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A cautionary note concerning the use of
stabilized weights in marginal structural models
Denis Talbota,b, Juli Athertona, Amanda M. Rossic,d, Simon L. Baconc,d,
Geneviève Lefebvrea ∗

Marginal structural models (MSMs) are commonly used to estimate the causal effect of a time-varying treatment in
presence of time-dependent confounding. When fitting a MSM to data, the analyst must specify both the structural
model for the outcome and the treatment models for the inverse-probability-of-treatment weights. The use of
stabilized weights is recommended since they are generally less variable than the standard weights. In this paper,
we are concerned with the use of the common stabilized weights when the structural model is specified to only
consider partial treatment history, such as the current or most recent treatments. We present various examples of
settings where these stabilized weights yield biased inferences while the standard weights do not. These issues are
first investigated on the basis of simulated data and subsequently exemplified using data from the Honolulu Heart
Program. Unlike common stabilized weights, we find that basic stabilized weights offer some protection against
bias in structural models designed to estimate current or most recent treatment effects. Copyright © 2010 John
Wiley & Sons, Ltd.

Keywords: Time-dependent confounding, marginal structural models, inverse-probability-weighting,
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1. Introduction

Marginal structural models (MSMs) [1–4] are nowadays a common longitudinal data analytical approach for estimating
the effects of time-varying treatments in presence of time-dependent confounding [5–11]. When fitting a MSM to data,
an analyst faces two important decisions: 1) the specification of the structural model for the outcome, done in accordance
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with the causal contrast of interest; 2) the specification of the treatment models which are used to calculate the inverse-
probability-of-treatment received at each time point, i.e. the weights [5]. For the structural model, a single measure is
commonly used to summarize treatment history, such as the treatment received at the last time point, a cumulative measure
of the treatment or an indicator of “ever started treatment” [5, 12]. The covariates included in the treatment models are
typically the baseline covariates and the histories of time-varying covariates and prior treatments. Platt et al. [12] outline
strategies for marginal structural model specifications and introduce a quasi-likelihood information criterion to help with
the selection of the structural model on the basis of data.

Stabilized weights are recommended to be used in MSMs in place of the standard weights since they are generally
less variable than the latter [3]. The stabilized weights are similar to the standard weights but are commonly defined so
that the numerator is the marginal probability of observed treatment history predicted using prior treatments only while
a numerator equal to 1 is instead used for the standard weights [3–5]. The denominator is the same for both types of
weights. In MSMs, it has been shown that, when saturated structural models are specified, the treatment effect estimates
that result from the use of stabilized or standard weights are the same [4]. In correctly specified unsaturated structural
models however, the estimates differ but this difference is only due to sampling variability [4].

This note is concerned with the impact of using the common stabilized weights under different and frequently used
specifications of the structural model in ordinary MSMs. As such, we focus on the estimation of the causal effect of
a static treatment regime, that is, the estimation of the causal effect that a pre-specified treatment regime would have.
In contrast, inferences about a dynamic treatment would consist in estimating the causal effect of a treatment regime
where the treatment a subject receives at a given time point is decided according to a pre-specified rule, which might
involve time-varying covariates and prior treatments. It has already been recommended not to use stabilized weights for
estimating the causal effect of dynamic treatments [13]. In the sequel, we present various settings where the common
stabilized weights lead to biased structural model parameter estimates while the standard weights do not. This curious
(and perhaps unexpected) phenomenon is observed when the structural model targets the effect of the current treatment or
the most recent treatments. This result concerns both classical MSMs and MSMs with repeated measures, although MSMs
with repeated measures are arguably more susceptible to this type of structural model specification.

The paper is organized as follows. In Section 2, we introduce the notation and review the MSMs. Section 3 focuses
on a very simple example that captures the problem presented in this work. In Section 4, we present the description of a
simulation study devised to illustrate the potential problems of using the common stabilized weights in MSMs. The results
of the simulation study are presented in Section 5. In Section 6, we investigate these issues using data from the Honolulu
Heart Program. In particular, we find that the estimated effect of the current level of physical activity on blood pressure
differs depending on whether standard or stabilized weights are used. We conclude with a short discussion in Section 7.

2. Notation and MSM implementations

In the following, we distinguish between two types of implementations of MSMs: classical and repeated measures.

2.1. Classical marginal structural model

Based on Robins et al. [3], we briefly review the classical MSM. In the sequel, we use capital letters to represent random
variables and lower-case letters to represent possible realizations (values) of random variables.

