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Abstract 

The emergence of building performance optimization is recognized as a way to achieve sustainable 

building designs. In this paper, the problem consists in minimizing simultaneously the emissions of 

greenhouse gases (GHG) related to building energy consumption and those related to building materials. 

This multi-objective optimization problem involves variables with different hierarchical levels, i.e. 

variables that can become obsolete depending on the value of the other variables. To solve it, NSGA-II is 

compared with an algorithm designed specifically to deal with hierarchical variables, namely sNSGA. 

Evaluation metrics such as convergence, diversity and hypervolume show that both algorithms handle 

hierarchical variables, but the analysis of the Pareto front confirms that in the present case, NSGA-II is 

better to identify optimal solutions than sNSGA. All the optimal solutions are made of buildings with 

wooden envelopes and relied either on heat pumps or on electrical heaters for proving heating.  

Keywords: Hierarchical variables; NSGA-II; building performance optimization; heating systems; 

building envelope  

Nomenclature 

Variables 

𝐶𝑂2𝐸  CO2 equivalent due to the building energy consumption [ton of CO2eq] 

𝐶𝑂2𝑀 CO2 equivalent due to the building materials and heating systems [ton of CO2eq] 

 

 

( )( )tC P  Metric of convergence [-] 

𝑑𝑖  Euclidean distance [-] 
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Env Wall envelope type [-] 

𝐸𝑡𝑜𝑡  Total energy consumption of the heating system [kWh] 

𝑓𝑘 Values of the kth objectives function [ton of CO2eq] 

( )tF  Non-dominated set of solution from generation t [-] 

Gen Number of generation before stopping the evolution process [-] 

HE Heat emitter type [-] 

HS Heating system type [-] 

 

 

  

HV Hypervolume (metric of diversity and convergence) [-] 

I Carbon intensity of energy [CO2eq/kWh] 

𝑚̇𝑤 Maximum water flow rate [kg/hr] 

 
𝑃∗ Pareto optimal point 

𝑃(𝑡) Population from generation t [-] 

PF Penalty function [-] 

Pop Population size [-] 

𝑃𝑐  Crossover probability [-] 

𝑃𝑚  Mutation probability [-] 

𝑞𝑎𝑢𝑥 Heat pump auxiliary power [kW] 

𝑞𝑏𝑜  Boiler heating system capacity [kW] 

𝑞𝑒𝑟  Electrical heating system capacity [kW] 

𝑞ℎ𝑒 Heater rated capacity [kW] 

𝑞ℎ𝑝 Heat pump heating system capacity [kW] 

RSP Percentage of time of respected set point condition [-] 

t Generation number [-] 

𝑇𝑎  Zone ambient temperature [°C] 

𝑇𝑎𝑢𝑥  Enabling temperature for auxiliary electric power unit  [°C] 

𝑇𝑠𝑝  Set point temperature for unoccupied hours [°C] 

𝑇𝑧 General set point temperature [°C] 

𝑇𝑤  Water temperature at radiator inlet [°C] 

Win Windows type [-] 

WWR Windows to wall ratio [-] 

Yr Number of year [-] 

Greek letters 

α Monthly average outdoor temperature increase rate [-] 

 
δ Number of hours of the simulation period [hr] 

Δ Metric of diversity [-] 

Δt Time step [hr] 

Subscripts 

E East 

 
N North 

S South 

W West 
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Acronyms 

 

 

 

 

 

 

 

 

 

1 Introduction 

Building energy modeling (BEM) combined with building performance optimization (BPO) has been an 

active field of research over the last few years. Evins reviewed 74 studies among the most significant in 

this domain (Evins 2013). The urgent need to design greener and yet affordable buildings has contributed 

to the emergence of this body of work. The challenges and opportunities related to the integration of such 

optimization tools were analyzed (Attia et al. 2013). The authors reported the main following obstacles: 

the low trust of professionals in the results, the long computational time and the lack of standard systematic 

approach. 

According to literature, genetic algorithms (GAs) are the most commonly used method for multi-objective 

building optimization (Evins 2013). They are particularly attractive to solve problems with discrete and 

continuous variables, and identify a set of non-dominated solutions. They have been compared to other 

algorithms in many studies where their outperformance has been proven (Brownlee, Wright, and 

Mourshed 2011; Bichiou and Krarti 2011; Tuhus-Dubrow and Krarti 2010). Bichiou and Krati have 

compared three algorithms for the optimization of envelopes and HVAC systems in residential buildings. 

Among them was a GA, a particle swarm optimization (PSO) technique and a sequential search algorithm. 

The GA and PSO required less computational time than the last one in order to obtain optimal solutions. 

Moreover, the GA has shown better performances when more than 10 variables were considered in the 

BEM Building energy modeling 

BPO Building performance optimization 

CO2eq Equivalent emissions of carbon dioxide 

CLT Cross-laminated timber wall 

DSW Double stud wall 

FSS Faure sequence sampling 

GAs Genetic algorithms 

HSS Hammersley sequence sampling 

HVAC Heating, ventilating and air conditioning 

LFW Light frame wooden wall 

LHS Latin hypercube sampling 

PSO Particle swarm optimization 

SBX Simulated binary crossover 

sGA Structured genetic algorithm 

sNSGA Structured non-dominated sorting genetic algorithm 
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optimization.  

Former GAs exhibited some deficiencies such as the lack of elitism, the convergence to local optimum or 

the lack of genetic diversity. These issues were addressed with the development of the Non-dominated 

Sorting Genetic Algorithm (NSGA-II) (Deb et al. 2002). It is used extensively in energy and building 

studies as reviewed by Attia et al. (2013) and it is one of the most efficient GAs according to the following 

comparison studies (Deb et al. 2002; Zitzler, Deb, and Thiele 2000). 

Despite of their advantages, authors claimed that GAs can performs poorly when they have to solve 

deceptive problems, in which case the algorithm can mislead the search to some local optima rather than 

the global optimum (Chen et al. (2008) and Manso and Correia (2013)). When this situation occurs, the 

set of solutions become homogeneous and the poor genetic diversity makes it hard to move toward another 

region of the search space. It can lead to a premature convergence of the optimization process. The 

presence of hierarchical variables enhances the probability to face a deceptive problem and can reduce the 

efficiency of typical GAs (Dasgupta and McGregor 1993; Molfetas 2006; Dasgupta 1994; Tiwari and Roy 

2002), but no building optimization studies have addressed that aspect. Figure 1 shows a schematic 

representation of this type of variables. In this example, the variable a can take 3 different discrete values 

(e.g., the type of heating system which can be chosen among a list). This selection activates a specific set 

of inherited low-level variables: {a11, a12, a13}, {a21} or {a31, a32} (e.g., variables associated to a specific 

type of heating system). Inherited variables can be discrete or continuous. It happens that realistic building 

multi-objective optimization problems typically involve hierarchical variables, but the building 

community has not addressed the implications of such a feature. As can be seen, it is still unclear whether 

a particular algorithm should be used to achieve a satisfactory convergence rate and a true non-dominated 

set of solutions when dealing with such variables in typical BPO problems. 

