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Résumés

Résumé court

Une chaîne logistique est composée d’entreprises fabriquant et distribuant des produits
aux consommateurs. En modélisant chacune de ses entreprises comme un agent intel-
ligent, nous étudions l’effet « coup de fouet » qui s’y propage. Cet effet consiste en
l’amplification de la variabilité des commandes passées par les entreprises lorsque l’on
s’éloigne du client final.

Dans un premier temps, nous modélisons chaque entreprise d’une chaîne logistique
forestière québécoise comme un agent intelligent, afin de proposer deux mécanismes
de coordination décentralisés réduisant ce phénomène. Des simulations de ce système
multiagent montrent que ce mécanisme est efficace pour une chaîne logistique dans son
ensemble.

Dans un second temps, d’autres simulations sont utilisées pour construire un jeu,
que nous analysons avec la Théorie de Jeux. Nous vérifions ainsi que les entreprises
n’ont pas intérêt d’arrêter unilatéralement d’utiliser nos mécanismes de coordination
(équilibre de Nash).
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Résumé long

Une chaîne logistique est composée d’entreprises fabriquant et distribuant des produits
aux consommateurs. En modélisant chacune de ses entreprises comme un agent intel-
ligent, nous étudions l’effet « coup de fouet » (Bullwhip effect) qui s’y propage. Cet
effet est une amplification de la variabilité de la demande lorsque l’on s’éloigne du client
final. On peut aussi voir ce phénomène comme un cas particulier de fluctuations des
flux dans un système distribué. Ces fluctuations réduisent l’efficacité de la chaîne logis-
tique, principalement du fait de l’élévation des niveaux d’inventaire et de la réduction
de l’agilité. . . On estime que ce phénomène coûterait de 40 à 60 millions USD pour une
papetière de 300 kilotonnes.

L’effet coup de fouet étant provoqué par un manque de coordination entre les agents,
nous proposons deux principes qui doivent inspirer tout mécanisme de coordination,
à savoir : (i) commander ce que l’on nous commande élimine l’effet coup de fouet
mais ne gèrent pas les inventaires, et (ii) les entreprises ne devraient réagir qu’une
seule fois à chaque changement dans la consommation du marché. Afin de valider ces
deux principes, nous simulons une chaîne logistique forestière appelée le Jeu du Bois
Québécois. Ce jeu permet d’enseigner ce qu’est l’effet coup de fouet. Chaque joueur-
entreprise y est modélisé par un agent intelligent appliquant une stratégie donnée pour
passer ses commandes. À cet effet, nous avons conçu deux stratégies suivant nos deux
principes.

Dans un premier temps, nous comparons expérimentalement l’efficacité de ces deux
stratégies avec cinq autres stratégies. Nous supposons ici que la chaîne logistique est
homogène, c’est-à-dire que toutes ses entreprises utilisent la même stratégie de com-
mande. Nous vérifions ainsi que nos deux mécanismes de coordination, implémentés
sous la forme de stratégies, sont efficaces pour la chaîne logistique dans son ensemble.

Dans un second temps, nous cessons de supposer la chaîne homogène pour faire
davantage de simulations nous permettant de construire un jeu. En analysant ce jeu
avec la Théorie de Jeux, nous vérifions que les entreprises n’ont pas intérêt d’arrêter
unilatéralement d’utiliser nos deux mécanismes de coordination (équilibre de Nash).



Abstracts

Short abstract

A supply chain is a set of companies that manufacture and distribute products to
consumers. We study the “bullwhip effect” that is propagated therein by modelling
each company as an intelligent agent. This effect is the amplification of the variability
of orders placed by companies, as one moves away from end-customers.

Firstly, we model each company in a Québec wood supply chain as an intelligent
agent, in order to propose two decentralized coordination mechanisms reducing this phe-
nomenon. Simulations of this multi-agent system show that our mechanism is efficient
for a supply chain as a whole.

Secondly, additional simulations are used to build a game, which we analyze with
Game Theory. We verify here that companies have no incentive to cease unilaterally
from using our two coordination mechanisms (Nash equilibrium).
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Long abstract

A supply chain is a set of companies that manufacture and distribute products to end-
customers. We model each company as an intelligent agent to study the “bullwhip
effect”, that is, the amplifcation of the variability in orders placed by companies. This
phenomenon can also be seen as a particular case of stream fluctuations in a distributed
system. Such fluctuations incur costs due to higher inventory levels and supply chain
agility reduction. This cost has been estimated at 40-60 million USD for a 300 kton
paper mill.

Since the bullwhip effect is due to a lack of coordination, we propose two principles
that any coordination mechanism should respect: (i) ordering what is ordered from us
eliminates the bullwhip effect but do not manage inventory, and (ii) companies should
react only once to each market consumption change. In order to validate these two
principles, we simulate a forest supply chain called the Québec Wood Supply Game.
This game is used to teach the bullwhip effect. Each company-player is modelled as an
intelligent agent applying a given ordering rule. For this simulation, we have designed
two rules that respect our two principles.

Firstly, we compare experimentally the efficiency of these two rules with five other
rules. We assume here that the supply chain is homogeneous, that is, every company
uses the same ordering rule. In this way we check that our two coordination mechanisms,
i.e., our two ordering rules, are efficient for the supply chain as a whole.

Secondly, we stop assuming the supply chain is homogeneous to carry out additional
simulations in order to build a game. The analysis of this game according to Game
Theory shows that companies do not have incentive to cease unilaterally from using our
two coordination mechanisms (Nash equilibrium).
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Chapter 1

Introduction

Stream fluctuations may occur in many types of distributed systems, or in other words,
the streams in these systems are not stable. Since such an instability decreases the
efficiency of the considered distributed system, we would like to reduce it. In particular,
Multi-Agent Systems are distributed systems that are made of several autonomous
entities, called agents, that interact by requesting to other to carry out some tasks
(request stream) and by carrying out these tasks (task stream). Since such multi-
agent systems are distributed, their efficiency may also be reduced by fluctuations
in their internal streams. In this dissertation, we focus on supply chains dynamics
using multi-agent systems to come up with fundamental learning about the value of
collaboration within a supply chain. A supply chain is a network of companies producing
and distributing products to end-customers. In this context, fluctuations affect order
stream, and are called the “bullwhip effect”. This phenomenon decreases supply chain
efficiency, because it induces an inventory level increase and a supply chain agility
decrease. The problem of stream fluctuations, and in particular the bullwhip effect, are
presented in Section 1.1.

This dissertation pursues two goals:

• the understanding of the dynamics of a whole supply chain in order to propose
some coordination mechanisms reducing the bullwhip effect while taking into ac-
count operational constraints and maintaining service level;

• the verifying of agents’ incentive to use such coordination mechanisms.

To achieve these goals, we model each company as an intelligent agent, i.e., as an
autonomous, software entity, which allows us to consider a whole supply chain, instead
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of one or two companies, as is usually done in other studies of the bullwhip effect.
With this agent model, our first goal is addressed by designing each company-agent’s
behaviour in order to reduce the bullwhip effect in the supply chain. More precisely,
agent behaves according to the distributed coordination mechanism that we propose
as a solution to the bullwhip effect. However, the emphasis of this work is more on
methodology than on optimization of the coordination mechanism, because simulations
show that coodination decreases logistics costs by several orders of magnitude.

The problem is that agents may disagree to use our coordination mechanism. For
this reason, our second goal is to check whether every agent has an individual incentive
to behave according to our coordination mechanism. Precisely, game theory is used
to analyze inter-agent interactions in our simulation of a supply chain. These research
questions are motivated in Section 1.2. Those questions are interesting for both supply
chain management and multi-agent systems. We detail our contributions for these two
fields in Section 1.4. Next, we compare our work with existing research contribution in
Section 1.5. Finally, Section 1.6 outlines the content of this thesis.

1.1 Stream Fluctuations in Distributed Systems: The
Bullwhip Effect

The performance of many distributed systems is reduced by the unstability of their
internal streams. As a distributed system, a multi-agent system may face this problem
too. In this dissertation, we focus on supply chains modelled using multi-agent systems.
This dissertation focusses on this particular type of stream fluctuation.

Supply chains are distributed systems composed of different companies producing
and distributing products to customers. In such a supply chain, fluctuations affect order
streams, as illustrated in Figure 1.1:

• the Retailer sells to the customer and buys from the Wholesaler;

• the Wholesaler sells to the Retailer and buys from the PaperMill;

• the PaperMill sells to the Wholesaler and buys from an unknown supplier.

As orders flow within the supply chain, their variability increases. This phenomenon
of fluctuation of the order stream is known as the “bullwhip effect”. Lee et al. [1997a]
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Figure 1.1: The bullwhip effect [Lee et al., 1997a,b].

said about this phenomonon: “The ordering patterns of the three companies share a
common, recurring theme: the variabilities of an upstream site are always greater than
those of the downstream site”. As a variability, the bullwhip effect is measured by the
standard deviation σ of orders (notice that the means µ of orders are all equal in our
example in Figure 1.1).

Forrester [1958] was the first author to describe this phenomenon. Next, Lee et al.
[1997a,b] have proposed four causes of this effect: (i) demand forecast updating, (ii)
order batching, (iii) price fluctuation and (iv) rationing and shortage gaming. Other
authors have extended Lee and his colleagues’ causes and solutions to the bullwhip
effect: (v) misperception of feedback in the supply chain [Sterman, 1989], (vi) local
optimization without global vision [Kahn, 1987; Naish, 1994; Shen, 2001], and (vii)
variabilities due to company processes [Taylor, 1999].

There are several consequences of the bullwhip effect. In a few words, this effect
incurs costs due to higher inventory levels, supply chain agility reduction, decrease of
customer service levels, ineffective transportation, missed production schedules. . . In
fact, such fluctuations of the demand lead every participant in the supply chain to
stockpile because of a high degree of demand uncertainties and variabilities [Lee et al.,
1997b]. An insight into the importance of this problem is given by Carlsson and Fullér
[2001] who estimate that the costs incurred by the bullwhip effect are 200-300 MFIM
(40-60 millions USD) annually for a 300 kton North-European paper mill.

According to Cooper et al. [1997], the bullwhip effect is a coordination problem be-
tween autonomous companies, which can thus be considered as agents. Therefore, the
proposed solution to the bullwhip effect is a decentralized coordination technique. On
account of this, the first point addressed by this dissertation is the design of coordi-
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nation techniques reducing information flow fluctuations1 in distributed systems. This
point is studied for the special case of a supply chain modelled as a multi-agent system,
in which the demand amplification has to be reduced, while keeping low inventories and
good customer service levels. It is worth noting here the difference between the words
“distributed” and “decentralize”. In fact, the systems considered in this dissertation are
distributed in a geographic and/or in a functional way. It follows that the proposed
coordination mechanism has to take into account this distribution. The simplest so-
lution would be to centralized the coordination, i.e., to transmit the whole requested
information to a node in the system, then to compute the optimal optimization, and
finally to make this coordination run in the system. This approach is not the actual
philosophy of multi-agent systems. In fact, our coordination mechanism has no center,
or more precisely, every node in the system takes part to the coordination process.

Another issue may appear with such coordination techniques: some agents may dis-
agree to use it, because they are better off with fluctuations. More generally, agents
may refuse to coordinate in a multi-agent system, because they do not profit, or even
suffer, from the increase of the system efficiency incurred by the coordination mech-
anism. Similarly, coordination may be expensive, and each agent would prefer that
the rest of the multi-agent system coordinates, but without itself, because this agent
would profit from the effort of coordination made by the others without participating
in this effort. In most supply chain, companies have different conflicting objectives. In
particular, on the one hand, the bullwhip effect disturbs the PaperMill in Figure 1.1
while it cannot reduce it, and on the other hand, the Retailer in Figure 1.1 is the first
company to generate this phenomenon while it does not have incentives to reduce it,
because it does not directly suffer from it. This problem is thus interesting, because if
the Retailer spends money to reduce the bullwhip effect, it does not directly profit from
this reduction while it pays for it. In fact, the Wholesaler and the PaperMill directly
profit from this reduction, and the Retailer has only an indirect benefit, due to the fact
that it receives product with lower delays, because the Wholesaler and the PaperMill
have less stockouts and are thus able to ship product to the Retailer in time. In other
words, the problem is not only to understand the dynamics generating fluctuations in
order to propose some solutions, but also to check if companies will individually profit
from this solution, and if this is not the case, to propose some incentive alignment
mechanism. This problem of individual incentive that may be in contradiction with the
group welfare is the second point addressed in this dissertation, in the special case of
the adoption of a mechanism reducing the bullwhip effect in the supply chain.

To sum up, the two goals of this thesis are (i) to study how stream fluctuation
propagates in a distributed system by considering the case of a supply chain modelled

1Both product and order streams in supply chains may fluctuate and be disturbed.
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as a multi-agent system reducing these fluctuations, and to propose a coordination
mechanism as solution, and (ii) to check if company-agents have individual incentives
to use such a coordination mechanism. We now motivate our approach to address these
two points.

1.2 Motivations

We have previously presented the bullwhip effect as a particular case of stream fluc-
tuations in a distributed system. In this thesis, we use simulations to address the two
questions related to stream fluctuations, as stated in the previous section. First, we
study how such fluctuations are generated and how to reduce them. To achieve that,
we see each company in a supply chain as an intelligent agent, and we look for agents’
individual decisions reducing order fluctuations, i.e., reducing the bullwhip effect. In
this dissertation, an intelligent agent is a software conceived as an autonomous entity
interacting with other agents. Inter-agent interactions are formalised with game theory
in the second question addressed. This question concerns company-agents’ incentive
to reduce stream fluctuations by adopting the behaviour proposed in our coordination
mechanism. We now develop our motivations to address these two questions.

1.2.1 Motivation to Propose a Coordination Mechanism

First, we take the agent model of a company in the QWSG (Québec Wood Supply
Game), which is a board-game based on the Beer Game to teach supply chain dynam-
ics in the Québec forest industry. That is, we replace human players in the QWSG
by intelligent agents. The supply chain model in the QWSG is interesting, because it
is simple while the emerging dynamics are very complex. In this context, our goal is
to understand how these agents have to place orders in order to minimize the overall
supply chain cost, according to the QWSG rules. From the viewpoint of supply chain
management, we look for an ordering scheme that stabilizes placed orders, while min-
imizing inventory levels, avoiding stockouts, and fulfilling market demand. From the
viewpoint of multi-agent systems, the market demand can be seen as the output of
the multi-agent system, and our goal is to design agent’s behaviour so that the system
reponses the most efficiently to the demand. To do that, we design a decentralized co-
ordination mechanism making each agent behave according to the set point requested
as system output, where the set point corresponds to the market demand when the
considered system is a supply chain.
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To obtain this stabilization, the basic idea is to make all agents’ orders conform to
the market consumption. This solution to the bullwhip effect is intuitive, but as we will
see later, it does not take operational constraints into account, i.e., inventories in the
QWSG are not well managed. Such a solution can be summarized in two principles:

Principle 1: Lot-for-lot orders eliminate the bullwhip effect, but do not manage inven-
tories.

Lot-for-lot ordering means that each company orders what has been demanded from
it, e.g., if its client wants 10 products, the company places an order for 10 products.
With such a strategy, the bullwhip effect is eliminated, but inventory levels are not
managed. Therefore, we keep lot-for-lot orders, but we add another piece of information
to manage inventory levels. Now, orders are vectors (O, Θ) instead of a unique number
X. O in (O, Θ) are set according to the lot-for-lot scheme. This second piece of
information is also an order, but its objective is only to stabilize inventory at its initial
level. Therefore, the Retailer transmits the market consumption to the Wholesaler in O,
next the Wholesaler transmits this information to the PaperMill, etc. As a result, the
first principle rules O, but we need another principle to rule Θ. The way to emit this
information is also studied in order to avoid that this second type of order be emitted
at any time, i.e., to avoid the bullwhip effect being moved in this second type of order.
The needs for this point are summarized in our second principle:

Principle 2: Companies should react only once (by under- or overordering) to each
market consumption change.

In this context, Θ are equal to zero all the time, except when market consumption
changes, in which case companies react to this change by sending non-zero Θ in order
to stabilize their inventory to the initial level. In other words, Θ are proportional to
the variation of the market consumption. As we can see, these two principles imply
collaboration in the supply chain, where the collaboration is based on information shar-
ing. In this thesis, we consider that collaboration is demand information sharing, that
is, companies share their demand with their suppliers. We also study information cen-
tralization, where retailers multi-cast the market consumption in real-time to the whole
supply chain, accelerating real demand transmission.

As an illustrative example of our two principles, we propose two ordering schemes
reducing the bullwhip effect. As stated above, agents place (O, Θ) vectors as orders,
where O are ruled according to our first principle and Θ according to our second prin-
ciple. As a result, there is information sharing, because each company transmits in O
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the market consumption, the difference between the two proposed ordering schemes
lies in the manner of performing this information sharing. In our first scheme, O rep-
resent the market consumption transmitted from each company to its suppliers, and
Θ are used to order more or less than O when required. In this case, O are used to
perform the information sharing. Our second scheme works in a similar way, except
that we assume there is information centralization, i.e., retailers multi-cast in real-time
the market consumption in the whole supply chain. As a consequence, company-agents
base their placed orders directly on the actual market consumption, instead of on O.
In this case, O also represent the market consumption transmitted by the client, but
a ‘fresher’ information is provided by information centralization. In fact, the market
consumption transmitted in O in the first scheme is as slow as orders, while information
centralization in the second scheme is assumed to be instantaneous and in real-time.

The efficiency for reducing the bullwhip effect of these two schemes is validated by
simulations of the QWSG. Precisely, our two schemes are compared with five other
ordering rules that are not ruled by our two principles. As we focus on the bullwhip
effect, our metric is the standard deviation of orders placed by companies. We also use
three other metrics to measure the consequences of the bullwhip effect. We note in our
simulations that our two ordering schemes change the supply chain dynamics in two
ways. The first way is the reduction of information stream fluctuations, i.e., our goal
of reducing the bullwhip effect is reached. The second way is more surprising: there
is a distribution change in backorder durations among companies. In fact, retailers’
backorders become longer within a collaborative scheme, while the retailers are the least
disturbed companies by backorders within a traditional approach. The consequence of
this change in backorder duration distribution is a change in the cost distribution in
the supply chain.

These solutions to the bullwhip effect are also interesting for multi-agent systems,
because some causes of this effect may also exist for other types of distributed systems.
When this is the case, our solution only needs to be translated for these other types of
distributed systems; we will see the example of vehicles on roads in Subsection 5.6.2.
Moreover, conclusions drawn from experiments on our special case of distributed system,
i.e., the supply chain in the QWSG, may also apply to these other distributed systems,
such as multi-agent systems. For instance, the effect noted on the change in backorder
duration distribution may also occur in other distributed systems, but in a different
way affecting system dynamics.
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1.2.2 Motivations for Studying Incentives to Use our Coordina-
tion Mechanism

As previously stated, there is a change in backorder duration distribution, that arises the
second question addressed in this dissertation. In fact, companies may refuse to use our
schemes because of this distribution change, which may be an issue, because our ordering
schemes are based on the market consumption measured by retailers and transmitted
to other companies. In this context, if a company disagrees to communicate the market
consumption information to the rest of the supply chain, our two ordering schemes using
(O, Θ) orders cannot work properly, and companies become unable to apply our second
principle. Moreover, each company may prefer that all other companies collaborate but
not itself. This is the reason why we study individual incentives to use either the (s, S)

policy (a classic ordering policy in the field of Inventory Management), or one of the
two proposed schemes.

Each company decides which ordering schemes to use. This choice is made to min-
imize its costs, but this choice also impacts on the rest of the supply chain. Many
simulations are carried out to check this effect, that is, what happens for each company
when a particular company chooses a particular scheme. Game theory is used to an-
alyze this huge quantity of simulation outcomes. During this analysis, overall supply
chain cost is again taken into account, as well as each company’s cost, to find when
each company has the lowest cost depending on others’ choice.

The result of our analysis is that all companies prefer to use our ordering schemes,
because if Company i does not choose one of our two schemes while the rest of the supply
chain does so, then Company i has a higher cost. In other words, using one of our two
schemes is a Nash equilibrium, and using the (s, S) policy is not a Nash equilibrium.
Thus, we got significant results with game theory. Notice that game theory is more
and more frequent in both supply chain management [Cachon and Netessine, 2003] and
multi-agent system fields [Boutilier et al., 1994]. Furthermore, Geoffrion and Krishnan
[2003] cite program objectives for National Science Foundation [2004]’s Advanced Com-
putational Research Program showing that simulations are very useful in research, i.e.,
our multi-agent simulations are useful for supply chain management, even if they are
not theoretical:

As pointed out in many documents and reports, computer simulation has
now joined theory and experimentation as a third path to scientific knowl-
edge. Simulation plays an increasingly critical role in all areas of science
and engineering.
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Geoffrion and Krishnan [2003] also support this idea:

Our second main observation concerning management science work [. . . ]
is that there is a trend toward making greater use of computation and
communication.

Next, they explain this observation:

Both empirical and methodological work are gaining at the expense of purely
theoretical work. It is easy to understand such a trend in terms of the chang-
ing relative productivities of these three kinds of research work, because
computation, data, and communication are much more important as fac-
tors of production in empirical and methodological work than in theoretical
work. The cost and availability of these factors have changed enormously
while technology has made thinking, the main ingredient of theoretical work,
only moderately more productive per labour hour or per resource dollar.

We now present how we use agent-based simulations in supply chain management.

1.3 Methodology

In this research, we propose two decentralized coordination mechanisms to reduce order
fluctuations in a supply chain, next we check if company-agents will agree to use this
mechanism. In the simulations used in these two parts2, each company is programmed
as an agent that is travelled by order and product streams, and we combine these agents
to form our simulation of a supply chain. Each agent’s behaviour is implemented by its
ordering scheme. In the first part, we simulate the seven following ordering schemes:

• an ordering scheme called (s, S) policy, which is a classic ordering policy in the
field of inventory management;

• two ordering schemes which are the decentralized coordination mechanisms using
(O, Θ) orders that we propose;

2Two simulators were developped, but only the first one was used in our experiments.
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• four ordering schemes which are used to understand which base principles are key
factors to reduce the bullwhip effect.

Since the four latter schemes were simulated only to understand that we need our two
principles to reduce the bullwhip effect, we drop them in the second part of our work,
in order to focus on the confrontation of the well-known (s, S) with our two schemes.
The methodology in these two parts is now detailed.

1.3.1 Methodology for Validating our Coordination Mechanism

In this first part, we check if the two schemes based on our two principles minimize
the bullwhip effect, while inventories are well managed, that is, inventory levels are as
low as possible, but sufficient to fulfill incoming demand (in practice, the two schemes
are designed so that inventory levels stabilize at the initial inventory level when the
demand is constant for a sufficient time, but we only do so in our simulation to check
the efficiency of our concepts). Here, all companies behave the same, which is referred
to a “homogeneous supply chain”.

Since our goal is to reduce the bullwhip effect, the considered metric is the standard
deviation of orders placed by companies, and in particular, orders placed by the most
upstream supplier. We also consider three indirect metrics measuring the harmful
consequences of the bullwhip effect. The first of these three indirect metrics is the
logistics cost incurred by the entire supply chain. We consider in this first part the
supply chain as a whole, without considering each company’s interest for the moment.
The two other indirect metrics are (i) the standard deviation of the inventory level, to
measure the average inventory level (the greater the standard deviation of inventory
level is, the more inventory level fluctuates, and thus, the higher the average inventory
level is, because companies increase their safety stock to avoid stockouts), and (ii) the
number of backordered items, to measure the customer service levels.

1.3.2 Methodology for Checking Incentives for Collaboration

In the second part, we assume that the supply chain is heterogeneous by letting com-
panies use any of the three schemes: the classic (s, S) or one of our two schemes. The
question is now to find which scheme will be chosen by each company. In fact, our
two schemes may incur negative consequences for some agents, although these schemes
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are good for the overall supply chain. The methodology consists in using the same
simulation as in the homogeneous case, but each company can use different ordering
schemes from other companies. Precisely, 36 = 729 simulations are carried out, in which
all companies use the first ordering scheme in the first simulation, next, all companies
use the first ordering scheme except one company which uses the second scheme in the
second simulation, . . . and all companies use the third scheme in the 729th simulation.
As a comparison, we have carried out only one simulation per each of the 7 ordering
schemes in the first part of our experiment program.

For each simulation and for each company, we record the backorder and inventory
holding costs. We use these 6 × 36 costs to build a game in the normal form in which
we look for dominated strategies, Nash equilibria and Pareto dominations of these
equilibria. As this game is very large, a software called “Gambit” was used for this
analysis. Results from Gambit show that using one of our ordering schemes is a Nash
equilibrium, that is, no company would like to stop using this scheme if the rest of the
supply chain also continues using it, while using (s, S) is never a Nash equilibrium.

We can note that we have not only used multi-agent systems to model the supply
chain, but we also contribute to this field by designing a decentralized coordination
mechanism aiming at reducing the bullwhip effect, and by proposing a game theory-
based methodology to study incentives for using a coordination mechanism. We should
note that this methodology appears as the main contribution of this work because it
allows evaluating if collaborative approaches are collectively and individually efficient.
We now develop how our work contributes to the two fields of supply chain management
and multi-agent systems.

1.4 Contributions

As previously stated, our main contribution is the methodology that applies game
theory to analyze multi-agent simulations. This methodology is interesting for the two
fields adressed in this disseratation; our contributions for supply chain management are
presented first, followed by our contributions for multi-agent systems.
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1.4.1 Contributions to Supply Chain Management

Contributions to supply chain management are obvious, because the studied problem
belongs to this field. In fact, the three main contributions of this thesis for supply chain
management are:

1. the explanation of why delays are themselves a cause of the bullwhip effect, while
such delays are only seen in the literature as an aggravating factor of another
cause of the bullwhip effect;

2. the proposition of two principles for minimizing this cause of the bullwhip effect,
and two schemes illustrating these two principles;

3. the study of companies’ incentive for collaboration, i.e., the use of our methodol-
ogy that applies game theory to verify the incentive for applying our two principles;

4. a broad, critical review of literature about the bullwhip effect, that presents this
effect as a special case of stream fluctuations in distributed systems;

5. the study of the dynamics in an entire supply chain. In particular, we verify that
collaboration is not only the best strategy for the whole supply chain, but also,
that no companies have incentives to stop collaborating.

The two first contributions are closely related. On the one hand, our explanation
of why delays are themselves a cause of the bullwhip effect permits us to propose
our two principles, and on the other hand, these two principles aim at reducing the
bullwhip effect generated by delays. Two ordering schemes are then proposed based
on these two principles. In the first scheme, companies only have O to know the
market consumption. Therefore, Θ are proportional to the variation of O to respect
the second principle. This first version is called “Ordering scheme B” in this document.
In the second ordering scheme, information centralization is used, that is, retailers
multi-cast the market consumption to the whole supply chain. Like (O, Θ) orders,
information centralization also transmits the market consumption information, except
that information centralization is much quicker because it is instantaneous and in real-
time. To profit from this acceleration of information sharing, our second ordering
scheme is made more efficient by setting Θ proportional to the variation of the market
consumption: as soon as the market consumption changes, non-zero Θ are sent by all
companies. Moreover, companies set O equal to the market consumption transmitted
by retailers instead of on incoming O, again in order to react quicker to the market
consumption change.
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These two ordering schemes are then compared with simulations under different
scenarios. Precisely, we compare our two ordering schemes with five other schemes
under nineteen different market demand patterns to study the efficiency of our schemes
at the supply chain and individual levels, that is, we check if our schemes are efficient
for the entire supply chain in the QWSG, and if every company agrees to use them.

In order to address the third main contribution listed above, i.e., companies’ incen-
tive for collaboration, we carry out additional simulations. In these simulations, we use
a cost function adapted from the Québec forest industry, and we apply ordering pa-
rameters that are optimized so that the overall supply chain cost is minimum. In fact,
our two ordering schemes assume companies collaborate, because they share demand
information, but we have to check if they agree to share this information. Here, we
consider not only the efficiency of collaboration by information sharing for the whole
supply chain, but also the efficiency for each company. That is, we study selfish com-
panies’ behaviours versus the minimization of the overall cost with game theory. The
analysis of simulation outcomes with game theory shows that collaborating is a Nash
equilibrium, while non-collaborating is not a Nash equilibrium. Therefore, every com-
pany prefers collaboration, because its logistics cost increases when it ceases unilaterally
to collaborate.

Finally, our last contribution to supply chain management is a broad, critical review
of literature about the bullwhip effect. In particular, we introduce the bullwhip effect
as a particular case of stream fluctuations in distributed systems, and we present some
studies of the bullwhip effect in several fields, such as inventory management, economics,
traffic flow theory, control theory. . . We now present contributions of this dissertation
for the multi-agent field.

1.4.2 Contributions to Multi-Agent Systems

Multi-Agent Systems allow us to design, simulate and analyze our collaboration strate-
gies, but we also contribute to this field by doing our research. In particular:

1. We have proposed a decentralized coordination mechanism based on communica-
tion to stabilize linked streams in a distributed system;

2. We have taken into account both the global efficiency of the system and individual
agents’ incentives to evaluate our coordination mechanism by applying concepts
from game theory. This point was addressed with a methodology involving game
theory to analyze simulation outcomes;
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3. We have used game theory and multi-agent systems in a complex realistic study
of a problem from supply chain management, and to our knowledge, this is the
first time that these three fields have been applied in a common approach.

4. We have written a broad, critical review of literature about the use of multi-agent
systems in supply chain management.

5. We have compared coordination in supply chain management and coordination
in multi-agent systems.

Before we see these three main contributions for multi-agent systems, we recall that the
bullwhip effect is a distortion of demand information when this information is trans-
mitted as orders along the supply chain up to the most upstream suppliers. Therefore,
we can note that this deformation of information not only interests supply chain man-
agement, but also Computer Science, because Computer Science studies information
processing, and thus, information distortion.

From a less general point of view, this thesis studies the dynamics in a complex
distributed system that can be viewed as a multi-agent system. In particular, the
performance of many systems is reduced by fluctuations in their internal streams, e.g.,
traffic density during computerized network and road congestions. As a distributed
system, a multi-agent system may face this problem too. For this reason, reducing
the bullwhip effect in supply chains may give some hints for fluctuation reduction in
other kinds of distributed systems, in particular when these systems are modelled as
multi-agent systems. Therefore, the two above principles may be adapted by replacing
some words, e.g., the bullwhip effect can be replaced by system instability, e.g., traffic
congestions, market consumption by system input, company by agent, ordering scheme
by agents’ behaviour. . . With these replacements, the first principle ‘Lot-for-lot orders
eliminate the bullwhip effect’ can be translated into ‘If agents do exactly what they are
asked to, according to the system output, the system fluctuations will be eliminated’
and the second principle ‘Companies should react only once to each market consumption
change’ into ‘Agents should react only once to each change in the system input’.

Of course, like in supply chain management, these two principles only hold for
fluctuations incurred by delays in the system, and these principles have to be adapted if
other causes of fluctuations also occur. But these principles are general, because delays
may also cause fluctuations in many other types of distributed systems than supply
chains or multi-agent systems. For example, if all cars on a highway were decelerating
and accelerating at the same rate and as soon as the first car, the road stream would
be smoother, which would reduce the number of traffic jams.
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Next, the agents’ behaviour based on these two principles can be seen as a decen-
tralized coordination mechanism based on communication. The problem lies in the fact
that agents are selfish, and have therefore the choice of obeying or not to this coordina-
tion mechanism. This is the reason why the second contribution of this thesis is to take
into account both individual and common interests. This is achieved through our third
contribution consisting in the use of game theory to analyze inter-agent interactions.
This methodology can easily be applied to analyze other kinds of multi-agent systems.
The advantage of game theory is to give a high point of view on local interactions in a
multi-agent system. Precisely, this high point of view allows researchers to immediately
identify bad and good agents’ behaviours before they implement a multi-agent system.
In our case, we do not know how companies choose their ordering scheme, but we know
which one they may eventually choose, because they correspond to a Nash equilibrium.

Moreover, game theory allows understanding why local optimizations do not lead to
a global optimum, and how to add social rules constraining agents such as to reach this
optimum. In this thesis, game theory is used to analyze a huge quantity of simulation
outputs. Each simulation computes company’s costs in the supply chain when each
company decides to use a specific ordering scheme. Next, the application of some
game-theoretic concepts such as dominations, Nash equilibria or Pareto-dominations
causes relevant simulation outputs to appear, and therefore, the inter-agent dynamics
in the multi-agent system is made clearer.

