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Abstract 

The use of binary zeotropic mixtures as working fluids applied to Organic Rankine Cycles 

(ORCs) is investigated in this paper. In total, six (6) hydrocarbons and (2) 

hydrofluorocarbons are considered, leading to twenty-eight (28) possible binary 

combinations.  The mixtures were tested with a basic Rankine cycle while using the heat 

source temperature as independent variable, which assumed six different values, ranging 

from 80°C to 180°C, in steps of 20°C.  The simulations aimed to identify the ideal mixtures 

that maximized the net power and exergetic efficiency, and minimized the heat exchanger’s 

global conductance for a given temperature of the heat source. The optimization process 

relied on a genetic algorithm and the selection of the best mixtures, on a non-dominated 

sorting method (NDS), which returned Pareto fronts gathering the best solutions.  While 

no one specific ideal mixture was identified, the results showed that the range of the so-

called ideal mixtures narrows as the heat source temperature increases, with mixtures 

including fluids like R245fa and pentane being good options, whereas at low temperature, 

a larger number of fluid mixtures perform well.  Finally, a scale analysis is proposed and 

shows that maximal net power varies linearly with a Number of Transfer Units (NTU) 

factor while its slope depends on the heat source temperature.  The latter analysis is 

compared with the results obtained with the Pareto front and NDS, showing that both sets 

of results agree well while correlated by a single constant for the entire temperature range 

covered in the present study. 
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Nomenclature 

İ Flow rate of exergy destruction, kW 

h Enthalpy, kJ/kg 

hfg Latent heat of evaporation, kJ/kg 

ṁ mass flow, kg/s 

P Pressure, kPa 

s Entropy, kJ/kg.K 

T Temperature, °C 

(UA) Global conductance, kW/K 

x Quality 

Greek Symbols 

η Efficiency  

Δ Difference 

 Mass fraction 

Subscripts 

0 Dead state 

C Cold 

Co Condenser 

Crit Critical 

Eva Evaporator 

Exe Exergy 

G Generator 

hs Heat source 
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H Hot 

is Isentropic 

L Low 

mix Mixture 

M Mechanic 

P Pump 

cs Cold source 

T Turbine 

wf Working fluid 

Acronyms 

GA Genetic Algorithm 

GWP Global Warming Potential 

HFC Hydrofluorocarbon 

HC Hydrocarbon 

NDS Non-Dominated-Solutions 

NTU Number of transfer units 

ODP Ozone Depletion Potential 
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1. Introduction 

Modulability, lower costs and higher efficiency are some of the advantages that Organic 

Rankine Cycles (ORC) offer while producing power from medium and low temperature 

heat sources [1]. Nevertheless, current heat-to-electricity conversion efficiency is still 

relatively low with such cycles, i.e. around 10% [2]. Recent research has focused on 

improving the performance of ORCs through the study and optimization of ORC 

configurations, expansion devices and suitable working fluids, among others [3].  

For instance, the optimal working fluid highly depends not only on the conditions 

for which the cycle is designed (e.g., temperatures of heat source and of heat sink), but also 

on the criteria that are used to evaluate the cycle’s performance (e.g., net power output, 

exergy efficiency, equipment size, overall cost, environmental footprint, etc.).  In this 

regard, the working fluid choice is one of the most critical design parameters, and 

identifying the “best” fluid is far from trivial.  

In the literature, several studies have aimed at identifying suitable working fluids 

for ORC applications. Recently, Habibzadeh and Rashidi investigated 13 different working 

fluids in ORCs, and found that R141b, R123 and R717 were the best isentropic, dry and 

wet working fluids respectively [4]. Chagnon-Lessard et al. determined the best working 

fluid in ORCs among a list of 36 as a function of the heat source and condenser’s 

temperatures while considering a single objective function, namely the specific power 

output, and only pure fluids were studied [5]. Optimal selection of working fluid from a 

list of 26 fluids was also proposed in Ref. [6]. It was found that the optimal working fluids 

(i.e. the ones leading to the maximal power output) typically had a critical temperature 

~30-50 K above the heat source temperature.  

Zeotropic mixtures have been receiving more and more attention over the last years 

as potential working fluids for ORC [7–12]. Indeed, in some applications, mixtures can be 

more suitable than pure working fluids because they allow a better temperature matching 

during the heat transfer processes, which decreases the irreversibilities and increases the 

system’s efficiency and net power [13]. This is mainly due to the phase transition of 

mixtures, which is isobaric but not isothermal [7]. 

Chys et al. evaluated the heat recovery potential of 12 pure organic fluids as well 

as their binary and ternary mixtures considering heat source temperatures of 150°C and 
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250°C [9]. The authors determined the optimal concentration in order to produce the 

maximum power output. The results showed that zeotropic mixtures had a positive effect 

on the system’s performance and electric energy production, especially with the 150°C 

heat source. However, the inclusion of a third component in the mix only had a marginal 

impact on the cycle performance. A comparison between a few mixtures and pure fluids 

was also performed in Ref. [14]. First law and second law efficiencies were studied. Better 

thermal performance was achieved when the temperature difference of the cooling water 

was near the temperature glide of the mixture in the condenser. Moreover, Braimakis et al. 

found that the substitution of pure fluids by hydrocarbons binary mixtures has the potential 

to increase the cycle exergy efficiency for both subcritical and transcritical conditions with 

heat source temperatures between 150°C and 300°C [15]. 

One of the advantages that fluid mixtures offer is the possibility to finely tune the 

fluid composition to the context for which the ORC is being designed. The idea of dynamic 

ORCs in which the fluid composition could change in time depending on the operating 

conditions was proposed in Ref. [16]. A systematic approach was also developed in Ref. 

