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Abstract This article suggests a novel method to re-
trieve a narrowband signal sent in a multipath environ-

ment with a delay spread considering ISI between sym-

bols. The proposed method does not require any pream-

ble nor known signal. Using the joint direction and time

delay of arrivals (JDTDOA) estimation algorithm de-
veloped in prior work, the directions and time delays of

arrival in the multipath channel are jointly estimated

and associated while keeping a low computational cost.

In this process, a MVDR beamformed copy of each ar-
riving signal is created. The quality of these “pseudo

copies” is evaluated and compared to the original direct

and reflected signals in this work. Another beamforming

method, the Moore-Penrose pseudoinverse, with better

retrieval of the direct and reflected signals is also pro-
posed. Using a simple delay-and-sum operation on the

previously beamformed copies, it is possible to substan-

tially improve the the system’s performance in terms of

bit error rate. An approach using oversampling on the
array antenna is introduced to improve performance.

Numerical simulations are discussed to support theory.

Keywords DOA · TDOA · joint estimation · signal
processing · performance analysis

1 Introduction

Environments featuring multipath propagation produce
at the receiver a superposition of multiple delayed in
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time and faded copies of the same signal. When a mul-
tipath channel has a large delay spread, the incoming

signals can be superposed in a destructive manner caus-

ing important fading. If these incoming signals are not

despread, this superposition leads to poor bit error rate

(BER) performance. To meet the increasing needs of
our wireless networks, we must therefore develop meth-

ods to improve the performance in terms of BER and

spectral efficiency that are adapted to multipath envi-

ronments.

Since array antennas offer a significant gain and

multiple beamforming techniques, their use in such con-

dition is advantageous. For this reason, many have shown

interest in smart antennas and their beamforming algo-

rithms such as [3] or [14]. For these antennas, in order
to constructively recover the incoming signals, an accu-

rate and precise estimation of the channel parameters,

direction of arrival (DOA) and time delay of arrival

(TDOA), is necessary.

This idea is used as well in the space-time Rake

receiver seen in [2] or [5]. However, some limitations

appear in those receivers such as the need of a known

sequence of symbols, a preamble, to retrieve the delay

spread between different paths. This requirement can
become problematic in mobile communications where

the channel estimation must be done frequently and

where the channel’s bandwidth is a constraint.

Another method suitable for multipath environments

is using diversity reception. With diversity reception,
the different paths must be completely uncorrelated to

achieve the optimal constructive recovery of the signal.

This might not be attainable with line-of-sight (LOS)

positioning. Moreover, in LOS multiple-input multiple-
output (MIMO) systems, the orthogonality of the re-

ceived signals must be achieved by a very large inter-

element distance between the antennas [11].
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In this paper, we present a novel method to recover

each incoming narrowband signal at an array antenna

while simultaneously estimating multipath channel pa-

rameters. This method does not need any preamble and

covers delay spread with interference intersymbol (ISI)
between symbols. The channel parameters estimation

is done using a recent developed algorithm called JDT-

DOA [4]. In this published work, we proposed an ac-

curate and precise method to estimate and associate
the time delay and direction of arrivals in multipath

environments without the use of any preamble.

The JDTDOA algorithm uses the well known multi-
ple signal classification (MUSIC) algorithm to estimate

the DOAs and the Capon beamforming [12] along with

cross-correlations to estimate the TDOAs. Channel es-

timation, in particular time delay and direction estima-

tion of each arrival, is a flourishing research subject as
seen in [6–8,13].

The purpose of the prior paper was to measure and

evaluate the precision of both time and direction esti-
mations. The performance in terms of complexity was

also discussed and it was said that the overall computa-

tional complexity of the JDTDOA algorithm was lower

than 2D MUSIC.