Finally, our approach is supported by a broad review of literature about the use of
multi-agent systems in supply chain management. In particular, this review allows us
to compare our work with some others, and also, to compare coordination in supply
chain management with coordination in multi-agent systems. Some of the possible
comparisons of our work with others are described in the next section.

1.5 Related Work

We first compare our work with other studies of the bullwhip effect with multi-agent
systems. In fact, the nearest approach is from Kimbrough et al. [2002] who use a multi-
agent system and a genetic algorithm to find a good ordering scheme for Sterman
[1989]’s Beer Game. It is close to our approach because it used multi-agent concepts
with a model of company from the Beer Game. From this point of view, the only
difference is in the structure of the supply chain, straight in the Beer Game versus
divergent in the QWSG. However, there are many other differences. The main one is
that they fix an ordering scheme and the genetic algorithm looks for the optimal value
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of the parameter in this scheme. This optimal value is calculated so that the overall
cost of the supply chain is minimized for the duration of the simulation. The optimum
may therefore change depending on the simulation duration. On the other hand, our
work focuses on the design of the ordering scheme itself, and we do fewer efforts to find
optimal parameters, because we rely on the Solver in Excel from Microsoft Corp. [2004a],
while they implement an optimization algorithm (genetic algorithm) by themselves.
Conversely to their work, our ordering schemes are not designed to be efficient, but to
stabilize ordering flows and inventories. We focus on efficiency only after this, when we
optimize parameters in our two ordering schemes, but this is the essence of our approach.
Though, these parameters are determined like Kimbrough and his colleagues, that is,
they are set up such as the overall supply chain cost is a minimum for a specific duration
of the simulation (but not for any duration).

The second approach using multi-agent systems is from Yung and Yang [1999a,b]
who, like us, seek to reduce the bullwhip effect by improving the visibility and taking
constraints into account. Instead of basing their model on the Beer Game, they use a
model very close to the reality that can be operated by managers in an actual supply
chain. Conversely to our higher level approach, they model processes in companies, but
the supply chain considered in their experiments has only two levels (manufacturers
and warehouses, where customers buy from these warehouses), while we consider four
levels (retailers, wholesalers, paper and sawmill, and forest). Conversely to our agents
applying an ordering scheme, their agents are more complex because they are able to:

• process routine jobs in place of humans on real installations;

• communicate information about operations, and use this information to optimize
decisions with genetic algorithms;

• give managers a view of the state of the whole supply chain state, and in particular,
a detection of the bullwhip effect, and an extraction of useful information received
from other companies by a technique of constraint propagation.

The last approach with multi-agent systems is Yan [2001]’s study of the impact of
delay distribution on the bullwhip effect. As it focuses on impact of delays in the supply
chain, this work is very similar to ours. Basically, this agent-based supply chain checks
experimentally that Chen et al. [2000]’s formal quantification of the bullwhip effect is
correct. In particular, they verify like us that information centralization improves the
efficiency of the overall supply chain.

We now compare our work with research studying the impact of delays on the
bullwhip effect. All the following work focuses on the difficulty of forecasting future
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demand when delays are longer, because the forecast has to be made on a longer horizon,
conversely to our view, in which the bullwhip effect is also increased when there are
no forecasts, because delays are a cause of the bullwhip effect by themselves. In this
context, the approach from Chen et al. [2000], mentioned above, proposes a formal
model in which the bullwhip effect is both induced by a forecasting technique, a moving
average, and aggravated by delays. This paper was extended for another forecasting
technique, an exponential smoothing, by Ryan [1997] and Simchi-Levi et al. [2000].
Lee et al. [1997a,b] also explain how forecasting techniques induce the bullwhip effect,
and how this is aggravated when delays are longer.

In general, such models are based on the Beer Game. As we use a simulation model
derived from this game, we do so, but in a more empirical way. The Beer Game was
studied by Sterman [1989] with human players, while we replace people by software
agents. Therefore, we do not focus on players’ psychology that cannot understand the
whole dynamics of the supply chain. Nevertheless, we also have to take such dynamics
into account when proposing the ordering schemes used by our agents. As presented in
this thesis, the design of our ordering schemes addresses the issue of delays in supply
chains, because it is the only chain dynamics explaining the apparition of the bullwhip
effect in the QWSG and the Beer Game played by software agents. From this point
of view, we give a better understanding of Sterman’s “supply chain dynamics”, so that
players should know how to play the Beer Game more efficiently. On the other hand,
issues related to delays are very well known in supply chain management. In particular,
Sjöström [2001] studied their impact in the North European forest industry. This work
is similar to ours because it addresses a forest industry, but ours is less “empirical” as
it uses simulation rather than real-life.

The last point of comparison that we consider is information sharing in supply
chains, which has been well studied [Anderson and Morrice, 2000; Cachon and Lariviere,
1999; Chatfield, 2001; D’Amours et al., 1999; Lee and Whang, 1998; Yu et al., 2001].
In fact, we propose to share information to reduce the bullwhip effect induced by delays,
but information may be shared for other reasons. In our proposition of a mechanism
for sharing information, we were inspired by Porteus [2000]’s Responsability Tokens to
design our solution, even if our ordering scheme is eventually very different from this
mechanism. In fact, Responsability Tokens deal with transfer payments in the supply
chain to give incentives to upstream suppliers to ship products required downstream
by retailers. On the contrary, our ordering scheme does not rely on money, because its
only objective is to give enough information to companies, so that they can stabilize
orders without neglecting operational constraints, and in particular inventory manage-
ment. In fact, information sharing is the most often proposed solution to the bullwhip
effect [Chen et al., 2000; Lee et al., 1997a; Simchi-Levi et al., 2000]. In this context,
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our two principles improve the understanding of why and how to share information to
reduce the bullwhip effect.

Another type of information sharing, supplier capacity information, is studied by
Swaminathan et al. [1997]. But from a more general point of view, two subfields of
Economics can be applied to study information sharing. The first subfield is Informa-
tion Economics which studies the “consequences for the character and the efficiency
of the interaction between individuals or organizations when one party has more or
better information on some aspect of the relationship”. This is the condition of asym-
metric information, under which the information gap will be exploited if, by doing so,
the better-informed party can achieve some advantage” [MacHo-Stadler et al., 2001].
In particular, Cachon and Lariviere [1999] studied the value of information in supply
chains. To illustrate information economics, let us assume that using our schemes was
not Nash equilibria for the supply chain. In such an event, we could have given a price
to the market consumption information. The question would have been, what minimal
price would be demanded by retailers to accept to broadcast the market consumption
information, and what maximal price other companies would agree to pay for this in-
formation. Depending on these minimal and maximal prices, we would have been (or
not) able to fix a price to the market consumption information, such as our schemes
become Nash equilibria.

The second economics subfield that can be applied to supply chain management is
game theory used to study incentives [Umbhauer, 2002]. In particular, Cachon and Netessine
[2003] gave an overview of such studies and notice the “recent explosion of game-
theoretic papers in supply chain management”. Our work belongs to this type of
work, except that we replace the analytical model by a multi-agent model that we
simulate, as suggested by papers in the multi-agent system field [Boutilier et al., 1994;
Rosenschein and Zlotkin, 1994; Sandholm, 1999]. This approach gives us the ability to
solve more complex sets of relations.

1.6 Chapter Layout

This dissertation is organized in nine chapters. Chapters 1, 2, 3, 4 introduce the
background of this dissertation, and in particular our presentation of the bullwhip
effect as an issue of stream fluctuations and our synthesis of literature about multi-
agent systems in supply chain management, while Chapters 5, 6, 7, 8 and 9 present our
contributions.
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Chapter 1, i.e., the current chapter, introduces the context of this research, the bull-
whip effect and some incentive-related issues of possible solutions to this phe-
nomenon. The research is then motivated through the presentation of the bull-
whip effect as a particular case of stream fluctuations in a distributed system.
These fluctuations are difficult to reduce because of the complex dynamics of the
considered system, i.e., the supply chain in our case, and because of the selfish
behaviour of its nodes, i.e., the companies in the supply chain. This research
has two successive parts: first, the proposition of two principles for reducing the
bullwhip effect and the validation of their effectiveness, next the study of indi-
vidual incentives for their use by companies. After this motivation, contributions
for supply chain management and for multi-agent systems are presented for these
two parts. Finally, this dissertation is compared with some other approaches

Chapter 2 reviews the literature on the background of this work. The field of supply
chain management is first presented, next the area of multi-agent systems. Finally,
we synthetise some work applying agents to supply chains.

Chapter 3 focuses the literature review on the bullwhip effect. Precisely, we propose
to see this problem as a special case of stream fluctuations occuring in supply
chains. Then, this problem, its consequences and its known causes and solutions
are presented. Finally, some studies from different fields conclude this chapter.

Chapter 4 concludes the literature review by introducing interactions modelled with
game theory, for their use in Chapter 8, and illustrates them with some classic
games from game theory.

Chapter 5 proposes seeing ordering and shipping delays as a cause of the bullwhip
effect. Two basic principles are next proposed to solve this cause, and these
principles are instanciated in two ordering schemes. As the bullwhip effect is
a coordination problem, these two ordering schemes are also some decentralized
coordination mechanisms. Next, the behaviour of the supply chain under one
of these two mechanisms is described. Finally, an example illustrates the use
of these two ordering rules with the case of a company buying and producing
different types of products.

Chapter 6 introduces the simulation model used for the validation of the two prin-
ciples introduced in Chapter 5. This simulation model is based on the QWSG
(Québec Wood Supply Game) which is first described. A strict implementation
of this model is next outlined, and detailed in Appendix A. Finally, a more re-
alistic implementation of this model is detailed. The first simulation is used in
Chapters 7 and 8, while the second is still under development.
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Chapter 7 presents the first series of experiments carried out with our first simulator
to validate the efficiency of the two proposed principles for reducing the bullwhip
effect generated by ordering and shipping delays. Technical details about this
chapter are in Appendix B. The main metrics is the order variability, but three
other metrics are also considered. We note here the change in backorder dura-
tion distribution between the classic situation with the bullwhip effect, and the
situation incurred by our ordering schemes.

Chapter 8 presents the second series of experiments carried out with our first sim-
ulator, and technical details about this chapter are in Appendix C. Before this
presentation, we introduce the method of cost evaluation that includes parameters
from the Québec forest industry. Parameters of ordering schemes are optimized
according to this cost. Next, game theory concepts are adapted to our simulation.
Finally, the second series of experiments checks if all companies have incentives
for following these two principles. Specifically, simulations are carried out and
costs calculated with parameters from the Québec forest industry are analyzed
with the adapted game-theoretic concepts.

Chapter 9 summarizes the two parts of this thesis, that is, the proposition and the
validation of two decentralized coordination mechanisms for reducing the bullwhip
effect and the study of individual incentives for using such mechanisms. We dis-
cuss next both our methodology to reduce the bullwhip effect that is summarized
by our two principles, and our methodology to verify that agents have invididual
incentives to apply our two principles. Finally, some future work is outlined.



Chapter 2

Supply Chain Management and
Multi-Agent Systems: Background

The previous chapter has outlined the context of our research, that is, the problem of
stream fluctuations in distributed systems. Since the focus in this dissertation is on
supply chains and on multi-agent systems as two special cases of distributed systems,
this chapter now presents these two fields.

More precisely, we study ways to reduce the bullwhip effect through multi-agent
simulations. Consequently, we first present supply chains. To this end, supply chain
management is first introduced as a business practice to plan and synchronize operations
within a network of firms, by providing the concept of inter-company collaboration.
We next present a classic model used in supply chain management, which is called
Economic Order Quantity (EOQ), to quantify orders. EOQ is used in our model to
set the parameters of the (s, S) ordering policy used in our simulation. These ordering
policies and parameters are introduced in Section 2.1.

As previously stated, we use intelligent agents to model companies in supply chains.
The concept of “agent” is first defined, and next compared with another concept from
Computer Science, the concept of “object”. After that, the general agent architectures
outline the different levels of agent sophistication. Then, we motivate the use of multi-
agent systems, and we compare these systems with some other “scientific” approaches.
Finally, we illustrate this section with some examples involving multi-agent systems
in different fields or applications. This presentation of multi-agent systems is in Sec-
tion 2.2.

A synthesis of supply chain management and multi-agent systems extend the pre-
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vious illustrations of agents applied in different fields. For that purpose, agents are
first introduced as a new information technology for supply chain management. The
arguments pro agents outlined in Section 2.2 are next extended for the special case of
agents in supply chains. Finally, some projects applying agents to supply chains illus-
trate this section. This synthesis of supply chain management and multi-agent systems
is detailed in Section 2.3.

2.1 Supply Chain Management

From a general point of view, the bullwhip effect is a particular case of the problem of
stream fluctuations in a distributed system. From the particular point of view of supply
chain management, the bullwhip effect is a problem among other industrial problems.
After the presentation of some of these other problems, we introduce the concepts of
supply chains and collaboration in such chains as solutions to these issues. As the
bullwhip effect is the amplification of order variability in supply chains, this effect is
related to order placement. The traditional Economic Order Quantity (EOQ) model is
often used to define the quantity to be ordered to a supplier. Hence, we then introduce
this model.

2.1.1 Background

Industrial Problems

First, companies face a huge number of problems, such as how to make decisions con-
cerning production planning, inventory management and vehicule routing. These three
decisions are managed separately in most organizations because taking each individ-
ual decision is very difficult, since many constraints have to be satisfied (production,
shipping and inventory capacities, precedence order on activities, legal obligations,
etc.) [Mallya, 1999]. For instance, the multistage, multicommodity inventory man-
agement problem and the vehicule routing problem are both known to be NP -hard
problems ([Savelsbergh, 1985] cited by Mallya [1999]), i.e., very difficult.

Second, the problem is yet harder in reality because the decisions concerning produc-
tion planning, inventory management and vehicule routing are interdependent. Hence,
these three decisions should be taken together, which makes the planning problem
harder.
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Third, companies are not isolated, but impact on and are impacted by their partners.
As a result, when a company maximizes its profits, it may disturb other companies,
which may result in globally underoptimal decisions, because organizations may have
different conflicting objectives [Simchi-Levi et al., 2000, pp. 3]. The best solution would
be to make the decisions together concerning production planning, inventory manage-
ment and vehicule routing for several companies. As this planning problem is hard
for a single company, considering all companies decisions together is very hard. The
concept of supply chains was proposed to address this problem of minimization of total
supply chain cost, while meeting fixed and given demand by points-of-sale, e.g., by
retailers [Shapiro, 2000, pp. 8].

The Concept of Supply Chains as a Solution

Let us now focus on “supply chains”, which is a quite old term; we do not have found the
first definition of this term, but we have found, for example, that Burns and Sivazlian
[1978] referred it in 70’s. According to Muckstadt et al. [2001], there are many def-
initions and interpretations of the term supply chain management. These authors
defined a supply chain as “the set of firms acting to design, engineer, market, man-
ufacture, and distribute products and services to end-consumers”. In general, this set
of firms is structured as a network, as illustrated in Figure 2.1 [Swaminathan et al.,
1998; Davidsson and Werstedt, 2002]. In the same context, Shapiro [2000] noted that
“supply chain management is a relatively new term that crystallizes concepts about in-
tegrated business planning that have been espoused by logistics experts, strategists, and
operations research practitioners as far back as the 1950s”. Similarly, Simchi-Levi et al.
[2000] defined this term as “a set of approaches utilized to efficiently integrate suppliers,
manufacturers, warehouses, and stores, so that merchandise is produced and distributed
in the right quantities, to the right locations, and at the right time, in order to minimize
systemwide costs, while satisfying service level requirements”. Poirier and Reiter [2001]
noted that the concept of supply chains improves the competitive position of collabo-
rating companies, because it supports the creation of synergies among these companies.
In particular, such synergies are due to the fact that a supply chain is a system, and
as a consequence, this system is superior to the sum of the constituting companies. As
previously explained, the concept of inter-company collaboration is a way to create such
synergies in a supply chain.
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Flow of ressources (transportations)

Manufacturers

Figure 2.1: A supply chain [Swaminathan et al., 1998; Davidsson and Werstedt, 2002].

Collaboration in Supply Chains

Muckstadt et al. [2001] noticed that the term collaboration is confusing because it has
taken on several interpretations when used in the context of supply chain management.
Various levels of collaboration techniques based on information sharing were set up in
real supply chains. It is important to note that we always refer to collaboration as
information sharing in this dissertation, even if collaboration is in general wider than
only information sharing. We represent in Figure 2.2 how some of these information
sharing techniques overlaps. These techniques are essentially information centralization,
Vendor Managed Inventory/Continuous Replenishement Program, and Collaborative
Planning Forecasting and Replenishment. They are now reviewed in detail.

Information centralization: This is the most basic technique of information shar-
ing in which retailers broadcast the market consumption (approximated as their
sales) to the rest of the supply chain. As we also refer in this dissertation to
information centralization, it is necessary to distinguish information sharing from
information centralization: the latter is a particular case of the former, because
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Collaborative Planning,

Vendor Managed Inventory (VMI)

Information Centralization

Forecasting and Replenishment (CPFR)

Figure 2.2: Overlap of some collaboration techniques.

information centralization is the multi-casting in real-time and instantaneously
of the market consumption information, while information sharing is only the
sharing of the demand information between any companies1, and includes thus
information centralization. Chen et al. [1994] formally showed, for two forecast-
ing methods, that information centralization reduces the bullwhip effect. In fact,
information centralization reduces the bullwhip effect, because each level of the
chain can base its forecasts on the actual market consumption, instead of bas-
ing them on incoming orders, which can be much more variable than the actual
market consumption [Lee et al., 1997a,b]. Among the two ordering schemes that
we propose in this thesis, we see in Chapter 7, that the one using information
centralization has the best results, which confirms Chen et al. [1994]’s results.

It is also necessary to distinguish information centralization from centralized coor-
dination: the latter assumes there is a central coordinator that knows and controls
everything in the supply chain, while information centralization only assumes re-
tailers announce all their sales in real-time.

Vendor Managed Inventory (VMI) [John Taras CPIM, 2003] and Continuous
Replenishment Program (CRP): These two collaboration techniques are very
similar, but are used in different industries. The idea is that retailers do not need
to place orders because wholesalers use information centralization to decide when
to replenish them. Although these techniques could be extended to a whole sup-
ply chain, current implementations only work between two business partners. In
fact, many customers are attracted to these techniques, because they mitigate
uncertainty of demand, a consequence of the bullwhip effect. Moreover, the fre-
quency of replenishment is usually increased from monthly to weekly (or even
daily), which benefits both partners. These techniques were popularized in the
late 1980’s by Wal-Mart Stores, Inc. [2004] and the Procter & Gamble Company

1We only consider in this dissertation the demand information sharing, but in general, companies
can also share other kinds of information, e.g., their available production capacity, their inventory
level. . .
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[2004]. In particular, VMI has became one of the key element of the quick response
program in the grocery industry [Waller et al., 1999].

Collaborative Planning, Forecasting and Replenishment (CPFR): This tech-
nique developed by the VICS Association [2003] (Voluntary Interindustry Com-
merce Standards) is a standard that enhances VMI and CRP by incorporating
joint forecasting. Like VMI and CRP, current implementations of CPFR only in-
clude two levels of a supply chain, i.e., retailers and their wholesalers. With CPFR,
companies electronically exchange a series of written comments and supporting
data, which includes past sales trends, scheduled promotions, and forecasts. This
allows the participants to coordinate joint forecasts by focussing on differences
in forecasts. Companies try to find the cause of such differences and agree on
joint, improved forecasts. They also jointly define plans to follow when specific
contingencies occur [Simchi-Levi et al., 2000, pp.239].

It is worth mentioning that we propose in this disseration a new coordination mechanism
that could benefit to these collaboration techniques. More precisely, the ideas to reduce
the bullwhip effect (that we call our two principles) could enhance VMI/CRP and
CPFR by providing them with insights on this effect.

Supporting technologies

Because there exists other models, these three techniques of information sharing, i.e.,
information centralization, VMI/CRP and CPFR, can be supported by information
technologies such as e-Hubs [Lee, 2001]. The basis of these information technologies
is currently the Internet, but other technologies are also used, e.g., the protocol for
Electronic Data Interchange (EDI). The first advantage of the Internet on every other
technology is to provide a low-cost communication infrastructure available almost any-
where in the world. This first advantage allows companies to increase information
streams, and more precisely in our context, to share more information. The second ad-
vantage of the Internet is to provide some standardized file formats, which reduce the
cost of information technologies. We develop the goals of information technologies and
the way to achieve these goals during the presentation of the application of multi-agent
systems in supply chain management in Section 2.3.
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2.1.2 Order Placement in Supply Chains: the EOQ Model

One of the most basic means of communication between companies is the placement
of orders when a company needs to procure some products. This ordering decision
may look very easy at a first glance, but it is the key problem in the bullwhip effect.
In fact, the bullwhip effect is generated by the ordering policy used by companies in
the supply chain. Nowadays, such ordering policy is based on mathematical models
from inventory management. The goal of inventory management is to find the or-
dering quantity that minimizes the cost of an inventory system. Several approaches
have been proposed in inventory management to address the range of possible contexts.
For example, the Wagner-Whitin algorithm periodically reviews the optimal ordering
quantity when demand is not constant. Such approaches are described in many books,
e.g., Hax and Candea [1984], Johnson and Montgomery [1974] and Nahmias [1997].
Since we adapt the model of the Economic Order Quantity (EOQ) to our simulation
in Section B.2, we now present this model. We recall here Johnson and Montgomery
[1974]’s presentation of the EOQ model, which is in fact its extension into a single-
item model with static demand and permitted backorder2. The following notations are
used only to describe this model in the current subsection and in our adaptation to
the QWSG in Subsection B.2 of Appendix B. These notations do not apply outside of
these particular two subsections.

D = demand rate (units per year).

P = production rate (units per year).

A = fixed cost of a replenishment order ($ per order).

C = unit variable cost of a production (or purchase).

h = inventory carrying cost ($ per unit per year).

π = shortage cost per unit short, independent of the duration of the shortage ($ per
unit short).

π̂ = shortage cost ($ per unit short per year).

τ = replenishment lead time, the time between the placement and receipt of an order
(years).

2It seems that, in comparison with the presented model, the basic EOQ model be the same, but
without production (C = 0 and P → ∞) and backorder (π = π̂ = 0, and thus, the decision variable
b = 0).
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Q = order quantity (units per order).

s = reorder point, i.e., inventory level at which an order is placed (units in inventory).

Imax = maximum on-hand inventory level (units in inventory).

b = maximum backorder level permitted (units missing in inventory).

T = cycle length, i.e., the length of time between placement (or receipt) of replenish-
ment orders (years).

K = average annual cost which is a function of the inventory policy ($).

Based on these notations, we can now recall the EOQ model. The advantage of the
formulation presented below is its generalization, because it only requires simplifications
to be adapted to many situations. Figure 2.3 represents the most general behaviour of
the considered inventory system, as described now. When a shipping arrives, inventory
position increases at a rate P − D during T1 and T2. When production has finished3,
inventory position stops increasing and starts decreasing at a rate D during T3 and T4.
Inventory carrying costs are incurred in T3 and T4, while backorder costs are incurred
in T1 and T4. The decision variables are the order quantity Q and the maximum
backorder level b. The average cost per cycle is the sum of the procurement, inventory,
and shortage costs during the cycle.

There are D/Q identical cycles in a year, because there are lesser placed orders, and
thus, lesser cycles, when the quantity ordered Q increases. The average annual cost K

of the considered inventory system is the multiplication of the average cost per cycle
by the number of cycles D/Q (see Equation 2.1 and its details in Equations 2.2, 2.3,
2.4, 2.5 and 2.6).

K(Q, b) =
AD

Q
+ CD +

h[Q(1 − D/P ) − b]2

2Q(1 − D/P )
+

π̂b2

2Q(1 − D/P )
+

πbD

Q
(2.1)

where:

AD

Q
= annual ordering cost (2.2)

CD = annual production (or purchase) cost (2.3)
3When the company produces nothing, e.g., a retailer, we have P = 0, and thus, T1 = T2 = 0.

In other words, the inventory level spring from −b to Imax instantaneously, because the inventory
considered in the model EOQ contains products available to shipping, and not raw material.
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Figure 2.3: A cycle for the inventory system [Johnson and Montgomery, 1974].

h[Q(1 − D/P ) − b]2

2Q(1 − D/P )
= annual inventory carrying cost (2.4)

π̂b2

2Q(1 − D/P )
= annual shortage cost (2.5)

πbD

Q
= cost of having some backorders during the year (2.6)

The decision variables Q and b are set up by solving the two simultaneous equations
given by Equation 2.7.

∂K

∂Q
=

∂K

∂b
= 0 (2.7)

The general solutions to this problem are given in Equations 2.8 and 2.9:

Q∗ =

√
2AD

h(1 − D/P )
− (πD)2

h(h + π̂)

√
h + π̂

π̂
(2.8)

b∗ =
(hQ∗ − πD)(1 − D/P )

h + π̂
(2.9)
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Finally, this model is used to set optimal parameters s and S in a (s, S) ordering policy
(i.e., when inventory level x falls below s, the company orders (S − x)): S = s + Q∗,
where s is given by Equation 2.10 (note that m = [τ/T ], where [x] is the integer part
of x, e.g., [1.9] = 1):

s =

{
τD − mQ − b if τ − mT ≤ T3 + T4

((m + 1)(Q/D) − τ)(P − D) − b else
(2.10)

More details about this formulation of the EOQ model can be found in Section 2-2 of
Johnson and Montgomery [1974]’s book. As we can see, the goal of this model is to
optimize logistic costs for a single company. Unfortunately, this model is ineffective in a
supply chain, because local optimizations with the model EOQ ignore other companies,
which can lead to inefficiencies at the supply chain level. In particular, it was proven
that such local optimizations without global vision induce the bullwhip effect [Kahn,
1987; Naish, 1994; Shen, 2001; Chen et al., 2000; Simchi-Levi et al., 2000]. In order
to be able to consider a whole supply chain in this dissertation, we do not rely on a
mathematical model, but on agent-based simulations. We also try to coordinate the
supply chain as a multi-agent system, instead of optimizing costs. Hence, multi-agent
systems are now introduced.

2.2 Multi-Agent Systems

We now focus on the second field addressed in this work, i.e., multi-agent systems. We
first define the concept of agents, next we compare this concept with another concept
from software engineering, i.e., the concept of object. Then, we outline some architec-
tures of agents and some arguments in favour of the use of agents in general. Finally,
we illustrate projects involving multi-agent systems in different areas.

2.2.1 The Concept of Agents

Intelligent agents are a new paradigm of software system development. They are
used in a broad and increasing variety of applications [Chaib-draa et al., 2001, 1992;
Chaib-draa, 1995]. For a long time, there was no single definition of an agent and
a multi-agent system: several definitions have cohabited in the past [Ferber, 1995].
Nowadays, it seems that researchers agree on the following definition proposed by
Wooldridge and Jennings [1995]:
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The term “agent” denotes a hardware or (more usually) software-based com-
puter system, that has the following characteristics:

Autonomy: agent operates without the direct intervention of humans or
others, and has some kind of control over its actions and internal state;

Social ability: agents interact with other agents (and possibly humans)
via some kind of agent-communication language;

Reactivity: agents perceive their environment, (which may be the physical
world, a user, a collection of other agents, the Internet, or perhaps all
of these combined), and respond in a timely fashion to changes that
occur in it;

Pro-activeness: agents do not simply act in response to their environment,
they are able to exhibit goal-directed behaviour by taking the initiative.

2.2.2 Comparison with Objects

Based on this concept of agent, Shoham [1993] proposed a new programming paradigm
called Agent-Oriented Programming (AOP) to replace the current Object-Oriented Pro-
gramming (OOP). The difference between agents and objects is sometimes missed by
programmers familiar with object-oriented languages as C++ [Free Software Foundation,
2004a] or Java [Sun microsystems, 2003]. The main difference between these two con-
cepts is the autonomy of agents. In fact, while objects encapsulate some state on which
their methods can perform actions, and in particular the action of invoking another
object’s method, an object has control over its behaviour. That is, if an object is asked
to perform an action, it always does so, while an agent may refuse. Concerning this
point, Wooldridge [2001] recalls the slogan “Objects do it for free; agents do it because
they want to”.

Of course, some sophisticated objects may be very similar to agents. In fact,
Wooldridge [1999] noted that there are clear similarities, but obvious differences also
exist. Let us consider the case of objects in Java that can easily be transformed into
threads exhibiting some behaviour. Such active objects have some autonomy like agents,
but their behaviour is only procedural in reaction to message requests. On the other
hand, autonomy of agents make them perform activities without external intervention
[Guessoum and Briot, 1999]. In short, object-based concurrent programming has some
relationships with distributed artificial intelligence [Gasser and Briot, 1992].

But objects and agents also present differences. In particular, object state is much
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simpler than agent state. In fact, an object state is only a data structure, i.e., an
aggregation of variables of different types (integers, booleans, character strings. . .) in a
common structure, while an agent state consists of components such as beliefs, decisions,
capabilities and obligations. As an agent state is more sophisticated, it is also referred
to as a mental state [Shoham, 1993].

Finally, it is important to note that agents have been programmed in C++ or Java,
i.e., with an OOP language, but AOP languages have appeared. For example, JACKTM

designed by the Agent Oriented Software Group [2003] (Melbourne, Australia) is an
AOP language. This language implements concepts from AOP upon a OOP languages.
That is, JACKTM provides an AOP compiler transforming JACKTM code into Java code.
Next, the JACKTM compiler calls the Java compiler to transform the generated Java
code into a runnable Java bytecode that works on any Java Virtual Machine. We will
describe JACKTM further in Subsection 6.3.1.

2.2.3 Agent Architectures

In the same manner that there are several languages to implement agents, there are
also different levels of complexity of this implementation. Such complexity depends
on the task that agents have to carry out and on the environment surrounding them.
Russell and Norvig [2003] propose the following classification of agent architectures:

• Simple reflex agents: This type of agent is the simplest, because agents act on
the basis of their current perceptions, ignoring what has occurred in the past,
because they have no memory. Figure 2.4(a) describes how they select their
actions according to condition-action rules, e.g., if sensors state that it-is-raining
then actuators do take-umbrella. We use this type of agent in Chapters 7 and 8.

• Model-based reflex agents: As agents cannot perceive their whole environment,
model-based reflex agents, presented in Figure 2.4(b), keep track of the part of
their environment they cannot currently observe. To achieve this, they have an
internal representation of their environment, called a “model of the world”. Like
simple reflex agents, they select their action according to condition-action rules,
but now, the condition only depends on the model of the world, and not on the
current perception from Sensors. We do not use this type of agent, because our
agents do not have any model of their world. Note that this world would be
modelled in company-agents by some forecasting techniques predicting the future
state of their environment, i.e., their future incoming demand.
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(b) A model-based reflex agent.

What the world
is like now

What it will be like
if I do action A

How happy I will be
in such state

What action I
should do now

What my actions do

How the world evolves

State

Agent

E
nvironm

ent

Goals

Sensors

Actuators

(c) A model-based, goal-based agent.
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Figure 2.4: Architectures of intelligent agents [Russell and Norvig, 2003].
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• Goal-based agents: As illustrated in Figure 2.4(c), this type of agent has goal
information describing desirable situations, because the current state of the model
of the world is not always enough to select an action efficiently. Conversely, to
the two previous agent types, condition-action rules are no longer used, because
the agent considers the possible futures of the world (cf. "What it will be like if I
do action A” in Figure 2.4(c)) to decide which action it should do to achieve its
goal.

• Utility-based agents: In order to improve the quality of agent behaviour, the
agent is given in Figure 2.4(d) a utility function mapping its state (or a sequence
of states) in the model of the world, onto a real number describing the associated
degree of agent’s happiness. In comparison with goal-based agents, utility-based
agents do not decide which action to do in order to achieve a goal, but which
action to do to increase utility. This difference implies that both types of agents
find which actions to do to achieve their goals, but utility-based agents find the
best actions according to some given metrics. This agent architecture is hence the
nearest to the definition of Economics agents, that only maximize their utility.

