gandini. Amsterdam, Elsevier: 179-199.

Pritchard, M., T. Craven, T. Mkandawire, A. S. Edmondson etJ. G. O'neill (2010). "A comparison between Moringa oleifera and chemical coagulants in the purification of drinking water – An alternative sustainable solution for developing countries." <u>Physics and Chemistry of the Earth</u> **35**(13): 798-805.

Pritchard, M., T. Craven, T. Mkandawire, A. S. Edmondson etJ. G. O'neill (2010). "A study of the parameters affecting the effectiveness of Moringa oleifera in drinking water purification." <u>Physics and Chemistry of the Earth</u> **35**(13): 791-797.

Rebhun, Menahem etMichael Lurie (1993). "Control of organic matter by coagulation and floc separation." <u>Atmosphere</u> **638**: 1-20.

Richardson, S. D. (2011). Disinfection By-Products: Formation and Occurrence in Drinking Water* A2 - Nriagu, J.O. <u>Encyclopedia of Environmental Health</u>. Burlington, Elsevier: 110-136.

Riffat, Rumana (2013). <u>Fundamentals of wastewater treatment and engineering</u>. Boca Raton, Flor, CRC Press.

Sánchez-Martín, J, J Beltrán-Heredia etC Solera-Hernández (2010). "Surface water and wastewater treatment using a new tannin-based coagulant. Pilot plant trials." Journal of environmental management **91**(10): 2051-2058.

Sánchez-Martín, J, M González-Velasco etJ Beltrán-Heredia (2009). "Acacia mearnsii de wild tannin-based flocculant in surface water treatment." Journal of Wood Chemistry and Technology **29**(2): 119-135.

Sánchez-Martín, J, M González-Velasco etJ Beltrán-Heredia (2010). "Surface water treatment with tannin-based coagulants from Quebracho (Schinopsis balansae)." <u>Chemical Engineering Journal</u> **165**(3): 851-858.

Sánchez-Martín, Jesus, Jesus Beltrán-Heredia etMA Dávila-Acedo (2011). "Optimum coagulant from Acacia mearnsii de Wild for wastewater treatment." <u>Chemical Engineering</u> <u>& Technology</u> **34**(12): 2069-2076.

Singer, P. C. (1999). "Humic substances as precursors for potentially harmful disinfection by-products." <u>WATER SCIENCE AND TECHNOLOGY</u> **40**(9): 25-30.

Singh, Rajesh, Sumant Kumar etMegha Garg (2016). Domestic Wastewater Treatment Using Tanfloc: A Tannin Based Coagulant. <u>Geostatistical and Geospatial Approaches for the Characterization of Natural Resources in the Environment</u>, Springer: 349-354.

Srinivasan, PT, T Viraraghavan etKS Subramanian (1999). "Aluminium in drinking water: An overview." <u>Water Sa</u> **25**(1): 47-55.

TANAC. (2017). from www.tanac.com.br.

Tramontini, Maurilio etLuigi Angiolini (1994). <u>Mannich bases-chemistry and uses</u>, CRC Press.

Van Benschoten, John E etJames K Edzwald (1990). "Chemical aspects of coagulation using aluminum salts—II. Coagulation of fulvic acid using alum and polyaluminum chloride." <u>Water Research</u> **24**(12): 1527-1535.

Van Benschoten, John E. etJames K. Edzwald (1990). "Chemical aspects of coagulation using aluminum salts—I. Hydrolytic reactions of alum and polyaluminum chloride." <u>Water</u> <u>Research</u> **24**(12): 1519-1526.

Vollhardt, K. Peter C. etNeil Eric Schore (2009). <u>Traité de chimie organique</u>. Bruxelles, De Boeck.

WTW (1997). Operating Manual System OxiTop Control

WTW. (2017). from https://www.wtw.com/fr/home.html.

Xiao, F., Bj Zhang, J. Ma, P. Yi etC. W. Cui (2009). "Effects of low temperature on floc fractal dimensions and shape factors during alum coagulation." JOURNAL OF WATER SUPPLY RESEARCH AND TECHNOLOGY-AQUA **58**(1): 21-27.

Xiao, Feng, Ju-Chang Howard Huang, Bao-Jie Zhang etChong-Wei Cui (2009). "Effects of low temperature on coagulation kinetics and floc surface morphology using alum." <u>Desalination</u> **237**(1): 201-213.

Zhou, Yunan, Xin-Hui Xing, Zehua Liu, Liwen Cui, Anfeng Yu, Quan Feng etHaijun Yang (2008). "Enhanced coagulation of ferric chloride aided by tannic acid for phosphorus removal from wastewater." <u>Chemosphere</u> **72**(2): 290-298.

ANNEXE A : CARACTÉRISATION DU TANFLOC

рН	4	5	6	7
Doses Tanfloc (mg/L)		COD	(mg/L)	
2	1,2	0,4	0,5	0,7
4	2,3	1,3	1,2	1,3
6	2,9	2,4	2,1	1,9
8	3,2	3,1	3,0	2,5
10	3,9	3,5	3,4	2,8
15	4,7	4,4	3,7	3,1
20	5,2	4,9	4,6	3,4
25	5,3	5,2	4,8	4,8
30	5,6	5,5	5,2	5,3

Tableau 17 : Solubilité du Tanfloc en fonction de la variation de pH et de doses de Tanfloc

Tableau 18 : COD, Absorbance UV_{254nm}, SUVA du *Tanfloc* à pH 6, en fonction de la

Dose Tanfloc (mg/L)	UV _{254nm}	UV254nm (m ⁻¹)	COD (mg/L)	SUVA (L/m.mg)
4	0.473	9.46	3.3	2.901
6	0,591	11,82	3,7	3,194
8	0,717	14,34	4	3,567
10	0,82	16,4	4,2	3,914
12	0,934	18,68	4,4	4,226
14	1,013	20,26	4,3	4,690
20	1,125	22,5	4,9	4,611
30	1,581	31,62	5,5	5,791
40	2,052	41,04	5,8	7,064
50	2,56	51,2	6,1	8,449
60	3,255	65,1	6,2	10,5
70	>3.5		6,4	

variation de la dose de *Tanfloc*

Tableau 19 : Analyse élémentaire de 500mg de Tanfloc dissous dans 1L d'eau déionisée

Poids filtre propre (mg)	Poids filtre+MES (mg)	Poids MES (mg)	COD (mg/L)	COD de 500 mg de Tanfloc (mg)	COD (%)	
131	135	4	0,422	211	42,2	

Tableau 20 : Potentiel Zêta des flocs formés après la coagulation à pH 6 de l'eau du Fleuve (échantillon 1) avec le Tanfloc,

Tanfloc (mg/l)	7,5	7,5	10	10	12,5	12,5	15	15	17,5	17,5	20	20	22,5	22,5	25	25
pH de coagulation	6,0	6,0	6,0	6,0	6,0	6,0	6,0	6,0	6,0	6,0	6,0	6,0	6,0	6,0	6,0	6,0
Moyenne	6	i,0	6	,0	6	,0	6,	0	6	,0	6	,0	6	,0	6	,0
Écart type	0,	,00	0,	00	0,	01	0,0)1	0,	01	0,	01	0,	00	0,	02
Turbidité eau sédimentée (UTN)	0,87	1,11	0,71	0,62	0,49	0,75	0,73	0,87	1,20	2,04	0,93	1,10	1,34	1,40	2,53	2,29
Moyenne	0,	,99	0,	67	0,	62	0,8	30	1,	62	1,	01	1,	37	2,	41
Écart type	0,	,17	0,	06	0,	19	0,1	0	0,	59	0,	12	0,	04	0,	17
Potentiel Zêta (mV)	- 12,62	-12,93	-4,81	-7,08	-5,45	-3,02	-2,85	-7,17	-2,21	-6,06	- 0,68	- 0,02	- 1,10	- 0,66	- 3,52	- 1,72
Moyenne	-12	2,78	-5	,94	-4,	,24	-5,	01	-4	,13	-0,	.33	0,	88	2,	62
Écart type	0,	,22	1,	61	1,	72	3,0)5	2,	72	0,	49	0,	32	1,	28

Tanfloc (mg/l)	7,5	7,5	10	10	12,5	12,5	15	15	17,5	17,5	20	20	22,5	22,5	25	25
pH de coagulation	6,9	7,0	7,0	7,0	7,0	7,0	6,9	6,9	7,0	7,0	7,0	7,0	7,0	7,0	7,0	7,0
Moyenne	7	,0	7	,0	7,	,0	6	,9	7	,0	7	,0	7	,0	7	,0
Écart type	0,0)28	0,0	007	0,0	21	0,0)07	0,0)07	0,0)07	0,0	000	0,0)14
Turbidité eau sédimentée (UTN)	1,12	1,11	0,91	0,77	0,77	0,78	0,74	0,78	1,06	0,77	1,17	1,64	1,45	1,49	1,28	0,92
Moyenne	1,	12	0,	84	0,	78	0,	76	0,	77	1,	64	1,	49	0,	92
Écart type	0,	01	0,	10	0,0	01	0,	03	0,	20	0,	33	0,	03	0,	26
Potentiel Zêta (mV)	-8,97	-5,98	-4,50	-5,35	-10,73	-4,99	-2,48	-3,03	-1,94	-3,27	-2,91	-1,36	-0,32	-2,52	-0,91	-0,01
Moyenne	-7	48	-4,	.93	-7,	86	-2	,76	-2,	,60	-2	,14	-1	,42	-0	,45
Écart type	2,	11	0,	60	4,0	06	0,	39	0,	94	1,	10	1,	56	0,	65

Tableau 21 : Potentiel Zêta des flocs formés après la coagulation à pH 7 de l'eau du Fleuve (échantillon 1) avec le Tanfloc,

Tanfloc (mg/L)	0	2,5	2,5	5	5	7,5	7,5	10	10	12,5	12,5	15	15	17,5	17,5	20
pH après traitement		7,9	7,8	7,6	7,9	7,9	7,9	8,0	7,8	7,9	8,0	7,7	7,7	7,8	7,7	7,9
Moyenne		7	,8	-	7,7	7,	,9	7	,9	7	,9	7	,7	7	,7	7,9
Ecartype		0	,0	(),2	0,	,0	0),1	0	,1	0	,0	0	,1	
Turbidité eau sédimentatée (NTU)	7.24	4,36	3,95	1,52	1,44	1,13	1,03	0,89	1,62	1,17	1,54	1,47	0,77	0,87	1,57	2,20
Moyenne		4,	15	1	,48	1,0	08	1,	,25	1,	36	1,	12	1,	22	2,20
Ecartype		0,	29	0	,06	0,0	07	0,	,51	0,	26	0,	49	0,	50	
Potentiel Zêta (mV)	15.32	- 10,52	- 11,05	- 9,46	- 10,20	- 15,17	- 7,59	- 7,86	6,75	- 8,90	- 9,09	- 4,49	6,30	- 5,86	- 6,83	5,84
Moyenne		-10),78	-9	9,83	-11	,38	-7	,31	-9	,00	-5,	,40	-6	,34	- 5,84
Écart type		0,	37	0	,52	5,2	36	0,	,78	0,	13	1,	28	0,	68	

Tableau 22 : Potentiel Zêta des flocs formés après la coagulation, à pH 7,7 (pH eau brute) de l'eau du Fleuve (échantillon 1) avecle Tanfloc

ANNEXE B: PERFORMANCES DU TANFLOC (EAU POTABLE)