 

a

a11 a12 a13 a21 a31 a32

a = 1 a = 3

a = 2

 

Figure 1: Schematic representation of an example of hierarchical variables. In blue, a high-level variable, in green, the 

inherited low-level variables. 
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In an early stage of design optimization, several choices of sub-systems should be considered including 

their inherited variables. However, standard GAs do not usually understand the link existing between a 

high-level design variable (e.g. sub-system selection such as the type of heating system) and the low-level 

design variables (e.g. the inherited variables belonging to a specific sub-system such as the design 

parameters related to the specific type of heating system). Dasgupta and McGregor (1993) have developed 

a more robust algorithm for such cases: a structured Genetic Algorithm (sGA). Based on the theoretical 

approach of sGA, the present study proposes a modified NSGA-II implemented in DEAP1 named sNSGA. 

The main goal of this study is to compare the performance of sNSGA and NSGA-II for a building 

optimization problem with hierarchical variables. The algorithms are applied to a relevant and timely 

multi-objective optimization problem related to the energy and environmental performance of a research 

building facility (Strachan, Svehla, et al. 2016). Since the optimal solutions returned by both algorithms 

are also valuable to the industry and research community, their analysis is briefly presented at the end of 

the paper. 

2 Relevant studies 

The first usages of BPO were oriented toward the optimization of one set of variables at a time: e.g. 

architecture variables, daylighting variables, natural ventilation strategies, variables related to heating, 

ventilating and air conditioning (HVAC) systems, managing of energy storage and renewable energy, etc. 

(Evins 2013). Despite the fact that it is an efficient way to optimize systems, this sequential approach does 

not consider the potential synergies between different set of variables and narrows down the capacity of 

designing greener and at the same time cheaper buildings. On the contrary, holistic approaches consider 

simultaneously the variables of several systems in the problem formulation and resolution.  

2.1 Multi-objective optimization without hierarchical variables 

Hamdy, Hasan, and Siren (2011) have considered five types of heating systems combined with envelope 

parameters, i.e. insulation thickness, windows type, building tightness and shading type. Their main goal 

was to minimize the investment cost and the carbon dioxide equivalent emissions. In a continuation of 

this work, PV panels were included in order to achieve a nearly zero energy design (Hamdy, Hasan, and 

Siren 2013). Verbeeck and Hens (2007) used GAs to minimize the life cycle cost, energy and 

 

1 DEAP is an evolutionary framework freely available in python designed for a fast prototyping of new algorithms 
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environmental impacts of low energy dwellings in Belgium. The methodology was based on a two-stage 

framework. At first, the building envelope was optimized by minimizing the 3 objectives functions. Based 

on the net energy demand of every scenario, the energy systems were added to every scenario in order to 

determine the new values of the 3 objectives. In another study (Bichiou and Krarti 2011), the HVAC 

systems were represented as discrete variables. For example, the algorithm could select an air conditioning 

system combined with a furnace or an air conditioning system combined with electric resistances. Wright 

and Farmani (2001) have simultaneously optimized the envelope, the HVAC system size and the control 

strategy using a GA. The intention was to reduce the energy, cost and thermal discomfort. 

In the studies presented above, the energy systems were represented as “black boxes”, i.e. that the detailed 

composition of the systems were not fully implemented and interconnected with the building model. In 

these studies (Hamdy, Hasan, and Siren 2011a, 2013), the space-heating energy demand is determined in 

a first stage without specifying the heating system. The best solutions were then combined with 4 heating 

system options and depending of the selection, new primary energy consumption and life cycle cost were 

determined. There were no hierarchical variables related to the specific heating systems that were 

optimized simultaneously. 

2.2 Multi-objective optimization with hierarchical variables 

A whole building design optimization problem is obviously composed with hierarchical variables (Wang 

2005; Wang, Zmeureanu, and Rivard 2005). In the early 1990s, a new approach was developed to consider 

hierarchy between variables, namely sGA (Dasgupta and McGregor 1993). This algorithm makes a 

distinction between the chromosome and the phenotype. The chromosome is represented by a set of 

strings, each one representing a variable. It contains all the possible variables. The information transferred 

to the evaluation function comes from the phenotype. Only the active genes of the chromosome are 

transferred to the phenotype. The other “dormant” genes are stored in the chromosome and will be 

activated only when the higher level variable value is meaningful for them. This strategy allows preserving 

the quality of the part of a chromosome that was dormant (Parmee 1998).  

Although sGA allows to explore several design paths, some deficiencies and limitations are revealed 

(Parmee 1998): the mutation probability 𝑃𝑚 is imbalanced between the different design paths and the 

crossover operator applied to two designs may damage them if they are represented by different high-level 

variables. If 𝑃𝑚 and the crossover probability 𝑃𝑐 are low, it will reduce the chance of disrupting good 
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combinations; however, it may trap the search to local optima without exploring all the design paths. To 

overcome those limitations, several solutions are proposed: a variable mutation approach according to the 

variables level, a hybrid mutation approach with variation after a certain number of generations and a 

crossover restriction applied to the high-level variables. The result algorithm is named GAANT (GA 

combined with ant colony search) that combined the most successful solutions together.  

The conceptual framework developed by Dasgupta and McGregor (1993) was adapted by Rafiq, Mathews, 

and Bullock( 2003) to explore several structural designs of building construction. Traditionally, the major 

structural dimensions and grid layouts are determined by specialists and the remaining parameters 

optimized in a later phase according to specific objectives (cost, speed of construction, etc.). This 

restrictive approach in terms of design options was overcome with sGA. It has been used successfully to 

explore many types of frame and their sub-components (Rafiq, Mathews, and Bullock 2003). The 

algorithm was implemented on a platform named DPRO, on which one had the capacity to enable or 

disable a part of the gene. Wang et al. have proposed an object-oriented framework for the optimization 

of green buildings using sGA (Wang, Rivard, and Zmeureanu 2005). The high-level variables were the 

type of walls whereas the lower level variables were related with their detailed composition. Other 

variables like the orientation, the shape of building and the windows ratio are enabled independently of 

the choice of the high-level variables. The framework has been validated using mathematical functions 

for single objective and multi-objective optimization.  

The literature shows that sGA is capable of representing hierarchical variables but the actual benefits of 

using such an approach to solve BPO problems involving hierarchical variables are unclear. In fact, 

although this type of variables is abundant in BPO, there is still a lot of unknown as to how to treat them 

and how they affect the final solutions. This study addresses this specific issue.  

2.3 Introduction to genetic algorithms 

GAs have been used to solve single and multi-objective optimization problems (Tuhus-Dubrow and Krarti 

2010; Hamdy, Hasan, and Siren 2013; Palonen, Hasan, and Siren 2009; Evins 2015; Gossard, Lartigue, 

and Thellier 2013; Caldas and Norford 2003). They are particularly attractive to optimize non-

differentiable functions (Magnier and Haghighat 2010). The optimization parameters (e.g., population 

size, crossover probability, mutation probability) can have an influence on the efficiency and the 

performance of the method. However, it is difficult to apply common rules to set the values of those 
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parameters (Alajmi and Wright 2014; Wright and Alajmi 2016). Most of them influence the speed of 

convergence and the design space covered in an opposite way. Different studies argued that the population 

size and the number of generations are the most important parameters (Seshadri 2006; Evins 2010; 

Goldberg, Deb, and Clark 1991). The initial population should contain a rich set of solutions, which means 

that a higher number of design variables demands a bigger population. 

3 Structured Non-dominated Sorting Genetic Algorithm 

In this paper, a structured non-dominated sorting genetic algorithm was developed to solve multi-objective 

building design problems with hierarchical variables. It is a modified version of NSGA-II and its 

development was inspired from the following studies: Dasgupta and McGregor (1993), Molfetas (2006), 

Wang, Rivard, and Zmeureanu (2005). The algorithm which we named sNSGA is presented in this section. 