• Learning agents: Turing [1950] has noted the huge amount of work it takes to
program an intelligent machine, and has concluded that it would be easier to
build learning machines and then to teach them. Another advantage of learning
agents is their adaptability to unknown environments, and the improvement of
their behaviour with time. The learning agents presented in Figure 2.4(e) use a
feedback, called critic, to learn which perceptions of the environment are desir-
able, and in consequence, how to behave. Precisely, agents’ learning consists in
improving their future performance based on their past critic, by optimizing their
behaviour such as to maximize their utility when the world continues evolving
as it has been. This kind of learning makes agents discover that some kind of
(but not exactly) condition-action rules always do the same thing, based on their
current knowledge.

A problem arises here: after some learning time, agents are always going to do
the same things because of these discovered rules, though the agents are not sure
that these actions are optimal, while they might have a better performance if they
had a wider knowledge of their environment. In fact, they should try to do very
different actions than those prescribed by their learning process. This exploration
of new actions is insured by the problem generator.
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2.2.4 Motivations for Multi-Agent Systems

Huhns and Stephens [1999] noted that multi-agent systems are generally less efficient
than centralized solutions, because the distribution restrains optimization. But these
authors also gave several advantages of multi-agent systems. First, multi-agent systems
are easier to understand and implement, when the problem itself is distributed. This
allows the multi-agent system to give more flexibility when taking into account the
modularity of the real, modelled system. Next, the distribution may force programmers
to propose new algorithms to solve problems. In particular, the concurrency can be used
to accelerate problem solving. Finally, a centralized solution may be impossible, because
systems and data are in independent organizations. We develop this latter argument
in Section 2.3, because it is the main one in favour of multi-agent systems in supply
chains.

Jennings [2000] pointed out the flexible, high-level interactions of agents, that make
the engineering of complex systems easier. This author recalls that complex systems are
always distributed, and from his point of view, agent decomposition is very important
to manage complexity. It follows from this, that designers need a means to reduce the
complexity of the system control, in order to enhance their ability to model, design and
build complex, distributed systems. Multi-agent systems provide designers with this
means through the control decentralisation. In particular, the system complexity makes
it very difficult to know every possible interaction in the system, because the system only
has partial control and observability over its environment, and thus, this environment
is highly unpredictable. Multi-agent decentralisation takes this into account by letting
each agent continuously coordinate its actions with other agents, instead of making
this agent apply a behaviour prescribed at design time. In short, some advantages of
multi-agent systems is the fact that modelling with agents:

• partitions the problem space of a complex system efficiently;

• is a natural way to modularise complex systems;

• focus on the organizational relationships in complex systems.

Similarly, Wooldridge [2001] says that interaction is now seen by most programmers
as an important characteristic of complex softwares. For this reason, interactions, and
thus multi-agent systems, take a growing part in software engineering. Moreover, multi-
agent systems are an interdisciplinary field. For example, interactions in multi-agent
systems are also interesting to model dynamics in human societies.
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We should note that there are also objections to multi-agent systems. We now
review such objections.

2.2.5 Differences between Multi-Agent Systems and Other Fields

In general, objections to multi-agent systems are due to their similarity with some
other fields. To respond to these objections, Wooldridge [2001] points out the difference
between this field and some others:

Distributed/concurrent system

• Similarity : By definition, multi-agent systems are a special case of dis-
tributed/concurrent systems. Therefore, experience in this field has to be
kept by the multi-agent system community, in particular to avoid discov-
ering again how to manage mutual exclusion over shared resources, how to
avoid dead- and livelocks. . .

• Differences : First, agents are autonomous, and therefore, synchronization
and coordination are not structured at design time, as they are in dis-
tributed/concurrent systems. In fact, agent synchronization and coordina-
tion is achieved at run time. Second, agents are in general self-interested,
while components in a distributed/concurrent system have the common goal
of maximizing the overall system efficiency. For these two reasons, nego-
tiation is important in multi-agent systems, while it is unknown in dis-
tributed/concurrent systems.

Artificial intelligence

• Similarity : Historically, multi-agent systems were born from Distributed Ar-
tificial Intelligence, which is a subfield of Artificial Intelligence [Jennings et al.,
1998].

• Differences : First, the main topic of artificial intelligence has been the study
of components of intelligence (learning, planning, understanding images. . .),
while the goal of research about agents is the integration of these elements.
Therefore, during agent implementation, much more time is spent with com-
puter science and software engineering, than with artificial intelligence. Sec-
ond, social ability in systems has been ignored by artificial intelligence, while
this is as important in an intelligent behaviour, as learning or planning.
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Economics/Game Theory

• Similarity : Like multi-agent systems, these theories also deal with self-
interested agents, and more precisely with their interactions. Some well-
known reseachers have contributed to both computer science and econom-
ics/game theory, such as von Neumann and Turing. However, these two
fields have been dissociated since these beginnings. Now, the situation is
changing because game theory has more and more applications in multi-
agent systems, and economists are interested in multi-agent simulations to
understand inter-agent interactions.

• Differences : First, concepts in economics/game theory are descriptive, and
thus, indicate nothing about how to compute a solution. Such computing is
often very hard [Papadimitriou, 2001]. Secondly, game theory is built on the
notion of rationality, but some debates are concerned with the question of its
validity and/or utility for artificial agent societies. Thirdly, Boutilier et al.
[1994] propose another difference, that is also related with rationality. This
difference is about the assumption in economics/game theory that agents
are rational (the research questions concern the social consequences of this
hypothesis), while programming this rationality is the problem itself in multi-
agent systems.

Social Science

• Similarity : Social sciences study the dynamics of human societies, while
multi-agent systems are concerned with artificial societies.

• Difference: It is not certain that the best way of building artificial societies
is to base them on human societies. Moreover, other tools, such as game
theory, also models human societies, and may thus be applied.

Because of similarities between multi-agent systems and other fields (distributed/concur-
rent systems, artificial intelligence, economics/game theory and social science), agents
have been applied in some of these fields. Furthermore, they have also been applied
in many real-world applications, that are, in general, functionnally or geographically
distributed. We now present some of these applications of multi-agent systems.

2.2.6 Some Applications of Multi-Agent Systems

Multi-agent systems have been used in many fields, as presented by [Chaib-draa, 1995],
Jennings and Wooldridge [1998], Weiss [1999], and Wooldridge [2001]. As an illustra-
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tion, we now outline some of these applications. Jennings et al. [1998] classify these
applications in four classes:

Industrial applications: Industry was one of the earliest users of agent technology,
especially in the following areas:

• Manufacturing: For example, the Holonic Manufacturing Systems (HMS)
project [Gruver et al., 2003; Parunak, 1999; Shen and Norrie, 1999a] aims at
standardizing architecture and technologies for open, distributed, intelligent,
autonomous and cooperating systems in industry. Each component of these
systems is controlled by agents, called “holons” for the combination of “holos”
(the whole) and “on” (a particle) [Shen and Norrie, 1999a]. Each holon’s goal
is to work with the other holons, in order to control a production system in
an efficient, scalable, open way. Applications of holons are, for instance,
concurrent engineering, collaborative engineering design, and manufacturing
enterprise integration [Shen et al., 2001].

• Process control: Process control is at a lower level than manufacturing, be-
cause manufacturing aims at controlling several workstations, while process
control focuses on a single workstation. In fact, the complexity of a work-
station may require the decomposition of its control into agents.

• Telecommunications: Telecommunication networks are geographically spread
over a large area. Using agents to manage such networks is thus a natural
metaphor. For instance, British Telecommunications plc [2004] has devel-
oped the ZEUS Agent Building Toolkit for this purpose.

• Air-traffic control [Jennings and Wooldridge, 1998; Ljungberg and Lucas, 1992]:
For example, OASIS is an air-traffic control system used at Sydney airport
in Australia. Aircraft and the various air-traffic control systems are seen
as agents. Agents are created when they approach Sydney airport. Their
behaviour is both goal-directed (“I want to land”), and reactive to take real-
time constraints into account. Some similar air-traffic control systems were
designed for NASA [Callantine, 2003], or by Cammarata et al. [1983].

• Transportation systems: Like telecommunication networks, the geographical
distribution of transportation makes that agents are a natural metaphor.
For example, Automated Highway Systems [Hallé et al., 2003] unites sev-
eral projects aiming at fully automatizing vehicle driving. Several goals are
addressed, such as driving a vehicle without human intervention and collab-
orative driving. This second example consists of forming platoons of vehicles
on roads, in order to improve the fluidity of traffic. Each vehicle is seen as an
agent that tries to form a team with other vehicle-agents sharing the same
part of trip.
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Commercial applications: While agents for industry are quite often designed for a
single, specific application depending on the company, commercial agents tend to
be designed for a widespread diffusion. Among the areas of commercial agents,
we can find:

• Information management: Since the users of Internet are more and more
overloaded by information, agents can help them by filtering and gathering
accurate information.

• Electronic commerce: Since Internet takes up a growing place in our every-
day life, e-commerce promises to be more frequently used in the near future.
In fact, agents can:

– look in our place for the products that best fit our needs;
– bid for products on auctions sites, such as eBay, Inc. [2004], follow-

ing a given strategy [Ben-Ameur et al., 2002b; Rosenschein and Zlotkin,
1994];

– try to form a coalition with agents buying a similar product, in order to
have a price reduction due to the higher bought quantity [Asselin, 2002;
Asselin and Chaib-draa, 2002; Breban and Vassileva, 2002].

In particular, the Trading Agent Competition [2004] aims at confronting
agents to find the best buying strategy in situations close to real-life [Cheng et al.,
2003; Vetsikas and Selman, 2003].

• Business process management: Information systems are spread among the
different departments in a company, in order to bring information together.
Using agents can make this information collection easier and more efficient.
The collected information is useful for company managers when they make
business decisions.

Entertainment applications: Although this industry is not seen as serious in com-
puter science, it is currently growing. Specific areas of entertainment agents are:

• Games: For example, the concept of agents was applied in the Game “Crea-
tures” by Grand and Cliff [1998] to build artificial pets living together in a
simulated environment. These animals are built to resemble real-life animals,
and in particular, their “brain” is also a neural network.

• Interactive theatre and cinema: In these systems, users ‘enter’ in the movie
to play a role in this movie, and to interact with other characters played
by artificial agents. Programming these agents so that they resemble real
people is an issue, because they have to look like human beings, to behave
like them. . .
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Medical Applications: Agents are more and more used in medical applications, for
instance:

• Patient monitoring: For instance, Hayes-Roth et al. [1989]’s system Guardian
is distributed to respect the fact that a team in a Surgical Intensive Care
Unit is made up of people who have different expertise and who collaborate.
Guardian has a hierarchical structure, in which a control agent controls per-
ception/action agents and reasoning agents, in order to help manage patient
care.

• Rescue team management: RoboCupRescue [Hiroaki, 2000; Paquet, 2003]
is a competition involving the simulation of an earthquake similar to Kobe
(Japan) in 1995. Agents model teams of firemen, policemen and ambulances,
that have to be coordinated in order to minimize both the number of dead
civilians and the number of destroyed buildings. The idea is that an earth-
quake scenario cannot be studied in real-life, and thus, has to be simulated
in order to find which behaviour rescue teams should have.

Some other applications cannot be put in these four classes. For instance, interface
agents assist users in software, like the paper clip in Microsoft Corp. [2004a]’s Office,
even though this is currently a mono-agent system. Simulations of ecological and so-
cial systems are another kind of application of multi-agent systems. For example,
Franchesquin and Espinasse [2000] programmed a multi-agent simulation, that takes
into account both ecological and social dynamics, in order to study the hydraulic man-
agement of the Camargue (south of France).

Since we focus in the next chapter on agents in industry, and more precisely, in
supply chain management, we will describe additional multi-agent systems in industry.
It is worth noting here, that the HMS project, presented above, looks similar to multi-
agent systems for supply chain management that we describe in Chapter 3, but they
are indeed different, because the HMS project addresses problems at a lower level, that
is, intra-company, while supply chains are made up of several companies.

2.3 Multi-Agent Systems in Supply Chain Manage-
ment

The first section of this chapter introduced supply chain management, and the second
one multi-agent systems. We now focus on the merging of these two fields. This thesis
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uses the multi-agent system paradigm to model a supply chain in order to apply multi-
agent system tools to simulate supply chain management. In return, some coordination
mechanisms can be proposed to multi-agent systems. Therefore, we first show how
computers are currently used in supply chains, then we give some arguments justifying
the use of multi-agent systems in supply chains, and finally some examples illustrate
this section.

2.3.1 Information Technologies in Supply Chain Management

According to Simchi-Levi et al. [2000], “information technologies is an important enabler
of effective supply chain management. Much of the current interest in supply chain
management is motivated by the possibilities that are introduced by the abundance
of data and the savings inherent in sophisticated analysis of these data”. We see that
information technologies pursues three goals represented in Figure 2.5:

• collecting information on each product from production to delivery or purchase
point, and providing complete visibility for all parties involved;

• accessing any data in the system from a single-point-of-contact, e.g., from a PDA
linked to the company information system through a wireless link;

• analyzing data, planning activities, and making trade-offs based on information
from the entire supply chain.

To achieve these activities, information technologies use certain means:

• information technology infrastructure (network, databases. . .);

• e-commerce;

• supply chain components, which are the various systems directly involved in sup-
ply chain planning, i.e., Decision Support Systems (DSS).

The standards gathering these three means are, for example, the protocol for Elec-
tronic Data exchange (EDI). Although regarded as a success because it is used by
large corporations, EDI was never accepted by the majority of the communities of the
business world as a means of trading electronically, because of its cost that is a bar-
rier for little companies [Cingil and Dogac, 2001]. This explains why new Internet-
based standards currently emerge. In particular, the eXtended Markup Language
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Figure 2.5: Goals and means of Information Technologies for Supply Chain Manage-
ment [Simchi-Levi et al., 2000].

(XML) [World Wide Web Consortium, 2003b] is used in more and more applications
on the Internet. But XML is too generic to enable collaboration in supply chains.
Therefore, some XML-based standards were proposed, such as:

• Resource Description Framework (RDF) [World Wide Web Consortium, 2003a]
to define a common vocabulary for describing resources;

• Common Business Library (CBL) [OASIS, 2003] for describing documents such
as orders or catalogues;

• DARPA [2003] Agent Markup Language (DAML) to give semantics to Web pages.

Concretely, information and decision technologies take the form of:

• Enterprise Resource Planning (ERP) is a class of software systems organizing and
managing companies [Garé, 2000], e.g., PeopleSoft, Inc and J. D. Edwards & Co.
[2003], or Baan AG [2003];

• E-commerce, and in particular marketplaces, such as Commerce One Operations, Inc.
[2003] and Ariba, Inc. [2003];

• Advanced Planning and Scheduling (APS) is a class of software for Decision Sup-
port System (DSS) in supply chains.
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According to Shapiro [2000]’s decomposition of information technologies, the first two
applications (ERP and e-commerce) belong to “Transactional Information Technolo-
gies”, because they are concerned with acquiring, processing and communicating raw
data. On the other hand, APS belongs to “Analytical Information Technologies” be-
cause they allow analyzing raw data in order to help managers, which is a task at a
higher level. In practice, companies first install transactional tools, because analytical
tools need them to be fed with raw data. More and more, multi-agent systems are seen
as a new technology for improving, or replacing, technologies used in transactional and
analytical information technologies. We now explain why agent technology seems so
promising in the context of supply chains.

2.3.2 Using Multi-Agent Systems in Supply Chain Manage-
ment: Motivations

Some arguments in favor of using multi-agent systems in supply chain management can
be found in the literature. In fact, researchers have already applied agent technology
in industry to concurrent engineering, collaborative engineering design, manufacturing
enterprise integration, supply chain management, manufacturing planning, scheduling
and control, material handling, and holonic manufacturing systems [Shen et al., 2001].

Concerning supply chains, Dodd and Kumara [2001] think that Mark Fox et al.
[1993] was propably the first to organize the supply chain as a network of intelli-
gent agents. Indeed, supply chains are made up of heterogeneous production sub-
systems gathered in vast dynamic and virtual coalitions. Intelligent distributed sys-
tems, e.g., multi-agent systems, enable increased autonomy of each member in the
supply chain. Each partner (or production subsystem) pursues individual goals, while
satisfying both local and external constraints [Maturana et al., 1999]. Therefore, one
or several agents can be used to represent each partner in the supply chain (plant,
workshop, etc.). Moreover, the agent paradigm is a natural metaphor for network
organizations, since companies prefer maximizing their own profit than the profit of
the supply chain [Viswanathan and Piplani, 2001]. In fact, the distributed manufac-
turing units have the same characteristics as agents [Cloutier et al., 2001] (based on
Wooldridge and Jennings [1995]’s definition of agents, quoted previously):

• autonomy : a company carries out tasks by itself without external intervention
and has some kind of control over its action and internal state;

• social ability : a company in the supply chain interacts with other companies, e.g.,
by placing orders for products or services;
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• reactivity : a company perceives its environment, i.e., the market and the other
companies, and responds in a timely fashion to changes that occur in it. In
particular, each firm modifies its behaviour to adapt to market and competition
evolutions;

• pro-activeness: a company not only simply acts in response to its environment,
it can also initiate new activities, e.g., launching new products on the market;

Moreover, multi-agent systems offer a way to elaborate production systems that are
decentralized rather than centralized, emergent rather than planned, and concurrent
rather than sequential. Therefore, they allow relaxing the constraints of centralized,
planned, sequential control [Parunak, 1996]. Unfortunately, an agent-based approach
is not the panacea for industrial softwares. Like other technologies, this approach
has advantages and disadvantages: it must be used for problems whose characteristics
require its capacities. According to Parunak [1999], five characteristics are particularly
salient. In fact, agents are best suited for applications that are:

• modular;

• decentralized;

• changeable;

• ill-structured;

• complex.

To judge relevance for supply chains of autonomous agents, Parunak [1996] compares
this approch with conventional technologies in Table 2.1, thus highlighting differences
between these two philosophies. To this end, multi-agent systems are identified as bio-
logical (ecosystems) and economical (markets) models, whereas traditional approaches
are compared with military patterns of hierarchical organization. Table 2.1 summarizes
the main disadvantages of multi-agent systems:

1. theoretical optima cannot be guaranteed, because there is no global view of the
system;

2. predictions for autonomous agents can usually be made only at the aggregate
level;

3. in principle, systems of autonomous agents can become computationally unstable,
since, according to System Dynamics, any system is potentially unstable.
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Issue
Autonomous

agents
Conventional

systems
Model Economics, biology Military
Issues favouring conventional system

1 Theoretical optima? No Yes
2 Level of prediction Aggregate Individual
3 Computational stability Low High

Issues favouring autonomous agents
4 Match to reality High Low
5 Requires central data? No Yes
6 Response to change Robust Fragile
7 System reconfigurability Easy Hard
8 Nature of software Short, simple Lengthy, complex
9 Time required to schedule Real time Slow

Table 2.1: Agent-based vs. conventional technologies [Parunak, 1996].

But on the other hand, the autonomous, agent-based approach has some advantages
too:

4. because each agent is close to the point of contact with the real world, the sys-
tems’s computational state tracks the state of the world very closely. . .

5. . . . and without need for a centralized database;

6. because overall system behaviour emerges from local decisions, the system read-
justs itself automatically to environmental noise . . .

7. . . . or to the removal or addition of agents;

8. the software for each agent is much shorter and simpler than would be required
for a centralized approach, and as a result is easier to write, debug and maintain.

9. because the system schedules itself as it runs, there is no separate scheduling phase
of operation, and thus no need to wait for the scheduler to complete. Moreover,
the optima computed by conventional systems may not be realizable in practice,
and the more detailed predictions permitted by conventional approaches are often
invalidated by the real world.

All these reasons show the relevance to use agents in supply chain management. In
other words, thanks to their adaptability, their autonomy and their social ability, agent-
based systems are a viable technology for the implementation of communication and
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decision-making in real-time. Each agent would represent a part of the decision-making
process, hence creating a tight network of decision makers, who react in real-time to
customer requirements, in opposition to the flood of current processes, which is decided
before customers place an order [Dodd and Kumara, 2001].

2.3.3 Using Multi-Agent Systems in Supply Chains: Examples

We now illustrate the use of agents in supply chains by presenting various projects.
These projects can be separated into two broad families: supply chain management
projects [Chen et al., 1999] and supply chain design projects. Moreover, the manner of
solving problems also differs depending on projects, e.g., the number and the role of
agents vary considerably, depending on the particular point under study. To highlight
these differences, Table 2.2 summarizes the projects that are now described.

1. DragonChain was implemented by Kimbrough et al. [2002] at the University of
Pennsylvania (Philadelphia, PA, USA) to simulate supply chain management,
and more particularly to reduce the bullwhip effect. For that, they base their
simulation on two versions of the Beer Game, the MIT Beer Game (i.e., the
original game) and the Columbia Beer Game, and they use agents that look for
the best ordering scheme with genetic algorithms. We have further described this
work as a related work in Section 1.5, because it is the closest approach to ours.

2. Agent Building Shell at the University of Toronto (Ontario, Canada) is a library
of software classes providing reusable elements for building agent systems. These
agents have four layers: a layer for knowledge management, an ontology layer, a
layer of cooperation and conflict solving, and a layer of communcation and coordi-
nation. This latter layer is insured by the COOrdination Language (COOL). This
project has involved several researchers, such as Teigen and Barbuceanu [1996],
Barbuceanu and Fox [1995a,b], Beck and Fox [1994].

3. MetaMorph II is an improvement of a first project called MetaMorph. Agents form
a federation centered around mediators that have two roles: they allow agents
to find each other, and they coordinate these agents. These two projects were
developed at the University of Calgary (Alberta, Canada) by Maturana et al.
[1999] and others.

4. NetMan (NETworked MANufacturing) formalizes networked organizations and
production operations in order to obtain agile manufacturing networks in a dy-
namic environment. Conversely to DragonChain, this multi-agent system manage
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Project Studied problem Approach Number and
role of agents

1. DragonChain
Kimbrough et al. [2002]

Management
(Bullwhip effect)

Genetic algorithm
seeking the best
ordering scheme

1 agent/company

2. Agent Building Shell
Teigen and Barbuceanu [1996]
Barbuceanu and Fox [1995a,b]

Beck and Fox [1994]

Management
(Coordination)

COOrdination
Language (COOL)

1 agent/company

3. MetaMorph 1 & 2
Maturana et al. [1999]

Management
(Coordination)

Mediator-agents
1 agent/company
+mediator-agents

4. NetMan
Cloutier et al. [2001]

Lyonnais and Montreuil [2001]

Management
(Intra- and inter-

company operations
management)

Contract driven
coordination in

Convention, Agree-
ment and Transaction

(CAT) formalism

1 agent/workshop

5. BPMAT &SCL
Swaminathan et al. [1998, 1994]

IBM Research [2003]

Modelisation
(Which elements are

common to all
supply chains?)

Comparison of three
very different
supply chains

BPMAT models
companies & SCL

intercompany
streams

6. MASCOT
Sadeh et al. [1999]

Management
(Agility increase)

Comparison of
several coordination

policies
1 agent/company

7. DASCh
Parunak and VanderBok [1998]

Baumgaertel et al. [2001]

Management
(supply chain
modelisation
techniques)

Delays and uncer-
tainties on streams
modelled as agents

2 agents/company
+ 1 agent/stream

8.Task dependency network
Walsh [2001]

Walsh and Wellman [1999, 1998]

Design
& management

(Partner selection)

Comparison
of auction
protocols

1 agent/company

9. MASC
Labarthe [2000]

Design
(Partner selection)

Auction-based
protocol under

constraints

1 agent/company
+ 2 directory agents

10. OCEAN
Bournez and Gutknecht [2001]

Management
(Global cooperation
emerging from local

competitions)

Negotiation system
in a multi-agent
contract network

1 agent/company
(1 agent = system

of 6 agents)

Table 2.2: Some projects applying agents to supply chains.

an actual supply chain, rather than the Beer Game. Each company is cut in
NetMan centers, i.e. units of independent, collaborating business units. The Net-
Man centers of a company coordinate with each other and with other customers’
and suppliers’ NetMan centers. This coordination is based on contracts and con-
ventions, which are formalized according to the model Convention, Agreement,
Transaction (CAT). This work was carried out at Université Laval (Québec City,
Québec, Canada) [Cloutier et al., 2001; Lyonnais and Montreuil, 2001].

5. BPMAT is a software library developed by IBM Research [2003] to model company
activities. SCL is the addition to this library for modelling inter-company flows.
These two tools are based on Swaminathan et al. [1998, 1994]’s work at Carnegie
Mellon University (Pittsburgh, PA, USA), which sought elements common to any
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supply chain by comparing three chains from distinct industrial sectors.

6. MASCOT (Multi-Agent Supply Chain cOordination Tool) is a reconfigurable, mul-
tilevel, agent-based architecture for planning and scheduling aimed at improving
supply chain agility. It coordinates production among multiple (internal or ex-
ternal) facilities, and evaluates new product/subcomponent designs and strategic
business decisions (e.g., make-or-buy or supplier selection decisions) with regard
to capacity and material requirements across the supply chain [Sadeh et al., 1999].
Like BPMAT and SCL, this work was also accomplished at Carnegie Mellon Uni-
versity (Pittsburgh, PA, USA).

7. DASCh was developed by ERIM (Ann Arbor, MI, USA) by Parunak and VanderBok
[1998] and Baumgaertel et al. [2001] to explore the modeling techniques of net-
works of suppliers and suppliers’ suppliers. In particular, flows of products and
information flows are viewed as agents to model imperfections in these flows.

8. The Task dependency network is an asynchronous, decentralized market proto-
col (auctions) for allocating and scheduling tasks among agents that contend for
scarce resources, constrained by a hierarchical task dependency network [Walsh,
2001; Walsh and Wellman, 1998]. An additional paper [Walsh and Wellman, 1999]
extends this protocol to model supply chain formation. This work is a Ph.D. thesis
defended in 2001 at the University of Michigan (Ann Arbor, MI, USA). In similar
ways, other works use market mechanisms to coordinate supply chains [Eymann,
2001; Fan et al., 2003].

9. MASC studies coordination modes between companies in supply chains. These
coordination modes are calls for submissions, which submitters answer according
to their capacity and production load. Companies winning this auction next take
part to the supply chain carrying products to the consummer. This work was
completed at the University of Aix-Marseilles 3 (Marseilles, France) [Labarthe,
2000].

10. OCEAN (Organization and Control Emergence with an Agent Network) is a con-
trol system with an open, decentralized and constraints-based architecture in
which there is responsiveness, and distribution of production resources and tech-
nical data. This system was designed to react to environment dynamics, in order
to show that cooperation at the global level may emerge from competitions at the
local level. This work was completed at INSA of Lyon (Lyon, France) and at the
University of Montpellier 2 (Montpellier, France) [Bournez and Gutknecht, 2001].

Note that the work presented in this dissertation is at a higher level than what has just
been presented. In fact, we do not focus on simulating supply chains in detail, but we
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rather focus on simulating the decision making in supply chains.

2.4 Conclusion

This chapter has presented the two research fields addressed in this dissertation. First,
supply chain management provides an illustration of stream fluctuations, which is the
problem studied in this thesis. A supply chain is the set of companies producing and
distributing products to the end-customer. Some industrial issues were first introduced,
then the concepts of supply chains and collaboration were proposed as solutions to these
issues. After that, we have presented the model of the Economic Order Quantity (EOQ),
because this is a modelisation ruling order placement, while the bullwhip effect affects
orders.

The other field addressed in this dissertation, i.e., multi-agent systems, was pre-
sented in the second section of this chapter. We first defined agents, next we presented
their differences with another concept from computer science, i.e., the concept of ob-
ject. Then, agent architectures were outlined, arguments pro agents were defended, and
differences between multi-agent systems and some other fields were underlined.

Finally, we have reviewed the literature about the intersection of the two fields ad-
dressed in this thesis. After a recall of information technologies in supply chains, we
advocated the use of multi-agent systems for a new generation of information technolo-
gies. Such use of agents was illustrated by projects involving multi-agents systems in
supply chain design or management.

The next chapter continues this literature review by a description of the problem of
stream fluctuations in distributed systems.



Chapter 3

The Bullwhip Effect

The previous chapter presented the background of this research, that is, the fields of
Supply Chain Management and Multi-Agent Systems, and their analysis. This review
is continued in this chapter by introducing the problem studied in this disseration, that
is, the bullwhip effect.

For that purpose, one of the contributions of this dissertation is to introduce the
bullwhip effect by taking a wide point of view, by outlining the problem of stream
fluctuations in distributed systems. We illustrate through examples how this problem
occurs in many fields, and in particular multi-agent systems. This illustration is given in
Section 3.1. Next, we focus on this problem when the considered distributed system is a
supply chain. We detail the known consequences and causes of this effect in Section 3.2.
Finally, because of the similarities of this effect and stream fluctuations in other fields,
we show how this effect has been studied with tools from other fields. This point is
another contribution of this dissertation, and is presented in Section 3.2.

3.1 Stream Fluctuations in Distributed Systems

As stated in Chapter 1, distributed systems are travelled by several flows during their
operation. When these flows are linked together, the disturbance of a flow induces
the disturbance of other streams, which in turn, has other impacts on the system.
Eventually, stream fluctuations may increase or decrease with time because of numerous
factors that are more or less easy to understand. In general, such stream fluctuations
decrease the efficiency of the distributed system, when it achieves the task for which
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Distributed system Stream Nodes Instability

1. Supply chain
Orders and
products

Companies and
end-customers

Bullwhip effect

2. Computer network Information Computers Congestion
3. Road network Vehicles on roads Cities Traffic jam

4. Electronic circuit Intensity
Electronic

components
Roasting

5. Human organiz-
ations and multi-

agent systems
Tasks

Human, physical
and agent resources

Resource
bottleneck. . .

6. Economic system
Money, tasks

and information
People, companies,

states. . .
Crises,

inflation. . .

Table 3.1: Distributed systems affected by stream fluctuations.

it was designed. This shows that dynamics in distributed systems are, in general, very
complex. In this section, we illustrate the problem of stream fluctuations in distributed
systems by giving some examples drawn from very different fields. These examples are
summarized in Table 3.1, and described below:

1. The bullwhip effect, which is studied in this dissertation and described in Sec-
tion 3.2, is an instance of stream fluctuations, when the considered distributed
system is a supply chain. Indeed, what we call a supply chain is almost always a
network of companies, that is, there may be cycles in its structure, but most sup-
ply chains in the literature have none, like in Figure 2.1. Therefore, such “supply
network” may be affected by fluctuations on its ordering and product stream, i.e.,
by the bullwhip effect, as presented in this chapter. As was previously pointed
out, streams in a distributed system may be linked together. In the case of supply
chains, this link works as follows: the product stream is pulled by the ordering
stream, and conversely, disturbances on product stream, e.g., delays, also impact
on the ordering stream.

Besides supply networks, graphs (i.e., the generalization of networks, because networks
are particular graphs having a cycle) also provide other examples of distributed systems,
in which stream fluctuations may appear, e.g., computer and road networks:

2. Nodes in computer networks, such as the Internet, are computers, and streams are
information travelling between these computers. Here, fluctuations of information
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stream may generate congestions, because such fluctuations may saturate some
computers in the network, in which case no information can transit by these
computers.

3. Cities are nodes in highway networks, or buildings in street networks, and edges
represent roads. In this context, congestions may appear due to the high density
of vehicles. Such fluctuations alternate between full and empty roads, instead of
constantly maintaining an average traffic density. Empty roads are not a problem,
but full roads result in traffic jams.

4. Electronic circuits are another type of network, where electricity circulates through
electronic components. In this case, electricity fluctuations alternate between low
and high intensity in the circuit. The problem occurs when the intensity becomes
too great, creating roasting.

From a more general point of view, electronic circuits are also related to grids. The
term grid is also used in other fields, such as electricity transportation (power grid)
or distributed computing. In computer science, grids refer to information grids
that allow sharing computing power. More precisely, when a machine does not
use its whole available computing power, this machine could compute something
for another user. For example, some projects, such as United Devices Grid [2004]
or Seti@Home [Search for Extra-Terrestrial Intelligence, 2004], propose short pro-
grams downloading data from a central server on your computer. This data is
used by this short program to compute a piece of a much larger calculation. The
idea is to build a virtual supercomputer with the aggregation of many computers
using this short program. But information grids are not distributed systems for
the moment, because the server providing information acts as a center in this sys-
tem. Nevertheless, they could become so in the future, when every computer will
delegate some of its tasks to underloaded computers, which will make the center
disappear. In this case, stream fluctuations may also appear in such decentralized
computation grids.