The purpose of this current paper is however to

use the actual beamformed signals from JDTDOA and

the estimated parameters to retrieve a better copy of
the source signal. The channel spread considered in

this work is for intersymbol interference (ISI) between

symbols, we therefore do not cover ISI within sym-

bol. An alternative beamforming technique, using the

Moore-Penrose pseudoinverse, is suggested instead of
the Capon beamforming and both are compared. We

also propose a simple delay-and-sum operation on the

pseudo copies in order to increase the quality of the re-

covered signal, a principle also used in Rake receivers.

In the following sections, the system model and the

modified algorithm are explained. Afterward, the qual-

ity of the pseudo copies and of the final recovered sig-

nal are discussed using bit error rate analysis. The use
of oversampling on the array for an augmented perfor-

mance is also introduced.

2 System Model

An array antenna composed of N identical and uni-

formly distributed elements is considered in this work.

Each one of these N elements captures a linear combi-

nation of M incident signals. Since we treat propagation
in multipath environments, the M signals are composed

of one direct and M − 1 reflected signals coming from

a single user.

2.1 Multipath propagation

A narrowband signal coming from one path in a multi-
path environment can be expressed as:

sm(t) = αmsd(t− Tm) , (1)

where αm is the amplitude ratio between the m-th sig-

nal and the direct signal and Tm is the time delay of
arrival respective to the m-th path. The signal sd(t)

can be referred as the direct path, so that αm = 1 and

Tm = 0 for m = d.

Each signal, direct and reflected, comes from a spe-

cific direction of arrival, noted θm. We consider the
DOAs, θm, and the TDOAs, Tm, as independent pa-

rameters in this paper as it is usually done.

2.2 Phased array

Like illustrated in Figure 1, a path-length difference

between adjacent elements is seen for a given DOA.

Since the path-length difference is small with respect
to the inverse of the signal bandwidth, the path-length

difference can be reported as a phase shift:

ϕm = 2π
fc
c
D sin(θm) , (2)

where fc is the carrier frequency, D is the inter-element

spacing and the directions θm are measured such that

the path-length difference is null for a zero value of θm.

The following model is used to represent the captured
signal:

X = AS +N . (3)

The [M ×K] matrix S contains the M arriving signals:

S =
[

s1 s2 ... sM
]T

, (4)

where sm is the m-th incident signal vector captured

at the K sampling times. The matrix N is a [N ×K]

matrix containing the additive white Gaussian noise
(AWGN):

N =
[

n1 n2 ... nN

]T
, (5)

where nn is the AWGN vector captured on the n-th
sensor for all K sampling times. The matrix A is the

[N ×M ] steering matrix which characterizes the phase

shift related to each DOA:

A =
[

a(θ1) a(θ2) ... a(θM )
]T

, (6)

where a(θm) is the steering vector formed as:

a(θm) =
[

1 e−jϕm e−j2ϕm ... e−j(N−1)ϕm

]

. (7)
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Fig. 1 Uniform array antenna with two impinging signals

The covariance matrix Rxx of the captured signal X is

written as:

Rxx = ARssA
H +Rnn . (8)

If the M signals are considered independent, or uncor-

related, Rss is a diagonal matrix where each element of

the diagonal corresponds to the power of each arrival.
In this paper, the M signals are considered uncorrelated

since the time delays between each signals Tm are larger

than the duration of the auto-correlation of the direct

path. Therefore, only ISI between symbols is taken into
account at this time. However, if some correlation exists

between the signals, it would be possible to use spatial

smoothing prior to the process. So ISI within symbol

could be also considered eventually.

The noise on each element is considered independent

from the N − 1 other elements such that:

Rnn = σ2
I , (9)

where σ2 is the power of the noise and I is the [N ×N ]

identity matrix.