Consider a follow-up study consisting of n sampled subjects from a population, along with covariates measured at
K + 1 time points (visits). Let Ak,i be subject i’s (i = 1, . . . , n) treatment level at the kth visit from the start of the follow-
up (k = 0, . . . ,K) and let Yi be his outcome measured at end of follow-up, i.e. Yi = YK+1,i. For the sake of simplicity,
we consider continuous outcome and binary treatment variables (with Ak,i = 1 if subject i receives treatment at time k
and Ak,i = 0 otherwise). For subject i, Lk,i consists of the outcome at time k, Yk,i, and the vector of all other measured
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risk factors for Yi at time k, Vk,i, i.e. Lk,i = (Vk,i, Yk,i). We suppose that Lk,i temporally precedes Ak,i for all i and k.
Let Āk,i = (A0,i, A1,i, ..., Ak,i) be subject i’s treatment history through time k and let Āi = ĀK,i. We define L̄k,i and L̄i

similarly. Finally, Yāk,i is subject i’s counterfactual outcome at visit k, that is the outcome that would have been observed
if, possibly contrary to the fact, subject i had received treatment regime ā instead of his own treatment regime āi. Note
that Yāk,i = Yk,i ∀ k if ā = āi. As in Hernán et al. [4], we assume that every subject’s data are independently drawn from
a common distribution; therefore we drop subscript i unless it is required for clarity.

The classical marginal structural model is defined as a model for the population’s mean of the counterfactual outcome
at visit K + 1 under treatment history ā:

E[Yā] = g(ā; γ), (1)

where g is a user defined function. Possible g functions are g(ā; γ) = γ0 + γ1aK + . . .+ γK+1a0, g(ā; γ) = γ0 + γ1aK ,
g(ā; γ) = γ0 + γ1cum(ā) where cum(ā) =

∑K
k=0 ak, or g(ā; γ) = γ0 + γ1I{cum(ā)≥1}. The parameters γ of model (1)

encode the causal effect of the treatment history on the last outcome. For example, when selecting g(ā; γ) = γ0 +

γ1cum(ā), it is hypothesized that the effect of treatment history on the mean outcome increases linearly as a function
of the cumulative treatment. Thus for two treatment regimes ā and ā′ being compared, γ1(cum(ā)− cum(ā′)) can be
interpreted as the mean difference in outcome Y , i.e. E[Yā − Yā′ ]. In particular, if ā = {1, 1, . . . , 1} and ā′ = {0, 0, . . . , 0}
- corresponding to the always and never treated regimes, respectively - then the expected difference in outcome is
γ1(K + 1). Similarly, if g(ā; γ) = γ0 + γ1aK is selected, then it is hypothesized that the effect of treatment history on
the mean outcome only depends on the last treatment. In this case, γ1 corresponds to the expected difference in outcome
when ā = {·, . . . , ·, 1} and ā′ = {·, . . . , ·, 0}, where symbol · is used to represent either of the two possible levels for
treatment. The issues we are concerned with in this paper stem from using structural model specifications such as this one.

The parameters γ of structural model (1) can be consistently estimated using a weighted linear regression model for
E[Y |Ā], where each subject is weighted by the inverse probability of his observed treatment history conditional on
covariates and prior treatments. Specifically, the standard weight for subject i is

wi =

{
K∏

k=0

1

P (Ak = ak,i|Āk−1 = āk−1,i, L̄k = l̄k,i)

}
, i = 1, . . . , n, (2)

where Āk−1 is ignored in the conditioning when k = 0. The standard weights w are often highly variable; therefore it
is usually advised to instead use stabilized weights sw, where

swi =

{
K∏

k=0

P (Ak = ak,i|Āk−1 = āk−1,i)

P (Ak = ak,i|Āk−1 = āk−1,i, L̄k = l̄k,i)

}
. (3)

In both (2) and (3) the L̄ covariates are selected to ensure that the sequential (conditional) randomized assumption holds
[2], that is

Yā ⊥⊥ Ak|Āk−1, L̄k ∀ ā and k, (4)

where ⊥⊥ symbolizes statistical independence. Perhaps underrealized is that conditioning on Āk−1 in (4) implies that,
in addition to L̄k, the previous treatment variables should also be regarded as potential confounding variables. This last
remark is crucial for understanding the possible introduction of bias when using stabilized weights sw in MSMs.
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2.2. Marginal structural model with repeated measures

Instead of modelling the mean counterfactual outcome at the end of follow-up, a MSM with repeated measures [4] aims
to model the mean counterfactual outcome at each time k + 1 (k = 0, . . . ,K) as a function of treatment history up to time
k, that is