It has the capacity to deal with structured variables and is specifically adapted to the case of BPO. Figure 

2 shows a schematic representation of a genetic algorithm and distinctions between sNSGA and NSGA-

II are detailed in the next sections. 

 

Creation of the 1st population

size = 10 x nb. var.

LHS sampling

1.

Evaluation of objective 

functions

2.

Tournament 

selection based 

on dominance 

and crowding 

distance

3.

Application of 

mutation and 

crossover on 

the selected 

individuals 

4.
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evaluation of 

the new 
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5.

8.

Combination 

of the old 
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and the 

offspring

6.

Selection 

operator 

(based on 

non- 
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7.
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reached?

END
Y

N

 

Figure 2: Schematic representation of a genetic algorithm. 
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Most of the steps are processed from a script written in Python (using DEAP framework) except for steps 

2 and 5 that are related to the evaluation of the objective functions, which are processed by TRNSYS in 

our case (energy simulation software). The parameters defining each individual in step 1 are transferred 

to TRNSYS to perform an energy simulation. The results are sent back to the script for the evaluation of 

the fitness functions. Steps 3 to 8 describe the genetic evolution procedure. During this process, the fitter 

individuals will reproduce and create an offspring population ready for a new evaluation. The evolution 

stops after a pre-defined number of generations Gen, as defined in Table 4. Based on the thorough analysis 

of Section 5, it will be shown that the value of Gen that was chosen was sufficient to provide a good 

convergence to the optimal solutions. 

3.1 Initial population 

There are several techniques to initialize the first population and each one can affect the convergence of 

the optimization algorithm. As BPO requires a lot of time-consuming simulations, convergence speed is 

a critical characteristic to consider. For a typical GA, a uniformly distributed random population is first 

created. Preechakul and Kheawhom (2009) have compared this technique with a Latin hypercube 

sampling (LHS), a Faure sequence sampling (FSS) and a Hammersley sequence sampling (HSS) for 9 test 

problems. It was demonstrated that LHS, FSS and HSS are more effective in terms of speed of 

convergence and diversity of optimal solutions. Therefore, the present sNSGA uses LHS to create the first 

population with a population size (Pop) equal to 10 times the number of variables. The population size is 

based on the work of Evins (2016, 2010), Wright and Alajmi (2016) and Hamdy, Hasan, and Siren 

(2011b). 

3.2 Description of the evolution process 

Tournament selection 

In step 3, a tournament selection based on crowding distance and dominance is used to generate two lists 

of individuals of size Pop/2 ready for reproduction. This operation is applied identically as for the NSGA-

II.  

Simulated binary crossover 

From the two lists generated above, pairs of individuals are selected for the mating process. The NSGA-

II uses the genetic operator named simulated binary crossover (SBX) in the case of real-coded GAs 
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(Agrawal, Deb, and Agrawal 1995). SBX was designed to simulate the behavior of a binary coded GA 

with one-point crossover. The sNSGA proposes a modification to the SBX. If both individuals have the 

same high-level values, only the independent variables and the inherited low-level variables are subject to 

mating. The independent variables referred to those without any relation to the high-level variables. The 

other variables keep their original value. If both individuals have different high-level values, only the 

independent variables are subject to mating. In this paper, 𝑃𝑐 is set to 0.9, a typical value recommended 

by Deb et al. (2002). 

Polynomial mutation  

The mutation is an important operator in GAs in order to explore new regions of the design space. A high 

𝑃𝑚 value enhances the exploratory power of the algorithm while reducing the speed of convergence. 

NSGA-II uses a genetic operator named polynomial mutation. The operator is applied systematically to 

the resulting individuals from the mating process. The sNSGA proposes the following modification: the 

only variables that can mutate are the independent variables, the high-level variable and the inherited low-

level variables. The mutation probability is defined by 𝑃𝑚 = 1/𝑥 with x being the number of variables 

available for mutation, based on Deb et al. (2002). 

As can be seen above, the different parameters of the algorithms (i.e., population size, crossover rate, 

mutation rate, number of generations) were all selected based on current best practices and 

recommendations from literature. It is worth to mention that different techniques have also been developed 

to “fine-tune” the parameters of evolutionary algorithms (see, for example, López-Ibáñez et al. (2016) and 

Hutter et al. (2011)), but these techniques were not used explicitly here since the information available in 

literature was deemed sufficient for the purpose of selecting the proper algorithm parameters.  

3.3 DEAP, an evolutionary framework for rapid prototyping of new algorithm 

Many optimization tools are available in order to support BPO. Attia et al. (2013) have sorted 12 tools in 

order of importance from an exhaustive review of 165 publications in the domain. The results show that 

GenOpt and Matlab are the two most commonly used. With similar features as the one included in GenOpt 

and Matlab, DEAP is an open-source platform designed for a fast prototyping of new algorithms (Rainville 

et al. 2012). New toolboxes, genetic operators and algorithms can easily be created or the users can use 

the ones from a database. Moreover, it is compatible with SCOOP, a Python module allowing concurrent 

parallel programming on various environments. It allows speeding up the optimization process which can 
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be crucial when the number of design variables is high. For all those reasons, DEAP was selected in order 

to implement the sNSGA and NSGA-II. 

4 Case study 

The algorithms NSGA-II and sNSGA were applied to a case study in order to compare their performance 

for building design optimization. The optimization problem was carefully chosen based on a current need 

expressed to our team by the industry and by policy makers to identify the best design tradeoffs between 

initial CO2 and operation CO2 for residential buildings and in particular to develop appropriate methods 

to do that. In a review of 95 case studies of residential buildings, Chastas et al. (2017) came to the 

conclusion that the embodied carbon emissions of residential building reflects a share between 9% and 

80% of the total life cycle impact. Sartori and Hestnes (2007) showed that design of low-energy buildings 

is beneficial for life cycle energy demand but increases the embodied energy. In contexts involving high 

share of renewable energy, Lessard et al. (2017) have concluded via an exhaustive LCA that contributions 

from materials can account for more than 50% for the environmental impact, the other part coming from 

the energy consumption (Lessard et al. 2017). Therefore, there is a great need to optimize building designs 

according to these two objectives (i.e. initial CO2 and operation CO2) and as will be explained below, this 

optimization problem involves hierarchical variables and design variables related to different design 

disciplines (i.e., architecture, HVAC systems, control, etc.). 

4.1 Description of the building 

The studied building is located in Holzkirchen, Germany and is named Twin Houses. It consists in a typical 

size single-family home. Measurement data have been compared with a TRNSYS energy model 

developed in the context of EBC Annex 58, a project leaded by the International Energy Agency, which 

makes the choice of this specific building very appealing for the purpose of this study. The results have 

shown a strong correlation between measured and predicted temperatures (Strachan, Scehla, et al. 2016; 

Strachan P. et al. 2015). In order to optimize the actual building, a set of variables has been selected and 

added to the TRNSYS model (see Table 1). First, a list of 19 different building envelopes has been 

selected, each of which is detailed in Table 2. Four types of structure are represented: light-frame wooden 

wall (LFW), double stud wall (DSW), concrete-block wall and cross-laminated timber wall (CLT). For 

every type of structure, several levels of insulation are selected with different types of insulation materials. 