With a sufficient quantity of samples (K), this co-

variance matrix of the received signals can be approxi-

mated with:

Rxx ≈ 1

K
XX

H . (10)

3 Proposed algorithm

Our goal is to recover the original source signal while

keeping a reduced computational complexity. To do so,

we first propose to estimate the space-time parame-

ters of the incoming signals. For this matter, we use
the JDTDOA (Joint Direction and Time Delay of Ar-

rivals) algorithm recently developed [4]. In JDTDOA,

the MVDR beamforming is used to retrieve a copy

of the source signal. We propose to modify this al-

gorithm by using another beamforming method: the

Moore-Penrose pseudoinverse. With the output of the

beamforming, we then perform a delay-and-sum opera-

tion to recover a more precise and accurate copy of the
incoming signal.

3.1 JDTDOA Algorithm Modification

The estimation of the space-time parameters, direction

and time delay, is based on the JDTDOA algorithm.
This algorithm applies the conventional MUSIC algo-

rithm to retrieve the directions of arrivals (DOAs). For

a more straightforward approach, we use Root-MUSIC

[1] to estimate the DOAs.

A beamforming is then performed on the phased

array towards each DOA found so that an estimation
of the upcoming signal from each direction is generated.

The output is computed such that:

ym(t) = w
H(θm)x(t) ≈ sm(t) + nm(t) , (11)

where w(θm) is the m-th DOA’s beamforming weight

vector. The noise nm(t) would have a variance that is N

times smaller than the actual captured noise at each N
elements, due to the intrinsic gain of the array antenna.

These output signals from the beamforming are called

pseudo copies.

In the original version of JDTDOA, a Capon beam-

forming [12], or maximum variance distortion response

(MVDR), was proposed to retrieve the pseudo copies
since it should maximize the signal-to-interference ra-

tio (SIR).

However, this beamforming only considers one di-

rection at a time and estimates the directions of inter-

ferences using the signal’s covariance matrix.

Since the MUSIC algorithm already estimated every

directions of arrival with high-resolution, a simpler step
using the Moore-Penrose pseudoinverse is now proposed

in this paper.

Using the M previously estimated DOAs, the steer-

ing matrix A can be approximated. The Moore-Penrose

pseudoinverse of this estimation is then used to cancel

the actual steering matrix. The weight matrix for this
Moore-Penrose beamforming is simply :

W
H = Â+ = (Â

H
Â)−1

Â
H

, (12)

where W contains each weight vector from each DOA

such as : W = [w(θ1)w(θ2) ...w(θM )]. The approxi-
mated steering matrix Â is considered to be a full rank

matrix when M < N , a condition also required by MU-

SIC.
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With an accurate approximation of DOAs, the Moore-

Penrose pseudoinverse beamforming will retrieve the

source signal from a direction without any interference

from the other (M − 1) directions. The pseudo copies

without interference are then expressed by:

Y = S +W
H
N . (13)

Considering the MVDR weight vector, this perfect sig-

nal isolation can only be achieved if the covariance ma-

trix of the sampled signal, Rxx, is equal to ARssA
H

and if Rss is equal to σ2
sI. In other words, there must

be no noise and the source signals must be indepen-

dent. For this particular case of MVDR beamforming

and for the Moore-Penrose beamforming in general, the
covariance matrix of the pseudo copies is then given by:

Ryy = Rss + σ2
W

H
W . (14)

Since W
H
W 6= I for both Moore-Penrose and MVDR

beamforming, the noise of each pseudo copy is never
completely independent from the ones of the other M−
1 pseudo copies.

It is possible to adapt the JDTDOA algorithm to

correlated signals (ISI within symbols) by using a spa-

tial smoothing technique such as the forward/backward
one in [9] on the covariance matrixRxx. Spatial smooth-

ing has been proved to be efficient for both MUSIC

algorithm and Capon beamforming [10].

According to the JDTDOA algorithm, a cross-corre-

lation is subsequently performed between the M pseudo
copies. The time delays between each signals (TDOAs)

are deduced by a maximization of the cross-correlations.

