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Résumé

Cette thèse est composée de trois articles abordant différentes problématiques en relation avec
la modélisation, la couverture et la tarification des risques d’assurance et financiers.

“A general class of distortion operators for pricing contingent claims with applications to CAT

bonds” est un projet présentant une méthode générale pour dériver des opérateurs de distorsion
compatibles avec la valorisation sans arbitrage. Ce travail offre également une nouvelle classe
simple d’opérateurs de distorsion afin d’expliquer les primes observées dans le marché des
obligations catastrophes.

“Local hedging of variable annuities in the presence of basis risk” est un travail dans lequel une
méthode de couverture des rentes variables en présence de risque de base est développée. La
méthode de couverture proposée bénéficie d’une exposition plus élevée au risque de marché et
d’une diversification temporelle du risque pour obtenir un rendement excédentaire et faciliter
l’accumulation de capital.

“Option pricing under regime-switching models : Novel approaches removing path-dependence”

est un projet dans lequel diverses mesures neutres au risque sont construites pour les modèles
à changement de régime de manière à générer des processus de prix d’option qui ne présentent
pas de dépendance au chemin, en plus de satisfaire d’autres propriétés jugées intuitives et
souhaitables.
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Abstract

This thesis is composed of three papers addressing different issues in relation to the modeling,
hedging and pricing of insurance and financial risks.

“A general class of distortion operators for pricing contingent claims with applications to CAT

bonds” is a project presenting a general method for deriving probability distortion operators
consistent with arbitrage-free pricing. This work also offers a simple novel class of distortions
operators for explaining catastrophe (CAT) bond spreads.

“Local hedging of variable annuities in the presence of basis risk” is a work in which a method
to hedge variable annuities in the presence of basis risk is developed. The proposed hedging
scheme benefits from a higher exposure to equity risk and from time diversification of risk to
earn excess return and facilitate the accumulation of capital.

“Option pricing under regime-switching models: Novel approaches removing path-dependence”

is a project in which various risk-neutral measures for hidden regime-switching models are
constructed in such a way that they generate option price processes which do not exhibit
path-dependence in addition to satisfy other properties deemed intuitive and desirable.
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Introduction

Les différents travaux présentés dans cette thèse sont issus de deux lignées de recherche : les
obligations catastrophes et les fonds distincts.

Les obligations catastrophes furent inventées par les (ré)assureurs comme moyen de transférer
certains risques de catastrophes naturelles vers les marchés de capitaux. Ces instruments offrent
aux investisseurs une exposition au risque de désastre naturel sous la forme familière d’une
obligation dont les coupons et le principal sont à risque, i.e., contingents à l’absence de désastres
naturels qui sont tels que spécifiés par le contrat. La littérature théorique sur la valorisation
d’obligations catastrophes est relativement développée et sophistiquée, principalement basée
sur la valorisation neutre au risque en marché incomplet pour des processus stochastiques avec
sauts ou autres formes de discontinuités. Il en est autrement pour la recherche empirique, qui
se base plutôt sur des approches de régression ad hoc sans fondement théorique. Selon moi,
l’obstacle principal à l’application empirique des modèles de valorisation théoriques issus de
la littérature financière est que ceux-ci sont généralement formulés en termes d’information
indisponible publiquement pour les obligations catastrophes, e.g., le seuil de déclenchement. Le
premier projet présenté dans cette thèse adresse ce problème en reformulant les modèles de
valorisation neutre au risque sous le formalisme des opérateurs de distorsion qui, eux, peuvent
être appliqués à partir des données disponibles publiquement pour les obligations catastrophes.
Plus précisément, ce travail présente une méthodologie générale permettant de construire
des opérateurs de distorsion compatibles avec les modèles de valorisation neutre au risque
retrouvés dans la littérature financière. De tels résultats engendrent plusieurs opportunités
de recherches empiriques portant sur les obligations catastrophes. Nous utilisons ces résultats
pour dériver de nouveaux opérateurs de distorsion servant à expliquer les primes de risques
observées empiriquement dans ces marchés.

Le second projet de recherche porte sur la couverture des risques associés aux fonds distincts
en présence de risque de base. Il s’agit d’une problématique complexe étant donné la grande
quantité de risques impliqués, e.g., risques d’équité, de taux d’intérêt, de mortalité, de base
et d’abandon. De plus, la couverture des options à longue maturité, telles que celles incluses
au sein des polices de fonds distincts, est peu étudiée étant donné que les options à court
terme sont plus typiques dans l’industrie financière. Nous avons donc développé une approche
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locale de couverture s’appliquant aux polices de fonds distincts lorsqu’il y a risque de base qui
surpasse et généralise les méthodes de références dans la littérature et utilisées en pratique.

Indirectement, cette dernière recherche nous a également poussés à réfléchir à certains problèmes
en lien avec la valorisation de produits dérivés en contexte de marché à changement de régime.
Nous avons réalisé que l’approche habituelle pour construire la mesure neutre au risque
impliquait des résultats contre-intuitifs lorsque appliquée à un sous-jacent dont la dynamique
est à changement de régime, i.e., on montre qu’il y a alors dépendance au chemin dans les prix
d’options vanilles. C’est ainsi que nous avons entrepris le dernier projet de recherche présenté
dans cette thèse. Ce projet développe de nouvelles mesures neutres au risque intuitives pouvant
incorporer de manière simple l’aversion au risque de régime et qui n’entraînent pas de tels
effets secondaires de dépendance au chemin.

Cette thèse est structurée de la façon suivante. Le chapitre 1 présente la méthodologie générale
pour dériver des opérateurs de distorsion compatibles avec la valorisation neutre au risque
et présente les applications en lien avec les obligations catastrophes. Le chapitre 2 présente
notre méthode de couverture des rentes variables en présence de risque de base. Le chapitre 3
présente nos nouvelles mesures neutres au risque pour les modèles à changement de régime,
qui n’entraînent pas les effets secondaires de dépendance au chemin.
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Chapter 1

A general class of distortion operators

for pricing contingent claims with

applications to CAT bonds

Résumé

Wang (2000) proposa un opérateur de distorsion permettant de récupérer les formules
Black-Scholes de tarification d’options. Godin et al. (2012) généralisent cette approche de
distorsion à la tarification sans arbitrage à une extension du modèle Black-Scholes basée
sur la distribution normale inverse gaussienne pour la sous-classe de mesures martingales
correctrices de moyenne. Nous généralisons ces travaux en offrant une classe d’opérateurs
de distorsion compatible de façon plus générale avec la valorisation neutre au risque, ce
qui ajoute de la flexibilité pour choisir le modèle actif/passif et la mesure neutre au risque.
Nous dérivons ensuite plusieurs nouveaux opérateurs de distorsion améliorés permettant
de valoriser les risques financiers et d’assurance. Enfin, nous présentons une nouvelle classe
de distorsions pour évaluer les obligations catastrophes et offrons une validation empirique.

Abstract

Wang (2000) proposes a distortion operator that recuperates the Black-Scholes option
pricing formulas. Godin et al. (2012) extend this distortion-based arbitrage-free pricing
approach to a Normal Inverse Gaussian Black-Scholes world for the mean-correcting
subclass of risk-neutral measures. We generalize this line of work by offering a class of
distortion operators that is compatible with risk-neutral valuation more broadly, adding
flexibility to the choices of the asset/liability model and the risk-neutral measure underlying
the distortion. We then derive several new and improved distortion operators that can
be used to price both financial and insurance risks. Finally, we present a novel class of
distortions to price catastrophe bonds and provide an empirical validation.

Keywords : Distortion operator, Wang transform, Distortion risk measure, Arbitrage-free
pricing, Insurance pricing, Contingent claim pricing, Pricing of CAT bonds.
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1.1 Introduction

Wang (2000) proposes a probability distortion operator g↵(u) = �(��1(u) + ↵), u 2 [0, 1], to
price both financial and insurance risks, where � is the standard normal cumulative distribution
function. In particular, Wang shows that this transform can recover the classical Black-Scholes
option pricing formulas. Hamada and Sherris (2003) and Pelsser (2008), among others, study
further the applicability of the Wang transform for contingent claims pricing. These authors find
the Wang transform consistent with arbitrage-free pricing when the underlying asset follows a
geometric Brownian motion, but inadequate under non-Gaussian assumptions. Addressing this
limitation, by way of an exponential Normal Inverse Gaussian (NIG) Lévy motion, Godin et al.
(2012) propose a distortion operator that can recuperate the arbitrage-free prices under the
mean-correcting equivalent martingale measure.

In this paper, we develop a framework for deriving distortion operators that are compatible
with risk-neutral valuation under more general assumptions for the underlying asset model
and the risk-neutral measure. Using our methodology, we produce new distortions that can
recuperate pricing functionals of popular financial and insurance models well beyond the Wang
transform and its non-Gaussian extensions. We also present empirical applications of our
approach in the characterization of catastrophe (CAT) bond spreads.

Our paper is related to the literature that studies the connection between the Wang transform
and other forms of risk pricing. Conditions under which the Bühlmann (1980)’s pricing
equilibrium yields the Wang transform are derived by Wang (2003). Multivariate extensions of
the Wang transform based on similar lines of reasoning can be found in Kijima (2006), Wang
(2007), and Kijima and Muromachi (2008). The equivalence between the Wang transform
and the Esscher-Girsanov change of measure proposed by Goovaerts and Laeven (2008) is
demonstrated in a static setting by Labuschagne and Offwood (2010). Relative to this literature,
our paper is the first to describe the general connection between distortion operators and other
pricing principles. The connections between the Wang transform, the Black-Scholes model, the
Esscher-Girsanov change of measure, and the Bühlmann’s equilibrium are recovered as special
cases of our analyses.

Specifically, our contributions are as follows. First, we present the general expression of the
distortion operator that recovers risk-neutral pricing functionals and we derive the conditions
of applicability. Second, we characterize the change of probability measure applied by our
distortion operator, and we show how the connections found in the literature between the
Wang transform and other pricing frameworks can be viewed as manifestations of this more
fundamental result. Third, we derive new distortion operators that are suitable for financial
and insurance risk pricing. Our first distortion extends the NIG distortion of Godin et al.
(2012) to the Esscher equivalent martingale measure. The second distortion recuperates the
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equilibrium prices in Kou (2002)’s jump-diffusion model. The third recovers the size-biased
premium principle using the generalized beta of the second kind (GB2) distribution for a
loss variable. The fourth distortion operator recuperates the Esscher premium principle for a
gamma distributed loss variable. Finally, we propose distortion operators that can depict CAT
bond market spreads and show their usefulness in an empirical analysis. Our results provide
an interesting evidence that jump-diffusion models are appropriate for pricing CAT bonds, but
that investors are averse to natural disasters.

As pointed out by Hamada and Sherris (2003), Pelsser (2008), and Godin et al. (2012), the
normality assumption underlying the Wang transform poses significant limitations for practical
applications. Our set of new distortion operators extends Godin et al. (2012) in the following
manner. We offer a general class of distortion operators that is compatible with risk-neutral
valuation, yielding flexibility in the selection of the asset/liability model and the risk-neutral
measure. This opens a wide range of possible applications for future research. For instance,
our distortion operators could be used to produce new distortion risk measures, which are
quantile-based measures used by practitioners in finance and insurance, e.g., Dowd and Blake
(2006). One advantage for the risk measures based on our proposed distortion operators is that
they enable the incorporation of risk-aversion and other considerations that are embedded
into the choice of an equivalent martingale measure, as well as risk distribution features (e.g.,
skewness and kurtosis). In different directions, the previous literature has much attempted
to incorporate these features into risk measures (e.g., Bali and Theodossiou, 2008; Gzyl and
Mayoral, 2008).

The paper proceeds as follows. Section 1.2 provides some background on distortion operators
and other forms of risk pricing. Section 1.3 presents the general expression of our distortion
operator and characterizes its applicability to arbitrage-free pricing. Section 1.4 derives new
distortion operators consistent with popular financial non-Gaussian option pricing models.
Section 1.5 performs the same exercise for insurance pricing models. Section 1.6 presents
empirical applications to the pricing of catastrophe bonds. Section 1.7 concludes and discusses
other potential applications.

1.2 Background on risk pricing

In this section, we briefly review popular financial and insurance pricing principles.

1.2.1 Arbitrage-free pricing

Let us consider a continuous-time economy where time t takes value within [0, T ]. This economy
stochastic behaviour is characterized by a probability space (⌦,FT ,P) equipped with a filtration
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{Ft}t2[0,T ] satisfying the usual conditions.

A central result in the theory of asset pricing by arbitrage, the so-called first fundamental theo-
rem of asset pricing, is the equivalence between the absence of (quasi-)arbitrage opportunities
and the existence of an equivalent martingale measure Q. See Delbaen and Schachermayer
(1994) for the history of this theorem which goes back to the seminal papers of Harrison and
Kreps (1979), and Harrison and Pliska (1981). Such a measure is often called a risk-neutral

measure because the arbitrage-free price process {St}t2[0,T ] of any traded asset and derivative
must satisfy

St = Bt E
Q


Ss

Bs

����Ft

�
, 8t  s  T, (1.2.1)

where {Bt}t2[0,T ] is the risk-free asset price process.

(Re)insurance contracts (Delbaen and Haezendonck, 1989; Sondermann, 1991) and insurance-
linked securities (Vaugirard, 2003) employ arbitrage-free pricing techniques initially developed
for financial derivatives. Such frameworks are often characterized by an underlying insurance or
catastrophe loss process whose dynamics is punctuated by random jumps, e.g., a jump-diffusion
process. It is well-known that with such (non-locally bounded) processes, 1 the market is
incomplete, and therefore there exists an infinite number of risk-neutral measures. In this case,
the choice of risk-neutral measure is determined by the market, i.e., by the equilibrium resulting
from supply and demand which are in turn determined by aggregate risk-aversion, liquidity
needs, and other factors. In the realm of incomplete markets, popular modelling assumptions
are the minimal martingale measure (Föllmer and Schweizer, 1991), the Esscher martingale
measure (Gerber and Shiu, 1994), the variance optimal martingale measure (Schweizer, 1995),
the mean-correcting martingale measure, and equilibrium-based martingale measures.

Equilibrium-based martingale measures

General equilibrium models can be viewed as a subset of the arbitrage-free pricing framework
in the sense that they are possible approaches for selecting the risk-neutral measure. Indeed,
there are no arbitrage opportunities in a rational expectation equilibrium.

For example, consider a continuous-time extension of Lucas (1978)’s model. We assume there is
a representative agent possessing endowments who maximizes the agents aggregate utility. Let
U(t, ct) be the aggregate utility at time t for the consumption process {ct}t2[0,T ]. Under mild
conditions, one can show that this setup produces a pricing kernel that depends only on the
aggregate endowment process, denoted by {�t}t2[0,T ], such that the price process {St}t2[0,T ] of

1. The version of the first fundamental theorem of asset pricing for non-locally bounded processes states that

the condition of no free lunch with vanishing risk is equivalent to the existence of an equivalent sigma-martingale

measure (Delbaen and Schachermayer, 1998). A semi-martingale X is a sigma-martingale if there exists a

martingale M and an M -integrable predictable process � such that Xt =
R

t

0
�udMu.
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any traded asset and derivative must satisfy the following condition in equilibrium :

St = E
P

"
Uc(s, �s)

Uc(t, �t)
Ss

�����Ft

#
, 8t  s  T, (1.2.2)

where P is the physical measure, and Uc ⌘
@U

@c
. This equilibrium condition can be written

in the form of equation (1.2.1) by noting that the pricing kernel can be used to define a
Radon-Nikodym derivative.

1.2.2 Actuarial premium calculation principles

A prominent problem in actuarial science is to derive premium calculation principles (PCPs)
that satisfy a number of desirable properties (see, e.g., Laeven and Goovaerts, 2008). We
present below two of such popular approaches. 2

Distortion operators

The history of distortion operators goes back to Yaari (1987)’s dual theory of choice under
risk, in which attitudes toward risks are characterized by a distortion function rather than by
an expected utility function. Distortion operators also stem from the axiomatic approach of
Wang et al. (1997) to characterize insurance prices.

Let X be a random variable distributed with survival function F̄P(x) ⌘ P(X > x) under
the physical measure P. We introduce a distortion operator g which is an increasing and
differentiable function such that g(0) = 0, g(1) = 1, and g(u) 2 [0, 1] for all u 2 [0, 1]. It defines
a change of measure such that X is distributed with survival function F̄g(x) ⌘ g(F̄P(x)) under
the new probability measure.

The price of X is obtained via the expected value under the distorted probability measure.
One can show that this expected value has the following Choquet integral representation :

H[X; g] ⌘

Z 0

�1

⇥
g
�
F̄P(x)

�
� 1
⇤
dx+

Z 1

0
g
�
F̄P(x)

�
dx, F̄P(x) ⌘ P(X > x). (1.2.3)

This Choquet integral exhibits monotonicity, translation invariance, positive homogeneity,
and is sub-additive if g is concave (Denneberg, 1994). Hence, the functional H[·; g] defines
a distortion-based risk measure that is coherent in the sense of Artzner et al. (1999) if g is
concave. 3

2. There is a plethora of other insurance pricing principles, the reader is referred to Laeven and Goovaerts

(2008) and Ai and Brockett (2008) for thorough accounts of these.

3. A more comprehensive treatise on distortion-based risk measures can be found in Dowd and Blake (2006).
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Actuarial weighted pricing principles

Furman and Zitikis (2008) propose a broad class of PCPs based on weighted loss distributions.
This class can also be viewed as a subclass of the loss function approach (see Remark 1 of
Heilmann (1989)). Under this approach, the price of a risk X � 0 is given by

⇧[X;w] =
E
P[w(X)X]

EP[w(X)]
, (1.2.4)

where w(x) � 0 for all x � 0. Thus, the change of probability measure whose Radon-Nikodym
derivative is w(x)/EP[w(X)] characterizes this pricing principle. Several popular PCPs are
contained within the weighted family. For instance, the Esscher principle is obtained with
w(x) = e

ax and the size-biased premium principle with w(x) = x
a, where a � 0 in both cases. 4

1.3 A general framework for distortion-based risk-neutral
valuation

This section contains our main theoretical results. First, we present the general definition of
our distortion operator. Then, we characterize the change of probability measure it applies,
and the conditions under which it can be used to compute arbitrage-free prices of derivatives.

1.3.1 A new class of distortion operators

We define below our distortion operator by Definition 1.3.1. This general expression can be
reduced to a simpler form with fewer parameters using Proposition 1.3.1 whose proof is in
Appendix 1.A.1. This can be crucial to circumvent the parameter identification issues that
could otherwise arise in calibration.

Definition 1.3.1. Let X be a continuous random variable on (⌦,F ,P), and let Q be a
probability measure equivalent to P on F . Let F̄P(x) ⌘ P(X > x) and F̄Q(x) ⌘ Q(X > x). We
define the following distortion operator :

g
Q,P

X
(u) ⌘ F̄Q

�
F̄

�1
P

(u)
�
, u 2 [0, 1], (1.3.1)

where F̄
�1
P

is the inverse of F̄P with the convention F̄
�1
P

(0) = +1 and F̄
�1
P

(1) = �1.

Proposition 1.3.1. Let X be a continuous random variable on (⌦,F ,P), and let Q be a

probability measure equivalent to P on F . For any continuous and increasing function h,

g
Q,P

h(X)(u) = g
Q,P

X
(u), 8u 2 [0, 1]. (1.3.2)

4. We refer the reader to Table 1 of Furman and Zitikis (2009) for additional examples.
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Remark 1.3.1 (Wang transform). Suppose that X is a standard normal N(0, 1) random
variable under the measure P, and that it is shifted to a N(✓, 1) distribution under the measure
Q. In other words, we have P(X > x) = 1��(x), and Q(X > x) = 1��(x� ✓). Let h be any
continuous and increasing function. By Proposition 1.3.1, gQ,P

h(X)(u) = g
Q,P

X
(u) = �

�
��1(u) + ✓

�
.

1.3.2 Change of measure performed by the distortion operator

The change of probability measure performed by the distortion operator g
Q,P

X
in Definition

1.3.1 is characterized below by Theorem 1.3.1 whose proof is in Appendix 1.A.2. As stated
in Corollary 1.3.1 (proven in Appendix 1.A.3), a key feature of the distortion g

Q,P

X
is that it

changes the probability measure from P to Q when applied on any random variable of the form
h(X), where h is any continuous and increasing function.

Definition 1.3.2. Let Z be a continuous random variable on (⌦,F ,P), and let Q be a
probability measure equivalent to P on F . Define qP as the probability density function (PDF)
of Z under P, and define qQ as its PDF under Q. We define the likelihood ratio

⇠
Q,P

Z
(z) ⌘

qQ(z)

qP(z)
. (1.3.3)

Theorem 1.3.1. Let X and Z be continuous random variables on (⌦,F ,P), and let Q be a

probability measure equivalent to P on F . Denote the survival functions of X and Z under P

by F̄P(x) ⌘ P(X > x) and Q̄P(z) ⌘ P(Z > z), and let the PDF of X under P be denoted by fP.

The PDF of X under the probability measure distorted by g
Q,P

Z
is given by

f
g
Q,P
Z

(x) = fP(x) ⇠
Q,P

Z

�
Q̄

�1
P

(F̄P(x))
�
, (1.3.4)

where Q̄
�1
P

is the inverse of Q̄P.

Corollary 1.3.1. If X = h(Z), where h is continuous and increasing, then the distorted

distribution of X coincides with its distribution under Q : f
g
Q,P
Z

(x) = fQ(x), for all x in the

support.

1.3.3 Connections between the Wang transform and other pricing
frameworks

There is a literature studying the connections between the Wang transform, the Esscher-
Girsanov change of measure, and the Bühlmann general equilibrium model. We now show
that these results can be recovered by virtue of Theorem 1.3.1. We refer to Wang (2003) and
Labuschagne and Offwood (2010) for the original proofs. 5

5. See Kijima (2006), Wang (2007), and Kijima and Muromachi (2008) for closely related works.
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First, let’s see how the Wang transform can be related to the Esscher-Girsanov change of
measure. Suppose that Z is a N(0, 1) random variable under P, and that its distribution is
shifted to a N(✓, 1) under Q. As stated in Remark 1.3.1, the distortion operator is the Wang
transform g

Q,P

Z
(u) = �

�
��1(u) + ✓

�
. Moreover, one can readily show that the Radon-Nikodym

derivative is ⇠Q,P

Z
(x) = e

✓x�✓2/2. Therefore, applying Theorem 1.3.1 with Q̄P(x) = 1 � �(x)

gives us
f
g
Q,P
Z

(x) = e
✓��1(FP(x))�✓2/2fP(x), (1.3.5)

where FP(x) ⌘ 1� F̄P(x). When ✓ = h⌫, the Definition 3.1 Esscher-Girsanov change of measure
recovers the one in Labuschagne and Offwood (2010).

Next, let’s see how the Wang transform can yield the Bühlmann (1980)’s pricing equilibrium.
The key assumption in Wang (2003) is that X and Z and co-monotone in the sense that under
P they can be expressed as X = F

�1
P

(U) and Z = ��1(U), where U is uniformly distributed
between 0 and 1. Assuming this, using the expression Z = ��1(FP(X)) in (1.3.5) yields

f
g
Q,P
Z

(x) = E
P

h
e
✓Z�✓2/2

��� X = x

i
fP(x) =

E
P
⇥
e
✓Z
��X = x

⇤

EP
⇥
e✓Z
⇤ fP(x). (1.3.6)

1.3.4 Risk-neutral pricing using distortion operators

Let X be a random variable representing a financial or insurance risk. For example, X could
be the price of a traded asset (as it is for the case of financial derivatives), but it could also be
something else like the number of heating degree days (say a weather derivative) or the value
of a catastrophe loss index (as for insurance-linked securities). Our goal is to price derivatives
on X using a distortion operator. The proposition below whose proof is in Appendix 1.A.4
gives the general solution to this problem.

Proposition 1.3.2. Let X be a random variable on (⌦,F ,P), and let Q be a measure equivalent

to P on F . For any continuous and increasing function h, we have

H

h
h(X); gQ,P

X

i
= E

Q[h(X)]. (1.3.7)

In particular, Proposition 1.3.2 also holds for any equivalent martingale measure Q, in which
case the arbitrage-free price of a derivative with terminal payoff h(X) is given by the discounted
value of H

h
h(X); gQ,P

X

i
. Less general versions of this result can be found in the literature. For

instance, the proof when X is the terminal value of a geometric Brownian motion (see Remark
1.3.2) can be found in Hamada and Sherris (2003). The proof when X is the terminal value
of an exponential NIG Lévy motion and Q is the mean-correcting martingale measure is in
Godin et al. (2012).

Remark 1.3.2 (Black-Scholes model). It follows from Proposition 1.3.2 that the distortion
operator that can recuperate the arbitrage-free prices under the Black-Scholes model is g

Q,P

ST
,
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where ST is the terminal value of a geometric Brownian motion, with constant drift µ and
volatility � under the physical measure P, and with drift r and volatility � under the risk-neutral
measure Q, where r is the risk-free rate. Following Remark 1.3.1, one can check that this
distortion reduces to the Wang transform g

Q,P

ST
(u) = �

�
��1(u) +'

�
where ' =

�
r�µ

�

�p
T , with

T denoting the maturity.

1.4 Distortion operators for financial models

Next, we derive distortion operators compatible with arbitrage-free pricing under non-Gaussian
extensions of the Black-Scholes model. Empirically, it turns out that such extensions are
needed to reproduce well-documented phenomena, such as the “volatility smiles" observed in
option markets, and the fact that asset returns exhibit heavier-skewed tails than the normal
distribution underpinning the geometric Brownian motion.

We consider a continuous-time market, with time t 2 [0, T ], containing a liquid asset growing
at the risk-free rate r and a (possibly non-traded) underlying risky process {St}t2[0,T ] defined
on a probability space (⌦,FT ,P) equipped with a filtration {Ft}t2[0,T ] satisfying the usual
assumptions. In Section 1.4.1, we model the underlying asset with an infinite activity Lévy
process, and in Section 1.4.2 with a jump-diffusion process. Both approaches, now standard
in the literature, have been widely applied in finance (see, e.g., Schoutens, 2003; Cont and
Tankov, 2004).