The two last examples in Table 3.1, human organizations and economic systems, are not
always seen as graphs or networks. In fact, interactions between the nodes in these two
types of distributed systems are often ill-structured, and thus, cannot be represented
by a graph.

5. Human organizations, such as companies, and multi-agent systems may be orga-
nized as a hierarchy, i.e., as a particular type of graph called a tree, in which,
nodes are resources (people, machines. . .), and edges are streams of tasks. In
fact, streams of tasks appear between nodes, e.g., Alice asks Bob to program an
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agent on the Computer to do a sequence of actions, and this agent asks Alice to
do another action as a consequence of this sequence of actions. If fluctuations
appear on such task streams, a person may be overloaded, while another person
has no task to accomplish.

When there are a few nodes, graphs can be used to model this organization, in
order to study such stream fluctuations. On the contrary, it is much harder to
use graphs when there are a huge number of nodes.

6. Economic systems may also be represented by a graph in which nodes are peo-
ple, companies, banks, manufacturers, states. . ., and edges are streams of money,
tasks, information. . . But in general, because of the complexity of this system,
such regularity cannot be easily modelled as a graph in economic systems. Such
systems are distributed however, because their global behaviour is the consequence
of the individual behaviour of their nodes.

Evidently, such systems may also suffer from stream fluctuations. For example,
the world economy was known to work with 25 year growths, followed by 25 year
crisis. Here, economic growth is an acceleration of (money, products, tasks. . .)
streams in the system, and crisis a deceleration. Therefore, there are stream
fluctuations, that are roughly cyclic with a period of 50 years. Nowadays, we
can note that such cycles are shorter and shorter, and crisis are less and less
important. This shows that some nodes in this system have learnt how to act on
(a part of) the rest of the system. For example, states can change taxes, grants
and interest rates, and launch major projects to stop a crisis. This shows that
stream fluctuations can be controlled even in very complex systems.

As we can see, these examples are drawn from very different fields. Although, all of
them can be modelled as distributed systems travelled by streams that may fluctuate. In
every example, such stream fluctuations reduce the efficiency of the considered system.

3.2 The Particular Case of the Bullwhip Effect

We now describe further the first example in Table 3.1: the bullwhip effect. This name
was given by Lee et al. [1997a,b] to the amplification of order variability in a supply
chain. To this end, Figure 1.1 (recalled in Figure 3.1) shows how the bullwhip effect
propagates in a simple supply chain with only three companies: a Retailer, a Wholesaler
and a PaperMill. The ordering patterns of the three companies are similar, in the way
that the order variability by an upstream site is always greater than by a downstream
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Figure 3.1: The bullwhip effect [Lee et al., 1997a,b] (recall of Figure 1.1).

site [Lee et al., 1997a]. As the bullwhip effect is a varibility, it is measured as the
standard deviation σ of orders. Note that the means µ are all equal in Figure 3.1,
because every company has only one client and one supplier.

3.2.1 Consequences of the Bullwhip Effect

As we have said in Section 3.1, stream fluctuations are undesirable in any distributed
systems, because they reduce the efficiency of the considered system. In the case of
supply chains, the efficiency reduction due to the bullwhip effect incurs costs1 due to
the consequences of this effect. In particular, for the North European forest industry,
Carlsson and Fullér [2001] estimate that this cost is 200-300 MFIM (million Finland
Markkaas), i.e., 50-70 million CAD, for a 300 kton paper mill. These costs may occur
due to the following consequences:

• Higher inventory levels : Every participant in the supply chain has to stockpile
because of a high degree of demand uncertainties and variabilities induced by the
bullwhip effect [Lee et al., 1997b];

• Supply chain agility reduction2: As inventory levels are high (cf. consequence
“higher inventory levels”), the supply chain should sell products in inventory, be-
fore it sells the new products demanded by end-customers, which generates inertia
in following end-customer demand. Moreover, demand uncertainties induced by

1Costs are an indirect metrics of the bullwhip effect; the unique direct metrics is the standard
deviation of placed orders.

2The Iaccoca Institute [1991] (cited by Rigby et al. [2000]) defines agility as the “ability of an
organisation to thrive in a constantly changing, unpredictable business environment”.
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the bullwhip effect make more difficult for the supply chain to understand which
product is demanded by end-customers;

• Decrease of customer service levels: Demand variabilities may incur stockouts,
in which case, no products are available to be sold, and thus, no service can be
given to customers. In this dissertation, we only consider this cause of decrease
of customer service levels, but there is another one. In fact, demand uncertainties
also make that the supply chain has more difficulties to understand what products
end-customers wish, which is the consequence “supply chain agility reduction”
presented above;

The two last consequences of the bullwhip effect are related to the difficulties of planning
under uncertainties, and consequently lead to:

• Ineffective transportation: Transportation planification is made more difficult by
demand uncertainties induced by the bullwhip effect;

• Missed production schedules: Similarly to transportation, production planification
is made more difficult by demand uncertainties induced by the bullwhip effect;

3.2.2 Known Causes and Some Solutions to the Bullwhip Effect

After the consequences of the bullwhip effect, we now present its causes, as reflected in
the literature. Table 3.2 summarizes the proposed causes and solutions of the bullwhip
effect. Lee et al. [1997a,b] proposed the four first causes: (1) demand forecast updating,
(2) order batching, (3) price fluctuation and (4) rationing and shortage gaming. We
detail these four proposed causes:

Demand forecast updating: Every company places orders based on a forecast of
the future demand, and the history of incoming orders is used to forecast future
orders. The problem is that only retailers know the actual market consumption,
and deform this information when they transmit it as orders to their suppliers. In
fact, as these suppliers also want to fulfill end-customer demand, they should also
base their orders on the market consumption. But these suppliers cannot do so,
because they only have their incoming orders to estimate end-customer demand.
As a consequence, retailers make a quite accurate forecast, because they are in
contact with the market, while their suppliers make worse forecasts, because they
have only their incoming orders to do their forecasts. For example, a supplier
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Causes Proposed Solutions Authors

Demand
forecast
updating

Information sharing
(e.g. VMI, CRP. . .),

echelon-based
inventory and

leadtime reduction

Lee et al. [1997a,b]

Order batching
EDI and

Internet technologies
Lee et al. [1997a,b]

Taylor [1999]

Price fluctuation
EDLP

(Every Day Low Pricing)
Lee et al. [1997a,b]

Rationing and
shortage gaming

Allocation based
on past sales

Lee et al. [1997a,b]

Misperception
of feedbacks

Giving a better
understanding of the

supply chain dynamics
to managers

Daganzo [2003]
Forrester [1958, 1961]

Sterman [1989]
Dejonckheere et al. [2002]

Local optimization
without global vision

None

Kahn [1987]
Naish [1994]
Shen [2001]

Chen et al. [2000]
Simchi-Levi et al. [2000]

Variabilities due to
company processes

None Taylor [1999]

Table 3.2: The bullwhip effect: causes and solutions.

may think there is a trend in market consumption even if it is steady, because the
ordering policy and exponential smoothing used by the retailer make this trend
appear. Such forecasting issues can lead to a bullwhip effect, because companies
order more or less than the quantity required to fulfill the actual demand.

The longer the ordering and shipping delays are, the worse this situation is, be-
cause companies have to forecast further into the future. As a consequence, or-
dering and shipping delays are an aggravating factor to this cause of the bullwhip
effect. We will see in Chapter 5, that we propose to see ordering and shipping
delays as a cause of the bullwhip effect, rather than only as an aggravating factor
of another cause.

A solution proposed to demand forecast updating is information sharing [Lee et al.,
1997a,b]: each client provides more complete information to its supplier in order
to allow the supplier to improve its forecasting. As stated in Section 2.1.1, in-



Chapter 3. The Bullwhip Effect 57

formation sharing is part of industry practices such as VMI (Vendor-Managed
Inventory), CRP (Continuous Replenishment Program) and CPFR (Collabora-
tive Planning, Forecasting and Replenishment) presented in Section 2.1.

Order batching: (lot sizing in a more general way) Let us consider the following ex-
ample. We assume truck capacity is 10 items, a company needs 8 items each week
(steady demand) and orders are placed each Monday. Therefore, the company
orders 10 items the first Monday in order to have a full truckload (i.e. a lower
shipping price) and puts 2 items in inventory. Next, demand remains at 8 items:
the company orders 10 items in the second, third and fourth weeks, but nothing
in the fifth week because the company has the 8 needed items in inventory. If this
scenario is repeated for a year, the supplier of this company may believe no prod-
ucts are consumed by the market every fifth week. If this supplier understands
that market consumption is steady, it takes several weeks order information to
calculate this market consumption by means of orders. This example illustrates
how order batching can generate the bullwhip effect [Lee et al., 1997a,b].

The proposed solution to lot sizing is electronic transactions (e-commerce, EDI...)
to reduce transaction costs, and thus make companies order more frequently for
smaller quantities of products.

Price fluctuation: When a company proposes a promotion, its clients buy more prod-
ucts in order to fill their inventory. When the price is back to its usual level, the
clients stop buying, and consume their inventory instead. As we can see, changing
the price of products also induce the bullwhip effect, because companies buy more
or less than their actual requirements.

The proposed solution is EDLP (Every Day Low Pricing) policy, where the price
is kept steady at the promotion level [Lee et al., 1997a,b].

Rationing and shortage gaming: We focus here on the strategic behaviour of com-
panies. For example, when product demand exceeds supply (e.g., a machine
breakdown reduces the quantity of available products), some clients might order
more than their actual needs, because they try to have a bigger proportion of
available products by “gambling”, in order to receive a quantity closer to their
actual needs. This amplifies order variability, because companies exaggerate their
real requirements during rationing, and then cancel orders when this rationing
stops. As a consequence, judging the real market consumption is difficult. This
behaviour occurs when the manufacturer allocates the amount in proportion to
the ordered amount.

Instead of that, it is preferable as a solution to allocate the few available products
in proportion to the history of past orders [Lee et al., 1997a,b].
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Other authors have extended Lee and his colleagues’ causes and solutions to the
bullwhip effect:

Misperception of feedback: Sterman [1989] analyzed Beer Game players and pro-
posed that the bullwhip effect can be caused by players, who do not understand
the whole dynamics of the system. For example, players who do not correctly
interpret their incoming orders may induce a bullwhip effect. In particular, they
may smooth their orders when they should order more because the market con-
sumption has changed.

A solution to this cause consists in giving a better understanding of the supply
chain dynamics to the players [Sterman, 1989].

Local optimization without global vision: Local optimization means companies
maximize their own profit without taking into account the effect of their deci-
sions on the rest of the supply chain [Shen, 2001; Naish, 1994; Kahn, 1987], that
is, externalities3 are ignored. In particular, some companies use an ordering policy,
such as (s, S), which is the operationalization of a local optimization. It has been
formally proven that some of these policies induce the bullwhip effect [Chen et al.,
2000; Simchi-Levi et al., 2000].

No solutions were proposed to this cause.

Variabilities due to company processes: Company processes can also induce a bull-
whip effect, and they were proposed by Taylor [1999] with the LEAP Project. In
this project, these authors have studied the causes of the bullwhip effect in the
upstream automotive component supply chain in the U.K. These authors pro-
posed two causes: variability in machine reliability and output, and variability
in process capability and subsequent product quality. In these two causes, which
are summarized as “Variabilities due to company processes” in Table 3.2, produc-
tion problems at each workstation are amplified from one workstation to another.
This cause recalls that intracompany problems and uncertainties may affect each
company’s behaviour, which in turn may make them change the way they place
orders.

No solutions were proposed to avoid the bullwhip effect induced by such variabli-
ties due to company processes.

3Externalities are defined in page 87 as the lack of taking into account the effect of an agent on
other agents.
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3.3 Different points of view on the Bullwhip Effect

The presentation in the previous section of the bullwhip effect, and its proposed causes
and solutions is a synthesis of many works belonging to several fields. In particular,
Scholl [2001] noted that many of these works belong to system dynamics and agent-
based modeling, which are two prominent nonlinear modeling schools. In order to
take into account works in other fields, one of our contribution is to extend Scholl’s
classification of the literature about the bullwhip effect into three broad classes: (1)
formal studies relative to the bullwhip effect, i.e., theoretical approaches, (2) empirical
studies of the bullwhip effect, i.e., empirical approaches, and (3) simulation approaches
of the bullwhip effect. We now detail these three classes.

3.3.1 Formal studies relative to the bullwhip effect

In the first class of approaches, mathematics tools from different fields have been used.
We present tools from system dynamics, classic inventory management, economics, and
traffic flow and control theories:

System Dynamics

This is the field in which the bullwhip effect was first described by Forrester [1958,
1961] in 19584. This explains why this phenomenon is sometimes called Forrester’s
effect. Much later, Angerhofer and Angelides [1999] gave an overview of system dy-
namics and its application to supply chain management related issues. For their part,
Min and Bjornsson [2000] described a construction of supply chains with system dy-
namics in order to develop an agent-based supply chain management model.

Classic Inventory Management

It is not surprising to see, that most of theoretical studies of the bullwhip effect belong
to the field of inventory management. In this field, models aim at demonstrating when
and why ordering policies induce the bullwhip effect. Precisely, these models focus on

4However, Scholl [2001] says Sterman points out that this phenomenon was described at least as
early as the 1920s and 1930s in Economics and Management Science literature.
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the stabilization of product and ordering streams in the supply chain. Conversely to
the Economic Order Quantity model (EOQ) presented in Subsection 2.1.2, companies
do not try to maximize their profit in this type of study of the bullwhip effect, they
only apply an ordering policy to manage their inventory. Of course, cost or profit
optimization is the basis of such ordering policies, as it is the basis of EOQ. This
optimization is used to design an ordering policy, but this ordering policy is taken into
account in such studies without reconsidering the underlying optimization [Chen et al.,
2000, 1994; Ryan, 1997; Simchi-Levi et al., 2000; Yao, 2001].

Many years after Forrester, in the field of inventory management, Lee et al. [1997b]
gave a more complete understanding of the amplification of demand variability; they
termed it the bullwhip effect. In particular, they proposed the four causes of this
phenomenon that we have just seen: (1) demand forecast updating, (2) order batching,
(3) price fluctuation, and (4) rationing and shortage gaming; however, some other causes
have been identified [Taylor, 1999; Sterman, 1989; Forrester, 1958].

In the same way, Chen et al. [2000] and Simchi-Levi et al. [2000] studied the impact
of delays and two particular forecasting techniques, and how the bullwhip effect is
reduced with information centralization, i.e., a particular form of information sharing
in which retailers multi-cast the market consumption in the rest of the supply chain.
In fact, such centralization of information allows each company in the supply chain to
create more accurate forecasts, rather than relying on downstream company demand,
which can vary significantly more than the actual market consumption. In our validation
in Chapter 7, we also consider this centralization.

Work similar to Simchi-Levi and his colleague has been done by Dejonckheere et al.
[2002] but with exponential smoothing algorithms, and Kelle and Milne [1999] also did
similar work to Simchi-Levi and his colleagues, but with the (s, S) ordering policy.

Economics

The third formalism used to study the bullwhip effect is taken from the field of eco-
nomics. Indeed, they have studied how local optimizations, done by companies without
taking into account the rest of the supply chain, cause the bullwhip effect [Shen, 2001;
Naish, 1994; Kahn, 1987]. The difference with the previous approach is the fact that
optimization is explicitely taken into account in economics models, while it disappears
in inventory management models of the bullwhip effect: the latter approach proposes
its ordering policies on local optimization too, but the proposed policies are used with-
out reconsidering optimization. The idea in economics models is to represent a single
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inventory system under an incoming demand, which is modelled as a statistic distribu-
tion. In this context, researchers show that optimization of costs increases the standard
deviation of placed orders in comparison with incoming orders. In other words, the
distribution of incoming demand at the input of such models has a lower standard de-
viation than the distribution of placed order at the output of the model. In particular,
Cachon studies such questions under different scenarios [Cachon, 1999].

Traffic Flow Theory

Another interesting approach is Daganzo [2003]’s “Theory of Supply Chains” where the
author focuses on ordering policies that stabilize flows in the supply chain. To achieve
this, he used a specific formalism based on traffic flow theory. That is, he proposed a
wide mathematical framework based on this theory to study many different kinds of
ordering policies. In particular, he gave properties that ordering policies should have
in order to avoid the bullwhip effect, and shows that all currently used policies lead to
the bullwhip effect.

Control Theory

In a very similar approach to traffic flow theory, Dejonckheere et al. [2004, 2003, 2002]
and Disney and Towill [2003] also focus on stabilizing streams in the supply chain,
except that they use another formalism, called control theory. Precisely, studies of
supply chain using either traffic flow theory or control theory are only different from
the view point of the mathematical tools that are used.

3.3.2 Empirical studies of the bullwhip effect

We now present some empirical studies of the bullwhip effect. First, Lee et al. [1997a]
gave a non-formal description of their paper [Lee et al., 1997b] that we have seen above.
In a more practical way, Fransoo and Wouters [2000] proposed a method for the mea-
surement of the bullwhip effect in real-life. Similarly, The LEAP (LEAn Processing)
Project has also studied the bullwhip effect in practice. The supply chain studied in this
project was made up of three echelons of the automotive component supply chain in the
U.K. [Hines and Holweg, 2000; Taylor, 2001, 2000, 1999]. Conversely to these two prac-
tical studies, Wilding [1998] explained from a conceptual view point that uncertainty is
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Figure 3.2: The supply chain complexity triangle [Wilding, 1998].

generated in the supply chain by three interacting sources, as illustrated in Figure 3.2:

1. The bullwhip effect;

2. Deterministic chaos (chaos appears while the system is deterministic, i.e. chaos
appears in the system, while there is a definite rule with no random terms gov-
erning the dynamics of this system);

3. Parallel interactions (interactions between companies in the same echelon may
appear: a retailer has an influence not only on its suppliers, but also on other
retailers).

As previously stated, the bullwhip effect has also been studied using the Beer Game:
the question was to find the managers’ cognitive limitations that cause this demand
variability [Croson and Donohue, 2002; Sterman, 1989]. In fact, although there are
mathematical tools to manage inventories, some managers still use their intuition when
placing orders. The problem lies in the fact that managers have trouble understanding
the dynamics of a supply chain, because there are complex feedback loops, time delays
and past orders to consider together.

In addition, the original Beer Game has been modified in order to take more realistic
considerations into account. For instance, Chen and Samroengraja [2000] changed some
parameters (market consumption...), and Haartveit and Fjeld [2002] and Fjeld [2001]
adapted it to the North European forest industry to study how the structure of the
game can result in a mismatch between supply and demand.
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3.3.3 Simulation-Based Studies of the Bullwhip Effect

We now present simulation-based studies of the bullwhip effect, and in particular those
that are based on the Beer Game. For example, Simchi-Levi et al. [2000]’s book is
distributed with a Beer Game software in which the player plays with three other
companies. These three companies can be set to apply one of six ordering policies, such
as the (s, S) policy. In the same way, Jacobs [2000] proposed playing the Beer Game
on the Internet.

As stated in Section 1.5, Kimbrough et al. [2002] have used software agents as play-
ers in the Beer Game to find the best ordering scheme with a genetic algorithm. In
a less theoretic approach, Chatfield [2001] was also inspired by this game to design
SISCO (Simulator for Integrated Supply Chain Operations). Similarly to the two latter
approaches, we now focus on simulations of supply chains that involve agents.

In fact, we have shown in Subsection 2.3.2 that agent technology is widely recognized
as a promising paradigm for the next generation of design and manufacturing systems.
In this context, Yung and Yang [1999b] represented each company as an agent that min-
imizes its costs subject to some constraints. As agents work in parallel, the optimization
of the supply chain is done concurrently. In a similar approach, Carlsson and Fullér
[2001, 2000] used fuzzy logic to estimate demand for the upcoming period, and thus,
reduce the bullwhip effect due to the cause called “demand forecast updating”. Like
Chen et al. [2000] but with the multi-agent paradigm instead of a formal model, Yan
[2001] has studied the impact of delay distribution on the bullwhip effect to verify that
increasing delays increases the bullwhip effect. Finally, Davidsson and Werstedt [2002]
have implemented a multi-agent system to coordinate production and distribution in
supply chains. Their architecture is general, and has been applied to the case study
of district heating systems. They do not specifically study the bullwhip effect, but
note that this phenomenon reduces the efficiency of their system. In spite of the fact
that the bullwhip effect is not the point addressed in their work, they used information
centralization, which is a means to reduce the bullwhip effect.

3.4 Conclusion

This chapter has presented the general problem of stream fluctuations in distributed
systems. Some examples of such problems have illustrated this presentation, e.g., traffic
jams are problems of vehicle stream fluctuations on roads, information congestions are
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problems of information stream management on computer networks, economic growth
and crisis are fluctuations of money streams. . . One of the contributions of this disser-
tation is to point out this generalization of the bullwhip effect. Next, we have focussed
on the case of supply chains, in which there is a particular case of stream fluctuations
called the bullwhip effect. The known cause, consequences and solutions of this effect
were presented. Finally, we have shown that a wide variety of approaches have been
used to study this phenomenon. This variety is a witness to the similarity between the
bullwhip effect and stream fluctuations in other fields. Another contribution of this
dissertation is the wide literature review about the bullwhip effect.



Chapter 4

Formalizing Interactions with Game
Theory

The previous chapter has presented the problem of stream fluctuations in distributed
systems, and has focussed on the case of supply chains, in which these stream fluctu-
ations are called the bullwhip effect. According to certain points of view, this effect is
due to a lack of coordination in the supply chain [Cooper et al., 1997]. For this reason,
in this chapter, we present how coordination is carried out in the two fields addressed in
this thesis, i.e., supply chains and multi-agent systems. Since coordination deals with
interactions between agents, this concept is introduced in this chapter also.

First, we outline some ways of coordinating streams in distributed systems. To
this end, we see that most coordination mechanisms in supply chains focus on money
(which promotion should we propose in order to make clients buy in coordinated ways
with our processes? How to optimize jointly inventory systems in several companies,
so that our activities are synchronized? Which contracts make companies work in a
coordinated way, so that the whole supply chain earns the largest amount of money?),
except one class of mechanisms which focusses on stream control in the supply chain
(e.g., Responsibility Tokens, system PAC. . .). Since our proposition to reduce the
bullwhip effect is concerned with such stream control, we develop our review of the
literature around this class. First, we introduce coordination mechanisms in multi-
agent systems. After that, we compare both types of coordination, i.e., coordination
in supply chains and coordination in multi-agent systems, and to our knowledge, this
is the first time when such comparison is made. Section 4.1 reflects all these aspects
around the notions of coordination.

Since coordination takes place by means of interactions, we also introduce game
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theory as a formalism to study interactions and coordination. To this end, we present
some notations and concepts from this theory, and we illustrate with examples how this
theory is used to analyze interactions. Game theory is presented in Section 4.2.

Finally, the application of game theory to computer science requires algorithms, and
as a consequence, we outline the current knowledge about the computational complexity
of these algorithms in Section 4.3.

4.1 Coordination

As we focus in this dissertation on decentralized coordination mechanisms for reducing
the bullwhip effect, we present some similar mechanisms in supply chain management
first, and in multi-agent systems after. But first of all, Malone and Crowston [1994]
note that coordination is of interest in many disciplines, such as computer science,
organization theory, operations research and economics. They have proposed an in-
terdisciplinary definition for coordination, which is the “management of dependencies
between activities”. From a conceptual viewpoint, research about coordination has
two goals: the identification of these dependencies, and the proposition of processes to
manage these dependencies.

In this context, Mintzberg [1978] has studied the structure of organizations and
proposed a classification. Figure 4.1 shows the Frayret [2002]’s extension of this clas-
sification. In this figure, A and B are two broad classes that distinguish the forms of
coordination by standardization from other forms of coordination, where class B is the
extension of Mintzberg [1978]’s classification. One interesting feature of Figure 4.1 is
the separation of direct and indirect forms of coordination, which allows distinguising
third party coordination (a Superior or a Mediator helps A and B to coordinate) from
mutual adjustment (A adjusts with B, while B also adjusts with A).

We now focus the presentation of coordination on two particular cases of organiza-
tions: supply chain, then multi-agent systems.
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Figure 4.1: Generic classes of coordination mechanisms [Frayret, 2002].

4.1.1 Decentralized Coordination Mechanisms for Supply Chains

Overview of All Coordination Mechanisms for Supply Chains

According to Viswanathan and Piplani [2001], coordination in supply chains can be
divided into three classes of mechanisms:

1. Discounts: In this approach, each client coordinates the way it places orders
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with its supplier, in order to profit from quantity discounts made by this sup-
plier. Precisely, the supplier proposes some discounts to the client, so that the
client has incentives to order products in the way that best suits the supplier,
for example, by ordering bigger batches of products [Rubin and Benton, 2003;
Corbett and de Groote, 2000; Dolan, 1987; Crowther, 1964].

2. Joint Optimization: We have seen in Subsection 2.1.2, that the Economic Or-
der Quantity (EOQ) aims at minimizing the cost of the inventory system in a
single company. Extensions of this model to several companies are known as
“Joint Economic Lot Size” (JELS) or “Multi-Echelon Inventory” models. Most
of these models, but not all, only consider two levels in a supply chain, i.e.,
clients and their suppliers, but not a larger supply chain. The goal is to mini-
mize the overall logistics cost of the considered supply chain by centralizing de-
cisions. Yang and Pan [2004]; Kosadat and Liman [2002]; Lee and Whang [1999];
Cachon and Zipkin [1999]; Banerjee [1986]; Clark and Scarf [1960]

3. Contracts: Every company can commit itself to perform actions, and pay penalties
if it does not do these actions. Such commitments are fixed in contracts. Accord-
ing to Cachon [2004], a contract coordinates a supply chain, when this contract
has the set of companies’ optimal actions as a Nash equilibrium. In other words,
a contract coordinates the supply chain, when every company is worse off when it
unilaterally deviates from the contract (because it has to pay penalties) because
non-deviating is the best for the whole supply chain. Much work [Corbett et al.,
2004] exists about contracts in the supply chain. A good review of this work has
been proposed by Tsay et al. [1999].

As we can see, these three classes of mechanisms consider the coordination of the
supply chain from the point of view of profit optimization. We now add a fourth class
of coordination mechanism, that considers stream stabilization instead of money saving:

4. Stream control: The goal of this approach is to control flows of products through
the production system. Money is no longer taken into account, because the
metrics is now the fluidity of these flows [Buzacott and Shanthikumar, 1992;
Liberopoulous and Dallery, 2000]. Of course, money is also taken into account
secondarily, because a more fluent supply chain is more efficient, and thus, earns
more money.

Since our proposition to reduce the bullwhip effect is a coordination mechanism con-
trolling streams in a supply chain, we now extend this fourth class.
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Focus on Supply Chain Coordination through Stream Control

Several different approaches have been proposed, and are used nowadays in some compa-
nies to coordinate production entities in manufacturing systems. We restrict ourselves
to the approaches using tokens to coordinate entities, because they are decentralized.
The most known and used of these approaches is known as Kanban, which means sign-
board or placard in Japanese. Kanban is a tool related to the philosophy of “just in
time” manufacturing, and is used to control production lines in a company. It was born
in Japan in 50’s, and was first successfully applied to Toyota by Taiichi Ohno. The
principle of Kanban operation between a consuming work centre and a supplying work
centre (or supplier) is as follows: the consuming work centre sends a kanban (signal)
to the supplier (i) to order products (each Kanban represents a fixed quantity of prod-
ucts) that will be moved into a buffer stock, and (ii) to make the supplier produce this
quantity of products. This operation is simple, and only works between every consum-
ing work centre and its direct supplier(s). Since Kanbans are hard to apply in many
contexts, many mechanisms were proposed to extend it:

• At the company level1: Here, PAC (Production Authorization Cards) System
[Buzacott and Shanthikumar, 1992], Kanban, Extended Kanban and Generalized
Kanban [Liberopoulous and Dallery, 2000] have been used to control the produc-
tion of one company.

• At the supply chain level : Here, Porteus [2000] has propposed Responsability To-
kens to operationalize Lee and Whang [1999]’s decentralized supply chain man-
agement scheme.

We now detail such coordination devices, and we start by the PAC system.

The PAC system is a decentralized approach to the coordination and control of
material and information flows in multiple cell manufacturing systems. This approach
generalizes other approaches, such as MRP (Material Requirements Planning), Kanban
(Japanese card system) and OPT (Optimized Production Technology), among others.
However, we know neither any comparison of this system with these other approaches,
nor any real application.

Figure 4.2 shows a production cell (circle at the centre), two stores (dashed boxes
at the left and at the right) and the minimal components of the PAC system. The pro-
duction cell is the workstation itself, that is, the place where manufacturing operations

1Even if these coordination mechanisms are designed for a single company, their scalability permits
extending them over several companies.
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Figure 4.2: The PAC system [Buzacott and Shanthikumar, 1992].

are performed, and the stores are inventories in which products wait before and after
their processing by the cell. The control of product streams in the cell and in the stores
is insured by different types of tokens:

• Requisition tags: They are sent by cell j to store j − 1 to ask store j − 1 to ship
an item to cell j immediately, or, if the store is empty, requisition tags wait in
a queue at the store, until there is a unit of product available (so, this queue is
filled with backorders).

• Order tags: They are sent by cell j to store j − 1 to inform store j − 1 that
there will be a demand by the cell for a product in the future: for each order
tag, there would be a requisition tag. These tokens allow long-term scheduling by
propagating demand information in the production system.

• Process tags: They are sent by cell j to store j, when cell j ships an item to store
j. When an order tag arrives at a store, it is matched with a process tag, and the
match generates the PA card.

• PA (Production Authorization) cards: They are sent by store j to cell j to allow
this cell to process a part. Moreover, when cell j receives a PA card, it sends
order and requisition tags to store j − 1.

Now, we give only a brief description of material and information flow control. The
complete PAC system has more components: each type of product has its own set of
tags, tags can have priority and be added to take stream convergences into account (e.g.,
for cells having many entry flows and only one exit stream) and stream divergences,
order cancelations, treatment of defective products. . ..



Chapter 4. Formalizing Interactions with Game Theory 71

The second example of a decentralized coordination mechanism is Responsibility
Tokens, that were proposed by Porteus [2000] to further operationalize Lee and Whang
[1999]’s decentralized supply chain management scheme, which is itself an operational-
ization of the decentralized management scheme made implicit by Clark and Scarf
[1960]. It is a simpler mechanism than the PAC system, and is designed to coor-
dinate several companies, whereas the PAC system is designed to coordinate man-
ufacturing workstations in the same company. Responsibility Tokens are used as a
mechanism for administering the transfer payments required to implement upstream
responsibility. The idea is to base reimbursement on actual consequences of process-
ing/delivering/shipping less than what was requested, rather than predicting these con-
sequences in advance. The system works as follows: whenever an upstream company
cannot meet the entire order placed by its customer company, this company will sub-
stitute Responsibility Tokens in place of the missing units. Customer companies will
treat these tokens as physical units, and the financial consequences of the fact that
these units are not real are assigned to the issuing player, when this non-reality of units
incurs harmful consequences. Precisely, when a retailer has a real item, this item is
sold to end-customers demanding it, but if this retailer only has tokens, it transforms
them into penalties if end-customers want some of these items. Thus, companies are
incited by financial penalties to deliver to their downstream companies as completely
as possible, but these penalties are only paid when stockouts arise.

We now outline coordination in multi-agent systems.

4.1.2 Multi-Agent Coordination

Definition

Wooldridge [2001] defined coordination in multi-agent systems with the same definition
as Malone and Crowston [1994], that was previously cited, i.e., coordinating is man-
aging the dependencies between the activities of agents. Jennings [1993b] proposed a
more precise definition, that is, the “process by which an agent reasons about its local
actions and the (anticipated) actions of others, to try and ensure the community acts
in a coherent manner”. Durfee [2001] proposed a definition similar to Jennings, since
he defined the coordination as an “agent’s fundamental capability to decide on its own
in the context of the activities of other agents around it”.

This similarity is underlined by the fact that all authors agree to see coordination
as a key concept in the field of multi-agent systems [Boutilier, 1999; Durfee, 2001].
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Furthermore, coordination is a large problem, as stated by Durfee [2001], who thinks
that a unique technique is not possible under every circumstances. In fact, if such a
technique was possible, it would substitute for many constructs, such as companies,
states, markets, teams. . ..

