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Abstract We revisit the geometric interpretation of GPS Dilution of Precision (DOP) factors giving 

emphasis on the geometric impact of the receiver clock parameter on conventional GPS positioning 

solution. The comparison is made between the solutions with and without an estimated receiver 

clock parameter, i.e., conventional GPS vs pure trilateration solution. The generalized form of the 

DOP factors is also presented for observation redundancy greater than zero. The DOP factor 

equations are established as functions of triangle surfaces and tetrahedron volumes formed by the 

receiver-satellite unit vectors or by these vectors between themselves. To facilitate the comparison 

of the solutions with and without a receiver clock parameter, the average of receiver-satellite unit 

vectors is introduced to interpret the DOP factors geometrically. The geometry of satellite outage is 

also revisited from a geometric point of view. Finally, the geometric interpretation of receiver clock 

constrains within a positioning solution is also investigated.  

 

Keywords Dilution of Precision, Geometry, Receiver clock parameter, GPS 

 

Introduction            

Geometric interpretation of DOP (Dilution Of Precision) factors has already been studied in the 

past. However, this topic still deserves to be revisited, especially with the use of miniaturized 

atomic chip clock (Weinbach and Schön 2011) and the calibration of receiver line biases in relative 

positioning (Macias-Valadez et al. 2012), for example. Moreover, let us mention that the geometric 

interpretation for positioning can also be transferred to GPS velocity determination.  

The basis of DOP factor calculations are the elements along the diagonal of matrix Q 

calculated as follows, 

Q = N-1 = (ATA) -1      (1) 
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for conventional GPS pseudorange solutions.     

The terms eX, eY, eZ are the components of the receiver-satellite unit vector. They come from 

the derivative of the topocentric satellite distance with respect to receiver coordinates (X, Y, Z) in 

ECEF (Earth-Centered, Earth-Fixed) coordinate system and the receiver clock bias (dT, converted 

in meter). In fact, all the geometric information about the satellite sky distribution is contained in 

matrix A. 

We address the geometric interpretation of the precision of GPS positioning, namely the 

DOP factors. The comparison will be made between conventional DOP determination which 

considers the receiver clock parameter and the DOP values from a pure trilateration solution. 

Particular cases are also presented from a geometric point of view namely: the singularity 

conditions for ill conditioned positioning, and the clock constraint solving for 1 clock parameter for 

a certain time period instead of estimating it at every epoch. 

 

Notation and definition 

Before starting with the development of the geometric interpretation of DOP factors, let us present 

the notation and definition of the most useful quantities. 

n : number of observations or number of satellites 

u : number of unknown parameters 

 : degree of freedom ( = n - u) 

c:ij : number of combination of satellite pairs (ij) among the n satellites 

c:ijk : number of combination of satellite triads (ijk) among the n satellites 

c:ijkl : number of combination of satellite quads (ijkl) among the n satellites 

i
re
 : receiver-satellite unit vector from receiver r towards satellite i 

i
r

i
r

i
r V,N ,E : components of the unit vector i

re


in the local coordinate system (E, N, V) 
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 rrr
T
r V,N,Ee   : average of all unit vectors i

re


at a given epoch 

r
i
r

i
g eee 


 or  r

i
r

i
g EEE  , r

i
r

i
g NNN   and r

i
r

i
g VVV   

ijk
rV  : volume of the tetrahedron spanned by unit vectors i

re
 , j

re
 and k

re
  

r
ijkf : height of receiver r to the plane formed by the tips of unit vectors associated to satellites i, j and k 

ij
ENr S : surface of the triangle spanned by vectors i

re


and j
re


 projected onto plane E-N 

ij
EVr S : surface of the triangle spanned by vectors i

re


and j
re


 projected onto plane E-V 

ij
NVr S : surface of the triangle spanned by vectors i

re


and j
re


 projected onto plane N-V 

Vijkl : volume of the tetrahedron spanned by vectors i
r

j
r ee

  , i
r

k
r ee

   and i
r

l
r ee

   

ijk
ENS  : surface of the triangle spanned by vectors i

r
j
r ee

  and i
r

k
r ee

   projected onto plane E-N 

ijk
EVS  : surface of the triangle spanned by vectors i

r
j
r ee

  and i
r

k
r ee

   projected onto plane E-V 

ijk
NVS  : surface of the triangle spanned by vectors i

r
j
r ee

  and i
r

k
r ee

   projected onto plane N-V 

ijk
gV  : volume of the tetrahedron spanned by vectors i

ge


, j
ge


and k
ge


 

ij
EN gS : surface of the triangle spanned by vectors i

ge


and j
ge


 projected onto plane E-N 

ij
EV gS : surface of the triangle spanned by vectors i

ge


and j
ge


 projected onto plane E-V 

ij
NV gS : surface of the triangle spanned by vectors i

ge


and j
ge


 projected onto plane N-V   

 

Examples of surface and volume calculations are, 

i i i ij ij ij i i i
r r r g g g

ijk j j j ijkl ik ik ik ijk j j j
r r r r g g g g
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  (3) 
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All these surfaces and volumes are unitless because they are all calculated from dimensionless unit 

vectors. 