E
[
Yā(k+1)

]
= g(āk; γ). (5)

Popular choices of g function for this type of MSM implementation are g(āk; γ) = γ0 + γ1ak + γ2k,
g(āk; γ) = γ0 + γ1ak + γ2ak−1 + γ3k, g(āk; γ) = γ0 + γ1cum(āk) + γ2k, where cum(āk) =

∑k
t=0 at or g(āk; γ) =

γ0 + γ1I{cum(āk)≥1} + γ2k. Model (5) is then fitted using a weighted linear generalized estimating equation (GEE)
regression for E[Yk+1|Āk], where person-visit (i, k + 1) is weighted by its standard or stabilized weight

wk,i =

{
k∏

t=0

1

P (At = at,i|Āt−1 = āt−1,i, L̄t = l̄t,i)

}
or swk,i =

{
k∏

t=0

P (At = at,i|Āt−1 = āt−1,i)

P (At = at,i|Āt−1 = āt−1,i, L̄t = l̄t,i)

}
, (6)

respectively. The choice of covariates L̄ to include in these weights must also be dictated by the sequential randomized
assumption [4, 14]:

Yā(k+1) ⊥⊥ At|Āt−1, L̄t ∀ ā and k ≥ t. (7)

3. A striking example

The issues raised in this paper are best first illustrated with the simple directed acyclic graph depicted in Figure 1 (DAG1).
In DAG1, Y1 depends on A0, A1 depends on A0 and Y2 depends on both A1 and Y1. Here L0 = ∅ and L1 = {Y1}: no L
covariates other than the outcome at time 1 are considered since they are irrelevant to illustrate our problem. Covariates
denoted by V are however later incorporated in our simulation scenarios presented in Section 4.1.

Figure 1. DAG1

A0

Y1

A1

Y2

Consider the implementation of a classical MSM based on data compatible with DAG1. While a first logical step
would be the specification of the structural model, we momentarily delay this step and examine the definition of weights
w and sw with regard to the sequential randomization assumption (4). Because of the presence of the open back-door
path A1 ← A0 → Y1 → Y2 (F) from A1 to Y2 in DAG1, it follows that Yā2 6⊥⊥ A1 and therefore the (unconditional)
randomization assumption (4) does not hold [15]. This path can be closed by A0, which leads to Yā2 ⊥⊥ A1|A0.
The sequential randomization assumption is achieved conditional on treatment history since for all ā and k = 0, 1,
Yā ≡ Yā2 ⊥⊥ Ak|Āk−1 (we already have Yā2 ⊥⊥ A0). In principle, a MSM can thus be validly implemented with the
following standard and stabilized weight definitions for subject i:

wi =
1

P (A0 = a0,i)
× 1

P (A1 = a1,i|A0 = a0,i)
, (8)

4 www.sim.org Copyright © 2010 John Wiley & Sons, Ltd. Statist. Med. 2010, 00 1–14

Prepared using simauth.cls



D. Talbot et al.

Statistics
in Medicine

and

swi =
P (A0 = a0,i)

P (A0 = a0,i)
× P (A1 = a1,i|A0 = a0,i)

P (A1 = a1,i|A0 = a0,i)
= 1. (9)

Note that the second denominators in (8) and (9) could have been set to P (A1 = a1,i|A0 = a0,i, Y1 = y1,i)

to follow the generic notation (2) and (3) for the specification of the weights. However DAG1 implies that
P (A1 = a1,i|A0 = a0,i, Y1 = y1,i) = P (A1 = a1,i|A0 = a0,i), and thus it suffices to condition on A0 only.

The simplification of the stabilized weight swi to the value 1 in (9) indicates that, in the setting represented by DAG1,
the implementation of a classical MSM with weights sw is equivalent to the implementation of an unweighted (crude)
MSM. This leads to biased or unbiased parameter estimators depending on the form of the structural model selected.

Suppose the structural model E[Yā] = γ0 + γ1a1 + γ2a0 is chosen, where parameters γ1 and γ2 encode the causal effect
of A1 on Y2 ≡ Y and of A0 on Y2 ≡ Y , respectively. Using stabilized weights sw with this structural model yields an
unbiased estimator for both γ1 and γ2. The parameter γ1 is of particular interest in this case since, recall, Yā2 6⊥⊥ A1 due to
the open back-door path (F). Although the confounding introduced by this back-door path is not handled by the weights
(because swi = 1 ∀ i), it is nonetheless accounted for by the inclusion of the treatment covariateA0 in the regression model
E[Y |Ā] = β0 + β1a1 + β2a0. This implies that the associational parameter β1 coincides with the structural parameter γ1,
that is β1 = γ1, as desired.