1.4.1 Normal Inverse Gaussian distortion based on the Esscher
martingale measure

Godin et al. (2012) propose a distortion operator that can recuperate the arbitrage-free prices
for a non-Gaussian extension of the Black-Scholes model based on the Normal Inverse Gaussian
(NIG) distribution and the mean-correcting martingale measure. Their distortion operator
is proposed in the form of an educated guess in their Definition 2. Here, we take a different
approach. We start directly from the general expression of the distortion operator (Definition
1.3.1) and simplify it using Proposition 1.3.1. The latter approach has the advantage of not
requiring an ansatz for the correct form of the distortion operator. To make this exercise
rewarding, we extend the work of Godin et al. (2012) to the Esscher martingale measure, which
provides a new NIG-based distortion operator that benefits from the very same advantages.
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Dynamics under the physical measure

Under the physical measure, the underlying asset price follows an exponential NIG Lévy process
with parameters (↵,�, �, µ). Its terminal value takes the form (see, e.g., Schoutens, 2003)

ST = S0e
XT , XT ⇠ NIG(↵,�, �T, µT ), (1.4.1)

where NIG(↵,�, �, µ) is the Normal Inverse Gaussian distribution as defined in Godin et al.
(2012). The distribution is a generalization of the normal distribution that allows for skewness
and excess kurtosis. The cumulative distribution function (CDF) and survival function of
NIG(↵,�, �, µ) are respectively denoted by NIG(x;↵,�, �, µ) and NIG(x;↵,�, �, µ), x 2 R.
We state below some useful remarks about this distribution.

Remark 1.4.1. If X ⇠ NIG(↵,�, �, µ) we have that Y = aX + b, for a > 0 and b 2 R, is such
that Y ⇠ NIG(↵/a,�/a, a�, aµ+ b).

Remark 1.4.2. The NIG distribution possesses the symmetry

NIG(x;↵,�, �, 0) = NIG(�x;↵,��, �, 0).

Dynamics under the risk-neutral measure

It turns out that the market described above is incomplete, and therefore there exists an infinite
number of equivalent sigma-martingale measures (Eberlein and Jacod, 1997). We choose the
Esscher martingale measure as it is a popular choice (e.g., Gerber and Shiu, 1994). Under this
measure, the process S is an exponential NIG Lévy process with parameters (↵,� + ✓, �, µ). 6

Under the Esscher martingale measure Q, the terminal value of the underlying is such that

ST = S0e
X

Q
T , X

Q

T
⇠ NIG

�
↵,� + ✓, �T, µT

�
. (1.4.2)

Derivation of the distortion operator

Using Remark 1.4.1, we can express (1.4.1) and (1.4.2) more compactly as

ST = h(Z) ⌘ S0 exp
n
µT +

p
�/↵Z

o
, (1.4.3)

where the random variable Z is such that

Z ⇠

(
NIG

�p
↵�,�

p
�/↵, T

p

↵�, 0
�
, under P,

NIG
�p
↵�, (� + ✓)

p
�/↵, T

p

↵�, 0
�
, under Q.

(1.4.4)

6. Moreover, if S is the price process of a traded asset, then ✓ must be determined so that the discounted

price process {Ste
�rt}t2[0,T ] is a martingale under Q (see Schoutens, 2003, p. 79).
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To obtain the expression of the distortion operator, we start from Definition 1.3.1 and simplify
it using Proposition 1.3.1 and the symmetry property of Remark 1.4.2 :

g
Q,P

ST
(u) = g

Q,P

h(Z)(u) = g
Q,P

Z
(u) = �Q

NIG
�
��1

NIG(u)
�
, (1.4.5)

where the following definitions are used :

�NIG(x) ⌘ NIG
�
x; ⇠, ⇣, T ⇠, 0

�
, �Q

NIG(x) ⌘ NIG
�
x; ⇠, ⇣Q, T ⇠, 0

�
,

with ⇠ ⌘
p
↵�, ⇣ ⌘ ��

p
�/↵, ⇣Q ⌘ �(� + ✓)

p
�/↵, and where ��1

NIG is the inverse of �NIG.

By Proposition 1.3.2, it follows that this distortion recovers the arbitrage-free prices under
the Esscher martingale measure. In fact, Black-Scholes-type formulas can be recuperated
through (1.3.7) in a similar fashion as in Hamada and Sherris (2003). Note that the difference
between our NIG distortion and the one proposed by Godin et al. (2012) lies in the choice of
the equivalent martingale measure, the later being based on the mean-correcting measure. 7

Since our new Esscher-based NIG distortion exhibits the same improvements over the Wang
transform as achieved by Godin et al. (2012), we refer to that work for a thorough account of
these improvements.

1.4.2 A distortion operator based on Kou (2002)’s jump-diffusion model

Let us consider now the Kou (2002)’s jump-diffusion option pricing model. This model is based
on the equilibrium framework of Section 1.2.1, where the utility function of the representative
agent is assumed to be of the form U(t, c) = e

�t c↵
↵

for ↵ 2 (0, 1], and U(t, c) = e
�t ln c for

↵ = 0, with  being a subjective discount factor. Kou’s model offers an attractive tradeoff
between reality and tractability. It is able to reproduce the leptokurtic feature of the return
distribution and the “volatility smile" observed in option markets, yet is simple enough to
produce analytical formulas for call/put options, interest rate derivatives, and a variety of
path-dependent options. We first describe Kou’s model, and then derive its associated distortion.

The endowment process is modelled by the following jump-diffusion process under P :

d�t

�t�
= µ1dt+ �1dW

(1)
t

+ d

"
NtX

i=1

(Vi � 1)

#
, (1.4.6)

where µ1 2 R and �1 > 0 are constants,
�
W

(1)
t

 
t2[0,T ]

is a Wiener process, {Nt}t2[0,T ] is a
standard Poisson process with intensity � > 0, {Vi}i�1 is a sequence of i.i.d. non-negative
random variables, and all sources of randomness are independent.

7. Godin et al. (2012) choose the mean-correcting martingale measure rather than the Esscher martingale

measure. Under this measure, S is an exponential NIG Lévy process with parameters (↵,�, �, µ + ✓). One

can check that applying our approach indeed yields the NIG distortion proposed in their Definition 2 :

�NIG(��1
NIG(u) + ✓T

p
↵/�).
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The underlying follows the jump-diffusion process

dSt

St�
= µdt+ �dWt + d

"
NtX

i=1

⇣
V
�

i
� 1
⌘#

, (1.4.7)

where µ 2 R, � > 0, and � 2 R are constants. The new Wiener process
�
Wt

 
t2[0,T ]

has constant
correlation ⇢ 2 [�1, 1] to W

(1) and is independent from the other sources of randomness.

Dynamics under the physical measure

The distribution of the log-size jumps is modelled by a Asymmetric Double Exponential
distribution ADE(⌘1, ⌘2, p). The PDF of this distribution is

ade(x; ⌘1, ⌘2, p) = p⌘1e
�⌘1x 1x�0 + (1� p)⌘2e

⌘2x 1x<0, x 2 R. (1.4.8)

The parameter domain is ⌘1 > 0, ⌘2 > 0, p 2 [0, 1]. As stated in Remark 1.4.3, the ADE
distribution is closed under scaling.

Remark 1.4.3. If X ⇠ ADE(⌘1, ⌘2, p) then we have that Y ⌘ aX is such that

Y ⇠

(
ADE(⌘1/a, ⌘2/a, p), a � 0,

ADE(⌘2/|a|, ⌘1/|a|, 1� p), a < 0.

Solving the stochastic differential equation (1.4.7) yields

ST = S0 exp

⇢✓
µ�

�
2

2

◆
T + �WT + �

NTX

i=1

Yi

�
, (1.4.9)

with {Yi ⌘ lnVi}i�1
i.i.d.
⇠ ADE(⌘1, ⌘2, p), WT ⇠ N(0, T ), and NT ⇠ Poisson(�T ).

Dynamics under the risk-neutral measure

Theorem 1 of Kou (2002) describes the dynamics under the risk-neutral measure and the
conditions for the existence of this measure. From this theorem, it can be shown that under Q

the terminal value of the underlying is such that

ST = S0 exp

⇢✓
µ�

�
2

2
� ⇢��1(1� ↵)

◆
T + �W

Q

T
+ �

NTX

i=1

Yi

�
, (1.4.10)

with {Yi}i�1
i.i.d.
⇠ ADE

�
⌘
Q

1 , ⌘
Q

2 , p
Q
�
, WQ

T
⇠ N(0, T ), and NT ⇠ Poisson(�QT ), where

⌘
Q

1 = ⌘1 � ↵+ 1, ⌘
Q

2 = ⌘2 + ↵� 1, p
Q =

p

⇣

⌘1

⌘1 � ↵+ 1
, �

Q = ⇣�, (1.4.11)

with ⇣ ⌘
p⌘1

⌘1�↵+1 + (1�p)⌘2
⌘2+↵�1 .
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Derivation of the distortion operator

The survival function defined below will be useful in defining the distortion operator. We refer
to Appendix B of Kou (2002) for results that ease its numerical implementation.

Definition 1.4.1. Let the following random variables be independent : Z ⇠ N(µ,�2) is a
normal variable, P ⇠ Poisson(�) is a Poisson variable, and {Yi}i�1

i.i.d.
⇠ ADE(⌘1, ⌘2, p). The

CDF of the Normal Compound Poisson distribution NCP(�, ⌘1, ⌘2, p,�, µ) is defined as

NCP
�
x;�, ⌘1, ⌘2, p,�, µ

�
⌘ Pr

 
Z +

PX

i=1

Yi  x

!
, x 2 R. (1.4.12)

The survival function is denoted by NCP
�
x;�, ⌘1, ⌘2, p,�, µ

�
= 1� NCP

�
x;�, ⌘1, ⌘2, p,�, µ

�
.

Using Remark 1.4.3, it is a straightforward exercise to show that the NCP distribution is closed
under affine transformations, as stated below in Remark 1.4.4. Moreover, the CDF and survival
function of the NCP distribution are related by the symmetry property stated in Remark 1.4.5.

Remark 1.4.4. If X ⇠ NCP(�, ⌘1, ⌘2, p,�, µ) then we have that Y = aX + b is such that

Y ⇠

(
NCP

�
�, ⌘1/a, ⌘2/a, p, a�, aµ+ b

�
, a � 0,

NCP
�
�, ⌘2/|a|, ⌘1/|a|, 1� p, |a|�, aµ+ b

�
, a < 0.

Remark 1.4.5. The NCP distribution possesses the following symmetry :

NCP(x;�, ⌘1, ⌘2, p,�, µ) = NCP(�x;�, ⌘2, ⌘1, 1� p,�,�µ).

We can make use of Remark 1.4.4 to express (1.4.9) and (1.4.10) more compactly as

ST = h(X) ⌘ S0 exp

⇢✓
µ�

�
2

2

◆
T + �

p

TX

�
, (1.4.13)

where the random variable X is such that

X ⇠

(
NCP

�
�T, ⌘̃1, ⌘̃2, p̃, 1, 0

�
, under P,

NCP
�
�
Q
T, ⌘̃

Q

1 , ⌘̃
Q

2 , p̃
Q
, 1,�⇢�1(1� ↵)

p

T
�
, under Q,

(1.4.14)

where the tilde parameters are defined in terms of ⌫ ⌘ �
p
T/|�| as follows :

(if � � 0) ⌘̃1 = ⌘1⌫, ⌘̃
Q

1 = ⌘
Q

1 ⌫, ⌘̃2 = ⌘2⌫, ⌘̃
Q

2 = ⌘
Q

2 ⌫, p̃ = p, p̃
Q = p

Q
,

or
(if � < 0) ⌘̃1 = ⌘2⌫, ⌘̃

Q

1 = ⌘
Q

2 ⌫, ⌘̃2 = ⌘1⌫, ⌘̃
Q

2 = ⌘
Q

1 ⌫, p̃ = 1� p, p̃
Q = 1� p

Q
.

(1.4.15)

To obtain the expression of the distortion operator, we start from Definition 1.3.1 and simplify
it by using Proposition 1.3.1 and the symmetry property of Remark 1.4.5 :

g
Q,P

ST
(u) = g

Q,P

h(X)(u) = g
Q,P

X
(u) = �Q

NCP

⇣
��1

NCP(u)� ⇢�1(1� ↵)
p

T

⌘
, (1.4.16)
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where the following definitions are used :

�NCP(x) ⌘ NCP
�
x;�T, ⌘̃2, ⌘̃1, 1�p̃, 1, 0

�
, �Q

NCP(x) ⌘ NCP
�
x;�QT, ⌘̃Q2 , ⌘̃

Q

1 , 1�p̃
Q
, 1, 0

�
,

with ��1
NCP defined as the inverse of �NCP.

From Proposition 1.3.2, it follows that the distortion operator (1.4.16) recovers the pricing
equilibrium described above. For instance, through (1.3.7), the distortion can recuperate the
European call formula (20) in Kou (2002). This distortion operator produces a risk-neutralized
distribution that can be viewed as capturing premiums for both sources of risks, i.e., jumps
and Brownian motion.

1.5 Distortion operators for insurance models

We now derive distortion operators for two insurance pricing models. The first is based on
the size-biased pricing principle for the generalized beta of the second kind distribution, and
the second is based on the Esscher principle for the gamma distribution. In both cases, the
underlying risk is an insurance claim represented by a positive random variable X on (⌦,F ,P).

We adopt the conventions used in Klugman et al. (2012) for the incomplete beta function and
the incomplete gamma function. The incomplete beta function is defined as

�(x; ⌧,↵) ⌘
�(⌧ + ↵)

�(⌧)�(↵)

Z
x

0
t
⌧�1(1� t)↵�1

dt, ⌧ > 0, ↵ > 0, x 2 (0, 1), (1.5.1)

and the (lower) incomplete gamma function is defined as

�(x;↵) ⌘
1

�(↵)

Z
x

0
t
↵�1

e
�t
dt, ↵ > 0, x > 0, (1.5.2)

where �(↵) ⌘
R1
0 t

↵�1
e
�t
dt is the gamma function.

1.5.1 A distortion based on the generalized beta of the second kind
distribution

The generalized beta of the second kind (GB2) distribution, sometimes called the transformed
beta distribution, is a member of the celebrated Pearson system and was first proposed as a
model of the size-of-loss distribution in actuarial sciences by Venter (1983). This large family
of heavy-tailed distributions contains the Burr, generalized Pareto, generalized gamma, log-t,
and other commonly used distributions. It provides a fairly flexible form that can be used to
model highly skewed loss distributions such as those typically observed in non-life insurance
(Cummins et al., 1990). Here, we use the GB2 distribution to model the risk X. A thorough
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account of other size-of-loss distributions can be found in Kleiber and Kotz (2003) and in
Klugman et al. (2012).

The GB2 distribution has heavy tails, and therefore only a few of the moments exist (Kleiber,
1997). This implies that some risk-neutral measures, such as the Esscher measure, may exist
only for a certain range of the shape parameters. Among the possible risk-neutral measures,
the size-biased subclass is an interesting choice as it preserves the shape of the GB2 family,
yielding a simple Wang-like distortion operator. We underline that our approach also applies to
non shape-preserving changes of measure, although it may require tedious algebra to simplify
the form of the distortion function.

Distribution under the physical measure

Under the physical measure P, the risk X follows a GB2(↵, ✓, �, ⌧) distribution as defined in
Klugman et al. (2012). The PDF of this distribution is

gb2(x;↵, ✓, �, ⌧) =
�(↵+ ⌧)

�(↵)�(⌧)

�(x/✓)�⌧

x[1 + (x/✓)� ]↵+⌧
, x � 0, (1.5.3)

and its CDF is
GB2(x;↵, ✓, �, ⌧) = �

✓
(x/✓)�

1 + (x/✓)�
; ⌧,↵

◆
, x � 0. (1.5.4)

The parameter domain of this distribution is ↵ > 0, ✓ > 0, � > 0, ⌧ > 0. The parameter
controlling the scale is ✓. The other parameters control the tail behaviour and the shape in
general. It is interesting to note that the log-normal distribution is a limiting case of the GB2
distribution, as stated in the following remark.

Remark 1.5.1 (Log-normal limit). A log-normal distribution with PDF logN(x;µ,�) ⌘

�(ln x�µ

�
)

�x
, x � 0, is obtained as a limiting case of the GB2(↵, ✓, �, ⌧) distribution for ↵ ! 1,

� ! 0, ✓ = (↵�2�2)1/� and ⌧ = (�µ+ 1)/(�2�2) (from McDonald, 1987).

The survival function under P of the risk X is thus given by

F̄P(x) ⌘ P(X > x) = 1� �

✓
(x/✓)�

1 + (x/✓)�
; ⌧,↵

◆
, x � 0. (1.5.5)

Distribution under the risk-neutral measure

Under the size-biased risk-neutral measure Q, the PDF of X is given by

x
a

EP[Xa]
gb2(x;↵, ✓, �, ⌧) / gb2(x; ↵̃, ✓, �, ⌧̃), (1.5.6)

where
↵̃ ⌘ ↵� a/�, ⌧̃ ⌘ ⌧ + a/�. (1.5.7)
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By normalization, the right-hand side of (1.5.6) implies that X ⇠ GB2(↵̃, ✓, �, ⌧̃) under Q.
Note that the requirement ��⌧ < a < ↵� is needed for the existence of this measure.

The survival function under Q of X is therefore given by

F̄Q(x) ⌘ Q(X > x) = 1� �

✓
(x/✓)�

1 + (x/✓)�
; ⌧̃ , ↵̃

◆
, x � 0. (1.5.8)

Derivation of the distortion operator

To obtain the distortion operator, the first step is to use (1.5.8) in Definition 1.3.1 to obtain

g
Q,P

X
(u) ⌘ F̄Q

�
F̄

�1
P

(u)
�
= 1� �

 �
F̄

�1
P

(u)/✓
�
�

1 +
�
F̄

�1
P

(u)/✓
�
� ; ⌧̃ , ↵̃

!
. (1.5.9)

Next, we use x = F̄
�1
P

(u) in (1.5.5) to obtain the following relation :

u = 1� �

 �
F̄

�1
P

(u)/✓
�
�

1 +
�
F̄

�1
P

(u)/✓
�
� ; ⌧,↵

!
)

�
F̄

�1
P

(u)/✓
�
�

1 +
�
F̄

�1
P

(u)/✓
�
� = �

�1
�
1� u; ⌧,↵

�
,

where the expression of the right-hand side is obtained by rearranging the terms and taking
the inverse incomplete beta function �

�1. Using this expression in (1.5.9) gives us the GB2
distortion :

g
Q,P

X
(u) = 1� �

�
�
�1(1� u; ⌧,↵); ⌧̃ , ↵̃

�
, (1.5.10)

where ⌧̃ ⌘ ⌧ + a/� and ↵̃ ⌘ ↵� a/�.

An interesting special case of the GB2 distortion is obtained for ⌧ = ↵ = 1, for which it is a
straightforward exercice to prove that we obtain g

Q,P

X
(u) = 1� �

�
1� u; 1 + a/�, 1� a/�

�
. This

distortion is a variant of the beta transform in Wirch and Hardy (1999). In this paper, the
authors argue that the corresponding distortion risk measure has advantages over the expected
shortfall because it utilizes the whole distribution rather than focusing only the tail.

An even more interesting property of the GB2 distortion is that it reduces to the Wang
transform g

Q,P

X
(u) = �

�
��1(u) + a�

�
in the log-normal limiting case stated in Remark 1.5.1. 8

The GB2 distortion can therefore be seen as a very flexible generalization of the Wang transform
that can account for heavier tails. It is a well-known fact that correctly modelling the tail
behaviour is crucially important for premium calculation and risk measurement. Indeed, the
Wang transform must be modified to capture the heavy tail feature.

8. Let X be a log-normal variable distributed with density logN(x;µ,�) ⌘ �
�
ln x�µ

�

�
/(�x), x � 0. It can be

shown that
x
a

EP[Xa]
logN(x;µ,�) = logN(x;µ+ a�2,�). The distortion operator, obtained in a similar fashion

as in Section 1.5.1, turns out to be the Wang transform gQ,P
X

(u) = �
�
��1(u) + a�

�
.
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1.5.2 An extension of the proportional hazards transform

We now turn to the Esscher pricing principle. Because this principle relies on an exponential
weight function, the risk-neutral measure does not exist for the heavy-tailed distributions in the
GB2 family. It is however applicable to the gamma subfamily, which includes the exponential and
chi-squared distributions. Here, we suppose that the insurance claim X is gamma distributed,
and we derive the distortion that recuperates the Esscher principle. Interestingly, it turns out
that the proportional hazards (PH) transform (Wang, 1995) is a special case of this distortion.

Distribution under the physical measure

Under the physical measure P, the risk X follows a Gamma(↵, ✓) distribution. The parameter
domain of this distribution is ↵ > 0, ✓ > 0. The PDF and CDF are given by

gamma(x;↵, ✓) =
(x/✓)↵e�x/✓

x�(↵)
, Gamma(x;↵, ✓) = �

�
x/✓;↵

�
, x � 0. (1.5.11)

The survival function of X, under P, is thus F̄P(x) = 1� �
�
x/✓;↵

�
, x � 0.

Distribution under the risk-neutral measure

Under the Esscher risk-neutral measure Q, the PDF of X is given by
e
ax

EP[eaX ]
gamma(x;↵, ✓) / gamma(x;↵, ✓̃), ✓̃ ⌘

✓

1� a✓
. (1.5.12)

By normalization, the right-hand side indeed implies that X ⇠ Gamma(↵, ✓̃) under Q. Note
that a < 1/✓ is required to ensure the existence of this measure.

The survival function of X, under Q, is thus F̄Q(x) = 1� �
�
x/✓̃;↵

�
, x � 0.

Derivation of the distortion operator

The derivation of the distortion operator follows the same steps as in Section 1.5.1. We obtain

g
Q,P

X
(u) = 1� �

�
��1(1� u;↵)[1� a✓];↵

�
, (1.5.13)

where ��1 is the inverse of the incomplete gamma function � of (1.5.2).

Note that for the special case ↵ = 1 (i.e., the exponential distribution) we obtain g
Q,P

X
(u) = u

1�a✓,
which is the so-called PH transform (Wang, 1995). Our gamma-based distortion can therefore be
seen as a natural generalization of the PH transform obtained from a more flexible distribution.
Moreover, our analysis clearly deepens and extends the discussions in Wang (1996) regarding
the connections between risk-neutral valuation and the PH transform.
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1.6 Empirical applications to CAT bonds

Catastrophe (CAT) bonds are insurance-linked securities devised by insurers and reinsurers
to shift natural disaster risks to the capital markets. 9 Several authors have proposed to price
CAT bonds using the theory of contingent claim pricing for jump-diffusion processes (e.g.,
Vaugirard, 2003). These CAT bond pricing models usually involve extensive information that
are not publicly disclosed (e.g., the trigger level or strike price). 10 It ensues that these types
of models have yet to be tested empirically. In fact, most empirical studies on CAT bond
spreads have instead relied on pure regression models (e.g., Bodoff and Gan, 2012; Braun,
2015). Meanwhile, explaining CAT bond spreads using distortion operators has been suggested
by several works ; calibration of the Wang transform to CAT bond spreads is carried out,
for instance, in Wang (2004) and in Galeotti et al. (2013). In this section, we employ our
approach to perform further empirical tests on such models as it enables us to reformulate
these in terms of the information available to the econometrician (e.g., the expected loss, the
probability of first loss, the probability of last loss). Extending this stream of empirical studies,
we make several interesting findings, in particular, it turns out that incorporating CAT risk
and CAT risk-aversion into the distortion is important for explaining CAT bond spreads. This
is established by calibrating a jump-diffusion distortion operator to market spreads. By way of
a mixture of normal and exponential distributions, we also offer a simplified approximation of
the latter distortion.

1.6.1 Setup

Let the payout to the ceding (re)insurer be contingent upon a risk X breaching a pre-agreed
attachment point b, in which case the collateral is liquidated to reimburse the sponsor up to
the par amount p paid by the investor at the issue date. If there is no triggering event during
the term of the CAT bond, which is typically between one and four years, the principal is
returned to the investor plus a coupon payment with spread S above the risk-free rate. Under
the distortion premium principle, the spread is given by (from Galeotti et al., 2013)

S =
1

p

Z
b+p

b

g
�
F̄P(x)

�
dx, F̄P(x) ⌘ P(X > x). (1.6.1)

The integral can be approximated using the trapezoidal rule :

S ⇡
�
g(PFL) + g(PLL)

�
/2, PFL ⌘ F̄P(b), PLL ⌘ F̄P(b+ p). (1.6.2)

9. CAT bond transactions usually involve a Special-Purpose Vehicle (SPV), located in a tax-efficient

jurisdiction, that sells catastrophe protection to a ceding (re)insurer in the form of a reinsurance contract. The

SPV then effectively transfers its risk exposure by issuing CAT bond tranches to capital market investors. In

order to offer a virtually pure exposure to the natural disaster risk, the proceeds of the issuance are invested by

the SPV in highly rated short-term assets that are held in a collateral account.

10. Available databases for CAT bond transactions include Artemis.bm’s deal directory, and the reports

published by Aon Benfield, Swiss Re, Plenum, and Lane Financial LLC.

20



If either of the probability of first loss PFL or the probability of last loss PLL is not available,
the integral can be approximated using the rectangle method :

S ⇡ g(EL), EL ⌘
1

p

Z
b+p

b

F̄P(x)dx. (1.6.3)

A data set containing 508 CAT bond tranches issued between 1997 and 2016 has been made
available to us by Artemis.bm. Roughly half of the CAT bonds in the sample cover the United
States, approximatively one quarter are multi-territory, and the rest cover Europe, Japan or
other areas. About half of the CAT tranches are multi-peril, and others are mainly wind-specific
or earthquake-specific. For each of the 508 transactions, the available information includes the
per annum spread S and expected loss EL. The probability of first loss PFL and the probability
of last loss PLL are however available only for 284 transactions. Calibration is therefore carried
out under the rectangle method (1.6.3), by minimizing the sum of squared pricing errors. Fitting
adequacy is investigated using nonparametric regressions to detect systematic pricing errors ;
see Azzalini et al. (1989), Zheng (1996), and Li and Racine (2007) for works on nonparametric
specification testing.

1.6.2 Pricing CAT bonds using a jump-diffusion distortion

An interesting property of our distortion operators is that they inherit the features of the
original root model they are derived from. For instance, the jump-diffusion distortion (1.4.16)
can incorporate jump risk, making it an interesting candidate for pricing CAT bonds. Several
frameworks based on jump-diffusion processes have in fact been proposed to price such insurance-
linked securities (e.g., Vaugirard, 2003). In this section, instead of using the Wang transform as
in Wang (2004) and Galeotti et al. (2013), we calibrate our jump-diffusion distortion to CAT
bond spreads. Furthermore, we investigate whether jump risk is priced by the market.