[12] for a fast evaluation of large sets of fluids and mixtures. The authors found that for the 

temperature level considered in their study (138°C), a mixture of R365mfc/R1234yf led to 

10% more power and similar efficiency without wet expansion in the turbine when 

compared with the best pure fluid (R1234ze) with wet expansion.  

The potential of zeotropic blends has also been addressed through multi-objective 

studies. In Ref. [17], ten defined zeotropic mixtures and R245fa as a pure working fluid 

were evaluated for three ORC configurations using geothermal water as the heat source. 

The net power output and TSP (turbine size parameter) were the two objective functions.  

The results showed that the use of zeotropic mixtures leads to more power generation in 

all configurations and lower values of TSP as well. The fluid composition was not 

optimized explicitly in that work. Feng et al. performed a multi-objective optimization of 

ORCs based on exergy efficiency and levelized energy cost [18]. Pure fluids and mixtures 

were compared as potential working fluids. Although only one type of mixtures was 

considered, it was found that mixtures typically had better exergy efficiency but worse 

levelized energy cost compared to pure fluids. Additionally, a multi-objective cost-power 

optimization for low temperature heat sources was done in Ref. [19]. The results indicated 
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that working fluid mixtures show a thermodynamic improvement over the pure-fluids, but 

are also associated with higher costs. 

Despite extensive research efforts over the last years to optimize ORC designs, and 

in particular to select optimal working fluids, there is still a lack of general design tools 

and guidelines for working fluid selection, in particular for fluid mixtures.  Therefore, the 

objective of this article is to find suitable working fluid mixtures for typical heat source 

levels founded in ORC applications, considering three objective functions at the same time 

(multi-objective optimization). Two objectives are related to the system performance, i.e., 

net power output ẆNet and exergy efficiency ηExe, and the third objective function is the 

global conductance (UA)Total as an indication of the size of the system [20, 21]. Different 

heat source temperature levels are investigated for a series of twenty-eight (28) working 

fluid binary mixtures, involving HCs and HFCs. The paper is divided as follows: Section 

2 describes the thermodynamic model of the power cycle and the working fluids studied in 

this work. The multi-objective optimization problem and the approach used to solve it are 

presented in Section 3. The results and discussion follow in Section 4 while a scale analysis 

is proposed in Section 5.  

 

2. Methodology 

2.1 Heat source 

Hot combustion gases are among the most common waste heat source in industrial 

installations. However, when these are used directly in heat recovery applications, potential 

corrosion problems can limit the minimum heat exchanger output temperature. 

Furthermore, recovering heat from gases requires large heat transfer areas because of the 

limited heat transfer coefficient of gases, which dominates the global heat transfer 

coefficient. In the present work, the heat source fluid was thus considered to be pressurized 

water. This choice eliminates the above-mentioned issues. Also, it applies to different 

power plants, such as those relying on geothermal heat. The inlet heat source pressure was 

assumed to be 1000 kPa in such a way that the heat source temperature could vary from 

80°C to 180°C. In this work, considering increments of 20°C, a total of six heat source 

temperatures were analyzed. The other characteristics of the heat source are presented in 

Table 1. Note that a mass flow rate of 1 kg/s was used since the power output, working 
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fluid mass flow rate, etc., were expressed per unit of the heat source fluid flow rate. In other 

words, the power output reported is actually the specific power. 

Table 1. Characteristics of heat source in this work. 

Variable Symbol Value or Range 

Heat source mass flow ṁhs 1 kg s-1 

Hot fluid inlet temperature Ths,in 80 – 180 °C 

Heat source pressure  Phs,in 1000 kPa 

 

2.2 Working fluids 

Thanks to the wide range of organic fluids, ORCs can be designed for different heat source 

temperatures. On the other hand, having a wide range of fluid options to choose from 

complicates the optimization process [13]. In the present study, the list of potential working 

fluids was limited to hydrocarbons (HCs) and hydrofluorocarbons (HFCs). Both families 

of fluids have pros and cons. HCs are easily available at relatively low cost and are 

recognized as good working fluid candidates for heat recovery applications and geothermal 

power plants [13]. They are less harmful to the environment than other fluids (i.e., low 

GWP values and ODP=0). On the other hand, HCs are flammable, which can raise security 

concerns. As for HFCs, they are adequate for low-temperature heat sources [5, 22], but in 

general, they possess a relatively high GWP value (even though their ODP is close to 0). 

In this context, zeotropic binary mixtures of these fluids can be used in order to take 

advantage of the thermodynamic properties of both HCs and HFCs and, at the same time, 

limit the flammability and GWP of the working fluid. Based on the best options frequently 

reported in literature [15, 22–24], 6 HCs and 2 HFCs have been considered in the present 

work and are presented in Table 2. These fluids constitute the components of the binary 

mixtures that will be studied. All possible binary combinations of these fluids were 

analyzed, which constituted 28 possible mixtures. Mixing a wet and a dry fluid together 

can yield either a dry or a wet mixture, depending on the proportions of each component 

in the mixture. There are 12 of such mixtures among the 28 possible mentioned above. To 

facilitate the numerical implementation of the optimization procedure (described below in 

Section 3), each of these 12 mixtures was actually treated in the optimization process as 

two separate mixtures, i.e. one dry and one wet, each with its range of possible 
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compositions. Therefore, in the end, a series of 40 mixtures was simulated. Note that fluid 

properties were evaluated with REFPROP 9.1 [25]. 

Table 2. Working fluid components considered in this study. 

Fluid TCrit [°C] PCrit [kPa] Dry/Wet  Ref.  