		Fleuve			Rivière	
Échantillons	1	2	3	1	2	3
рН	7,7	8,0		7,7	7,8	
Turbidité (UTN)	7,24	42,22	10,50	5,51	3,5	3,81
UV254nm	1,27	1,45	0,72	2,10	1,43	2,67
UV254nm (m ⁻¹)	25,40	14,45	14,30	21,04	28,50	26,67
COD (mg/L)		4,6	5,1	6,1	8,5	6,3
SUVA (L/m.mg)		3,18	2,79	3,47	3,35	4,25
Potentiel Zeta (mV)	-15,32	-14,76		-13,77		-17,16
Alcalinité (mg/L CaCO ₃)	70	68,83		42,5		30

Tableau 23 : Caractéristiques eaux brutes (Fleuve Saint Laurent et Rivière Chaudière)

Tableau 24 : Abattement de la MOD de l'eau du Fleuve (échantillon 2) en fonction de lavariation du pH et de la dose de *Tanfloc*

Paramètres	pH Dose	5	6	7	8	9
	10	5,0	6,0	7,0	8,1	9,0
pH de	15	5,0	6,0	7,0	8,0	9,0
coagulation	20	5,0	6,0	7,0	8,0	9,0
	25	5,0	6,0	7,0	8,0	9,0
	10	3,2	3,3	3,5	3,8	4,3
COD	15	3,2	3,2	3,6	4,0	4,3
(mg/L)	20	3,3	3,8	4,0	4,4	4,7
	25	6,4	3,6	3,8	4,4	4,9
	10	0,53	0,60	0,75	0,90	1,20
TIX7	15	0,44	0,51	0,67	0,85	1,18
U V 254nm	20	0,37	0,45	0,57	0,75	1,07
	25	6,38	3,60	3,81	4,38	4,92

Paramètres	pH Dose	5	6	7	8	9
	10	5,5	6,7	7,7	7,9	8,5
pH de	15	5,0	6,0	7,0	8,0	9,0
coagulation	20	5,0	6,0	7,0	8,0	9,0
	25	5,0	6,0	7,0	8,0	9,0
	10	4,8	5,1	5,1	5,4	6,1
COD(mg/I)	15	4,4	4,4	4,9	5,3	5,8
COD (IIIg/L)	20	4,1	4,2	4,8	5,1	5,6
	25	4,2	4,2	4,8	5,1	5,7
	10	0,99	1,07	1,22	1,41	1,96
UVar	15	0,73	0,82	1,04	1,25	1,65
U v 254nm	20	0,60	0,72	0,94	1,16	1,55
	25	0,54	0,61	0,84	1,03	1,44

Tableau 25 : Abattement de la MOD de l'eau de la Rivière (échantillon 1) en fonction de lavariation du pH et de la dose de Tanfloc

Protocole de préparation des solutions de coagulants (*Tanfloc* et alun), d'acide et de base pour la réalisation d'un jar test type (<u>IV.2.2</u>, <u>IV.3.2</u>)

• La solution d'acide chlorhydrique de 0.1N est préparée à partir d'une solution de 1N (*Fisher Scientific*).

Dilution de 50ml de cette solution volumétrique, dans une fiole jaugée de 500ml d'eau distillée. En cas de non-utilisation complète de la solution lors du jar-test, elle est conservée pour une utilisation ultérieure.

- La solution de soude de la même concentration que celle de l'acide est préparée à partir d'une dissolution de 4g de grains de soude (*Sigma-Aldrich*) dans une fiole jaugée de 1L
- En fonction des doses expérimentales, et du volume d'eau à traiter, les solutions de *Tanfloc* et d'alun sont préparées à partir d'une dissolution de la poudre des produits dans de l'eau déionisée. La solution de *Tanfloc* est agitée pendant une heure pour s'assurer de sa dissolution. Les solutions sont toujours préparées avant chaque essai. Seule la solution d'alun est conservée pour une utilisation ultérieure.

ANNEXE C : CHLORATION ET SPD

Protocole pour la mesure du chlore libre

(Protocole de mesure de chlore libre de la Chaire de recherche en eau potable de l'université

de Laval)

- Rincer la cellule de mesure plusieurs fois avec l'eau à analyser
- Remplir la cellule et l'ajuster à 10ml
- S'assurer que l'appareil soit sur le bon programme : soit le programme 9
- Placer la cellule dans le colorimètre et appuyer sur « ZÉRO » pour déterminer le zéro.
- Verser un sachet de DPD pour la mesure du chlore libre, et agiter jusqu'à la dilution de la poudre
- Placer la cellule dans l'appareil et appuyer sur « READ » pour lire la mesure.
- La limite de détection est de 0.01mg/L Cl₂

Selon la méthode HACH 8021, l'erreur sur la mesure de chlore est de +/- 0.02mg/L Cl₂

Protocole pour la vérification de la solution mère d'acide hypochloreux (HOCl)

(protocole élaboré par le groupe SPD de la chaire en eau potable de l'Université Laval)

Remplir une fiole jaugée de 500 mL à la jauge avec de l'eau déionisée. Ajouter 10μ L de la solution mère de HOCl (50g/L) avec une seringue de 25μ L préalablement conditionnée avec celle-ci. Mélanger et mesurer la valeur obtenue avec le colorimètre HACH.

Concentration HOCl	Théorique	Calculée (C1) mg/L Cl ₂
Solution mère (mg/L Cl ₂)	50.000	$C1* 0,01 \text{ ml} (10\mu L)$
Lecture obtenue sur le colorimètre (mg/L Cl ₂)		=0,98(lecture)*500mL (volume eau déionisée)

Protocole d'analyse des Acides Haloacétiques, AHA5

(Protocole du groupe SPD de la chaire en eau potable de l'Université Laval basée sur la méthode EPA 552.3).

Les 3 modifications apportées à la méthode sont : aucun ajout de cuivre au cours de l'extraction, des temps d'agitation avec agitateur mécanique de 5 minutes plutôt que 3 minutes à la main, utilisation du 2 bromopropionic acid à 68 µg/ml plutôt que du 2-
bromobutanoic acid à 20 μ g/ml comme surrogate. De plus, petites variables dans les conditions chromatographiques voir détails ici-bas.

Pour l'analyse des AHA6, les composés visés sont: l'acide monochloroaétique (MCAA), l'acide monobromoacétique (MBAA), l'acide dichloroacétique (DCAA), l'acide trichloroacétique (TCAA), l'acide bromochloroacétique (BCAA) et l'acide dibromoacétique (DBAA). Un volume d'échantillon de 40 ml contenant déjà un agent déchlorant (166µl de NH₄Cl à 30g/L) est mesuré à l'aide d'un cylindre gradué de 50 ml. Ensuite, un volume de 20µl de standard-analogue d'extraction : l'acide 2-bromopropionique à 68 µg/ml (Solution stock : Supelco 1000 µg/ml, # cat. 47645) est ajouté à chaque échantillon à extraire avec une seringue de 25 µL (préalablement conditionnée avec du MTBE). Les échantillons de 40 ml sont d'abord acidifiés avec 2 ml de H₂SO_{4 conc}. Ensuite un sel (18 g Na₂SO₄) est ajouté et un volume de 4 ml de solvant methyl tert-butyl ether (MTBE HPLC grade Fisher, cat #. E124) afin de favoriser le transfert des composés de la phase aqueuse vers la phase organique. La phase organique est ensuite récupérée à l'aide d'une pipette pasteur et transféré dans un vial propre de 40 ml. Ensuite, 1 ml d'une solution saturée de bicarbonate de sodium est ajouté à la phase organique. Un Ensuite, 3 ml d'acide sulfurique-méthanol 10% (agent dérivant) est ajouté à la phase organique. Après ajout, les échantillons sont soumis à une température de 50°C (bain-marie) pendant 2 heures. Ensuite, 7 ml de Na₂SO₄ (solution à 150g/L) est ajouté à chacun des échantillons. La phase organique est récupérée rapidement à l'aide d'une pipette pasteur. Ensuite, 1 ml d'une solution saturée de bicarbonate de sodium est ajouté à la phase organique. Un volume précis de la phase organique (1ml) est prélevé et transféré dans un microvial de 2 ml. À la fin de l'extraction, un volume de 10µl de standard interne, le 1,2,3 trichloropropane (standard d'injection, Supelco, # cat. 47669-U) à une concentration de 50 µg/ml (ppm) est ajouté aux extraits de 1 ml. Après extraction, les extraits de 1 ml sont analysés par chromatographie en phase gazeuse (injecteur PSS, colonne capillaire DB-1701 :30 m x 0,32 mm DI, film de 0,25 µm, J&W # cat. 123-0732) muni d'un détecteur à capture d'électrons (Autosystem XL de Perkin Elmer avec source radioactive au ⁶³Ni). Les conditions chromatographiques utilisées diffèrent quelques peu de la méthode officielle EPA 552.3* : injection de 1 µL split-splitless (splitless à -0,25 min et split à 30ml/min rendu à 0,75min), un gradient de température à l'injecteur : 175 °C (2 min), 50 °C/min jusqu'à 240

°C (12 min), un gradient de température du four : 40°C (6 min), 5 °C/min jusqu'à 100 °C, 20 °C/min jusqu'à 200 °C, la pression du gaz porteur hélium en mode « program flow » avec un débit de 1ml/min dans la colonne., un débit de 30 ml/min de gaz argon-méthane (pureté 99,99% Praxair #cat. iG P5C-K) dans le détecteur avec une température du détecteur à 280°C (atténuation fixée à -2). La limite de quantification de la méthode (LQM) pour tous les AHA analysés est à 1,0 μ g/L. Les incertitudes sur les mesures des concentrations des AHA sont en moyenne de \pm 25 % pour l'ensemble des AHA6.

Protocole d'analyse des TriHaloMéthanes, THM4

(Protocole du groupe SPD de la chaire en eau potable de l'Université Laval)

Pour l'analyse des THM4, les composés visés sont : le chloroforme (TCM), le bromodichlorométhane (BDCM), le dibromochlorométhane (DBCM) et le bromoforme (TBM). Pour cette analyse, un volume de 1ml provenant d'un échantillon d'eau de 40 ml (contenant 166µl de NH4Cl à 30 g/L, agent déchlorant) est prélevé et transféré dans un microvial chromatographique de 20 ml. Les composés sont extraits de l'eau en employant la technique SPME (solid phase microextraction) qui consiste à une adsorption des THM à l'aide d'une fibre servant de support solide (DVB-carboxen-PDMS 50/30 µm Supelco, # cat. 57329-U) en mode « headspace » grâce à un auto échantillonneur automatisé (CTC-Combipal). L'extraction SPME est réalisée dans la portion d'air dans du vial, juste au-dessus du liquide, à température ambiante (30 °C) avec un temps d'extraction de 15 min. La désorption des composés se fait à 250 °C pendant 8 min dans l'injecteur du chromatographe gazeux GC (Varian 3900 avec un injecteur 1177) en mode « splitless pendant 4 min. Les composés désorbés sont ensuite entraînés par le gaz porteur hélium (1 ml/min) dans la colonne capillaire (RXI-5Sil : 30 m x 0,25 mm DI, film de 0,25 µm, RESTEK #13623 ou équivalent). Le programme de température du four est : 35°C (4 min), 15 °C/min jusqu'à 250 °C (0,5 min). Une fois les composés séparés, ceux-ci sont introduits dans un spectromètre de masse à trappe ionique (MS Varian 2100T) permettant d'effectuer l'identification et la quantification des composés analysés. Les paramètres d'analyse pour la partie du spectromètre de masse (MS) sont : trappe ionique à 250°C, manifold à 45°C, Xferline à 300°C. L'analyse quantitative des chromatogrammes est effectuée en mode RIC