Suppose the jumps are used to model natural disasters. Because such events can only lower
the aggregate endowment, we are interested in the special case p = 0 and � < 0 of the model
presented in Section 1.4.2, where the jump-diffusion process S is used here to represent a
catastrophe loss index whose dynamics is affected by positive jumps. For this special case, it is
a straightforward exercise to show that the distortion operator (1.4.16) can be simplified and
rewritten as follows :

g',�,⌘,⌫(u) ⌘ ⌥�⌫, ⌘
⌫

⇣
⌥�1
�,⌘

(u) + '

⌘
, (1.6.4)

where � > 0, ⌘ > 0, ⌫ � 1, ' 2 R, and ⌥�1
�,⌘

is the inverse of the function defined below. 11

Definition 1.6.1. Let {Yi}i�1 be a sequence of i.i.d. exponential random variables with rate
⌘ > 0, P be a Poisson random variable with rate � > 0, and Z be a standard normal random

11. Note that the parameters �, ⌘, ⌫, and ' are defined differently than in preceding sections ; the latter

definition corresponds to the simplified econometric specification.
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variable. We define the following CDF :

⌥�,⌘(x) ⌘ Pr

 
Z �

PX

i=1

Yi  x

!
, x 2 R. (1.6.5)

We calibrate the distortion depicted by (1.6.4) using our CAT bond tranches data set. It turns
out that there is an infinite set of solutions that yield the same fitted curve. For example,
the solution ('̂, �̂, ⌘̂, ⌫̂) = (0.02, 0.20, 4.50, 2.92) provides the same distortion as (0.11, 0.23,
2.00, 1.87). We are also interested in determining whether jump risk is priced by the market.
We seek an answer to this research question by calibrating the distortion operator under the
constraint ⌫ = 1, which states that the jump amplitude and frequency are unchanged under the
risk-neutral measure, i.e., that jump risk is not priced by the market. The calibration results
are exhibited in Figure 1.1, where we can see that assuming idiosyncratic (i.e., unpriced) jump
risk leads to a mis-specified model. This provides, for the first time, interesting evidence that
jump-diffusion models are appropriate for pricing CAT bonds, but that investors are risk-averse
to natural disasters. We defer to future work for delving further into this question.

1.6.3 Results for other distortions

One potential disadvantage of the jump-diffusion distortion is the use of sophisticated analytical
results on the Hh special function from mathematical physics in order to compute it efficiently
(see, e.g., Kou, 2002, Appendix B). Hence, it would be interesting to find a readily implementable
distortion that also fits well to CAT bond spreads.

Results for calibrating the GB2 distortion (1.5.10) to CAT bond market spreads are exhibited
in Figure 1.2. Graph 1.2(b) reveals systematic pricing errors, exacerbated at small values of
the expected loss EL. Unreported tests available upon request from the authors show that
other distortion operators suffer from similar issues ; such as the two NIG distortions and
also Wang (2004)’s distortion based on the Student-t distribution. Hence, such distortions
are less suitable for explaining CAT bond spreads. This might appear surprising as the GB2
family is known for its flexibility in modeling insurance losses (Cummins et al., 1990). On
the other hand, the theoretical literature on CAT bonds and other insurance-linked securities
advocate jump-diffusion processes and compound Poisson processes to model catastrophe loss
processes. 12 In the previous sections, we have presented empirical evidence supporting the
latter models. The inadequacy of the above distortion functions for explaining CAT bond
spreads may therefore be attributed to their inability in capturing and pricing catastrophe
risks, in contrast with the jump-diffusion distortion which performs well. Next, we present a
general framework addressing this issue.

12. See Vaugirard (2003), Nowak and Romaniuk (2013), Ma and Ma (2013), Perrakis and Boloorforoosh

(2013) and Lai et al. (2014) for a non-exhaustive list of such works.
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1.6.4 A simple class of distortion operators to price CAT bonds

This section offers a simple class of Esscher-type distortions based on a mixture of distribu-
tions to characterize catastrophe risks. It is shown such distortions can provide an accurate
representation of CAT bond spreads while being straightforward to implement in practice.

General framework

Let X be a continuous random variable on a probability space (⌦,F ,P) representing a risk. A
probability mixture distribution having the following representation is considered :

X = e
µ+�ZI , (1.6.6)

where µ 2 R and � > 0 are constants, I is a discrete random variable such that

P(I = i) = pi, i 2 {1, . . . ,m},

mX

i=1

pi = 1, (1.6.7)

and the Z1, . . . , Zm are independent random variables with PDFs denoted by f1, . . . , fm. Hence,

P(ZI  z) =
mX

i=1

piFi(z), Fi(z) ⌘

Z
z

�1
fi(x)dx, z 2 R, (1.6.8)

as I is presumed independent from the Z1, . . . , Zm. Here, m � 1 is a given constant denoting
the number of components in the probability mixture. Such a model can account for a hidden
multi-state risk structure and is therefore deemed appropriate for catastrophe-linked risks.

The following notation will be used for the moment generating functions :

⇣
(t)
i

⌘ E
P
⇥
e
tZi

⇤
, i 2 {1, . . . ,m}, t 2 R. (1.6.9)

The Esscher risk-neutral measure Q is considered as it is a common choice in the literature
(e.g., Gerber and Shiu, 1994). The Radon-Nikodym derivative associated to this measure is

dQ

dP
=

X
a

EP[Xa]
=

e
a�ZI

EP[ea�ZI ]
, (1.6.10)

where a 2 R is a constant. The distribution of ZI under Q is stated in the following proposition
proven in Appendix 1.A.5.

Proposition 1.6.1. We have

Q(ZI  z) =
mX

i=1

p̃iF̃ i(z), z 2 R, (1.6.11)

where, for all i 2 {1, . . . ,m},

p̃i ⌘
pi⇣

(a�)
iP

m

j=1 pj⇣
(a�)
j

, F̃ i(z) ⌘

Z
z

�1
f̃ i(x)dx, f̃ i(x) ⌘

e
a�x

⇣
(a�)
i

fi(x). (1.6.12)
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The distortion operator g that applies the Esscher change of measure for the risk X, i.e., such
that g

�
P(X > x)

�
= Q(X > x) for all x 2 R, is given in the proposition below whose proof is

a direct application of Corollary 1.3.1.

Proposition 1.6.2. The distortion that performs the Esscher change of measure for X is

g
Q,P

ZI
(u) ⌘ F̄Q

�
F̄

�1
P

(u)
�
, u 2 [0, 1], (1.6.13)

where F̄Q(z) ⌘ 1�Q(ZI  z), and F̄
�1
P

is the inverse of the function F̄P(z) ⌘ 1� P(ZI  z).

Recuperating distortions from previous literature

The above framework is very general as it encompasses several distortion operators encountered
in the previous literature. Some examples are given below for the case m = 1 ; detailed proofs
are available from the authors upon request.

1. The PH transform (from Wang, 1995) g
Q,P

Z1
(u) = u

1�a� is obtained if Z1 is a standard
exponential variable under P.

2. The Wang transform g
Q,P

Z1
(u) = �

�
��1(u) + a�

�
is obtained if Z1 ⇠ N(0, 1) under P.

3. The GB2 distortion g
Q,P

Z1
(u) = 1� �

�
�
�1(1� u; ⌧,↵); ⌧ + a�,↵� a�

�
is obtained if eZ1

follows a GB2(↵, 1, 1, ⌧) distribution (as defined in Klugman et al., 2012) under P.

The multi-state extensions of the above distortions are also directly derived from the above
general framework.

A normal-exponential mixture distortion

To approximate the jump-diffusion distortion (1.6.4), we now consider a special case. The
mixture consists of m = 2 states such that Z1 ⇠ N(0, 1) and Z2 ⇠ Exp(⌘) under P, where
Exp(⌘) is the exponential distribution with inverse scale parameter ⌘ > 0.

It follows that

P(ZI  z) = p1�(z) + (1� p1)(1� e
�⌘z)1{z�0}, z 2 R. (1.6.14)

As shown in Appendix 1.A.6, provided that ⌘ > a�,

Q(ZI  z) = p̃1�(z � a�) + (1� p̃1)
�
1� e

�(⌘�a�)z
�
1{z�0}, z 2 R,

p̃1 =
p1e

1
2 (a�)

2

p1e
1
2 (a�)

2
+ (1� p1)

⌘

⌘�a�

.
(1.6.15)
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The corresponding distortion function is given by Proposition 1.6.2. It is characterized by the
parameters (p1, ⌘, ⇠) where ⇠ ⌘ a�, with domain p1 2 [0, 1], ⌘ > 0, ⇠ < ⌘. The computation of
this distortion is quite straightforward as it involves only basic functions. Moreover, it provides
a more accurate explanation of CAT bond spreads as illustrated in Figure 1.2. In particular,
residuals in Figure 1.2(c) do not display systematic pricing errors in contrast with the previous
distortions. Hence, our mixed distribution approach is successful in providing a more accurate
description of observed CAT bond spreads while being simple to implement in practice.

1.7 Conclusion

We propose a general class of probability distortion operators consistent with arbitrage-
free pricing. Previous attempts in this direction are the Wang (2000) transform and the
NIG distortion of Godin et al. (2012). To illustrate our approach, we derive several new
distortions that improve upon the original Wang transform in a similar fashion as the more
recent NIG distortion, while generalizing the latter by bringing flexibility in choosing the
equivalent martingale measure and the underlying distribution. In fact, our framework makes
it a straightforward exercise to derive new distortion operators, for instance from standard
non-Gaussian financial theory (see, e.g., Schoutens, 2003). Our research also provides new
twists to existing works that investigate the connections between distortion risk measures and
other forms of risk pricing (e.g., Wang, 2003; Labuschagne and Offwood, 2010). We effectively
characterize the change of measure performed by our distortion operators and show that this
offers a deeper understanding of such connections.

An important area of research opened by our work is the testing of catastrophe (CAT) bond
pricing models from publicly available transaction information. Following the lead of Wang
(2004) and Galeotti et al. (2013), we provide a explanatory empirical study which indicates
that an exponential jump-diffusion distortion is adequate for explaining CAT bond spreads, but
only if we allow the distortion to incorporate risk-aversion to natural disasters. Also, a general
yet simple class of probability distortion operators based on the Esscher change of measure
for multi-state structured risks is proposed to price CAT risks. This new class of distortions
provides an accurate depiction of observed CAT bond spreads while being straightforward to
implement in practice.

Another potential application of our distortion operator is to produce, by way of equation (1.2.3),
distortion-based risk measures that can be used for a wide range of applications, including
capital allocation and optimal reinsurance (see Dowd and Blake, 2006, for an account on the
applications of distortion risk measures). We also contribute to the discussion in the literature
regarding the connection between risk measures, heavy-tailed skewed distributions, and risk
pricing. Indeed, our new distortion operator expressed by equation (1.3.1) is directly defined
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in terms of the physical distribution of the underlying risk and the choice of the equivalent
martingale measure. As such, it provides a parametric approach to produce risk measures that
incorporate stylized features of financial (or insurance) risk distributions (e.g., skewness and
kurtosis) as well as risk-aversion and other determinants of market prices of risks. In fact, there
have been several attempts to incorporate these features into risk measures (e.g., Bali and
Theodossiou, 2008; Gzyl and Mayoral, 2008). In particular, it is well-known that accounting
for the heavy tail feature of the loss distributions observed in non-life insurance is critically
important for premium calculation and risk measurement. Our new distortion operator based
on the generalized beta of the second kind distribution is a flexible generalization of the Wang
transform that can capture the heavy tail feature.

Regarding extensions, it has been shown that the Wang transform can be used to obtain the
Black-Scholes prices of exotic options (Labuschagne and Offwood, 2013). The Wang transform
has also been extended to a multivariate setting (see, e.g., Kijima, 2006; Wang, 2007). It seems
reasonable to presume that our framework can be extended in similar directions. We leave
these questions open for future research.
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(b) Residuals : Systematic jump risk (⌫ � 1)
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Figure 1.1 – Calibration results for our Artemis.bm data set consisting of 508 CAT bond
tranches issued between 1997 and 2016. The calibration is done by minimizing the sum of
squared pricing errors. Graph (a) illustrates the empirical data and the calibrated distortion
operator g',�,⌘,⌫ of (1.6.4). The dashed line is obtained under the constraint ⌫ = 1 (idiosyncratic
jump risk), and the solid line is obtained without this constraint (i.e., with ⌫ � 1). The residuals
are plotted against the expected loss in Graph (b) for the unconstrained case, and in Graph
(c) for the constrained case. A local linear regression of the residuals against the expected loss
is carried out to detect systematic pricing errors.
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(c) Residuals : Normal-exponential distortion

Figure 1.2 – Calibration results for our Artemis.bm data set consisting of 508 CAT bond
tranches issued between 1997 and 2016. The calibration is done by minimizing the sum of
squared pricing errors. Graph (a) illustrates the empirical data and the calibrated distortion
operators. The solid line corresponds to the GB2 distortion operator of (1.5.10), and the dashed
line corresponds to the normal-exponential mixture distortion proposed in Section 1.6.4 of
this paper. The residuals are plotted against the expected loss in Graph (b) for the GB2
distortion, and in Graph (c) for the normal-exponential distortion. A local linear regression of
the residuals against the expected loss is carried out to detect systematic pricing errors.
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Appendix

1.A Proofs

1.A.1 Proof of Proposition 1.3.1

Let the survival function of X under P and Q be denoted by F̄P(x) ⌘ P(X > x) and F̄Q(x) ⌘

Q(X > x). Similarly for h(X), define Q̄P(x) ⌘ P(h(X) > x) and Q̄Q(x) ⌘ Q(h(X) > x). Since
h is continuous and increasing, we have Q̄Q(x) = F̄Q

�
h
�1(x)

�
and Q̄

�1
P

(u) = h
�
F̄

�1
P

(u)
�
. Using

these last two identities in Definition 1.3.1 gives us

g
Q,P

h(X)(u) ⌘ Q̄Q

�
Q̄

�1
P

(u)
�
= F̄Q

�
F̄

�1
P

(u)
�
⌘ g

Q,P

X
(u).

1.A.2 Proof of Theorem 1.3.1

X follows a survival distribution function F̄
g
Q,P
Z

(x) = g
Q,P

Z

�
F̄P(x)

�
under the distorted measure.

Using the chain rule to take the derivative of this equation with respect to x gives us

f
g
Q,P
Z

(x) = ġ
Q,P

Z

�
F̄P(x)

�
fP(x), (1.A.1)

where ġ
Q,P

Z
(u) ⌘ d

du
g
Q,P

Z
(u).

By Definition 1.3.1, we have g
Q,P

Z
(u) ⌘ Q̄Q

�
Q̄

�1
P

(u)
�
. Taking the derivative with respect to u

yields

ġ
Q,P

Z
(u) = �qQ

�
Q̄

�1
P

(u)
�dQ̄�1

P
(u)

du
, (1.A.2)

where qQ is the PDF of Z under Q. Next, we note that

1 =
d

du
u =

d

du
Q̄P

�
Q̄

�1
P

(u)
�
= �qP

�
Q̄

�1
P

(u)
�dQ̄�1

P
(u)

du
)

dQ̄
�1
P

(u)

du
=

�1

qP

�
Q̄

�1
P

(u)
� .

Using this last equality in (1.A.2) yields

ġ
Q,P

Z
(u) =

qQ

�
Q̄

�1
P

(u)
�

qP

�
Q̄

�1
P

(u)
� ⌘ ⇠

Q,P

Z

�
Q̄

�1
P

(u)
�
, (1.A.3)

where we have used Definition 1.3.2. Using (1.A.3) in (1.A.1) concludes the proof.
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1.A.3 Proof of Corollary 1.3.1

Because X = h(Z), where h is continuous and increasing, we have F̄P(x) = Q̄P(h�1(x)). Then,
by Theorem 1.3.1 it follows that f

g
Q,P
Z

(x) = fP(x)⇠
Q,P

Z
(h�1(x)). Using standard results on the

transformation of random variables, one can show that fQ(x) = fP(x)⇠
Q,P

Z
(h�1(x)). 13

1.A.4 Proof of Proposition 1.3.2

Because h is a continuous and increasing function, it follows from Corollary 1.3.1 that

g
Q,P

X
(P(h(X) > x)) = Q(h(X) > x), 8x 2 R.

Using this in the definition (1.2.3) of the functional H gives us

H

h
h(X); gQ,P

X

i
=

Z 0

�1

⇥
Q(h(X) > x)� 1

⇤
dx+

Z 1

0
Q(h(X) > x)dx = E

Q[h(X)],

where the last equality is a well-known identity.

1.A.5 Proof of Proposition 1.6.1

From (1.6.7),

E
P
⇥
e
a�ZI

⇤
=

mX

i=1

P(I = i)EP
⇥
e
a�ZI

��I = i
⇤
=

mX

i=1

piE
P
⇥
e
a�Zi

⇤
=

mX

i=1

pi⇣
(a�)
i

,

where definition (1.6.9) is used. Using this in (1.6.10) yields dQ

dP
= e

a�ZI

P
m

i=1 pi⇣
(a�)
i

. Hence,

Q(ZI  z) ⌘ E
Q
⇥
1{ZIz}

⇤
⌘ E

P


dQ

dP
1{ZIz}

�
=

E
P
⇥
e
a�ZI1{ZIz}

⇤

P
m

j=1 pj⇣
(a�)
j

,

=
mX

i=1

piE
P
⇥
e
a�Zi1{Ziz}

⇤

P
m

j=1 pj⇣
(a�)
j

,

=
mX

i=1

pi⇣
(a�)
iP

m

j=1 pj⇣
(a�)
j

E
P

"
e
a�Zi

⇣
(a�)
i

1{Ziz}

#
,

from which one can indeed conclude (1.6.11).

13. Define qP as the PDF of Z under P. Since h is continuous and increasing, it follows that the PDF of

X = h(Z) is given by fP(x) = qP(h
�1(x))/h0(h�1(x)), where h0

is the derivative of h. Similarly, under Q we

have fQ(x) = qQ(h
�1(x))/h0(h�1(x)). Therefore : fQ(x) = fP(x)⇠

Q,P
Z

(h�1(x)), where ⇠Q,P
Z

(z) ⌘ qQ(z)/qP(z).
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1.A.6 Proof of Eq. (1.6.15)

Under P, Z1 ⇠ N(0, 1) and Z2 ⇠ Exp(⌘). Hence, the PDFs of Z1 and Z2 are respectively

f1(x) = �(x) ⌘
e
�x

2
/2

p
2⇡

, f2(x) = ⌘e
�⌘x1{x�0}, x 2 R.

Furthermore,

⇣
(a�)
1 ⌘ E

P
⇥
e
a�Z1

⇤
= e

1
2 (a�)

2
, ⇣

(a�)
2 ⌘ E

P
⇥
e
a�Z2

⇤
=

⌘

⌘ � a�
,

where the latter holds if ⌘ > a�. It follows that

f̃1(x) ⌘
e
a�x

⇣
(a�)
1

f1(x) = �(x�a�), f̃2(x) ⌘
e
a�x

⇣
(a�)
2

f2(x) = (⌘�a�)e�(⌘�a�)x1{x�0}, x 2 R.

Then, applying Proposition 1.6.1 yields (1.6.15).
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Chapter 2

Local hedging of variable annuities in

the presence of basis risk

Résumé

Une méthode de couverture des rentes variables en présence de risque de base est développée.
Un modèle à changement de régime est considéré pour la dynamique des actifs du marché.
L’approche est basée sur une optimisation locale du risque et est donc très flexible. Le critère
d’optimisation locale est lui-même optimisé pour minimiser les exigences de fonds propres
associées aux rentes variables, ces dernières étant quantifiées par la mesure de risque CVaR.
Par rapport aux benchmarks, notre méthode réussit à réduire simultanément les exigences
de fonds propres et à augmenter la rentabilité. En effet, le schéma de couverture locale
proposé bénéficie d’une exposition plus élevée au risque de marché et d’une diversification
temporelle du risque pour gagner un rendement excédentaire et faciliter l’accumulation de
capital. Une version robuste des stratégies de couverture couvrant le risque de modèle et
l’incertitude des paramètres est également offerte.

Abstract

A method to hedge variable annuities in the presence of basis risk is developed. A regime-
switching model is considered for the dynamics of market assets. The approach is based on a
local optimization of risk and is therefore very tractable and flexible. The local optimization
criterion is itself optimized to minimize capital requirements associated with the variable
annuity policy, the latter being quantified by the CVaR risk metric. In comparison to
benchmarks, our method is successful in simultaneously reducing capital requirements and
increasing profitability. Indeed the proposed local hedging scheme benefits from a higher
exposure to equity risk and from time diversification of risk to earn excess return and
facilitate the accumulation of capital. A robust version of the hedging strategies addressing
model risk and parameter uncertainty is also provided.

Keywords : Basis Risk, Hedging, Segregated Funds, Variable Annuities, Risk Measures,
Risk Management, Regime-Switching Models.
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2.1 Introduction

Variable annuity policies issued by life insurance companies are hybrid contracts involving
both savings and insurance features. Indeed, such contracts allow the policyholder investing
its account value in a mutual fund and obtaining variable returns tied to equity market
performance. Moreover, those policies also offer guarantees taking various possible forms :
a minimal rate of return on investments, a minimal benefit amount upon the death of the
policyholder, etc.

The hedging of variable annuity guarantees by insurers presents multiple specific challenges
since such products involve several features which are not present for vanilla options : mortality
risk, lapse risk, periodic management charges to policyholder, fancy guarantee structures (e.g.,
ratchet features or GMWBs 1), long maturities, and basis risk. Basis risk stems from the fact
that insurers apply in practice a cross-hedge with liquid futures to mitigate risk associated
with variable annuity liabilities due to the inconvenience or impossibility of shorting shares of
the underlying mutual fund. Basis risk therefore refers to the imperfect correlation between
returns of funds underlying variable annuity guarantees and returns of futures used to perform
the hedge.

The current work aims at studying hedging schemes applicable to variable annuities by placing
a special emphasis on the presence of basis risk, which is known to have a substantial impact on
hedging residual risk in practice. As indicated in Zhang (2010), during the 2008 financial crisis,
basis risk was one the most important sources of losses among insurers which implemented a
dynamic hedging schemes to hedge guarantees associated with variable annuities. Although
this risk has a material impact on hedging efficiency, basis risk has not received extensive
attention within the literature in the context of variable annuities. An exception to this is the
work of Ankirchner et al. (2014) who study the impact of variable annuities product design
(proportional versus fixed charges) on the magnitude of basis risk and liquidity risk faced by
the insurer. Basis risk in the context of option hedging is also studied in Zhang et al. (2017)
who provide an analytical solution to a global mean-variance dynamic hedging problem under
a bivariate Itô diffusion framework.

The current paper provides with three main contributions. First, a tractable and efficient
hedging scheme making use of futures contracts is designed to hedge equity risk related to
variable annuities issued by an insurer in the presence of basis risk. The optimization of the
hedge is done through a local criterion which is itself optimized to minimize capital requirements
associated with a given policy. Using a local criterion provides with sufficient tractability to
consider realistic regime-switching asset price dynamics. The latter model is sufficiently realistic

1. A Guaranteed Minimum Withdrawal Benefit (GMWB) is a guarantee attached to a variable annuity

which provides to the policyholder the right to withdraw from its policy a minimal amount each month until

his initial investment is recouped.
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to replicate stylized facts of financial markets (see Augustyniak and Boudreault, 2012, who
show that regime-switching models can reproduce the thick left tail of financial returns), but
also sufficiently parsimonious to retain tractability. Regime-switching models in the context of
variable annuities hedging were considered by Wang and Yin (2012) and Qian et al. (2011)
who applied respectively quantile hedging and local-risk minimization to perform the hedge.
However, their framework does not include basis risk which is a desirable addition provided by
the current paper. A key observation stemming from the simulation experiments illustrated in
the current paper is that the omission of basis risk leads to severe risk under-estimation.

Our work mainly focuses on equity risk, which is the only source of uncertainty in the developed
hedging scheme. The mutual fund underlying the variable annuity is assumed to be fully invested
in equity, and therefore the hedge is performed with an equity futures. Extensions to our model
handling stochastic interest rates, dynamic lapses and stochastic mortality improvement will
be developed in upcoming papers from the authors. For instance, the inclusion of mortality
related hedging instruments such as longevity bonds within the hedging scheme would be
very relevant. Including additional sources of risk within our framework would have the effect
of increasing capital requirements and potentially reducing the proportion of risk generated
by basis risk since the latter would be diluted among other sources of risk. Additionally, the
inclusion of dynamic lapses might increase the fair fees level and the magnitude of tail losses ;
policyholders are expected to act in an adversarial manner and keep the policy in-force in
scenarios where markets go down and large losses are incurred. The impact of embedding
stochastic mortality and lapses within hedging schemes is investigated in Gaillardetz et al.
(2012), Kling et al. (2014) and Boudreault and Augustyniak (2015) among others.

The second contribution of the current paper is the benchmarking of our method against
approaches commonly found in the literature. Our local approach is shown in numerical
experiments to greatly outperform the local minimal variance strategy simultaneously in terms
of profitability and capital requirements, which is a significant contribution. In absence of
model risk, the optimal local hedging approach even outperforms the no-hedging approach
in terms of profitability. This is surprising due to the traditional premise stipulating that
reducing risk through hedging comes at the expense of lower expected returns. However,
this last finding is shown to be sensitive to model risk and parameter uncertainty ; when
considering a robust version of the hedging strategy which addresses model risk, the no-hedging
is much riskier but slightly more profitable in average than the optimal mean-variance hedge.
Our approach benefits from time diversification of risk as it increases its local exposure to
equity risk to generate higher expected returns and facilitate the accumulation of capital
through time. Many commonly used approaches such as delta hedging attempt minimizing
the exposure to equity risk and thus are unable to benefit from time diversification of risk.
The sub-optimality of delta hedging in terms of optimization of global risk (as measured for
instance by capital requirements) is well documented, see for instance Brandt (2003), Godin
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(2016) and Augustyniak et al. (2016).

The third contribution relates to the numerical implementation of the proposed hedging
methodology. Approximations based on Taylor expansions are applied on guarantee values
to achieve a dimension reduction which substantially increases computational speed and
convenience. This approach leads to a representation of the optimal hedging strategy which
shows our method is a generalization of Greek-based methods implemented in practice such as
delta hedging.

The current paper is divided as follows. Section 2.2 details the mathematical representation of
cash flows involved in a dynamic hedging scheme for variable annuity guarantees. Local hedging
optimization criteria are discussed in this section. Section 2.3 presents the regime-switching
market model and outlines the application of the local hedging methodology to this particular
market. Simulation based numerical experiments are presented in Section 2.4. Section 2.5
illustrates the implementation of a robust version of the hedging strategies addressing model
risk and parameter uncertainty. Section 2.6 concludes.