The performance of the JDTDOA estimation algo-

rithm was discussed in the prior article [4]. It is very

precise for both DOAs and TDOAs in case of ISI be-
tween symbols and very low SNR. Furthermore, the

cross-correlation process can accurately associate each

pseudo copy to its time delay.

As discussed, we replace in this current paper the

Capon beamforming with a more simple method, the
Moore-Penrose pseudoinverse. With MUSIC’s high-reso-

lution estimation of DOAs and this modified beamform-

ing step, we recover higher quality pseudo copies while

reducing the computational complexity.

3.2 Delay-and-sum Signal Recovery

Up to now, the modified JDTDOA algorithm was used

to retrieve the pseudo copies ym(t), estimated DOAs θ̂m
and TDOAs T̂m of the M source signals. We recall that
the beamformed pseudo copies are estimates of their

respective source signal (11). Since the pseudo copies

were accurately associated with their time delay, this

additional step consists in delaying each pseudo copy

using its respective TDOA and summing them together.

It is possible to enhance the quality of the recov-

ered signal by using oversampling while collecting data:

the oversampling increases the resolution of the delay
process and therefore offers an improved synchroniza-

tion between samples and symbols. The sampling rate

is then set higher than the symbol rate. This procedure

is frequently used in industry.
Considering independent noise and perfectly delayed

pseudo copies (T̂m = Tm) without interference and

combining (11), the recovered signal would offer a co-

herent gain compared to the direct signal with AWGN:

ŝ(t) ≈
M
∑

m=1

(sm(t+ T̂m) + nm(t+ T̂m)) ,

ŝ(t) ≈
M
∑

m=1

αmsd(t) +
√
Mn(t) . (15)

The SNR gain observed between this recovered signal

and the reference direct signal alone with AWGN would
be:

G = 20 log(

∑M
m=1 αm√

M
) . (16)

The power of the noise is constant for each sensor in

the array and is equal to σ2.
If the M incoming signals have identical amplitudes,

the result will give the maximal coherent gain:

G = 10 log(M) . (17)

This coherent gain also considers that the amplitude
of the sampled signal does not depend on the sampling

time. In other words, the signals are not filtered. Given

a filter with impulse response h(t), the filtered, sampled

and delayed signal sm(t + T̂m) would be described by

the following discrete convolution :

sm(t+ T̂m) =
∞
∑

n=−∞

h(tmn
)snf (t− tmn

) , (18)

where tmn
is equal to (Tm mod Ts

P
+ nTs) and snf is

the non-filtered direct signal. The constant P is the

oversampling factor defined as the ratio between the

symbol period Ts and the sampling period.

Considering (11) and a raised cosine filter in par-

ticular, if the argument (Tm mod Ts

P
) is kept close to

zero, the pseudo copies tend to approach the reference

direct signal with a different amplitude and AWGN in

terms of quality. This condition is achieved when the

TDOAs are multiples of Ts

P
and, consequently, can be

approached by increasing the oversampling factor. In

other words, the probability of error decreases with a

greater oversampling factor.
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4 Numerical examples

The modulation used for the following simulations is
QPSK at a symbol rate of 1 MHz. The symbol period

Ts is then 1.0 µs. The sampling rate is P×1 MHz so that

P is the oversampling factor. The oversampling factor

controls the resolution over the delay-and-sum process

and this resolution corresponds to the sampling period
which is Ts/P . A raised cosine filter with a roll-off factor

of r = 0.5 is applied on the incoming signals.

The phased array is composed of N = 8 elements

with an inter-element spacing of D = λ/2. The es-

timation of the covariance matrix is computed using
K = 400 snapshots. Also, for simplicity, the four signals

arrive at the phased array with the same signal-to-noise

ratio:

SNR = [snrx, snrx, snrx, snrx] .

The value of snrx follows the x-axis of the BER fig-
ures. Since an array antenna of N = 8 elements with

independent element noise is used here, a intrinsic gain

of 10 log(8) dB is observed between the output of the

array and its corresponding signal with AWGN.