Also note that the slant surface of the 3D triangle can be obtained from the 3 projected 

surfaces        2ijk
NV

2ijk
EV

2ijk
EN

2ijk SSSS  and that      2ijk
NV

2ijk
EV

2ijk
v SSS 

, which is the surface of the 3D 

triangle projected onto a vertical plane perpendicular (v) to the vertical plane containing the 

normal of the 3D triangle; the normal to the vertical plane and the normal to the 3D triangle being 

coplanar. Figure 1 illustrates tetrahedron volumes, triangle surfaces and their projections onto the 3 

orthogonal planes associated with the local coordinate system (East, North and Vertical).  

 

 

Fig. 1 Tetrahedron volumes, triangle surfaces and their projections onto orthogonal planes (Adapted from 

Santerre and Geiger 1998) 

 

Because projections onto the 3 local orthogonal planes will be central to the geometric 

interpretation of the DOP factors, let us first have a look at the projection of the GPS satellite traces 

projected onto those planes (Figure 2). Traditionally, the horizontal sky plots are used with 
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regularly spaced concentric circles representing the elevation (or zenith) angles. In the used 

projection of the satellite traces (Figure 2), the space between the elevation angle circles (or lines) 

are no longer equidistant and the equidistance is different for the vertical planes and the horizontal 

plane. The 3D GPS satellite trace shape, as seen from user location, is completely revealed with 

such projections. Similar graphs are presented in Appendix 1 for equatorial and polar sites.  

 

Fig. 2 Projection of GPS satellite traces onto the 3 local orthogonal planes for 24 hours for a mid-latitude 

site. The yellow stripes represent a 15 elevation mask angle 

 

Let us note that EDOP, NDOP and VDOP factors multiplied by the 1 (at 68% confidence 

level) pseudorange precision value (p) are the projections onto the 3 local orthogonal planes 

centered at the user location of the confidence (or error) ellipsoid calculated with the eigenvalues 

and the eigenvectors associated with matrix Q of (1), see for example Kaplan and Hegarty (2006). 

Figure 3 illustrates the EDOP, NDOP and HDOP factors, multiplied by p, on the horizontal plane 

along with the associated (2D) confidence ellipse.  

Once the EDOP, NDOP and VDOP values are multiplied by the 1 pseudorange precision 

value (p), the East, North and Vertical precision at a 1 level is obtained at a 68% confidence 

level. The horizontal precision (HDOP x p) probability level ranges between 63% to 68%, 

depending on the ratio between EDOP and NDOP, and the Position precision confidence level 
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(PDOP x p) is about 61% to 68%, again depending on the ratio between EDOP, NDOP and 

VDOP. 

 

 

Fig. 3 Geometric interpretation of horizontal DOP components 

 

If GPS pseudorange observations were not affected by clock error, the range observations 

used for positioning would be treated similarly to the trilateration method employed in (2D) land 

surveying operations (Allan 2007). In this technique, range measurements are obtained from two-

ways electromagnetic wave transmission from a total station and reflected back from a 

retroreflector, for example. Related to the trilateration method, Figure 4 (bottom lines) illustrates the 

precision of the resulting (2D) position from 3 range measurements schematically. The stripes 

represent the range precision (or uncertainty).  

However, GPS pseudoranges contain receiver clock bias. In this situation, the receiver clock 

has to be synchronized, usually at every epoch, to the GPS time scale. In other words, GPS 

positioning cannot be determined by trilateration method. One way to get rid of the receiver clock is 

to difference pseudoranges between satellites ( symbol). Unfortunately, this approach creates 

artificial mathematical correlation among the resulting p observations which has to be taken into 

account. In the next sections, solutions without the  operator will be employed to avoid such 

artificial mathematical correlation. In fact, conventional GPS solution is rather a hyperbolic 

positioning technique. 

Figure 4 (top lines) illustrates the intersection of 2 hyperbolic lines (in 2D) formed by two 

pairs of transmitters. In this situation, the satellites are located at the focus of the hyperbolic lines. 
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The dotted lines, linking transmitters (or satellites) 1, 2 and 2, 3, illustrate the baseline connecting 

the focus. It can be clearly seen, from the intersection of the 2 hyperbolic lines, that the vertical 

precision will be worse than the horizontal precision unlike the trilateration solution discussed 

above, because in the real world, the GPS satellites are only visible above the local horizon. The 

next sections will present the geometric interpretation of these 2 totally different positioning 

concepts. 