(Reconstructed Ion Chromatogram) en utilisant les ions suivants : TCM - 83 m/z ; BDCM - 83 m/z ; DBCM - 129 m/z ; TBM - 173 m/z; fluorobenzene - 96 m/z ; 4-bromofluorobenzene - 95 m/z; 1,2-dichlorobenzene-d4 - 150 m/z. Les limites de quantification (LQM) sont respectivement de 3,0 μ g/L, 2,4 μ g/L, 2,7 μ g/L et 2,3 μ g/L pour le TCM, le BDCM, le DBCM et le TBM. La récupération moyenne pour le TCM, le BDCM, le DBCM et le TBM sont respectivement 98%, 96%, 97% et 95%. Les incertitudes liées aux mesures des concentrations des THM sont en moyenne de ± 25 % pour les quatre THM analysés

Tableau 26 ·	Chloration d	'eau du	Fleuve tr	aitée (éc	hantillon 3) avec le	Tanfloc	et l'alun
1 401044 20.	Chioranon a	cuu uu	1 icu ve ti		manumon 5) 4,00 10	1 angloc	et i ululi

Échar	tillon tra	aité avec	5mg/L 7	<i>anfloc</i>				
Dose Chlore (mg/L Cl ₂)	0	1	2	3	4	5	7	9
Résiduel de Chlore libre après 24H (mg/L Cl ₂)	0	0	0	0,08	0,23	0,96	2,53	3,93
Échan	tillon tra	ité avec 1	5mg/L	Tanfloc				
Dose Chlore (mg/L Cl ₂)	0	1	3	5	б	7	9	11
Résiduel de Chlore libre après 24H (mg/L Cl ₂)	0	0	0	0,02	0,49	0,89	2,75	4,13
Écha	ntillon t	raité avec	: 20mg/I	alun .				
Dose Chlore (mg/L Cl ₂)	0	1	2	3	4	5		
Résiduel de Chlore libre après 24H (mg/L Cl ₂)	0	0,05	0,72	1,52	2,5	3,4		
Écha	ntillon t	raité avec	: 40mg/I	alun .				
Dose Chlore (mg/L Cl ₂)	0	1	2	3	4	5		
Résiduel de Chlore libre après 24H (mg/L Cl ₂)	0	0,05	0,6	1,39	2,35	3,225		

Échan	tillon traité	avec 20m	ng/L <i>Tanfl</i>	oc			
Dose Chlore (mg/L Cl ₂)	1	2	4	7	9	10	
Résiduel de Chlore libre après 24H (mg/L Cl ₂)	0	0	0	0	0,02	0,55	
Échan	tillon traité	avec 30m	ng/L <i>Tanfl</i>	oc			
Dose Chlore (mg/L Cl ₂)	1	2	3	6	8	10	11
Résiduel de Chlore libre après 24H (mg/L Cl ₂)	0	0	0	0	0,02	0,02	0,4
Écha	ntillon trai	té avec 20	mg/L alur				
Dose Chlore libre (mg/L Cl ₂)	1	2	4	6	8	10	
Résiduel de Chlore libre après 24H (mg/L Cl ₂)	0,03	0,03	0,03	0,37	1,61	3,1	
Écha	ntillon trai	té avec 40	mg/L alun	l			
Dose Chlore (mg/L Cl ₂)	1	2	4	6	8		
Résiduel de Chlore libre après 24H (mg/L Cl ₂)	0,01	0,21	1,34	2,65	4,475		

Tableau 27 : Chloration d'eau de la Rivière traitée (échantillon 2) avec le *Tanfloc* et l'alun

	THM4						-				
<i>Tanfloc</i> (mg/L)	Chlore (mg/L Cl ₂)	Résiduel Chlore (mg/L Cl ₂)	TCM (µg/L)	BDCM (µg/L)	DBCM (µg/L)	TBM (µg/L)	MCAA (µg/L)	MBAA (µg/L)	DCAA (µg/L)	TCAA (µg/L)	BCAA (µg/L)
5	4,1	0.3	60	7	<lq< td=""><td><lq< td=""><td>2,1</td><td><lq< td=""><td>29,5</td><td>>80</td><td>2,4</td></lq<></td></lq<></td></lq<>	<lq< td=""><td>2,1</td><td><lq< td=""><td>29,5</td><td>>80</td><td>2,4</td></lq<></td></lq<>	2,1	<lq< td=""><td>29,5</td><td>>80</td><td>2,4</td></lq<>	29,5	>80	2,4
15	5,6	0.35	32	4	<lq< td=""><td><lq< td=""><td><lq< td=""><td>11,1</td><td>20,3</td><td>34,6</td><td>2,0</td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>11,1</td><td>20,3</td><td>34,6</td><td>2,0</td></lq<></td></lq<>	<lq< td=""><td>11,1</td><td>20,3</td><td>34,6</td><td>2,0</td></lq<>	11,1	20,3	34,6	2,0

Tableau 28 : Potentiel de formation des SPD de l'eau du Fleuve traitée (échantillon 3) avec le Tanfloc et l'alun

				THM4	4			AH	A5		
Alun (mg/L)	Chlore (mg/L Cl ₂)	Résiduel Chlore (mg/L Cl ₂)	TCM (µg/L)	BDCM (µg/L)	DBCM (µg/L)	TBM (µg/L)	MCAA (µg/L)	MBAA (µg/L)	DCAA (µg/L)	TCAA (µg/L)	BCAA (µg/L)
20	1,45	0,3	23	6	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>9,86</td><td>11</td><td>2,47</td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>9,86</td><td>11</td><td>2,47</td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>9,86</td><td>11</td><td>2,47</td></lq<></td></lq<>	<lq< td=""><td>9,86</td><td>11</td><td>2,47</td></lq<>	9,86	11	2,47
40	1,37	0,3	14	6	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>8,08</td><td>8,29</td><td>2,52</td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>8,08</td><td>8,29</td><td>2,52</td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>8,08</td><td>8,29</td><td>2,52</td></lq<></td></lq<>	<lq< td=""><td>8,08</td><td>8,29</td><td>2,52</td></lq<>	8,08	8,29	2,52

Tableau 29 : Potentiel de formation des SPD de l'eau de la Rivière traitée (échantillon 2) avec le Tanfloc et l'alun

				TH	M4			AHA5			
Tanfloc (mg/L)	Chlore (mg/L Cl ₂)	Résiduel Chlore (mg/L Cl ₂)	TCM (µg/L)	BDCM (µg/L)	DBCM (µg/L)	TBM (µg/L)	MCAA (µg/L)	MBAA (µg/L)	DCAA (µg/L)	TCAA (µg/L)	BCAA (µg/L)
20	10	0.33	123	2	0	0	LQ	LQ	51,3	>80	LQ
30	11,6	0.33	90	2	0	0	LQ	LQ	50,1	>80	LQ

				THM4				AHA5			
Alun (mg/L)	Chlore (mg/l Cl ₂)	Résiduel Chlore (mg/L Cl ₂)	TCM (µg/L)	BDCM (µg/L)	DBCM (µg/L)	TBM (µg/L)	MCAA (µg/L)	MBAA (µg/L)	DCAA (µg/L)	TCAA (µg/L)	BCAA (µg/L)
20	6	0.32	187	4	0	0	LQ	LQ	84,94	>80	1,47
40	3	0.35	62	2	0	0	LQ	LQ	20,59	30,12	LQ

ANNEXE D : DCO, MES, P, N (EAU USÉES)

Tableau 30 : Caractéristiques eaux brutes usées domestiques

Échantillons	1	2	3
рН	7,6	7,7	7,8
MES (mg/L)	2880	2070	2650
DCO totale (mg/L)	622	544	650
DCO soluble (mg/L)	149	198	179
Phosphore total (mg/L P)	4,2	4,67	5,5
Azote total (mg/L N)	32,2	38,1	45,5
Alcalinité (mg CaCO ₃ /L)	175	200	225

				Tanfloc (échai	ntillon n ⁰ 1)				
<i>Tanfloc</i> (mg/L)	DCO totale (mg/L)	DCO soluble (mg/L)	Azote total (mg/L N)	Phosphore total (mg/L PO ₄)	Phosphore total (mg/L P)	Volume Boues (ml/L eau brute)	MES (mg/L)	Alcalinité (mg/L CaCO ₃)	рН
0	622	149	32,2	12,8	4,2		2880	175	7,64
5	202	134	29,6	11	3,6	24	315	175	7,6
10	169	109	29,3	10,6	3,5	24	270	165	7,5
20	105	83	27,8	11	3,6	36	50	155	7,45
40	84	84	29,2	11	3,6	36	15	165	7,5
60	85	83	30,04	10,7	3,5	40	65	165	7,52
100	138	81	31,08	11	3,6	59	175	175	7,6
				Alun (échant	tillon n ⁰ 1)				
Alun (mg/L)	DCO totale (mg/L)	DCO soluble (mg/L)	Azote total (mg/L N)	Phosphore total (mg/L PO ₄)	Phosphore total (mg/L P)	Volume Boues (ml/L eau brute)	MES (mg/L)	Alcalinité (mg/L CaCO ₃)	рН
0	622	149	32,2	12,8	4,2		2880	175	7,64
5	216	149	32	11,5	3,8	28	345	165	7,5
10	209	141	32	9,48	3,1	28	405	160	7,4
20	201	129	29,5	7,76	2,5	28	365	150	7,37
40	162	119	28,6	7,32	2,4	28	270	140	7,34
60	146	117	27,9	5,71	1,9	28	265	125	7,15
100	95	92	27,5	4,16	1,4	40	45	100	6,9

Tableau 31 : Abattement de la DCO, de la MES, du Phosphore total, et de l'Azote total de l'échantillon n^01 d'eaux usées par le*Tanfloc* et l'alun

	<i>Tanfloc</i> et l'alun									
			1	<i>anfloc</i> (échanti	llon nº 2)					
Tanfloc (mg/L)	DCO totale (mg/L)	DCO soluble (mg/L)	Azote total (mg/L N)	Phosphore total (mg/L PO ₄)	Phosphore total (mg/L P)	Volume Boues (ml/L eau brute)	MES (mg/L)	Alcalinité (mg/L CaCO ₃)	рН	
Eau brute	544	198	38,1	14,3	4,67		2070		7,7	
Eau décantée (0mg/L)	343	127	38,1	13,8	4,50	14	720	200	7,7	
5	239	120	38	13,8	4,50	13	505	185	7,5	
10	206	116	37,8	13,8	4,50	14	475	185	7,5	
20	139	87	37	13,4	4,37	21	145	190	7,7	
40	114	11	37,1	12,6	4,11	33	35	190	7,7	
60	130	117	36,3	12,6	4,11	34	50	190	7,7	
100	157	139	37,3	13,2	4,31	38	105	190	7,7	
				Alun (échantill	on nº 2)					
Alun (mg/L)	DCO totale (mg/L)	DCO soluble (mg/L)	Azote total (mg/L N)	Phosphore total (mg/L PO ₄)	Phosphore total (mg/L P)	Volume Boues (ml/L eau brute)	MES (mg/L)	Alcalinité (mg/L CaCO ₃)	рН	
Eau brute	544	198	38,1	14,3	4,67		2070		7,7	
Eau décantée (0mg/L)	343	127	38,1	13,8	4,50	14	720	200	7,7	
5	300	189	38	13,8	4,50	13	635	190	7,6	
10	291	188	37,7	13,4	4,37	14	590	185	7,6	
20	262	186	37,2	11	3,59	15	535	180	7,4	
40	243	185	36,6	9,4	3,07	15	395	165	7,4	
60	237	168	36,1	7,52	2,45	15	385	165	7,3	
100	177	153	35,1	2,86	0,93	25	200	150	7,2	