Pentane 196.6 3370 Dry [15, 22, 24]  

Isopentane 187.2 3380 Dry [22, 23]  

Neopentane 160.6 3196 Dry [22]  

R245fa 154 3650 Dry [15, 22, 24]  

Butane 152 3796 Dry [15, 22– 24]  

Isobutane 134.7 3630 Dry [22, 24]  

R134a 119 4640 Wet [22, 24]  

Propane 96.7 4250 Wet [15, 22, 24]  

 

2.3 ORC model 

An ORC model was developed in Matlab®. The cycle is shown in Fig. 1 with its T-s 

diagram. Only subcritical cycles were evaluated in the present work and with both dry and 

wet mixtures. Four basic elements constitute the ORC. In the evaporator, the working fluid 

passes from state 1 to state 2 by recovering heat from the hot stream. The hot stream enters 

the evaporator at a temperature Ths,in, which is assumed to be known. The working fluid 

enters the evaporator at a pressure lower than its critical pressure since only subcritical 

cycles were analyzed. Next, the working fluid expands through the turbine to produce 

power from state 2 to 3.  The condenser cools down the working fluid to state 4 (saturated 

liquid at the low pressure PL). A cold stream is used in order to do that, with an inlet 

temperature Tcs,in at the condenser. Finally, a pump increases the pressure and brings back 

the working fluid to state 1. The following paragraphs explain under which assumptions 

each possible case was modeled.  

It was supposed that the maximum allowable turbine inlet pressure was 90% of the 

mixture critical pressure. For dry mixtures, the turbine inlet temperature was the dew 

temperature for the corresponding evaporation pressure. However, wet mixtures were 

superheated until they reached a temperature 10°C below that of the heat source. The 

previous constraints were used to avoid numerical difficulties in the evaluation of 

thermophysical properties around the critical point, which can become quite problematic 
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for mixtures, since property database programs cannot provide accurate estimates of 

properties in the vicinity of the critical point [26, 27]. Superheating in the subcritical cycles 

was not considered for dry fluids because it is known in that case to only increase the 

system efficiency marginally, whereas the heat load to the condenser can increase due to 

the superheating that this type of fluid exhibits during expansion in the turbine [24]. 

Finally, the temperature difference of 10°C in the other conditions is used to ensure a 

proper heat transfer between the heat source and mixture working fluids. 

Every process in the cycle is considered to be adiabatic and steady-state. Pressure 

drops were also neglected. Finally, a temperature rise of 7°C was fixed in the simulation 

for the cold fluid (sink) in order to avoid too high a temperature that could produce damage 

or thermal pollution. 

The main equations employed in the thermodynamic model are presented below. 

The power invested in the pump is 

,    (1) 

with the enthalpy at state “1” given as 
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where h1,is is isentropic enthalpy at the pump outlet. 

The turbine delivered power is  
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where h3,is is the isentropic enthalpy at the turbine’s outlet. 

The heat added to the working fluid at the evaporator is  

.    (5) 

The heat disposed at the condenser is  

.    (6) 

It is important to note that the heat exchangers and turbine were actually discretized as 

explained in Section 2.4. 
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The exergy destructed at the evaporator, turbine, condenser, and pump, 

respectively, are 

,    (7) 

,      (8) 

,    (9) 

.     (10) 

with T0, which is 25 °C, being referred to as dead-state temperature. 

The total exergy destructed within the cycle can be defined as 

    (11) 

Finally, the sink and heat source exergy flow (i.e.,  and ) are  

    (12) 

    (13) 

Table 3 shows values used in the ORC modeling. It is important to emphasize that 

power cycles are notoriously influenced by the temperature limits between which they 

operate, i.e. heat source and cold sink temperatures. A single cold sink temperature 

representative of the ambient was used in the simulations, but as mentioned above different 

heat source temperatures were used in the optimization. The temperature of all other 

thermodynamic states of the power cycles are optimized as will be described below. 

 

Table 3. Parameters and values assumed for the ORC modeling. 

Parameter description Value 

Cold source (water)  

Tcs 25°C 

Pcs 1000 kPa 

Pump  

ηP 0.8 

ηM 0.97 

Turbine  

ηT 0.8 

ηM 0.97 
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ηG 0.98 

xmin 0.90 

Dead state (air)  

Pressure 100 kPa 

Temperature  22°C 

Composition  

(mass fraction) 

76% N2, 23% 

O2, 1% Ar. 

 

2.4 Heat exchanger and turbine model 

In the modeling of the two heat exchangers involved in the ORC, it was necessary to 

impose constraints in order to ensure that no violation of the second law occurred at any 

point within them. Essentially, this is achieved by ensuring that there is a minimal 

temperature difference (ΔTmin) between the hot and cold fluids everywhere in the heat 

exchanger.  

Each heat exchanger was discretized into n elements and a heat balance was 

performed in each element. The enthalpy at the input (or output) of each element in each 

stream is calculated from: 

,     (14) 

Subsequently the temperature of each stream of each ith-element is easily determined by 

knowing its pressure and enthalpy, i.e. 

Ti+1,mix =T Pmix;hi+1,mix( ); Ti+1,hs=T(Phs;hi+1,mix ),     (15) 

Finally, the temperature difference in all segment “i” is Ti = Ti,hs – Ti,mix, and it is verified 

that the minimal temperature difference is higher than the specified limit. If a design does 

not respect this constraint, it is eliminated. 

When the ORC uses wet mixtures in a subcritical cycle, the blend can intersect the 

saturation curve and, consequently, liquid droplets could appear during the expansion in 

the turbine which could cause erosion. This problem can usually be avoided with a 

minimum quality (xmin) above 0.9 in the turbine [28]. In order to determine xmin it was 

necessary to divide the pressure drop between points 2 and 3 in Fig. 1 into small ΔPi and 

verify that the minimal quality among the path from 2 to 3 was higher than the value 

indicated in Table 3. When the minimum quality was not respected, the cycle was simply 

discarded. 
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2.5 Model verification 

Li et al. [29] also studied the impact of zeotropic mixtures on the performance of ORCs. 