Each one of the following bit error rate simulations
is calculated until at least 100 errors are detected in the

recovered signal.

(a) The purpose of this example is to evaluate the per-

formance of the system in ideal conditions. Both

beamformer, the initially proposed MVDR and the

Moore-Penrose pseudoinverse, are tested. The simu-
lated performances are then compared to theoretical

expectations.

The M = 4 source signals are coming from direc-

tions:

θ = [−60, −20, 20, 60] ◦ .

Their respective time delays are:

T = [8, 0, 4, 12]µs .

Thus, the direct signal is s2(t) coming from direction

θ2 = −20◦. Because every Tm > 1 µs, these signals
show ISI between symbols. No oversampling is used,

so that P = 1.

The DOAs are calculated using Root-MUSIC and

the cross-correlation technique is used to compute

the TDOAs. Since an estimation of time delay is
done between each pseudo copy ym(t), a mean of

M = 4 cross-correlation estimations is computed

for each TDOA.

In figure 2, the radiation pattern created by a MVDR
beamforming towards each DOA is compared to the

one using the Moore-Penrose pseudoinverse. For both

techniques, the main lobe associated with the m-th
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Fig. 2 Radiation patterns of the MVDR beamforming and
of the Moore-Penrose pseudoinverse for each estimated DOA
and for a SNR of −5 dB.

weight vector is in the direction of arrival of the m-

th incoming signal. As this figure shows, the gain
of w

Ha(θ̂m) in the estimated desired direction θ̂m
is always a unity gain. In the (M − 1) other di-

rections, the radiation pattern using Moore-Penrose

goes to zero. For MVDR however, the radiation pat-

tern does not reach zero, so that interference is not
completely eliminated.

These weight vectors are then used to compute the

pseudo copies of the M incoming signals. The pseudo

copies are delayed using these calculated TDOAs
with a resolution of 1.0 µs, since no oversampling is

used. In figure 3, the delayed pseudo copies (created

with Moore-Penrose pseudoinverse) were summed in

order to obtain the recovered signal ŝ(t). Only the

real part of the QPSK signal, which corresponds to
the sent bits I(t), is shown (the imaginary part gives

similar results). As this figure shows, the delay-and-

sum operation allows an amplification of the original

signal while reducing the quantity of errors seen on
the pseudo copies.

Afterward, in figures 4 and 5, the following signals

are compared to the initial sent bits:
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Fig. 3 Delayed pseudo copies ym(t + Tm), recovered signal
ŝ(t) and real part of the sent bits I(t) for a SNR of −5 dB.
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Fig. 4 Bit error rate of the delayed pseudo copies ym(t+T̂m)
compared to the direct signal with adjusted noise sd(t)+n(t)
and to the recovered signal ŝ(t). The pseudo copies were
beamformed using the Moore-Penrose pseudoinverse. The ex-
act TDOAs are stated in (19).
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ŝ(t)
ym(t)
sd(t) + n(t)

Fig. 5 Bit error rate of the delayed pseudo copies ym(t+T̂m)
compared to the direct signal with adjusted noise sd(t) +
n(t) and to the recovered signal ŝ(t). The pseudo copies
were beamformed using the MVDR beamforming. The exact
TDOAs are stated in (19).
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the direct signal for different quantities of snapshots

Coherent (10 log(4) dB)
MDVR
Moore-Penrose

Fig. 6 Gain between the direct signal with adjusted noise
sd(t)+n(t) and the recovered signal ŝ(t) evaluated at BER =
2× 10−2 for both MVDR and Moore-Penrose beamforming.
These gains are compared to the coherent gain (10 log(M)
for M = 4 pseudo copies). The number of snapshots K is
increased until both gains are stable.