It is also important to note that cooperation and coordination are two different
things, although closely related, because cooperation implies coordination, while coor-
dination does not imply cooperation. For example, a chess-player agent coordinates its
actions to maximize its utility against its opponent, but it does not cooperate with its
opponent [Durfee, 2001].

We present now some techniques that have been developed to coordinate the agents’
activities. First, we rely on Boutilier [1996]’s three classes of coordination techniques,
which are used by many authors. These three broad classes are communication-based
coordination, convention-based coordination and learning-based coordination. We now
detail these three classes.

Communication-Based Coordination

Agents can coordinate by communicating together in order to find the best way, either
not to disturb each other, or better, to work together. In this approach, agents negotiate
to find an agreement on actions that each agent has to perform [Beck and Fox, 1994].
This negotiation may take, for example, the form of an auction, such as the Contract Net
Protocol [Smith, 1980]. This negotiation may also be formalized as a DCSP (Distributed
Constraint Satisfaction Problem), that has to be solved to find each agent’s schedule of
actions [Yokoo and Hirayama, 2000].

Durfee and Lesser [2001] proposed the Partial Global Planning (PGP) as another
coordination technique. Since PGP interleaves coordination with action in order to
coordinate in dynamic environments, this technique applies an iterative process to cre-
ate, coordinate and execute plans. Moreover, decisions are taken despite incomplete
and possibly obsolete information about environment. To this end, the idea of PGP
is to make agents generate plans that are both partial, i.e., such plans are not for the
overall system, and global, i.e., such plans are based on a non-local view of the problem.
The non-local view required to build global plans is obtained by communication: each
agent exchanges its local plan, and cooperates with other agents, so that to build this
non-local view to have a better view of the system than the view the agent can perceive
directly with its sensors [Wooldridge, 2001].
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The solution to stream fluctuations that we propose in this dissertation belongs to
this class of communication-based coordination mechanisms, because we propose that
companies share information in order to limit these fluctuations by providing each agent
with the required output of the multi-agent system.

Convention-Based Coordination

With such coordination techniques, agents have to or should follow social laws. An
example in which agents have to obey is vehicle drivers on roads, who have to follow
social laws, e.g., drive on the right side of the road, or do not pass on red light, because
of the police, and of the danger of not doing so. But there are also conventions that
agents do have to follow, but only should follow. For example, a person can go to the
airport to pick up another person, without agreeing on the place where they will find
each other. Only the arrival time of the flight is required, because they both know that
they will meet at the baggage claim exit.

In general, if every agent follows the social laws, the system is supposed to be
well coordinated. Hence, the problem for the designer of the multi-agent system is
to find these “good” laws [Cachon, 2004; Cloutier et al., 2001; Cachon, 2004; Jennings,
1993b]. Some tools, such as game theory [Rosenschein and Zlotkin, 1994] described in
Section 4.2, and the COOrdination Language (COOL) [Barbuceanu and Fox, 1995b]
can help the designer in this job. According to Delgado [2002], there exist two ways to
find these laws:

• Off-line design: Here, social laws are given a priori to agents by the designer of
the multi-agent system.

• Emergent design: In this case, agents interact to decide together which laws to
use in the current context. That is, agents have to agree on some common laws,
but these laws are given a priori to the agents by the designer of the multi-agent
system.

Similarly to emergent design, a common agreement also has to be reached in the next
class of coordination techniques, i.e., in learning-based coordination. The difference
with emergent design is that some laws are given a priori to agents in convention-based
coordination, while agents have to find these laws in learning-based coordination. We
now detail this latter class.
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Learning-Based Coordination

In this class, agents learn to live together, that is, they learn which action should
maximize their utility depending on the current context. This learning process is carried
out with a learning process, as presented in Subsection 2.2.3. During this process, agents
learn the social laws that were applied in the class of convention-based coordination.
Hence, learning is a way for the designer to simplify his/her task, because agents find
some good laws at his/her place. Furthermore, it is also a way to have a more adaptive
coordination mechanism, because this mechanism follows environment changes [Paquet,
2003; Prasad and Lesser, 1999; Sugawara and Lesser, 1998].

Of course, learning-based coordination is based on learning techniques from artificial
intelligence. As a first consequence, learning methods, such as Q-learning, Bayesian net-
works, or the extensions of Markov Decision Process (MDP), e.g., Partially Observable
MDP, Multi-agent MDP and DECentralized MDP, have been applied to multi-agent
systems [Paquet, 2003; Chalkiadakis and Boutilier, 2003; Boutilier, 1999, 1996]. As an-
other consequence, the two main problems from learning in artificial intelligence also
arise:

• Will the learning process of an isolated agent converge towards some behaviour,
instead of having an agent that changes its behaviour all the time?

• When should an isolated agent stop exploring every possible strategy?

In addition to that, an additional problem arises, due to the fact that agents are
not isolated, but interact together. In fact, agents have to coordinate their action
with other agents, which greatly increases the complexity of the coordination prob-
lem [Chalkiadakis and Boutilier, 2003]. In fact, since the other agents change their
behaviour through their learning process, it is much more complex to make a given
agent learn to coordinate. In other words, the considered agent not only has to learn
how to behave, but it also has to adapt its behaviour in order to adapt to the change
in other agents’ behaviour. In particular, agents may enter some cycles, in which, for
example, an agent A coordinates with an agent B, then an agent C coordinates with the
new behaviour of A, but because of this adaptation, the agent B changes its behaviour
to coordinate again with C. We can see that the learning process may never stabilize
on a stable coordination of the multi-agent system.

In addition to the above approaches of coordination, some others do not fit in
Boutilier’s classes. In particular, we now present two other techniques.
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Commitments and Conventions as the Foundation of Coordination

Jennings [1993b] gathered every coordination technique in order to propose a unified
one. To this end, he proposed to see commitments and conventions as the base of every
coordination mechanism. Here, a commitment is defined as “a pledge, or a promise,
to undertake a specified course of action” and a convention as “a means of monitoring
commitments in changing circumstances”. Note that convention does not have the same
meaning here, as in convention-based coordination. The idea of this approach is that a
commitment taken by an agent A provides other agents with predictability about A, so
that, the other agents can predict what A could do in the future, and thus, the other
agents can act according to this prediction. On the other hand, conventions provide A

with flexibility in face of the changes in its environment, because conventions allow A,
for example, to abandon an obsolete commitment, or to pay a penalty in exchange for
changing a commitment.

Jennings assumed that the two concepts of commitment and convention are cen-
tral for coordination, because all coordinations would be ultimately reduced to (joint)
commitments and their associated (social) conventions. To support this hypothesis,
he illustrated how some well-known coordination techniques, that do not mention the
two concepts of commitment and convention, can be reformulated, so that they are
compliant with this hypothesis.

Coordination through Joint Intentions

The above Jennings’ hypothesis deals with joint commitments, which can be used to in-
troduce coordination through joint intentions. In some circumstances, a joint intention
can be defined as a joint commitment to perform a collective action in a certain men-
tal state [Jennings, 1993a]. The mental state is important in this definition, because,
when two groups of agents share a joint commitment, one group cooperates because its
members also share a certain mental state, while the other group does not cooperate.
In other words, the first group wants to cooperate, while the other group cooperates in
a fortuitous way. We can note that we refer here to cooperation rather than to coor-
dination, because, as we have just stated, joint intentions assume that agents want to
work together [Wooldridge, 2001].

We now compare these coordination mechanisms with their equivalents in supply
chain management, that were introduced in Subsection 4.1.1.
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4.1.3 Comparison of Both Types of Coordinations

As a contribution, we propose to examine the differences and similarities in the coor-
dination mechanisms that have just been outlined, in order to compare coordination
in supply chain management with coordination in multi-agent systems. First, from the
viewpoint of vocabulary, “cooperation” is used in these two fields, and the two words
“collaboration” and “cooperation” refer to the same concept, but not in the same field.
That is, companies in supply chains are said to collaborate, while agents cooperate.

Besides this little difference in vocabulary, we take the classes of multi-agent coor-
dination techniques proposed by Boutilier [1996] as a basis of comparison of these two
fields:

1. Communication-based coordination: Every coordination mechanism presented in
Paragraph “Focus on Supply Chain Coordination through Stream Control” is a
communication-based mechanism, because they use tokens, which are little pieces
of information used to coordinate activities. We have presented in Subsection 4.1.1
such token-based approaches, because they are decentralized like multi-agent sys-
tems, which respects the autonomy of companies. Nevertheless, there also exist
centralized approaches, which use communication too, but we do not insist on
them, because centralization of decision requires companies to follow an external
leader. In both cases of centralization and decentralization, we only note that
coordination through stream control in supply chain always uses communication,
like communication-based coordination in multi-agent systems.

2. convention-based coordination: This class of coordination mechanism corresponds
to laws and contracts in supply chains:

• Laws: Laws imposed on a company by the society correspond exactly to
social laws in multi-agent systems, because both are given from the exterior.
Furthermore, in both cases, agents (respectively companies) may propose to
the rest of the system (respectively society) to change these laws.

• Contracts: The little difference between convention-based coordination in
multi-agent systems and contracts in supply chains, is that contracts have to
be found by companies, while they are given a priori to agents. Therefore,
contracts in a supply chain are mostly similar to learning-based coordination
in multi-agent systems, because finding contracts can be seen as a learning
process.

3. learning-based coordination: The link between learning-based coordination and
contracts in the supply chain is stronger than the link outlined with convention-
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based coordination: when agents learn to coordinate, their learning finds the best
contracts ruling their interactions with other agents. In the same way, managers
in supply chains “learn” which contracts are needed by their supply chains. When
the environment changes, agents learn in order to find new contracts, which cor-
responds to contract updating in supply chains.

As we can see, there are some similarities between the coordination mechanisms in
multi-agent systems and two (among four) of the mechanisms in supply chains. The
two other mechanisms (“discounts” and “joint optimization”) in supply chains also have
correspondances in multi-agent systems:

• Discounts: Discounts are specific to systems managing money, and thus, are
applied in some specific applications of multi-agent systems, e.g., e-commerce.
More generally, market mechanisms are used to coordinate some multi-agent sys-
tems, and in particular, mechanism design may propose discounts in order to
make the overall system works in the best way [Eymann, 2001]. For example,
some research studies the way to price some shared resources, such as a net-
works [MacKie-Mason and Varian, 1995], in order to avoid congestions.

• Joint optimization: This approach proposes centralizing decision making, which
is the contrary of the multi-agent philosophy, since this philosophy is to decentral-
ize decision and control. At first glance, companies also prefer decentralization,
because they prefer to keep their autonomy, but studying centralized decision
making is interesting for at least two reasons:

– companies may accept centralized decision making, i.e., they may accept to
loose some control of their activities, if it can be proven that decentralization
is much worse for them.

– centralizing decision making allows using mathematical tools, such as Op-
erations Research [Hillier and Lieberman, 1997], to find the best possible
decision, which can be used as a reference to measure the efficiency of a
decentralized approach to coordinate companies.
Similarly, in the field of multi-agent systems, Durfee [2001] proposed optimal-
ity as one of the possible metrics of coordination. That is, an optimization is
said to be optimal, if we can show that no other coordination leads to better
results. Even though optimality is desirable, it is rarely feasible, because it
requires a great deal of computation and many communications. Moreover,
Durfee also proposed some other characteristics of coordination, that are
also interesting for coordination in the field of supply chains. Here are some
examples of such characteristics:
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∗ scalability: how does the performance of the system change when agents
are added?

∗ heterogeneity: how does the performance of the system change when the
differences of agent types increase?

∗ robustness: how does the performance of the system evolve when there
are changes in the world, while some assumptions about this world were
stated to design the coordination mechanism?

∗ overheads: what are the computational and the communication over-
heads of the coordination mechanism?

Although centralized decision making is not desirable neither in supply chains,
nor in multi-agent systems, both fields also consider it. Indeed, we have seen that
agents can make joint decisions in a similar way to joint optimization in supply
chain management. Such a joint decision was referred as “coordination through
joint intentions” in Subsection 4.1.2. We have noted that this coordination is in
fact cooperation, because agents want to work together. In the context of supply
chains, “joint optimization” also refers to cooperation, and more specifically to
collaboration, since this word is preferred in supply chain management. As a
consequence, the aims of joint intention and joint optimization are the same,
i.e., to collaborate/cooperate, even if the means are different, i.e., centralized
coordination based on mathematics vs. sharing of a certain mental state.

This section has introduced and compared coordination in two particular types of
distributed system. We now present game theory, a formal tool to study coordination,
and more generally, interaction between agents.

4.2 Game Theory

Game theory is a mathematical theory that studies interactions among self-interested
agents ([Binmore, 1991] in [Wooldridge, 2001]). Precisely, game theory is the “system-
atic study of how rational agents behave in strategic situations, or in games”, that is,
in situations in which “the actions any one agent may take, will have consequences for
others” [Jehle and Reny, 2000]. Such consequences for others are called externalities.
This theory is used in the multi-agent systems field, because it gives a high point of
view on such interactions. Wooldridge [2001] also noted how interesting is the fact that:

John von Neumann, one of the founders of computer science, was also one
of the founders of game theoy [von Neumann and Morgenstern, 1944]; Alan
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Turing, arguably the other great figure in the foundation of computing, was
also interested in the formal study of games, and it may be that it was
this interest that ultimately led him to write his classic paper Computing
Machinery and Intelligence [Turing, 1950], which may be seen as the foun-
dation of Artificial Intelligence (AI) as a discipline. However, since these
beginnings, game theory and computer science went their separate ways for
some time. Game theory was largely - though by no means solely - the
preserve of economists, who were interested in using it to study and un-
derstand interactions among economic entities in the real world. Recently,
the tools and techniques of game theory have found many applications in
computational multi-agent systems research.

As example of multi-agent research, game theory was used to design protocols in
electronic commerce [Asselin, 2002; Asselin and Chaib-draa, 2002; Ben-Ameur et al.,
2002a; Sandholm, 1999]. But such trends towards game theory are very recent. To
explain why economics in general, and game theory in particular, has not had more im-
pact on artificial intelligence (AI) in general, and on multi-agent systems in particular,
Boutilier et al. [1994] proposed two fundamental reasons. The first reason is substan-
tive: “Economics is primarily concerned with explaining the decisions and interactions
of rational self-interested agents (or communities thereof), or designing policies that
influence these interactions to further certain global objectives”, while “AI is largely
(though not exclusively) concerned with constructing self-interested agents, the very
entities economic theory takes for granted”. The second reason is cultural, because eco-
nomics and AI have a very different cultural heritage: philosophical epistemology for
AI, e.g., the logicist McCarthy and the psychologists Newell, Simon and Minsky, and a
strict bayesian setting for economics. We now introduce some game-theoretic concepts
and notations, that are illustrated through examples.

4.2.1 Assumptions

When using game theory in this thesis, we make the following hypothesis:

• We consider games in the strategic form, that is, games in which all players make
their decisions simultaneously.

• Players decide independently.

• Players’ rationality is infinite. In general, rationality means that players decide
in a way that maximizes their utility. In the context of games, it is not straight-
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forward to apply this definition, because others’ decision impacts on each player
(presence of externalities). In consequence, players reason about their actions
and others’ actions. In particular, we also assume that infinite rationality allows
players to repeat a reasoning an infinite number of times [Yildizoglu, 2003].

• There is no communication between players, and therefore, they cannot coordi-
nate.

• We consider games of complete information, that is, players have a common knowl-
edge of the game structure. In other words, players make their decisions with the
same game, but with a different role.

4.2.2 Basic Definitions

With these assumptions, we can now give the definitions in game theory that are usefull
to understand our work. The following definitions are from Jehle and Reny [2000],
except when the contrary is stated:

Strategic form game: A strategic form game is a tuple G = (Ri, ui)N
i=1, where for

each player i = 1, . . . , N , Ri is the finite set of strategies available to player i, and
ui : ×N

j=1R
j → � (i.e., ui : R1 × . . . × RN → �) describes player i’s utility/payoff

as a function of the strategies chosen by all players.

As an illustration of this definition of games, consider the well-known game “Rock,
Paper, Scissors”, in which N = 2 players Player1 and Player2 are opponents. Each player
has the same set of strategies, thus R1 = R2. The strategies in R1 and R2 are to play
either Rock, Paper or Scissors, i.e., R1 = R2 ={Rock, Paper, Scissors}. In this case, each
strategy is a single action, but in general, a strategy is a complete plan of actions. The
utility functions u1 : ×2

j=1R
j = R1 × R2 → � and u2 : R1 × R2 → � describe the fact

that:

• Rock beats Scissors;

• Scissors beats Paper;

• Paper beats Rock;

For example, for any a > 0, these relations correspond to the following utilities: u1(Rock,
Scissors) = a and u2(Rock, Scissors) = −a, and conversely, u1(Scissors, Rock) = −a and
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Player2

P
la

ye
r1 Rock Paper Scissors

Rock 0; 0 −a; a a; −a

Paper a; −a 0; 0 −a; a

Scissors −a; a a; −a 0; 0

for any a > 0

Table 4.1: The game “Rock, Paper, Scissors”.

Player2

P
la

ye
r1 Rock Paper Scissors

Rock 0; 0 -1; 1 1; -1
Paper 1; -1 0; 0 -1; 1

Scissors -1; 1 1; -1 0; 0

Table 4.2: An instance of the game “Rock, Paper, Scissors”, when a = 1 in Table 4.1.

u2(Scissors, Rock) = a, as reflected in Table 4.1. What is important in this table is the
relation between each player’s utility when these players choose either Rock, Paper or
Scissors. We can instanciate this general form of “Rock, Paper, Scissors” by choosing a
positive value for a. We take a = 1 in Table 4.2.

We can note this is a zero-sum game, which is a game where players’ payoffs add
up to zero, i.e., u1 + u2 = 0 whatever is played by both players. For example, u1(Rock,
Scissors) + u2(Rock, Scissors) = a − a = 1 − 1 = 0. We do not give more details about
this type of game, as games studied in this thesis neither sum to zero, nor to any other
constant. We now present another concept.

Joint strategy: the set r = ×N
i=1r

i is a joint strategy in which each player i plays
ri ∈ Ri. The symbol −i denotes “all players except player i”, such as r−i ∈ R−i =

R1 × . . . Ri−1 × Ri+1 × . . . RN .

For example, in the game “Rock, Paper, Scissors”, when Player1 plays Rock and
Player2 Scissors, the joint strategy is r =(Rock, Scissors), in which case, u1(r) = u1(Rock,
Scissors) = 1 and u2(r) = u2(Rock, Scissors) = −1. Precisely, each entry in Table 4.2
gives the outcome of a joint strategy. Concerning the notation “−i” introduced in the
previous definition, r−1 represents what is played by Player2, because there are only two
players in “Rock, Paper, Scissors”.
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4.2.3 Definition of Dominance Relations

At this point, we have a formalism describing games, and we know that agents maximize
their utility, since they are rational. But we do not know how agents achieve this
maximization, because they have to take others’ decisions into account. Therefore, we
now focus on tools for analyzing games.

We first look at two relations in a company’s decision. The first presented relation
is domination. It is strong, because Jehle and Reny [2000] say of such domination that:

“whenever we attempt to predict the outcome of a game, it is preferable
to do so, without requiring that players know a great deal about how their
opponents will behave. This is not always possible, but when it is, the
solution arrived at, is particularly convincing.”

We introduce strictly dominant strategies first. Such a strategy is strictly superior to
all other strategies, that is, it is the best one whatever is played by all other players:

Strictly dominant strategies: A strategy r̂i for player i is strictly dominant if
ui(r̂i, r−i) > ui(ri, r−i), for all (ri, r−i) ∈ R with ri �= r̂i.

Let us consider the new example depicted in Table 4.3. Now, strategies available
by Player1 and Player2 are different: R1 ={U, C, D} and R2 ={L, M, R}. Playing M
(middle) is a dominant strategy for Player2, because it always incurs the highest payoff
(utility), whatever Player1 plays as strategy:

• If Player1 plays U (up), Player2 earns 4, which is the maximum between 0, 4 and 3,
that it can have when it plays L, M, or R;

• If Player1 plays C (center), Player2 looses 1, which is the lowest loss between -2,
-1 and -4;

• If Player1 plays D (down), Player2 earns 8, which is the maximum between 4, 8
and 6.

In all cases, M has the highest payoff for Player2: M is therefore a dominant strategy.
As M is dominant for Player2, Player1 knows for sure that his/her opponent is going
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Player2

P
la

ye
r1 L M R

U 3; 0 0; 4 2; 3
C 1; -2 3; -1 4; -4
D 2; 4 -1; 8 2; 6

Table 4.3: Strictly dominant strategy.

to play only M. Player1 knows that about Player2, because both players have common
knowledge of the game, since we consider games of complete information, and reason
in the same way, since they both have an infinite rationality. In conclusion, Player1
chooses C in order to win 3, because s/he knows that only (U, M), (C, M) and (D, M)
may be played, and s/he prefers (C, M).

We can also consider the latter game to show that stricly dominant strategies do not
always exist. For example, if Rock was strictly dominant in Tables 4.1 and 4.2, both
players would only play this strategy, and never Paper or Scissors. This is not the case,
because the game “Rock, Paper, Scissors” has no strictly dominant strategy, and thus,
players choose any of the three possible strategies.

In general, strictly dominant strategies are very rare. When there are none, we
consider the second relation, i.e., strictly dominated strategies, because “it may still
be possible to simplify the analysis of a game by ruling out strategies that are clearly
unattractive to the player possessing them [Jehle and Reny, 2000]”. This is the motive
for strictly dominated strategies:

Strictly dominated strategies: Player i’s strategy r̂i strictly dominates another of
his strategies r̄i, if ui(r̂i, r−i) > ui(r̄i, r−i) for all r−i ∈ R−i. In this case, we also
say that r̄i is strictly dominated in R.

Again, the game “Rock, Paper, Scissors” has no strictly dominated strategy in Tables 4.1
and 4.2. For example, if Rock was strictly dominated by Paper, players would never
play Rock, which is not true.

Let us now consider the game in Table 4.3(a) [Jehle and Reny, 2000]. Neither player
has a strictly dominant strategy, but each player has a strictly dominated strategy, i.e.,
an unattractive strategy. In fact, Player1 always has a higher outcome in D than in C,
whatever is decided by Player2. In the same way, Player2 always has a higher outcome
in R than in M, whatever is made by Player1. Therefore, strategies C and M are
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Player2

P
la

ye
r1 L M R

U 3; 0 0; -5 0; -4
C 1; -1 3; 3 -2; 4
D 2; 4 4; 1 -1; 8

(a) Original game.

Player2

P
la

ye
r1

L R

U 3; 0 0; -4
D 2; 4 -1; 8

(b) Table (a) after the
first turn of elimina-
tions of strictly dom-
inated strategies.

Player2
P
la

ye
r1

L R

U 3; 0 0; -4

(c) Table (a) after the
second turn of elim-
inations of strictly
dominated strategies

Player2

P
la

ye
r1

L

U 3; 0

(d) Table (a) after the
third turn of elimina-
tions of strictly domi-
nated strategies

Figure 4.3: Strictly dominated strategy [Jehle and Reny, 2000].

dominated by another strategy for both players: they can be removed, because they
should not be played by both players, that are assumed as rational. The reduced form of
game 4.3(a) obtained by removing these two strictly dominated strategies is presented
in Table 4.3(b).

In this second table, we can see that U becomes a dominant strategy for Player1.
This strategy was not dominant at the beginning (Table 4.3(a)), but this dominance
appeared when C and M were eliminated, because they are dominated. As U is dominant
for Player1, D is dominated by U. Thus, we can remove D in a second turn of elimination
of strictly dominated strategies. The result of this elimination is given in Table 4.3(c).
As Player1 will only play U in Table 4.3(c), R is strictly dominated by L for Player2,
because Player2 earns 0 instead of -4. As a consequence, R can be ignored in Table 4.3(c),
which gives Table 4.3(d). Finally, we know exactly what both players are going to play:
the solution of the game in Table 4.3(a) is (U, L), i.e., the only remaining joint strategy
in Table 4.3(d).
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4.2.4 Definition of Concepts of Solution

Up to now, we have only compared strategies for individual players. In the definition of
Pareto-improvement, Pareto-efficient, social welfare and Nash equilibrium, joint strate-
gies are compared together. As these concepts define the possible outcomes of a game,
they are called concepts of solution. The first two of these concepts of solution are now
introduced.

Pareto-improvement: the joint strategy r̂ Pareto-improves the joint strategy r, if for
each player i, ui(r̂) ≥ ui(r), and there is at least one player for which ui(r̂) > ui(r).

This definition means that a Pareto-improvement can be made only when it is possible
to make someone better off and no one worse off. If there is no way at all to make a
Pareto-improvement from a given joint strategy, then we say that this joint strategy
is Pareto-efficient. That is, a situation is Pareto-efficient if there is no way to make
someone better off without making someone else worse off:

Pareto-efficiency: the joint strategy r̂ is Pareto-efficient if for each player i and for
any joint strategy r �= r̂, ui(r̂) ≥ ui(r).

In consequence, there may be several Pareto-efficient joint strategies. For instance,
in zero-sum games, i.e., games where the sum of all players’ payoff is zero, such as “Rock,
Paper, Scissors” in Tables 4.2, no Pareto-improvement can be made, and therefore, in
Table 4.2, i.e., the nine joint strategies of this game, are Pareto-efficient.

On the contrary, some entries in Table 4.3 are not Pareto-efficient. In particular, (U,
R) can be Pareto-improved, because if Player1 switched from U to D, it would increase
other player’s payoff without changing his own payoff. This second entry, (D, R) cannot
be Pareto-improved, because in all other entries, either one player is better off and the
other is worse off, or both players are worse off. Therefore, (D, R) is Pareto-efficient,
even if we have seen that R is strictly dominated for Player2. Similarly, (U, L) Pareto-
improves (C, M) and (C, L). Finally, we can check that (U, L), (U, M), (D, L), (D, M)
and (D, R) are Pareto-efficient.

Let us consider now another concept of solution, called the maximum of the social
welfare. In general, it is difficult (and even impossible, when we want to have some
desirable properties for this function, as proven in Arrow’s impossibility theorem [Arrow,
1951]) to build a function representing the social welfare, that is, the aggregation of a
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Player2

P
la

ye
r1 L M R

U 3=3+0 -5=0-5 -4=0-4

C 0=1-1 6=3+3 2=-2+4

D 0=2+4 5=4+1 7=-1+8

Table 4.4: A possible measure of the social welfare in Table 4.3(a).

group of agents’ utilities, because an agent’s utility cannot be compared with another
agent’s utility. In fact, agents have different points of view about a situation, and
thus, their utility is measured in different units. For example, money, happiness and
health cannot be compared together [Jehle and Reny, 2000]. Therefore, in this thesis,
we focus on player’s utilities that can be compared by using money as the common unit.
Conversely to other game-theoretic definitions presented in this section, the following
definition is from Sandholm [1999]:

Social welfare : the set of players playing the joint strategy r has a social welfare
U(r) =

∑
i u

i(r).

With this definition, the social welfare measures the global good of the agents as the
sum of all agent’s payoffs/utilities, when these agents use a common metrics for their
utility. If we assume that Player1’s utility is equivalent to Player2’s, we can calculate
the social welfare in all entries in the game in Table 4.3(a); this calculation is achieved
in Table 4.4. We saw earlier that the solution of this game is (U, L), that is, when we
eliminate recursively every strictly dominated strategy, (U, L) is the only joint strategy
surviving this elimination. Though, the issue is that (U, L) incurs a social welfare of
3 + 0 = 3, which is very far from the maximum of −1 + 8 = 7 incurred by (D, R).
Player2 would earn 8 in this joint strategy, and the Player 1 would loose 1: Player2 could
therefore give 5 to Player1 to give him an incentive to reach this other joint strategy.
In this case, both players would increase their income: Player1 would have 4 instead of
3, and Player2 would have 3 instead of 0.

Unfortunately, such arrangements are not allowed by game theory; if such transfers
are possible, they have to be included in the definition of strategies, i.e., before writing
the outcomes in Table 4.3(a). This design of interaction rule that will, in principle,
yield such a desired outcome is called Mechanism Design [Varian, 1995]. In other
words, this field aims at designing the rules of the agents’ environment to reach some
desirable joint strategies, i.e., mechanism design defines “the game that the agents must
play, so that the collective good of all agents is maximized when each agent adopts
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the game-theoretic solution that maximizes its own utility”. One basic requirement of
mechanism design is “to ensure that externalities are made explicit, where externalities
are the “effects on other agents’ utility that are not recognized in the individual agents’
transactions” [Russell and Norvig, 2003].

The bullwhip effect studied in this thesis is an externality, because each company
tries to minimize the cost of its inventory system while ignoring that this optimization
has effects (i.e., order variability) on the rest of the supply chain. However, we do not
consider mechanism design as such in this thesis, because no economics principles were
used to propose our coordination mechanism. In fact, though we design some rules of
interaction to reduce the bullwhip effect, i.e., some ordering schemes, these rules are
designed to stabilize ordering and shipping streams in the supply chain, rather than
make company-agents internalize an externality, by making this externality explicit.

Finally, the last concept of solution that we use is the Nash equilibrium in pure
strategy2. This well-kwown concept was proposed by John Nash [1951] in 1951. It is
the single most important equilibrium concept in all of game theory, because it is the
most general equilibrium that is known. Jehle and Reny [2000] defines this equilibrium
as:

Pure strategy Nash equilibrium : Given a strategic form game G = (Ri, ui)N
i=1,

the joint strategy r̂ ∈ R is a pure strategy Nash equilibrium of G, if for each
player i, ui(r̂) ≥ ui(ri, r̂−i) for all ri ∈ Ri.

Jehle and Reny [2000] makes the following comment about this concept of solution:

Informally, a joint strategy r̂ ∈ R constitutes a Nash equilibrium as long as
each individual, while fully aware of the others’ behaviour, has no incentive
to change his own. Thus, a Nash equilibrium describes behaviour that can
be rationally sustained.

This is true as long as the other player does not change his/her decision, that is, as long
as deviances are unilateral. No player would like to change what he plays, regarding
what is played by the other player. A Nash equilibrium is therefore a “shaft state”,

2Pure strategy means the player i has no probability distribution over his set of strategies Ri. The
contrary is mixed strategies, where the player i may play for example r̂i during 25% of the time and r̄i

during the rest of the time, i.e., the player i randomizes among his choices. We do not consider such
probability distribution in this thesis, because we will see in Subsection 8.4.5 that our simulation does
not take into account the switching of strategy during a simulation
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or, from a mathematics point of view, a fixed-point of a function describing the game
[Nash, 1951]. In general, there can be several pure strategy Nash equilibria or none3.
These two cases can be a problem, because either we do not know which equilibrium
will occur, or we do not know which decision players will prefer.

We have previously established that players play the joint strategy (U, L) in Ta-
ble 4.3(a). We can also find this result with the concept of Nash equilibrium, in order
to illustrate the meaning of this equilibrium. To do so, we test the nine entries in Fig-
ure 4.3(a), to check if each player has no incentive to leave the considered entry. For
example, for the entry (U, L):

• The Player1 has an outcome of 3, which is better than 1 if he plays C instead of
U and better than 2 if he plays D instead of U;

• The Player2 has an outcome of 0, which is better than -5 if he plays M instead of
L and better than -4 if he plays R instead of L.

Let us come back to Table 4.3(a) in order to describe one of the sophistications of
the Nash equilibrium: the iterated dominance equilibrium. In Table 4.3(a), (U, L) is the
solution obtained by recursive eliminations of dominated strategies of the game: (U, L)
is an iterated dominance equilibrium of this game. The concept of iterated dominance
equilibrium is stronger and encompasses the Nash equilibrium concept. That is, an
iterated dominance equilibrium is a Nash equilibrium with the particularity of being
preferred by players to any other equilibria. Rasmusen [1994] defines such iterated
dominance equilibria as:

Iterated dominance equilibrium: An iterated dominance equilibrium is a strategy
profile found by deleting a dominated strategy from the strategy set of one of the
players, recalculating to find which remaining strategies are dominated, deleting
one of them, and continuing the process until only one strategy remains for each
player.