 

 

Fig. 4 Trilateration from 3 ranges (bottom lines) and hyperbolic positioning from 2 range differences (top 

lines) 

 

Mathematical development of the geometry of DOP factors 

Let start with the pure trilateration solution using distance observations (Case 1). In this case, the 

prime symbol (' ) will be used to distinguish this solution from the conventional GPS solution. Then 

the conventional GPS positioning solution with pseudorange observations will be presented (Case 

2). For both cases, 2 formulations will be developed: 1) without observation redundancy where the 

number of satellites (n) equals the number of unknown parameters (u); and 2) for the generalized 

form where n  u. In Case 2, a receiver clock has to be estimated. It is well known that for this type 

of solution, the GPS height or vertical coordinate precision (VDOP) deteriorates. The geometric 

formulation will allow visual explanation of this fact among other findings.  

Here, the horizontal (East and North) and Vertical components of the receiver-satellite unit 

vectors are directly used. In real life, the calculation is done in ECEF, than the DOP factors are 
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properly transformed, in the local coordinate system. The evaluation of the set of equations (1) is 

followed for each case, but the A matrix content is conditioned accordingly. 

 

Case 1 - Pure trilateration solutions without a receiver clock parameter 

In this case, matrix A' contains only 3 columns and matrix Q' is calculated with the adjoint method. 

 

 

 

n n n2i i i i i
r r r r r1 1 1

i 1 i 1 i 1r r r
2 2 2 n n n2T i i i i ir r r

nx3 3x3 r r r r r 3x3 3x
i 1 i 1 i 1

n n n n n n 2i i i i ir r r
r r r r r

i 1 i 1 i 1

E E N E V
-E -N -V

-E -N -V
A ; N A A N E N N V ; Q N

... ... ...

-E -N -V
V E V N V
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 
     
            
        
 

  

  

  

 
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-1
3

Adj N

Det N





 (4) 

Equation (4) will be used to calculate the DOP factors without and with observation redundancy. 

 

Situation without redundancy 

After several developments and grouping of terms and using italic letters for the DOP factors to 

stress the fact that the degree of freedom   = 0, one finally gets: 

 
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 
 

 
 

 
 
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3 3 32 2 2c : ij c : ij c : ij
r NV r EV r EN

2 2 21 1 1
2 2 2ijk ijk ijk

r r r

3 32 2c : ij c : ij
r v r 

2 21 1
2 2ijk ijk

r r

S S S
; ;

9 V 9 V 9 V

S S
;

9 V 9 V

c c c

c c

EDOP NDOP VDOP

HDOP PDOP
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
 




     
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


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  

 
    (5) 

where  c:ij  represents the number of combination of satellite pairs (ij), which is 3 or n(n-1)/2 

among the 3 satellites. There is only 1 value associated to ijk
rV , that is the number of combination of 

satellite triad (ijk), which is 1 or n(n-1)(n-2)/6 among the 3 satellites. 

Refer to Figure 1 (top) and to the notation section for the definition of the volume and 

surfaces being generated by the receiver-satellite unit vectors onto the unit sphere and their 

associated projected components. Also note that the larger the tetrahedron volume and the smaller 

the projected surfaces the smaller will be the DOP' values. Note for xDOP' the surface is projected 

on the y-z plane. When the EDOP' factor, for example, is divided by the tetrahedron volume, this 
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ratio can be seen as a composite of the term 1/ i
rE )2,  as can be seen in (7) below, for the 

horizontally symmetrical (hs) satellite distribution. 

 

Generalization without and with redundancy 

Following the same steps as above, but managing a larger number of satellites combinations and 

after several developments and terms grouping, one finally gets: 

 
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r r
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q q
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    (6) 

where c:ij  represents the number of combination of satellite pairs (ij), that is p = n(n-1)/2 among 

the n satellites and c:ijk represents the number of combination of satellite triads (ijk), that is q = n(n-

1)(n-2)/6  among the n satellites. 

 

Horizontally symmetrical (hs) satellite sky distribution 

In this ideal situation, where 



n

1i

i
r 0E  and 




n

1i

i
r 0N , the matrix N' becomes diagonal and the DOP' 

values simplify to: 

     

         

2 2 2
hs hs hs

2 2 2i i i
r r r 

1 1 1

2 2
hs hs

2 2 2 2 2i i i i i
r r r r r 

1 1 1 1 1

1 1 1
EDOP ; NDOP ; VDOP

E N V

1 1 1 1 1
HDOP ; PDOP

E N E N V

n n n

i i i

n n n n n

i i i i i
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    
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


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

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    

   (7) 

Equation (7) is indeed simpler than (6) because horizontally symmetrical satellite sky distribution is 

assumed. 

This ideal situation is often encountered for full satellite constellation and for sites without 

obstructions. Note that for mid-latitude sites, where there is a lack of satellite in the northern part of 
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the observer’s site (Figure 2) the term 



n

1i

i
r 0N , but just slightly different from 0. This situation will 

be discussed later in detail. 

 

Case 2 – Conventional GPS solutions with a receiver clock parameter 

This is the conventional GPS solution, where a receiver clock parameter has to be estimated along 

with the 3 receiver coordinates. The A' matrix (4, left) is then augmented with a column of -1 

elements which is the derivative of the pseudorange with respect to the receiver clock parameter, 
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Equation (8) will be used to calculate the DOP factors without and with observation redundancy. 