The overall U-values of these building envelopes vary from 0.12 to 0.31 W/m2-K accordingly. In a similar 
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manner, a list of 9 windows has been chosen: double glazed windows with low SHGC, double glazed 

windows with high SHGC and triple glazed windows with high SHGC. In each category, there is three 

possible frames composition: wood, aluminum or PVC. The overall U-values of these windows vary from 

0.59 to 1.29 W/m2-K and other details are shown in Table 3. The window and wall types are among the 

independent design variables.  

The building dimensions are fixed to 10 m × 10 m with a variable windows-to-wall ratio for each façade. 

Figure 3 shows the layout of the ground floor, which is the focus of the multi-objective optimization. The 

design parameters of first floor and of the basement were not optimized in the present study and their zone 

temperatures were set to be constant (18°C and 21°C respectively). Only the heating need of the ground 

floor is included in the objective function calculation. 

 

Figure 3: Experimental layout, adaptation from Ref. (Strachan, Scehla, et al. 2016). 
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4.2 Description of the heating systems 

Contrarily to the previously defined variables (independent variables), the ones related to the heating 

systems are hierarchical variables and a schematic representation is shown in Figure 4. Three possible 

heating systems (high-level variable) have been chosen in order to meet the heating demand of the ground 

floor: gas boiler, electrical heat pump, electric heating. The heating capacity of each system is among the 

low-level variables (𝑞𝑏𝑜 , 𝑞ℎ𝑝, 𝑞𝑒𝑟). The heat distribution is provided by water radiators, water convectors 

or electrical radiators. The number of heaters per zone varies with the size of the room but this number is 

not optimized in this work and each heater is identical, i.e. same type and same heater rated capacity. Both 

last characteristics are also low-level design variables. The water radiator capacity is evaluated with a 

design surface temperature of 70°C and a surrounding air temperature of 20°C. The maximum water flow 

rate 𝑚̇𝑤 is set to limit the water velocity to 1.75 m/s considering a pipe diameter of 12.7 mm (Vedavarz, 

Kumar, and Hussain 2007; McQuiston, Parker, and Spitler 2005). In the presence of a water radiator, the 

fluid is heated from a gas boiler or a heat pump2. On the other hand, the electrical heater does not require 

any other system than the baseboard electric heater itself. 

The boiler and combustion efficiency are interpolated in a predefined table including several water inlet 

temperature and three part-load levels. The data were collected from a typical boiler (Thomas H. Durkin 

2006). The characteristics remain the same irrespectively to the 𝑞𝑏𝑜 values. In a similar manner, heating 

performance data (heating capacity and power consumption) has been defined for the heat pump according 

to several water inlet temperatures and outdoor air temperatures. The data was collected from the 

characteristic curves of a LA 16MS heat pump (Dimplex 2008). They have been normalized in order to 

be scaled according to 𝑞ℎ𝑝. 

The operation of the heating systems (boiler and heat pump) is done by a proportional controller. This last 

one sets the water flow rate in the radiator based on the zone ambient temperature 𝑇𝑎. A deviation of 0.3°C 

from the general set point temperature 𝑇𝑧 will bring the water flow rate to its maximum value 𝑚̇𝑤 with 

𝑇𝑧 = 21°C during the occupied hour and 𝑇𝑧 = 𝑇𝑠𝑝 during the unoccupied hours, with 𝑇𝑠𝑝  the set point 

temperature for unoccupied hours. Moreover, the water temperature at the radiator inlet 𝑇𝑤 enables or 

disables the heating system. With the heat pump heating system, a water tank is added and acts as a damper 

 

2 Type751 and type941 respectively in TRNSYS 
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between the heat source and the heat sink. It gives more stability to the TRNSYS model. 𝑚̇𝑤 and 𝑇𝑤 are 

low-level optimization variables.  

It is a common practice to change the value 𝑇𝑤 according to the outdoor temperature (outdoor reset 

temperature) (Arena and Faakye 2013). Therefore, another optimization variable named α represents the 

monthly water temperature increase rate for every degree less than 0°C (looking at the monthly average 

outdoor temperature). With 𝑇𝑤 = 40°C and α = 0.5, an average monthly outdoor temperature of −10°C 

will increase 𝑇𝑤  by 5 °C. An auxiliary electric power unit can be combined with the heat pump to cope 

with the efficiency drop during cold days. The temperature to enable or disable the auxiliary electric power 

unit (𝑇𝑎𝑢𝑥) is also a low-level optimization variable.  

The operation of the electrical heating system is slightly different. Each zone is controlled by a three-stage 

room thermostat. The radiator is at full capacity with deviation of 0.3°C and at two third of its capacity 

with a deviation of 0.15°C.  

4.3 Summary of the optimization variables 

Table 1 presents all the optimization variables with their upper and lower bounds and Figure 4 shows a 

schematic representation of the hierarchy between variables. 

Table 1: List of the optimization variables with their upper and lower bounds.  

Variable 

Symbol 

Description and unit [] Variable 

type 

Range 

𝑇𝑠𝑝  Temperature set point for the unoccupied hours [°C] ID+CO [16 - 21] 

Env Wall envelope type [-] ID+DI {0,2,..18} 

𝑊𝑊𝑅𝑁  Windows to wall ratio North façade [-] ID+CO [0.1-0.3] 

𝑊𝑊𝑅𝐸 𝑜𝑟 𝑊 Windows to wall ratio East façade [-] ID+CO [0.1-0.5] 

𝑊𝑊𝑅𝑆 Windows to wall ratio South façade [-] ID+CO [0.1-0.7] 

Win Windows type [-] ID+DI {0,2,…8} 

HS Heating system type (heat pump = 0, boiler = 1, electric rad. = 2) HL+DI {0,1,2} 

𝑞ℎ𝑒  Heater rated capacity [kW] LL+CO [0.25 - 1.5] 

𝑇𝑤  Heater inlet water temperature [°C] LL+CO [35 - 65] 

𝑞𝑏𝑜, 𝑞ℎ𝑝 , 𝑞𝑒𝑟  Heating system rated capacity [kW] LL+CO [2.5 - 15] 

𝑚̇𝑤 Maximum water flow rate in the heat emitter [kg/hr] LL+CO [100 - 800] 

HE Heat emitter type (Convector = 0, Radiator = 1) [-] LL+DI {0,1} 

α𝑎 Water temperature increase rate @ heat emitter inlet [°C/°C] LL+CO [0 - 1] 

𝑞𝑎𝑢𝑥  Heat pump auxiliary power [kW] LL+CO [0 - 7.5] 

𝑇𝑎𝑢𝑥  Set point temperature to activate heat pump auxiliary power  [°C] LL+CO [-10 - 5] 

Legend: HL = High-level, LL = Low-level, ID = Independent, DI = Discrete, CO = Continuous 
a Monthly water temperature increase rate for every degree less than 0°C (looking at the monthly average temperature). 
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Figure 4: Schematic representation of the hierarchy between variables. 