– The M = 4 pseudo copies ym(t) constructed
with the specified beamforming method. The graph

of the four pseudo copies are perfectly super-

posed since the DOAs are relatively far from

each other and the TDOAs are multiples of the
sampling period Ts/P = 1.0 µs.

– The direct source signal with adjusted AWGN

(sd(t)+n(t)). The variance of this noise was de-

creased by a factor 1/N where N = 8 elements in

order to consider the intrinsic gain of the array.
– The recovered signal ŝ(t) constructed with the

delay-and-sum operation. According to (17), a

gain approaching the theoretical coherent gain

10 log(4) = 6.02 dB should be seen between this
signal and the direct source signal with adjusted

AWGN.

For the Moore-Penrose method, figure 4 shows that

the BER curves of the pseudo copies approach the

signal with AWGN as predicted. A difference of 0.11
dB is observed between the pseudo copies and the

direct signal alone plus noise. This difference is ex-

plained by the dependency between the beamformed

noises. A gain of 5.86 dB (BER = 2× 10−2) is seen
between the recovered signal ŝ(t) and the direct sig-

nal with AWGN. This gain is close to the theoretical

coherent gain.

For the MVDR beamforming, figure 5 illustrates

that the BER curves of the pseudo copies diverge
from the signal with AWGN with increasing SNR.

This phenomena is mainly due to the interferences

that are not completely eliminated. These interfer-

ences increase with the amplitude of the signals which
is dictated by the SNR. Still, a gain of 5.75 dB

(BER = 2 × 10−2) is seen between the recovered

signal ŝ(t) and the direct signal with AWGN.
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The BER curves of both MVDR and Moore-Penrose

were computed for different values of K, the num-

ber of snapshots. For each curve, the gain in terms

of SNR between the recovered signal and the di-

rect signal with adjusted AWGN was evaluated at
BER = 2 × 10−2. Figure 6 shows these gains ap-

proaching the coherent gain of 6.02 dB while the

number of snapshots is increased, as expected. Since

the covariance matrix approximation is more pre-
cise with a large quantity of snapshots, the DOAs

are also more precisely estimated for both beam-

forming techniques. Moreover, with a large quantity

of snapshots, the radiation pattern of the MVDR

beamforming approaches the one of Moore-Penrose,
which leads to a more efficient interferences’ elim-

ination. Thus, while the Moore-Penrose is better

for smaller values of K, the MVDR beamforming is

equivalent to the Moore-Penrose in terms of gain for
large values such as K ≥ 2000 snapshots. However,

as predicted in (14), the MVDR and Moore-Penrose

techniques do not reach the coherent gain because

the pseudo copies’ beamformed noises are not com-

pletely independent.

(b) In this example, we focus on showing the benefit of

oversampling. For this purpose, we keep the same

parameters as the previous example but the fourth
source signal’s TDOA.

Oversampling does not affect the computational com-

plexity of the JDTDOA algorithm, since the number

of snapshots K is kept constant.

The beamforming technique used is the proposed
Moore-Penrose pseudoinverse, because it gives re-

sults that are closer to the maximal gain.

Since a raised cosine filter is applied on the signals

along with a limited resolution in the delay step, the
sampled value of a pseudo copy is dictated by the

amplitude of the raised cosine’s impulse response

evaluated at each TDOA modulo Ts/P as described

in equation (18).

In order to show the maximum gain oversampling
can provide, the fourth TDOA was fixed so that

(Tm mod Ts

P
) = Ts/(2P ), which corresponds to the

worst situation in terms of probability of error for

a chosen oversampling factor P since the value of
(Tm mod Ts

P
) is maximal.

In figure 7, the bit error rate of the fourth pseudo

copy is computed for different SNR. The oversam-

pling factor is first set to P = 1. For this over-

sampling factor, the fourth TDOA is 12.5 µs, which
correspond to the worst case possible considering a

sampling period of 1.0 µs. For P = 2, the fourth

SNR [dB]
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B
E
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10-4

10-3

10-2

10-1

100
Bit error rate of pseudo copies for different oversampling factor

P = 1, T4 = 12.5µs

P = 2, T4 = 12.25µs
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ŝd(t) + n(t)

Fig. 7 Bit error rate of the fourth pseudo copy with Tm so
that (Tm mod Ts

P
) = 1/(2P ) for different oversampling factor.