Suppose we now consider the structural model E[Yā] = γ0 + γ1a1 and its associated regression model E[Y |Ā] =

β0 + β1a1. Although this reduced structural model is misspecified since A0 has an effect on Yā2, it is much relevant
to be able to obtain unbiased estimation for the effect this structural model is capable of identifying, namely, the effect
of the most recent exposure effect (A1) on Yā2. If the stabilized weights sw are used, then β1 and γ1 do not coincide
anymore as the confounding is neither accounted for in the weights nor the regression model. With this structural model,
unbiased γ1 estimation can however be obtained by using the standard weights w since these weights do account for the
confounding caused by A0.

This example is simple and admittedly a bit artificial since a traditional regression-based approach could have correctly
identified the causal effect targeted by the structural model E[Yā] = γ0 + γ1a1 [5]. However, it unravels a potential
problem with the use of stabilized weights sw along with structural models that only include partial treatment history
(e.g., current treatment or current treatment with lag 1 treatment). Indeed, a consequence of such a stabilization of the
weights may be that the unconfounding achieved by the denominator is cancelled out (at least partially) by the numerator.
This phenomenon is empirically demonstrated in Section 5. Also seen in Section 5 is that similar problems occur when
using stabilized weights sw in MSMs with repeated measures.

4. Description of the simulation study

In this section, we present the four simulation scenarios investigated as well as the definitions of the standard and stabilized
weights used in the classical implementation of the MSMs (the weights for the repeated mesures implementation are
defined in a similar manner). We conclude the section with a description of the analyses we performed.
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4.1. Simulation scenarios

Scenario 1. Our first simulation scenario is compatible with DAG1 (recall Figure 1). The causal relationships between the
variables are as follows:

P (A0 = 1) = 0.5

Y1 = A0 + εY1

P (A1 = 1) = expit(A0)

Y2 = A1 + Y1 + εY2 ,

where expit(z) = ez/(ez + 1) and εY1
and εY2

are independent N(0, 1) random variables. The standard and stabilized
weights used in the classical MSM implementation are defined in (8) and (9).
Scenario 2. The second simulation scenario is only slightly more complex than the first scenario (see Figure 2):

P (A0 = 1) = 0.5

Y1 = A0 + εY1

P (A1 = 1) = expit(0.5A0 + 0.5Y1)

Y2 = A1 + Y1 + εY2
,

where εY1 and εY2 are independent N(0, 1) random variables. In this scenario, the presence of the causal link between Y1

andA1 makes the adjustment for Y1 in the denominator of the weights necessary to achieve (4); the standard and stabilized
weights are thus defined as

wi =
1

P (A0 = a0,i)
× 1

P (A1 = a1,i|A0 = a0,i, Y1 = y1,i)
,

and

swi =
P (A0 = a0,i)

P (A0 = a0,i)
× P (A1 = a1,i|A0 = a0,i)

P (A1 = a1,i|A0 = a0,i, Y1 = y1,i)
.

Figure 2

A0

Y1

A1

Y2

Scenario 3. The third scenario is a typical MSM representation and includes a time-dependent confounder V that is
affected by previous treatment (see Figure 3):

V0 = εV0

P (A0 = 1) = expit(0.5V0)

Y1 = A0 + V0 + εY1

V1 = 0.5A0 + εV1

P (A1 = 1) = expit(0.5A0 + 0.5Y1 + 0.5V1)

Y2 = A1 + 0.5Y1 + V1 + εY2
,
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where εV0 , εY1 , εV1 , and εY2 are independent N(0, 1) random variables. For this scenario, we adopt the naı̈ve strategy of
including all possible covariates for the specification of the weights, that is

wi =
1

P (A0 = a0,i|V0 = v0,i)
× 1

P (A1 = a1,i|A0 = a0,i, Y1 = y1,i, V1 = v1,i, V0 = v0,i)
,

and

swi =
P (A0 = a0,i)

P (A0 = a0,i|V0 = v0,i)
× P (A1 = a1,i|A0 = a0,i)

P (A1 = a1,i|A0 = a0,i, Y1 = y1,i, V1 = v1,i, V0 = v0,i)
.