Nevertheless, even though iterated dominance equilibria are stronger than Nash equilib-
ria, they are not the panacea. In particular, iterated dominance equilibria may not be
Pareto-efficient. To see this, recall that we have shown that (U, L) in Table 4.3(a) is the
Nash equilibrium remaining in Table 4.3(d) after the recursive elimination of strictly
dominated strategies, while (D, M) is a Pareto-improvement on this equilibrium.

3In mixed strategies, there is always at least one Nash equilibrium [Nash, 1951].
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Girl

M
an Bach Stravinsky

Bach ζ ; ε η; η

Stravinsky η; η ε; ζ

subject to ζ > ε > η

Table 4.5: The game “Battle of the Sexes” in general.

Finally, note that Pareto-efficient joint strategies are different from Nash equilibria,
because some players may have an incentive to deviate from a Pareto-efficient joint
strategy, which would increase the utility of such player, but also decrease the utility
of some other players. For example, (C, M) is a Pareto-improvement on (U, L) in
Table 4.3(a). Moreover, (C, M) has a higher social welfare (3 + 3 = 6), than (U, L)
(3 + 0 = 3). Although, (C, M) is not an equilibrium, because both players have an
incentive to unilaterally deviate from it.

4.2.5 An illustration: The Battle of the Sexes

Consider a last example of game, called the “Battle of the Sexes”. In this game, two
lovers have to decide what they are going to do tonight. The Man would like to listen
a Bach symphony, while his girlfriend prefers a Stravinsky symphony. But they wish
above all to be together. Table 4.5 summarizes these preferences, where, ζ > ε > η, to
respect players’ preferences. For example, the Girl prefers Stravinski than Bach, when
the Man also chooses Stravinski.

Table 4.6 is an instanciation of Table 4.5, i.e., the values of ζ, ε and η are chosen
such as the constraints ζ > ε > η are respected. On the one hand, people’s utility
is zero in this instance of the “Battle of the Sexes”, when they make different choices,
because they listen to the music they like, but they are alone. On the other hand,
people’s utility is superior to zero when they make the same choice as the other player,
but only one of the two characters listens to the music s/he likes, and has therefor a
utility of 2 instead of 1.

The analysis of this game shows that there are neither dominant strategies, nor
dominated strategies, but two Nash equilibria: (Bach, Bach) and (Stravinsky, Stravin-
sky). Nothing differentiates these two equilibria, and in particular, none of them is an
iterated dominance equilibrium. Moreover, a Pareto-improvement can by made from
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Girl

M
an Bach Stravinsky

Bach 2; 1 0; 0
Stravinsky 0; 0 1; 2

Table 4.6: An instance of the game “Battle of the Sexes” in Table 4.5.

entries (Stravinsky, Bach) and (Bach, Stravinsky) to entries (Stravinsky, Stravinsky) and
(Bach, Bach). Therefore, the two Nash equilibria are Pareto-efficient, but none of these
equilibria Pareto-improves the other equilibria.

This kind of game is called a coordination game. For example, the choice of televi-
sion standards or disk drives for Macintosh and PC corresponds to this kind of game.
Each manufacturer would like to impose the use of its own standard, but in case of dis-
agreement with the competition, consumers may refuse to buy the product [Yildizoglu,
2003, pp. 27].

4.2.6 Remarks

All these definitions from game theory will be adapted to our needs later in Section 8.3.
Another classic example, called the “Prisoners’ Dilemma”, will then illustrate these
adaptations in Subsection 8.3.2.

We finish this presentation of game theory with a general remark about its limits.
In fact, Rosenschein and Zlotkin [1994] notes the issues related to the study of human
beings, that do not apply to agents:

Game theory tools have been primarily applied to human behaviour, but
in many ways they fall short: humans do not always appear to be rational
beings (i.e., utility maximizers), nor do they necessarily have consistent
preferences over alternatives. Automated societies, on the other hand, are
particularly amenable to formal analysis and design. Automated agents can
exhibit predictability, consistency, narrowness of purpose (e.g., no emotions,
no humor, no fears, clearly defined and consistent risk attitude, and an
explicit measurement of utility.

Nowadays, game-theoretic agents can be used to model intelligent agents and business



Chapter 4. Formalizing Interactions with Game Theory 91

entities, even if they are not very efficient for human beings. In fact, Cachon and Netessine
[2003] noted that the application of game theory to supply chain management is begin-
ning, even if a few early papers also exist [Shubik, 1960], and much work is still possible.
The next section outlines the computational complexity raised by game theory.

4.3 Computational Complexity and Game Theory

The main solution concept in game theory is the Nash equilibrium [Lipton and Markakis,
2004], which explains why most studies on computational complexity focus on this con-
cept. This explains why the computation of such equilibria is currently a very active
research field. Papadimitriou and Roughgarden [2004] presented a polynomial-time al-
gorithm for computing (finding in a given game) a Nash equilibrium as the “holy grail”
of this research field. In fact, Papadimitriou [2001] thinks that this problem is not easy,
i.e., it is harder than P (the class of problems considered as easy, because they can be
solved in a polynomial time), even if it must be easier than NP -hard (NP for Non-
deterministic Polynomial, one class of hard problems, because they cannot be solved
in a polynomial time).

Similarly, it was shown that determining if Nash equilibria with certain natural
properties (e.g., is the equilibrium Pareto-efficient? is there more than one equilibrium?
is there an equilibrium where player one never plays A?) exist is NP -hard, and the
counting of Nash equilibria is #P -hard (another class of problems considered as hard)
[Conitzer and Sandholm, 2003].

As we focus in this dissertation only on pure strategies, instead of on all Nash
equilibria, we can wonder if this hardness remains. Gottlob et al. [2003] answers “yes”
to this question. In fact, they have shown that determining the existence of a pure
Nash equilibrium is NP -hard, even in very restrictive settings. Fortunately, we can
find examples in which a Nash equilibrium can be computed in a polynomial time
[Fabrikant et al., 2004]. The good news is that determining the existence of a pure Nash
equilibrium and computing all such equilibria is feasible in logarithmic computational
space [Gottlob et al., 2003], but Gottlob and his co-workers have said nothing about
computational time.

To have an insight into the computational time for computing a Nash equilibrium,
let us consider the method used in Section 4.2, in which each entry of the game is
checked by hand. For instance, in the game “Battle of the Sexes” in Table 4.6, two
players each have two possible strategies. Therefore, the game is represented by a 2×2
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matrix in which the 2 ∗ 2 = 4 entries have to be checked. But when a third player with
two possible strategies is added, the game is represented by a 2× 2× 2 matrix in which
2 ∗ 2 ∗ 2 = 8 entries have to be checked. This algorithm thus incurs a combinatorial
explosion, because there is an exponential relation between the number of entries to
check and the number of players. This shows that the algorithm used to find Nash
equilibria by hand is exponential, that is, NP , while Papadimitriou [2001] hopes that a
quicker algorithm exists. This better algorithm is required if we want to analyze games
with many players.

From a more practical point of view, the above results imply that when we enu-
merate all pure Nash equilibria, the calculation may last a very long time (because
time complexity is thought to be harder than P ), without requiring an excessive mem-
ory (because required space is logarithmic [Gottlob et al., 2003]). Therefore, we need
a means to accelerate the enumeration of pure Nash equilibria in Chapter 8. This
is the reason why one would first simplify the game by removing all strictly domi-
nated strategies. In fact, removing all strictly dominated strategies accelerates the
enumeration of Nash equilibria without loosing any of them [McKelvey et al., 2004].
McKelvey et al. [2004]’s Gambit 0.97.05 achieves these tasks of eliminating recursively
strictly dominated strategies and enumerating pure Nash equilibria for us. Gambit is
a free software licensed under the Free Software Foundation [2004b]’s GNU General
Public License for analyzing games according to game theory principles. Gambit can
be used to find pure Nash equilibria. Here, Gambit applies an algorithm based on a
method called Simplicial Subdivision [McKelvey and McLennan, 1996], but its com-
plexity is unknown [Lipton and Markakis, 2004]. We only know from some experiments
that it is a complex algorithm.

4.4 Conclusion

As the bullwhip effect can be seen as a problem of coordination in supply chains, this
chapter has presented how to coordinate supply chains and multi-agent systems. With
respect to coordination in these two fields, we have pointed out some similarities and
some differences between these two fields, which is a contribution of this dissertation.

As coordination is related to interactions, we have next presented game theory
as a tool to study these interactions. In particular, we have introduced this theory,
and presented its essential concepts. Next, we have illustrated this theory with some
examples.
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Finally, we have outlined the difficulty of applying game theory to computer sci-
ence. Such application is recent, but researchers think that computing game-theoretic
concepts cannot be considered an easy problem, i.e., a problem that can be solved by
a polynomial-time algorithm.

The next chapter is the first one describing the core of our research. To this effect,
we show how stream fluctuations are induced in distributed systems, and we propose a
coordination technique to limit this cause of stream fluctuations.



Chapter 5

Delays as a Cause of The Bullwhip
Effect

The previous chapter has concluded the introduction of the background of this research
with the presentation of coordination and game theory. In this chapter, we present the
theory on which our solution to stream fluctuations is based. For that purpose, we show
in Section 5.1 why delays lead to an increase of stream fluctuations in the particular
case of supply chains. Two principles are next suggested to reduce this cause of stream
fluctuations in Section 5.2. These two principles are then instanciated in two ordering
schemes for the Québec Wood Supply Game (QWSG) in Section 5.3. The supply chain
behaviour induced by one of these two ordering schemes is then presented in Section 5.4.
Section 5.5 illustrates the use of this ordering scheme with a more realistic example than
the QWSG.

Since we introduce and illustrate how delays incur stream fluctuations, and how we
propose to reduce this issue on the case of supply chains, we show in the last part of
this chapter, how to adapt this solution to any multi-agent system. To this end, we
show in Section 5.6, that a simple replacement of words translates the content of this
chapter into a multi-agent context.

5.1 Why Delays Cause the Bullwhip Effect

The Québec Wood Supply Game (QWSG) was designed to teach the phenomenon of
stream fluctuations in supply chains. We recall that stream fluctuations in supply
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chains are also known as the bullwhip effect. In the QWSG, each player takes the role
of a company that places orders according to its incoming orders and inventory level.
This game simulates product and ordering streams, and the only decision taken by
players concerns the placement of orders. Hence, the bullwhip effect in the QWSG is
due to the method used by players to place orders. We present the QWSG in details
in Subsection 6.1.2.

It is important to note, that in our research we replace human players with intelligent
agents, and orders placed by these agents are ruled by their ordering scheme. Our
problem in this chapter is to propose a behaviour to a company, so that the bullwhip
effect is reduced in the QWSG. Before doing that, we have to understand what makes
the bullwhip effect appear. In this section, we first show that only ordering and shipping
delays can explain the bullwhip effect our model and with intelligent agents, then we
detail how delays induce this effect.

Several causes of the bullwhip effect were proposed in the literature for real supply
chains, but the QWSG is so simple, that few of these causes occur in it. From our point
of view, only two of the proposed causes of the bullwhip effect, recalled in Section 3.2,
can be found in the QWSG and in the Beer Game: demand signal processing and
misperception of feedback.

1. Demand signal processing: This cause of the bullwhip effect was proposed by
Lee et al. [1997a,b]. They explain that each company uses its incoming orders to
forecast its future demand, while this demand can be very different from market
consumption because of clients’ forecasts. Since no forecasts were used in the
ordering rules used by our intelligent agents playing the QWSG1, this can explain
the bullwhip effect in the board version of the QWSG, because human players
intuitively forecast their future incoming demand, but not in our simulation.

2. Misperception of feedback: The second possible cause of the bullwhip effect in the
QWSG, was proposed by Sterman [1989], who studied the behaviour of human
players in the “father” of the QWSG, i.e., in the Beer Game. According to Ster-
man, players do not understand supply chain dynamics, and thus, do not exhibit
the best behaviour when they place orders.

Only the above second cause could explain why we still had a bullwhip effect when
software agents replaced human players. In fact, players’ understanding of the supply
chain dynamics was not used directly in our experiments, but the ordering policies that

1In fact, we assume there is no forecast, because we base the current order on the last demand, but
we can also see this method as a forecast based only on the last demand.
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they apply could be designed so that these dynamics are taken into account. When
we looked for efficient ordering policies, we found that the cause “misperception of
feedback” can be detailed as “ordering and shipping delays”. In other words, we can see
ordering and shipping delays as one of the refinements of the cause “misperception of
feedback”.

Since only ordering and shipping delays can explain the existence of the bullwhip
effect when agents play the QWSG, we now show why ordering and shipping delays
induce the bullwhip effect in our model. In deed, the ordering scheme that we give
to agents has to take this cause into account in order to reduce the bullwhip effect,
and if possible, to minimize also company-agents’ individual cost and/or the overall
supply chain cost. We tried several ordering schemes (that are not presented here),
but these schemes either induced the bullwhip effect, and/or did not manage inventory.
The problem of designing these schemes is now outlined. Outlining this problem allows
understanding why delays incur the bullwhip effect.

The basic idea to avoid the bullwhip effect in the QWSG is that, if companies’ orders
follow their clients’ demand with a lot-for-lot ordering policy, there is no bullwhip effect,
but inventories fluctuate greatly. In other words, either there is a bullwhip effect or
inventories fluctuate greatly. This fact is illustrated in Figures 5.1(a) and 5.1(b), that
represent a company travelled by an ordering and a product stream. In these figures,
we assume each company places orders strictly equal to its demand, following a strict
lot-for-lot ordering policy. We now detail Figure 5.1(a) in four points, to show why
companies prefer the bullwhip effect, rather than use the lot-for-lot policy.

1. The lot-for-lot ordering policy eliminates the bullwhip effect, because each com-
pany has the same ordering pattern as its client and thus, as the market consump-
tion. Therefore, the two curves Incoming orders and Placed orders are identical.
Since the bullwhip effect is measured as the standard-deviation of placed or-
ders, we can see that the standard-deviation of each company’s orders is exactly
the same as the standard-deviation of its client’s orders, and therefore, as the
standard-deviation of the market consumption2. This explains why a lot-for-lot
ordering policy eliminates the bullwhip effect.

2. The considered company tries to fulfill its entire demand, and thus, the two curves
2We can notice here that companies could smooth the market consumption when they place orders,

that is, companies could reduce the bullwhip effect by ordering in a more steady way than the market
consumes. In this case, at least one company would absorb order fluctuations by allowing its inventory
to fluctuate, and thus, this company would have a higher inventory level than what is made in this
dissertation. We do not focus on such a smoothing technique, whereas it could be an interesting future
work.
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Figure 5.1: Lot-for-lot ordering policy with (O, Θ) orders.

Incoming orders and Outgoing transport are the same, that is, as many products
are shipped as ordered. The curve Outgoing transport in Figure 5.1(a) is valid as
long as no stockouts occur by the considered company.

In short, these two points say that the three curves Incoming orders, Placed orders and
Outgoing transport are similar. The third point below says that the fourth curve also
has the same pattern, but with a temporal shift.

3. The fourth curve Incoming transport has the same pattern as the three other
curves, except that it is delayed by δ in comparison with the three other curves.
This curve represents the reception of products by the company. This temporal
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shift corresponds to the ordering and shipping delays, because items ordered by
the company are not immediately received. The problem with lot-for-lot orders is
that the inventory is not managed, because this temporal shift makes inventory
decrease (respectively increase, when we inverse the pattern of “Incoming Orders”).
In fact, the company ships more (respectively less) products than it receives during
the ordering and shipping delays.

Note that Incoming transport has the same pattern as the three other curves only
when the supplier has no stockouts, because the supplier is assumed to want to
fulfill its entire demand, like the considered company.

4. Since every company wants to avoid stockouts (respectively huge inventory),
rather than eliminate the bullwhip effect, it does not use the lot-for-lot ordering
policy. Instead, it overorders (respectively underorders) to stabilize its inventory,
which amplifies the demand variabilities, because the company overorders (re-
spectively underorders) when the demand increases (respectively decreases). This
shows that the bullwhip effect always appears each time the market consumption
has an infinitesimal change, if companies want to keep a steady inventory3.

We can note here, that some of the other causes of the bullwhip effect presented
in Section 3.2, induce the bullwhip effect even with a steady demand, while delays
amplify order fluctuations, but do not induce fluctuations when the demand is
steady. Specifically, the bullwhip effect amplifies, because if a retailer overorders
to stabilize its inventory, a worse phenomenon takes place with its suppliers: since
the demand variation is now bigger, their inventories decrease much more, and
thus they must overorder more.

As we can see, our problem is not only to reduce the bullwhip effect, because company-
agents in the QWSG only have to apply the lot-for-lot ordering policy to eliminate this
effect, but we also have to manage inventories in order to avoid stockouts and high
inventory levels. In our solution, we propose an ordering policy with a unique order
amplification for each change in market consumption. Since companies have to know
the market consumption, this solution is the same as the one proposed by Lee and his
colleagues to improve demand forecasting updating, because companies have to share
their incoming orders information with their suppliers. Precisely, companies signal to
their suppliers when they over- or underorder. This information sharing is presented in
Figure 5.1(b), in which each company uses a vector (O, Θ) of two orders:

3This is true when smoothing is not considered. Figure 5.1(a) shows that if companies smooth
their demand when they transmit it to their suppliers (in placed orders), their inventory will fluctuate,
as stated in the previous footnote. Therefore, a company reducing the bullwhip effect with some
smoothing technique has to increase its inventory to avoid stockouts. In other words, either inventory
fluctuates to place steady orders, or orders fluctuate to stabilize inventory. This increase of inventory
costs to the company money, but only its suppliers directly profit from the bullwhip effect reduction.
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1. orders O follow the lot-for-lot policy to avoid the bullwhip effect;

2. orders Θ are used to order more or less products than O to stabilize inventory
level.

We now present the two principles ruling the use of O and Θ.

5.2 Two Basic Principles for Reducing the Bullwhip
Effect Caused by Delays

The bullwhip effect can be considered as a coordination problem between autonomous
companies [Cooper et al., 1997], and these companies can be considered as agents.
Therefore, we have looked for a coordination technique in multi-agent systems [Durfee,
2001; Durfee and Lesser, 1989; Lizotte and Chaib-draa, 1997; Shen and Norrie, 1999b;
Paquet, 2001; Barbuceanu and Fox, 1995b], and industrial management [Porteus, 2000;
Liberopoulous and Dallery, 2000; Chandra and Fisher, 1994; Buzacott and Shanthikumar,
1992] fields to coordinate the supply chain, so that the bullwhip effect can be reduced.
The required coordination technique needs to:

1. preserve the autonomy of each entity, that is, the supply chain should not have a
central coordinator;

2. avoid companies transmitting their own information to others, in order to reduce
the communication load and keep information secret.

The coordination mechanism that we now propose meets the first need, but only par-
tially fulfills the second requirement. In fact, we will see soon that our mechanism
needs the market consumption information to be transmitted by companies, but this is
the only shared information and companies do not have to share anything else, such as
their inventory level information.

To design this coordination mechanism, we were inspired by Porteus [2000]’s Re-
sponsibility Tokens presented in Subsection 4.1.1, even if our ordering mechanism is
eventually very different from this. In particular, we used tokens to share information
supporting coordination, while a responsibility token represents an unfulfilled order,
that may eventually lead to a financial penalty. This means that our tokens repre-
sent orders (order stream), while responsibility tokens represent products that were not
shipped (product stream).
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Figure 5.2: Information streams cut into two parts.

As stated with Figure 5.1(b), we also think the most appropriate technique to reduce
the bullwhip effect is based on information sharing with (O, Θ) orders. By doing so,
we focus on communication-based coordination in accordance to Boutilier [1996]’s clas-
sification of coordination techniques presented in Subsection 4.1.2 (convention-based
coordination, communication-based coordination and learning-based coordination).

In short, we proposed a token-based coordination mechanism, which, to our knowl-
edge, is unknown as such in the multi-agent field [Nwana et al., 1996; Boutilier, 1996],
even if it belongs to communication-based coordination. Since an ordering scheme can
act as a coordination mechanism in a supply chain, our problem is to find some order-
ing schemes which lead to a stable supply chain (steady streams and steady inventory
levels) after a perturbation in the market.

We now present two principles that the two ordering schemes that we propose follow
in order to reduce the bullwhip effect. As presented in Figures 5.1(b) and 5.2, each
company using one of our ordering schemes places a vector of orders (O, Θ), instead
of a unique number O that englobes and hides these two numbers4. In (O, Θ), O is
the market consumption transmitted from each company to its supplier(s) with the
lot-for-lot policy, and Θ is chosen such as O + Θ represents what the company needs
and such as Θ = 0 when O is steady. As O follows a lot-for-lot policy, the bullwhip
effect cannot occur in it. Unfortunately, it may occur in Θ, that is, there may be a
bullwhip effect in Θ. This is the reason why our (O, Θ) ordering schemes lay on the
following two principles, and not only one of them.

First Principle: The lot-for-lot ordering policy eliminates the bullwhip effect, but does
4O like Order and Θ like T oken, as these two pieces of information were called in our previous

papers. Moreover, O and Θ also have the advantage of looking similar; while they have a very similar
meaning: they are both Orders.
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not manage inventories.

This first principle rules the way of choosing O in (O, Θ). Lot-for-lot orders
means that each company orders what is demanded from it; if its client wants 10
products, the company places an order for 10 products. As previously stated in
Figure 5.1(a), the problem is the bullwhip effect is eliminated with the lot-for-lot
policy, but inventory level is not managed. Therefore, we keep lot-for-lot orders
for ruling O, but we add another piece of information Θ to manage inventory level.
Note that lot-for-lot orders allow O to share the market consumption information,
as illustrated in Figure 5.2.

Second Principle: Companies should react only once to each market consumption
change.

This second principle rules the way of choosing Θ in (O, Θ). Θ is equal to zero all
the time, except when the market consumption changes, in which case companies
react to this change by sending non-zero Θ, in order to stabilize their inventory
to the initial level. The purpose of Θ is to trigger a product wave from the most
upstream company when this company receives this Θ. This product wave will
increase, or decrease when Θ < 0, each company’s inventory as it travels the
supply chain down to the retailers. We later present this global behaviour of the
supply chain incurred by our two principles.

We now illustrate these two principles with two ordering schemes for the QWSG.

5.3 Two Collaborative Ordering Schemes for Reduc-
ing the Bullwhip Effect Caused by Delays

5.3.1 Ordering Scheme B

The two previous principles are now applied in order to design two ordering schemes
for the QWSG. In the first ordering scheme, which is called B in this dissertation5,
companies can know only the market consumption with O. In consequence, a method
to follow the second principle, is to set Θ proportional as the variation of O.

Let us now introduce a few notations to present that: i is the considered company,
5This ordering scheme was also called ‘Experiment B’ in Moyaux et al. [2004c, 2003a,b], and β

in Moyaux et al. [2004b,d].
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i − 1 its unique client, and we assume time is continuous (which is not the case in
the QWSG). In this context, Equation 5.1 describes how the company i places orders
(Oi

t, Θ
i
t). Note that dOi−1

t

dt
≥ 0 (respectively dOi−1

t

dt
≤ 0) represents the forecasted in-

ventory decrease (respectively increase) during the ordering and shipping delays. This
quantity has to be overordered (respectively underordered) in order to keep a steady
inventory. The constant λ depends on the duration of ordering and shipping delays.

(Oi
t, Θ

i
t) = (Oi−1

t , Θi−1
t + λ

dOi−1
t

dt
) (5.1)

5.3.2 Ordering Scheme D

In the second ordering scheme, which is called D in this dissertation6, information cen-
tralization is used, that is, retailers multicast the market consumption along the whole
supply chain. Information sharing with information centralization is much quicker than
information sharing with (O, Θ) orders, because the market consumption transmitted in
O is as slow as orders, while information centralization is assumed to be instantaneous,
reflecting thus the actual market consumption in real-time.

We use information centralization to make our second ordering scheme more efficient
than B by setting Θ proportional to the variation of the market consumption: as soon
as the market consumption changes, non-zero Θ are sent by all companies. Moreover,
companies also base O on the market consumption transmitted by retailers, instead
of on incoming O, again in order to react quicker to the market consumption change.
If we note again i the considered company, Omarket

t the market consumption, and if
we assume time is continuous, Equation 5.2 presents how company i places its orders
(Oi

t, Θ
i
t) when there is information centralization. Again, λ is a constant depending on

delays:

(Oi
t, Θ

i
t) = (Omarket

t , Θi−1
t + λ

dOmarket
t

dt
) (5.2)

We will see in Section 8.2 that λ is different in our two ordering schemes B and D,
and thus, in Equations 5.1 and 5.2. In both ordering schemes, no company is allowed
to change O; we assume in this thesis that every agent plays the game, and every
company is sincere when it informs others that the market consumption is O. As future
work, we could show that no company has an incentive to lie about the actual market
consumption in the QWSG. It is clear this is not true in real life, because buyers have

6This ordering scheme was also also called ‘Experiment D’ in Moyaux et al. [2004c, 2003a,b], and γ

in Moyaux et al. [2004b,d].
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less negotiation power when their supplier has a better knowledge of actual buyer’s
requirements.

The next section presents the supply chain behaviour induced by (O, Θ) orders
without information centralization.

5.4 Supply Chain Behavior under the Proposed Infor-
mation Sharing Scheme

To present the global behaviour of the supply chain with (O, Θ) orders without infor-
mation centralization, we assume that there is a unique change in market consumption
(like in the market consumption called Step, later, in Figure 7.1). Precisely, this con-
sumption is as follows: eleven products per week are bought by each market (lumber
and paper) in Weeks 1, 2, 3 and 4, and then seventeen products until the end, which is
a pattern similar to Figures 5.1 and 5.2.

The goal that (O, Θ) orders must reach, is to bring the supply chain back to a new
stable state after the change in the market consumption, and this new state should
be the same as the initial state. Since we assume that there is no capacity limit in
the supply chain, and in particular, companies can stock as much as they want, the
processing of Θ is done as follows. After having traveled the supply chain from one
company to another from their starting point (retailer, wholesaler, etc.), the Θ piece of
information arrives at the most upstream company (the forest in the forest industry),
where it triggers the shipping of a single big batch of products. This batch of products
is of sufficient size to fill inventory in each company to a convenient level7, as this batch
of products travels from one company to the next.

The size of this big batch is given by the number Θ, which is the sum of positive and
negative company needs added successively by each company when they placed orders
(each company transmits to its supplier the Θ coming from its client and adds to it its
relative requirements in comparison with the market consumption O).

Concretely, this mechanism divides the supply chain into five successive states. Each
of these states occurs at different times along the supply chain, that is, the initial state
occurs first by the retailer, next by the wholesaler, . . . and the last state occurs finally

7In this dissertation, we always assume that this convenient level is the inital level, but some
objections can be made to this point.
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by the wholesaler, and ultimately by the retailer.

In these five steps, we refer to the concept of stable supply chain. We define this as
a supply chain in which the product stream and inventory levels are steady with time.
This means that each week ressembles another one. We can now describe the five states
incurred by a supply chain in which every company applies our Scheme B:

1. Initial state: Let us assume that the supply chain is stable, and under a steady
market consumption. Therefore, the product stream in the supply chain is also
steady, by definition of a stable supply chain, and equal to the market requirement.
In fact, if we assume processes are reliable8, each week, companies place the
same order as in the previous week, and this order corresponds to the market
consumption: placed O are all equal to incoming O and Θ = 0.

2. Perturbation and reaction of the supply chain: After the single increase in the
market consumption from eleven to seventeen, companies have to change their
order from eleven to seventeen products in O, in order to follow the market con-
sumption with the lot-for-lot ordering policy. As there are ordering and shipping
delays, companies will still receive eleven items per week for a short period, i.e.,
the quantity of products they were receiving before the abrupt change in market
consumption. It is as if there were an inertia in product flow. This leads compa-
nies to receive less than what they need during this period, and their inventories
decrease. This is the reason why companies ask for more products than O, to
reconstitute their inventory; Θ �= 0 are sent in a unique order.

3. Wait for the effects of the reaction: As O has increased since the second state,
the flow of products in the supply chain has increased too. As long as this flow
increase has not reached a company, this company’s inventory decreases, because
this company ships seventeen products each week, while it only receives eleven.

4. First stabilization of the supply chain: When products corresponding to the new
value of O are received, the company’s inventory stabilizes. Precisely, this sta-
bilization occurs when the company receives as many products as it ships. Such
inventory stabilization is in fact too low: it will be so until products corresponding
to Θ sent by the most upstream company arrive, that is until the next state.

5. Second stabilization of the supply chain: The supply chain does not remain in
the fourth state, because Θ sent in the second state have triggered a larger batch

8We add this assumption in order to avoid the only cause of the bullwhip effect in Figure 3.2 that
may apply in this scenario, that is, variabilities due to company processes presented in Section 3.2.
This cause is due to the uncertainties in processes that lead to uncertainties in order placement.
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of products to arrive at the company, which brings inventory to a desired level.
In fact, when the Θ sent in the second state have arrived at the most upstream
company (the Forest in the QWSG), a big batch of products was sent down the
supply chain to increase all inventories. Finally, this last state is the same as the
fourth one, except that inventories are increased to the desired level.

From these five states, we can see that inventory variations last a longer time for
retailers than for the most upstream supplier(s), because retailers enter state 2 first and
state 5 last. Indeed, inventory stabilization comes from upstream suppliers and travels
down to suppliers. In general, it is said that the bullwhip effect disturbs more upstream
suppliers than retailers. Here, this situation is less clear: retailers have longer inventory
fluctuation, and possibly longer stockouts, than upstream suppliers. Nevertheless, this
inventory fluctuation is still bigger upstream suppliers, as is usual with the bullwhip
effect. Finally, these five steps are incurred by the two proposed ordering schemes,
but there is a difference in the inventory variation. In fact, the inventory variation is
reduced in duration and in amplitude when information centralization is used.

Note that these five steps are an idealized presentation of the supply chain behaviour,
because they occur when there are no stockouts. Stockouts mean that the third and the
fourth steps are mixed by a company, when its supplier incurs stockouts. For example,
the company orders for and receives eleven products during the four weeks in the first
step. Then, the company orders for seventeen products but receives only eleven products
during four weeks in the second step, because of the ordering and shipping delays. In
consequence, its inventory decreases. The company eventually receives the seventeen
ordered products, which means that it enters the third step. But the company receives
these seventeen items only during two weeks, because its supplier is currently in the
second step (the five steps do not occur at the same time by every company): a stockout
occurs next by this supplier, and thus, less than seventeen products are received, and
the company comes back into the second step. This phenomenon is repeated when more
upstream suppliers are also considered, because stockouts may also occur later by these
suppliers.

Finally, these five steps are accurate under our first proposed ordering scheme
(called B), and some tiny adaptations are required to describe the supply chain be-
haviour under our second ordering scheme D, but we do not insist thereon for the sake
of simplicity, because these adaptations are only details that are related to the use of
information centralization.

The next section illustrates the use in a multi-item company of our two ordering
schemes based on (O, Θ) orders.
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5.5 Illustration

As an illustration, consider a company buying three types of products 1, 2 and 3, and
selling two types of products 4 and 5. We note OP = (op1, op2, op3) the quantities of
ordered products, PS = (ps4, ps5) the quantities of products to ship. The company
needs one unit of op1 and two units of op3 to build one unit of ps4, and two units of op2

and one unit of op3 to build one unit of ps5; we write these two relations in a matrix
M such as OP = M.PST :

M =

⎛
⎜⎝1 0

0 2

2 1

⎞
⎟⎠ (5.3)

Assume that our company has two clients Client1 and Client2. The rest of the
calculations can represent our two ordering schemes, except that the meaning of com-
ponents of PS are different:

• Our first ordering scheme (Scheme B), in which information centralization is not
used:

– Client1 orders for (6, 1) units of ps4 (that is, the ps4 market consumption was
OClient1

ps4
= 6 anytime in the past, and Client1 currently needs one another

product to stabilize its inventory, because ΘClient1
ps4

= 1) and (5, 0) units of
ps5.

– Client2 orders for (7,−2) units of ps4 (Client2 does not want 7 items even if
they are consumed by the market, and therefore it cancels 2 of them, which
is written ΘClient2

ps4
= −2) and (2, 0) units of ps5.

• Our second ordering scheme (Scheme D), in which information centralization is
used:

– 6 units of ps4 are currently consumed by the Client1’s market, Client1 has
just ordered for ΘClient1

ps4
= 1 in addition to the market consumption, 5 units

of ps5 are consumed by the Client1’s market, and Client1 has just ordered
for Θclient1

ps5
= 0.