Tableau 32 : Abattement de la DCO, de la MES, du Phosphore total, et de l'Azote total de l'échantillon n⁰ 2 d'eaux usées par le

				<i>Tanfloc</i> (échan	tillon nº 3)				
Tanfloc (mg/L)	DCO totale (mg/L)	DCO soluble (mg/L)	Azote total (mg/L N)	Phosphore total (mg/L PO ₄)	Phosphore total (mg/L P)	Volume Boues (ml/L eau brute)	MES (mg/L)	Alcalinité (mg/L CaCO ₃)	рН
Eau brute	650	179	45,5	16,9	5,5		2650		
Eau décantée (0mg/L)	334,00	148	45,5	16,3	5,3	23	900	225	7,82
5	229,00	174	45,1	16	5,2	19	345	215	7,7
10	214,00	162	44,5	14,6	4,8	19	345	225	7,78
20	144,00	113	44,6	13,8	4,5	29	170	215	7,7
40	111,00	104	48,2	15	4,9	40	15	225	7,82
60	133,00	124	48,2	16,4	5,4	49	25	215	7,7
100	169,00	153	48,4	16,2	5,3	49	30	215	7,7
				Alun (échanti	llon nº3)				
Alun (mg/L)	DCO totale (mg/L)	DCO soluble (mg/L)	Azote total (mg/L N)	Phosphore total (mg/L PO ₄)	Phosphore total (mg/L P)	Volume Boues (ml/L eau brute)	MES (mg/L)	Alcalinité (mg/L CaCO ₃)	рН
Eau brute	650	179	45,5	16,9	5,5		2650	225	
Eau décantée (0mg/L)	334,00	148	45,5	16,3	5,3	23	900	225	7,82
5	283,00	187	45,5	16,8	5,5	22	410	215	7,7
10	272,00	194	44,2	16,8	5,5	22	390	207,5	7,64
20	256,00	189	41,6	16	5,2	23	305	200	7,59
40	224,00	179	41,1	12,8	4,2	24	295	195	7,48
60	211,00	165	40,7	9,85	3,2	26	275	175	7,16
100	166,00	148	40,5	5,32	1,7	33	130	155	6,98

Tableau 33 : Abattement de la DCO, de la MES, du Phosphore total, et de l'Azote total de l'échantillon n⁰3 d'eaux usées par le

ANNEXE E : CARACTÉRISATION DES BOUES : DBO5

Tableau 34 : DBO ₅ des boue	s issues du traitement o	de l'Échantillon 1	des eaux usées avec le
--	--------------------------	--------------------	------------------------

			J. J. C		
Temps	DBO ₅	Temps	DBO ₅	Temps	DBO ₅
(min)	(mg/L)	(min)	(mg/L)	(min)	(mg/L)
0	0	2400	423	4800	565
20	56,5	2420	452	4820	593
40	84,7	2440	452	4840	565
60	113	2460	452	4860	565
80	113	2480	452	4880	565
100	141	2500	452	4900	565
120	169	2520	452	4920	593
140	141	2540	452	4940	593
160	169	2560	452	4960	565
180	169	2580	452	4980	565
200	169	2600	452	5000	593
220	169	2620	452	5020	593
240	169	2640	452	5040	593
260	198	2660	452	5060	593
280	198	2680	452	5080	593
300	198	2700	452	5100	593
320	198	2720	452	5120	593
340	198	2740	480	5140	593
360	198	2760	480	5160	593
380	198	2780	480	5180	593
400	198	2800	480	5200	593
420	198	2820	480	5220	593
440	226	2840	480	5240	593
460	198	2860	480	5260	593
480	226	2880	480	5280	593
500	226	2900	480	5300	593
520	226	2920	480	5320	593
540	226	2940	480	5340	593
560	226	2960	480	5360	593
580	226	2980	480	5380	593
600	254	3000	480	5400	621

Tanfloc

Suite du Tableau 34								
Temps	DBO ₅	Temps	DBO ₅	Temps	DBO ₅			
(min)	(mg/L)	(min)	(mg/L)	(min)	(mg/L)			
620	254	3020	480	5420	593			
640	254	3040	480	5440	593			
660	254	3060	480	5460	621			
680	254	3080	480	5480	621			
700	254	3100	480	5500	593			
720	254	3120	480	5520	621			
740	254	3140	480	5540	621			
760	254	3160	480	5560	621			
780	282	3180	480	5580	621			
800	282	3200	480	5600	621			
820	282	3220	508	5620	621			
840	282	3240	480	5640	621			
860	282	3260	480	5660	621			
880	282	3280	508	5680	621			
900	282	3300	508	5700	621			
920	282	3320	508	5720	621			
940	282	3340	508	5740	621			
960	254	3360	508	5760	649			
980	310	3380	508	5780	621			
1000	310	3400	508	5800	621			
1020	310	3420	508	5820	621			
1040	310	3440	508	5840	649			
1060	310	3460	508	5860	649			
1080	310	3480	508	5880	649			
1100	310	3500	508	5900	649			
1120	310	3520	508	5920	649			
1140	339	3540	508	5940	649			
1160	310	3560	508	5960	649			
1180	310	3580	508	5980	649			
1200	310	3600	508	6000	649			
1200	339	3620	508	6020	649			
1220	310	3640	508	60/0	649			
1240	330	2660	536	6060	6/0			
1200	337	2600	536	6000	640			
1200	267	3080	526	0080	649			
1300	36/	3700	536	6100	649			

Suite du Tableau 34								
Temps	DBO ₅	Temps	DBO ₅	Temps	DBO ₅			
(min)	(mg/L)	(min)	(mg/L)	(min)	(mg/L)			
1320	367	3720	536	6120	649			
1340	339	3740	536	6140	649			
1360	339	3760	536	6160	649			
1380	339	3780	536	6180	649			
1400	339	3800	508	6200	649			
1420	367	3820	536	6220	649			
1440	367	3840	536	6240	649			
1460	367	3860	536	6260	649			
1480	367	3880	536	6280	649			
1500	367	3900	536	6300	649			
1520	367	3920	536	6320	649			
1540	367	3940	536	6340	649			
1560	367	3960	536	6360	649			
1580	367	3980	536	6380	649			
1600	367	4000	536	6400	649			
1620	367	4020	536	6420	677			
1640	367	4040	536	6440	677			
1660	367	4060	536	6460	677			
1680	367	4080	536	6480	649			
1700	367	4100	565	6500	677			
1720	395	4120	536	6520	677			
1740	395	4140	536	6540	677			
1760	395	4160	565	6560	677			
1780	367	4180	565	6580	677			
1800	395	4200	565	6600	677			
1820	395	4220	565	6620	677			
1840	395	4240	565	6640	677			
1860	395	4260	565	6660	677			
1880	395	4280	565	6680	677			
1900	395	4300	565	6700	677			
1920	395	4320	565	6720	677			
1940	395	4340	565	6740	677			
1960	395	4360	565	6760	677			
1980	395	4380	565	6780	677			
2000	395	4400	565	6800	677			
	575	1100		0000				

Suite du Tableau 34								
Temps	DBO ₅	Temps	DBO ₅	Temps	DBO ₅			
(min)	(mg/L)	(min)	(mg/L)	(min)	(mg/L)			
2020	395	4420	565	6820	677			
2040	423	4440	565	6840	677			
2060	423	4460	565	6860	677			
2080	423	4480	565	6880	677			
2100	423	4500	565	6900	677			
2120	423	4520	565	6920	677			
2140	423	4540	565	6940	677			
2160	423	4560	565	6960	677			
2180	423	4580	565	6980	677			
2200	423	4600	565	7000	677			
2220	423	4620	565	7020	677			
2240	423	4640	565	7040	677			
2260	423	4660	565	7060	677			
2280	423	4680	565	7080	677			
2300	423	4700	565	7100	677			
2320	423	4720	565	7120	677			
2340	423	4740	565	7140	677			
2360	423	4760	565	7160	677			
2380	423	4780	565	7180	706			
				7200	706			

Tableau 35 : DBO₅ des boues issues du traitement de l'Échantillon n^0 2 des eaux usées avec le

Tanfloc							
Temps	DBO ₅	Temps	DBO ₅	Temps	DBO ₅		
(min)	(mg/L)	(min)	(mg/L)	(min)	(mg/L)		
0	0	2400	480	4800	621		
20	28,2	2420	480	4820	621		
40	56,5	2440	480	4840	621		
60	56,5	2460	508	4860	621		
80	84,7	2480	536	4880	621		
100	84,7	2500	508	4900	621		
120	84,7	2520	508	4920	621		
140	84,7	2540	508	4940	621		
160	84,7	2560	508	4960	621		
180	84,7	2580	536	4980	649		

T .1

Suite du Tableau 35								
Temps (min)	DBO ₅ (mg/L)	Temps (min)	DBO ₅ (mg/L)	Temps (min)	DBO ₅ (mg/L)			
200	84,7	2600	508	5000	649			
220	113	2620	508	5020	621			
240	141	2640	508	5040	621			
260	113	2660	508	5060	621			
280	141	2680	508	5080	621			
300	169	2700	508	5100	649			
320	113	2720	536	5120	649			
340	169	2740	508	5140	649			
360	113	2760	508	5160	649			
380	169	2780	508	5180	649			
400	141	2800	565	5200	649			
420	141	2820	508	5220	649			
440	141	2840	508	5240	649			
460	198	2860	536	5260	649			
480	141	2880	536	5280	649			
500	169	2900	508	5300	677			
520	169	2920	508	5320	621			
540	198	2940	536	5340	649			
560	198	2960	536	5360	677			
580	226	2980	536	5380	621			
600	198	3000	536	5400	621			
620	226	3020	536	5420	649			
640	198	3040	536	5440	649			
660	226	3060	508	5460	677			
680	254	3080	536	5480	621			
700	198	3100	536	5500	649			
720	226	3120	536	5520	649			
740	282	3140	536	5540	649			
760	254	3160	536	5560	649			
780	226	3180	536	5580	649			
800	282	3200	536	5600	649			
820	254	3220	536	5620	649			
840	254	3240	536	5640	649			
860	254	3260	536	5660	649			
880	282	3280	536	5680	649			

Suite du Tableau 35								
Temps (min)	DBO ₅ (mg/L)	Temps (min)	DBO ₅ (mg/L)	Temps (min)	DBO ₅ (mg/L)			
900	254	3300	536	5700	649			
920	282	3320	565	5720	649			
940	254	3340	565	5740	649			
960	254	3360	565	5760	677			
980	282	3380	565	5780	649			
1000	282	3400	565	5800	649			
1020	282	3420	565	5820	649			
1040	282	3440	565	5840	649			
1060	282	3460	565	5860	649			
1080	282	3480	565	5880	649			
1100	282	3500	565	5900	649			
1120	282	3520	593	5920	677			
1140	310	3540	565	5940	706			
1160	310	3560	565	5960	649			
1180	310	3580	565	5980	649			
1200	310	3600	565	6000	649			
1220	339	3620	565	6020	649			
1240	282	3640	565	6040	649			
1260	367	3660	565	6060	649			
1280	395	3680	565	6080	677			
1300	367	3700	565	6100	649			
1320	367	3720	565	6120	706			
1340	367	3740	593	6140	677			
1360	367	3760	565	6160	649			
1380	367	3780	593	6180	677			
1400	367	3800	565	6200	677			
1420	395	3820	593	6220	677			
1440	367	3840	593	6240	677			
1460	367	3860	593	6260	677			
1480	367	3880	593	6280	677			
1500	367	3900	593	6300	677			
1520	395	3920	593	6320	677			
1540	395	3940	593	6340	677			
1560	423	3960	593	6360	677			
1580	395	3980	593	6380	677			