 

Situation without redundancy 

In this case, a Q (4x4) matrix has to be inverted analytically and after tedious terms grouping and 

using again italic letters for the DOP factors to stress the fact that the degree of freedom  = 0, one 

finally gets: 
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;
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c c c c
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

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   (9) 

and 

2 2r4 4
 c : ijk 2 2 2 2 2

 l  l
1 1 c : ijk  c : ijk 

f1
; ;

f fc c

GDOP PDOP TDOP PDOP TDOP
 

   
         

   
      (10) 
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where c:ijk, at the numerator of (9) represents the number of combination of  satellite triads (ijk), 

which is 4 or n(n-1)(n-2)/6 among the 4 satellites. There is only 1 value for Vijkl, that is the number 

of combination of satellite quad (ijkl), which is 1 or n(n-1)(n-2)(n-3)/24 among the 4 satellites. 

Refer to Figure 1 (bottom) and to the notation section for the definition of these volume and 

surfaces. In (10), the symbol f denotes the height of the tip of unit vector associated to satellite l (or 

receiver location, r) to the plane formed by the tips of unit vectors associated to satellites i, j and k. 

Massatt and Rudnick (1991) already obtained (9) using a different notation which applies 

only for 4 satellites. The next subsection is a generalization for n  4, with observation redundancy. 

Phillips (1984) already published the PDOP equation (10), which again stands only for 4 satellites. 

We derived the equivalent equation (10) for the TDOP factor. As stressed by Phillips (1984), indeed 

the PDOP factor is not just inversely proportional to the volume of the tetrahedron linking the tips 

of the 4 receiver-satellite unit vectors.  

In Case 2, the surfaces and the volumes are being generated by the satellite to satellite 

vectors onto the unit sphere and their associated projected components (Figure 1, bottom). It is 

interesting to note that the TDOP numerator is a function of the volume of the tetrahedrons having 

as an apex, the receiver (r). This is the link between Case 1 (without a receiver clock parameter) and 

Case 2 (with a receiver clock parameter). 

 

Generalization without and with redundancy 

Again, the inversion of a Q (4x4) matrix has to be calculated analytically and dealing with a larger 

number of satellites combinations. After a lengthy development and terms grouping, one finally 

gets the generalized geometric formulation of the conventional DOP values: 
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    (11) 

where c:ijk represents the number of combination of satellite triads (ijk), that is q = n(n-1)(n-2)/6  

among the n satellites and c:ijkl  represents the number of combination of satellite quads (ijkl), that 

is s = n(n-1)(n-2)(n-3)/24  among the n satellites. 
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Unfortunately, with this formulation, this is not possible to directly compare the DOP factors 

(11) with the DOP' factors (6) because their number of combinations is not the same for a given 

number of satellites (n). To do so, some matrix manipulation has to be done. 

Noticing that 3x3N (4, center) is part of the upper left hypermatrix N4x4  (8, center) and 

rewriting
r

n

1i

i
r EnE 



, and similarly for the N and V components; where  rrr
T
r V,N,Ee   which 

is the average of the receiver-satellite unit vectors at a given epoch. Accordingly, the hypermatrix N 

can be reformulated as: 
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In (12), the indexes (12, for example) are used to identify the submatrices part of the hypermatrix N. 

Matrix inversion partitioning allows to reformulate the upper left (3x3) submatrix of Q, as 

follows: 
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which is equivalent to re-calculate 3x3
-1 QN   by substituting i

re


 by i
ge


, where r
i
r

i
g eee 


 or 

r
i
r

i
g EEE  , r

i
r

i
g NNN   and r

i
r

i
g VVV  . In fact, the vector  rrr

T
r V,N,Ee   are the 

coordinates of point g (Figure 1, top). 

Lee (1975) already introduced this approach to take into account the receiver clock parameter, 

i.e., the clock synchronization, without the use of the difference between observations in order to 

avoid artificial mathematical correlation. However, the geometric interpretation of the DOP factor 

with this approach was not presented.  

Completing the development, it can be proven, without any approximation, that: 
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It is important to note the factor n in the right parts of (14). The first line of (14) can also be written 

similarly for N and V components and the second line of (14) can also be written similarly for the 

E-V and the E-N projections.  

These important relations (14) allow rewriting and simplifying rigorously without 

approximation the DOP values previously obtained in (11), as: 
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    (15) 

Indeed, these DOP expressions are easier to compare with the DOP' expressions (6) because they 

have now the same number of combination in the summation operators. Note the factor n in the 

denominator of the TDOP equation in (15) and note that the TDOP factor is function of both ijk
rV  

and ijk
gV  volumes with apex r and g, respectively. 

The fundamental difference between the geometric DOP' factor equation (6) and the 

geometric DOP factor equation (15) is the origin of the formation of the volume and projected 

surfaces. For the first one, it is the receiver location (r) and for the second one, the origin is located 

at the tip of the average receiver-satellite unit vectors, i.e., the coordinates of point g, at a given 

epoch. See Figure 1 (top) to visualize this fundamental distinction. 