– 7 units of ps4 are currently consumed by the Client2’s market, Client2 needs
2 units in less than this consumption (ΘClient2

ps4
= −2), Client2’s market

consumes 2 units of ps5, and Client2 would like to get these two products
(ΘClient2

ps5
= 0).
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In both cases, we note the demand PS:

PS = PSClient1 + PSClient2

=

(
Oclient1

PS4
Θclient1

PS4

Oclient1
PS5

Θclient1
PS5

)
+

(
Oclient2

PS4
Θclient2

PS4

Oclient2
PS5

Θclient2
PS5

)

=

(
6 1

5 0

)
+

(
7 −2

2 0

)
=

(
13 −1

7 0

)
(5.4)

Our company has twelve units (= 13 − 1) of ps4 and seven units (= 7 + 0) of ps5 to
ship. To do so, it has to order the quantity OP , where OP is a vector of (O, Θ) orders
for each of the products to order 1, 2 and 3:

OP = M.PST =

⎛
⎜⎝1 0

0 2

2 1

⎞
⎟⎠ .

(
13 7

−1 0

)
=

⎛
⎜⎝13 7

−2 0

25 14

⎞
⎟⎠ =

⎛
⎜⎝op1 Θp1

op2 Θp2

op3 Θp3

⎞
⎟⎠ (5.5)

The line r in the OP matrix gives the quantity of item opr to order. The left column
of this matrix represents the market consumption O that must not be changed and the
right column is the aggregation of the quantities Θ wanted by both clients in more or in
less in comparison with the left column. Note that op2 is negative, and that op2+Θp2 is
also negative. We can interpret this as a cancellation of past or future orders for these
types of products.

Basically, the company should place the order OP , but it is allowed to change the
right column if it needs to. The company is only allowed to change the line in OP when
the left column (i.e., the indication of O) is different from the previous week, in order
to respect our second principle, i.e., Θ can be modified only when O fluctuates. To
illustrate this, we now assume the company wants and is allowed to produce two items
of PS1 and one item of PS2 more than its demand. Its inventories are thus going to
increase. The company does so, because it needs fifteen units (= 13+2) of OP1, sixteen
units (= 14+2) of OP2 and thirty-six units (= 33+3) of OP3, for example, because the
company has to produce these additional products in order to use its whole capacity
of production. To change the right column, that is, to change the Θ part of the order,
the company calculates how many additional OP1, OP2 and OP3 it has to order. We
call this additional quantity R, which corresponds to λ.dO/dt in Equations 5.1 and 5.2.

We should note that

(
2

1

)
corresponds to two items of ps4 and one item of ps5.

R = M.

(
2

1

)
=

⎛
⎜⎝1 0

0 2

2 1

⎞
⎟⎠ .

(
2

1

)
=

⎛
⎜⎝2

2

5

⎞
⎟⎠ (5.6)
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To place an order, a column of zeroes is added to this vector, to show these numbers
do not represent the market consumption O but company requirements Θ. Finally, the
company places the order OP ′:

OP ′ = OP +

⎛
⎜⎝0

0 R

0

⎞
⎟⎠ =

⎛
⎜⎝ 13 7

−2 0

25 14

⎞
⎟⎠ +

⎛
⎜⎝0 2

0 2

0 5

⎞
⎟⎠ =

⎛
⎜⎝13 9

−2 2

25 19

⎞
⎟⎠ (5.7)

This example exposes the possibility of using this ordering scheme in more complex
settings where more than one customer are purchasing and many products are needed
to assemble. The calculation of Θ is however much more complex in that setting.
In fact, the supplier is often counting on the positive aspects of risk pooling (i.e.,
the combination of the uncertainty over individual products in order to have a more
steady level of the combination. For example, if you produce A1 and A2 with B, the
inventory level of B fluctuates less than the fluctuation of A1 plus the fluctation of A2)
for diminishing its need for inventory. As a result, inventory management is not that
easy.

The rest of this thesis studies the implications of our two ordering schemes for the
supply chain. Similarly, we now outline the implications for multi-agent systems in
general.

5.6 Consequences for Multi-Agent Systems

We first describe the consequences of the theory presented in this chapter for infor-
mation systems modelled as multi-agent systems. Concerning this point, let us recall
the growing importance of multi-agent systems in industry. After that, we underline a
much more important consequence, because this consequence applies to any multi-agent
system.

5.6.1 Consequences for Information Systems Modelled as Multi-
Agent Systems

When a supply chain is modelled as a multi-agent system, the direct consequence of
sharing the market consumption information with (O, Θ) orders is an increase of the load
of the network supporting inter-agent communications. In the example in Section 5.5,
the quantity of data in placed orders doubles, that is, orders are the six numbers
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13, 9,−2, 2, 25 and 19 in Equation 5.7, instead of the six numbers 23(= 13 + 9), 0(=

−2 + 2) and 44(= 25 + 19).

But in real life, the quantity of transmitted information more than doubles, because
we can assume, that the market consumption is transmitted more often than only when
orders are placed. That is, companies do not place orders often, in order, for example,
to profit from economies of scales, while the transmission of the market consumption
should be much more frequent than these orders. In fact, if this information is shared
more often, companies have a better understanding of the market demand.

Another consequence of sharing information for a supply chain modeled as a multi-
agent system is the adaptation of the message format. For example, (O, Θ) orders use
order messages with two fields per item instead of only one.

5.6.2 Consequences for any Multi-Agent Systems

More generally, the cause of the bullwhip effect presented in this chapter may also incur
stream fluctuations in any multi-agent system. To see this link between supply chains
and multi-agent systems, Table 5.1 presents a translation dictionary. Indeed, the defini-
tion of multi-agent systems in Subsection 2.1.1 is sufficiently wide to encompass supply
chains, because this definition does not assume that agents are softwares, but they can
also be people. As a result, the following dictionnary only reflects the specificities (and
not the differences) of supply chains.

1. Of course, the word “company” refers to “agent” . . .

2. . . . and “bullwhip effect” comes from “stream fluctation” or “system instability”.

In this context, the proposed cause of fluctations, i.e., delays, have the following
equivalents in multi-agent systems:

3. “Ordering delays” in supply chains correspond to delays on the network that links
agents, when these agents run on different computers. Such delays are referred as
“network latency” in Table 5.1. We can feel this latency, when we browse on the
Internet.

But even without this latency, delays are also incurred by agents’ message buffers.
In fact, agents cannot always process incoming messages as soon as they are



Chapter 5. Delays as a Cause of The Bullwhip Effect 110

Supply chain Multi-agent system
1. Company Agent
2. Bullwhip effect Stream fluctuation/instability
3. Ordering delay Network latency
4. Shipping delay Request execution time
5. Market consumption Requirement of the multi-agent system
6. Inventory Resource storage
7. Ordering scheme Agent’s behaviour
8. Lot-for-lot ordering policy Behaviour in which the considered

agent acts exactly as another agent

Table 5.1: Instantiation of multi-agent vocabulary into supply chain vocabulary.

received, and thus, incoming messages first arrive in a buffer, i.e., a mail box, in
which they wait until the agent picks them up. This delay is not presented in
Table 5.1, because in this dissertation we do not consider its equivalent in the
world of supply chains, in which they are orders waiting by the company before
their processing, e.g., in a mail box. In addition to ordering delays and waiting
in mail box, we consider another delay:

4. “Shipping delays” in supply chains are similar to the execution time of the requests
addressed to agents. That is, when an agent S (supplier) is requested to perform
an action by an agent C (client), if agent S agrees to achieve this action, a certain
time has to be spent by C until the action has been completely performed. It is
similar to the shipping delay that a client C has indure to receive its products.

5. The “market consumption” resembles the “requirement of the multi-agent system”,
because both are the output, that sets the point at which the supply chain/system
has to be.

6. The “inventory” of a company has an equivalent in agents, which depends on the
application of this agent. We give the general term of “resource storage” to this
equivalent. Of course, when this agent models a company, the stored ressource
may be products, and we will see another example soon.

7. The “ordering scheme” rules our company-agent’s behaviour, and thus, such a
scheme implements the “agent’s behaviour”.

8. The “lot-for-lot ordering policy” is one particular ordering scheme in which a
company orders exactly its incoming demand. More generally, it means that the
company-agent performs exactly the same action as another agent, like a young
child repeating what his elder brother says to bother him.
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Obviously, the way that delays incur fluctuations in a multi-agent system depends on
the considered application. We can only note the similarity between the product stream
in a supply chain and the flow of tasks in a multi-agent system, and between the ordering
stream in a supply chain and the flow of requests in a multi-agent system. With these
two similarities, we can infer that the flow of tasks in the multi-agent system may
fluctuate, when there are changes in the requested output of the multi-agent system.
More precisely, when this requested output changes, fluctuations appear in the flow
of tasks carried out by agents, when these agents act so that the multi-agent system
output is correct. As previously stated, such fluctuations reduce the efficiency of the
multi-agent system in carrying out its functions.

To illustrate both this point and what can be a “resource storage”, let us consider
the case of intelligent highway systems outlined in Subsection 2.2.6 in which some
researchers [Hallé et al., 2003] are working on how to design platoons of cars. Each
vehicle is modelled as an agent, and therefore, the platoon corresponds to a coalition or
to a team of agents travelling toward a common destination. Except the front vehicle of
a platoon, every other vehicle has to follow the preceding vehicle. The question is how to
design agents’ behaviour in order to carry out this functionality. In this scenario, inter-
vehicle distance is one of the possible stored resources. When we give each vehicle-agent
the equivalent of the Lot-for-Lot policy, i.e., when we make each vehicle have the same
speed as its preceding car, curves in Figure 5.1(a) explain why the stored resource, i.e.,
the inter-vehicle distance, increases when the platoon accelerates, and decreases when
the platoon decelerates. In other words, the inter-vehicle distance may fluctuate, leading
to a “slinky effect” in the platoon [Ioannou and Chien, 1993; Chien and Ioannou, 1992;
Sheikholeslam and Desoer, 1990]. This effect corresponds to variations in the resource
storage.

If we want the inter-vehicle distance to be constant, each vehicle-agent must be
given another behaviour. But this behaviour has to be designed carefully to avoid
distance fluctuations, and in particular a translation of (O, Θ) orders to this problem of
platoons. In this case, the front vehicle, which imposes the speed of the whole platoon,
would transmit its velocity to the rest of the platoon. Other vehicles would accelerate
or decelerate more or less than the first vehicles in order to keep a steady inter-vehicle
distance9.

Of course, this platoon problem is more complex in real-life than what has just
been described, for example, because of the lack of accuracy in speed measurement

9Similarly to supply chains, in which we aim at having eventually a steady inventory in this disser-
tation, we can also object when we say that inter-vehicle distance should be kept steady, because the
security distance should increase with speed.
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by each vehicle, and because vehicle-agents’ behaviour is more complex than a simple
transpostion of (O, Θ) orders. Similarly, we have neglected a part of the supply chain
complexity to propose (O, Θ) orders, in particular, because we do not consider all known
causes of the bullwhip effect presented in Table 3.2, such as demand forecast updating,
order batching, price fluctuation. . ..

5.7 Conclusion

This section has proposed to consider ordering and shipping delays as a new cause of
the bullwhip effect. Up to now, delays were only seen as a factor aggravating another
cause of the bullwhip effect, called the demand signal processing [Simchi-Levi et al.,
2000; Chen et al., 2000; Lee et al., 1997a,b; Ryan, 1997]. Notice that demand signal
processing can also cause the bullwhip effect, because forecasts made by all companies,
during information processing, induce errors that add up in the supply chain, and the
longer forecasts are, the greater these errors are. Therefore, the longer delays are, the
bigger the bullwhip effect incurred by this cause is, because companies forecast on a
longer time horizon.

In order to address the bullwhip effect, we have proposed two principles to design
ordering schemes, in which this effect induced by delays would be minimized. These
two principles are that the lot-for-lot ordering policy eliminates the bullwhip effect, but
does not manage inventories, and companies should react only once to each market
consumption change. This second principle makes that companies should collaborate,
because sharing the market consumption information requires collaboration.

Then, two ordering schemes were proposed according to these two principles. The
supply chain behaviour under such schemes was also outlined, and an illustration was
proposed for a multi-item scenario.

Finally, we outlined the implication of this chapter for multi-agent systems. Of
course, the information sharing that we propose has consequences for information sys-
tems in supply chains that are modelled as multi-agent systems, because agents have
to manage this additional information. But a further implication concerns multi-agent
systems in general. To see this point, we proposed a short dictionary to translate vocab-
ulary in supply chains into vocabulary in multi-agent systems. This dictionary shows
that the bullwhip effect is referred to as stream fluctuations in multi-agent systems, and
that such fluctuations can also be induced by delays in multi-agent systems. In this
context, our two principles can also be translated to any multi-agent system to reduce
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these fluctuations, and thus, to increase the efficiency of the considered system.

The next chapter presents the simulation model used to validate the efficiency of
our two principles in reducing the bullwhip effect.



Chapter 6

Multi-Agent Simulation of a Québec
Forest Supply Chain

The previous chapter has presented how delays in distributed systems induce stream
fluctuations from a conceptual viewpoint. To this end, two principles to reduce the
fluctuations induced by this cause have been presented. In the remainder of this disser-
tation, we study the efficiency of the two proposed principles on supply chains modelled
as multi-agent systems. In this context, we verify whether our two principles reduce
stream fluctuations (called bullwhip effect, since we consider supply chains) in an agent-
based simulation of a supply chain.

In other words, we verify in the following chapters, whether our solution to stream
fluctuations coordinates the way that company-agents place orders, so that the bullwhip
effect is reduced. We now need a simulator to validate these principles, by verifying if
our two ordering schemes actually reduce the bullwhip effect. The goal of this chapter
is to introduce this simulator.

Since, in this entire dissertation, we use company and supply chain models that are
based on the Québec Wood Supply Game (QWSG), we introduce this game in detail
first. To this end, we show that it is an adaptation of the Beer Game to the Québec
wood industry. Notice that the Beer Game has been designed to teach the dynamics in
supply chains, and specifically, the bullwhip effect. These two games are first introduced
in Section 6.1.

We have implemented the QWSG in a spreadsheet program. This implementa-
tion closely simulates the QWSG, and is described with time-dependent equations in
Section 6.2.
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Products stream Orders stream

1 week order delay1 week shipping delay

Customer

Wholesaler

Player 1 Player 2 Player 3 Player 4

Distributor FactoryRetailer

SupplierBeer Beer BeerBeer

Figure 6.1: Supply chain in the Beer Game [Sterman, 1989].

Finally, we have designed and implemented a more realistic simulator with the
agent-oriented language JACKTM. JACKTM and our second simulator is presented in
Section 6.3.

6.1 The Québec Wood Supply Game (QWSG)

6.1.1 Pedigree of the QWSG

The framework used in this thesis is the “Québec Wood Supply Game” (QWSG), illus-
trated in Figure 6.3. The QWSG was derived from two board-games, called “Integrated
and Divergent Wood Supply Games” [Fjeld, 2001; Haartveit and Fjeld, 2002], and pre-
sented in Figures 6.2. These latter two games were themselves adapted from the “Beer
Game”, illustrated in Figure 6.1. We now outline the relations between these four
games.

The basis of these four games is the Beer Game from Sterman [1989]. It is a
classroom exercise, that simulates the material and information flows in a production-
distribution system, as illustrated in Figure 6.1. It was designed to make players aware
of supply chain dynamics, and specifically the bullwhip effect. As a consequence, most
hypotheses made in this work are imposed by this framework, e.g., discrete time, model
of companies, method of cost evaluation (even if we adapt this method to parameters
reflecting the Québec wood industry in Section 8.2). . .. Concerning hypotheses, the
main difference between the four games above lies in the supply chain model, which
describes how many companies are simulated, which company sells to another company,
and which company buys from another.

In the three other games, the supply chain model is modified, so that specificities of
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Paper

Lumber

player 6
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group
Supply
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(b) Integrated game

Figure 6.2: Forest supply chain in the two original Wood Supply Games [Fjeld, 2001;
Haartveit and Fjeld, 2002].

some industries are reflected. For example, the wood industry has the particularity of
dealing with wood, which is an organic material needing care (e.g., it can molder). In our



Chapter 6. Multi-Agent Simulation of a Québec Forest Supply Chain 117

Forest

Customer Lumber Lumber
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Products stream Orders stream
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Paper PaperCustomer Paper

Retailer Wholesaler

agent 2 agent 4 agent 5

PaperMill

Sawmill

agent 6

Wood

Figure 6.3: Forest supply chain in the Québec Wood Supply Game (QWSG), i.e., the
one used in this dissertation.

special case of supply chain management, the relevant particularity of the wood industry
is the diverging material profile, which is due to the broad variety of products (papers,
books, paperboard boxes, furniture, buildings. . .) manufactured from a few types of
raw materials (wood) [Fjeld, 2001]. Since, in this dissertation, we are interested in the
Québec wood industry, we have to consider a supply chain with a divergent product
flow.

The two first modifications of the Beer Game take this diverging material pro-
file of the wood industry into account. These modifications are called Wood Supply
Games [Fjeld, 2001; Haartveit and Fjeld, 2002], and introduced divergent product flows
in order to increase their relevance to the North European forest sector. The difference
between these two Wood Supply Games is the product stream from the Sawmill to the
PaperMill in the Integrated Game in Figure 6.2(b), that does not exist in the Divergent
Game in Figure 6.2(a).

Finally, our team in FOR@C [2004]1 has adapted these two games to the Québec
forest sector in a game called the Québec Wood Supply Game (QWSG), displayed
in Figure 6.3. The difference between the two original Wood Supply Games and this
QWSG is in the supply chain model, because the length of the lumber and paper chains
was the same in the original games in Figures 6.2, while it is different in the QWSG in
Figure 6.3. This difference is due to differences between North European and Québec
forest industries: the PaperMill is separated from the Sawmill in Québec, conversely to

1I would like to thank Jean-Marc Frayret and Philippe Marier for their work on the QWSG.
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the North of Europe.

The company and supply chain models in the QWSG are now described. Precisely,
we introduce the board-game version of the QWSG, which will next be the basis of our
two simulators.

6.1.2 Description of the QWSG

Introduction to the QWSG

The QWSG is based on Fjeld’s two Wood Supply Games [Fjeld, 2001; Haartveit and Fjeld,
2002], depicted in Figure 6.2, but the QWSG requires a different number of players,
because it models a different supply chain model, as illustrated in Figure 6.3. Thus,

• two players have the role of the two retailers, sell to their respective market, and
buy from their respective wholesaler,

• one of the two wholesalers, the PaperWholesaler, buys from the PaperMill, which
itself buys from the Sawmill,

• the other wholesaler, the LumberWholesaler, buys directly from the Sawmill,

• the Sawmill places orders to the Forest by aggregating the orders from the Lum-
berWholesaler and the PaperMill.

Each player (who will be replaced by intelligent agents in our two simulators) takes
the role of one of these six companies, and places orders to her/his supplier, so that the
inventory levels and stockouts are minimum for the whole supply chain. Indeed, the
players are not opponents, but form a team.

There is a two-week delay to transmit the demand. When a supplier receives an
order, i.e., two weeks after its client has placed it, this player has to fulfill it when its
inventory is enough, or else all products in inventory are shipped, and unsatisfied orders
are memorized as backorders. Backorders represent products to ship as soon as possible,
and are noted as negative inventories. The shipping introduces another two-week delay.
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Progression of the QWSG

The game is played by turns, where each turn represents a week in reality, and is
played in five days. These five days are played in parallel by each player, according to
Figure 6.3:

• Day 1: The player receives her/his inventory (these products were sent two weeks
earlier by her/his supplier, because there is a two-week shipping delay), and ad-
vances the shipping between its suppliers and itself, in order to represent the
second week of shipping delay (see lines 1 and 2 in Algorithm 6.1).

• Day 2: The player looks at her/his incoming order, and tries to fulfill them. This
fulfilment is performed by moving products in the first week of shipping delay.
This corresponds to the third line in Algorithm 6.1. For the sake of simplicity,
Algorithm 6.1 does not mention the two following conditions:

– If the player has backorders from past weeks, s/he tries to fill those as well;

– If the player does not have enough inventory, s/he ships as much as s/he
can, and adds the rest to her/his backorders.

• Day 3: The player records her/his inventory or backorders, as reflected by the
fourth line in Algorithm 6.1.

• Day 4: The player advances order slips (see line 5 in Algorithm 6.1) to simulate
a week of ordering delays.

• Day 5: The player places an order with her/his supplier(s), and records this order,
which is described in lines 6, 7 and 8 in Algorithm 6.1.

After the player has finished the fifth day, the game continues with a new week, that
begins in the first day, and so on.

To decide in line 6 of Algorithm 6.1 what the order to place is, the player compares
her/his incoming orders with her/his inventory/backorder level. Order placement is
the only decision made by players, everything else is performed mechanically in the five
previous days. In this thesis, the agents, that replace human players, make this decision
by applying one of seven ordering schemes called A, A’, A”, B, B’, C and D, introduced
in Figure 6.1.2, and described now.

Ordering Scheme A: Companies can only base their orders on the incoming demand
and on their inventory level. Each order is a unique number X calculated by
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Algorithm 6.1 playAweek(incomingOrder, incomingShipping)
returns outgoingOrder, outgoingShipping
local variables: inventory, placedOrder

1. Add incomingShipping to inventory
2. Move outgoingShipping by our supplier into our incomingShipping
3. Move the quantity incomingOrder from inventory into outgoingShipping
4. Record inventory
5. Move outgoingOrder by our client into incomingOrder
6. Choose placedOrder
7. Put placedOrder into outgoingOrder
8. Record placedOrder

adding the inventory level variation to the client’s order; when this value is neg-
ative, nothing is ordered.

For example, when the incoming order is 11, and the inventory level has decreased
from 2 to 1 unit since the previous week, the company places an order for X =

11 + (2 − 1) products.

Ordering Scheme A’: Like Experiment A, except that each order is calculated by
subtracting λ times the order variation of the client’s order, where λ has the same
value as in Scheme B. In our experiments, this calculation always gives a positive
result. The main difference between Schemes A and A’ is that A is based on order
and product flows, while Experiment A’ is only based on order flow.

For example, when the incoming order was for 11 products last week, and is
currently for 17 products, the company places an order for X = 17+λ ∗ (17−11)

products.

Ordering Scheme A”: It is a classic (s, S) ordering policy, that is, when inventory
I is lower than s, the company orders for S − I products, so that the inventory
increases up to S.

Ordering Scheme B: This is our first ordering scheme proposed to reduce the bull-
whip effect in Section 5.3. Instead of a single order X, companies now place
vectors of orders (O, Θ), in order to share the market consumption information.
These two numbers O and Θ are chosen according to our two principles intro-
duced in Chapter 5. These two principles force companies to use the lot-for-lot
ordering policy in O, and use Θ to manage their inventory, according to Equa-
tion 5.1. That is, client’s Θ is transmitted to the supplier, and λ times the order
variation is added to balance the inventory variation induced by the change in O.
The choice of λ is explained in Subsection B.3.
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For example, when the incoming order was for 11 products previous week, and is
currently for 17 products, the company places an order for (O, Θ) = (17, λ∗ (17−
11)) products.

Ordering Scheme B’: it is similar to Scheme B, except that Θ now depends on in-
ventory level. There is the same relation between Schemes B and B’, as between
Schemes A and A’, that is, A’ and B’ only take the demand into account, while
A and B also take the inventory level into account, which makes a stronger link
between the ordering and the shipping streams.

For example, when the incoming order is currently for 17 products, and the inven-
tory levels has decreased from 2 to 1 units since the previous week, the company
places an order for (O, Θ) = (17, λ ∗ (2 − 1)) products.

Ordering Scheme C: this scheme is similar to Scheme A, except that information
centralization is now used. In comparison with A, companies now base their
orders on the actual market consumption, instead of on client’s orders. Note that
placed orders do not depend directly on incoming orders.

For example, when the market consumption is 11, and the inventory level has
decreased from 2 to 1 units since the previous week, the company places an order
for (O, Θ) = (11+(2−1), 0) products. This is the same example as for Scheme A,
except that “market consumption” replaces “incoming order”.

Ordering Scheme D: this scheme is similar to Scheme B, except that information
centralization is now used in addition to (O, Θ) orders. Companies now base their
orders on the actual market consumption, instead of on client’s orders. The choice
of the constant λ is explained in Subsection B.4. Scheme D is an improvement on
Scheme B, because information centralization speeds up the broadcast of market
consumption information. The behaviour of D is outlined by Equation 5.2. Like
C, D places orders that do not depend directly on incoming orders.

For example, when the market consumption was for 11 products the previous
week and is currently for 17 products, the company places an order for (O, Θ) =

(17, λ ∗ (17 − 11)) products. This is the same example as for Scheme B, except
that “market consumption” replaces “incoming order”.

The relations between these seven ordering schemes are as follows:

• As indicated in Figure 6.1.2, only companies using Schemes C and D know in real-
time the market consumption (i.e., information centralization is applied), and only
companies using Schemes B, B’ and D have (O, Θ) orders.
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• Schemes B and D have been described in section 5.2, and Scheme D is an im-
provement on B, since it applies information centralization in addition to our two
principles.

• Schemes A’ and B’ are two schemes derived from A and B. Their difference is
to take the inventory level into account, while A and B do not do so. As a
consequence, schemes A’ and B’ create a much stronger link between the ordering
and the product stream than A and B. Scheme A” has no relation to the six
other schemes. Though, A” is interesting, because it is based on the classic (s, S)

ordering policy, in which there is no information sharing with (O, Θ) orders or
information centralization.

Particularities of the Sawmill

Each position is played in the same way, except the Sawmill, since this position receives
two orders (one from the LumberWholesaler, another from the PaperMill), that have to
be aggregated when placing an order to the Forest. The Sawmill can evaluate its order
by basing it, either on the lumber demand, or on the paper demand. In this thesis,
the Sawmill places an order equal to the mean of these two possible orders, except in
Subsection C.4 where the Sawmill places an order equal either to the maximum of these
two possible orders, or to only one of these two possible orders, in order to study the
impacts of this aggregation.

Moreover, the Sawmill receives one type of product and each unit of this product
generates two units: a lumber and a paper unit. That is, each incoming unit is split
in two: one piece goes to the Sawmill’s lumber inventory, the other goes to its paper
inventory.

We now present our first simulator that reflects the QWSG.

6.2 Implementation of the QWSG: The Spreadsheet
Approach

We have programmed two simulations based on the QWSG. The first simulation was
implemented in a spreadsheet program, and the other one, presented in Section 6.3, was
programmed as a multi-agent system with the agent-oriented language JACKTM. We
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present the first simulator in this section. This implementation has also been presented
in [Moyaux et al., 2004a, 2003a].

The use of a spreadsheet program for the first simulator has two main advantages.
The first advantage is the availability of many generic tools, in particular to optimize
parameters, to analyze simulation outcomes, or to automatize some tasks. All these
tools may also be included to our second simulation, but this is an additional task
of programmation, while these tools are provided with the spreadsheet program. The
second advantage is the speed, not only to design and implement the simulator and the
automatization of some tasks, but also to run the simulations. Since we run a lot of
simulations, the simulation speed is crucial here. To illustrate the difference of speed,
a fifty week simulation takes less than a second on our first simulator, while our second
simulator takes around 20 seconds. Of course, the agent-based simulator also has many
advantages, but we present these arguments later.

To present our spreadsheet implementation of the QWSG, notations are first intro-
duced, follow generic equations, then scheme-specific equations. We can note that the
setting of parameters and initial conditions will be presented in Chapters 7 and 8, since
such a setting depends on the considered experiment.

6.2.1 Notations

As previously stated, orders may have up to two dimensions, called O and Θ. O placed
in week w by company i is noted Opi

w, and the corresponding Θ is noted Θpi
w. The way

to calculate these two numbers depends on the ordering scheme, and will be presented
in Subsection A.3. The rest of the variables required to model the company i, whose
behaviour will be presented in Subsection 6.2.2, are as follows. These notations apply
to most of this document, except Subsection 2.1.2 and 8.2.2 in which we use notations
for the Economic Order Quantity.

Toi
w = company i’s outgoing T ransport in week w.

Tooi
w = company i’s outgoing T ransport in week w corresp. to current O.

Tobi
w = company i’s outgoing T ransport in week w corresp. to backordered O.

ToΘi
w = company i’s outgoing T ransport in w corresp. to backordered Θ.

T iiw = company i’s incoming T ransport in week w.
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I i
w = company i’s Inventory in week w.

Ooi
w = company i’s outgoing Orders O in week w.

Oiiw = company i’s incoming Orders O in week w.

Obi
w = company i’s backordered O in week w.

Θoi
w = company i’s outgoing Θ in week w.

Θiiw = company i’s incoming Θ in week w.

Θbi
w = company i’s backordered Θ in week w.

Dlumber
w = Oi1w = lumber market consumption in Week w.

Dpaper
w = Oi2w = paper market consumption in Week w.

Except the inventory I and the two market consumptions D, the first letter in the name
of these variables indicates if the considered variable is for the shipping stream (T for
transportation) or for the ordering stream (O or Θ), and the second letter indicates if
it is an incoming, outgoing, placed or backordered value of this stream. For the sake of
simplicity, the quantity of products to ship To is plit into three parts: Too and Tob for
orders O, and ToΘ for orders Θ.

We now outline the equations describing one company in our simulator. We begin
with the equations that are used by any company, and we finish with the equations
that depend on the ordering scheme used by the considered company.

6.2.2 Simulation Model

The equations that are outlined now, implement the QWSG with the use of two sets of
equations2:

• Scheme-independent equations: This first set of equations implements the anima-
tion of product and ordering streams in the QWSG. In other words, these equa-
tions represent what we have called earlier the “mechanical” part of the QWSG,
that is, the actions that players have to perform without making decisions.

2The simulation begins in Week w = 1.
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Θ(Op,    p) Θ(Oo,    o)

ToΘΘ(Oi,    i)

w+2
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company

Ti I

Too

I

Toi+1

i

Figure 6.4: Some relations between variables.

For example, Figure 6.4 presents some of the relations between the above variables,
that are implemented by these equations. This figure illustrates that an order
(Op, Θp) is placed in Week w by a client i. This order is put in Week (w + 1) in
(Oo, Θo) to represent a first week of ordering delay (thus, (Oo, Θo) can be seen
as the order placed in previous week and that is now shipped by the postman).
To represent the second week of delay, this order is received by supplier (i + 1)

in Week (w + 2) in Oi. This order reception decreases supplier’s inventory I

in the same week, because products are shipped in Too and ToΘ, and thus in
To. The following week, these shipped products are put in Week (w + 3) in
client’s T i in order to represent a first week of shipping delay. To model the
second week of shipping delay, these products are put in client’s inventory in Week
(w + 4). Therefore, to implement a two-week delay in information transmission
and in transportation, as described in the previous section, order and transport
variables are doubled, which explains the reason why there are Toi

w/T iiw and
(Ooi

w, Θoi
w)/(Oiiw, Θiiw).

All these equations are described in detail in Section A.2.

• Scheme-dependent equations: The players’ decision making is represented in our
simulator of the QWSG, as their ordering scheme. More precisely, we need a pair
of equations Opi

w and Θpi
w to implement each of the seven ordering schemes A, A’,

A”, B, B’, C and D, that were presented in Paragraph “Progression of the QWSG”
in Subsection 6.1.2. In other words, the class of scheme-dependent equations is
made up of seven pairs of equations, where each pair describes Opi

w and Θpi
w, and

we use one of these seven pairs to implement a particular company-agent.

The seven pairs of Opi
w and Θpi

w are described in Section A.3.

Finally, Figure 6.5 gives an overview of the implementation of the lumber market de-
mand and of the LumberRetailer in our first simulator.
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We now present our second simulator.