Suite du Tableau 35								
Temps (min)	DBO ₅ (mg/L)	Temps (min)	DBO ₅ (mg/L)	Temps (min)	DBO ₅ (mg/L)			
1600	423	4000	593	6400	677			
1620	395	4020	593	6420	706			
1640	395	4040	593	6440	677			
1660	395	4060	593	6460	677			
1680	423	4080	593	6480	706			
1700	423	4100	593	6500	677			
1720	423	4120	593	6520	677			
1740	423	4140	593	6540	677			
1760	423	4160	593	6560	677			
1780	423	4180	593	6580	677			
1800	423	4200	621	6600	677			
1820	423	4220	593	6620	677			
1840	452	4240	593	6640	677			
1860	423	4260	621	6660	677			
1880	452	4280	649	6680	677			
1900	423	4300	593	6700	706			
1920	423	4320	593	6720	677			
1940	452	4340	593	6740	706			
1960	452	4360	593	6760	706			
1980	452	4380	593	6780	677			
2000	452	4400	649	6800	677			
2020	452	4420	593	6820	677			
2040	452	4440	621	6840	734			
2060	452	4460	621	6860	706			
2080	480	4480	621	6880	677			
2100	452	4500	621	6900	677			
2120	480	4520	621	6920	706			
2140	452	4540	621	6940	677			
2160	452	4560	649	6960	706			
2180	480	4580	621	6980	706			
2200	480	4600	621	7000	677			
2220	480	4620	621	7020	706			
2240	480	4640	621	7040	706			
2260	480	4660	621	7060	706			
2280	480	4680	621	7080	706			

	Suite du Tableau 35							
Temps	DBO ₅	Temps	DBO ₅	Temps	DBO ₅			
(min)	(mg/L)	(min)	(mg/L)	(min)	(mg/L)			
2300	480	4700	621	7100	706			
2320	480	4720	621	7120	706			
2340	480	4740	621	7140	706			
2360	480	4760	621	7160	706			
2380	480	4780	621	7180	706			
				7200	706			

Tableau 36 : DBO₅ des boues issues du traitement de l'Échantillon n^0 3 de l'eau usée avec le

			0		
Temps	DBO ₅	Temps	DBO ₅	Temps	DBO ₅
(min)	(mg/L)	(min)	(mg/L)	(min)	(mg/L)
0	0	2400	452	4800	621
20	28,2	2420	452	4820	621
40	56,5	2440	452	4840	621
60	84,7	2460	452	4860	621
80	113	2480	452	4880	621
100	113	2500	452	4900	621
120	141	2520	452	4920	649
140	141	2540	452	4940	621
160	141	2560	452	4960	621
180	141	2580	480	4980	649
200	141	2600	480	5000	621
220	141	2620	480	5020	621
240	169	2640	480	5040	649
260	169	2660	480	5060	649
280	169	2680	480	5080	649
300	169	2700	480	5100	649
320	169	2720	480	5120	649
340	169	2740	480	5140	649
360	169	2760	480	5160	649
380	198	2780	480	5180	649
400	169	2800	480	5200	649
420	198	2820	480	5220	649
440	198	2840	480	5240	649
460	198	2860	480	5260	677

Tanfloc

Suite du Tableau 36								
Temps (min)	DBO ₅ (mg/L)	Temps (min)	DBO ₅ (mg/L)	Temps (min)	DBO ₅ (mg/L)			
480	198	2880	480	5280	649			
500	198	2900	480	5300	649			
520	198	2920	480	5320	649			
540	226	2940	480	5340	649			
560	226	2960	508	5360	677			
580	226	2980	508	5380	649			
600	226	3000	508	5400	649			
620	226	3020	480	5420	677			
640	254	3040	508	5440	649			
660	254	3060	480	5460	649			
680	254	3080	480	5480	649			
700	254	3100	480	5500	677			
720	254	3120	508	5520	677			
740	254	3140	508	5540	677			
760	254	3160	508	5560	677			
780	254	3180	508	5580	677			
800	282	3200	508	5600	677			
820	282	3220	508	5620	677			
840	282	3240	508	5640	677			
860	282	3260	508	5660	677			
880	282	3280	536	5680	677			
900	282	3300	508	5700	677			
920	282	3320	508	5720	677			
940	282	3340	508	5740	677			
960	282	3360	536	5760	677			
980	310	3380	508	5780	677			
1000	310	3400	508	5800	677			
1020	310	3420	536	5820	677			
1040	310	3440	508	5840	677			
1060	310	3460	508	5860	677			
1080	310	3480	508	5880	677			
1100	310	3500	536	5900	677			
1120	310	3520	536	5920	706			
1140	310	3540	536	5940	706			
1160	339	3560	536	5960	706			

Suite du Tableau 36								
Temps (min)	DBO ₅ (mg/L)	Temps (min)	DBO ₅ (mg/L)	Temps (min)	DBO ₅ (mg/L)			
1180	339	3580	536	5980	677			
1200	339	3600	536	6000	706			
1220	339	3620	536	6020	706			
1240	282	3640	536	6040	706			
1260	367	3660	536	6060	706			
1280	367	3680	536	6080	677			
1300	367	3700	536	6100	706			
1320	339	3720	536	6120	706			
1340	339	3740	536	6140	706			
1360	367	3760	536	6160	706			
1380	367	3780	536	6180	706			
1400	367	3800	536	6200	706			
1420	367	3820	536	6220	706			
1440	367	3840	536	6240	706			
1460	367	3860	565	6260	706			
1480	367	3880	536	6280	706			
1500	367	3900	565	6300	734			
1520	367	3920	565	6320	706			
1540	367	3940	565	6340	706			
1560	367	3960	565	6360	706			
1580	367	3980	565	6380	706			
1600	367	4000	565	6400	706			
1620	367	4020	565	6420	706			
1640	367	4040	565	6440	706			
1660	367	4060	565	6460	706			
1680	395	4080	565	6480	706			
1700	395	4100	565	6500	706			
1720	367	4120	565	6520	734			
1740	367	4140	565	6540	734			
1760	367	4160	565	6560	734			
1780	395	4180	565	6580	734			
1800	395	4200	593	6600	706			
1820	395	4220	593	6620	706			
1840	395	4240	593	6640	706			
1860	395	4260	593	6660	734			

Suite du Tableau 36								
Temps	DBO ₅	Temps	DBO ₅	Temps	DBO ₅			
(min)	(mg/L)	(min)	(mg/L)	(min)	(mg/L)			
1880	395	4280	593	6680	734			
1900	395	4300	593	6700	706			
1920	395	4320	593	6720	734			
1940	395	4340	593	6740	706			
1960	395	4360	593	6760	734			
1980	395	4380	593	6780	734			
2000	423	4400	593	6800	734			
2020	395	4420	593	6820	734			
2040	395	4440	593	6840	734			
2060	423	4460	593	6860	734			
2080	423	4480	593	6880	734			
2100	423	4500	593	6900	734			
2120	423	4520	593	6920	734			
2140	423	4540	621	6940	734			
2160	423	4560	621	6960	762			
2180	423	4580	593	6980	734			
2200	423	4600	621	7000	734			
2220	423	4620	621	7020	734			
2240	452	4640	621	7040	734			
2260	423	4660	593	7060	734			
2280	452	4680	621	7080	734			
2300	423	4700	621	7100	734			
2320	423	4720	621	7120	734			
2340	452	4740	621	7140	734			
2360	452	4760	621	7160	734			
2380	423	4780	621	7180	734			
				7200	762			

Temps	DBO ₅	Temps (min)	DBO ₅	Temps	DBO ₅
0	0	2400	508	4800	(IIIg/L) 73/
20	28.2	2400	508	4800	734
40	20,2	2420	508	4820	734
40 60	112	2440	508	4840	734
80	113	2400	526	4800	734
100	115	2480	530	4000	734
100	141	2500	530	4900	734
120	141	2520	530	4920	734
140	141	2540	536	4940	/34
160	141	2560	536	4960	734
180	141	2580	536	4980	734
200	141	2600	536	5000	734
220	169	2620	536	5020	734
240	169	2640	508	5040	734
260	169	2660	536	5060	734
280	169	2680	536	5080	762
300	198	2700	536	5100	762
320	169	2720	536	5120	762
340	198	2740	565	5140	762
360	198	2760	565	5160	762
380	198	2780	536	5180	762
400	198	2800	565	5200	762
420	226	2820	565	5220	762
440	226	2840	565	5240	762
460	226	2860	565	5260	762
480	226	2880	565	5280	762
500	226	2900	565	5300	734
520	226	2920	565	5320	762
540	226	2940	565	5340	762
560	254	2960	565	5360	762
580	254	2980	565	5380	762
600	254	3000	565	5400	762
620	282	3020	565	5420	762
640	282	3040	565	5440	762
660	282	3060	565	5460	762
680	254	3080	565	5480	762
700	282	3100	565	5500	790
720	282	3120	565	5520	790

Tableau 37 : DBO₅ des boues issues du traitement de l'Échantillon n⁰1 des eaux usées avec l'alun

Suite du Tableau 37								
Temps	DBO ₅	Temps	DBO ₅	Temps	DBO ₅			
(min)	(mg/L)	(min)	(mg/L)	(min)	(mg/L)			
740	282	3140	593	5540	790			
760	254	3160	593	5560	790			
780	282	3180	593	5580	790			
800	310	3200	565	5600	790			
820	310	3220	593	5620	790			
840	310	3240	593	5640	790			
860	310	3260	593	5660	790			
880	310	3280	593	5680	790			
900	310	3300	593	5700	790			
920	310	3320	593	5720	790			
940	310	3340	593	5740	790			
960	254	3360	621	5760	790			
980	339	3380	621	5780	790			
1000	339	3400	593	5800	790			
1020	339	3420	621	5820	790			
1040	339	3440	621	5840	819			
1060	339	3460	593	5860	819			
1080	339	3480	621	5880	819			
1100	339	3500	621	5900	819			
1120	339	3520	621	5920	819			
1140	367	3540	621	5940	819			
1160	367	3560	621	5960	790			
1180	367	3580	621	5980	819			
1200	367	3600	621	6000	819			
1220	367	3620	621	6020	819			
1240	310	3640	621	6040	819			
1260	367	3660	649	6060	819			
1280	423	3680	621	6080	819			
1300	423	3700	621	6100	819			
1320	395	3720	649	6120	819			
1340	395	3740	649	6140	819			
1360	395	3760	621	6160	819			
1380	395	3780	621	6180	819			
1400	367	3800	621	6200	847			
1420	423	3820	649	6220	819			
1440	395	3840	649	6240	847			
1460	395	3860	649	6260	819			