No multiobjective optimization was attempted in that reference and several differences can 

be noted with the present work in terms of models and objectives (e.g., Li et al.’s work 

considers only one heat source temperature, did not consider the global conductance and 

exergy efficiency, fixed condensation conditions, etc.). Nevertheless, it is possible to use 

their results in some specific conditions to validate the present model and its numerical 

implementation. In order to do that, the energy equations were solved with the same 

conditions as is Ref. [29], using as working fluid a mixture of isobutane and R245fa with 

mass fractions of 0.3 and 0.7 respectively. The comparison between the results obtained 

with the present model and those from Ref. [29] are presented in Fig. 2.  One can observe 

that the differences in thermal efficiency and power between the present model and that of 

the reference are small, with maximal variations of 1.3% and 2% respectively. The present 

model could thus be considered adequate. The small differences can be attributed to the 

fact that REFPROP 9 was used Ref. [29] whereas the 9.1 version is used here, as well as 

to the tolerance criteria used to declare convergence in the iterative calculations.  

3. Multiobjective optimization problem 

3.1 Objective functions and design variables 

An optimization is defined by objective functions, design variables and constraints. This 

section formulates the optimization problem addressed in the present paper. When 

optimizing ORCs, several objectives are of interest. In the present work, the net power (

), exergy efficiency ( hExe
) and global conductance ((UA)Total) were the three objective 

functions that were chosen. Note that the first two objectives are to be maximized, whereas 

the third is to be minimized. These objectives can be expressed using the following 

relations: 

(i) Net power output ( ): The net power is obtained by subtracting the power 

required by the pump from the power produced by the turbine: 

     (16) 
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where 
Mη  and 

Gη  are the mechanical and generator efficiencies (see Table 3). 

(ii) Second-law efficiency ( hExe
): The exergy efficiency is defined as the ratio of the 

useful exergy obtained to the exergy consumed by system [30] : 

     (17) 

(iii) Size of heat exchangers (i.e., (UA)Total value): the size of the system can be 

assessed by the total heat exchanger conductance: 

UA( )
Total

= UA( )
Eva

+ UA( )
Co

    (18) 

The UA values were evaluated with the logarithmic mean temperature difference method 

(LMTD), remembering that a discretization of each heat exchanger is needed in order to 

consider the variation of the working fluid properties as recommended in Ref. [31]. 

Considering a counterflow heat exchanger, a heat balance on one sub-section yields: 

   (19) 

By summing Eq. (19) over all segments, one obtains the total UA value for this heat 

exchanger.  

The goal of the optimization process is to identify the best values for the design 

variables. This is achieved by allowing the design variables to vary within predefined 

bounds. In the present optimization process, the design variables and their bounds were: 

• Pressure at the evaporator (P2): the minimal value was 100 kPa and, as mentioned 

previously, the maximal value was chosen to be 90% of the critical pressure: 

P2 Î 100 kPa, 0.9PCrit[ ]  

Note that the inferior limit was adjusted to avoid negative pressures, which would 

increase the complexity and cost of the system [13, 24].  

• Condensation temperature of the mixture (TCo): the lower bound was 28°C and the upper 

bound was 10°C below the bubble temperature at the pressure P2, i.e.:  

TCo Î 28 °C, Tbubble @ P2
-10 °Céë ùû 

Note that the lower bound corresponds to the cooling fluid temperature Tcs plus 3°C.   
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• Minimal temperature difference in the evaporator (ΔTmin): this value was allowed to 

vary between 4 and 15C:  

DTmin Î 4 °C, 15 °C[ ] 

From the ΔTmin value and the thermodynamic state points of the cycle, the mixture mass 

flow rate was calculated.  

• As mentioned previously, the wet mixtures can be superheated before entering the 

turbine. Therefore, the temperature of the mixture at the inlet of the turbine (T2,wet) has 

been chosen as another design variable to optimize in cycles with wet mixtures. Its lower 

value was the dew point of the mixture at the pressure P2, and its upper value was the 

heat source fluid temperature minus 10°C, i.e.: 

T
2,wet

Î T
dew@P

2

, T
hs,in

–10 °Cé
ë

ù
û  

The fluid mixture was also considered as a design variable. It was optimized 

sequentially. First, two fluids were specified to form the mixture. The proportion of each 

constituent in the mixture was represented by the variable , i.e. the proportion of the first 

fluid in the mixture, which could range from 0.01 (~pure fluid 1) to 0.99 (~pure fluid 2). 

This variable  was optimized along with the other variables listed above. The choice of 

the two components to form the mixture was not considered as a design variable per se, but 

the optimization approach was applied systematically to the list of 28 possible mixtures 

described above. Therefore, after all simulations, it was possible to determine which 

mixture was optimal in each case by comparing the results obtained for each binary 

combination of pure fluids.  

3.2 Optimization procedure 

As can be seen from the previous sections, it is impossible to identify manually the best set 

of design variables in terms of the three objective functions mentioned above. In order to 

optimize simultaneously these different objectives, a multi-objective genetic algorithm 

(GA) was used. Genetic algorithms are a class of evolutionary algorithms based on the 

principles of genetics and natural selection, which have been used to identify global optima, 

even for discontinuous, non-differentiable and highly non-linear functions. In GAs, 

different values of the design variables are generated randomly to form an initial 

population. Based on their fitness (i.e., best designs are more likely to reproduce) and on 
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operations such as crossovers and mutations, a new generation of designs is generated. The 

best designs from a generation are also allowed to propagate directly to the next generation. 