 

4.4 Objective functions and penalty function 

In order to compare the optimization approaches outlined above with a multi-objective BPO problem, a 

set of two important objectives has been chosen to be minimized simultaneously. They are related to the 

environmental impact of the building: the initial equivalent emissions of carbon dioxide (CO2eq) due to 

the building materials and heating systems materials (𝐶𝑂2𝑀) and the CO2eq due to the building energy 

consumption (𝐶𝑂2𝐸). Although 𝐶𝑂2𝑀 and 𝐶𝑂2𝐸 have the same units and could have been summed to get 

a single objective, they were kept here as two independent objectives to minimize for the following 

reasons. It is more and more reported that in modern buildings, it becomes increasingly hard to make a 

tradeoff between the environmental impact of the input materials and that of the energy consumption 

(Sartori and Hestnes 2007; Winther and Hestnes 1999; Gagnon 2015). In high performance buildings, the 

environmental impact of both materials and energy can have the same order of magnitude and should be 

considered simultaneously (Chastas et al. 2017). Moreover, 𝐶𝑂2𝑀 is the amount of CO2eq emitted in the 

atmosphere during the construction phase whereas 𝐶𝑂2𝐸 is the amount of CO2eq that will be gradually 

released in the atmosphere over a period of time. The first one thus have immediate impacts on climate 

changes as opposed to the second one. 

𝐶𝑂2𝑀 considers only the materials represented by the design variables. It is assumed that the other 

materials remain constant, i.e. they are not influenced by the values of the design variables, and thus do 

not influence the optimization. For the latter (𝐶𝑂2𝐸), it accounts for the CO2eq related with the operation 

of the heating systems during a period of 15 years. The building location is taken into account for the 

calculation of both objectives functions. In order to find solutions capable of reaching 𝑇𝑧 a penalty function 
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(PF) multiplies the CO2eq when the heating system does not supply enough heat (Hamdy, Hasan, and Siren 

2013; Magnier and Haghighat 2010; Nguyen, Reiter, and Rigo 2014): 

 2 t tE oPF E I YrCO =     (1) 

where 𝐸𝑡𝑜𝑡 is the total energy consumption of the heating system, I is the carbon intensity of the energy 

and Yr is the number of years considered. To determine PF, 𝑇𝑎 is first compared to 𝑇𝑧 at every time step 

and for each zone: 

 1  if     1  C
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When 1 =iT  the time is cumulated and RSP defined as: 
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with t  being the time step and δ the number of hours of the simulation period. RSP represents the degree-

weighted percentage of time during which the set point is respected during the simulation period 

(September to April). When RSP was below 3 °C‒%, no penalty was applied (i.e., 1PF = ). Otherwise, 

PF is defined by the following quadratic distance: 

 21250
( 0.03) 1

9
PF RSP= − +  (4) 

Such a function has the advantage of penalizing gradually the solutions unable to reach 𝑇𝑧, with a very 

small penalty when RSP is close to 0.03. The coefficients of Eq. (4) have been selected in such a way that 

PF = 1.5 when RSP = 0.09. Other possible penalty strategies are detailed by Coello and Lamont (2004) 

and DEAP project (2017).  

4.5 Carbon footprint evaluation method 

The environmental performance evaluation is a complex topic and is guided by the norm ISO 14040, 

which describes the principles and framework for life cycle assessment (LCA). This standard concerns 

the evaluation of the environmental impacts associated with the entire lifetime of a product, from raw 

material extraction to disposal or recycling. Nowadays, several tools have been designed to help in 

performing an LCA for many types of products. A state-of-the-art  (Zabalza Bribián, Aranda Usón, and 
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Scarpellini 2009) presents a list of tools developed specifically for buildings. Recently, Fraunhofer IBP 

has developed a user-friendly tool currently named SBS Building Sustainability3. It has been designed for 

a fast evaluation of the environmental building performance. It allows creating a construction by using 

data from many European countries from the ESUCO database. 

For the purpose of this study, only the impacts from phases A1 to A3 are considered in order to determine 

𝐶𝑂2𝑀. They include the raw materials supply, transport and manufacturing. SBS also supplies the 

environmental impacts of a wide variety of heating systems and water radiator. It provides a generic value, 

not for a specific brand and it changes according to the size of the equipment. Table 2  

 

.........  

Table 3 present a summary of the carbon footprint of some of the most impactful optimization variables 

of the present study. 

Table 2: Wall specifications. 

No. Composition 
U-value 

[W/m2-K] 

kg of 

CO2eq./m2 

0 Concrete block, mineral wool 0.305 189.7 

1 Concrete block, mineral wool 0.202 197.0 

2 Concrete block, mineral wool 0.151 204.3 

3 Concrete block, expanded polystyrene 0.271 183.4 

4 Concrete block, expanded polystyrene 0.17 186.0 

5 Concrete block, expanded polystyrene 0.131 188.7 

6 LFW wall, mineral wool (between studs) 0.320 36.5 

7 LFW wall, mineral wool (between studs) 0.231 40.1 

8 LFW wall, mineral wool (between studs) 0.181 44.1 

9 LFW wall, mineral wool (between studs), EPS (outside) 0.196 41.3 

10 LFW wall, mineral wool (between studs), mineral wool (outside) 0.175 46.4 

11 LFW wall, mineral wool (between studs), mineral wool (outside) 0.141 52.5 

12 LFW wall, mineral wool (between studs), mineral wool (outside) 0.118 58.6 

13 CLT, polyisocyanurate 0.167 -9.8 

14 CLT, expanded polystyrene 0.187 -27.2 

15 CLT, mineral wool 0.177 -15.5 

16 DSW (double stud wall) filled with cellulose, EPS (outside) 0.204 -22.7 

17 DSW (double stud wall) filled with cellulose, EPS (outside) 0.166 -24.7 

18 DSW (double stud wall) filled with cellulose, EPS (outside) 0.140 -26.7 

 

 

 

3 https://www.gabi3.com/Signin.html?locale=en 
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Table 3: Windows specifications. 

No. Composition 
SHGC 

[-] 

U-values* 

[W/m2-K] 

kgCO2/

m2 

0 Double glazed LowE Argon, Wooden frame 0.624 1.27 34.12 

1 Double glazed LowE Argon, Aluminum frame 0.624 1.27 47.29 

2 Double glazed LowE Argon, PVC frame 0.624 1.27 44.80 

3 Triple glazed LowE Argon, Wooden frame 0.584 0.59 51.18 

4 Triple glazed LowE Argon, Aluminum frame 0.584 0.59 87.81 

5 Triple glazed LowE Argon, PVC frame 0.584 0.59 62.53 

6 Double glazed LowE Argon & Low SHGC, Wooden frame 0.333 1.29 34.12 

7 Double glazed LowE Argon & Low SHGC, Aluminum frame  0.333 1.29 47.29 

8 Double glazed LowE Argon & Low SHGC, PVC frame  0.333 1.29 44.80 

*Overall U-values including frame. 

 

Environmental impact of energy sources are extracted from the GaBi database SP33. For electricity in 

Germany in 2017, the global warming potential (GWP 100 years) per kWh is 0.594 kg CO2/kWh (dataset 

DE strom mix 1kV-60kV). From the same database, the carbon intensity of natural gas is set to 0.251 

CO2/kWh (GaBi 7 2013).  

4.6 Performance metrics for assessment of optimization algorithm 

Several performance metrics for the optimization procedures have been reviewed by (Riquelme, Von 

Lücken, and Baran 2015). In this paper, the three most cited ones have been selected to evaluate the 

proposed optimization algorithms. 