2.2 Variable annuities hedging mechanics

This section outlines the mathematical model representing cash flows involved during the
hedging of variable annuity guarantees by insurers.

2.2.1 Cash flows to the insurer

Consider a discrete set of monthly time steps T = {0, . . . , T} and a probability space (⌦,FT ,P)

equipped with a filtration F = {Ft}t2T . The insurance company issues variable annuities to
policyholders at time t = 0 and hedges risk pertaining to these contracts. Without loss of
generality, a Guaranteed Minimal Maturity Benefit (GMMB) policy is considered.

Cash flows

The policy account is invested in a mutual fund whose value is a F-adapted process denoted
by F = {Ft}t2T . Fees are periodically charged to policyholders and withdrawn from the policy
account. Fees apply to all policyholders alive at the beginning of the period, but are only
charged at the end of the period. Although fees are sometimes charged at the beginning of
the period in practice, the impact of this fees timing assumption is very limited. Indeed, the
discount factor applying to a single monthly time period is very close to 1. The total fee rate
charged to policyholders is denoted by !tot. For a policyholder active at time t� 1, the fees
charged at time t are given by !totAt�1

Ft

Ft�1
, where At�1 is the post-fee policy account value
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at time t� 1. The dynamics of A = {At}t2T is thus given by

At+1 = At(1� !tot)
Ft+1

Ft

, t 2 {0, . . . , T � 1}. (2.2.1)

) At = Ft

A0

F0
(1� !tot)

t
, t 2 T . (2.2.2)

A policyholder who dies during the period (t, t+ 1] receives the amount At+1 at time t+ 1.
Moreover, at any time before maturity, the policyholder has the possibility to withdraw its
investment from the variable annuity, which is called a lapse. In practice, insurers can diversify
away a large proportion of idiosyncratic mortality and lapse risks by insuring a large number of
policyholders. In the current framework, it is assumed that these risks can be fully diversified
in this manner and are thus deterministic. The constant lapse rate on each period is denoted
by b. Furthermore, tpx is defined as the probability that a policyholder aged x months at time
0 survives t months. The proportion of policies that are still active at time t is thus given by

`t = (1� b)ttpx, t 2 T . (2.2.3)

Surrender charges are not considered for simplicity, and therefore a policyholder who lapses
during the period (t, t + 1] receives the amount At+1 at time t + 1. Such a simplification is
acceptable in our framework due to the constant lapse rate assumption. However, extensions
embedding dynamic lapses would definitely require the inclusion of surrender charges since such
charges have a significant impact on policyholder surrender incentives as shown for instance by
MacKay et al. (2017).

For a GMMB contract, in the case of a policyholder lapse or death, the benefit provided to
the policyholder is fully funded by its policy account ; the insurer does not incur an outflow
in this case. However, due to the guarantee, the insurer needs to pay the difference between
the benefit and the policy account value at maturity if the policyholder is alive and the policy
remains in-force until maturity. The benefit in excess of the account value paid to a GMMB
policyholder whose policy is still active at the maturity T is given by max(0,K �AT ), where
the guaranteed amount K is considered to be deterministic for simplicity.

Only a portion of fees collected from policyholders is allocated to the hedging portfolio for the
guarantee, as the rest is allocated to profits and expenses. The fee rate which relates to fees
allocated to hedging is denoted by !opt. Hence, if the policyholder is active at time t� 1, the
amount !optAt�1

Ft

Ft�1
= !opt

1�!tot
At is received at time t and used by the insurance company for

hedging. Therefore, the net cash outflow for the insurer at time t is given by

CFt = �
!opt

1� !tot

At`t�1 + 1{t=T}max(0,K �AT )`T , t 2 {1, . . . , T}, (2.2.4)

with CF0 = 0 as no immediate cash flows are involved at time t = 0. Defining

K̃ ⌘
KF0

A0(1� !tot)T
, �t ⌘

A0

F0
(1� !tot)

t
`t, t 2 T , (2.2.5)
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the relationship (2.2.2) can be used to express the cash flows directly in terms of the fund’s
value :

CFt = �!opt�t�1Ft + 1{t=T}�T max
�
0, K̃ � FT

�
, t 2 {1, . . . , T}. (2.2.6)

Pricing

Since variable annuity option liabilities are not openly traded in markets, their fair value must
be modeled. A possibility would be to use a value that is endogenous to the hedging strategy,
such as the value that would allow optimizing the hedge according to some predefined criterion.
Such price could be obtained through the quadratic global hedging approach ; see Rémillard
and Rubenthaler (2013) for a general framework and Rémillard et al. (2017) for the Gaussian
regime-switching specialization. However, prices are not endogenized to the hedging strategy in
practice since insurance companies already have a pricing model which they use to determine
the appropriate level of management expenses (MER) charged to clients.

The fair value of liabilities is obtained through risk-neutral valuation using an equivalent
martingale measure Q. We consider a risk-free asset whose price at time t is denoted Bt = e

rt

where r is the periodic risk-free rate. Since the discount price process {Ft/Bt}t2T is a martingale
under Q, it is straightforward to show that the time-t GMMB contract value is

⇧t = Bt E
Q

2

4
TX

j=t+1

CFj

Bj

�����Ft

3

5 = �!optFt

TX

j=t+1

�j�1 + 1{t<T}�TGt, t 2 T , (2.2.7)

where

Gt ⌘ Bt E
Q

"
max

�
0, K̃ � FT

�

BT

�����Ft

#
. (2.2.8)

Under this convention, the price ⇧t excludes the cash flow CFt from the pricing. In particular,
⇧T = 0. The fee rate !opt is assumed to be a fair fee rate, i.e., the amount of fees which leads
to a null initial value for the guarantee. Setting ⇧0 = 0 in (2.2.7) leads to !opt =

�TG0

F0
P

T

j=1 �j�1
.

Note that if the profitability provided by the fair fee rate !opt is deemed inadequate, the insurer
might decide to adjust the total fee rate !tot provided that it remains competitive. Thus !tot

and !opt would be related through a complex non-linear optimization in this case. However, we
do not investigate such mechanisms in the current work since the pricing parameter !tot is
assumed to be given.

Hedging

To mitigate risks embedded in guarantees provided by variables annuities, insurers perform a
cross hedge based on a different hedging asset S, which creates basis risk since the assets F
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and S are not perfectly correlated. The insurer sets up a hedging portfolio taking positions in
two assets : the risk-free asset B = {Bt}t2T and a risky equity futures contract S = {St}t2T ,
where St denotes the futures price at time t. The use of futures as hedging instruments is
consistent with insurers practices, see for instance Chopra et al. (2009), iA Financial Group
(2016) and Manulife Financial Corporation (2016). It is justified by the impossibility of taking
short positions on many index funds and by the high liquidity of index futures. The number of
long positions within the hedging portfolio during the time interval (t, t+ 1] are respectively
denoted by ✓(B)

t+1 and ✓(S)
t+1, with the convention ✓(B)

0 = ✓
(S)
0 = 0. The insurer performs periodic

injections or withdrawals of liquidities from the hedging portfolio at each time step. The
injection at time t is denoted by It (negative amounts correspond to withdrawals). Define V

✓
t�

and V
✓
t+ as the value of the hedging portfolio respectively before and after the injection It and

the cash flow CFt at time t. This leads to

It = V
✓

t+ � V
✓

t� + CFt, t 2 T . (2.2.9)

To ensure the hedging portfolio value tracks the guarantee value, at all steps t 2 T the cash
flow injection (or withdrawal) It is performed such that the post-injection portfolio value is
equal to the guarantee value :

V
✓

t+ = ⇧t, t 2 T . (2.2.10)

In particular, the time 0 injection is nil, I0 = 0, because V
✓

0� ⌘ 0, CF0 = 0 and ⇧0 = 0.

After the post-injection portfolio value V ✓
t+ = ⇧t is observed, the hedging portfolio is rebalanced.

A new futures position ✓(S)
t+1 is decided based on the selected hedging strategy, and then the

whole portfolio value is invested at the risk-free rate ; entering positions on futures does not
involve immediate cash flows besides margin requirements, and liquidities deposited inside the
margin are assumed to accrue at the risk-free rate :

✓
(B)
t+1 =

V
✓
t+

Bt

=
⇧t

Bt

. (2.2.11)

The new pre-injection portfolio value at time t+ 1 is then obtained by summing the amount
accrued at risk-free rate and profits/losses from futures positions :

V
✓

(t+1)� = ✓
(B)
t+1Bt+1 + ✓

(S)
t+1(St+1 � St). (2.2.12)

The following proposition proven in Appendix 2.A.1 gives an explicit expression for injections.

Proposition 2.2.1. For t 2 {0, . . . , T � 1}, define �Ft ⌘ Ft+1 � Ft, �St ⌘ St+1 � St, and

�Gt = Gt+1 �Gt. Cash flow injections are given by

It+1 = ⇧t(1� e
r)� �Ft !opt

TX

j=t+1

�j�1 + �T �Gt � ✓
(S)
t+1�St. (2.2.13)

Remark 2.2.1. The no-hedging (or unhedged) injection I
nh
t+1 is defined as the injection value

that would occur with ✓(S)
t+1 = 0. It follows from Proposition 2.2.1 that It+1 = I

nh
t+1 � ✓

(S)
t+1�St.
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2.2.2 Capital requirements

Insurers must hold reserves and capital to meet future variable annuity guarantee liabilities.
In Canada, insurers issuing segregated fund policies (which are the Canadian equivalent of
variable annuities) are required by the Office of the Superintendent of Financial Institutions
(OSFI) to hold a Total Gross Capital Required (TGCR) at time t = 0 represented by 2

TGCR = CVaRP

0.95

"
TX

t=1

e
�rt

It

#
. (2.2.14)

The CVaR risk measure is defined rigorously in Rockafellar and Uryasev (2002). For a continuous
random variable X, the CVaR↵[X] can be interpreted as the average of the worse 100(1�↵)%

scenarios. Note that U.S. recommendations for determining capital requirements for variable
annuities are also based on the CVaR risk measure. 3

2.2.3 Selection of the hedging strategy

The current paper’s approach for the selection of the hedging strategy ✓(S) =
�
✓
(S)
t

 
t2T is to use

a local criterion based on risk measures to optimize the risk. An Ft risk measure is a mapping
Rt : XFT

! XFt
, where XG is the set of G-measurable random variables for some sigma-algebra

G. The number of futures positions in the hedging portfolio is chosen by minimizing the risk
related to the next cash injection :

✓
(S)⇤
t+1 = argmin

✓
(S)
t+1

Rt(It+1) , t 2 {0, . . . , T � 1}, (2.2.15)

for a given dynamic risk measure {Rt}
T�1
t=0 , where Rt is an Ft risk measure for each t. Local

procedures in hedging were pioneered by Ederington (1979) who uses Rt(•) = VarP[•|Ft].
However, an important drawback associated with the variance is that it focuses purely on
risk in general, penalizing upside risk and failing to incorporate expected costs in the tradeoff.
Rockafellar and Uryasev (2000) use the CVaR measure to optimize their hedge which allows
reducing the magnitude and frequency of extreme losses. A plethora of other classes of risk
measures that were developed in the literature could also be considered, for instance coherent
risk measures (Artzner et al., 1999), deviation measures (Rockafellar et al., 2002) and distortion
measures (Wang, 2000).

2. See Section 11 of the instruction guide by the OSFI on the “Use of Internal Models for Determining

Required Capital for Segregated Fund Risks" which instructs using CVaR
P
0.95 to determine the TGCR for

segregated funds. See also Chapter 6 of the “Capital Adequacy Guideline" by the Autorité des Marchés
Financiers for the Province of Québec.

3. See page 11 of the report “The Application of C-3 Phase II and Actuarial Guideline XLIII" by the

American Academy of Actuaries which recommends using the CVaR
P
0.90 to determine the TGCR for variable

annuities.
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2.3 A model involving regime-switching equity risk

This section presents the regime-switching price dynamics model for risky assets S and F .

2.3.1 Market model

Over a long period of time, markets go through various periods of either prosperity or turbulence.
To model such dynamics, regime-switching processes have become very popular in the actuarial
literature, see for instance Hardy (2001) and Hardy (2003). In these models, the overall state
of the market is represented by the state of a Markov chain. Asset return distributions are
then presumed to be a function of the current market state.

A regime process h = {ht}t2T characterizes the state of the market, where ht 2 {1, 2} can only
take two possible values. Regimes ht are latent variables, i.e., they are not directly observable.
The following regime-switching dynamics is assumed for the risky asset prices :

R
(F )
t+1 ⌘ log

✓
Ft+1

Ft

◆
= µ

(F )
ht

+ �
(F )
ht

z
(F )
t+1, R

(S)
t+1 ⌘ log

✓
St+1

St

◆
= µ

(S)
ht

+ �
(S)
ht

z
(S)
t+1,

zt+1 ⌘

"
z
(F )
t+1

z
(S)
t+1

#
⇠ N2

 "
0

0

#
,

"
1 ⇢ht

⇢ht
1

#!
,

(2.3.1)

where N2(µ,⌃) is the bivariate normal distribution with mean vector µ and covariance matrix
⌃, z = {zt}t2T is a strong standardized Gaussian bivariate white noise, and the remaining
parameters are constants to be estimated. Under this model, asset prices evolve according to

Ft+1 = Fte
µ
(F )
ht

+�
(F )
ht

z
(F )
t+1 , St+1 = Ste

µ
(S)
ht

+�
(S)
ht

z
(S)
t+1 . (2.3.2)

The market information at time t is Ft ⌘ �
�
Su, Fu : u = 0, . . . , t

�
. Following the lines of François

et al. (2014), a full information filtration G ⌘ {Gt}t2T , where Gt ⌘ Ft _ �
�
hu : u = 0, . . . , t

�
is

introduced. The regime process h is assumed to have the Markov property with respect to G,
i.e., for some transition matrix

P =

"
P1,1 P1,2

P2,1 P2,2

#
, (2.3.3)

with P1,2 = 1� P1,1 and P2,2 = 1� P2,1, the following relationship holds for i, j 2 {1, 2} :

P
�
ht+1 = j

��ht = i, {hu}
t�1
u=0, {(Fu, Su)}

t

u=0

�
= P

�
ht+1 = j

��ht = i
�
= Pi,j . (2.3.4)

As in François et al. (2014), the regime mass functions given partial information Ft are defined
as follows :

⌘
P

i,t ⌘ P(ht = i|Ft), i 2 {1, 2}, (2.3.5)
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and can be computed recursively through

⌘
P

i,t+1 =

P2
j=1 �µj ,⌃j

⇣
R

(F )
t+1, R

(S)
t+1

⌘
⌘
P

j,t
Pj,i

P2
j=1 �µj ,⌃j

⇣
R

(F )
t+1, R

(S)
t+1

⌘
⌘
P

j,t

, i 2 {1, 2}, (2.3.6)

where �µj ,⌃j
denotes the bivariate Gaussian probability density function with mean vector and

covariance matrix given by

µj ⌘

"
µ
(F )
j

µ
(S)
j

#
, ⌃j ⌘

2

4

⇣
�
(F )
j

⌘2
⇢j�

(F )
j
�
(S)
j

⇢j�
(F )
j
�
(S)
j

⇣
�
(S)
j

⌘2

3

5. (2.3.7)

The following result deriving from (2.3.2) is useful to develop offline schemes for computing
the local hedging strategies.

Proposition 2.3.1. The Ft-conditional distribution of
�
Ft+1

Ft
,
St+1

St

�
depends only on ⌘

P

1,t under

the physical measure P.

Sojourn time conditional probabilities are quite useful to obtain analytical option pricing
formulas (see, e.g., Hardy, 2001). For t 2 {0, . . . , T � 1}, ⌧ 2 {0, . . . , T � t}, and i 2 {1, 2}, we
define the following :

Ht,⌧,i ⌘ P
�
Yt = ⌧

��ht = i
�
, Yt ⌘

T�1X

u=t

1{hu=1}, (2.3.8)

where Yt is the sojourn time in regime 1 between time t and time T .

A recursive algorithm is available for computing them. Initialize with HT�1,1,1 = HT�1,0,2 = 1

and HT�1,j,1 = HT�1,k,2 = 0 for all j 6= 1 and all k 6= 0. Starting at t = T � 2, the following
backward induction formulas from Hardy (2001) are used :

Ht,k,1 =
2X

i=1

P1,iHt+1,k�1,i, Ht,k,2 =
2X

i=1

P2,iHt+1,k,i.

2.3.2 Valuing the guarantee

The above market model is incomplete, and therefore there exists an infinite number of risk-
neutral measures. For analytical tractability, the chosen Q is such that the dynamics remain
a regime-switching model of the same form and with the same transition matrix, but with

the drift parameters
h
µ
(F )
j

, µ
(S)
j

i
replaced by


r �

1
2

⇣
�
(F )
j

⌘2
, �

1
2

⇣
�
(S)
j

⌘2�
for j 2 {1, 2}. Note

that the risk-free rate r does not appear in the risk-neutral drift of S since it is a futures
contract. The usual Girsanov-type change of measures could be applied to show the existence
of such a measure, see for instance Elliott et al. (2005) for analogous work in continuous-time.
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An analytical formula for the price Gt, see (2.2.8), of the option embedded within the guarantee
can be obtained following the lines of Hardy (2001). However, the option price in the latter
paper depends on the regime currently prevailing in the economy. In the current work, regimes
are unobservable and the option price is therefore a weighted average of the prices associated
with each regime where weights are the respective risk-neutral probabilities of currently being
in each regime, namely ⌘Q

i,t
⌘ Q

�
ht = i|Ft

�
.

The option price Gt is represented by a function g
�
t, Ft, ⌘

Q

1,t

�
, which for t < T is given by

g(t, F, ⌘) =
T�tX

⌧=0

⇣
⌘Ht,⌧,1 + (1� ⌘)Ht,⌧,2

⌘⇣
K̃e

�r(T�t)�
�
� d2(⌧)

�
� F�

�
� d1(⌧)

�⌘
, (2.3.9)

where � is the standard normal cumulative distribution function, and

d1(⌧) ⌘

log
�
F/K̃

�
+ (T � t)r + 1

2


⌧

⇣
�
(F )
1

⌘2
+ (T � t� ⌧)

⇣
�
(F )
2

⌘2�


⌧

⇣
�
(F )
1

⌘2
+ (T � t� ⌧)

⇣
�
(F )
2

⌘2�1/2
,

d2(⌧) ⌘ d1(⌧)�


⌧

⇣
�
(F )
1

⌘2
+ (T � t� ⌧)

⇣
�
(F )
2

⌘2�1/2
.

(2.3.10)

The Delta is given by

@g

@F
(t, F, ⌘) = �

T�tX

⌧=0

�
⌘Ht,⌧,1 + (1� ⌘)Ht,⌧,2

�
�
�
� d1(⌧)

�
, t < T, (2.3.11)

and @g

@F
(T, F, ⌘) = �1{K̃>F}, i.e., for t = T .

2.3.3 Taylor expansion on injections

The cash flow injections (or withdrawals) involved in the monthly rebalancing of the hedging
portfolio are characterized in Proposition 2.2.1, where the expression of the injection It+1 at
time t+ 1 involves the monthly change in value of the guarantee : �Gt ⌘ Gt+1 �Gt. In order
to simplify the solution to the hedging optimization problem, a Taylor approximation of �Gt

can be applied using the option Greeks. The pricing function g(t, F, ⌘) given in (2.3.9) is only
defined for discrete values of t, and thus the expansion cannot be centered on the time t as it
would require a well-defined time sensitivity. Our solution to this issue is based on the following
delta-type approximation :

�Gt = g
�
t+ 1, Ft+1, ⌘

Q

1,t+1

�
� g
�
t+ 1, Ft, ⌘

Q

1,t

�
| {z }

⇡ �Ft
@g

@F

�
t+1,Ft,⌘

Q
1,t

�
+g
�
t+ 1, Ft, ⌘

Q

1,t

�
� g
�
t, Ft, ⌘

Q

1,t

�
,

) �Gt ⇡ �Ft

@g

@F

�
t+ 1, Ft, ⌘

Q

1,t

�
+ g
�
t+ 1, Ft, ⌘

Q

1,t

�
� g
�
t, Ft, ⌘

Q

1,t

�
, (2.3.12)
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where �Ft = Ft+1 �Ft. Note that the impact of the variation �⌘Q1,t = ⌘
Q

1,t+1 � ⌘
Q

1,t and of higher
order variations, e.g., (�Ft)2, have been omitted from the approximation. Although our hedging
methodology can be extended to incorporate such corrections, unreported tests, available from
the authors upon request, showed that their impact is not material.

Next, define the following Greek letters for t 2 {0, . . . , T � 1} :

⇥t ⌘ ⇧t(1� e
r) + �T

h
g
�
t+ 1, Ft, ⌘

Q

1,t

�
� g
�
t, Ft, ⌘

Q

1,t

�i
,

�t ⌘ �!opt

TX

j=t+1

�j�1 + �T
@g

@F

�
t+ 1, Ft, ⌘

Q

1,t

�
.

(2.3.13)

Using the approximation (2.3.12) in the injection formula of Proposition 2.2.1 provides us with
a delta-type approximation of the injection : It+1 ⇡ Ĩt+1, where

Ĩt+1 ⌘ ⇥t +�t�Ft � ✓
(S)
t+1�St. (2.3.14)

The Greek ⇥t represents the value of the injection at time t + 1 if F and S are unchanged
from time t to time t+ 1. The Greek �t measures the sensitivity of the injection to F .

In the current work, the injection approximation Ĩt+1 defined in (2.3.14) is used to tackle
a simplified version of the hedging problem (2.2.15) that is more tractable and more easily
solved. Since this approximation embeds the bulk of the risk related to the injection It+1,
such a formulation is deemed a very good approximation of the hedging problem. Moreover, it
provides a generalization of the delta-based approach to hedging and, as such, it is therefore in
line with industry practices.

2.3.4 Local hedging based on the mean-variance risk measure

Here, a local hedging strategy based on the mean-variance family of risk measures is considered :

✓
(S)⇤
t+1 = argmin

✓
(S)
t+1

n
VarP

⇥
Ĩt+1

��Ft

⇤
+ 2�EP

⇥
Ĩt+1

��Ft

⇤o
, t 2 {0, . . . , T � 1}, (2.3.15)

where Ĩt+1 is the injection approximation, see (2.3.14), and � � 0 is a chosen constant
quantifying the mean-variance tradeoff. The mean-variance risk measure offers a flexible
parametrization of the risk-return tradeoff while benefiting from convenient analytical properties.
The solution to the above minimization problem is given in Proposition 2.3.2. The proof of
this proposition is omitted since it is straightforward. The explicit formulas for the variance,
covariance, and expectation involved in this proposition are provided in Appendix 2.A.2.

Proposition 2.3.2. The mean-variance hedging strategy (2.3.15) is given by

✓
(S)⇤
t+1 = �t

CovP[Ft+1, St+1|Ft]

VarP[St+1|Ft]
+ �

E
P[St+1|Ft]� St

VarP[St+1|Ft]
. (2.3.16)
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The strategy obtained under the choice � = 0 is referred to as the minimal variance strategy.
Interestingly, in the absence of basis risk the minimal variance strategy coincides with the
usual form of delta hedging. The mean-variance strategy can be thought of as a generalization
of delta hedging which can account for basis risk in addition of bringing expected costs into
the tradeoff.

Properties of the mean-variance strategy

The proposition below characterizes the upper bound to the reduction of local risk, as measured
by the variance, that is attainable in the presence of basis risk. It states, for instance, that
if the correlation between returns of S and F is 90%, then the proportion of the standard
deviation that can be eliminated is 1�

p
1� 0.92 ⇡ 56.4%. The proof of Proposition 2.3.3 is

obtained by combining (2.3.16) and (2.3.14).

Proposition 2.3.3. Let Ĩ
nh
t+1 and Ĩ

mv
t+1 be the injection approximation (2.3.14) respectively for

✓
(S)
t+1 = 0 (no hedging) and for ✓

(S)
t+1 given by (2.3.16) with � = 0 (minimal variance). Then

VarP
⇥
Ĩ
mv
t+1

��Ft

⇤

VarP
⇥
Ĩ
nh
t+1

��Ft

⇤ = 1� CorrP
⇥
�Ft, �St

��Ft

⇤2
. (2.3.17)

The following remark relates the injection under the minimal variance strategy to the injection
under the more general mean-variance strategy. This relation will prove to be useful when
analyzing the simulation results. To prove it, one simply has to use Proposition 2.3.2 in the
injection approximation formula (2.3.14).

Remark 2.3.1. Let Ĩt+1 and Ĩ
mv
t+1 be the injection approximation (2.3.14) respectively under

the mean-variance strategy for some � � 0 and the minimal variance strategy (� = 0). Then

Ĩt+1 = Ĩ
mv
t+1 � �

E
P[St+1|Ft]� St

VarP[St+1|Ft]
�St.

Optimizing the mean-variance tradeoff

For the mean-variance family of risk measures, the free parameter to be optimized is �, which
characterizes the risk-reward tradeoff. The objective is thus to find the value of that parameter
which minimizes the capital (2.2.14) that the insurer is required to hold at time t = 0. We solve

�
⇤
⌘ argmin

�

CVaRP

0.95

"
TX

t=1

e
�rt

It

#
, (2.3.18)

over hedging strategies of the form outlined in Proposition 2.3.2. Note that this optimization
problem is based on the exact injections It rather than on their approximations Ĩt ; this is
because there are no numerical incentives not to rely on an exact formulation here.
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A simple Monte Carlo simulation procedure is described to compute the value of �⇤. Consider
a hedging strategy of the from

✓
(S)
t+1 = ↵t + ��t, (2.3.19)

where � 2 R, and (↵t,�t) are some given Ft-measurable random variables. Note that the
mean-variance hedging strategy outlined in Proposition 2.3.2 has this form. For such strategies,
it follows from Remark 2.2.1 that the injection value at time t+ 1 can be written as

It+1 = I
nh
t+1 � ↵t�St � ��t�St,

where I
nh
t+1 is the injection value that would occur in the absence of hedging. We therefore have

TX

t=1

e
�rt

It = ⇠1 � �⇠2, (2.3.20)

where

⇠1 ⌘

TX

t=1

e
�rt[Inh

t � ↵t�1�St�1], ⇠2 ⌘

TX

t=1

e
�rt
�t�1�St�1. (2.3.21)

Since ⇠1 and ⇠2 do not depend on �, a single Monte Carlo simulation of the random variables
(⇠1, ⇠2) is required to optimize � through

�
⇤ = argmin

�

CVaRP

0.95

⇥
⇠1 � �⇠2

⇤
. (2.3.22)

We refer to Rockafellar and Uryasev (2000) for a study on the numerical optimization of CVaR
risk measures.