Figure 3

V0

A0

Y1

A1

V1

Y2

Scenario 4. The fourth scenario is similar to the previous scenario but generates data for an additional follow-up visit (see
Figure 4):

V0 = εV0

P (A0 = 1) = expit(0.5V0)

Y1 = A0 + V0 + εY1

V1 = 0.25A0 + εV1

P (A1 = 1) = expit(0.5A0 + 0.5Y1 + 0.5V1)

Y2 = A1 + 0.25A0 + 0.5Y1 + V1 + εY2

V2 = 0.25A1 + εV2

P (A2 = 1) = expit(0.5A1 + 0.3A0 + 0.5Y2 + 0.5V2)

Y3 = A2 + 0.25A1 + 0.5Y2 + 0.5Y1 + V2 + εY3
,

where εV0
, εY1

, εV1
, εY2

, εV2
and εY3

are independent N(0, 1) random variables. For this scenario, we also include all
possible covariates for the specification of the weights, that is

wi =
1

P (A0 = a0,i|V0 = v0,i)
× 1

P (A1 = a1,i|A0 = a0,i, Y1 = y1,i, V1 = v1,i, V0 = v0,i)

× 1

P (A2 = a2,i|A1 = a1,i, A0 = a0,i, Y2 = y2,i, Y1 = y1,i, V2 = v2,i, V1 = v1,i, V0 = v0,i)
,

and

swi =
P (A0 = a0,i)

P (A0 = a0,i|V0 = v0,i)
× P (A1 = a1,i|A0 = a0,i)

P (A1 = a1,i|A0 = a0,i, Y1 = y1,i, V1 = v1,i, V0 = v0,i)

× P (A2 = a2,i|A1 = a1,i, A0 = a0,i)

P (A2 = a2,i|A1 = a1,i, A0 = a0,i, Y2 = y2,i, Y1 = y1,i, V2 = v2,i, V1 = v1,i, V0 = v0,i)
.
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Figure 4
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V1

Y2
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4.2. Description of analyses

We generated 10 000 datasets of size n = 1000 for each of the four scenarios described in Section 4.1. A series of MSM
analyses was performed on each dataset. The set of structural models we considered include a variety of models that have
been seen in recent classical and repeated measures MSM implementations [6–11]. For the classical version of the MSMs
(cMSM), we considered the following three structural models:

• Full: E[Yā] = γ0 + γ1aK + γ2aK−1 + . . .+ γK+1a0;
• Current: E[Yā] = γ0 + γ1aK ;
• Cumulative: E[Yā] = γ0 + γ1cum(ā).

We also considered three structural models for the repeated measures implementation of the MSMs (rmMSM):

• Current: E[Yā(k+1)] = γ0 + γ1ak + γ2k;
• Current+Lag1: E[Yā(k+1)] = γ0 + γ1ak + γ2ak−1 + γ3k;
• Cumulative: E[Yā(k+1)] = γ0 + γ1cum(āk) + γ2k.

For Scenarios 1-3, the Full, Cumulative (cMSM and rmMSM) and Current+Lag1 structural models are correctly
specified. For Scenario 4, only the Full and Cumulative (cMSM and rmMSM) structural models are correctly specified. For
every scenario and structural model (both cMSM and rmMSM implementations), the data generating equations presented
in Section 4.1 imply that γ1 = 1. Recall however that γ1 has different interpretations across structural models (see Section
2.1).

We obtained the unweighted results (which is equivalent to setting weights equal to 1) as well as the results using the
standard and stabilized weights w and sw for each scenario, implementation and structural model. Specifically, for every
combination of implementation/structural model/weight, we estimated the mean and standard deviation of γ̂1 based on the
10 000 datasets generated from each scenario. As recommended, we used an independence working correlation structure
for the estimation of the GEEs [16, 17]. The analyses were performed using the function geeglm from the R [18] package
geepack [19–21].

To comply with geeglm’s requirements, for every scenario we fitted the Current+Lag1 structural model by deleting all
the data pertaining to the first visit since the Lag1 treatment (i.e., ak−1) is structurally missing when k = 0 [10, 11]. As a
by-product of this deletion, the rmMSM implementation with the Current+Lag1 structural model ends up being equivalent
to the cMSM implementation with the Full structural model in the simpler scenarios (Scenarios 1-3).

8 www.sim.org Copyright © 2010 John Wiley & Sons, Ltd. Statist. Med. 2010, 00 1–14
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5. Simulation results

The results of the simulation study are presented in Table 1.

Table 1. Results for Scenarios 1-4 by structural model and MSM implementation. The mean and the standard deviation (in
parenthesis) of the estimates of γ1 for each weight definition are provided (calculated from 10 000 datasets of size 1000).