Metric for convergence (Deb and Jain 2002): The first metric is a measure of how close is a set 

of non-dominated solutions to the Pareto-optimal points 𝑃∗ (or a reference set). It is computed for each 

non-dominated set ( )tF extracted from every population ( )tP , with t the generation number. For each point 

i in ( )tF , the normalized Euclidean distance 𝑑𝑖 to 𝑃∗ is computed as follows (for two objective functions):  

 

( ) ( )
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kf and 
min

kf are the maximum and the minimum values of the thk  objectives function (i.e. 𝐶𝑂2𝑀 and 

𝐶𝑂2𝐸) in 𝑃∗. ( )( )tC P is the average of 𝑑𝑖 for all points in ( )tF : 

( )( )tC P
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In order to get a metric within [0,1], ( )( )tC P values are normalized by dividing them by 
( )( )

max
.

t
C P  

Metric for diversity (Deb et al. 2002): The second metric   measures how much the solutions from a 

non-dominated set are spread. The following equation is used to determine :  
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The Euclidian distance di is calculated for consecutive points in the selected non-dominated set of 

solutions with i = 1,2 …, (N-1). N is the number of solutions in the non-dominated set and 𝑑̅ is the average 

value of these distances. 𝑑𝑓 and 𝑑𝑙 are the Euclidian distances between the extreme solutions as shown in 

Figure 5. If all solutions are equally spread along the front with the existence of the extreme solutions into 

it, = 0, otherwise, the metric would be greater than 0. 

 

 

Figure 5: Visual representation of the metric diversity and hypervolume. 

 

Metric for diversity and convergence: A third metric named hypervolume (HV), with a purpose similar 

to that of the convergence metric is described by Zitzler (1999). The output is a unary metric that evaluates 

how much the objective space is covered (Riquelme, Von Lücken, and Baran 2015). For any non-

dominated set ( )tF dominating completely the previous one ( ( )1−tF ), 1−t tHV HV . A major difference from 
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( )( )tC P is that the evaluation of HV occurs between a non-dominated set of solutions and a reference point 

rather than with 𝑃∗ (see Figure 5). It makes it sensitive to the choice of this point and the magnitude of 

each components of ( )tF (Auger et al. 2009).  

4.7 Description of the algorithm parameters and computer specifications  

This section shows the main values of the optimization algorithm parameters, which are summarized in  

Table 4. Different rules of thumb have been derived over the years to properly set GAs, based on numerical 

experimentations (Deb et al. 2002; Carlucci et al. 2015; Palonen, Hasan, and Siren 2009; Delgarm et al. 

2016). For NSGA-II, the number of variables is 22. Therefore, Pop is set to 220 individuals which 

represents a size of ~10 times the number of design variables. The number of active variables varies in the 

case of sNSGA. The population size is still set to 220 but 𝑃𝑚 varies according to the heating system 

selection. For example, there are 17 active variables when the heat pump is selected, and thus 𝑃𝑚 = 1 17⁄ . 

 

Table 4: Algorithm parameters 

 NSGA-II sNSGA 

Gen 39 39 

Pop 220 220 

𝑃𝑐 0.9 0.9 

𝑃𝑚 0.043 
HS=1 HS=2 HS=3 

0.059 0.067 0.111 

 

The energy simulation and the optimization are launched on a Lenovo ThinkPad T450s. It comes with a 

processor Intel dual core i5-5200U and with 4 GB of RAM memory. The SCOOP module in Python 

combined with the computer performances allows the evaluation of 3 solutions simultaneously. 

5 Comparison of performance between both algorithms 

5.1 Graphical analysis of the evolutionary process This first overview shows that both algorithms 

converge in a similar manner toward  𝑃∗. Figure 6 will be used later in Section 6. 
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Figure 6: Solutions after each generation for both algorithms and for optimization #1 (filled markers = created solutions from 

NSGA-II and empty markers = created solutions from sNSGA). 

 

First, the optimization problem described above was solved once with the two proposed algorithms and 

the results are shown here (optimization #1). Figure 6 shows the population evolution occurring during 

the optimization process. Each point represents an individual which is a combination of variables resulting 

from selection, crossover and mutation operators and their position in the figure is related to the values of 

the fitness functions. This figure gives a quick appreciation of the evolution process. The resulting 

individuals from NSGA-II are shown by the filled markers and the empty markers show the ones from 

sNSGA. The color scale is related to the generation number and the marker shape indicates the type of 

heating system. This first overview shows that both algorithms converge in a similar manner toward  𝑃∗. 

Figure 6 will be used later in Section 6. 
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Figure 6: Solutions after each generation for both algorithms and for optimization #1 (filled markers = created solutions from 

NSGA-II and empty markers = created solutions from sNSGA). 

 

Another interesting aspect of the optimization process is the evolution of the value of the average penalty 

function (𝑃𝐹𝑎𝑣𝑔) over generations. At the beginning of the optimization process, some combinations of 

variables leading to a high RSP value (i.e. designs not respecting the temperature set point) are created 

and penalized by PF. During the optimization process, 𝑃𝐹𝑎𝑣𝑔 tends towards 1 as shown in Figure 7 (i.e., 

the constraint is respected) and the range of 𝐶𝑂2𝐸 values is getting smaller. 𝑃𝐹𝑎𝑣𝑔 for sNSGA is smaller 

than 𝑃𝐹𝑎𝑣𝑔 for NSGA-II during the optimization. This can be explained by the major difference between 

the two algorithms: the consideration of the heating system type during the crossover operation process. 

In the NSGA-II, two individuals with different heating systems can mate and mix all their variables. These 

situations enhance the chance to create solutions that do not perform well, i.e. solutions that do not success 

to reach the temperature set point in more than 97% of the time steps. 
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Figure 7: Average of RSP and PF after each generation for the optimization 1. 

 

The large number of markers in Figure 6 makes it hard to compare the population diversity between both 

algorithms. An alternative is to plot only the non-dominated solutions after each generation as in Figure 

8. One can observe that with NSGA-II, designs with a boiler are eliminated from the non-dominated sets 

starting at the 20th generation since they are outperformed by designs with a heat pump. With the other 

algorithm, boilers remain present in the non-dominated set of solutions for a longer number of generations. 

In fact, it appears that sNSGA was not able to explore some parts of the Pareto front such as one marked 

by an ellipse in Figure 8. It can be explained by the constraint applied to the crossover with sNSGA. As 

explained above, when HS is different for two individuals selected for a crossover, only the independent 

variables mate. The NSGA-II mates every individual without any consideration of the high-level variable 

values as described in Section 3.2. The consequence is that the solutions involving a boiler are rejected 

faster than with sNSGA, giving more opportunity for individuals with a heat pump heating system to 

reproduce. 
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Figure 8: Non-dominated set of solutions after each generation for both algorithms and the optimization #1 (filled markers = 

solutions from NSGA-II and empty markers = solutions from sNSGA). 

 

As mentioned before, other research (Chen et al. 2008; Manso and Correia 2013; Dasgupta and McGregor 

1993; Molfetas 2006; Dasgupta 1994) has suggested that standard GAs can fail in solving deceptive 

problems because of premature convergence in one area of the design space. However, the opposite was 

observed with the present test case: the standard NSGA-II appeared to provide a better convergence than 

the sNSGA specifically adapted to hierarchical variables. On the other hand, an analysis of RSP (i.e. the 

constraint related to the set point temperature) shows that the solutions generated by the sNSGA respect 

more frequently the condition of 0.03RSP  . Figure 9 shows a distribution of RSP among the solutions 

for the last 5 generations. It appears that NSGA-II has produced many solutions that did not respect this 

condition. Moreover, those solutions violating the constraint occur in general with a boiler or a heat pump. 
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All the solutions defined by an electric radiator, for NSGA-II as well as for sNSGA, respect the RSP 

constraint. 