This procedure is repeated over a certain number of generations. For multi-objective 

optimization problems, as the search is performed over successive generations, the 

population evolves toward a set of solutions called a Pareto front or non-dominated set 

[32]. Each point on this front is considered “optimal” in the sense that it is not possible to 

improve one of the objective functions for this point without degrading one or more of the 

other objective functions. Posteriorly, designers could select which design point to choose 

on the front for a project depending on the importance given to each of the objectives. The 

multi-objective GA optimization algorithm was NSGA-II, a recognized approach for 

which optimization flowcharts and other details can easily be found in literature [32] [33] 

[34]. The reasons why NSGA-II was chosen among other techniques are its capacity to 

handle non-linearity, discrete and continuous design variables, multiple objective 

functions, and its relative easiness to use. 

 The parameters of the GA used in this work are: the size of the population is 600, 

the number of generations that was performed for each optimization is 60, the crossover 

fraction is 0.7 and the number of elites propagating from one generation to the next is 10. 

The other parameters were left to the default value of the toolbox that was used [33]. Note 

that the population size is relatively large in order to obtain well-defined Pareto fronts with 

a sufficient number of points. Furthermore, different tests were performed by varying the 

number of generations, and it was found that changes to the Pareto fronts were negligible 

when the number of generation was increased further, but that the computational cost 

increased significantly. 

 

4. Results and discussions  

4.1 Multi-fluid optimized Pareto fronts 

The optimization procedure described above was first applied to the scenarios in which the 

heat source temperature was equal to 180C. Fig. 3 shows the resulting Pareto fronts (i.e. 

non-dominated solutions in terms of ηExe, ẆNet and (UA)Total) for both dry and wet mixtures 

in 3D. Note that the optimization results for all 28 mixtures, with any compositional 

fraction, are shown in this figure. In other words, each point in Fig. 3 is the result the 
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optimization procedure introduced in Section 3 for a given binary mixture. An important 

aspect of Fig. 3 is the shape or three-dimensionality portrayed by the numerous 

optimization points reported, which supports the use of multi-objective optimization 

techniques. For instance, optimized scenarios for dry mixtures with the lowest (UA)Total-

values can present a relatively high ηExe-values and low ẆNet-values, or vice-versa (i.e. low 

ηExe-values and high ẆNet).  

 The competition between each two objective functions becomes clearer in Fig. 4, 

which shows projections of the Pareto fronts in order to facilitate the analysis two objective 

functions at the time. In Fig. 4a, which shows ẆNet vs (UA)Total, it appears clearly that for 

a given size of the heat exchangers (i.e. (UA)Total value), the dry mixtures produce more 

net power output ẆNet compared to wet mixtures. Furthermore, increasing ẆNet above 50 

kW and 60 kW for wet and dry mixtures respectively, leads to a sharp increase of the 

required (UA)Total. Fig. 4b depicts the impact of ηExe on (UA)Total. As presented above, it 

can be verified that increments in ηExe is accompanied by an augmentation of the 

conductance of the heat exchangers, both for wet and dry mixtures.  On the other hand, it 

can be verified in Fig. 4c that many non-dominated solutions for dry mixtures provide very 

low values of ẆNet, and depending on their compositions, these mixtures can exhibit 

various values of ηExe. This comes from the fact that in these conditions, the heat source 

fluid experiences only a small reduction of temperature as it passes in the evaporator, which 

yields a cycle producing less power, and requiring a smaller value of (UA)Total. 

 The results presented in Figs. 3 and 4 for the evaluated mixtures allow identifying 

general trends for the optimal solutions of each work fluid regarding the three objective 

functions. However, the best mixtures for this temperature level (180C) cannot be 

identified from these figures. In order to do that, a second step in the optimization 

procedure is required, and consists in applying a non-dominated sorting (NDS) method 

[34] considering all the Pareto fronts achieved for each individual mixture. This allows 

generating a single Pareto front of non-dominated solutions that consider the optimization 

of the choice of mixture. After the application of the NDS algorithm, 884 optimal solutions 

for this temperature level (i.e., heat source temperature of 180C) were found and are 

reported in Fig. 5a on a plane ẆNet - (UA)Total (see rightmost curve). Among these 884 

points, 22 types of mixtures, with varied compositional fractions, were identified. These 
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mixtures were all dry, i.e. formed from two dry fluids or by mixing a dry and a wet fluid 

with a low fraction of the wet fluid in the mixture. 

 In a similar way, the NDS algorithm was applied to the set of optimal solutions 

achieved for each heat source temperature level described in Section 2.1 in order to obtain 

global Pareto fronts, as shown by the other five curves presented in Fig. 5a. As expected, 

other optimal solutions were found on the Pareto fronts as the heat source temperature was 

decreased (i.e. 1312, 1393, 4111, 1422 and 1304 solutions for temperature levels of 80C, 

100C, 120C, 140C and 160C respectively). This shows that many solutions in terms of 

working fluid mixtures are available in each segment of the Pareto fronts. The dry mixtures 

continue to be the best working fluids, i.e. the ones constituting the dominant solutions, for 

a heat source temperature of 160C. On the other hand, the wet mixtures (composed mostly 

of R134a, propane or their combination) prove to be part of the optimal solutions for heat 

source temperature of 140C and below. Furthermore, one should also note that the color 

represents the exergy efficiency for each optimal point that constitutes the front. In general, 

one can see reductions of ẆNet and (UA)Total for cooler heat sources.  

For the sake of comparison, the optimization procedure was repeated, this time with 

pure fluids only. A heat source at 180C was assumed for that case. In Fig. 5b, the resulting 

Pareto fronts for pure fluids are compared to the Pareto front achieved with mixtures that 

was previously shown in Fig. 5a. It can be seen that allowing the optimization of the fluid 

mixture composition yield better solutions, since it provides more degrees of freedom to 

optimize the cycle. 