Classical MSM (cMSM) Repeated measures MSM (rmMSM)
Weight Full Current Cumulative Current Current+Lag1 Cumulative
(by scenario): (γ1 = 1) (γ1 = 1) (γ1 = 1) (γ1 = 1) (γ1 = 1) (γ1 = 1)
S1 : 1 0.999 (0.094) 1.243 (0.096) 1.000 (0.057) 1.118 (0.061) 0.999 (0.094) 1.000 (0.053)
S1 : w 0.999 (0.095) 0.999 (0.095) 1.000 (0.058) 0.999 (0.066) 0.999 (0.095) 1.000 (0.054)
S1 : sw 0.999 (0.094) 1.243 (0.096) 1.000 (0.057) 1.118 (0.061) 0.999 (0.094) 1.000 (0.053)
S2 : 1 1.474 (0.092) 1.681 (0.094) 1.179 (0.057) 1.332 (0.061) 1.474 (0.092) 1.126 (0.053)
S2 : w 1.001 (0.073) 1.000 (0.074) 1.000 (0.054) 1.000 (0.053) 1.001 (0.073) 1.000 (0.051)
S2 : sw 1.001 (0.071) 1.232 (0.078) 1.000 (0.054) 1.113 (0.056) 1.001 (0.071) 1.000 (0.051)
S3 : 1 1.861 (0.103) 2.168 (0.103) 1.413 (0.061) 1.810 (0.074) 1.861 (0.103) 1.430 (0.056)
S3 : w 1.003 (0.098) 1.002 (0.101) 1.001 (0.072) 1.002 (0.071) 1.003 (0.098) 1.001 (0.062)
S3 : sw 1.003 (0.095) 1.314 (0.102) 1.001 (0.071) 1.153 (0.064) 1.003 (0.095) 1.001 (0.058)
S4 : 1 2.112 (0.130) 2.900 (0.136) 1.527 (0.054) 2.133 (0.075) 2.061 (0.082) 1.486 (0.048)
S4 : w 1.019 (0.185) 1.011 (0.195) 1.006 (0.110) 1.006 (0.116) 1.011 (0.138) 1.004 (0.085)
S4 : sw 1.013 (0.175) 1.612 (0.193) 1.004 (0.091) 1.282 (0.079) 1.084 (0.097) 1.002 (0.065)

LEGEND. “1”: unweighted; w: standard weights; sw: stabilized weights.

We first discuss the results for the classical MSM implementation. As expected, the use of either weights w or sw with
the full structural model (cMSM Full) yields unbiased estimates for the true current effect of the treatment on the outcome
(γ1 = 1) in every scenario. Note that the slight bias of about 1% seen under the more complex Scenario 4 disappears
when samples of size 5000 are considered (results not shown). The results for the cumulative structural model (cMSM
Cumulative) are also unbiased under both types of weights. In Scenarios 1-4, when only the current treatment covariate
is included in the structural model (cMSM Current), the standard weights w yield unbiased γ1 estimates whereas the
stabilized weights sw do not.

Now examining the results for the repeated measures MSM implementation, we observe that, as with the classical MSM
implementation, the cumulative structural model (rmMSM Cumulative) yields unbiased γ1 estimates under both weights w
and sw. Moreover, the repeated measures MSM with only the current treatment covariate in the model (rmMSM Current)
similarly yields biased estimates of γ1 when using stabilized weights sw. The repeated measures structural model with
current and previous treatments (rmMSM Current + Lag1) produces unbiased results for weights w and sw in Scenarios 1-
3 but biased results for weights sw in Scenario 4. Unlike results for cMSM Full, this bias does not vanish as sample size is
increased (the bias remains at 8% when n = 5000). This last set of results does not come as a surprise given that Scenario 4
involves three post-baseline visits (K + 1 = 3) whereas only two visits (K + 1 = 2) are considered in Scenarios 1-3. More
precisely, recall that the Current + Lag1 structural model is not misspecified in Scenarios 1-3, as opposed to Scenario 4.

The biased results for weights sw under implementation/structural model cMSM Current, rmMSM Current and rmMSM
Current + Lag1 can be explained using arguments similar to those in Section 3. First, conditioning on the past treatment(s)
in the numerators of the stabilized weights sw neutralizes some deconfounding acting through the denominators of the
weights, and, second, the remaining confounding is not handled by the structural model.