To appreciate the importance of the average unit vectors, Table 1 summarizes the values of 

the average unit vector, as well as their variability calculated as the standard deviation around the 

daily average for a complete day, for 3 locations with different elevation mask angles for the GPS 

constellation. Figure 5 is a time series example for 24 hours calculated every 5 minutes for a mid-

latitude site.  
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Table 1 Average unit vector and standard deviation around the daily average calculated at every 5 minutes 

for 24 hours 

Mask  Lat.: 0   Lat.: 45   Lat.: 90  

angle E N V E N V E N V 

20  -0.01±0.10 0.01±0.11 0.61±0.05 0.00±0.10 -0.04±0.09 0.70±0.05 0.00±0.08 -0.00±0.08 0.58±0.02

10  -0.01±0.08 0.02±0.07 0.52±0.05 0.01±0.09 -0.03±0.10 0.60±0.04 -0.00±0.07 -0.00±0.06 0.51±0.03

  0  0.00±0.08 0.01±0.06 0.44±0.04 0.00±0.06 -0.01±0.10 0.49±0.05 0.00±0.06 -0.00±0.05 0.44±0.04

 

 

Fig. 5 Example of average unit vector for GPS constellation. Site latitude 45, elevation mask angle 10 

 

The north and east components of the average unit vector do not depart much from 0 from 

epoch to epoch but this is not the case for the vertical component of the average unit vector. This 

latter value can be as large as 0.5 to 0.6 for a 10 elevation mask angle and it never gets below 0.4 

for a 0 elevation mask angle. 

Figure 6 presents an example which geometrically illustrates the different approaches for the 

geometric interpretation of the DOP(' ) factors for 4 satellites. The upper right part is for an 

elevation angle of 10, instead of 20 for the 3 other parts for the 3 lowest satellites. The 4th satellite 

is always at the zenith. In this simulation, the projected triangles are colored to illustrate the impact 

of their surface on the DOP(' ) values. The summation values for their volumes and projected 
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surfaces, see 6, 11 and 15, are also indicated below each graph along with the resulting DOP(' ) 

values.    

Comparing the 2 upper parts of Figure 6, which have different mask angle, the summation of 

the SEN squared value changes from 1.8 to 2.1 but the value of ( 123
rV )2 almost doubles, so the VDOP 

gets smaller (from 1.8 to 1.4). Also note the rV  value changed from 0.5 to 0.4. The summation of 

the SNV (and SEV) squared value changed almost in the same proportion as the ( 123
rV )2 value, so the 

EDOP and NDOP values just changed slightly. 

The lower left part of Figure 6 illustrates the same situation as the upper left part for a 20 

mask angle with an estimated clock parameter. Note that all summations (lower left) multiplied by n 

(= 4) are equal to the corresponding summations of the upper left part (see 14) and as expected, they 

give the same DOP values. But, as mentioned above, the number of combinations of satellite pairs 

and triads is directly comparable to the case without an estimated clock parameter (lower right part 

of Figure 6). As already explained, this is just the origin or one of the apex of the triangles and the 

tetrahedron that moves from point g (which is the average unit vector location) to point r (which is 

the receiver location). A small distinction that makes an important impact on the DOP values. 

Comparing the solution with a clock parameter on the left lower part and the solution 

without a clock parameter on the right lower part, one sees that the tetrahedron volume and the 

triangle surfaces in the E-V and N-V planes connecting the g point to the tips of the receiver-

satellite unit vector are smaller than the one formed with respect to the r point (receiver) as the 

origin. However their respective ratios, see 15 and 6, provide the same EDOP(' ) and NDOP(' ) 

values. The situation is very different for the VDOP(' ) factors. In fact, the triangle surfaces in the 

E-N plane remain the same and because ( 123
gV )2 is 4 times smaller than ( 123

rV )2, the VDOP' value 

improved by a factor of 2. Indeed, a very significant improvement. 
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Fig. 6 Surface and volume representations for a 10 elevation mask angle, and a 20 elevation mask angle 

with and without receiver clock parameter. Note that in equations V2 below some of the graphs, the V is the 

tetrahedron volume, not to be confused with the vertical vector component. 

 

Horizontally symmetrical (hs) satellite sky distribution 

In this ideal situation, where 



n

1i

i
r 0E  and 




n

1i

i
r 0N , matrix 11

3x3Q  becomes diagonal and the DOP 

values simplify to: 
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    (16) 

Equation (16) is indeed simpler than (15) because horizontally symmetrical satellite sky distribution 

is assumed. 

This ideal situation is largely respected for a full constellation and for open sky sites as this 

can be seen in Figure 7 and presented later with more discussions, even for a mid-latitude site, 

where a shadow area is present in the northern part of the observer’s sky. 