Their respective theoretical BER curves are illustrated in red.
The pseudo copies were beamformed using the Moore-Penrose
pseudoinverse.

TDOA is set to 12.25 µs and for P = 4, the fourth

TDOA is fixed at 12.125 µs.

Figure 7 illustrates that the SNR loss between the
perfect direct signal plus noise and the fourth pseudo

copy decreases as the oversampling factor increases:

while a loss of 3.34 dB is seen for P = 2, a smaller

loss of 0.76 dB is observed for P = 4 (BER =

2× 10−2).
Moreover, it is very clear that the situation figuring

a TDOA at (Tm mod Ts

P
) = 0.5 and P = 1 is criti-

cal, since the m-th pseudo copy does not contribute

to the delay-and-sum gain. For such situation, the
overall gain between the summed recovered signal

and the direct signal plus noise is 10 log(M − 1)

rather than 10 log(M) dB, as this reflection has no

effect on integration gain.

It is possible to predict theoretically the probability
of error of the pseudo copies by estimating their

density probability function :

fym
(x) ≈ fsm(x) ∗ fnm

(x), (19)

where fnm
(x) is a normal distribution with zero

mean and
σ2

n

N
variance and ∗ stands for convolution.

With (18), the density probability fsm(x) is found

by a normalized histogram of the expected values

of the delayed, sampled and raised cosine filtered
signal sm(t+ T̂m).

Since every symbol in QPSK is equiprobable, only

the real part of this histogram was computed.

The probability of error obtained by the estimated

density probability function follows the bit error
rate curves simulated previously. Both theoretical

and Monte-Carlo simulations BER curves are su-

perposed in figure 7.
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5 Conclusion

We have proposed an efficient method to retrieve a

source signal sent in a multipath channel with delay

spread considering ISI between symbols. This method

does not require any preamble. In order to retrieve
each reflected and direct signal, we first estimate the

space-time channel parameters using the joint estima-

tion algorithm proposed in [4]. The directions of arrival

(DOA) are estimated by the high-resolution MUSIC al-

gorithm which uses projection over a reduced orthog-
onal space. Using the estimated DOAs, a beamformed

copy of each arriving signal is created. The time de-

lays of arrival (TDOA) are estimated using a cross-

correlation between these beamformed copies.

An analysis concerning the precision of these esti-

mations and the computational complexity of the origi-

nal JDTDOA algorithm with MVDR beamforming was

previously developed in [4]. In the present paper, we
suggest to use another beamforming method, the Moore-

Penrose pseudoinverse, to recover a copy of each arriv-

ing signal. This method, while offering a lower compu-

tational complexity, is more accurate.

The beamformed copies, with both methods, are

compared to the original direct signal and it is said

that, while their quality is lower in terms of BER, the

beamformed copies are a good estimation of the origi-
nal direct signal. Afterward, the beamformed copies are

delayed (or despread) by the estimated time delay to

synchronize them. The BER curves of the delayed-and-

summed beamformed copies are computed. The pro-

posed system is almost as efficient as the coherent com-
bination of the M signals (direct plus reflected ones)

would be with a gain up to 10 log(M) when all sig-

nal powers are equal. This coherent gain is approached

with increasing SNR since the beamformed noises are
not completely independent.

The effect of oversampling on the array antenna is

also introduced in theory and by a BER comparison.

Oversampling is then used to improve the synchroniza-
tion between the samples and the symbols. By using the

same quantity of snapshots at the array but a greater

oversampling factor, it is possible to significantly de-

crease the probability of error.
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