It is also worthwhile to mention that, while our analyses focus on parameter γ1 for simplicity, other parameters of
the structural models considered are prone to be estimated with bias when using stabilized weights sw. For instance, in
Scenario 4, γ̂2 is also biased in the implementation/structural model rmMSM Current + Lag1 when using weights sw.
Indeed, for this scenario, the mean and standard deviation (in parenthesis) of the 10 000 estimates of γ2 = 1 under the
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three different weighting strategies are 1) unweighted: 1.380 (0.078); 2) standard weights w: 1.007 (0.155); 3) stabilized
weights sw: 1.118 (0.107). The same reasoning as the one put forward for γ1 explains the bias found when using weights
sw to estimate γ2.

To conclude, we observed, from our simulations, that when the structural models were correctly specified, unbiased
estimators were obtained when using either stabilized weights sw or standard weights w. In this case, and as expected, a
reduction in variance was also seen for the structural parameter estimators resulting from the use of weights sw, as opposed
to weights w. However, when the structural models were misspecified, only standard weights w led to unbiased estimation
of the structural parameters. Given that selecting an appropriate structural model is a challenging issue, robustness of
the weights to misspecification of this model is believed to be desirable. We feel this is particularly relevant for repeated
measures implementations of MSMs, for which simplified structural model specifications could also be preferred to better
take advantage of available data (e.g., see [10]). For instance, in our results, remark there is a decrease in variability for
the current treatment effect estimator (γ̂1) in the rmMSM Current implementation/structural model as opposed to the same
estimator in the rmMSM Current + Lag1 implementation/structural model (as a result, in all scenarios, from the use of
many more data points for the estimation of this effect in the former structural model).

In the next section, we investigate if other types of stabilized weights would consistently provide unbiased parameter
estimates under differentially specified structural models.

5.1. Additional analyses

Although weights sw follow the typical definition for stabilized weights found in the MSM literature, other stabilization
strategies could be employed. For a classical MSM for instance, basic stabilized weights which avoid conditioning on the
past treatments in the numerators are

swbi =

{
K∏

k=0

P (Ak = ak,i)

P (Ak = ak,i|Āk−1 = āk−1,i, L̄k = l̄k,i)

}
. (10)

For both the classical and repeated measures implementations, we therefore also fitted the MSMs with weights swb to
verify the impact of such a stabilization strategy on the distribution of γ̂1 (see Table 2). From these results, we observe
that all estimates are unbiased and that notable variance reduction can be obtained by using the basic stabilized weights
swb as opposed to the standard weights w (see the results for the repeated measures MSM implementation in particular).

Table 2. Results from Scenarios 1-4 by structural model and MSM implementation using basic stabilized weights swb.
The mean and the standard deviation (in parenthesis) of the estimates of γ1 are provided (calculated from 10 000 datasets

of size 1000).

Classical MSM (cMSM) Repeated measures MSM (rmMSM)
Scenario Full Current Cumulative Current Current+Lag1 Cumulative

(γ1 = 1) (γ1 = 1) (γ1 = 1) (γ1 = 1) (γ1 = 1) (γ1 = 1)
S1 0.999 (0.094) 0.999 (0.094) 1.000 (0.058) 1.000 (0.056) 0.999 (0.094) 1.000 (0.053)
S2 1.001 (0.073) 1.000 (0.074) 1.000 (0.054) 1.000 (0.048) 1.001 (0.073) 1.000 (0.051)
S3 1.003 (0.098) 1.002 (0.101) 1.001 (0.071) 1.001 (0.060) 1.003 (0.098) 1.001 (0.057)
S4 1.012 (0.179) 1.008 (0.189) 1.003 (0.092) 1.002 (0.071) 1.006 (0.103) 1.001 (0.062)

10 www.sim.org Copyright © 2010 John Wiley & Sons, Ltd. Statist. Med. 2010, 00 1–14

Prepared using simauth.cls



D. Talbot et al.

Statistics
in Medicine

6. The Honolulu Heart Program results

In this section, data from the Honolulu Heart Program (HHP) are used to illustrate how the choice of weights can influence
the exposure effect estimates in non-simulated MSM analyses.

The HHP is a study of Japanese-American men living in Oahu, Hawaii, which examined 8006 participants. Participants
were born between 1900 and 1919 (aged 45-68 years old at study entry) and were recruited from the selective service
registry. They were evaluated at multiple time points beginning in 1965 and followed until 1994 for deaths and morbid
events. Information regarding physical activity participation was collected by questionnaire at Exam 1 (1965-68), Exam 2
(1968-1971) and Exam 4 (1991-1993). Blood pressure (BP) was measured manually (in mmHg) by a trained professional
during each exam. More details about HHP can be found elsewhere [22].