Now, comparing  22 i
hs g 

1

VDOP 1/ V
n

i

  from (16)  to   22 i
hs r 

1

VDOP 1/ V
n

i

    from (7), because the 

span of i
 gV  is twice smaller than the span of i

rV  ( rV is about 0.5), the VDOP value gets twice larger 

than the VDOP' value. Moreover, because the span of i
gE  ( i

gN ) is comparable to i
rE  ( i

rN ), one 

obtains EDOP = EDOP' and NDOP = NDOP'. Furthermore, the span of i
gE ( i

rE ) is similar to the 

span of i
gN  ( i

rN ), this gives that EDOP = NDOP = NDOP' = EDOP'. For the case without clock 

parameter, because the span of i
rV  is about the same as i

rE ( i
rN ), the VDOP' value is about the same 

as the EDOP' and NDOP' values. 

Furthermore, for this ideal situation (hs), the following relations also hold , 
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Equations (17) show the close relationships between VDOP', VDOP and TDOP factors. 

Now, let us have a look at the situation when 
rV is equal to 0. As seen from (17, line 2), the 

VDOP value will be equal to VDOP'.  This situation can be achieved with the addition of terrestrial 

transmitters such as pseudolites or signals of opportunity located below the user’s horizon, see for 

example Morales et al. (2016), Montillet et al. (2014) and Meng et al. (2004). In this continuation, 

let us imagine a transparent earth to the GPS signals. What would happen to the DOP(' ) values? 

Appendix 2 presents the results for this hypothetical situation.  

Indeed, the addition of terrestrial sources, at and below the user’s horizon, is another 

approach to improve GPS VDOP factors even if a receiver clock parameter has to be estimated. The 

other approaches to improve VDOP factors are the constraint of receiver clock (Weinbach and 

Schön 2011) and the calibration of cable biases for connected antennas to a single receiver in 

relative mode (Macias-Valadez et al. 2012). Note that the combination of both approaches, which 

are the use of additional terrestrial sources or the receiver clock parameter elimination, does not 

significantly further improve the VDOP value than the case when each approach is implemented 

separately. In other words, when rV  = 0, VDOP = VDOP' (see 17). This fact can also be seen from 

Figure 11. 

Furthermore, if rV is equal to 0,  
n

1
TDOP 2   (see 17, line 5), i.e., that the TDOP factor 

becomes just a function of the number of observed satellites (n). Figure 7 presents the East, North 

and Vertical DOP time series with and without an estimated clock parameter for site latitudes of 0, 

45 and 90, for a 10 elevation mask angle and for 24 hours calculated at every 5 minutes. The 

average values and their associated standard deviation are reported in the legend. Also note that the 

vertical scale of the polar site graph is twice the size of the 2 other graphs. 

Here, the emphasis is given on the geometric loss when a receiver clock parameter has to be 

estimated. In other words, this can be seen as the position gain if the clock parameter could be 

eliminated (at least in relative positioning, e.g., Macias-Valadez et al. 2012) or constrained 

(Weinbach and Schön 2011). These two studies will be discussed in detail later. From Figure 7, one 

can see that the horizontal (E and N) DOPs do not change significantly. For the mid-latitude site, 

the NDOP' slightly improves and the NDOP value is larger, compared to the two other latitude 

sites, due to the lack of GPS satellites in the northern part of the observer’s site. The standard 

deviation of the horizontal DOPs for the polar site is smaller because the satellite sky distribution is 

more homogenous, see bottom figure in Appendix 1.  However, the improvement is really 
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important for the vertical component which is better by a factor of 3 to 4. The VDOP' variability are 

also largely reduced, e.g., note the smoothness of the VDOP' curves. When comparing the values 

between different site latitudes, keep in mind that the average number of satellites is slightly larger 

for the polar site (10.5) compared to 8.7 for the mid-latitude site and 10.0 for the equatorial site. 

 

Fig. 7 East, North and Vertical DOP values with and without clock parameter estimation for site latitude of 

0 (top), 45 (middle) and 90 (bottom) for a 10 elevation mask angle 
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Let us note that the same geometric interpretation of the DOP factors is also applicable for 

GPS velocity DOP factors because both types of solutions have the same design matrix, such as: 

X Y Z

ρ ρ ρ ρ ρ ρ ρ ρ
e ; e e ; 1

X X Y Y Z Z c dT c dT

       
           

       
   
   

   (18) 

where Z ,Y ,X  are the receiver velocity components and Td  is the receiver clock drift. 

 

Geometry of satellite outage 

More attention has to be paid to matrix Q (4x4) of equation (8) which stands for the solution with a 

receiver clock parameter, to analyze its potential singularity. Matrix Q can be partitioned to 

emphasis its relation with matrix Q' (3x3), from the solution without the estimation of a clock 

parameter (4). Copps (1984) already presents such a development. Here, the interpretation of the 

results is made from a geometric point of view.  