 

 

Figure 9: Solutions distribution with respect to RSP for both algorithms and the optimization #1 (1100 solutions per 

algorithm are considered, which were taken from the last 5 generations). 

 

5.2 Algorithm evaluation based on metrics 

With stochastic algorithms such as NSGA-II and sNSGA, it is a good practice to repeat several times the 

optimization procedure. This allows to verify whether an algorithm is consistent and can converge to the 

same set of solutions, even given its stochastic features. In this case, each algorithm has been repeated 

four times. All the sets of solutions from each run were combined as follows: 

to compute the metric values presented in this section. 

The metric ( )( )tC P  requires Pareto-optimal points 𝑃∗ for its evaluation, which is not precisely known in 

this case given the nature of the problem. From 𝑃𝑡𝑜𝑡, 67 fronts are determined, i.e. the designs are separated 

into 67 levels of optimality based on non-domination. It can be observed that there is almost no 

improvement between the successive first ten fronts (the front 0 being the best of all 67 fronts), as shown 

in Figure 10. Therefore, it was decided to set *P  as being equivalent to front 0. Thereafter, a non-
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dominated set of solutions is extracted from ( )t
P  after each generation and ( )( )tC P  is computed. Figure 

11 shows the evolution of the convergence of both algorithms. The results for each optimization are shown 

including the average of ( )( )tC P  when using NSGA-II or sNSGA. 

 

Figure 10: Solutions included in the first 10 levels of optimality fronts in totP . 

 

 

Figure 11: Convergence metric of both algorithms and for each optimization run. 

 

After ~26 generations, both algorithms have converged closely to 𝑃∗. Before that point, however, the 

( )( )tC P  value with sNSGA exhibits several peaks. They are caused by the occurrence of solutions on the 
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non-dominated set with a specific envelope type. The solutions with concrete blocks or LFW walls have 

a much higher 𝐶𝑂2𝑀 than the ones with a CLT or DSW wall, as mentioned in Section 5.1. 𝑃∗ is composed 

of optimal solutions with 𝐶𝑂2𝑀 values in the range of [-2.0 ‒ 2.5] ton. Therefore, these few designs with 

a high 𝐶𝑂2𝑀 value affect significantly ( )( )tC P . During this test case, they have reappeared more often in 

sNSGA partly because 𝑃𝑚 is higher than in NSGA-II.  

The metric Δ shows a similar tendency for both algorithms (Figure 12): it tends to increase over 

generations and stabilize around generation 26. It means that the diversity degrades during the evolution 

process, even though the selection based on crowding distance helps to preserve a certain level of diversity 

in the set of optimal solutions. The analysis presented in Table 5 explains partly why. It shows the 

evolution of the solutions with respect to the number of heating systems of each type per generation for 

the optimization #1 (NSGA-II and sNSGA). The proportion of solutions with a heat pump (hp), a boiler 

(bo) or an electric radiator (er) in the population changes over generation. As observed in Figure 8, the 

heating system selection, a discrete variable, locates the solutions in specific areas of the fronts and 

therefore, affects significantly Δ. In fact, large gaps in term of 𝐶𝑂2𝐸 and 𝐶𝑂2𝑀 exist between those groups 

of solutions. 

Table 5: Percentage of heating system types in the population as a function of the generation for the optimization 1.  

 t = 0 9 19 29 39 

NSGA-II 

bo [%] 33 26 10 9 4 

hp [%] 33 15 30 36 46 

er  [%] 34 59 60 55 50 

sNSGA 

bo [%] 33 29 28 24 26 

hp [%] 34 32 25 18 12 

er  [%] 33 39 47 58 62 
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Figure 12: Diversity metric of both algorithms and for each optimization run. 

 

The criterion HV introduced above characterizes the quality of the diversity of the non-dominated set of 

solutions and the convergence at the same time. When HV value stabilizes, it means that the non-

dominated set of the new generation is close to the last one. For the present case, the reference point is 

located at 𝐶𝑂2𝐸 = 246.86 ton and 𝐶𝑂2𝑀 = 17.58 ton. It corresponds to the only existing point on the 

front 67, determined from 𝑃𝑡𝑜𝑡. Figure 13 shows that during the first generations (approximately 10 

generations), the optimal solutions progress quickly toward the Pareto front and then move more slowly 

towards 𝑃∗. 
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Figure 13: Hypervolume metric of both algorithms and for each optimization run. 

 

The analysis of Sections 5.1 and 5.2 allows concluding that the NSGA-II could properly handle the 

hierarchical variables in the context of this test case. NSGA-II has converged closer to 𝑃∗ than sNSGA 

after 40 generations. In fact, both algorithms perform similarly with minor variations according to the 

optimization number. Nevertheless, it is important to remember that the system of hierarchical variables 

was relatively simple, with only one layer of low-level variables. The benefits of sNSGA could be more 

tangible as the number of hierarchical levels increases. 

6 Analysis of the optimal solutions 

This section presents and analyzes the main features of the optimal set of non-dominated solutions that 

were found during our study. This characterizes further the optimization problem addressed here and 

reveals best design trends and environmental tradeoffs. 

A first observation concerns the distribution of the fitness value along the y-axis (𝐶𝑂2𝑀) (see Figure 6). 

The visible distinct strata or layers of solutions can be explained by the carbon footprint of the envelope 

type (Env), which accounts for a high fraction of 𝐶𝑂2𝑀. Env is a discrete variable and there are major 

gaps between the different families of walls in terms of carbon footprint. Moreover, it can be observed 

that the designs with concrete blocks or LFW walls were not performing enough to be selected for 

reproduction after generation 4. Another observation is the effect of the penalty function (PF) on 𝐶𝑂2𝐸 

in Figure 6. It explains why some values of 𝐶𝑂2𝐸 are very high in the first generation.  
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In Figure 8, the solutions tend to be clustered on the Pareto front according to the type of heating systems. 

This reveals the strong influence of this hierarchical variable on both objectives. The optimal solutions 

with a heat pump have the highest 𝐶𝑂2𝑀 with the lowest 𝐶𝑂2𝐸 and the opposite is observed for individuals 

with an electric radiator. In fact, the electric radiator has a low embodied CO2eq in comparison with a heat 

pump. However, the heat pump has a higher COP, and therefore, requires less energy to fulfill the heating 

load than electric radiators. The shape of 𝑃∗ also illustrates the relevance of certain solutions. In fact, 

zones where 𝑃∗ is either vertical or horizontal are zones where a large degradation of one objective is 

followed by a very small improvement of the other and vice versa. For example, the selection of solution 

#2 over #1 in Figure 8 means that the 𝐶𝑂2𝐸 value is doubled for an insignificant reduction of 𝐶𝑂2𝑀. 

Analyzing individually each solution on 𝑃∗ can be time consuming. In this case, there are 987 solutions 

on 𝑃∗, 71.3% of which were found by the sNSGA. From the 987 solutions, many are almost identical as 

revealed by Figures 14-16. Therefore, the number could be reduced considerably if similar solutions were 

clustered together. There are 698 solutions that use an electric radiator (group “er”), 274 that use a heat 

pump (group “hp”) and only 15 that use a boiler (“bo”). Most of the electric radiator optimal solutions 

were found by the sNSGA although the solutions found by the NSGA-II were not far behind. The selection 

of a heating system dictates a part of the other design variables (low-level variables), therefore, an analysis 

of each group was performed. 
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Figure 14: Boxplot for each design variable in 𝑃∗. The green line represents the median, the side of the box the first and third 

quartile and the whiskers the 5 and 95 percentiles. The sign “+” indicates data outside the whiskers.  