2.3.5 Local hedging based on a general class of risk measures

The current section characterizes the solution of the local hedging problem for a very large class
of risk measures. A hedging strategy which minimizes capital requirements is also presented.

A general class of dynamic risk measures

A general class of risk-measures called the Ft-reducible risk measures is introduced.

Definition 2.3.1. Rt is a Ft-reducible risk measure if it satisfies the following :

1. Rt is a law-invariant Ft risk measure.

2. There exists a real function f1 such that Rt(Yt +X) = f1(Yt) +Rt(X) for any risk X

and any Ft-measurable random variable Yt.

3. There exists a nonnegative real function f2 such that Rt(YtX) = f2(Yt)Rt(X) for any
admissible risk X and any Ft-measurable random variable Yt � 0 a.s.
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The Ft-reducible class of risk measures is quite large. In particular, it includes the Ft-conditional
counterparts of all coherent risk measures in the sense of Artzner et al. (1999), such as the
Conditional Value-at-Risk, CVaR↵[•|Ft]. It is however more general as it also includes the Ft-
conditional variance, Var[•|Ft], and the Ft-conditional Value-at-Risk, VaR↵[•|Ft]. Furthermore,
as shown in the proposition below, this class includes a large family of risk-reward tradeoffs,
e.g., Std[•|Ft] + �E

P[•|Ft], VaR↵[•|Ft] + �E
P[•|Ft], and CVaR↵[•|Ft] + �E

P[•|Ft].

Proposition 2.3.4. Let Rt be a Ft-reducible risk measure such that Rt(Yt + ZtX) = f1(Yt) +

ZtRt(X) for all admissible risk X and all Ft-measurable random variables (Yt, Zt) where

Zt � 0 a.s. Then, for any constant � 2 R, the risk-measure Mt(•) ⌘ Rt(•) + �E
P[•|Ft] is also

Ft-reducible.

The proof of the above statement is rather straightforward and therefore omitted.

For the purpose of a dynamic hedging strategy, sequences of risk measures that satisfy the
temporal law-invariance property of Definition 2.3.2 are considered.

Definition 2.3.2. Let {Rt}
T�1
t=0 be a sequence where Rt is a Ft risk measure for each t. This

sequence is said to have the temporal law-invariance property if the following condition is
satisfied : for all t1, t2 � 0 and all random variables X1, X2, if the conditional distribution of X1

given Ft1 is the same that the conditional distribution of X2 given Ft2 , then Rt1(X1) = Rt2(X2).

Offline calculation of the hedging strategies

Here, a local hedging strategy of the following form is considered :

✓
(S)⇤
t+1 = argmin

✓
(S)
t+1

Rt

�
Ĩt+1

�
, t 2 {0, . . . , T � 1}, (2.3.23)

where Ĩt+1 is the injection approximation, see (2.3.14), and {Rt}
T�1
t=0 a dynamic risk measure

such that Rt is Ft-reducible for each t.

For temporal law-invariant sequences of reducible risk measures, it turns out that efficient
pre-calculation of such hedging strategies is made possible by a trick that reduces the dimension
of the associated optimization problem. This result is presented in Theorem 2.3.1 whose proof
is in Appendix 2.A.2.

Theorem 2.3.1. For any Ft-reducible risk measure Rt, the hedging strategy (2.3.23) is

✓
(S)⇤
t+1 =  

⇤
t+1
�tFt

St

,  
⇤
t+1 ⌘ argmin

 

Rt

⇣
 
�St

St
�

�Ft

Ft

⌘
. (2.3.24)

Moreover, the solution can be expressed as  
⇤
t+1 =  Rt

�
⌘
P

1,t

�
for some function  Rt

: [0, 1] ! R.

Furthermore, for a temporal law-invariant sequence {Rt}
T�1
t=0 , one has  R0 = · · · =  RT�1 .
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Theorem 2.3.1 has several consequences worthy of noticing. First, note from (2.3.14) that the
Ft-conditional distribution of Ĩt+1 depends on the state variables (⇥t,�t, Ft, St, ⌘

P

1,t) and the
control parameter ✓(S)

t+1. Hence, it might appear that the solution to the hedging problem is
a function of five state variables, making it difficult to use an offline approach to efficiently
pre-calculate the solution over a grid of points and then use interpolation methods, especially
because the state variables Ft an St can cover a large range when the time index t is high,
which is the case for variable annuities having a maturity of several years. However, due to
Theorem 2.3.1, it is actually possible to reduce the dimensionality of the hedging problem
to the single state variable ⌘P1,t 2 [0, 1]. The solution can therefore be pre-calculated offline
for a small grid of points over the domain [0,1] to build a continuous function using linear
interpolation, reducing computational time by several orders of magnitude.

Finding the strategy that minimizes capital requirements

The objective of this section is to show how to design a hedging strategy that attains capital
requirements at least as low as the best-performing hedging strategy based on a reducible risk
measure. This strategy is referred to as the the minimal TGCR strategy.

For the class of dynamic reducible risk measures considered in Theorem 2.3.1, the main result
is that each hedging strategy has the form ✓

(S)⇤
t+1 =  (⌘P1,t)

�tFt

St
for some function  : [0, 1] ! R.

Rather than optimizing over the choice of the risk measure, the approach we propose is to
directly optimize over the latter function to minimize the capital (2.2.14) that the insurer
is required to hold at time t = 0 to meet future variable annuity guarantee liabilities. The
optimization problem is

 ⇤
⌘ argmin
 :[0,1]!R

CVaRP

0.95

"
TX

t=1

e
�rt

It

#
, (2.3.25)

where ✓(S)
t

=  (⌘P1,t�1)
�t�1Ft�1

St�1
. Note that this optimization problem is based on the exact

injections It rather than on their approximations Ĩt. This is because there are no reasons not
to rely on the exact formulation here, in contrast with the local hedging optimization problem
for which the delta approximation leads to a tremendous reduction in computational time.

Remark 2.3.2. It is not guaranteed that there exists a risk measure which corresponds to
the optimal function  ⇤. In fact, such a risk measure does not even need to exist.

To solve the above optimization problem, a parametric approximation of the solution is
considered by employing a polynomial of degree n :

 (⌘) ⌘
nX

i=0

ai⌘
i
, (2.3.26)
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where {ai}
n

i=0 are constants to be determined. For the strategy ✓(S)
t+1 =  (⌘

P

1,t)
�tFt

St
, it follows

from Remark 2.2.1 that the injection value at time t+ 1 can be expressed as

It+1 = I
nh
t+1 �
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St

�St
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i=0
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�
⌘
P
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�
i
,

where I
nh
t+1 is the injection value that would occur if no hedging were performed, i.e., with

✓
(S)
t+1 = 0. We thus have
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e
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i=0
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where
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The solution can therefore be formulated as

(a⇤0, . . . , a
⇤
n) ⌘ argmin

(a0,...,an)
CVaRP

0.95

"
⇠1 �

nX

i=0

ai⇠2,i

#
. (2.3.29)

This problem can be solved numerically by first simulating a sufficiently large sample of the
random variables (⇠1, ⇠2,0, . . . , ⇠2,n) to estimate the CVaR and minimize it using standard
algorithms.

To choose the degree n, one can fix some pre-determined value nmax and simulate (⇠1, ⇠2,0, . . . , ⇠2,nmax).
This simulated sample suffices to test all degrees below nmax. In practice, n is chosen as the
smallest value for which the choice n+ 1 yields no further improvements.

2.4 Simulation experiments

The numerical simulations presented here form the basis of several analyses that allow making
important findings about the properties of the hedging strategies and of the optimal mitigation
of risks embedded in variable annuities under the presence of basis risk.

2.4.1 Setup

It is assumed that F is the Great-West Life Canadian Equity (GWLIM) BEL fund. The vast
majority of the fund wealth (roughly 90%) is invested in Canadian Equity (the remainder being
cash investments). The constant risk-free rate assumption is reasonable in this context ; if the
mutual fund invested in fixed income, including interest shocks would have been necessary to
impact the fluctuation of the fund value. Since the mutual fund is invested in Canadian equity,
this justifies using a Canadian equity index to perform the hedge. Thus, S is presumed to be
the futures prices of the TSX 60 index.
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Estimation results

The bivariate regime-switching model (2.3.1) is estimated using maximum likelihood. The
log-likelihood function is computed through Hamilton (1989)’s filter and maximized using
standard global optimization routines. For the first 66 months, the estimation methodology is
based on the marginal likelihood function of the Great-West fund as the TSX 60 futures index
was launched later (in September, 1999). For all subsequent months the joint density of both
time series is considered. Maximum likelihood estimation results are presented in Table 2.1,
where it can be seen that the first regime is characterized by positive expected returns and low
volatility (bull market), whereas the second regime describes a state of higher volatility and
negative expected returns (bear market). It is interesting to note that the correlation of the
mutual fund and index futures returns is high in each regime ; it is ⇢1 = 94.39% in the bull
market regime, which is slightly higher than in the bear market regime where it is ⇢2 = 90.68%.
Nevertheless, basis risk is not nil. The higher correlation in bull markets is surprising since
all asset values are usually expected to depreciate simultaneously during financial crises. A
possible explanation could be that, as stated in Robidoux (2015), the tactical (short-term) asset
allocation within the mutual fund could significantly differ from the strategic (long-term) asset
allocation target during specific market circumstances, for instance a flight to quality during a
crisis, and thus the correlation structure could be altered in this situation. This observation
entails that insurers should not rely on the expectation that basis risk will dampen during
stress periods when hedging is most needed.

Table 2.1 – Maximum likelihood estimation results for the bivariate lognormal two-state
regime-switching model of (2.3.1). The first component is Great-West Life Canadian Equity
(GWLIM) BEL fund and the second is the TSX 60 index futures.

µ
(j)
1 �

(j)
1 µ

(j)
2 �

(j)
2

Great-West Life Canadian Equity (GWLIM) BEL (j = F )

0.0084 (0.0024) 0.0330 (0.0019) -0.0080 (0.0104) 0.0734 (0.0081)

TSX 60 index futures (j = S)

0.0085 (0.0026) 0.0348 (0.0022) -0.0134 (0.0126) 0.0858 (0.0097)

Correlations Transition matrix

⇢1 ⇢2 P1,1 P2,1

0.9439 (0.0090) 0.9068 (0.0269) 0.9767 (0.0137) 0.0850 (0.0527)

Note : Standard errors are given in parentheses.
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Baseline parameters

The baseline parameters of the simulation study are presented in Table 2.1 and Table 2.2.
Policyholders aged 55 years at time t = 0 purchasing an at-the-money GMMB variable annuity
with maturity of T = 120 months (10 years) are considered. The survival probabilities are
obtained following the methodology recommended by the Canadian Institute of Actuaries ; base
mortality rates are obtained from table CPM2014, see CIA (2014), and mortality improvements
are projected with their proposed rates, see Appendix C of CIA (2010). Monthly mortality
rates are obtained from annual rates by assuming that the force of mortality is constant within
a given year. The parameters related to asset dynamics are taken from the maximum likelihood
estimation results of Table 2.1. Other parameters are deemed representative of real-life practice.
For instance, the utilized lapse rate whose annualized value is roughly 4% is consistent with
lapse rates presented in Ledlie et al. (2008) which range between 2% and 6%.

Performance measures

The various local hedging strategies are benchmarked in terms of capital requirements. As
explained in Section 2.2.2, the Total Gross Capital Required (TGCR) that must be held at time
t = 0 by insurance companies in Canada can be modeled by the CVaR0.95 of the discounted
sum of injections. Moreover, the CVaR0.80 is recommended to determine reserves :

TGCR = CVaRP

0.95

"
TX

t=1

e
�rt

It

#
, Reserve = CVaRP

0.80

"
TX

t=1

e
�rt

It

#
.

The main performance metric used in this work is the TGCR as defined above. In particular,
hedging strategies that can be optimized to minimize capital requirements (see Sections 2.3.4
and 2.3.5) are implemented under this definition. Note however that such approaches can
be generalized to any capital measurement criterion that is based on the discounted sum of
injections.

Table 2.2 – Baseline parameters in monthly frequency.

Maturity (in months) T 120

Survival probability tp660 Projected CPM2014
Lapse rate b 0.34%

Total fee rate !tot 0.29%

Risk-free rate r 0.25%

GMMB guarantee K 100

Initial value of F F0 100

Initial value of S S0 100
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In the U.S., according to AAA (2011), the CVaRP

0.90 and the CVaRP

0.70 are recommended
to quantify capital requirements. These values are therefore also presented. Moreover, the
CVaRP

0.99 is given to detect potential flaws of the hedging strategies in terms of heavy tail risk.

Hedging strategies

This section presents the hedging strategies considered in the simulation experiment of Table
2.3, which will be analyzed in the next section.

The “mean-variance" strategy entails the minimization of a tradeoff between the variance and
the expected value of the next cash injection. It is based on the local hedging problem of
(2.3.15), the solution to which is given by Proposition 2.3.2. The value of the tradeoff parameter
� minimizing the TGCR is determined with the approach of Section 2.3.4 and is marked by a
star (?). The minimal variance strategy corresponds to the special case � = 0.

The “minimal VaRP

↵" and the “minimal CVaRP

↵" strategies entails minimizing the risk concerning
the next injection, based on the risk measures they are named after. These strategies solve
the hedging problem of (2.3.23) where the risk measure Rt(•) is VaRP

↵[•|Ft] and CVaRP

↵[•|Ft],
respectively. Their solutions are calculated offline using Theorem 2.3.1. For both strategies, the
parameter ↵ 2 [0, 1] controls the tradeoff between risk and cost minimization ; higher values of
↵ encourage a pure risk reduction. The chosen values of ↵ in the table are restricted to the
range within which these strategies are well-behaved ; lower values of ↵ can lead to a non-finite
number of futures positions (unbounded solutions) and are therefore avoided.

The “minimal TGCR" strategy refers to the one described in Section 2.3.5. Contrary to the
other hedging strategies, this one does not involve minimizing the risk of the next injection.
Instead, it is based on the TGCR minimization problem of (2.3.25) under the polynomial
model (2.3.26), which yields the numerical optimization problem (2.3.29). A polynomial of
degree n = 8 is deemed satisfactory for the example currently considered ; in unreported tests,
performance results (i.e., see Table 2.3) obtained using polynomials of degree higher than 8 are
virtually identical to those obtained with the degree 8 polynomial.

For comparison, the results when no hedging is used are also given : ✓(S)
t

= 0 for all t 2 T ,
which is equivalent to the absence of a hedging portfolio. Furthermore, each hedging strategy
is implemented in an hypothetical ideal case in which there is no basis risk. This is done by
supposing that there exist futures contracts on the underlying mutual fund F . Although this
is not the case in real life, such strategies are nevertheless implemented for the sake of our
numerical study which aims at quantifying the impact of basis risk.
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2.4.2 Results

The results for the setup outlined in the preceding section are presented in Table 2.3. These
are obtained from 50,000 Monte Carlo simulation runs of the hedging strategies.

First, let’s analyse the case of hedging under no basis risk. It can be seen that the strategies that
are best-performing in terms of TGCR are those characterized by a small standard deviation,
i.e., those entailing pure dispersion minimization. In particular, the minimal variance strategy
(� = 0) virtually coincides with minimal VaR and minimal CVaR strategies. Note that under
the assumption of absence of basis risk, the minimal variance hedging strategy collapses to
the delta-hedging approach widely used in the industry. Moreover, hedging strategies designed
to minimize the TGCR do not substantially further improve the results obtained with the
minimal variance strategy. For instance, the optimal mean-variance (� = 1.5) and the minimal
TGCR strategies both attain a TGCR of 3.7, which is quite close to the value of 4.7 obtained
under the minimal variance strategy. These strategies constitute an important improvement
over the no-hedging strategy, for which the TGCR is 25.3. Compared to the minimal variance
strategy, mean-variance strategies with a higher value of the tradeoff parameter � lead to higher
TGCR values. As discussed below Proposition 2.3.2, the minimal variance strategy actually
corresponds to standard delta hedging as there is no basis risk. Hence, the above results show
that delta hedging is quite efficient in the absence of basis risk.

The results for the case of hedging under basis risk are richer and more subtle. Minimal variance,
minimal VaR, and minimal CVaR strategies do not coincide with each other as they did in the
absence of basis risk. Moreover, the strategies which perform the best in terms of TGCR are not
necessarily those which attain a small standard deviation ; the minimal variance strategy in fact
yields the worst TGCR. The minimal TGCR strategy and the optimal mean-variance (� = 7)
respectively attain a TGCR of 8.7 and 8.6. Note that the TGCR of the mean-variance strategy
can be lower than the one pertaining to the minimal TGCR strategy as the mean-variance
risk measure is not included in the family of reducible risk measures. This result shows that
the optimal mean-variance strategy performs at least as well as the best strategy based on
reducible risk measures. This is a surprising result as the latter class of hedging strategies is
very large and encompasses other forms of risk-return tradeoffs such as the mean-standard
deviation, mean-VaR and mean-CVaR. Moreover the optimal mean-variance strategy leads
to a value of the CVaRP

0.99 that is smaller than for the minimal variance strategy (17.2 vs.
18.7). The results therefore show no evidence that reducing capital requirements comes at the
expense of higher tail risk for levels beyond 95%. Nevertheless, care should be applied when
interpreting this result as it is not impossible that risk could be increased in the far tail at levels
higher than 99%. It is also interesting to note that the optimal mean-variance strategy leads
to both a smaller CVaR and a better expected value ; only the variance is worse compared to
the minimal variance hedging strategy. Indeed, the CVaR is also a form of risk-reward tradeoff,
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and therefore it is possible that it can be lowered simultaneously with the expected value even
if this entails a higher variance. The variance increase observed when applying the optimal
mean-variance hedge instead of the minimal variance hedge is caused by an increase in upside
risk for the insurer, which is a desirable feature.

Another consideration that is worthy of emphasizing is the large difference in capital require-
ments obtained when comparing the respective cases where basis risk is absent or present. For
instance, the TGCR of the minimal variance strategy is 4.7 in the absence of basis risk versus
14.8 when basis risk is considered, which is a 215% increase. Even for an optimized hedging
strategy, capital requirements jump from 3.7 to 8.6 (optimal mean-variance strategy) or 8.7

(minimal TGCR strategy) when basis risk is incorporated. Indeed, Proposition 2.3.3 shows
that even a small amount of basis risk can lead to a substantial loss of hedging performance.
Omitting basis risk in hedging schemes performance assessments could therefore lead to severe
risk under-estimation. Results of this nature could have been obtained through a poor hedging
instrument choice ; basis risk will be very important if the mutual fund behaves very differently
than the hedging asset. However, the statistics presented in Table 2.1 (i.e., the correlation
coefficients) indicate that this is not the case here. Such high correlations make it difficult
to believe that the insurer could significantly improve upon the presented hedge by choosing
different hedging instruments.

The above discussion can be summarized briefly. In the absence of basis risk, conditional
variance minimization coincides with delta hedging and is very efficient at reducing the TGCR.
In contrast, under basis risk, the strategies attaining the lowest TGCR values are those which
put some weight on expected cost minimization. These results ask for further analysis to shed
light on the mechanics and determinants of the optimal hedging strategy under basis risk.

Unveiling the risk mitigation mechanics

With the exception of the mean-variance strategy, the hedging strategies in Table 2.3 can be
expressed as ✓(S)

t+1 =  (⌘P1,t)
�tFt

St
, and are therefore fully characterized by their function  .

These are illustrated in Figure 2.1 and allow for a straightforward interpretation of the risk
mitigation mechanics. For the minimal variance strategy, the function  is roughly constant
and positive, implying the use of short positions only (because �t  0 a.s.). The minimal VaRP

↵

and minimal CVaRP

↵ strategies also rely almost exclusively on short positions. In contrast,
the minimal TGCR strategy uses long positions when the conditional probability of the bull
market regime is above a certain threshold. In other words, this strategy uses the futures as
an investment vehicle, as opposed to a hedging instrument, in bull market time periods. This
behavior is also found in the mean-variance strategy, as shown in Figure 2.2 for a simulated
trajectory of the hedging portfolio composition. These observations highlight the fact that
there are actually two ways for the insurer to meet futures variable annuity liabilities :
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1. The insurer can use the futures contract as a hedging asset, which entails shorting it to
cover the long position in the underlying mutual fund. Doing this reduces the conditional
variance of the cash flow injections as shown in Proposition 2.3.3. This strategy is however
costly in bull markets because it involves shorting an asset whose price grows on average.
Moreover, hedging should intuitively be less needed in bull market because the underlying
mutual fund also grows on average.

2. The insurer can also invest money in capital markets through long positions in the TSX 60
futures contract. Such risky investments benefit from time diversification of risk, making
them smarter choices than the risk-free asset if the time horizon is sufficiently long. Time
diversification refers to the imperfect correlation between all remaining futures log-returns
until maturity ; investing through a futures over a long horizon therefore reduces risk
associated with the latter position when compared to a short-term investment.

Note that other investment vehicles than long equity futures positions could have been
considered. Such positions could be replaced by long positions in general investment portfolios
targeting long-term growth. Low-volatility funds and risk-managed funds could for instance be
considered as these are designed to provide decent returns with low downside risk, which are
in line with the use of investment in the current hedging framework. Such extensions are left
as further work.

Time diversification

This section explains why a large (small) value of the mean-variance tradeoff parameter � is
optimal when basis risk is present (absent). The starting point is Remark 2.3.1, which states
that the injection under the mean-variance strategy with parameter � can be expressed as

Ĩt+1 = Ĩ
mv
t+1 + �Jt+1, Jt+1 ⌘ �

E
P[�St|Ft]

VarP[St+1|Ft]
�St, (2.4.1)

where Ĩ
mv
t+1 is the injection under the minimal variance strategy. Hence, the mean-variance

injection can be represented as a departure “+�Jt+1" from the minimal variance injection. The
above definition implies that E

P[Jt+1]  0, so this departure indeed implies a reduction in the
expected injection value. Note that it can also be expressed as

Jt+1 ⌘ �
E
P[�St/St|Ft]

VarP[St+1/St|Ft]

�St

St

,

which shows that the Ft-conditional distribution of Jt+1 depends only on ⌘P1,t ; this is because
the Ft-conditional distribution of �St

St
depends only on ⌘

P

1,t, as it can be seen from (2.3.2).
Furthermore, one can show from the above equation that

P(Jt+1 > 0|Ft) =
2X

i=1

⌘
P

i,t

"
�
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In particular, with parameters presented in Table 2.1,

P(Jt+1 > 0|Ft) 2 [40.0%, 45.7%],

which means that the departure from the minimal variance strategy entails at least a 40%
conditional probability of ending up with a higher injection value. A myopic risk manager could
be temped to stick to the minimal variance strategy to reduce the injections volatility. Potential
advantages of a mean-variance tradeoff are however revealed when the entire time horizon is
considered ; under the baseline parameters of Tables 2.1 and 2.2, one can show through Monte
Carlo simulations that

P

 
TX

t=1

Jte
�rt

> 0

!
= 2.8%, (2.4.2)

which is because downside risk is reduced through time diversification.

A more formal discussion can be drawn up based on what insurers are interested in : discounted
sum of injections. From (2.4.1),

TX

t=1

Ĩte
�rt =

TX

t=1

Ĩ
mv
t e

�rt + �

TX

t=1

Jte
�rt

. (2.4.3)

This provides the last piece required to explain the simulation results :

� Suppose the insurer performing the hedge is not confronted with basis risk ; futures on
the fund F are available for hedging. The conditional variance of the minimal variance
injection approximation Ĩ

mv
t+1 is completely eliminated, as shown by Proposition 2.3.3.

Moreover, this is done at no net cost because the price of risk is the same for the
underlying fund and the hedging instrument. This explains why the first sum on the
right-hand side of (2.4.3) is distributed around zero with a very small dispersion, and
why a near-zero TGCR is thus obtained for the choice � = 0 (see Table 2.3). This makes
it optimal to use such a small value of �, as the TGCR would be increased by the second
sum despite the fact that its downside risk is reduced through time diversification.

� Suppose the insurer is confronted with basis risk ; futures S are used to hedge the GMMB
contract with the underlying fund F . The minimal variance injection still contains an
important portion of the no-hedging conditional standard deviation. In fact, Proposition
2.3.3 shows that for a correlation of around 90%, only about 56% of the no-hedging
standard deviation is eliminated by the minimal variance strategy. The first sum on the
right-hand side of (2.4.3) is therefore not distributed with a very small dispersion as it
would be in the absence of basis risk. Hence, it can be optimal to use a large value of �
as the second sum can now help in reducing the CVaR through time diversification, as
shown by (2.4.2).

The above explanation can be summarized as follows : the minimal variance strategy is less
efficient under basis risk, as shown by Proposition 2.3.3, and moreover it neglects the risk
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reduction offered by time diversification through the long maturity of variable annuities. This
explains why a large value of the mean-variance tradeoff parameter � is optimal when there is
basis risk.

2.5 Robustification against drift uncertainty

A surprising observation from Table 2.3 is that the optimal mean-variance hedge is more
profitable in average than the no-hedging strategy (see the expected error of �22.8 vs �6.5).
This is at odds with the traditional premise that hedging reduces risk at the expense of a
lower average return. The lower expected return under the absence of hedging results from the
optimal hedging strategy which promotes an aggressive investment into the index futures in
order to take advantage of the excess equity growth rate of the asset (under P) over the risk-free
rate that is used to discount the capital injections, at least when the market is very likely to be
in the bull market regime. This is illustrated by a simulated hedging portfolio composition path
plotted in Figure 2.2. The use of long futures positions within the hedging portfolio during
bull markets raises several concerns. The hedging strategy exhibits regime-timing behavior
which could be deemed undesirable, both from the point of view of risk management and of
the regulator. Such a strategy relies on the theoretical ability to forecast the conditional drift
through the regime mass function ⌘. In practice, model risk and parameter uncertainty could
be very detrimental to the performance of the presented hedging scheme due to the inability of
efficiently forecasting drifts, which is a notoriously difficult problem. For instance, the standard
errors of the bear market drifts µ

(S)
2 and µ

(F )
2 displayed in Table 2.1 are very large. Moreover,

the statistical uncertainty related to the regime transition probability P2,1 in the bear market
regime is substantial as indicated by its large standard error provided in Table 2.1. Hence, it is
important to investigate whether risk-reward tradeoff based strategies remain useful in such a
context of drift uncertainty.