Suite du Tableau 37								
Temps	DBO ₅	Temps	DBO ₅	Temps	DBO ₅			
(min)	(mg/L)	(min)	(mg/L)	(min)	(mg/L)			
1480	395	3880	649	6280	847			
1500	395	3900	649	6300	819			
1520	395	3920	649	6320	847			
1540	423	3940	649	6340	847			
1560	423	3960	649	6360	847			
1580	423	3980	649	6380	847			
1600	423	4000	649	6400	847			
1620	423	4020	649	6420	847			
1640	423	4040	649	6440	847			
1660	423	4060	649	6460	847			
1680	423	4080	677	6480	847			
1700	423	4100	677	6500	847			
1720	423	4120	649	6520	875			
1740	423	4140	677	6540	847			
1760	423	4160	677	6560	847			
1780	423	4180	677	6580	847			
1800	452	4200	677	6600	847			
1820	452	4220	677	6620	847			
1840	452	4240	677	6640	847			
1860	452	4260	677	6660	847			
1880	452	4280	677	6680	875			
1900	452	4300	706	6700	847			
1920	452	4320	706	6720	875			
1940	452	4340	677	6740	847			
1960	452	4360	706	6760	875			
1980	452	4380	706	6780	875			
2000	452	4400	706	6800	875			
2020	452	4420	706	6820	875			
2040	480	4440	706	6840	875			
2060	480	4460	706	6860	875			
2080	480	4480	706	6880	875			
2100	480	4500	677	6900	847			
2120	480	4520	706	6920	875			
2140	480	4540	706	6940	875			
2160	480	4560	706	6960	875			
2180	480	4580	706	6980	875			
2200	480	4600	706	7000	875			

Suite du Tableau 37									
Temps	DBO ₅	Temps	DBO ₅	Temps	DBO ₅				
(min)	(mg/L)	(min)	(mg/L)	(min)	(mg/L)				
2220	480	4620	706	7020	847				
2240	480	4640	706	7040	875				
2260	480	4660	706	7060	903				
2280	508	4680	706	7080	875				
2300	480	4700	706	7100	903				
2320	480	4720	706	7120	875				
2340	508	4740	734	7140	875				
2360	508	4760	706	7160	903				
2380	480	4780	734	7180	903				
				7200	903				

Tableau 38 : DBO₅ des boues issues du traitement de l'Échantillon n⁰2 des eaux usées avec l'alun

Temps	DBO5	Temps	DBO ₅	Temps	DBO ₅
(min)	(mg/L)	(min)	(mg/L)	(min)	(mg/L)
0	0	2400	395	4800	565
20	28,2	2420	395	4820	536
40	84,7	2440	395	4840	536
60	141	2460	395	4860	565
80	141	2480	395	4880	536
100	113	2500	423	4900	565
120	141	2520	423	4920	593
140	198	2540	423	4940	536
160	141	2560	423	4960	565
180	198	2580	452	4980	565
200	141	2600	423	5000	565
220	169	2620	423	5020	536
240	169	2640	423	5040	565
260	169	2660	423	5060	565
280	198	2680	423	5080	565
300	198	2700	423	5100	565
320	198	2720	452	5120	565
340	198	2740	452	5140	565
360	198	2760	452	5160	565
380	198	2780	452	5180	593
400	198	2800	423	5200	565
420	198	2820	423	5220	593
440	198	2840	452	5240	593

Suite du Tableau 38								
Temps	DBO5	Temps	DBO ₅	Temps	DBO ₅			
(min)	(mg/L)	(min)	(mg/L)	(min)	(mg/L)			
460	226	2860	452	5260	565			
480	198	2880	452	5280	565			
500	254	2900	452	5300	565			
520	226	2920	452	5320	565			
540	254	2940	480	5340	593			
560	226	2960	452	5360	593			
580	254	2980	452	5380	593			
600	226	3000	452	5400	565			
620	282	3020	452	5420	565			
640	226	3040	452	5440	565			
660	254	3060	452	5460	565			
680	254	3080	452	5480	593			
700	254	3100	452	5500	565			
720	310	3120	452	5520	565			
740	282	3140	452	5540	593			
760	254	3160	452	5560	593			
780	282	3180	452	5580	593			
800	310	3200	480	5600	593			
820	282	3220	452	5620	593			
840	282	3240	452	5640	593			
860	310	3260	452	5660	593			
880	310	3280	480	5680	593			
900	310	3300	480	5700	593			
920	282	3320	480	5720	593			
940	310	3340	480	5740	593			
960	254	3360	480	5760	593			
980	339	3380	480	5780	593			
1000	310	3400	480	5800	565			
1020	310	3420	480	5820	621			
1040	339	3440	508	5840	621			
1060	339	3460	480	5860	593			
1080	310	3480	480	5880	621			
1100	310	3500	480	5900	593			
1120	339	3520	480	5920	621			
1140	339	3540	480	5940	621			
1160	339	3560	480	5960	593			
1180	339	3580	508	5980	621			

Suite du Tableau 38								
Temps	DBO5	Temps	DBO ₅	Temps	DBO ₅			
(min)	(mg/L)	(min)	(mg/L)	(min)	(mg/L)			
1200	367	3600	480	6000	621			
1220	339	3620	508	6020	593			
1240	282	3640	480	6040	593			
1260	339	3660	508	6060	593			
1280	367	3680	508	6080	621			
1300	395	3700	508	6100	593			
1320	367	3720	508	6120	593			
1340	367	3740	508	6140	593			
1360	339	3760	480	6160	621			
1380	339	3780	508	6180	621			
1400	339	3800	508	6200	621			
1420	367	3820	536	6220	621			
1440	339	3840	536	6240	621			
1460	339	3860	508	6260	621			
1480	339	3880	508	6280	621			
1500	339	3900	508	6300	621			
1520	367	3920	508	6320	621			
1540	339	3940	536	6340	621			
1560	339	3960	508	6360	621			
1580	367	3980	508	6380	649			
1600	395	4000	536	6400	649			
1620	367	4020	508	6420	621			
1640	339	4040	508	6440	621			
1660	367	4060	508	6460	621			
1680	367	4080	536	6480	621			
1700	367	4100	508	6500	649			
1720	367	4120	536	6520	621			
1740	395	4140	536	6540	649			
1760	367	4160	536	6560	649			
1780	395	4180	508	6580	649			
1800	395	4200	565	6600	649			
1820	367	4220	565	6620	677			
1840	339	4240	536	6640	621			
1860	367	4260	536	6660	649			
1880	395	4280	536	6680	649			
1900	367	4300	565	6700	649			
1920	367	4320	536	6720	649			

Suite du Tableau 38									
Temps	DBO5	Temps	DBO ₅	Temps	DBO ₅				
(min)	(mg/L)	(min)	(mg/L)	(min)	(mg/L)				
1940	367	4340	536	6740	621				
1960	367	4360	536	6760	649				
1980	395	4380	536	6780	649				
2000	395	4400	536	6800	649				
2020	367	4420	565	6820	649				
2040	367	4440	565	6840	677				
2060	395	4460	536	6860	649				
2080	395	4480	536	6880	649				
2100	395	4500	536	6900	649				
2120	395	4520	565	6920	649				
2140	423	4540	536	6940	649				
2160	395	4560	565	6960	649				
2180	395	4580	536	6980	649				
2200	395	4600	536	7000	677				
2220	395	4620	565	7020	649				
2240	395	4640	536	7040	677				
2260	395	4660	536	7060	677				
2280	395	4680	536	7080	649				
2300	395	4700	536	7100	649				
2320	395	4720	536	7120	649				
2340	395	4740	536	7140	677				
2360	395	4760	565	7160	677				
2380	395	4780	536	7180	649				
				7200	649				

Tableau 39 : DBO5 des boues issues du traitement de l'Échantillon nº3 des eaux usées avec l'alun

Temps	DBO ₅	Temps	DBO ₅	Temps	DBO ₅
(min)	(mg/L)	(min)	(mg/L)	(min)	(mg/L)
0	0	2400	480	4800	677
20	28,2	2420	508	4820	677
40	113	2440	480	4840	677
60	141	2460	480	4860	677
80	141	2480	508	4880	677
100	169	2500	508	4900	677
120	169	2520	508	4920	677
140	198	2540	508	4940	677
160	198	2560	480	4960	677