The partition of matrix Q (8) can be made as follows: 























22
1x1

21
1x3

12
3x1

11
3x3

1

22
1x1

21
1x3

12
3x1

11
3x31

4x44x4
QQ

QQ

NN

NN
NQ           (19) 

   

  






















β

1
Qe

β

n

eQ
β

n
QeeQ

β

n
Q

Q
T
r

r
T
rr

2

4x4
            (20) 

where 

 r
T
r

2 eQe nnβ           (21)  

β

1
TDOP2                    (22) 

which will allow the geometric interpretation of GPS satellite outage. 

The term  QeeQ 
β

n T
rr

2

  represents the penalty to have to estimate a receiver clock parameter. 

The other way around, this can be seen as the gain if the receiver clock parameter can be removed 

from the conventional GPS positioning solution. 
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The resultant vector reQ (3x1), also present in the scalar  (21), especially deserves a 

detailed analysis, 
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In fact, this is the projection of the first, the second and the third columns of the Q' matrix on the 

average receiver-satellite unit vector. After Copps (1984), this is the direction where the singularity 

can happen. According to Leick et al. (2015, p. 302), as the constellation observed and the satellites 

approach critical configuration, the DOP values increase, and the resulting positioning solution 

becomes ill conditioned. 

The singularity happens where  = 0, note that is contained in the numerator of all DOPs 

equation, or when:  

n

1
eQe r

T
r                 (24) 

where n is the number of satellites. 

In this situation, the direction of the vector 
reQ corresponds to the principal axis of a 

singularity cone (Figure 8). The intersection of this cone with the unit sphere defines a small circle 

where all the receiver-satellite unit vector tips end. The aperture angle of the cone, or the angle 

between the cone principle axis and each receiver-satellite unit vector, is given by: 

reQn 

1
arccosκ


        (25) 

The singularity cone is also illustrated in Figure 8. 
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Fig. 8 Singularity cone and satellite outage 

 

On a stereographic satellite sky plot, the circle shape will be kept (Wunderlich 1998 and 

Antonopoulos 2003). In a vertical plane, containing the cone principal axis, the circle will be 

projected into a straight line (Figure 9). 

As seen in Figure 8, ijk
gV = 0, because the vectors r

i
r

i
g eee 


 lie in a single plane which is 

the base of the cone formed by the tip of receiver-satellite unit vectors, i.e., the cone’s principal axis 

being perpendicular to the cone base. The cross product of every pair of vectors ( j
g

i
g e,e


) also gives 

the direction of the cone’s principal axis. Note that ijk
rV can also be equal to zero when the receiver-

satellite unit vector tips lay in a great circle forming a plane with the receiver position. Indeed, in 

Figure 9, note that the DOP' values remain very small because the tips of the receiver-satellite unit 

vectors are not laying on a great circle. The red star in the figure represents the intersection of the 

cone’s principal axis with the unit sphere. Figure 9 is a situation that can happen, for example in 

urban canyons, even with a complete GPS constellation.   
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Fig. 9 Projections of a singularity cone 

 

Receiver clock parameter constraint 

In conventional GPS kinematic mode, three new coordinates and one receiver clock parameter are 

estimated each epoch. Matrices A and N for 2 epochs, t1 and t2 with n1 and n2 satellites, 

respectively, are presented in the following equations: 
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Generalization for more than 2 epochs (nE) can be constructed with the same scheme. 

As suggested by Weinbach and Schön (2011), if the clock parameters can be constrained 

and only 1 common receiver clock parameter is estimated for the 2 epochs, the design matrix A and 

matrix N look like: 
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In fact, partitioning the inversion of matrix   1clk Ep, 211clk Ep, 2 QN 
 allows linking the positioning 

solution with one receiver clock parameter estimated at each epoch   1Ep 2Ep 2 NQ


 . The same 

demonstration stands for any number of epochs (nE). Note that the epoch wise solution (8) will give 

the same results, at each epoch, then the inversion of   1Ep 2Ep 2 NQ


 from (26). 

For proof of concept simplification, let us assume that the number of satellites (n) associated 

to each epoch is equal and that the coordinate DOPs at epoch 1 equal those of epoch 2 and 
t1V  = 

t2V , 

which are fair assumptions because the number of regrouped epochs is small and of short time 

duration. Furthermore, considering that the satellite distribution is horizontally symmetrical, i.e., rE

= 0 and rN = 0. Then, for nE epochs, under the above assumptions, there is no change for EDOP 

and NDOP values, but the TDOP and VDOP values become smaller according to the following 

equations: 
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where nE is the number of epochs where the receiver clock parameter is assumed to be constant and 

WS is the index associated to the Weinbach and Schön (WS) approach. 