The current section presents a robust version of the risk-reward tradeoff strategies developed in
the previous section which does not rely on the ability to accurately forecast the time-variation
of the drifts. Although there exists multiple approaches to embed model risk and estimation
risk into the hedging strategy, a thorough investigation of other schemes are left as further work.
In the robust version, during the optimization of the hedging strategies (see (2.3.16)-(2.3.18)
for the mean-variance approach and (2.3.25) for the minimal TGCR approach), the physical
measure P is replaced by a new probability measure Z under which the drift is time-invariant.
More precisely, the constrained probability measure Z is such that the asset dynamics remains
the same lognormal two-state regime-switching model than under P, but with the following
drift parameters : µ̃(S)

1 = µ̃
(S)
2 = µ̄

(S) and µ̃
(F )
1 = µ̃

(F )
2 = µ̄

(F ), where

µ̄
(S)

⌘ ⇡1 µ
(S)
1 + (1� ⇡1)µ

(S)
2 = 0.0037, µ̄

(F )
⌘ ⇡1 µ

(F )
1 + (1� ⇡1)µ

(F )
2 = 0.0048 (2.5.1)
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are the stationary expected returns, and ⇡1 = 0.78 is the stationary probability associated
with regime 1.

Calculating the hedging strategies under Z entails that such strategies do not have the ability
to forecast expected returns, in line with drift uncertainty concerns as discussed above. Such
strategies are referred to as the drift-constrained counterparts. Note that the ability to forecast
volatility is preserved. Indeed, there is a large literature documenting the ability of various
frameworks to forecast volatility under model/parameter uncertainty (see, e.g., Ardia et al.,
2017). The robustification procedure therefore focuses on drift uncertainty.

A realization of the drift-constrained mean-variance strategy is illustrated in Figure 2.3.
The reducible drift-constrained strategies are illustrated in Figure 2.4. The drift-constrained
strategies almost exclusively use net short positions in the futures, in contrast with their
unconstrained counterparts. They represent an under-hedge compared to the minimal variance
strategy, i.e., they rely on a long temporal horizon to use temporal diversification so as to save
on the cost of shorting an asset whose value grows on average. Such strategies therefore address
the concern of model risk since they rely on a more conservative investment component than
the unconstrained strategies.

The performance of the robust strategies was assessed by simulating the hedging process
by applying the drift-constrained strategies optimized under Z over underlying asset paths
simulated with the physical data-generation measure P. The hedging simulation results obtained
are presented in Table 2.4. The optimal value of � is smaller for the drift-constrained mean-
variance strategy than for the unconstrained version optimized under P (4.4 vs. 7). The
robust version of the strategy is therefore less aggressive and puts less weight on the mean
component than its unconstrained counterpart. Nevertheless, even when considering the robust
version of the hedging strategy, departing from the minimal variance strategy still provides
the opportunity to both increase profitability through a lower injections mean and reduce
capital requirements through a lower TGCR. The robust version of the hedging strategy should
therefore be very attractive to practitioners concerned with model risk who wish to increase
expected returns without increasing capital requirements. However, for the robust strategy, the
expected hedging error is higher than for the no-hedging strategy (-4.7 vs -6.5). This result
is therefore consistent with the traditional premise stipulating that hedging reduces capital
requirements at the expense of lesser profitability.

2.6 Conclusion

An efficient and tractable methodology is developed for insurers hedging equity risk related
to guarantees associated with variable annuity polices in the presence of basis risk. Although
the optimization criterion is local, a global flavor is given to the hedge as the local risk
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measure is optimized to minimize capital requirements. This enables the local hedging approach
incorporating time diversification of risk into its design. Taylor expansions on liquidity injections
are applied to simplify the implementation of the methodology. Such approximations lead
to a family of solutions to the hedging problem encompassing multiple hedging approaches
found in the literature such as delta hedging and minimal local variance hedges. Multivariate
regime-switching models are considered for the joint dynamics of the guarantee underlying
asset and the index futures.

Within simulation experiments, our method is compared to benchmarks drawn from the litera-
ture such as minimal variance hedging. The outperformance of our method versus benchmarks
in terms of both capital requirements reduction and expected return enhancement is explained
by the time diversification of risk associated to additional exposure to equity risk resulting
from the optimal local criterion ; an additional exposure to equity risk proves beneficial in
the long-term since a higher expected return facilitates the accumulation of capital and since
the impact of downturns is dampened over a long horizon. The omission of basis risk within
hedging performance assessment simulations is shown to lead to a severe under-estimation of
risk. For instance, in the simulation experiment presented the inclusion of basis risk within
the hedging scheme leads to a drastic increase of 215% of the Total Gross Capital Required
(TGCR) associated with a minimal variance strategy.
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Table 2.3 – Comparison of various hedging strategies for the simulation study of Section
2.4.1. The statistics are for the discounted sum of injections :

P
T

t=1 e
�rt

It.

Mean Std.Dev. CVaRP

0.70 CVaRP

0.80 CVaRP

0.90 CVaRP

0.95 CVaRP

0.99

No hedging

-6.5 11.7 8.7 14.0 20.7 25.3 32.2

Hedging under basis risk
Mean-variance

� = 0 2.9 4.9 8.9 10.5 12.8 14.8 18.7
� = 2 -4.4 6.7 3.8 5.7 8.5 10.8 15.1
� = 5 -15.4 11.6 -1.7 1.2 5.4 8.9 15.5
� = 7 ? -22.8 15.3 -4.9 -1.2 4.1 8.6 17.2
� = 10 -33.8 21.0 -9.3 -4.4 2.8 8.9 20.5

Minimal TGCR

n = 8 -15.1 10.0 -3.2 -0.1 4.6 8.7 16.9
Minimal VaRP

↵

↵ = 0.95 2.4 4.9 8.4 9.9 12.3 14.3 18.4
↵ = 0.60 -7.3 6.8 0.8 3.0 6.3 9.2 15.2

Minimal CVaRP

↵

↵ = 0.95 2.4 5.0 4.3 6.3 9.2 11.7 16.0
↵ = 0.15 -3.7 5.6 3.1 4.9 7.7 10.2 15.1

Hedging without basis risk
Mean-variance

� = 0 0.3 1.7 2.4 2.9 3.8 4.7 6.6
� = 1.5 ? -2.5 5.9 0.9 1.6 2.7 3.7 6.0
� = 5 -9.2 7.4 -0.7 1.0 3.5 5.6 9.6
� = 7 -13.1 10.1 -1.5 0.9 4.2 7.1 12.5
� = 10 -18.9 14.1 -2.5 0.7 5.5 9.5 17.1

Minimal TGCR

n = 8 -1.7 2.3 1.2 1.8 2.8 3.7 5.7
Minimal VaRP

↵

↵ = 0.95 0.3 1.7 2.4 2.9 3.8 4.7 6.6
↵ = 0.60 0.3 1.7 2.4 2.9 3.8 4.7 6.6

Minimal CVaRP

↵

↵ = 0.95 0.3 1.7 2.4 2.9 3.8 4.7 6.6
↵ = 0.15 0.3 1.7 2.4 2.9 3.8 4.7 6.6

Notes : The “mean-variance" strategy is characterized by Proposition 2.3.2. The value of �minimizing
capital requirements is marked by a star (?) and is determined with the approach of Section 2.3.4.
The “minimal TGCR" strategy refers to the one described in Section 2.3.5. The “minimal VaRP

↵"
and the “minimal CVaRP

↵" strategies are characterized by Theorem 2.3.1 where the risk measure
Rt(•) is VaRP

↵[•|Ft] and CVaRP
↵[•|Ft], respectively. The “Hedging without basis risk" pannel refers

to a ficticious case where the futures underlying asset is the mutual fund whereas the “Hedging
under basis risk" pannel integrates imperfect correlation between the futures underlying asset and
the mutual fund.
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Figure 2.1 – Representation of hedging strategies for the simulation study of Section 2.4.1.
The “minimal TGCR" strategy refers to the one described in Section 2.3.5. The “minimal
variance", “minimal VaRP

↵", and “minimal CVaRP

↵" strategies are characterized by Theorem
2.3.1 where the risk measure Rt(•) is respectively VarP[•|Ft], VaRP

↵[•|Ft], and CVaRP

↵[•|Ft].
Each strategy can be expressed as ✓(S)

t+1 =  (⌘P1,t)
�tFt

St
where the functions  are those illustrated.

Curves above the zero level corresponds to short positions (because �t  0 a.s.).
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Figure 2.2 – Example of mean-variance hedging simulation in the setup of Section 2.4.1.
The number of long positions in the futures is illustrated as a function of time (in months).
Shaded areas correspond to bear market regime periods. One can see that the mean-variance
strategy with � = 7 combines both long and short positions. In contrast, the minimal variance
strategy (� = 0) relies solely on short positions.
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Figure 2.3 – Example of drift-constrained (see Section 2.5) mean-variance hedging simulation
in the setup of Section 2.4.1. The number of positions in the futures is illustrated as a function
of time (in months). Shaded areas correspond to bear market regime periods. One can see
that the constrained mean-variance strategy represents an under-hedge compared to minimal
variance hedging. Both strategies rely only on short positions, in contrast with Figure 2.2.
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Figure 2.4 – Representation of the drift-constrained hedging strategies for the simulation
study of Section 2.4.1. The strategies are all calculated under the measure Z described in
Section 2.5. The “minimal TGCR" strategy refers to the one described in Section 2.3.5, but
where the CVaRP

0.95 risk measure is replaced by CVaRZ

0.95. The “minimal variance", “minimal
VaRZ

↵", and “minimal CVaRZ

↵" strategies are characterized by Theorem 2.3.1 where the risk
measure Rt(•) is respectively VarZ[•|Ft], VaRZ

↵[•|Ft], and CVaRZ

↵[•|Ft]. Each strategy can be
expressed as ✓(S)

t+1 =  (⌘Z1,t)
�tFt

St
where the functions  are those illustrated. We note that

only short positions are used for the drift-constrained strategies, in contrast with their basic
counterparts (see Figure 2.1).

67



Table 2.4 – Comparison of drift-constrained hedging strategies (see Section 2.5) for the
simulation study of Section 2.4.1. The statistics are for the discounted sum of injections :P

T

t=1 e
�rt

It.

Mean Std.Dev. CVaRP

0.70 CVaRP

0.80 CVaRP

0.90 CVaRP

0.95 CVaRP

0.99

No hedging

-6.5 11.7 8.7 14.0 20.7 25.3 32.2

Hedging under basis risk
Mean-variance

� = 0 3.0 5.0 9.0 10.6 12.9 15.0 19.0
� = 2 -0.5 5.9 7.0 8.8 11.2 13.2 17.1
� = 4.4 ? -4.7 8.0 5.3 7.5 10.3 12.6 16.8
� = 7 -9.2 10.7 3.9 6.6 10.3 13.2 18.7
� = 10 -14.5 14.1 2.6 6.1 10.8 14.7 22.2

Minimal TGCR

n = 8 -1.6 5.7 5.7 7.8 10.6 12.9 16.4
Minimal VaRZ

↵

↵ = 0.95 2.9 5.1 9.1 10.7 13.1 15.1 19.2
↵ = 0.60 1.1 5.0 7.2 8.9 11.3 13.4 17.4

Minimal CVaRZ

↵

↵ = 0.95 2.4 5.1 8.7 10.3 12.7 14.7 18.6
↵ = 0.15 1.3 5.2 7.9 9.6 12.1 14.2 18.0

Hedging without basis risk
Mean-variance

� = 0 0.3 1.7 2.4 2.9 3.8 4.7 6.6
� = 1.3 ? -0.8 2.3 2.1 2.7 3.5 4.3 6.2
� = 4.4 -3.4 4.5 2.1 3.2 4.6 5.8 8.1
� = 7 -5.6 6.6 2.4 3.9 6.1 7.9 11.5
� = 10 -8.2 9.1 2.7 4.9 7.9 10.6 15.8

Minimal TGCR

n = 8 -0.8 2.3 2.2 2.9 3.7 4.4 5.8
Minimal VaRZ

↵

↵ = 0.95 0.3 1.7 2.4 2.9 3.8 4.7 6.6
↵ = 0.60 0.3 1.7 2.4 2.9 3.8 4.7 6.6

Minimal CVaRZ

↵

↵ = 0.95 0.3 1.7 2.4 2.9 3.8 4.7 6.6
↵ = 0.15 0.3 1.7 2.4 2.9 3.8 4.7 6.6

Notes : The strategies are all calculated under the measure Z described in Section 2.5. The “mean-
variance" strategy is characterized by Proposition 2.3.2 where the measure P is replaced by Z. The
value of � minimizing capital requirements is marked by a star (?) and is determined with the
approach of Section 2.3.4, with P replaced by Z. The “minimal TGCR" strategy refers to the one
described in Section 2.3.5, again with P replaced by Z. The “minimal VaRZ

↵" and the “minimal
CVaRZ

↵" strategies are characterized by Theorem 2.3.1 where the risk measure Rt(•) is VaRZ
↵[•|Ft]

and CVaRZ
↵[•|Ft], respectively. The “Hedging without basis risk" pannel refers to a ficticious case

where the futures underlying asset is the mutual fund whereas the “Hedging under basis risk" pannel
integrates imperfect correlation between the futures underlying asset and the mutual fund.
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Appendix

2.A Proofs

2.A.1 Proof of Proposition 2.2.1

Define �Ft = Ft+1 � Ft. From the GMMB pricing formula (2.2.7), for t 2 {0, . . . , T � 1},

⇧t+1 �⇧t = �!opt�Ft

TX

j=t+1

�j�1 + !opt�tFt+1 + 1{t+1<T}�TGt+1 � 1{t<T}�TGt. (2.A.1)

Rewriting the injection formula (2.2.9) for It+1 using (2.2.6), (2.2.10) and (2.2.12) yields

It+1 = V
✓

(t+1)+ + CFt+1 � V
✓

(t+1)�,

= ⇧t+1 � !opt�tFt+1 + 1{t+1=T}�TGT � ✓
(B)
t+1Bt+1 � ✓

(S)
t+1�St,

where GT ⌘ max
�
0, K̃ � FT

�
, and �St = St+1 � St. Next, substitute ⇧t+1 and ✓

(B)
t+1 by the

expressions prescribed by (2.A.1) and (2.2.11), respectively. This gives

It+1 = ⇧t � !opt�Ft

TX

j=t+1

�j�1 + !opt�tFt+1 + 1{t+1<T}�TGt+1 � 1{t<T}�TGt

�!opt�tFt+1 + 1{t+1=T}�TGT �
⇧t

Bt

Bt+1 � ✓
(S)
t+1�St,

= ⇧t(1� e
r)� !opt�Ft

TX

j=t+1

�j�1 � ✓
(S)
t+1�St + �T

�
1{t+1<T}Gt+1 � 1{t<T}Gt + 1{t+1=T}GT

�
,

where Bt+1

Bt
= e

r was used. At last, the identities

1{t+1=T}GT = 1{t+1=T}Gt+1, 1{t+1<T} + 1{t+1=T} = 1{t+1T} = 1{t<T},

are used to obtain

It+1 = ⇧t(1� e
r)� !opt�Ft

TX

j=t+1

�j�1 � ✓
(S)
t+1�St + �T1{t<T}�Gt, (2.A.2)

where �Gt = Gt+1 �Gt. This concludes the proof.
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2.A.2 Proof of Theorem 2.3.1

First, note that the approximation of the injection, see (2.3.14), can be written as

Ĩt+1 = ⇥t ��tFt

h
 t+1

�St

St
�

�Ft

Ft

i
,  t+1 ⌘

✓
(S)
t+1St

�tFt

. (2.A.3)

Because the embedded option is a put, ��t > 0 almost surely. Hence, for any Ft-reducible
risk measure Rt, there exists a real function f1 and a nonnegative function f2 such that

Rt

�
Ĩt+1

�
= f1(⇥t) + f2(��tFt)Rt

⇣
 t+1

�St

St
�

�Ft

Ft

⌘
.

It follows that
 
⇤
t+1 ⌘ argmin

 t+1

Rt

�
Ĩt+1

�
= argmin

 t+1

Rt

⇣
 t+1

�St

St
�

�Ft

Ft

⌘
, (2.A.4)

from which (2.3.24) can indeed be concluded.

As stated in Proposition 2.3.1, the Ft-conditional distribution of
�
Ft+1

Ft
,
St+1

St

�
under P de-

pends only on the first regime conditional likelihood, ⌘P1,t. It follows that the solution to the
minimization problem (2.A.4) can be expressed as a function of the form  

⇤
t+1 =  Rt

�
⌘
P

1,t

�
.

Finally, from the temporal law-invariance property of the sequence {Rt}
T�1
t=0 , it follows that

 R0 = · · · =  RT�1 .

Explicit formulas

Deriving the following formulas under the regime-switching model of Section 2.3.1 is a straight-
forward exercice that involves conditioning on the state of the regime and using the moment
generating function of the normal distribution :

E
P[St+1|Ft] = St

2X

j=1

⌘
P

j,te
µ
(S)
j

+ 1
2

⇣
�
(S)
j

⌘2

.

VarP[St+1|Ft] = S
2
t

0

@
2X

j=1

⌘
P

j,te
2µ

(S)
j

+2
⇣
�
(S)
j

⌘2

�

2

4
2X

j=1

⌘
P

j,te
µ
(S)
j

+ 1
2

⇣
�
(S)
j

⌘2

3

5
21

A.(2.A.5)

CovP[Ft+1, St+1|Ft] = StFt

(
2X

j=1

⌘
P

j,t


e
µ
(S)
j

+µ
(F )
j

+ 1
2

⇣
�
(S)
j

⌘2
+⇢j�

(S)
j

�
(F )
j

+ 1
2

⇣
�
(F )
j

⌘2�
(2.A.6)

�

 
2X

j=1

⌘
P

j,te
µ
(S)
j

+ 1
2

⇣
�
(S)
j

⌘2
! 

2X

j=1

⌘
P

j,te
µ
(F )
j

+ 1
2

⇣
�
(F )
j

⌘2
!)

.
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Chapter 3

Option pricing under regime-switching

models : Novel approaches removing

path-dependence

Résumé

Une approche connue pour la tarification des options dans le cadre de modèles à changement
de régime consiste à adapter le principe de Girsanov. Une façon d’incorporer l’incertitude de
régime consiste alors à calculer les probabilités des régimes sous cette mesure de probabilité
neutre au risque. Cet article montre qu’une telle approche, bien que naturelle, engendre des
problèmes de dépendance au chemin dans les prix d’options vanilles. Nous argumentons que
cette propriété est contre-intuitive et indésirable. Ce travail développe des mesures neutres
au risque intuitives pouvant incorporer de manière simple l’aversion au risque de régime
et qui n’entraînent pas de tels effets secondaires de dépendance au chemin. Des schémas
numériques basés sur la programmation dynamique ainsi que des méthodes de simulations
Monte-Carlo pour calculer les prix des options sont présentés pour ces nouvelles mesures
neutres au risque.

Abstract

A well-known approach for the pricing of options under regime-switching models is to
use the extended Girsanov principle to obtain risk-neutrality. One way to handle regime
uncertainty consists in using regime probabilities that are filtered under this risk-neutral
measure to compute risk-neutral expected payoffs. The current paper shows that this
natural approach creates path-dependence issues within option price dynamics. Indeed,
since the underlying asset price can be embedded in a Markov process under the physical
measure even when regimes are unobservable, such path-dependence behavior of vanilla
option prices is puzzling and may entail non-trivial theoretical features (e.g., time non-
separable preferences) in a way that is difficult to characterize. This work develops novel
and intuitive risk-neutral measures that can incorporate regime risk-aversion in a simple

74



fashion and which do not lead to such path-dependence side effects. Numerical schemes
either based on dynamic programming or Monte-Carlo simulations to compute option
prices under the novel risk-neutral dynamics are presented.

Keywords : Option pricing, Regime-switching models, Hidden Markov models, Esscher
transform, Path-dependence.

3.1 Introduction

Since their introduction in the economics literature by Hamilton (1989), regime-switching
models have received extensive attention in the context of derivatives pricing. This can be
explained by the ability of regime-switching models to reproduce stylized facts of financial
log-returns such as fat tails, volatility clusters and momentum, see for instance Ang and
Timmermann (2012). In particular, regime-switching models are used to price long-dated
options such as those embedded in variable annuities, see Hardy (2003). Regime-switching
models are sensible choices in such circumstances since the underlying asset of a long-dated
option might go through multiple business cycles or varying financial conditions throughout
the life of the option. Moreover, regime-switching dynamics allow recovering volatility smiles
exhibited by empirical option prices, see Ishijima and Kihara (2005) and Yao et al. (2006).

The usual route to obtain a risk-neutral measure in the context of regime-switching models
is to use the extended Girsanov principle (also sometimes referred to as the mean-correcting
transform or the regime-switching Esscher transform) which preserves the model specification
and shifts the drift to the risk-free rate, see for instance Hardy (2001) and Buffington and
Elliott (2002b). Elliott et al. (2005) provide a justification for using the latter transform by
showing that it leads to the minimal entropy martingale measure. In previous works, the
Girsanov transform is often applied under the assumption of observable regimes. Failing to
recognize that latent variables are unobserved can lead to systematic bias in option prices, see
Bégin and Gauthier (2017). To handle regime latency, the typical approach found for instance
in Liew and Siu (2010) is to compute the filtered risk-neutral distribution of the hidden regimes
to obtain weights for derivatives prices associated with each regime which lead to a price in
the context of regime uncertainty.

The current paper shows that combining the usual Girsanov transform with the risk-neutral
filter in the context of regime-switching models provides price dynamics exhibiting path-
dependence even though the underlying asset price can be embedded in a Markov process under
the physical measure. Such a feature points toward non-trivial theoretical implications such as
time non-separable preferences as in Garcia et al. (2003). Moreover, the interpretation for the
time evolution mechanism of risk-neutral regime probabilities in terms of the underlying asset
price movements is not very clear. Modeling option prices from a dynamic perspective rather
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than a static one is very important since such dynamic models are embedded into dynamic
hedging performance assessment models, see for instance Trottier et al. (2017).

In the current paper, alternative risk-neutral measures which possess intuitive properties and
remove the path-dependence feature are developed. A first approach is a modified version of the
regime-switching Girsanov transform that leads to the construction of a wide class of risk-neutral
measures by engineering a dynamic transition matrix so as to yield option prices exhibiting
the Markov property. Such risk-neutral measures are obtained by the successive alteration
of transition probabilities and of the underlying asset drift. A second approach explores two
different families of martingale measures whose Radon-Nikodym derivatives are measurable
given the partial observable information. For the latter measures, option prices exhibit the
Markov property, and furthermore the conditional distribution of the past (unobservable)
regime trajectory given the asset full trajectory set is left unaltered. The latter property is
consistent with the interpretation of a risk-neutral measure as a representation of aggregate
risk-aversion and other determinants of equilibrium prices ; these factors should not distort
past risk distributions given the full asset trajectory. Under all of our introduced martingale
measures, option prices can be calculated simply either through a dynamic program or a
Monte-Carlo simulation.

Several other interesting papers from the regime-switching option pricing literature should
be mentioned. Classical regime-switching dynamics were expanded by incorporating jumps,
see Naik (1993), Elliott et al. (2007) and Elliott and Siu (2013), or GARCH feedback effects
(Duan et al., 2002). European options are priced in a Gaussian regime-switching setting using
quadratic global hedging in Rémillard et al. (2017). Multiple types of derivatives were priced
such as American options (Buffington and Elliott, 2002a), perpetual American options (Zhang
and Guo, 2004), barrier options (Jobert and Rogers, 2006; Ranjbar and Seifi, 2015), and
other exotic options such as Asian and lookback options (Boyle and Draviam, 2007). The
incorporation to the market of an additional asset providing payoffs at regime switches which
allows completing the market is investigated in Guo (2001) and Fuh et al. (2012). The partial
differential equations approach to price derivatives in regime-switching markets is presented in
Mamon and Rodrigo (2005). Di Masi et al. (1995) investigate mean-variance hedging in the
presence of regimes. Various numerical schemes were developed to price options in the regime-
switching context, such as trees (Bollen, 1998; Yuen and Yang, 2009), and the fast Fourier
transform (Liu et al., 2006). Finally, alternative approaches to pricing such as equilibrium and
stochastic games are considered in Garcia et al. (2003) and Shen and Siu (2013).

The paper continues as follows. Section 3.2 introduces the regime-switching market. Section 3.3
illustrates the use of the mean-correcting transform to price options under regime uncertainty.
The non-Markov behavior of option prices under such a transform is discussed. Section 3.4
introduces a wide class of risk-neutral measures based on the successive alteration of transition
probabilities and of the underlying asset drift. Section 3.5 explores two different families
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of martingale measures whose Radon-Nikodym derivatives are measurable given the asset
trajectory. Section 3.6 concludes.

3.2 Regime-switching market

This section introduces the regime-switching market model. We adopt the shorthand notation
x1:n ⌘ (x1, . . . , xn), and denote the conditional PDF of random variables X given Y by fX|Y .

3.2.1 Regime-switching model

Consider a discrete time space T = {0, . . . , T} and a probability space (⌦,FT ,P). Define a
regime process h = {ht}

T�1
t=0 and an innovation process z

P = {z
P
t }

T

t=1 which are independent
under P. The process z

P is a strong standardized Gaussian white noise. Possible values for
regimes are ht(!) 2 {1, . . . , H} for all ! 2 ⌦, where H is a positive integer. A risk-free asset is
introduced and its price is given by Bt = e

rt with r being the constant risk-free rate. A risky
asset price process is defined by

St = S0 exp

 
tX

j=1

✏j

!
, t 2 T , (3.2.1)

where the asset log-returns are given by

✏t+1 = µht
+ �ht

z
P

t+1, t 2 {0, . . . , T � 1}, (3.2.2)

for some constants µi and �i, i 2 {1, . . . , H}.

The filtrations G = {Gt}
T

t=0, H = {Ht}
T

t=0 and F = {Ft}
T

t=0 are defined as

Gt = �(S0, . . . , St), Ht = �(h0, . . . , ht), Ft = Gt _Ht. (3.2.3)

G and H are sub-�-algebras of F . The filtration G is referred to as the partial information
whereas F is called the full information. In practice, investors only have access to information
Gt at time t as regimes are hidden variables.