Repeated measures MSMs were used to estimate the causal effect of physical activity on systolic blood pressure (SBP)
and diastolic blood pressure (DBP). Since physical activity was not measured at Exam 3, and since there was a long delay
between Exam 2 and Exam 4, we chose to only use data from the first two exams. Our belief is that the effect of current
and prior physical activity history on current BP is primarily a function of current physical activity. Our structural model
for each type of BP thus has the following form:

E[Yāk] = γ0 + γ1ak + γ2k, (11)

where unlike equation (5), which has a delayed treatment effect, the treatment effect in (11) is immediate. In our structural
models, Yāk is the counterfactual outcome (either SBP or DBP) at Exam k (k = 1, 2) and ak is the physical activity level
(active or inactive) reported at Exam k.

For both MSM analyses, the covariates used to calculate the visit specific weights at the first time point (Exam 1) were:
age (in years) at Exam 1 and employment at Exam 1 (employed or unemployed). For the second time point (Exam 2), the
weights were calculated using: employment at Exam 1, physical activity level at Exam 1, hypertension medication usage
at Exam 1 (yes or no), BMI at Exam 1 (in kg/m2), age at Exam 2 and employment at Exam 2. Note that hypertension
medication usage at Exam 1 and BMI at Exam 1 were not considered in the calculation of the weights at the first time
point because these variables are believed to be effects of the physical activity level at Exam 1. Subjects with missing data
at a given time point were removed from the analyses (about 1% for Exam 1 and about 3% for Exam 2).

We estimated the effect of current level of physical activity on current SBP and DBP using repeated measures MSMs
and the same four weights that were investigated in the simulation studies (“1”, w, sw and swb). For the estimation of
the GEEs, a robust variance estimator was used along with an independence working correlation structure. The results are
summarized in Table 3.

Table 3. Estimated effect of current physical activity level on current systolic (SBP) and diastolic (DBP) blood pressure.

Weights Estimate for SBP (95% CI) Estimate for DBP (95% CI)
1 -2.29 (-3.35, -1.22) -0.82 (-1.40, -0.24)
w -1.85 (-2.94, -0.75) -0.43 (-1.04, 0.17)
sw -1.94 (-3.59, -0.29) -1.29 (-2.18, -0.39)
swb -1.56 (-2.56, -0.55) -0.29 (-0.84, 0.26)

LEGEND. “1”: unweighted; w: standard weights; sw: (common) stabilized weights; swb: basic stabilized weights.

Upon the examination of Table 3, we remark that the estimates of the effect of current physical activity on current SBP
are relatively robust to the choice of weights. However, the choice of weights has a notable impact on the estimates of
the effect of physical activity on DBP. In this case, the estimates obtained using an unweighted MSM or a MSM with
common stabilized weights sw exhibit a significant decrease of DBP with physical activity at level α = 0.05, whereas a
non signifiant decrease is obtained from the MSMs with standard weights w and basic stabilized weights swb. These last
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results are in accordance with the rmMSM Current results from the simulation study where the unweighted and common
stabilized weights sw estimates departed from those obtained with standard weights w and basic stabilized weights swb.
Because there is believed to be time-dependent confounding, the unweighted repeated measures MSM is considered to be
inappropriate for estimating the causal effect of current physical activity on current DBP. We also note that the confidence
intervals obtained with the basic stabilized weights swb are slightly narrower than those obtained with the standard weights
w.

7. Discussion

Although it is widely known that the weighting scheme affects the variance of MSM estimators, it is less well known that
it can also affect their bias. Using a series of simulated examples, we showed that the utilization of the most common
stabilized weights (weights sw) may lead to biased parameter estimates when structural models feature only partial
information on treatment history, such as the current or most recent treatments. The diffusion of this result is critical since
such structural model specifications are often seen in repeated measures MSMs, a type of MSMs which is increasingly
used to perform causal inferences [6–11].

The phenomenon documented in this paper adds to the number of subtle issues arising in the implementation of MSMs
[5]. Indeed, our results suggest that the choice of weights needs to be done according to the structural model that is
specified. Particularly, we advise analysts to avoid using the common stabilized weights when the analyses target the
estimation of the current or most recent treatment causal effects. In this context, the analysts could adopt the basic
stabilized weights swb put forward herein, simple weights which have been found to yield unbiased results under all
scenarios and structural models investigated.

12 www.sim.org Copyright © 2010 John Wiley & Sons, Ltd. Statist. Med. 2010, 00 1–14
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