As shown in Table 2, as the number of epochs (nE) increases the VDOPWS value approaches 

the VDOP' value, i.e., the solution without receiver clock parameter. However, as mentioned by 

Weinbach (2013, p. 65), this approach creates a mathematical correlation between the vertical 

coordinate estimation between epochs. 
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Table 2  Coefficients of the weighted average of the VDOP factors for the WS approach as a function of the 

number of epochs 

nE 1 – 1/nE 1/nE               VDOPWS 

     (if VDOP=2VDOP') 

             VDOPWS 

     (if VDOP=3VDOP') 

1 0 1  2 VDOP'    =   1  VDOP  3 VDOP'    =   1  VDOP 

2 1/2 = 0.50 1/2 = 0.50 1.6 VDOP'  =  0.8 VDOP 2.2 VDOP'  =  0.7 VDOP 

3 2/3 = 0.67 1/3 = 0.33 1.4 VDOP'  =  0.7 VDOP 1.9 VDOP'  =  0.6 VDOP 

4 3/4 = 0.75 1/4 = 0.25 1.3 VDOP'  =  0.7 VDOP 1.7 VDOP'  =  0.6 VDOP 

5 4/5 = 0.80 1/5 = 0.20 1.3 VDOP'  =  0.6 VDOP 1.6 VDOP'  =  0.5 VDOP 

10 9/10 = 0.90 1/10 = 0.10 1.1 VDOP'  =  0.6 VDOP 1.3 VDOP'   =  0.4 VDOP 

100 99/100 = 0.99 1/100 = 0.01 1.01VDOP' = 0.51 VDOP 1.04VDOP'  = 0.35 VDOP 

 (no clock) 1 0 1 VDOP'      = 0.50 VDOP     1 VDOP'  = 0.33 VDOP 

 

The VDOP improvement due to the WS approach is not perceptible at all for static 

positioning as explained and noticed in Weinbach (2013, p. 64) and Santerre (1991). Under the 

same preceding assumptions, the DOP factors associated with the coordinates remain the same if 1 

clock parameter per epoch, which is equivalent to double difference processing, or if only 1 clock 

parameter is estimated for the whole static session. Of course, when there is no clock parameter 

estimated, the VDOP value improves in the same proportion in static mode as for kinematic mode 

as demonstrated in Santerre and Beutler (1993). 

The WS approach combined with the calibration prototype realized by Macias-Valadez et al. 

(2012) to get rid of the receiver clock parameter will be the perfect match to improve the vertical 

GPS relative positioning in real situation. In fact, the WS approach would be used to absorb any 

uncalibrated electronic delay which can slowly vary with time or with temperature. In the proposed 

method and the prototype developed by Macias-Valadez et al. (2012), the receiver clock parameter 

is eliminated because antennas are connected to the same receiver and differential delays in the 

optical fiber cables were calibrated in real-time. 
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Conclusions  

We revisited the geometric interpretation of GPS Dilution of Precision (DOP) factors. The emphasis 

has been given on the geometric impact of the receiver clock parameter to the conventional GPS 

positioning solution. The comparison has been made between the solutions with and without an 

estimated receiver clock parameter, i.e., conventional GPS vs pure trilateration solution. The 

generalized form of the DOP factors was also presented for observation redundancy greater than 

zero. The DOP factor equations are established as functions of triangle surfaces and tetrahedron 

volumes formed by the receiver-satellite unit vectors or by these vectors between themselves. To 

facilitate the geometric comparison of the two positioning solution cases, without and with an 

estimated receiver clock parameter, the average receiver-satellite unit vector has been used. In fact, 

for these 2 different cases, the triangles and tetrahedron have different apexes. This helped to 

explain from a geometric point of view, why the VDOP factor is larger than the EDOP and NDOP 

factors. The geometry of satellite outage was also revisited using the average receiver-satellite unit 

vectors at a given epoch. Finally, the geometric interpretation of receiver clock constraints within a 

positioning solution, as proposed by Weinbach and Schön (2011), has been demonstrated to be a 

weighted average of the solutions with and without an estimated receiver clock parameter, as a 

function of the number of epochs used to constrain the receiver clock parameter. 
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Appendix 1:   Projections onto the 3 local orthogonal planes of the GPS satellite traces 

 

 

Fig. 10 Projections of GPS satellite traces onto the 3 local orthogonal planes for 24 hours for equatorial site 

(top) and polar site (bottom). The yellow stripes represent a 15 elevation mask angle 
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Appendix 2:   GPS DOP factors for a transparent earth 

A simulation with the real GPS constellation (May 17, 2016, 31 satellites) has been done for  24 

hours calculated at every 5 minutes and for site latitudes of 0 (Figure 11, top), 45N (middle) and 

90N (bottom) with an elevation mask of -90 to simulate an all-in view constellation. Because 

there are more satellites below the local horizon at each site the rV value is negative (-0.16) for all 3 

sites, which explains that the VDOP values are slightly different than the VDOP' values. The rE and 

rN values are equal to 0 for the three sites and the average TDOP value is 0.19, with a range 

between 0.184 and 0.193. Note the smoothness of the curves even when a receiver clock parameter 

is estimated. All daily averages of the DOP values are the same for all three sites, except for the N 

component for a mid-latitude site with a slight difference of 0.01.  
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Fig. 11 GPS DOP factor time series for a theoretical transparent earth for equatorial (top), mid-latitude 

(middle) and polar (bottom) sites 
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