 

4.2 Working fluid optimization 

Because of the large number of optimal solutions for each temperature level, it becomes a 

challenge to establish how different mixtures are distributed along each Pareto front shown 

in Fig. 5. In order to develop a better understanding of which mixtures are best, Figs. 6a to 

6b present the pure fluid percentages that compose the mixtures in each ẆNet-level 

achievable for the heat source temperatures of 180°C and 80°C, respectively, and the 

percentage of mixtures which contained these pure fluids. For instance, for a heat source 

of 180°C, Fig. 6a indicates that pentane is the pure fluid that is the more widely used for 

the composition of mixtures up to 40 kW, whereas R245fa is the preferred pure fluid in 
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mixtures for high power cycles (>50 kW). The highest values of power, and consequently 

of ηExe and (UA)Total, are reached with mixtures made of R245fa, pentane, isopentane and 

neopentane. Fig. 6b establishes that up to ~4 kW, isopentane and pentane form 

approximately 40% of the mixtures that are found among the optimal solutions when the 

heat source temperature is 80°C. Above that net power value, the mixtures are mostly 

composed with isopentane and R245fa. For the 80°C temperature level, when R134a and 

propane are mixed with the other fluids, they can form mixtures that can be either dry or 

wet depending on the proportion of each fluid in the mixture. Therefore, these two fluids 

do not constitute any of the mixtures with which the high power values were achieved. 

Finally, two general observations can be made from Fig. 6. First, one notes again the large 

number of possible designs and mixtures to reach a certain value of ẆNet (or of the other 

objectives). Second, almost all mixtures that were evaluated can bring adequate solutions, 

especially in intermediate regions of the Pareto fronts. This is especially true for relatively 

low temperature values of the heat source (e.g., 80°C), since the difference in ẆNet is small 

in absolute terms, and the composition of optimal mixtures becomes less influential.  

For each point on the Pareto front, the optimal mass fraction was noted and the 

occurrence of optimal mass fraction for the two temperature limits analyzed previously are 

presented in Figs. 7a (180°C) and 7b (80°C). Again, for a mixture A/B, a fraction of 0 

means that only A is present in the mixture, and a fraction of 1 means that only B is present. 

It can be observed that when the heat source temperature was 180°C, more than 50% of 

the optimal mixtures on the Pareto front were constituted with a mass fraction of ~1, i.e. 

the proportion of one of the two pure fluids forming the binary mixture is small. In other 

words, 50% of the optimal designs were essentially obtained using a nearly pure fluid. In 

that case, pentane is actually the dominant component of these mixtures as it is possible to 

find mixtures rich in pentane (i.e. with fraction close to 1) in almost all positions of the 

curve of Fig. 5, except for large values of ẆNet. In the case with a heat source temperature 

of 80°C, the optimal mass fraction is more evenly spread, and most compositions have an 

optimal fraction between 0.2 and 0.7. Approximately 25% of the optimal mixtures have 

one of their two components with a mass fraction superior to 0.9. Pentane, isopentane and 

R245fa correspond to the pure fluids that appear more frequently in the mixtures with this 

characteristic. Finally, it should be noted that in both temperature levels, the mixtures in 
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which one of the two components has a mass fraction of ~1 are not found in regions of the 

Pareto fronts with large values of ẆNet. 

In accordance with the results presented above, it is visible that there is a large 

number of available mixtures in order to achieve the best values of ẆNet, ηExe and (UA)Total 

in all segments of the Pareto front and for each heat source temperature level. 

Consequently, identifying a unique “best” work fluid mixture is impossible, particularly 

given that three objectives were considered. The choice of a cycle configuration, including 

the choice of the work fluid mixture, depends on the weight put on each objective in the 

decision-making process.  

 

4.3 Behavior of dependent variables on Pareto fronts 

Regarding the optimal operational variables, Fig. 8 presents the values of ṁcs, TCo and PEva 

through the right hand side color scale for the optimal solutions on the Pareto front for the 

heat source at 180°C. It is clear from Fig. 8a that the progressive augmentation of the three 

objectives along the front is accompanied by an augmentation of the flow rate of the 

cooling fluid, ṁcs. In practice, in order to limit the energy consumption of the auxiliary 

equipment of the cooling system (not taken into account in the present work), the value of 

ṁcs should be kept within 7-11 kg/s, which could guide cycle designers in selecting certain 

combinations over others in the Pareto front. The optimal condensation temperature, which 

is shown in Fig. 8b, demonstrates two clear trends. First, one notes the significant raise of 

the condensing temperatures to very high values as ẆNet → 0 and (UA)Total→ 0. Second, 

the mixtures that exhibit sounder values of the objective functions have a condensing 

temperature in the range between 38 and 49°C, which is relatively higher than the lower 

limit that was fixed for this parameter, i.e. 28°C. The evaporation pressure in Fig. 8c does 

not exhibit a continuous evolution along the front as the other variables. This comes from 

the fact that mixtures change in the front and that different evaporation pressure are 

required depending on the fluid. Although relatively low pressures are found (as low as 

~1000 kPa), in order to achieve high net power values, it is required to increase PEva. It was 

also observed that the optimal evaporator pressure was always between 0.3 and 0.9 the 

critical pressure of the mixture.  
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4.4 (UA)Total normalization of the optimized Pareto solutions 

In order to further identify the best mixture options, Fig. 9 reports the net power output per 

unit of heat exchanger conductance, i.e. ẆNet/(UA)Total, versus the exergy efficiency. 