 

Figure 14 shows the boxplots for each design variable. First, one finds that some variables are essentially 

identical for all the solutions: Env = 18 (rarely Env = 14) and HE = 0 in more than 95% of the optimal 

solutions. In other words, the optimal solutions are all defined by a double stud wall filled with cellulose, 

and in the presence of a heat pump or a boiler, the heat emitter is always a convector. The analysis of the 

continuous variables 𝑊𝑊𝑅𝑁 and 𝑊𝑊𝑅𝑊 also demonstrates that they should take most of the time the 

lowest possible value based on the two objectives. A small WWR means that the opaque portion of the 

envelope is larger. As mentioned above, in the optimal set of solutions, the opaque envelope 18 was almost 

always selected. It is mainly composed of wooden materials and thus acts as a carbon sink. In other words, 

smaller WWR values help to reduce 𝐶𝑂2𝑀. Similarly, the windows are responsible for significant heat 

losses, which increases the energy consumption. Therefore, it is preferred to have a WWR as small as 

possible for reducing 𝐶𝑂2𝐸.  

Large differences between the median values of the rated heating capacity of each heating system are 

noted in Fig. 14. The efficiency drop of the heat pump at low temperature leads to an oversizing in 
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comparison with the boiler. On the other hand, the stable efficiency of the electric radiator keeps their 

rated heating capacity to low values. 

Usage of parallel coordinates is a good alternative to visualize multidimensional data sets and highlight 

the relations between optimal variables (see Figures 15-16). In this representation, each design is 

represented by a series of continuous line segments indicating the values of objective functions and design 

variables. In Figures 15-16, a color scale related to the objective function 𝐶𝑂2𝐸 was applied to facilitate 

the interpretation of the figure.  

Figure 15 shows all the optimal solutions on 𝑃∗ with an electric radiator. It can be seen that solutions with 

a low 𝐶𝑂2𝐸 values (44.34 to 48 ton of CO2eq) use the window type 3 (triple glazed LowE argon, wooden 

frame) as defined in Table 3 whereas the optimal solutions with a 𝐶𝑂2𝐸 value between 51 and 52 ton of 

CO2eq use a window type 0 (double glazed LowE argon, wooden frame). In the first case, the selected 

window reduces the heat losses because of its low U-value but increases 𝐶𝑂2𝑀 because of its high carbon 

footprint. There is also an observable relation between 𝑇𝑠𝑝 and Win: solutions with a triple glazed window 

have a temperature set point for the unoccupied hours lower than solutions with a double glazed window. 

 

CO2E        Tsp            qer     Env        Win           WWRE         WWRW  WWRN      WWRS           CO2M

 

Figure 15: Parallel coordinates for all the solutions with electric radiator in 𝑃∗. 
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The analysis of the heat pump solutions also highlights relations between design variables and the 

objectives functions (Figure 16). Because the variability of Env, 𝑞𝑎𝑢𝑥, 𝑇𝑎𝑢𝑥, and WWRs was small, they 

are not reported in Figure 16. Increasing the heat emitter capacity qhe leads to a reduction of the energy 

consumption (and thus 𝐶𝑂2𝐸) while increasing 𝐶𝑂2𝑀. At the same time, the reduction of 𝑞ℎ𝑒 in optimal 

solutions is compensated by the increase of 𝑇𝑤. Similarly, when the heat pump capacity is low (~ 3kW), 

the supply water temperature 𝑇𝑤 is high (~60°C). These solutions lead to higher energy consumption. 

However, the usage of smaller mechanical equipment leads to a lower embodied energy (and thus a lower 

𝐶𝑂2𝑀). Finally, among almost all solutions, the parameters α, 𝑚̇𝑤 and 𝑇𝑠𝑝 exhibit a small variability. 

 

 CO2E                              qhe                           qhp                                    α                       ṁw                                   Tw                              Win                               Tsp                     HE                            CO2M

[ton of CO2eq]          [kW]                             [kW]                              [°C/°C]             [kg/hr]                          [°C]                              [-]                                   [-]                     [-]                               [ton of CO2eq] 

 

Figure 16: Parallel coordinates for all the solutions with heat pump in 𝑃∗. 

 

Solutions with gas boilers are not analyzed here since they were very few in 𝑃∗. 

7 Conclusions 

This paper had two main objectives: (i) to select an algorithm dealing with hierarchical variables in a real 

BPO multi-objective problem, and (ii) to provide the set of optimal solutions minimizing simultaneously 

the CO2eq emissions related to the materials and to the energy consumption. A house located in Germany 
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was chosen as the test case building since it was already well documented. More specifically, this paper 

compared the well-known NSGA-II with a new algorithm dealing with hierarchical variables (sNSGA). 

Different performance criteria were defined and used to compare the two algorithms. Although some 

differences were noted in terms of convergence rate and level of diversity in the evolving population, both 

algorithms performed similarly for the selected design variables and test case. It was found that NSGA-II 

could properly handle hierarchical variables although the core of the algorithm does not pay any attention 

to this particularity. This test case did not prove that a sGA was needed for such a problem.  

Different modifications could be implemented to sNSGA to improve its performance such as a dual 

mutation rate, decreasing during the evolution process. Moreover, the high-level variables could be 

allowed to mate. In this case, this could have accelerated the elimination of solutions using a boiler as a 

heating system. In further studies, one could include other objective functions, such as the cost of 

construction and operation or thermal comfort. Some variables in the present study did not exhibit a 

contradictory effect in terms of 𝐶𝑂2𝐸 and 𝐶𝑂2𝑀, but this could prove different with more objectives. 

Furthermore, it would be interesting to test the algorithms in a problem involving more levels of hierarchy 

in the variables. sNSGA could potentially become more attractive in such cases. 

The test case has shown an existing trade-off between solutions in order to minimize simultaneously 𝐶𝑂2𝐸 

and 𝐶𝑂2𝑀. The solutions with an electric radiator have the lowest 𝐶𝑂2𝑀 but the highest 𝐶𝑂2𝐸. The 

contrary occurs for solutions with a heat pump: the COP of the heat pump reduces the energy consumption 

and thus 𝐶𝑂2𝐸, but heat pump solutions tend to have a higher value of 𝐶𝑂2𝑀. Most optimal solutions 

relied on an electrical heater (80 %) or a heat pump (18.6 %). The selected opaque envelope was almost 

always the double stud wall filled with cellulose. In rare situations, the CLT wall was selected. As 

mentioned before, other objective functions, such as cost and thermal comfort could be considered. In 

order to help decision makers to select the best solution among a set of several hundreds, a multi-criteria 

analysis should follow the multi-objective optimization. Furthermore, it would be interesting to determine 

to what extent the optimal solutions are affected by the location of the building.  

BPO has a great potential to improve the building design process and reduce the carbon footprint of 

buildings. Nevertheless, it should be noted that the average computing time for one generation was 6 hours 

in the present work. As a result, a total of 10 days of computation was required to complete the 

optimization with one algorithm. Therefore, finding ways to reduce computational and implementation 

time would be helpful for such techniques to be fully deployed in the industry. 
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