A standard assumption in the literature is to assume the regime process h is a Markov chain.
We therefore assume that for all j 2 {1, . . . , H},

P[ht+1 = j|Gt+1 _Ht] = Pht,j
, (3.2.4)

where Pk,j represents the probability of a transition k ! j of the Markov chain h. This implies

P[ht+1 = j|Ft] = Pht,j
.
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This framework is known as a regime-switching (RS) model. The joint mixed PDF of
�
✏1:T , h0:T�1

�
under such model is (proof in Appendix 3.A.1)

f
P

✏1:T ,h0:T�1
(✏1:T , h0:T�1) = f

P

h0
(h0)

TY

t=2

Pht�2,ht�1

TY

t=1

�
P

ht�1
(✏t), (3.2.5)

where we have introduced the functions �P
i
, i 2 {1, . . . , H}, which are defined as

�
P

i (x) ⌘
1

�i
�

✓
x� µi

�i

◆
, x 2 R, (3.2.6)

with �(z) ⌘ e
�z

2
/2

p
2⇡

denoting the standard normal PDF. Hence, �P
i

is the Gaussian density with
mean µi and variance �2

i
.

3.2.2 Regime mass function

Following François et al. (2014), we introduce ⌘P = {⌘
P
t }

T

t=0 where ⌘Pt =
�
⌘
P

t,1, . . . , ⌘
P

t,H

�
is

defined as the regime mass function process, or filtered density, with respect to the partial
information :

⌘
P

t,j ⌘ P[ht = j|Gt], j 2 {1, . . . , H}. (3.2.7)

The random vector ⌘Pt =
�
⌘
P

t,1, . . . , ⌘
P

t,H

�
determines what are the probabilities at time t that the

regime process is currently in each respective possible regime given the observable information.

François et al. (2014) show that the process ⌘P can be computed through the following recursion :

⌘
P

t+1,i =

P
H

j=1 Pj,i �
P

j
(✏t+1)⌘Pt,jP

H

`=1

P
H

j=1 Pj,` �
P

j
(✏t+1)⌘Pt,j

=

P
H

j=1 Pj,i �
P

j
(✏t+1)⌘Pt,jP

H

j=1 �
P

j
(✏t+1)⌘Pt,j

, i 2 {1, . . . , H}. (3.2.8)

A direct consequence of this relation is the following proposition.

Proposition 3.2.1 (François et al. 2014). The joint process
��

St, ⌘
P
t

� 
T

t=0
has the Markov

property with respect to the filtration G under the physical measure P.

The conditional density of the stock price process under P is

f
P

St+1|S0:t
(s|S0:t) =

HX

k=1

⌘
P

t,k

1

s

q
2⇡�2

k

exp

 
�

⇥
log(s/St)� µk

⇤2

2�2
k

!
, s � 0, (3.2.9)

which is a mixture of log-normal distributions with mixing weights ⌘Pt .
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3.3 The RS mean-correcting martingale measure

This section illustrates the traditional approach to option pricing based on a regime-switching
version of the mean-correcting martingale measure as in Hardy (2001) and Elliott et al. (2005).
This procedure is shown to entail complicated counterintuitive theoretical features such as
non-Markovian option price dynamics even though the underlying asset price process can be
embedded in a Markov process under the physical measure.

3.3.1 Constructing the RS mean-correcting martingale measure

Consider a European-type contingent claim whose payoff at time T is  (ST ), for some non-
negative real function  . For instance, a call option has a payoff  (ST ) = max(ST �K, 0)

where K � 0 is the strike price. The problem considered in the current paper is to identify a
suitable price process ⇧ = {⇧t}

T

t=0 for the contingent claim, where ⇧t represents the contingent
claim price at time t. Since regimes are unobservable, only prices ⇧t that are Gt-measurable
are considered as prices cannot depend on information that is unavailable to investors. This
approach is different from the one of Hardy (2001) where the option price depends on the
currently prevailing regime.

Define Q as the set of all probability measures Q that are equivalent to P and such that the
discounted price process {e

�rt
St}

T

t=0 is a G-martingale under the measure Q. Such probability
measures are referred to as martingale measures. A well known result from option pricing
theory (see, e.g., Harrison and Kreps, 1979, for a proof) is that the set of all pricing processes
which do not generate arbitrage opportunities is characterized by

⇢
⇧Q =

�
e
�r(T�t)

E
Q[ (ST )|Gt]

 
T

t=0
: Q 2 Q

�
.

Because the market is incomplete under the regime-switching framework, an infinite number of
martingale measures exist and solutions to the option pricing problem are thus not unique.

A common approach is to select a particular martingale measure under which the asset price
dynamics remains in the same class of models. This approach is followed for instance by Hardy
(2001) who considers a martingale measure under which the risky asset price returns are still
a Gaussian regime-switching process with transition probabilities Pi,j , but where the drift in
each regime µi is replaced by r �

1
2�

2
i
. Such a martingale measure can be constructed using a

regime-switching mean-correcting change of measure following the lines of Elliott et al. (2005)
who perform a similar exercise in a continuous-time framework. Replacing µi by r �

1
2�

2
i

in
(3.2.6), the joint mixed PDF of returns and regimes under such a risk-neutral measure Q is

f
Q

✏1:T ,h0:T�1
(✏1:T , h0:T�1) = f

P

h0
(h0)

TY

t=2

Pht�2,ht�1

TY

t=1

�
Q

ht�1
(✏t), (3.3.1)
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where the functions �Q
i
, i 2 {1, . . . , H}, are defined as

�
Q

i
(x) ⌘

1

�i
�

✓
x� r + 1

2�
2
i

�i

◆
, x 2 R. (3.3.2)

An assumption implicit to (3.3.1) is that the distribution of the initial regime h0 is left
untouched by the change of measure i.e. fP

h0
= f

Q

h0
.

The following result (proven in the Online Appendix 3.D.1) shows how to create a new
probability measure under which the underlying asset price and regimes dynamics matches the
desired one.

Proposition 3.3.1. Consider any joint mixed PDF for (✏1:T , h0:T�1) denoted by f
Z

✏1:T ,h0:T�1
.

Then the measure defined by Z[A] ⌘ E
P
⇥
1A

dZ

dP

⇤
, for all A 2 FT , where

dZ

dP
⌘

f
Z

✏1:T ,h0:T�1
(✏1:T , h0:T�1)

f
P

✏1:T ,h0:T�1
(✏1:T , h0:T�1)

, (3.3.3)

is a probability measure. Z is equivalent to P if and only if f
Z

✏1:T ,h0:T�1
(✏1:T , h0:T�1) is strictly

positive almost surely. Furthermore, the joint mixed PDF of (✏1:T , h0:T�1) under Z is f
Z

✏1:T ,h0:T�1
.

By Theorem 3.3.1, we thus consider the measure Q generated by the Radon-Nikodym derivative

dQ

dP
=

f
Q

✏1:T ,h0:T�1
(✏1:T , h0:T�1)

f
P

✏1:T ,h0:T�1
(✏1:T , h0:T�1)

, (3.3.4)

where f
P

✏1:T ,h0:T�1
and f

Q

✏1:T ,h0:T�1
are defined as before ; see (3.2.5) and (3.3.1). Simplifying

yields (see Online Appendix 3.D.3)

dQ

dP
=

TY

t=1

⇠t, ⇠t = e
z
P
t
�t� 1

2�
2
t , (3.3.5)

where

�t ⌘ �

µht�1 � r + 1
2�

2
ht�1

�ht�1

. (3.3.6)

From (3.2.2), defining z
Q

t
⌘ z

P
t � �t yields

✏t+1 = r �
1

2
�
2
ht

+ �ht
z
Q

t+1.

By Theorem 3.3.1, the joint PDF of (✏1:T , h0:T�1) under Q is f
Q

✏1:T ,h0:T�1
. Furthermore,

•
�
z
Q

t

 
T

t=1
are independent standard Gaussian random variables under Q,

•
�
z
Q

t

 
T

t=1
and {ht}

T�1
t=0 are independent processes under Q,

• Q[ht+1 = j|Gt+1 _Ht] = Q[ht+1 = j|Ft] = Pht,j
.
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3.3.2 Contingent claim pricing

The joint process
��

St, ht

� 
T

t=0
possesses the Markov property under Q with respect to the

filtration F . The contingent claim price is thus given by

⇧Q

t
= E

Q
⇥
e
�r(T�t) (ST )

��Gt

⇤
,

= E
Q


E
Q
⇥
e
�r(T�t) (ST )

��Ft

⇤����Gt

�
,

= E
Q
⇥
gt(St, ht)

��Gt

⇤
, by the Markov property of

��
St, ht

� 
T

t=0
,

=
HX

k=1

⌘
Q

t,k
gt(St, k), (3.3.7)

where ⌘Q
t,j

⌘ Q [ht = j|Gt], and with gt, t 2 {0, . . . , T}, being real functions characterized by
the following dynamic programming scheme starting with gT (s, k) =  (s) :

gt(s, k) =
HX

`=1

Pk,`

1Z

�1

gt+1

⇣
se

r��2
k
/2+�kz, `

⌘ 1
p
2⇡

e
�z

2
/2
dz, t 2 {0, . . . , T � 1}.

For European options, i.e., for  (s) = max(s � K, 0), Hardy (2001) provides an explicit
expression for gt in the two regimes case.

The formula (3.3.7) illustrates the path-dependence feature generated by the RS mean-correcting
transform. At time t, for an investor, (St, ⌘

P
t ) completely characterizes the likelihood of every

possible future scenarios under the physical measure P due to the Markov property of (S, ⌘P)
with respect to the partial information G. Indeed, fP

St+1:T |Gt
= f

P

St+1:T |St,⌘
P
t

. It would be intuitive
to expect that the option price at time t would be measurable with respect to �(St, ⌘

P
t ). This

is however not the case with the RS mean-correcting transform as ⇧Q

t
is a function of ⌘Q

t

which is not �(St, ⌘
P
t )-measurable in general since it depends on the whole path S0, . . . , St.

The option price ⇧Q

t
therefore exhibits path-dependence (non-Markovian behavior) although

the underlying asset payoff can be expressed as a function of the last observation of the
G-Markov process (S, ⌘P) under P. This leads us to question the appropriateness of the RS
mean-correcting transform applied to regime-switching models when regimes are latent ; it
creates path-dependence in option prices when it would be reasonable to expect these to exhibit
the Markov property. The Online Appendix 3.B further illustrates the path-dependence feature
in a simplified setting.
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3.3.3 Stochastic discount factor representation

The path-dependence feature can be visualized through a stochastic discount factor (SDF)
representation. As shown in the Online Appendix 3.D.2, prices obey the following relationship :

⇧Q

t
= E

P
⇥
⇧Q

t+1m
Q

t+1

��Gt

⇤
, m

Q

t+1 = e
�r

P
H

i=1 ⌘
Q

t,i
�
Q

i
(✏t+1)

P
H

i=1 ⌘
P

t,i
�
P

i
(✏t+1)

. (3.3.8)

Therefore, the SDF m
Q

t
is not �(✏t, ⌘Pt�1)-measurable. Pricing under Q in fact entails weighing

prices at time t+ 1 based on the risk-neutral filtered regime probabilities ⌘Q
t
, and thus in a

path-dependent fashion. This could point to complicated theoretical implications such as time
non-separable preferences as in Garcia et al. (2003).

3.4 A new family of RS mean-correcting martingale measures

This section shows how the concept of regime-switching mean-correcting change of measure
can be adapted to yield a �(St, ⌘

P
t )-measurable time-t option price. The key takeaway is that

the statistical properties of the regime process must be altered in suitable ways, i.e., so as to
remove non-Markovian effects.

3.4.1 General construction of an alternative martingale measure

The joint mixed PDF of (✏1:T , h0:T�1) under any probability measure M can be expressed as

f
M

✏1:T ,h0:T�1
(✏1:T , h0:T�1) = f

M

h0
(h0)f

M

✏1|h0
(✏1|h0)⇥ (3.4.1)

TY

t=2

f
M

ht�1|h0:t�2,✏1:t�1
(ht�1|h0:t�2, ✏1:t�1) f

M

✏t|h0:t�1,✏1:t�1
(✏t|h0:t�1, ✏1:t�1).

To obtain the martingale property, we apply a RS mean correction, i.e., we impose that
conditionally on the current regime ht�1, the distribution of the log-return ✏t is still Gaussian
with a variance equal to the physical one and a mean of r � 1

2�
2
ht�1

. Therefore,

f
M

✏t|h0:t�1,✏1:t�1
= �

Q

ht�1
, t � 1, (3.4.2)

where �Q
i
, i 2 {1, . . . , H}, is defined as before ; see (3.3.2).

Alterations on transition probabilities of the regime process are applied to remove non-Makovian
effects on option prices. Consider a multivariate process  = { t}

T�1
t=1 where  t =

h
 
(i,j)
t

i
H

i,j=1

is a Gt-measurable H ⇥H random matrix for all t 2 {0, . . . , T � 1}. Transition probabilities of
the following form are assumed under M :

f
M

ht�1|h0:t�2,✏1:t�1
(ht�1|h0:t�2, ✏1:t�1) = Pht�2,ht�1 

(ht�2,ht�1)
t�1 , t � 2. (3.4.3)
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This imposes that for all t 2 {1, . . . , T � 1} and all i, j 2 {1, . . . , H},

 
(i,j)
t

> 0 almost surely, and
HX

j=1

Pi,j 
(i,j)
t

= 1 almost surely, (3.4.4)

to ensure positiveness and normalization. Note also that the initial mass function of the first
regime can be modified from f

P

h0
(h0) to f

M

h0
(h0) during the passage from P to M.

By Theorem 3.3.1, such a measure M is constructed by the Radon-Nikodym derivative

dM

dP
=

f
M

✏1:T ,h0:T�1
(✏1:T , h0:T�1)

f
P

✏1:T ,h0:T�1
(✏1:T , h0:T�1)

=
f
M

h0
(h0)

f
P

h0
(h0)

TY

t=2

 
(ht�2,ht�1)
t�1

TY

t=1

⇠t, (3.4.5)

where ⇠t is defined as in (3.3.5).

As shown in Appendix 3.A.2, the risk-neutral mass function of regimes is given by

⌘
M

t+1,i ⌘ M[ht+1 = i|Gt+1] =

P
H

j=1 Pj,i 
(j,i)
t+1 �

Q

j
(✏t+1)⌘Mt,jP

H

j=1 �
Q

j
(✏t+1)⌘Mt,j

, t 2 {0, . . . T � 1}, (3.4.6)

with ⌘M0,i = f
M

h0
(i).

Using (3.4.2) and (3.4.6), it is straightforward to show that

f
M

✏t+1|✏1:t(✏t+1|✏1:t) =
HX

i=1

⌘
M

t,i�
Q

i
(✏t+1). (3.4.7)

Hence, provided that ⌘Mt is �
�
⌘
P
t

�
-measurable for all t � 0, we have that the Gt-conditional

distribution of the log-return ✏t+1 under M depends exclusively on ⌘
P
t . Furthermore, ⌘P

t+1 is
a function of (✏t+1, ⌘

P
t ), as shown by (3.2.8). Applying this reasoning recursively, it follows

that the Gt-conditional distribution of ✏t+1:T under M depends only on ⌘Pt . This leads to the
following result :

Proposition 3.4.1. The joint process
�
(St, ⌘

P
t )
 
T

t=0
has the Markov property with respect to

the filtration G under the probability measure M if ⌘
M
t is �

�
⌘
P
t

�
-measurable for all t � 0.

Under the conditions stated in the above proposition, it follows that the option price

⇧M

t = E
M
⇥
e
�r(T�t) (ST )

��Gt

⇤

is �
�
St, ⌘

P
t

�
-measurable by the Markov property. A simple way of designing a probability

measure M satisfying such conditions is provided next.
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3.4.2 A simple construction of an alternative martingale measure

A special case is obtained by specifying the measure M through the conditions

f
M

h0
= f

P

h0
, and  

(j,i)
t

=
⌘
P

t,i

Pj,i

almost surely, i, j 2 {1, . . . , H}. (3.4.8)

Using (3.4.8) in (3.4.6) yields
⌘
M

t = ⌘
P

t almost surely. (3.4.9)

The condition from Proposition 3.4.1 requiring ⌘Mt to be �
�
⌘
P
t

�
-measurable for all t � 0 is

thus trivially satisfied. As stated in Remark 3.4.1, it turns out that the martingale measure M

obtained in this fashion has an interesting interpretation.

Remark 3.4.1. The martingale measure M obtained with (3.4.8) can be understood as a
sequence of two consecutive changes of measure : one from the physical measure P to an
equivalent measure P̃ under which the statistical properties of returns are preserved, and
another from P̃ to M which induces the martingale property through a RS mean correction.

Indeed, assume P̃ is a probability measure such that for all t 2 {1, . . . , T} and all j 2 {1, . . . , H},

P̃[h0 = j] = f
P

h0
(j), (3.4.10)

P̃[ht = j|Gt _Ht�1] = ⌘
P

t,j , (3.4.11)

f
P̃

✏t|h0:t�1,✏1:t�1
= f

P

✏t|h0:t�1,✏1:t�1
= �

P

ht�1
. (3.4.12)

In other words, when passing from P to P̃, only the transition probabilities are shifted, from
Pht�1,ht

to ⌘P
t,ht

. For such a measure P̃, it can be shown (see Appendix 3.A.3 for a proof) that

f
P̃

✏t+1|Gt
= f

P

✏t+1|Gt
. (3.4.13)

This implies the joint distribution of log-returns is identical under both P and P̃, and thus the
change of measure from P to P̃ preserves the statistical properties of the underlying asset S.
Because regime-switching model adequacy and goodness-of-fit statistical tests are characterized
by the distribution of the underlying process, there is no reason why P might be preferred to P̃

when a regime-switching model is deemed appropriate for the price dynamics of some asset ;
both have the same joint distribution. Thus, P̃ could even be viewed as the physical measure.

Next, let’s see how the change of measure can be decomposed. As shown in Appendix 3.A.4,
the joint mixed PDF of (✏1:T , h0:T�1) under P̃ is

f
P̃

✏1:T ,h0:T�1
(✏1:T , h0:T�1) = f

P

h0
(h0)

TY

t=2

⌘
P

t�1,ht�1

TY

t=1

�
P

ht�1
(✏t). (3.4.14)

This implies the following representation of M :

dM

dP
⌘

dM

dP̃

dP̃

dP
, (3.4.15)
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where
dM

dP̃
=

f
M

✏1:T ,h0:T�1
(✏1:T , h0:T�1)

f
P̃

✏1:T ,h0:T�1
(✏1:T , h0:T�1)

=
TY

t=1

⇠t, (3.4.16)

with ⇠t defined as in (3.3.5), and

dP̃

dP
=

f
P̃

✏1:T ,h0:T�1
(✏1:T , h0:T�1)

f
P

✏1:T ,h0:T�1
(✏1:T , h0:T�1)

=
TY

t=2

⌘
P

t�1,ht�1

Pht�2,ht�1

. (3.4.17)

Therefore, M can be constructed by applying a regular Girsanov-type change of drift through
(3.4.16) to a measure P̃ under which the risky asset has the same statistical properties as
under the physical measure P. This confirms the statement in Remark 3.4.1. In summary, the
regime-switching mean-correcting change of measure can be used to yield Markovian option
prices, but it must be applied on P̃, rather than P.

3.4.3 Incorporating regime uncertainty aversion

The condition (3.4.9) implies that regime uncertainty risk is unpriced as the conditional
distribution of the hidden regime ht is left untouched by the passage from P to M. The
current section illustrates a generalization of the previous method which can incorporate regime
uncertainty aversion through a so-called conversion function. Such a function relates ⌘M to ⌘P

by applying a distortion to the regime mass function process.

Definition 3.4.1. Consider functions ⇣k : [0, 1]H ! [0, 1], k 2 {1, . . . , H}, having the property

HX

k=1

⇣k(⌘1, . . . , ⌘H) = 1, for all (⌘1, . . . , ⌘H) 2 [0, 1]H such that
HX

i=1

⌘i = 1.

The function ⇣ = (⇣1, . . . , ⇣H) is referred to as a conversion function.

The  (j,i)
t

from (3.4.3) characterizing the martingale measure M are determined to enforce the
chosen conversion :

⌘
M

t,k
= ⇣k

�
⌘
P

t

�
almost surely for all t and all k. (3.4.18)

By Proposition 3.4.1, path-dependence problems are purged when such a measure M is used as
a martingale measure for pricing. From (3.4.4) and (3.4.6), the above condition involves using
 
(i,j)
t

that are solutions of the following linear system of equations, for all t � 1 :
P

H

j=1 Pj,i 
(j,i)
t

�
Q

j
(✏t)⇣j

�
⌘
P

t�1

�

P
H

j=1 �
Q

j
(✏t)⇣j

�
⌘
P

t�1

� = ⇣i

�
⌘
P

t

�
, i 2 {1, . . . , H},

HX

j=1

Pi,j 
(i,j)
t

= 1, i 2 {1, . . . , H}.

(3.4.19)

The solutions are characterized in the proposition below whose proof is in Appendix 3.A.5.
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Proposition 3.4.2. The system of equations (3.4.19) admits an infinite number of solutions.

The trivial solution is

 
(j,i)
t

=
⇣i

�
⌘
P
t

�

Pj,i

, i, j 2 {1, . . . , H}. (3.4.20)

A non-trivial solution to the system (3.4.19) is presented in the Online Appendix 3.C.

Examples of conversion functions could include for instance :

• The identity conversion function :

⇣k(⌘1, . . . , ⌘H) = ⌘k, (3.4.21)

• The softmax function : for some real constants ai, bi, with i 2 {1, . . . , H},

⇣k(⌘1, . . . , ⌘H) =
exp(ak + bk⌘k)P
H

i=1 exp(ai + bi⌘i)
. (3.4.22)

The identity conversion function case described in Section 3.4.2 would reflect risk-neutrality
with respect to regime uncertainty, whereas the softmax function could reflect risk-aversion to
regime uncertainty. Values for parameters (ak, bk) of the softmax function could be obtained
through calibration using market option prices.

3.4.4 Price computation algorithms

Using martingale measures M described in the current section, options can be priced by means
either of Monte-Carlo simulations or a dynamic programming approach. Both methods are
outlined below.

Monte-Carlo simulations

A fairly simple recipe to simulate log-returns ✏t within a Monte-Carlo simulation under the
measure M is given : at each t = 0, . . . , T � 1,

1. Calculate ⌘Pt from (3.2.8),

2. Calculate ⌘M
t,i

= ⇣i

�
⌘
P
t

�
, for i 2 {1, . . . , H},

3. Draw ✏t+1 from the Gaussian mixture (3.4.7).

Dynamic program

Dynamic programming can be used to price simple contingent claims. By Proposition 3.4.1,
the option price is �

�
St, ⌘

P
t

�
-measurable since (3.4.18). Hence

⇧M

t = E
M
⇥
e
�r(T�t) (ST )

��Gt

⇤
= ⇡

M

t

�
St, ⌘

P

t

�
,
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for some real functions ⇡M0 , . . . ,⇡
M

T
.

The functions ⇡M0 , . . . ,⇡
M

T
can be computed through a simple dynamic program provided by

Proposition 3.4.3 which is proven in Appendix 3.A.6.

Proposition 3.4.3. For i 2 {1, . . . , H} and t 2 {0, . . . , T � 1}, define the functions

�t+1,i(⌘, ✏) ⌘

P
H

j=1 Pj,i �
P

j
(✏)⌘j

P
H

j=1 �
P

j
(✏)⌘j

(3.4.23)

and

�t+1
�
⌘
P

t , ✏t+1
�
=
⇣
�t+1,1

�
⌘
P

t , ✏t+1
�
, . . . ,�t+1,H

�
⌘
P

t , ✏t+1
�⌘

. (3.4.24)

Then, for any t 2 {0, . . . , T � 1} and any possible value of St and ⌘
P
t :

⇡
M

t

�
St, ⌘

P

t

�
= e

�r

HX

k=1

⇣k

�
⌘
P

t

�
1Z

�1

⇡
M

t+1

⇣
Ste

r��2
k
/2+�kz,�t+1

⇣
⌘
P

t , r � �
2
k
/2 + �kz

⌘⌘
e
�z

2
/2

p
2⇡

dz,

(3.4.25)

with ⇡M
T

�
ST , ⌘

P

T

�
=  (ST ) where  is the payoff function.

Moreover, the dimension of the pricing functional can be reduced by one as stated below.

Remark 3.4.2. Because
P

H

k=1 ⌘
P

t,k
= 1 almost surely (since they represent probabilities of a

sample space partition), the function �t+1,i(⌘, ✏) only needs to be computed at points where
⌘1+ . . .+ ⌘H = 1. Because of this, we can drop ⌘P

t,H
from the state variables since it is a known

quantity when ⌘P
t,1, . . . , ⌘

P

t,H�1 are given. This reduces the dimension of the pricing functional
by one since it is possible to write ⇡Mt

�
St, ⌘

P
t

�
= ḡt

�
St, ⌘

P

t,1, . . . , ⌘
P

t,H�1

�
for some function ḡt,

t 2 T .

3.5 Martingale measures based on GT -measurable transforms

There are still some conceptual issues for the approach presented in the previous section. In
particular, because the Radon-Nikodym derivative dM

dP
is not GT -measurable, there exists events

A 2 FT such that
M[A|GT ] 6= P[A|GT ]. (3.5.1)

This means that such risk-neutral measures can alter the likelihood of past regimes given the
full asset trajectory. For instance, the most probable regime trajectory could differ significantly
under M (compared to under P). This property might seem counter-intuitive. Indeed, a risk-
neutral measure reflects risk-aversion and other considerations that affect equilibrium prices ;
as such it might be desirable not to alter the posterior regime distribution when there is no
asset risk left, i.e., given S0:T .
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This section illustrates the construction of martingale measures which leave the GT -conditional
distribution of past regimes unaffected by the change of measure. A first approach relies on the
adaptation of the well-known Esscher transform to the latent regimes framework. A second
approach, based on a regime-mixture approach, combines features of the Esscher transform
and of martingale measures constructed in Section 3.4.

3.5.1 A conditional version of the Esscher transform

The Esscher transform is a popular concept in finance and insurance, and it is therefore relevant
to investigate whether it can be adapted to regime-switching models so as to provide a natural
solution to path-dependence issues. The Esscher transform presented hereby is a particular
case of the general pricing approach under heteroskedasticity of Christoffersen et al. (2009).