ẆNet/(UA)Total is an interesting figure of merit, which indicates the cycle’s productivity, 

and a value as high as possible is desirable. It is visible that some designs maximize this 

criterion, which comes from the fact that, as seen previously, in order to reach the largest 

values of ẆNet, the heat exchangers size would become prohibitively large, which will 

reduce ẆNet/(UA)Total on the right hand side of Fig. 9. On the other hand, in the left part of 

Fig. 9, the net power is close to zero, which means that ẆNet/(UA)Total becomes very small 

for modest exergy efficiency values. Table 4 presents the solutions having variations of 

less than 1% of the maximal possible value of ẆNet/(UA)Total for each temperature level. It 

can be verified that the working fluids for which this figure of merit is maximal are mostly 

made of pentane and isopentane for each temperature levels, even though the operational 

parameters can vary strongly for each optimal design. 

 

Table 4. Optimal mixtures and maximal ẆNet/(UA)Total for each heat source temperature 

considered. 

Temp. 

[°C] 

Mixture ẆNet/(UA)Total 
 

[K] 

Dry/Wet ϕ* TCo 

[°C] 

PEva 

[kPa] 

ṁcs 

[kg/s] 
        

180 

Pentane/Isopentane 1.89 Dry 0.33 65.45 2149.49 1.55 

Pentane/Isopentane 1.88 Dry 0.47 59.26 2013.01 2.59 

Pentane/Propane 1.88 Dry 0.99 53.91 2087.38 0.92 

Pentane/R245fa 1.88 Dry 0.99 58.32 1788.52 3.25 

Pentane/Isopentane 1.88 Dry 0.59 57.84 1968.45 2.63 

Pentane/Isopentane 1.87 Dry 0.43 59.60 2135.15 1.76 

Pentane/R245fa 1.87 Dry 0.98 58.75 1888.28 2.57 
        

160 

Isopentante/Isobutane 1.58 Dry 0.99 58.44 1677.83 0.82 

Isopentante/Neopentane 1.57 Dry 0.90 55.77 1661.94 1.71 

Pentane/Isopentane 1.57 Dry 0.40 56.71 1543.76 1.00 

Isopentante/Neopentane 1.56 Dry 0.80 56.50 1893.54 0.47 

R245fa/Butane 1.56 Dry 0.04 56.20 3414.55 0.46 
        

140 

Pentane/Isopentane 1.24 Dry 0.60 49.35 983.53 1.32 

Pentane/Isopentane 1.24 Dry 0.59 49.66 989.75 1.26 

Pentane/Isopentane 1.23 Dry 0.58 49.55 1074.48 0.45 
        

120 
Pentane/Isopentane 0.93 Dry 0.59 51.13 721.51 0.23 

Pentane/Isopentane 0.92 Dry 0.27 47.66 705.30 0.98 
        

100 
Pentane/Isopentane 0.62 Dry 0.61 46.50 446.72 0.42 

Pentane/Isopentane 0.62 Dry 0.64 45.01 435.88 0.56 
        

80 
Pentane/Isopentane 0.35 Dry 0.56 40.58 280.75 0.19 

Isopentane/Propane 0.35 Dry 0.99 37.60 361.68 0.002 
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Pentane/Isopentane 0.35 Dry 0.52 40.18 290.26 0.14 
        

*ϕ represents the fraction of A within an A/B mixture. 

 

5. Scale analysis 

In order to develop a better understanding of which mixtures and operational parameters 

are best, a scale analysis is proposed in this section. A heat balance in the evaporator reveals 

that , i.e.: 

   (20) 

where TH is the characteristic temperature difference between the heat source fluid and 

the working fluid. With a similar balance in the condenser, one can express the total heat 

exchanger conductance as: 

 , (21) 

where, in order to simplify the analysis, it was assumed that TH ~ TC, and the 

characteristic temperature difference was labelled simply T. 

 The power output can be written at , where states 2 and 3 are 

shown in Fig. 1 (inlet and outlet of turbine, respectively). Then, applying an analysis as 

proposed in Ref. [5], it can be shown that: 

 ,  (22) 

where TH and TC are the temperatures of the heat source and of the sink.  can be 

maximized with respect to the working fluid flow rate. Deriving Eq. (23) with respect to 

, and equaling to zero, one finds: 

 . (23) 
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where again  is equal to 1 kg/s. Combining Eqs. (21) and (23), one finds and expression 

for T: 

 ,   (24) 

which can be introduced back in the expression of the maximal net work in Eq. (23): 

 , (25) 

where NTU is . Eq. (25) shows the expected relation between two of the 

objective functions (i.e.,  vs. UA) in the optimized designs, as a function of the overall 

temperature difference (TH – TC). 

To determine whether the scaling analysis described above matches the Pareto front 

and NDS results reported thus far, Fig. 10 shows the numerically optimized data presented 

in Fig. 5, which is now reported in terms of  as a function of [NTU / (2+ NTU)]2 , for 

the different temperature levels investigated here – see open symbols.  Next, by comparing 

the numerically optimized data with the scaling 
 
results obtainable from Eq. (25), one 

can observed that both solutions agree within less than 10 % if the scaling results are 

multiplied by single fitting constant 2.898  10–3 kJ/kg.K2 regardless of its heat source 

temperature. Note that the fitting started for [NTU / (2+ NTU)]2 ³ 0.1 and that the 

agreement above encompasses approximately 83% of the numerical optimized data points.  

The scaling results are shown in Fig. 10 through the solid straight lines, which can be 

readily obtained through a constant-adjusted version of Eq. (25), which reads 

 . (26) 

The importance of the above analysis is that any designer considering the use of 

one of the binary mixtures tested in the present study as working fluid in an ORC, while 
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knowing TH, TC and NTU, is capable of analytically determining 
 
with good precision 

through Eq. (26), which can be used as a reference. 