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Suite du Tableau 39								
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Temps	DBO ₅	Temps	DBO ₅	Temps	DBO ₅			
180 198 2580 480 4980 677 200 198 2600 508 5000 677 220 198 2620 480 5020 677 240 198 2640 508 5040 677 260 198 2660 480 5060 677 280 198 2660 480 5060 677 300 226 2700 508 5100 677 340 226 2740 536 5140 706 360 254 2760 508 5160 677 380 254 2780 536 5180 677 400 226 2800 536 5200 706 440 254 2820 508 5220 706 440 254 2840 536 5240 706 440 254 2860 508 5260 706 480 282 2980 536 5320 706 500 254 2900 508 5320 706 540 282 2940 536 5340 706 600 282 3020 536 5400 677 620 282 3020 536 5380 706 600 282 3040 508 5440 706 600 282 3020 536 5580 677 600 282 3040	(min)	(mg/L)	(min)	(mg/L)	(min)	(mg/L)			
200 198 2600 508 5000 677 220 198 2620 480 5020 677 240 198 2640 508 5040 677 260 198 2660 480 5060 677 280 198 2680 508 5080 677 300 226 2700 508 5100 677 320 226 2720 508 5120 677 340 226 2740 536 5140 706 360 254 2760 508 5160 677 400 226 2800 536 5200 706 420 254 2820 508 5220 706 440 254 2840 536 5240 706 440 254 2860 508 5260 706 440 254 2860 508 5260 706 500 254 2900 508 5330 677 520 282 2920 508 5320 706 540 282 2940 536 5340 706 600 282 3020 536 5400 677 620 282 2920 508 5360 677 580 282 2980 536 5400 677 640 282 3020 536 5400 677 660 310 3060	180	198	2580	480	4980	677			
220 198 2620 480 5020 677 240 198 2640 508 5040 677 260 198 2660 480 5060 677 280 198 2680 508 5080 677 300 226 2700 508 5100 677 320 226 2720 508 5120 677 340 226 2740 536 5140 706 360 254 2760 508 5160 677 400 226 2800 536 5180 677 400 226 2800 536 5200 706 440 254 2820 508 5220 706 440 254 2840 536 5280 706 440 254 2860 536 5280 706 480 282 2880 536 5280 706 500 254 2900 508 5320 706 540 282 2940 536 5340 706 560 254 2960 508 5360 677 600 282 3020 536 5440 677 600 282 3020 536 5400 677 600 282 3020 536 5440 706 600 282 3020 536 5440 706 600 282 3020	200	198	2600	508	5000	677			
240 198 2640 508 5040 677 260 198 2660 480 5060 677 280 198 2680 508 5080 677 300 226 2700 508 5100 677 320 226 2720 508 5120 677 340 226 2740 536 5140 706 360 254 2760 508 5160 677 400 226 2800 536 5180 677 400 226 2800 536 5200 706 420 254 2820 508 5220 706 440 254 2840 536 5240 706 440 254 2860 508 5260 706 440 254 2860 508 5260 706 440 254 2860 508 5320 706 500 254 2900 508 5320 706 540 282 2920 508 5320 706 540 282 2900 536 5340 706 560 254 2960 508 5360 677 580 282 2980 536 5380 706 600 282 3040 536 5420 677 640 282 3040 536 5440 706 660 310 3060	220	198	2620	480	5020	677			
260 198 2660 480 5060 677 280 198 2680 508 5080 677 300 226 2700 508 5100 677 320 226 2720 508 5120 677 340 226 2740 536 5140 706 360 254 2760 508 5160 677 380 254 2780 536 5180 677 400 226 2800 536 5200 706 420 254 2820 508 5220 706 440 254 2840 536 5240 706 440 254 2840 536 5240 706 440 254 2840 536 5240 706 440 254 2840 536 5240 706 500 254 2900 508 5320 706 540 282 2920 508 5320 706 540 282 2940 536 5340 706 560 254 2960 508 5360 677 580 282 3040 536 5440 706 600 282 3040 536 5440 706 600 282 3040 536 5440 706 600 282 3040 536 5440 706 600 310 3060	240	198	2640	508	5040	677			
280198 2680 508 5080 677 300 226 2700 508 5100 677 320 226 2720 508 5120 677 340 226 2740 536 5140 706 360 254 2760 508 5160 677 400 226 2800 536 5200 706 420 254 2820 508 5220 706 440 254 2820 508 5220 706 440 254 2840 536 5240 706 460 254 2860 508 5260 706 480 282 2880 536 5280 706 500 254 2900 508 5320 706 540 282 2920 508 5320 706 540 282 2940 536 5340 706 560 254 2960 508 5360 677 560 254 2960 508 5360 677 640 282 3020 536 5440 706 660 310 3060 536 5440 706 700 310 3100 536 5520 706 740 339 3140 536 5540 706 740 339 3140 536 5580 706 760 379 310 <td>260</td> <td>198</td> <td>2660</td> <td>480</td> <td>5060</td> <td>677</td>	260	198	2660	480	5060	677			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	280	198	2680	508	5080	677			
320 226 2720 508 5120 677 340 226 2740 536 5140 706 360 254 2760 508 5160 677 380 254 2780 536 5180 677 400 226 2800 536 5200 706 420 254 2820 508 5220 706 440 254 2840 536 5240 706 460 254 2860 508 5260 706 480 282 2880 536 5280 706 500 254 2900 508 5320 706 500 254 2900 508 5320 706 540 282 2920 508 5320 706 540 282 2940 536 5340 706 560 254 2960 508 5360 677 580 282 2940 536 5380 706 600 282 3020 536 5400 677 640 282 3020 536 5440 706 660 310 3080 536 5500 706 740 339 3140 536 5520 706 740 339 3160 565 5560 706 780 310 3180 536 5580 677	300	226	2700	508	5100	677			
340 226 2740 536 5140 706 360 254 2760 508 5160 677 380 254 2780 536 5180 677 400 226 2800 536 5200 706 420 254 2820 508 5220 706 440 254 2820 508 5220 706 440 254 2840 536 5240 706 460 254 2860 508 5260 706 480 282 2880 536 5280 706 500 254 2900 508 5300 677 520 282 2920 508 5320 706 540 282 2940 536 5340 706 560 254 2960 508 5360 677 580 282 2980 536 5380 706 600 282 3000 536 5400 677 640 282 3040 508 5440 706 660 310 3060 536 5460 706 700 310 3120 536 5520 706 740 339 3140 536 5540 706 780 310 3180 536 5580 677 780 310 3180 536 5580 677	320	226	2720	508	5120	677			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	340	226	2740	536	5140	706			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	360	254	2760	508	5160	677			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	380	254	2780	536	5180	677			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	400	226	2800	536	5200	706			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	420	254	2820	508	5220	706			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	440	254	2840	536	5240	706			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	460	254	2860	508	5260	706			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	480	282	2880	536	5280	706			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	500	254	2900	508	5300	677			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	520	282	2920	508	5320	706			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	540	282	2940	536	5340	706			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	560	254	2960	508	5360	677			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	580	282	2980	536	5380	706			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	600	282	3000	536	5400	677			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	620	282	3020	536	5420	677			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	640	282	3040	508	5440	706			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	660	310	3060	536	5460	706			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	680	310	3080	536	5480	706			
720 310 3120 536 5520 706 740 339 3140 536 5540 706 760 339 3160 565 5560 706 780 310 3180 536 5580 677	700	310	3100	536	5500	706			
740 339 3140 536 5540 706 760 339 3160 565 5560 706 780 310 3180 536 5580 677 200 2200 525 5560 706	720	310	3120	536	5520	706			
760 339 3160 565 5560 706 780 310 3180 536 5580 677 200 2200 525 5560 706	740	339	3140	536	5540	706			
780 310 3180 536 5580 677 200 200 526 560 561	760	339	3160	565	5560	706			
	780	310	3180	536	5580	677			
800 339 3200 536 5600 706	800	339	3200	536	5600	706			
<u>820 339 3220 536 5620 734</u>	820	339	3220	536	5620	734			
<u>840</u> 339 3240 536 5640 734	840	339	3240	536	5640	734			
860 339 3260 565 5660 734	860	339	3260	565	5660	734			
880 339 3280 565 5680 706	880	339	3280	565	5680	706			
<u>900</u> <u>339</u> <u>3300</u> <u>565</u> <u>5700</u> <u>706</u>	900	339	3300	565	5700	706			

Suite du Tableau 39								
Temps	DBO ₅	Temps	DBO ₅	Temps	DBO ₅			
(min)	(mg/L)	(min)	(mg/L)	(min)	(mg/L)			
920	339	3320	565	5720	706			
940	367	3340	565	5740	706			
960	310	3360	565	5760	706			
980	367	3380	536	5780	706			
1000	367	3400	593	5800	734			
1020	339	3420	536	5820	734			
1040	339	3440	565	5840	706			
1060	367	3460	565	5860	734			
1080	367	3480	593	5880	706			
1100	367	3500	593	5900	734			
1120	367	3520	565	5920	734			
1140	395	3540	593	5940	734			
1160	367	3560	593	5960	734			
1180	395	3580	593	5980	734			
1200	395	3600	593	6000	734			
1220	395	3620	593	6020	734			
1240	339	3640	593	6040	734			
1260	395	3660	593	6060	734			
1280	423	3680	593	6080	734			
1300	423	3700	593	6100	734			
1320	395	3720	593	6120	734			
1340	395	3740	621	6140	762			
1360	423	3760	593	6160	734			
1380	423	3780	621	6180	762			
1400	395	3800	593	6200	762			
1420	423	3820	621	6220	762			
1440	395	3840	621	6240	762			
1460	423	3860	621	6260	762			
1480	395	3880	621	6280	762			
1500	395	3900	621	6300	762			
1520	423	3920	621	6320	790			
1540	423	3940	593	6340	762			
1560	423	3960	621	6360	762			
1580	423	3980	621	6380	762			
1600	423	4000	621	6400	762			
1620	423	4020	649	6420	790			
1640	423	4040	649	6440	762			