The conditional Esscher risk-neutral measure bQ is defined by the Radon-Nikodym derivative

dbQ
dP

=
TY

t=1

b⇠t, b⇠t ⌘ e
�✓t�1

✓
St

St�1

◆
↵t�1

, (3.5.2)

where {✓t}
T

t=0 and {↵t}
T

t=0 are G-adapted processes to be defined. As shown in Appendix 3.A.7,
the following condition, which is assumed to hold, ensures that bQ is a probability measure :

✓t = log

 
HX

k=1

⌘
P

t,k
exp

✓
↵tµk +

1

2
↵
2
t�

2
k

◆!
. (3.5.3)

Moreover, assuming this condition holds, as shown in Appendix 3.A.8, the following condition
is necessary and sufficient to ensure that bQ is a risk-neutral measure :

HX

k=1

⌘
P

t,k
exp

✓
↵tµk +

1

2
↵
2
t�

2
k

◆
1� exp

✓
µk + ↵t�

2
k
+

1

2
�
2
k
� r

◆�
= 0. (3.5.4)

A solution to this equation always exists since the left hand side tends to minus infinity as
↵t ! 1 and to infinity as ↵t ! �1, on top of being a continuous function of ↵t. Equation
(3.5.4) can be solved numerically to determine ↵t ; the solution is a function of ⌘Pt , and therefore
(✓t,↵t) is a function of ⌘Pt .

Appendix 3.A.9 shows that the distribution of returns under the measure bQ is characterized by

bQ[✏t+1  x|Gt] =
HX

i=1

⌘̂
P

t,i�

✓
x� µi � ↵t�

2
i

�i

◆
, x 2 R, (3.5.5)

where � is the standard Gaussian cumulative distribution function, and

⌘̂
P

t,i =
⌘
P

t,i
exp

�
↵tµi +

1
2↵

2
t�

2
i

�

P
H

k=1 ⌘
P

t,k
exp

�
↵tµk +

1
2↵

2
t
�
2
k

� . (3.5.6)
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The log-returns Gt-conditional distribution under bQ is therefore still a Gaussian mixture
with modified mixing weights ⌘̂Pt and means shifted from µi to µi � ↵t�

2
i

for each regime
i 2 {1, . . . , H}. Note that the passage from ⌘

P
t to ⌘̂Pt is an instance of a conversion function

since ↵t is a function of ⌘Pt as shown by (3.5.4).

Equations (3.5.5)-(3.5.6) indicate the bQ distribution of the log-return ✏t+1 given Gt depends
exclusively on ⌘

P
t since ↵t and ⌘̂

P
t are functions of ⌘Pt . Furthermore, ⌘P

t+1 is a function of
(✏t+1, ⌘

P
t ) ; see (3.2.8). Applying this reasoning recursively, it follows that the Gt-conditional

distribution of ✏t+1:T under bQ depends only on ⌘Pt . This leads to the following result :

Proposition 3.5.1. The joint process
�
(St, ⌘

P
t )
 
T

t=0
has the Markov property with respect to

the filtration G under the probability measure bQ.

This result entails that the option price at time t is �
�
St, ⌘

P
t

�
-measurable as desired. Other

desirable theoretical properties satisfied by this measure are outlined in the remark below.

Remark 3.5.1. The risk-neutral measure bQ displays the following desirable properties :

• The option price ⇧bQ
t
= E

bQ⇥
e
�r(T�t) (ST )

��Gt

⇤
is �

�
St, ⌘

P
t

�
-measurable.

• b⇠t is Gt-measurable for all t 2 T and therefore dbQ
dP

2 GT . Thus, the GT -conditional
distribution of past risks is unaffected by the change of measure : bQ[A|GT ] = P[A|GT ],
8A 2 FT .

• If the martingale property is already satisfied under P, i.e., �Q
i
= �

P

i
for all i 2 {1, . . . , H},

then there is no change of measure, i.e., dbQ
dP

= 1 almost surely. 1

• In the single-regime case (H = 1), bQ reduces to the usual Esscher martingale measure Q.

Option pricing schemes

A simple recipe is available to simulate log-returns under the measure bQ within a Monte-Carlo
simulation : at each t = 0, . . . , T � 1,

1. Calculate ⌘P
t,i

, i 2 {1, . . . , H}, from (3.2.8),

2. Solve numerically for ↵t in (3.5.4),

3. Calculate ⌘̂P
t,i

, i 2 {1, . . . , H}, from (3.5.6),

4. Draw ✏t+1 from the Gaussian mixture (3.5.5).

Note that the second and third steps can be pre-calculated.

Simple contingent claims can also be priced by dynamic programming. Since the time-t option
price is �

�
St, ⌘

P
t

�
-measurable, it follows that for all t 2 T there exists a function ⇡bQ

t
such that

⇧
bQ
t
⌘ E

bQ⇥
e
�r(T�t) (ST )

��Gt

⇤
= ⇡

bQ
t

�
St, ⌘

P

t

�
.

1. This is because we then have ↵t = ✓t = 0 almost surely for all t.
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The dynamic program that enables the recursive computation of the functions ⇡bQ
t

can be
derived following the steps outlined in Section 3.4.4 :

⇡
bQ
t

�
St, ⌘

P

t

�
= e

�r

HX

k=1

⌘̂
P

t,k

1Z

�1

⇡
bQ
t+1

⇣
Ste

µk�↵t�
2
k
+�kz,�t+1

⇣
⌘
P

t , µk � ↵t�
2
k
+ �kz

⌘⌘
e
�z

2
/2

p
2⇡

dz,

(3.5.7)
with ⇡

bQ
T

�
ST , ⌘

P

T

�
=  (ST ) where  is the payoff function, ⌘̂Pt is defined as a function of ⌘Pt

through (3.5.6), and �t+1 is defined by (3.4.24).

3.5.2 A regime-mixture transform

We present now a new family of martingale measures based on a regime-mixture approach. A
measure from this new family is denoted by Q̄. Similarly to the conditional Esscher transform
bQ from Section 3.5.1, the Radon-Nikodym derivative characterizing the new regime-mixture
martingale measure Q̄ is GT -measurable. This implies the GT -conditional distribution of regimes
h0:T�1 is left untouched by the change of measure, which can be deemed a desirable property
as previously discussed. Moreover, as for RS mean-correcting measures M, the risk-neutral
one-period conditional distribution of asset log-returns is a mixture of Gaussian distribution
whose mean is the risk-free rate minus the usual convexity correction. The regime-mixture
approach therefore combines features of the two families of martingale measures previously
considered, namely the new version of the RS mean-correcting measure M and the conditional
Esscher transform bQ. We first explain how this measure can be derived.

The PDF of a trajectory under a probability measure Q̄ can be expressed as (see Appendix
3.A.10)

f
Q̄

✏1:T ,h0:T�1
(✏1:T , h0:T�1) = f

Q̄

h0:T�1|GT

(h0:T�1|GT )
TY

t=1

f
Q̄

✏t|Gt�1
(✏t|Gt�1). (3.5.8)

In comparison, the PDF under P is given by (see Appendix 3.A.11)

f
P

✏1:T ,h0:T�1
(✏1:T , h0:T�1) = f

P

h0:T�1|GT
(h0:T�1|GT )

TY

t=1

HX

i=1

⌘
P

t�1,i �
P

i (✏t). (3.5.9)

The regime-mixture Esscher martingale measure Q̄ is constructed by enforcing

f
Q̄

h0:T�1|GT

(h0:T�1|GT ) = f
P

h0:T�1|GT
(h0:T�1|GT ), (3.5.10)

f
Q̄

✏t|Gt�1
(✏t|Gt�1) =

HX

i=1

⇣i(⌘
P

t�1)�
Q

i
(✏t), 8t 2 {1, . . . , T}, (3.5.11)

where ⇣ is the conversion function, and �
Q

i
, i 2 {1, . . . , H}, is defined as before ; see (3.3.2).

The property (3.5.10) states that the GT -conditional distribution of the regime trajectory is
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unaltered under Q̄. This is an intuitive feature as previously discussed. The property (3.5.11)
states the Gt�1-conditional distribution of the log-return ✏t under Q̄ is a Gaussian mixture
with mixing weights given by the vector ⇣(⌘P

t�1), and means shifted from µi to r�
1
2�

2
i

for each
regime i 2 {1, . . . , H}. The purpose of the latter condition is to ensure the martingale property
is satisfied, and that regime risk is priced according to the chosen conversion function.

As shown in Appendix 3.A.12 the Radon-Nikodym derivative is

dQ̄

dP
=

TY

t=1

⇠̄t, ⇠̄t ⌘

P
H

i=1 ⇣i(⌘
P

t�1)�
Q

i
(✏t)P

H

i=1 ⌘
P

t�1,i �
P

i
(✏t)

. (3.5.12)

Appendix 3.A.13 shows that the distribution of returns under this measure is characterized by

Q̄[✏t+1  x|Gt] =
HX

i=1

⇣i(⌘
P

t )�

✓
x� r + 1

2�
2
i

�i

◆
, x 2 R. (3.5.13)

Hence, for any s = 0, . . . , T � t�1, the Gt+s-conditional distribution of ✏t+1+s under Q̄ depends
only on ⌘Pt+s. Furthermore, by (3.2.8), ⌘Pt+s is a function of

�
✏t+s, ⌘

P

t+s�1

�
. The above reasoning,

applied recursively, implies that the Gt-conditional distribution of ✏t+1:T under Q̄ depends only
on ⌘Pt . The next proposition then follows.

Proposition 3.5.2. The joint process
�
(St, ⌘

P
t )
 
T

t=0
has the Markov property with respect to

the filtration G under the probability measure Q̄.

This property entails that the option price ⇧Q̄

t
= E

Q̄
⇥
e
�r(T�t) (ST )

��Gt

⇤
is �
�
St, ⌘

P
t

�
-measurable.

Furthermore, the other properties stated in Remark 3.5.1 also hold for Q̄. Finally, since the
underlying asset price joint distribution are identical under M and Q̄, the pricing algorithms
are identical to those given in Section 3.4.4.

3.6 Conclusion

The current work shows that the usual approach to construct martingale measures in a regime-
switching framework based on the correction of the drift for each respective regime (i.e.,
regime-switching mean correction) leads to path-dependence even for vanilla options. More
precisely, even if the joint process (S, ⌘P) comprising the underlying asset price and the regime
mass function given observable information has the Markov property, vanilla derivatives prices
at time t would not be a function strictly of the current value of the latter process, i.e., of
(St, ⌘

P
t ). The construction of multiple martingale measures possessing intuitive properties and

removing the path-dependence feature is illustrated in the current paper.

Our first approach is a modified version of the above concept of RS mean-correcting martingale
measure ; it also relies on RS mean correction to obtain the martingale property, but with the

91



inclusion of transition probability transforms so as to recuperate the Markov property of option
prices. This yields a very wide class of new martingale measures removing the path-dependence.
This class includes an interesting special case which can be represented as the successive
application of two changes of measures : a first one which allows retaining the exact same
underlying asset statistical properties from the physical measure, and then a change of drift
on each regime. Obtained generalizations allow for the pricing of regime uncertainty through
conversion functions which distort the hidden regime distribution given the currently observed
information.

A second approach developed is based on changes of measures whose Radon-Nikodym derivatives
are �(S0, . . . , ST )-measurable, implying that they do not impact the conditional distribution
of the regime hidden trajectory given the full asset trajectory. This approach embeds as a
particular case the well-known Esscher transform.

Simple pricing procedures for contingent claims under the developed martingale measures
based either on dynamic programming or Monte-Carlo simulations are also provided.
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Appendix

3.A Proofs

3.A.1 Proof of Eq. (3.2.5)

f
P

✏1:T ,h0:T�1
(✏1:T , h0:T�1) = f
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✏1,h0
(✏1, h0)

TY
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1
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✓
✏t � µht�1

�ht�1

◆
,

where the last equality follows from (3.2.2) and (3.2.4). Using definition (3.2.6) concludes the
proof.

3.A.2 Proof of Eq. (3.4.6)

⌘
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93



3.A.3 Proof of Eq. (3.4.13)

f
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✏t+1|Gt
(x|Gt) =
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f
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Similarly, it can be shown using (3.4.12) that
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Using the above relations in (3.A.1) yields
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where the last equality is straightforward to prove. Hence, f P̃
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P
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3.A.4 Proof of Eq. (3.4.14)
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3.A.5 Proof of Proposition 3.4.2

The system (3.4.19) is equivalent to
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Indeed, the trivial solution is, for all i, j 2 {1, . . . , H},

 ̃
(j,i)
t

= 0 )  
(j,i)
t

=
⇣i

�
⌘
P
t

�

Pj,i

. (3.A.2)

The system has H
2 unknown values and 2H equations. If H > 2, the existence of a solution

implies that an infinite number of solutions exist. Even if H = 2, we can show there exists an
infinite number of solutions.

Indeed, the system can be written as follows for H = 2,
2
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1 1 0 0

0 0 1 1
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77775
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0

0

0

0

3

77775
.

Since det M = t,1t,2 � t,1t,2 = 0, an infinity of solutions exist by the properties of
homogeneous linear systems.

3.A.6 Proof of Proposition 3.4.3
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This means
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Combining (3.A.3) and (3.A.5) yields the recursive formula (3.4.25) to obtain the option price
⇧M

t = ⇡
M
t (St, ⌘

P
t ) from ⇡

M

t+1.

3.A.7 Proof of Eq. (3.5.3)

To ensure bQ represents a change of probability measure, the following condition which guarantees
that E
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Next, let’s prove that E
P

h
dbQ
dP

i
= 1. The following property will be useful :

b⇠s is Gt-measurable, 8s  t. (3.A.8)

It thus follows that for all t � 1,
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#
, by (3.A.8),

... (applying recursively)

= 1. (3.A.9)

In particular, for t = 1 the above statement is equivalent to E
P

h
dbQ
dP

i
= 1.
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3.A.8 Proof of Eq. (3.5.4)

To ensure bQ is a martingale measure, the following risk-neutral condition must hold :
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Combining (3.5.3) and (3.A.10) yields
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3.A.9 Proof of Eq. (3.5.5)
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Furthermore,

E
P

h
1{µi+�izPt+1x}e

↵tµi+↵t�iz
P
t+1

���Gt, ht = i

i
=

Z (x�µi)/�i

�1
e
↵tµi+↵t�iz�(z)dz,

=

Z (x�µi)/�i

�1
e
↵tµi+↵t�iz

1
p
2⇡

e
�z

2
/2
dz,

=

Z (x�µi)/�i

�1
e
↵tµi+↵2

t
�
2
i
/2 1
p
2⇡

e
�(z�↵t�i)2/2dz,

= e
↵tµi+↵2

t
�
2
i
/2�

✓
x� µi

�i
� ↵t�i

◆
. (3.A.12)

Plugging (3.A.7) and (3.A.12) in (3.A.11), we obtain
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3.A.10 Proof of Eq. (3.5.8)

The PDF of a trajectory (✏1:T , h0:T�1) under a generic probability measure Q̄ can be expressed
as

f
Q̄

✏1:T ,h0:T�1
(✏1:T , h0:T�1) = f

Q̄
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since GT ⌘ �(✏1:T ). Moreover,
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... (applying recursively)
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f
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(✏t|Gt�1). (3.A.14)

Combining (3.A.13) and (3.A.14) yields (3.5.8).

3.A.11 Proof of Eq. (3.5.9)

The expression (3.5.8) also holds for P, i.e.,
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Plugging the following concludes the proof :
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3.A.12 Proof of Eq. (3.5.12)

The Radon-Nikodym derivative is (from Theorem 3.3.1)

dQ̄

dP
⌘

f
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Plugging Equation (3.5.8), (3.5.9), (3.5.10) and (3.5.11) yields (3.5.12).

3.A.13 Proof of Eq. (3.5.13)

The following property will be useful :

⇠̄s is Gt-measurable, 8s  t. (3.A.18)
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Also, note that for all t � 1
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Furthermore, for all t � 1
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We are now ready to carry out the main proof :
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Online Appendix

(not part of the paper)

3.B A simple motivational example

This section presents a simple motivational example in which a Markovian underlying asset
price process leads to a path dependent option price process for a vanilla call option.

Consider a three-period trinomial tree model with ⌦ =
�
(!1,!2,!3) : !i 2 {u,m, d}, i =

1, 2, 3
 
. Here, ! = (!1,!2,!3) represents a trajectory, and u, m, d respectively stand for

“up", “middle" and “down" to denote the underlying asset stock price movements. Consider
an economy with a null risk-free rate for simplicity and with a stock price process {St}

3
t=0

evolving according to

St+1(!) =

8
>>><

>>>:

St(!) + 1, if !t+1 = u,

St(!), if !t+1 = m,

St(!)� 1, if !t+1 = d,

with S0(!) = 5 for all ! 2 ⌦. We consider a physical probability measure P under which the
stock price can go up, down or middle with the same probability 1/3 at every node. This leads
to P(!) = (1/3)3 = 1/27 for any ! 2 ⌦. The information on the market is characterized by
the filtration G = {Gt}

3
t=0 where Gt = �(S0, . . . , St) is the sigma-algebra generated by previous

and contemporaneous stock prices.

Consider an at-the-money vanilla European call option maturing at time 3 whose payoff is
 (S3) = max(0, S3 � 5). Let Q be the set of all martingale measures on the space. 2 From
the first fundamental theorem of financial mathematics (see, e.g., Lamberton and Lapeyre,
2007), the set of all possible option price processes ⇧ = {⇧t}

3
t=0 that do not generate arbitrage

opportunities is ⇢
⇧Q =

�
E
Q[ (S3)|Gt]

 3
t=0

: Q 2 Q

�
.

2. Q is a martingale measure if Q is equivalent to P and if S is a Q-martingale.
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Since S is a P-martingale, P 2 Q. Therefore, since S is a Markov process under P, using Q = P

as the pricing measure leads to a Markovian price process. However, it is possible to construct
a martingale measure under which S loses the Markov property. Indeed consider Z defined
through

Z[!] =

8
>>><

>>>:

1/54, if ! = (m,m, u) or ! = (m,m, d),

2/27, if ! = (m,m,m),

1/27, otherwise .

This measure changes the probability of an upward or a downward movement to 1/6 instead of
1/3 at the last time step if the two first stock movements were !1 = !2 = m. Straightforward
calculations show that S is a Z-martingale. However, S is not a Markov process under Z since
Z [S3 = 6|S2 = 5, S1 = 5] = 1/54

1/9 = 1/6 is not equal to Z [S3 = 6|S2 = 5, S1 = 6] = 1/27
1/9 = 1/3.

The non-Markovian dynamics of S under Z leads to a non-Markovian option price under P if
the pricing measure is Z. For example, let ⇧Z

t ⌘ E
Z [ (S3)|Gt], then for any !3 2 {u, d,m},

⇧Z

2 (u, d,!3) = (6� 5)⇥ 1/3 = 1/3, ⇧Z

2 (m,m,!3) = (6� 5)⇥ 1/6 = 1/6.

Hence, ⇧Z

2 (u, d,!3) 6= ⇧Z

2 (m,m,!3) and this even if S2(u, d,!3) = S2(m,m,!3) = 5.

Although
�
⇧Z

t

 3
t=0

is an arbitrage-free price process consistent with arbitrage pricing theory, it
can be argued that it entails unintuitive properties. When an investor observes that the stock
price at time 2 is S2 = 5, he has a complete knowledge of the likelihood of all possible scenarios
until maturity (!3 = u, d or m) under the physical measure P ; previous information such as S1

does not alter the likelihood of each scenario. When S2 = 5 at time 2, intuitively the investor
should be indifferent to the value of S1 when determining the option price. In other words,
non-Markovian option prices under P when the underlying asset has the Markov property under
P could be deemed counterintuitive. Thus, it is legitimate to search for martingale measures
that do not exhibit such properties.

3.C Non-trivial RS mean-correcting measure without path
dependence

This appendix presents the construction of another martingale measure M satisfying (3.4.19),
which is not the trivial solution to the latter system of equations. Indeed, among the infinite
set of martingale measures M satisfying (3.4.19), some are arguably more intuitive than others.
Consider for instance the identity conversion case, see Section 3.4.2. Property (3.4.11) implies
that the regime process h is not a Markov process under M, which is a strange property.
Furthermore, this is the case even if the discounted price process {e

�rt
St}

T

t=0 is already a
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P-martingale, i.e., when �t = 0 almost surely. Indeed, using (3.4.8) and �t = 0 in (3.4.5) yields

dM

dP
=

f
M

h0
(h0)

f
P

h0
(h0)

TY

t=2

 
(ht�2,ht�1)
t�1 =

f
M

h0
(h0)

f
P

h0
(h0)

TY

t=2

⌘
P

t,j

Pj,i

,

which means that a change of measure is still applied even though the martingale property is
already satisfied under P.

However, as stated in Proposition 3.4.2, there is an infinite number of other solutions. Among
all the solutions, a specific one stated in the proposition below allows minimizing the disparity
between the transition probabilities under P and M, the latter being given by (3.4.3). As stated

in the latter proposition, the choice (3.C.2) yields dM

dP
=

f
M
h0

(h0)

f
P
h0

(h0)
if the discounted underlying

price is a P-martingale. The proof of the following proposition is in the Online Appendix 3.D.4.

Proposition 3.C.1. The minimization problem

min�
 
(j,i)
t
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i,j=1

HX

i,j=1

⇣
Pj,i 

(j,i)
t

� Pj,i

⌘2
(3.C.1)

subject to the constraints (3.4.19) admits the solution
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⌘2 . (3.C.2)

When �
Q

`
= �

P

`
, i.e., when �t = 0 almost surely, and when the identity conversion is considered,

i.e., ⇣i(⌘Pt ) = ⌘
P

t,i
almost surely for i = 1, . . . , H and t = 0, . . . , T � 1, the expression (3.C.2)

simplifies to  
(j,i)
t

= 1.

3.D Additional proofs

3.D.1 Proof of Proposition 3.3.1

Define H = {1, . . . , H}, then

E
P


dZ

dP

�
⌘

X

y2HT

Z

x2RT

f
Z

✏1:T ,h0:T�1
(x, y)

f
P

✏1:T ,h0:T�1
(x, y)

f
P

✏1:T ,h0:T�1
(x, y)dx =

X

y2HT

Z

x2RT

f
Z

✏1:T ,h0:T�1
(x, y)dx = 1.

Since f
Z

✏1:T ,h0:T�1
is non-negative this implies Z[A] 2 [0, 1] for all A 2 F . Clearly, Z is also sigma-

additive and therefore is a probability measure. Furthermore, since f
Z

✏1:T ,h0:T�1
is non-negative,

showing the equivalence of Z and P is directly obtained from the properties of expectation.
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Finally, for all Borel sets E ⇥ F ✓ R
T
⇥H

T ,

Z[(✏1:T , h0:T�1) 2 E ⇥ F ] =
X

y2F

Z
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f
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and thus f
Z

✏1:T ,h0:T�1
is the joint mixed PDF of ✏1:T , h0:T�1 under the probability measure Z.

3.D.2 Proof of Eq. (3.3.8)

The following property will be useful :

⇠s is Ft-measurable, 8s  t. (3.D.1)

Also, note that for all t � 1

E
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Following similar steps, one can show that
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where the SDF is
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The above expression can be simplified. First, since ⇠t+1 is Gt+1 _ �(ht)-measurable,
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Using the above expression in (3.D.6) yields
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(3.D.8)
One last step is required to further simplify this expression. Note that, see (3.D.11),

⇠t+1 =
�
Q

ht
(✏t+1)

�
P

ht
(✏t+1)

,
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Using the above expressions in (3.D.8) yields
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which concludes the proof.
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3.D.3 Proof of Eq. (3.3.5)

Using (3.2.5) and (3.3.1) in (3.3.4) yields
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The definitions (3.2.6) and (3.3.2) can then be used to simplify :
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This concludes the proof.

3.D.4 Proof of Proposition 3.C.1

The Lagrangian of the optimization problem (3.C.1) under constraints (3.4.19) is
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Dividing (3.D.13) by Pk,i, summing across all values of i = 1, . . . , H and using (3.D.15) yields
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Furthermore, using (3.D.16) in (3.D.13) leads to
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which concludes the proof of (3.C.2).

Finally, when �
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Conclusion

Cette thèse est constituée de trois projets de recherche portant sur la modélisation, la couverture
et la tarification des risques en finance et assurance.

Le chapitre 1 propose une classe générale d’opérateurs de distorsion compatibles avec la
valorisation par absence d’arbitrage. Cette méthodologie générale est utilisée dans l’article afin
de dériver plusieurs nouvelles distorsions qui améliorent et généralisent la transformation de
Wang. Une étude empirique visant à expliquer les primes de risque observées sur le marché des
obligations catastrophes est ensuite effectuée. En outre, une nouvelle classe générale et simple
d’opérateurs de distorsion basée sur le changement de mesure de Esscher pour les risques avec
une structure multi-états est proposée à cette fin. L’étude empirique révèle qu’un opérateur de
distorsion basé sur un modèle de mouvement Brownien avec sauts exponentiels est adéquat
pour expliquer les primes de risque d’obligations catastrophes, mais seulement si on permet à
la distorsion d’intégrer l’aversion au risque de catastrophes naturelles. Cela remet en question
l’hypothèse populaire dans la littérature théorique selon laquelle les catastrophes naturelles
sont traitées comme un facteur de risque idiosyncratique.

Le chapitre 2 développe une méthodologie efficace et souple pour couvrir le risque lié aux polices
de rentes variables en présence de risque de base. L’approche est basée sur une couverture
locale du risque, avec une saveur de couverture globale qui consiste à optimiser la mesure de
risque locale afin de minimiser les fonds propres requis. Cela permet notamment d’incorporer
la diversification temporelle du risque dans la conception de la stratégie de couverture, ce qui
permet à notre méthode de surpasser les benchmarks (e.g., couverture à variance minimale)
dans le cadre d’expériences de simulations. La sur-performance de notre méthode peut plus
précisément être expliquée par le fait que la minimisation locale du risque est sous-optimale en
présence du risque de base qui réduit substantiellement la capacité à éliminer le risque ; le coût
implicite engendré par la position courte dans un actif dont la valeur augmente sur un long
horizon est alors moins rentable en terme de réduction du risque, et de plus une telle approche
néglige la diversification temporelle comme source naturelle de réduction du risque.

Le chapitre 3 montre que l’approche habituelle pour construire la mesure neutre au risque
(i.e., changement du paramètre de dérive pour obtenir la propriété martingale) conduit à des
prix d’options avec dépendance au chemin lorsque appliquée en contexte de sous-jacent avec
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dynamique à changement de régime. La construction de plusieurs mesures neutres au risque
possédant des propriétés intuitives et supprimant la dépendance au chemin est illustrée. Les
généralisations obtenues permettent la tarification de l’aversion au risque de régime au moyen
de fonctions de conversion. Des procédures simples de tarification pour les titres contingents
sous ces nouvelles mesures neutres au risque, fondées soit sur la programmation dynamique,
soit sur des simulations Monte-Carlo, sont également fournies.
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