As for the optimal selection of mixtures, based on the above analysis, the following 

can be said: 

(i) In order to have a working fluid that is not supercritical in the evaporator, one 

needs: TH -DT < TCrit
. Given Eq. (24), this means: 

  (27) 

This inequality was respected for the optimal designs introduced above, except when the 

heat source temperature and NTU value were high. This is because, in writing Eq. (27), the 

order of magnitude of the approach temperature T is obtained with Eq. (24). However, 

for large NTU values, T in Eq. (24) can tend to zero, which is in contradiction with the 

minimal temperature differences imposed in the model (See Section 2), and a more realistic 

expression for T at large NTU value such as T ~ MAX(Eq. (24); Tmin) would be 

required. During the course of the optimization process, the optimized mixtures should 

exhibit a critical temperature that is high enough to keep the cycle subcritical, in particular 

with a high source temperature. When the temperature difference between the heat source 

and the working fluid becomes small (T→0), one finds NTU → . The left hand side of 

Eq. (27) becomes 1, in which case the critical temperature of the mixture should be above 

~180C (i.e., when NTU is large and the source temperature is at 180C). This could limit 

the recourse to R134a and propane in the optimal mixtures since their critical temperature 

is lower than these limits (see Table 1). 

(ii) Optimal mixtures present low hfg/cwf ratios, see Eq. (25). Although the latent 

heat of a mixture and its specific heat depends on pressure, temperature and composition, 

the fitting of Eq. (13) reveals that in the optimized designs obtained in this work, one 

actually finds: h
fg

/ (c
wf

c
H

)  ~ 360.6 K (using 4.18 kJ/kg.K for cH). To illustrate this 

statement, the ratio h
fg

/ c
wf

 was calculated in the evaporator of the optimized designs. It 

was found that the average value of this ratio was 358.37 K with a standard deviation of 
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132.53 K, which corroborates this analysis, in a scaling sense. The criterion on h
fg

/ c
wf

 

could be used in the design process of the working fluid mixture.   

 

6. Conclusions 

The use of binary mixtures in ORC can have numerous advantages as previously discussed.  

However, so far, there is no consensus as to which are the best mixtures for a certain heat 

source temperature.  Therefore, the present analysis considers up to twenty-eight different 

binary mixtures that are possible working fluid candidates for a basic ORC.  The search for 

the ideal mixtures is performed by allowing the ORC to experience several heat source 

temperature values while using a genetic algorithm optimization routine to identify which 

mixtures return the highest values of net power and exergetic efficiency and the lowest 

values of global conductance.  The selection of the best solutions obtained with the 

optimization routine is done by combining the Pareto front and non-dominant sorting 

methods.  

 The results show that, generally speaking, high values of net power are associated 

with high values of exergetic efficiency and global conductance – note that, ideally, low 

values of global conductance are desirable.  More importantly, however, is that, while it is 

not possible to identify a single mixture that returns the best values of the objective 

functions considered, for high heat source temperatures (i.e., 180 C), fluids such as R245fa 

and propane are the dominant fluids within the best mixtures (~ 50 %).  Differently, as the 

heat source temperature is reduced (i.e., 80 C), a wide range of mixtures perform alike. 

 Also, a scaling analysis aiming to determine the maximal specific net power 

produced ( ) by the ORC as a function of the high and low-end temperatures, and the 

Number of Transfer Units (NTU) is proposed.  The scaling solution is directly compared 

with the sorted results obtained from the genetic algorithm, only differing by a single 

constant value for all heat source temperature levels considered.  Therefore, the scaling 

solution for  was corrected with the adjusting constant and can be used a reference 

parameters for designer interested in ORC. 

Finally, other objective functions, such as life-cycle GWP working fluid [35], could 

be included in future work.  In fact, as reducing the environmental impact of working fluids 
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in power and refrigeration cycles continues to be a necessity, the importance of the 

environmental footprint of working fluids is constantly increasing. Furthermore, future 

work could include cost (purchase and operational) as an objective function to be 

minimized, which would require appropriate correlations or data to estimate the cost of the 

main pieces of equipment of the cycle. Finally, multi-criteria analysis tools could be 

developed from the Pareto fronts presented here to help the decision-making in the design 

of an ORC and provide an adequate weight to each objective function in a given context. 
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Figure captions 

Figure 1 a) Basic Rankine cycle configuration and b) T-s diagram of the subcritical 

ORC studied in this work (example with a mixture of Isopentane/R245fa 

with 0.63 Isopentane mass fraction), where BP and DP indicate the bubble 

and dew temperatures, respectively. 

Figure 2 Numerical model validation with data published in Ref. [29] with a mixture 

of Isobutane/R245fa with Isobutane mass fraction of 0.7. 

Figure 3 Pareto fronts for dry and wet mixtures with heat source temperature of 

180°C.  

Figure 4 Pareto fronts projections a) ẆNet - (UA)Total, plane, b) ηExe - (UA)Total, 

plane and c) ẆNet - ηExe, plane, with heat source of 180°C. 

Figure 5 a) Pareto fronts for mixtures with heat source temperatures between 80°C 

and 180°C after applying the Non domination sorting method, and b) 

Pareto fronts obtained with a pure fluids with a heat source at 180°C. 

Figure 6 Percent of blends for given fluid as a function of ẆNet for: a) 180 °C and b) 

80°C.    

Figure 7 Percent of mass fraction occurrence for: a) 180°C and b) 80°C.   

Figure 8 Optimal values of objective functions for 180°C heat source as a function of 

a) ṁss, b) TCo and c) PEva. 

Figure 9 Normalization of ẆNet/(UA)Total for Non-Dominations-Solutions for 

temperature levels of 180°C – 80°C. 

Figure 10 Variation of Ẇmax with [NTU / (2+ NTU)]2 : direct comparison between the 

sorted Pareto front solutions (open symbols) and the scaling results (solid 

lines) for different heat source temperatures. 
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