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Suite du Tableau 39										
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Temps	DBO ₅	Temps	DBO ₅	Temps	DBO ₅					
1660 423 4060 649 6460 762 1680 423 4000 621 6480 734 1700 423 4100 621 6500 790 1740 423 4120 649 6520 790 1740 423 4140 621 6540 762 1760 423 4160 649 6560 762 1770 423 4160 649 65600 790 1800 452 4200 649 6600 790 1820 423 4220 621 6640 790 1840 423 4240 621 6640 790 1840 423 4240 621 6640 790 1840 452 4260 649 6660 790 1880 452 4260 649 6700 790 1900 452 4300 649 6740 790 1900 452 4360 649 6760 790 1960 452 4360 649 6760 819 2000 452 4360 649 6760 819 2000 452 4420 677 6820 819 2000 452 4460 649 6800 819 2000 452 4460 649 6800 819 2000 452 4460 649 6800 819 2100 <	(min)	(mg/L)	(min)	(mg/L)	(min)	(mg/L)					
1680 423 4080 621 6480 734 1700 423 4100 621 6500 790 1720 423 4120 649 6520 790 1740 423 4140 621 6540 762 1760 423 4160 649 6560 762 1780 423 4180 649 6560 790 1800 452 4200 649 6600 790 1820 423 4220 621 66620 790 1840 423 4240 621 6640 790 1840 452 4260 649 6660 790 1880 452 4280 649 6680 790 1900 452 4330 649 6700 790 1920 423 4320 677 6720 790 1940 452 4360 649 6760 790 1940 452 4380 649 6780 819 2000 423 4440 677 6820 819 2000 452 4460 649 6800 819 2000 452 4460 649 6800 819 2000 452 4420 677 6820 819 2000 452 4460 649 6800 819 2000 452 4460 649 6900 819 2140 <	1660	423	4060	649	6460	762					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1680	423	4080	621	6480	734					
1720 423 4120 649 6520 790 1740 423 4140 621 6540 762 1760 423 4160 649 6560 762 1780 423 4180 649 6580 790 1800 452 4200 649 6600 790 1820 423 4220 621 6620 790 1840 423 4240 621 6640 790 1860 452 4260 649 6660 790 1880 452 4280 649 6700 790 1900 452 4300 649 6700 790 1920 423 4320 677 6720 790 1940 452 4360 649 6760 790 1940 452 4360 649 6780 819 2000 423 4400 649 6780 819 2000 452 4420 677 6820 819 2000 452 4460 649 6860 819 2040 480 4440 621 6840 819 2040 480 4440 677 6880 819 2040 480 4460 649 6960 819 2100 452 4500 677 6920 819 2100 452 4500 677 6940 819 2100 <t< td=""><td>1700</td><td>423</td><td>4100</td><td>621</td><td>6500</td><td>790</td></t<>	1700	423	4100	621	6500	790					
1740 423 4140 621 6540 762 1760 423 4160 649 6560 762 1780 423 4180 649 6600 790 1800 452 4200 649 6600 790 1820 423 4220 621 6620 790 1840 423 4240 621 6640 790 1840 423 4240 621 6640 790 1880 452 4260 649 6660 790 1900 452 4300 649 6700 790 1920 423 4320 677 6720 790 1940 452 4360 649 6760 790 1940 452 4360 649 6760 790 1980 452 4360 649 6760 790 1980 452 4380 649 6780 819 2000 423 4400 649 6880 819 2000 452 4420 677 6820 819 2060 452 4460 649 6860 819 2100 452 4520 677 6920 819 2100 452 4520 677 6940 819 2100 452 4520 677 6940 819 2100 452 4520 677 790 819 2140 <td< td=""><td>1720</td><td>423</td><td>4120</td><td>649</td><td>6520</td><td>790</td></td<>	1720	423	4120	649	6520	790					
1760 423 4160 649 6560 762 1780 423 4180 649 6580 790 1800 452 4200 649 6600 790 1820 423 4220 621 6640 790 1840 423 4240 621 6640 790 1860 452 4260 649 6660 790 1880 452 4280 649 6660 790 1900 452 4300 649 6700 790 1920 423 4320 677 6720 790 1940 452 4360 649 6760 790 1940 452 4360 649 6760 790 1940 452 4360 649 6760 790 1940 452 4360 649 6760 790 1940 452 4360 649 6760 790 1940 452 4360 649 6760 819 2000 423 4400 649 6800 819 2000 452 4420 677 6820 819 2040 480 4440 621 6840 819 2040 480 4440 677 6900 819 2040 480 4520 677 6900 819 2100 452 4520 677 6900 819 2140 <t< td=""><td>1740</td><td>423</td><td>4140</td><td>621</td><td>6540</td><td>762</td></t<>	1740	423	4140	621	6540	762					
1780 423 4180 649 6580 790 1800 452 4200 649 6600 790 1820 423 4220 621 6660 790 1840 423 4240 621 6640 790 1860 452 4260 649 6660 790 1960 452 4280 649 6660 790 1900 452 4300 649 6700 790 1920 423 4320 677 6720 790 1940 452 4340 649 6740 790 1940 452 4330 649 6760 790 1940 452 4330 649 6780 819 2000 423 4400 649 6800 819 2000 423 4400 649 6800 819 2000 452 4420 677 6820 819 2040 480 4440 621 6840 819 2060 452 4500 677 6900 819 2100 452 4500 677 6900 819 2120 452 4500 677 6940 819 2140 480 4560 649 6960 819 2120 452 4600 649 7000 790 2200 452 4600 649 7000 890 2180 <t< td=""><td>1760</td><td>423</td><td>4160</td><td>649</td><td>6560</td><td>762</td></t<>	1760	423	4160	649	6560	762					
1800 452 4200 649 6600 790 1820 423 4220 621 6620 790 1840 423 4240 621 6640 790 1860 452 4260 649 6660 790 1880 452 4280 649 6660 790 1900 452 4300 649 6700 790 1920 423 4320 677 6720 790 1940 452 4340 649 6740 790 1960 452 4360 649 6760 790 1980 452 4380 649 6780 819 2000 423 4400 649 6800 819 2020 452 4420 677 6820 819 2040 480 4440 621 6840 819 2060 452 4500 677 6900 819 2100 452 4500 677 6900 819 2100 452 4500 677 6920 819 2140 480 4540 677 7000 790 2200 452 4600 649 7000 790 2200 452 4520 677 7020 819 2140 480 4560 677 7020 819 2200 452 4600 649 7040 819 2200 <t< td=""><td>1780</td><td>423</td><td>4180</td><td>649</td><td>6580</td><td>790</td></t<>	1780	423	4180	649	6580	790					
1820 423 4220 621 6620 790 1840 423 4240 621 6640 790 1860 452 4260 649 6660 790 1880 452 4280 649 6660 790 1900 452 4300 649 6700 790 1920 423 4320 677 6720 790 1940 452 4340 649 6740 790 1960 452 4360 649 6760 790 1980 452 4380 649 6780 819 2000 423 4400 649 6800 819 2000 423 4400 649 6800 819 2000 423 4400 649 6800 819 2000 452 4420 677 6820 819 2040 480 4440 621 6840 819 2040 480 4450 677 6900 819 2100 452 4520 677 6900 819 2100 452 4520 677 6940 819 2140 480 4580 649 6960 819 2140 480 4580 649 7000 790 2220 480 4620 677 7020 819 2240 480 4660 649 7000 790 2220 <t< td=""><td>1800</td><td>452</td><td>4200</td><td>649</td><td>6600</td><td>790</td></t<>	1800	452	4200	649	6600	790					
1840 423 4240 621 6640 790 1860 452 4260 649 6660 790 1880 452 4280 649 6660 790 1900 452 4300 649 6700 790 1920 423 4320 677 6720 790 1940 452 4340 649 6740 790 1960 452 4360 649 6760 790 1980 452 4380 649 6780 819 2000 423 4400 649 6800 819 2020 452 4420 677 6820 819 2020 452 4420 677 6820 819 2040 480 4440 621 6840 819 2060 452 4500 677 6900 819 2100 452 4500 677 6900 819 2100 452 4500 677 6940 819 2140 480 4540 677 6940 819 2160 480 4560 649 7000 790 2220 480 4620 677 7020 819 2180 480 4660 649 7040 819 2280 480 4660 649 7040 819 2300 480 4720 677 7140 819 2300 <t< td=""><td>1820</td><td>423</td><td>4220</td><td>621</td><td>6620</td><td>790</td></t<>	1820	423	4220	621	6620	790					
1860 452 4260 649 6660 790 1880 452 4280 649 6680 790 1900 452 4300 649 6700 790 1920 423 4320 677 6720 790 1940 452 4340 649 6740 790 1960 452 4360 649 6760 790 1980 452 4360 649 6760 790 1980 452 4380 649 6780 819 2000 423 4400 649 6800 819 2020 452 4420 677 6820 819 2040 480 4440 621 6840 819 2060 452 4460 649 6860 819 2060 452 4450 677 6920 819 2100 452 4500 677 6940 819 2120 452 4520 677 6940 819 2140 480 4560 649 6960 819 2120 480 4560 649 7000 790 2220 480 4620 677 7020 819 2180 480 4660 649 7060 819 2280 480 4660 649 7060 819 2300 480 4700 677 7100 819 2300 <t< td=""><td>1840</td><td>423</td><td>4240</td><td>621</td><td>6640</td><td>790</td></t<>	1840	423	4240	621	6640	790					
1880 452 4280 649 6680 790 1900 452 4300 649 6700 790 1920 423 4320 677 6720 790 1940 452 4340 649 6740 790 1960 452 4360 649 6760 790 1980 452 4380 649 6760 790 1980 452 4380 649 6780 819 2000 423 4400 649 6800 819 2020 452 4420 677 6820 819 2040 480 4440 621 6840 819 2060 452 4460 649 6860 819 2060 452 4460 649 6860 819 2100 452 4500 677 6900 819 2120 452 4520 677 6900 819 2140 480 4560 649 6960 819 2180 480 4560 649 6960 819 2200 452 4600 649 7000 790 2220 480 4660 649 7000 790 2220 480 4660 649 7000 819 2240 480 4660 649 7000 819 2260 480 4700 677 7120 819 2300 <t< td=""><td>1860</td><td>452</td><td>4260</td><td>649</td><td>6660</td><td>790</td></t<>	1860	452	4260	649	6660	790					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1880	452	4280	649	6680	790					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1900	452	4300	649	6700	790					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1920	423	4320	677	6720	790					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1940	452	4340	649	6740	790					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1960	452	4360	649	6760	790					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1980	452	4380	649	6780	819					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2000	423	4400	649	6800	819					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2020	452	4420	677	6820	819					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2040	480	4440	621	6840	819					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2060	452	4460	649	6860	819					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2080	480	4480	677	6880	819					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2100	452	4500	677	6900	819					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2120	452	4520	677	6920	819					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2140	480	4540	677	6940	819					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2160	480	4560	649	6960	819					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2180	480	4580	649	6980	790					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2200	452	4600	649	7000	790					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2220	480	4620	677	7020	819					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2240	480	4640	649	7040	819					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2260	480	4660	649	7060	819					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2280	480	4680	677	7080	819					
	2300	480	4700	677	7100	819					
2340 480 4740 677 7140 819 2360 480 4760 677 7160 847 2380 452 4780 677 7180 819	2320	480	4720	677	7120	819					
2360 480 4760 677 7160 847 2380 452 4780 677 7180 819	2340	480	4740	677	7140	819					
2380 452 4780 677 7180 819	2360	480	4760	677	7160	847					
	2380	452	4780	677	7180	819					

720	00 819	

ANNEXE F : CARACTÉRISATION DES BOUES : ST, STV, DCO, CONSTANTE CINÉTIQUE

				Alun (dose de 100mg/l)					
	Volume boues (ml)	Poids Coupelle (mg)	Coupelle+ Boues fraîches (mg)	Coupelle+Boues sèches à 105°(mg)	ST (g/L)	Coupelle+Boues Calcinées à 550°C(mg)	STV (g/L)	STV/ST (%)	COD (mg/l)
mesure	40	2272,5	53876,5	2559,5	7,2	2329,7	5,7	80,1	7038
duplicata	40	2241,2	53569,3	2516,8	6,9	2297,5	5,5	79,6	7497
triplicata	40	2247,5	38625,2	2462,7	5,4	2282,1	4,5	83,9	7803

Tableau 40 : Caractérisation des boues issues du traitement des eaux usées avec l'alun et le Tanfloc

	Tanin (dose de 100mg/l)											
	Volume boues (ml)	Poids Coupelle (mg)	Coupelle+ Boues fraîche (mg)	Coupelle+Boues sèche à 105°C (mg)	ST (g/L)	Coupelle+Boues Calcinées à 550°C(mg)	STV (g/L)	STV/ST (%)	COD (mg/l)			
mesure	60	2378,5	61286,3	2652,5	4,6	2428,5	3,7	81,8	10404			
duplicata	60	2383,0	58403,9	2580,1	3,3	2424,0	2,6	79,2	4845			

Jours	\mathbf{A}_1	\mathbf{A}_2	A ₃	A'1'	(A1-A'1) ²	A'2	$(A_2-A'_2)^2$	A'3	(A3-A'3) ²
0	0	0	0	0	0	0	0	0	0
0,3	452	396	564	202,623	62188,945	160,632	55398,272	193,950	136937,231
0,7	508	508	620	391,606	13547,588	309,336	39467,367	374,120	60456,752
1	790	678	790	567,867	49342,975	446,999	53361,516	541,491	61756,629
2	1130	904	1072	1028,600	10281,862	801,637	10478,264	975,578	9297,114
3	1412	1072	1354	1402,412	91,935	1082,997	120,941	1323,565	926,277
4	1580	1186	1412	1705,700	15800,404	1306,222	14453,289	1602,529	36301,425
5	1806	1298	1638	1951,769	21248,669	1483,323	34344,463	1826,161	35404,697
					172502,377		207624,112		341080,124

Tableau 41 : Détermination avec le solveur de la constante cinétique de biodégradation des boues issues du traitement avec l'alun

A1, A2, A3= Triplicata de la mesure de DBO des boues issues du traitement avec l'alun

A'1, A'2, A'3= DBO calculé en fonction de l'équation : $DBO_t = DBO_u(1 - e^{-Kt})$

K est déterminée de telle sorte que l'erreur $(A_i-A'_i)^2$ soit la plus petite possible ; K \leq 1 ; DBO₅/DBO_U=0.6

Tableau 42 : Constantes cinétiques de biodégradation des boues issues du traitement avec l'alun

	A ₁			A2			A3	
K ₁	DBOu	DBO5/DBOu	K ₂	DBOu	DBO5/DBOu	K ₃	DBOu	DBO5/DBOu
0,21	3010	0,6	0,23	2163,3	0,6	0,22	2730	0,6

Jours	T_1	T' 1	(T1-T'1) ²	T_2	T' 2	(T2-T'2) ²	T 3	T' 3	(T3-T'3) ²
0	0	0	0	0	0	0	0	0	0
0,3	452	171,616	78615,161	282	180,512	10299,735	396	176,015	48393,404
0,6	508	330,717	31429,239	508	347,179	25863,526	564	339,833	50251,006
1	734	478,216	65425,604	734	501,061	54260,730	734	492,298	58419,769
2	960	859,254	10149,684	1072	895,438	31174,155	960	889,180	5015,460
3	1130	1162,863	1079,981	1186	1205,846	393,878	1186	1209,139	535,419
4	1298	1404,776	11401,154	1354	1450,164	9247,537	1354	1467,084	12788,062
5	1412	1597,531	34421,651	1412	1642,463	53113,162	1524	1675,035	22811,594
			232522,475			184352,723			198214,713

 Tableau 43 : Détermination avec le solveur de la constante cinétique de biodégradation des boues issues du traitement avec le

 Tanfloc

T1, T2, T3= Triplicata de la mesure de DBO des boues issues du traitement avec le *Tanfloc*

T'1, T'2, T'3= DBO calculé en fonction de l'équation : $DBO_t = DBO_u(1 - e^{-Kt})$

K est déterminée de telle sorte que l'erreur $(T_i-T'_i)^2$ soit la plus petite possible; K ≤ 1 ; DBO₅/DBO_U=0.6

Tableau 44 : Constantes cinétiques de biodégradation des boues issues du traitement avec le Tanfloc

	T ₁			T 2			T 3	
K ₁	DBOu	DBO5/DBOu	\mathbf{K}_2	DBOu	DBO5/DBOu	K ₃	DBOu	DBO5/DBOu
0,23	2353,3	0,6	0,24	2353,3	0,6	0,22	2540	0,6