6.3 Implementation of the QWSG: The Software Agent
Approach

Our second simulator is based on the first one, i.e., on the implementation in a spread-
sheet of the QWSG. The difference with this first simulator is its increased realism,
which makes it more complex. To address this complexity, companies are implemented
with the agent-oriented language JACKTM. JACKTM [Agent Oriented Software Group,
2003] gives tools to implement systems of intelligent agents, that are both goal-directed
and reflex (event-driven), according to Russell and Norvig [2003]’s classification pre-
sented in Subsection 2.2.3. For the moment, we only use the reflex behaviour of JACKTM

agents in our simulation. We now motivate the implementation of an agent-based sim-
ulator in four points:

• The first argument concerns the lack of realism of the model in the QWSG, imple-
mented on a spreadsheet, because we have seen that it only addresses one cause
of the bullwhip effect (the “misperception of feedback” [Sterman, 1989], that can
be refined, at least, as “ordering and shipping delays”, as shown in Chapter 5).
We can make this simulation more realistic/complex when an agent-oriented pro-
gramming language is used, which allows considering the other known causes of
the bullwhip effect. Lee et al. [1997a,b] have proposed four causes, which are of-
ten seen as the main ones, and which were recalled in Subsection 3.2.2: demand
forecast updating, order batching, price fluctuations and rationing and shortage
gaming. We will show in Subsection 6.3.4 how these causes can be addressed with
our second simulator.

• The second improvement allows companies to work with different types of prod-
ucts. This is a limitation of our first simulator, because companies can only
manage one type of products, and extending this simulator to several types of
product is very difficult.

• The third improvement allows companies to negotiate. That is, each company in
the first simulator only takes into account its requirements concerning products
to place orders (since there are no product prices, but only inventory holding
and backorder costs), while it could, for example, try to order by big batches of
products in order to profit of economies of scale. JACKTM is designed to imple-
ment agents with such negotiation protocols, while it is absolutely impossible in
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a spreadsheet program.

• The last improvement is the enhanced realism of our second simulator by taking
into account production activities, and inventory, shipping and production capac-
ities. This realism could also have been applied to the first simulator, but we have
preferred to put it directly into our new tool.

These four advantages of an agent-based simulator over our first simulator make it
worth implementing a brand new simulator.

In the rest of this section, we first describe JACKTM and how the QWSG is adapted
to agents. Next, we show how each part of a company is modelled in a more realistic
way than what is used in the QWSG. Finally, we focus on the implementation of Lee
and his colleagues’ causes of the bullwhip effect in this second simulator.

6.3.1 The Agent-Oriented Programming Language JACKTM

JACK Intelligent AgentsTM, or the short form JACKTM, is an agent-oriented programming
language built and integrated with the Java environment [Sun microsystems, 2003]. We
present the framework JACKTM by basing our description on its designer’s documenta-
tion [Agent Oriented Software Group, 2003]. Java provides an object-oriented language
and an execution environment on several platforms, e.g., Microsoft Corp. [2004c]’s Win-
dows, Free Software Foundation [2004b]’s GNU/Linux, Apple Computer, Inc. [2004]’s
Mac OS. . .. As a result, JACKTM agents run on every platform for which a Java environ-
ment is available, i.e., for almost every platform. The components provided by JACKTM

are:

• the JACKTM Agent Language is an extension of Java providing constructs to rep-
resent agent-oriented features;

• the JACKTM Agent Compiler translates JACKTM source code into Java, then calls
the Java compiler to transform it into a runnable program;

• the JACKTM Agent Kernel is a runtime engine supporting the facilities used by
agents.

Although JACKTM is built upon Java, it is much more than an enhancement of Java,
because the relationship between JACKTM and Java is analogous to the language C’s
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relationship to the language C++. That is, JACKTM (respectively C++) was developed
as an enhancement to Java (respectively C) by providing agent-oriented concepts (re-
spectively object-oriented concepts). Furthermore, modularity is a concept from Java,
and more generally from object-oriented programming, that make easy design, imple-
mentation and reuse. This modularity is kept in JACKTM by programming each program
as an entry point for the Java environment, i.e., the traditional “main()”, and some or
all of the following components:

1. Each component “agent” embodies all the functionalities of an agent. Precisely,
an agent has plans and capabilities driven by events. These plans and capabilities
may also post some events. Finally, agents use beliefsets to maintain their beliefs
about the world.

2. Each component “capability” structures reasoning elements of agents into clusters
implementing selected reasoning capabilities. From the implementation point of
view, a capability is very close to an agent, because it is an aggregation of plan(s),
event(s), beliefset(s) and other capabilitie(s), except that a capability cannot be
run.

3. Each component “event” models occurrences and messages that agents must ad-
dress. Events may arise externally between agents (message) or internally in an
agent when a plan has to trigger some other plans.

4. Each component “plan” is the procedural description of actions that an agent
achieves when this agent receives a specific internal or external event.

5. Each component “beliefset” models an agent ’s knowledge about the world. This
knowledge is represented as first order relational tuples.

These components are divided into several classes to model the behaviour of agents
in two ways: a reflex part and a pro-active part. The first part of behaviour is event-
driven, because agents react in a more or less sophisticated manner to their environment
(we include in an agent ’s environment the other agents, and the messages sent by the
other agents). The second part of agent models a more intelligent behaviour based
on the theoretical BDI (Belief Desire and Intention) model from Artificial Intelligence.
BDI takes into account the pro-activeness of agents in the following way:

• An agent believes something about its environement, which is implemented by
setting some sets of data (beliefsets) according to the agent ’s perception of the
environment.



Chapter 6. Multi-Agent Simulation of a Québec Forest Supply Chain 131

• This agent also desires to achieve its goals, or more precisely, the agent wishes to
receive some specific perceptions of its environment.

• Therefore, the agent adopts an intention by selecting the appropriate plans ac-
cording to its beliefs.

For the moment, we only use the event-driven part of agent behaviour, because our
second simulator is still very similar to the first one. Indeed, our second simulator is
more complex because it includes the activity of companies, but our agents only work
in a “mechanical way”, but the framework JACKTM allows the company behaviour to
evolve easily towards a BDI architecture.

In fact, this flexibility in combining pro-active and reflex behaviours is the first
JACKTM for a project. For our simulation, the interesting features of JACKTM are:

• The flexibility in combining pro-active and reflex behaviour, as just stated, be-
cause we can use this flexibility to make our companies evolve towards much more
realism;

• The autonomy of agents that is taken into account by the JACKTM Agent Kernel;

• The high-level representation of behaviour, i.e., a level above object-oriented con-
cepts;

• The suitability for distributed applications, because the source code of agents does
not need adaptations when agents are moved from one computer to another;

• The ability for agents to work co-operatively in teams, which could be used in
future developments of our simulation.

6.3.2 Adaption of the Québec Wood Supply Game to agents

The QWSG is the base of a model that we use to study the efficiency of different coordi-
nation mechanisms in the supply chain. More precisely, we have programmed intelligent
agents, so that they can play a more sophisticated version of this game. Therefore, the
task of every agent will be to simulate a company behaviour, and to decide when and
how much to order. From a global point of view, Figure 6.6 represents the simulated
supply chain. Each company has one or several inventories figured as triangles; the total
height of a triangle represents inventory capacity (which is an addition to the QWSG)
while its filling represents its level.
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Figure 6.6: The modelled forest supply chain.

In PaperMill and Sawmill, circles represent the transformation of a quantity of mate-
rial (production is another addition to the QWSG): this inventory is exclusively either
full or empty. Both wholesalers are like in the QWSG: they do not have production
activity and they have a truck to ship products to their retailer. The other companies
differ from the QWSG: both mills manage raw material inventories due to their pro-
duction activity, and none of the retailers ships products because customers come to
buy them. Like in the QWSG, time is discrete3, each company has a product inventory
ready to be shipped, called _finishedProductInventory4, and there are delays between
companies modelled as a queue _productsInTruck. The PaperMill and the Sawmill are
the only agents that have the basic structure shown in Figures 6.7 and 6.9 while the
other agents are simplifications from this.

Figure 6.7 shows the adaptation of the PaperMill and Sawmill in the QWSG to
our agent-based simulator: there are information and a product streams travelling the
four functions Transport, Deliver, Make and Source of the company. We can note that
these functions are based on the first level of the model SCOR from the Supply Chain
Council [Supply Chain Council, 2001] illustrated in Figure 6.8, except that we add the
function Transport. In fact, the model SCOR represents a company as three activities:

• Deliver: a company ships products to its clients;

• Make: a company carries out its activities;
3Time discretization makes it easier to control that simulation works as we intend it to do.
4The names of variables begins with a “_”, and the name of JACKTM plans with “Pl”.



Chapter 6. Multi-Agent Simulation of a Québec Forest Supply Chain 133

MakeDeliverTransport Source

Product streamInformation stream

Truck

from
Orders

_p
ro

du
ct

sI
nT

ru
ck

_r
aw

M
at

er
ia

lIn
ve

nt
or

y

_w
or

kI
nP

ro
ce

ss
In

ve
nt

or
y

_f
in

is
he

dP
ro

du
ct

In
ve

nt
or

y

Products
from

suppliers

clients

Products
to

clients

Decision
Orders

to
suppliers

Paper/sawmill

Figure 6.7: The PaperMill and Sawmill model.

• Source: a company procures products from other companies to perform its activ-
ities.

These three activities should be planned together. The additional levels of SCOR details
these three activities.

We can also note that, in the first simulator, all companies were modelled with the
same equations, except the Sawmill, while in the second simulation, the PaperMill and
the Sawmill share the same code and other companies derive from this. The model
of the PaperMill and Sawmill is based on the first level of the SCOR model from the
Supply Chain Council [2001] in which we add a link Transport between the company
and its client(s). This link is a truck which takes the place of the two shipping delays
in the QWSG. Precisely, these delays are represented in the simulator as an inventory
at the visual level and as a queue called _productsInTruck at the logical level. Product
batches go through this queue and are given to the client’s _rawMaterialInventory as
soon as the shipping delay has elapsed. We add capacity to this queue, whereas ship-
ping delays in the QWSG can ship as many products as needed. We add capacity to
inventories too. The inventory in the QWSG, like I i

w in the first simulator, corresponds
to _finishedProductInventory in Figure 6.7.
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Figure 6.8: The model SCOR [Supply Chain Council, 2001].

The QWSG and our first simulator do not make any distinction between companies
in the distribution network (the retailers and the wholesalers) and production companies
(the PaperMill and the Sawmill). On the contrary, we make the model more realistic by
adding the Make function to the PaperMill, which forces us to add the Source function.
Both of these functions contain a limited inventory, called _workInProcessInventory in
Make, and _rawMaterialInventory in Source. The _workInProcessInventory in the Make
function represents the batch being processed, that is, it is a small inventory, which is
either full or empty.

In short, the Transport, Deliver, Make and Source functions are travelled by the
information and the product streams. Figure 6.9 gives more details about the imple-
mentation of these four sets of functions.

We now detail how the simulation works.

6.3.3 Simulation mechanism

As previously noted, we assume all companies work at the same time, and that this time
is discrete, i.e., every company waits for the other company to complete the five days of
the QWSG, before beginning the next day. Furthermore, there is a bottleneck which is
situated at the level of the Sawmill, that allows us to simulate the risks of scarcities (a
cause of the bullwhip effect) leading the agents to behave in a strategic manner. This
behaviour is described in the PlOrdering rule of agents: agents order more than they
actually need when there are fewer incoming products than were ordered.

Now, we first present the five different types of agents (i.e., the company-agents and
an additional agent called ClockAndGUI) in the simulation, and then the implementation
of the company-agents. As we use the JACKTM framework, this description is a summary
of JACKTM plans used to model companies.



Chapter 6. Multi-Agent Simulation of a Québec Forest Supply Chain 135

clients
PlProductionPlShippingPlHauling

Transport Deliver Make Source

PlPlannning

PlOrderingMailbox

Information stream Product stream

PlOrderNegotiation

Products
to

Orders
from

clients

Truck

Products

suppliers
from

PlOrdering to
suppliers

PlShippingForecasting
Orders

PlCheckingInMailBox

PlCheckingIn

Paper/sawmill

Figure 6.9: JACKTM plans in the PaperMill and the Sawmill.

Agents’ Roles

To describe how to implement company-agents, we use the Russell and Norvig’s PEAS
(Performance, Environment, Actuators, Sensors) description [Russell and Norvig, 2003].
This gives a good idea of what the company-agents will perceive and do.

• Performance: it is basically measured as the standard deviation of placed orders,
but we can also consider the standard deviation of inventory level, inventory
holding cost, stockout durations. . ..

• Environment : it encompasses other company-agents and the market. For the
simulation, we also add an agent managing the clock and the graphical user
interface.

• Actuators: as everything is simulated, company-agents have no actuators because
they are only able to send messages to other agents.

• Sensors : as everything is simulated, company-agents have no sensors because they
are only able to receive messages from other agents.

Agents can be divided into several categories:
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1. The Customers are modelled as two agents buying products from their retailers.
Customer agents are very simple, because they only place orders according to a
distribution law representing different kinds of consumption patterns presented in
Table 7.1.

2. The Retailers and Wholesalers, i.e., the distribution network, are companies hav-
ing neither production activity nor raw material inventory to manage: products
coming from the supplier do not wait in the _rawMaterialInventory because these
agents directly move products from _rawMaterialInventory to _productsInTruck.
Moreover, these four agents have to place orders to their suppliers.

3. The PaperMill and the Sawmill are the basic company-agents in our model in
Figure 6.9, because they have the Transport, Deliver, Make and Source functions.
Make and Source share a common code for these two company-agents, but are
initialized differently, e.g., _workInProcessInventory and _finishedProductInventory
are arrays containing an integer in the case of the PaperMill, and two integers in
the case of the Sawmill, and _productsInTruck are arrays containing one array of
integers in the case of the PaperMill, and two arrays of integers in the case of the
Sawmill.

4. The Forest is the most upstream company-agent, which has thus no supplier and
does not place any orders. It is assumed to be an infinite source of wood in the
QWSG, but we assume in our model that its capacity is given by a cutting plan
representing companies’ procurement contract with the provincial government.

5. The ClockAndGui is an agent multi-casting an event representing the time in the
whole supply chain. Each tick of this clock makes other agents perform actions
by triggering their JACKTM plans. This agent can also display information on the
GUI (Graphical User Interface), and/or write raw simulation outcomes on the
shell, and/or put simulation outcomes in an Excel file5.

Figure 6.10 gives an overview of the information displayed by the ClockAndGui
agent6.

We should finally note that transportation could have been modelled as truck agents
instead of as a function in each company. It would have allowed us to focus on impacts of
unanticipated transportation events on the bullwhip effect. We assume for the moment
that transportation is a problem that can be simply viewed as a queue managed by
each company.

5We use here the Java Excel API 2.3.12 from Andy Khan [2004].
6I would like to thank Eve Levesque who adapted the graphical user interface from the Nereus

project [Soucy, 2004; Plamondon, 2003; Plamondon et al., 2003; Paquet, 2001] in the DAMAS [2004]
research group.
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Further detail on the implementation of the JACKTM agents is in Section A.4 of
Appendix A.

6.3.4 Addressing known causes of the bullwhip effect

Everything we have just described replicates a more realistic supply chain than the
QWSG. Similar to our first simulation, the only cause of the bullwhip effect that appears
in this simulation is the consequence of ordering and shipping delays. We now focus
on taking into account the four causes and solutions of the bullwhip effect proposed by
Lee et al. [1997a,b], because these are the most cited ones.

To this end, the behaviour of company-agents, i.e., their ordering scheme, has to be
adapted to address these four causes of the bullwhip effect. In fact, adding all causes is
easier than adapting each company’s ordering rule according to these causes. In other
words, making the simulator more realistic is easier than making decision in such a
realistic environment. For example, it is easy to create a price fluctuation: the price
of an item may be, for instance, twice the price at which the company has bought it
(to make a profit) minus a tenth of the inventory level, that is, the more products the
company has, the lower the charged price is, in order to empty the inventory and thus
save holding costs. But we must then adapt how companies order when they want to
take advantage of these promotions in the most efficient way. In other words, ordering
patterns represent how companies behave to take advantage of available opportunities.
These four causes are [Lee et al., 1997a,b]:

1. Updating of demand forecasting :

Proposed solution: make demand data from each company available to its supplier.
This allows the supplier to make better forecasts instead of making forecasts on
its client’s forecasts. This is information sharing.

Consequence for the agents: Client’s plan PlOrdering has to be adapted to imple-
ment our Ordering Schemes B and D, client’s plan PlShippingForecasting has to
be implemented to use the information shared with B and D, and supplier’s plan
PlPlanning may also be implemented to plan future production of the company.

Example of ordering pattern: Ordering Schemes B and D, and PlShippingForecasting
is a moving average, and PlPlanning is a FIFO (First In, First Out).

2. Order batching :

Proposed solution: break up order batches by making transaction costs lower using
an electronic commerce system.
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Consequence for agents: production has to be made by batches (that is _workIn-
ProcessInventory is either full or empty) and transportation costs depend on the
number of trucks used instead of the number of products shipped (so companies
will prefer to ship by full truckloads instead of less than full truckloads).

Example of ordering pattern: placed orders by PlOrdering or PlOrderingSS can only
take discrete values and these values correspond to full truckloads.

3. Price fluctuation:

Proposed solution: stabilize prices (e.g. EDLP strategy - Every Day Low Price)
to avoid customer and company overordering and stockpiling during promotions.

Consequence for agents: quantity ordered depends on the price of product (client)
and this price depends on inventory levels (supplier).

Example of ordering pattern: placed orders by PlOrdering and PlOrderingSS are
equal to the needed quantity plus the difference between the nominal price and
the current price, where the current price is calculated by the supplier (e.g., the
current price is the nominal price plus the difference between the current inventory
level and a nominal inventory level).

4. Rationing and shortage gaming :

Proposed solution: eliminate gaming in shortage situations by allocating products
to customers in proportion to their past sales instead of in proportion to current
orders. Therefore, when a company has several clients but is not able to ship
them what they have ordered, the client will not overorder (i.e., gamble) in the
hope of receiving its actual needs.

Consequence for agents: agent overorders if it does not receive what it ordered four
weeks before (because products ordered in week w are received in week w + 4).

Example of ordering pattern: order the current requirement plus the difference
between incoming shipment and what was ordered four weeks earlier.

6.4 Conclusion

We have presented the two simulators, which were implemented to study the bullwhip
effect. The first simulator is the strict implementation of the QWSG (Québec Wood
Supply Game), and the second one is based on the first one, on which four improvements
have been added. The first improvement is the possibility of simulating several causes
of the bullwhip effect, instead of only one in the QWSG in our fist simulator, where this
cause is “ordering and shipping delays”. The second improvement allows companies to
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process several types of products, instead of only one. The third enhancement concerns
the ability for agents to negotiate in order to find agreements on transactions, instead
of working on a mode “order implies shipping”. The last improvement could have been
added to our first simulator, and is the addition of a manufacturing activity by some
companies. Finally, some tests have to be achieved to validate that this second simulator
works as designed.

As the first simulator is less sophisticated, and has been tested, it has allowed us
to understand the two principles to reduce the bullwhip effect, that are proposed in
Chapter 5 and applied in our two ordering schemes. Even though this model runs in
a spreadsheet program, companies are modelled as autonomous business entities that
have to place orders by themselves. Precisely, companies are reflex agents applying
their ordering scheme in a “mechanical way”. Nevertheless, we can study the selfishness
of companies even though they work with a mechanical way. In particular, we see in the
next two chapters that this first simulator allows studying the three following points:

• How does the supply chain behave when all companies apply the same ordering
scheme?

• What is the overall cost of the supply chain and the cost distribution among
companies in this case when all companies apply the same ordering scheme?

• What happens when companies may choose their ordering scheme independently?

The next chapter addresses the two first of these questions.



Chapter 7

First Series of Experiments:
Homogeneous Supply Chains

The two ordering schemes proposed in Chapter 5 are studied in this chapter with the
first simulator introduced in Chapter 6. Let us recall, that this simulator implements
the company and supply chain models in the Québec Wood Supply Games (QWSG).
Let us also recall, that we have proposed the ordering schemes B and D as illustrations
of our two principles, i.e., “the lot-for-lot ordering policy eliminates the bullwhip effect
but does not manage inventory”, and “companies should react only once per market
consumption change, by over- or underordering”. In order to show the efficiency of our
two principles for a supply chain, we carry out the following comparisons between the
seven schemes A, A’, A”, B, B’, C and D, where none, one or two of our principles are
followed:

• Comparison of A and A’: This shows that demand-based orders are efficient in
reducing the bullwhip effect;

• Comparison of A’ and B: This shows that our two principles must be followed,
because A’ loosely follows the second one, and is thus inefficient;

• Comparison of B and B’: This shows that information sharing with (O, Θ) orders
does not reduce the bullwhip effect alone, but our two principles are also required;

• Comparison of A and C: This is a confirmation that information centralization
reduces the bullwhip effect;

• Comparison of B and D: This is also a confirmation that information centraliza-
tion reduces the bullwhip effect;
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• Comparison of B’ with B and D: This shows that our first principle is necessary;

• Comparison of A’ with B and D: This shows that our second principle is necessary.

Notice that in this dissertation, two series of experiments are carried out. The first
series is presented in this chapter while the second series will be described in Chapter 8.
For the moment, this first series studies a homogeneous supply chain in order to check
that the two ordering schemes B and D, based on our two principles, are efficient for the
whole supply chain. During this first series of experiments we assume that the supply
chain is homogeneous, that is, all companies use the same ordering scheme. For each of
the seven ordering schemes, we use one of nineteen market consumption patterns, i.e.,
the lumber and market customers buy during each fifty week simulation by following
one of the nineteen series of end-customer demand. As a consequence, 7 ∗ 19 = 133

simulations are carried out. This methodology is presented in Section 7.1.

Then, we present how logistics costs are evaluated in the first series of experiments.
The method to evaluate costs is based on the method in the QWSG, except that a little
modification improves its realism. This modification is presented in Section 7.2.

Finally, we describe the core of this chapter, that is, the experimental outputs of
the first series of experiments. To this end, we first show the orders placed and the
inventory level for each company under one particular market consumption pattern.
We confirm here that our two principles reduce the bullwhip effect, and that there is
a change in the distribution of the backorder durations in the supply chain. Then, we
simulate the supply chain under the eighteen other market consumption patterns. These
simulation outcomes are presented with four metrics, because giving additional details
(i.e., presenting in detail, like under the first market consumption pattern) represents a
large bulk of data. We state here that D is most of the time the most efficient ordering
scheme. Finally, a discussion concludes Section 7.3.

7.1 Description of our Methodology

In the first series of experiments that is described in this chapter, we use the first
simulation model to simulate the Québec Wood Supply Game (QWSG) under the seven
ordering schemes A, A’, A”, B, B’, C and D, and under the nineteen demand market
patterns indicated in Tables 7.1 (detailed in Tables B.1, B.2 and B.3), as illustrated in
Algorithm 7.1. More specifically, these three tables present the nineteen end-customer
demands Dlumber

w and Dpaper
w for each of the fifty weeks of a simulation.
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Algorithm 7.1 methodology in the first series of experiments
returns orders and inventory level for each company and each week
for each of the nineteen market consumption patterns m in Figure 7.1 do

for each seven of the ordering schemes r in Figure 6.1.2 do
simulate a supply chain using r under consumption m

Most of these nineteen market consumption patterns are between eleven and seven-
teen. On the contrary, the QWSG bounds its demand pattern between four and eight.
We do not use this pattern, because there are a lot of “twos” here, that is, the two
market (lumber and paper) demands are 4 = 2 ∗ 2 and 8 = 4 ∗ 2, and ordering and
shipping delays are also equal to two weeks. When we study the parameter setup in the
considered ordering schemes in Section 8.2, some other “twos” appear in the parameters
in Schemes B and D (recall that B and D were proposed in Chaper 5 as implementa-
tions of our two principles to reduce the bullwhip effect), and we are not sure if they are
due either to the market consumption pattern, or to the ordering and shipping delays,
which are also equal to “two”. In order to avoid this question, we have changed four and
eight in the QWSG for the two prime numbers eleven and seventeen. Therefore, when
we have to set an ordering scheme parameter to “two”, this is not due to the market
consumption. As a consequence of this choice for eleven and seventeen, the nineteen
market consumption patterns used to study the seven ordering schemes are indicated
in Table 7.1, and described now:

1. Step: The Step demand pattern indicates that the two market demands for eleven
products per week in the four first weeks, then for seventeen products until the end
of the simulation. We note this demand Dlumber

w = Dpaper
w = 11 for w ∈ {1, 2, 3, 4},

and Dlumber
w = Dpaper

w = 17 for w = 5, 6, 7, . . . 50.

2. Inversed step: This demand corresponds to a demand for seventeen products in
the four first weeks, and eleven products until the end, that is, the inverse of the
previous market consumption pattern.

3. Dirac: It indicates a demand for eleven products per week throughout the simu-
lation, except in Week five, where the demand is for seventeen products.

4. Inversed Dirac: It indicates a demand of seventeen products per week, except in
Week five, where eleven products are consumed by both markets, which is the
inverse of the previous pattern.

5. Increase: It corresponds to the following demand per week: 11, 11, 11, 11, 12, 13,
14. . ., 56, 57.
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6. Decrease: It is a demand for 57, 57, 57, 57, 56, 55, 54. . ., 12, 11, that is, the
inverse of the previous pattern.

In the three seasonalities, market consumption is eleven on average:

7. Weak seasonality: It has a demand for 11, 11, 11, 11, 12, 11, 10, 11, 12, 11, 10,
11, 12. . . products, that is, eleven products on average, with a variation of -1, 0
or +1.

8. Medium seasonality: It corresponds to the following demand: 11, 11, 11, 11, 12,
13, 12, 11, 10, 9, 10, 11, 12, 13, 12, 11, 10, 11, 10. . . products, that is, eleven
products on average, with a variation of -2, -1, 0, +1 or +2.

9. Strong seasonality: It indicates a demand of 11, 11, 11, 11, 12, 13, 14, 13, 12, 11,
10, 9, 8, 9, 10, 11, 12, 13, 14, 13, 12, 11, 10, 9, 10, 11. . . products, that is, eleven
products on average, with a variation of -3, -2, -1, 0, +1, +2 or +3.

10. Uniform randoms: They are represented by 10A to 10J, which are ten uniform
distributions of demand, detailed in Tables B.2 and B.3 because of the required
place to describe them. These are uniform distributions on the interval of integers
[11; 17]. These ten distributions are generated once and are next memorized to use
them under the seven ordering schemes. We record these ten random demands,
because simulations outcomes may be specific to certain demand patterns. Finally,
the patterns 10A to 10J give the same distribution of demand to the two markets,
but the exact values are different, i.e., Dlumber

w �= Dpaper
w for several Weeks w. On

the contrary, the nine first market consumption patterns are exactly the same for
both markets, i.e., Dlumber

w = Dpaper
w for every Week w.

Before the description of the first series of experiments in Subsection 7.3, we make the
QWSG method more realistic for cost calculation. In fact, the main metric to measure
the efficiency of an ordering scheme in this chapter is the standard deviation of placed
orders, because it is the measure of the bullwhip effect that we would like to reduce. But
we also consider the costs incurred by the consequences of the bullwhip effect, i.e., the
costs incurred by higher inventory levels and customer service reductions (backorder).
This is the reason why we now present the method to calculate these costs.
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7.2 QWSG costs

In this disseration, we consider three methods to calculate the costs induced by the
bullwhip effect. Basically, these costs depend on inventory holding and backorder costs.
The first method is referred as QWSG, and considers that a backordered product costs
twice the cost of an item in inventory. Precisely, the calcul of company i’s cost Ci is the
sum of company i’s inventory plus two times the sum of its backorders during the whole
simulation (fifty weeks): the cost of company i is Ci

QWSG =
∑50

w=1{I i
w+2∗(Obi

w+Θbi
w)}.

This is exactly the method adopted in the QWSG, and copied from the Beer Game.
In our previous papers [Moyaux et al., 2004c, 2003a], costs were calculated with this
method.

In this chapter, we add a ratio of 0.37/50 to represent inventory holding costs, ac-
cording to the value of the total logistics cost given by Nahmias [1997]. In fact, products
owned by the Sawmill are cheaper than products owned by the LumberRetailer, because
the value of products increases along the supply chain due to logistics operations1. In
fact, when the Sawmill sells an item to the PaperMill, some money is charged, only
because this product was carried:

• 28% of the value of the product corresponds to the value of the interest rate that
corresponds to the opportunity cost of alternative investment related to a number
of standard accounting measures (internal rate of return, return on assets. . .);

• 2% for taxes and insurance;

• 6% for holding this product in inventory (loan, supervision, heating, lighting. . .
of the warehouse);

• 1% for breakage and spoilage.

Such costs are called “improved” costs, since they are made of the addition of (28 +2 +

6 + 1) = 37% of value of each product by each company. This 37% represents annual
costs; we divide this ratio by the number of week in a year to get the cost of a week.
That is, the companies have the following costs:

• The Sawmill pays the inventory holding and backorders like in the QWSG, that
is, the QWSG cost is multiplied by a rate (1 + 0.37/50)0 = 1;

1Logistics costs also increase due to manufacturing operations by the PaperMill and Sawmill, but
we will only take these operation costs into account in Chapter 8 in “realistic” costs.
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• The PaperMill and the LumberWholesaler pay products 0.37/50 more expensive
than the Sawmill, that is, QWSG cost is multiplied by a rate (1 + 0.37/50)1 =

1.0074;

• And so on.

As a consequence, the “improved” costs are Ci
improved = (1 + 0.37/50)k ∗ Ci

QWSG,
where k depends on the considered company. Note that k is a power in the expression
“(1 + 0.37/50)k”, and not the indice of an agent. Therefore, we use the following
equations to calculate the individual costs:

1. C1
improved = (1 + 0.37

50
)2 ∗∑50

w=1{I1
w + 2 ∗ (Ob1

w + Θb1
w)} for the LumberRetailer,

2. C2
improved = (1 + 0.37

50
)3 ∗∑50

w=1{I2
w + 2 ∗ (Ob2

w + Θb2
w)} for the PaperRetailer,

3. C3
improved = (1 + 0.37

50
)1 ∗∑50

w=1{I3
w + 2 ∗ (Ob3

w + Θb3
w)} for the LumberWholesaler,

4. C4
improved = (1 + 0.37

50
)2 ∗∑50

w=1{I4
w + 2 ∗ (Ob4

w + Θb4
w)} for the PaperWholesaler,

5. C5
improved = (1 + 0.37

50
)1 ∗∑50

w=1{I5
w + 2 ∗ (Ob5

w + Θb5
w)} for the PaperMill, and

6. C6
improved = (1 + 0.37

50
)0 ∗∑50

w=1{I6-lumber
w + 2 ∗ (Ob6-lumber

w + Θb6-lumber
w ) + I6-paper

w +

2 ∗ (Ob6-paper
w + Θb6-paper

w } for the Sawmill.

Finally, we will introduce costs adapted to the Québec wood industry in Subsec-
tion 8.2.1. This third method will be referred as “realistic”. But for the moment,
we present the simulation outcomes obtained with Cimproved.

7.3 Simulation Outcomes

We can now study the bullwhip effect in the QWSG, that is, the fluctuations in orders
placed by each player. We have used the first implementation of the QWSG that
was presented in Section 6.2. This is the exact simulation of the QWSG, rather than
its enhancement. This simulation was run with Microsoft Excel 2000 with a PC with
a processor AMD Athlon XP 2200+ from Advanced Micro Devices Inc. [2004] under
Microsoft Windows 2000 Service Pack 4.
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7.3.1 Simulation Outputs

Format of figures

Figures 7.1, 7.3, 7.5, 7.7, 7.9, 7.11, and 7.13 present demands in the supply chain. In
these figures, the first curve from the bottom represents the market consumption under
the Step demand: the market demand is eleven products during the first four weeks,
followed by seventeen products until the end of the simulation. Next, the second curve
shows LumberRetailer’s and PaperRetailer’s placed orders under a particular ordering
scheme. The third curve indicates LumberWholesaler’s and PaperWholesaler’s. Finally,
next-to-last curves represents PaperMill’s and last curves are Sawmill’s orders.

Similarly, Figures 7.2, 7.4, 7.6, 7.8, 7.10, 7.12, and 7.14 present inventory level
(and backorders when inventory level is negative) in the supply chain. In these figures,
the first curve from the bottom shows LumberRetailer’s and PaperRetailer’s inventory
level. The second curves indicate LumberWholesaler’s and PaperWholesaler’s inventory.
Finally, next-to-last curves represent PaperMill’s inventory, and last curves are Sawmill’s
lumber and paper inventories.

The ranges in Figures 7.1 to 7.14 are adapted to the simulation outcomes. For this
reason, small fluctuations may appear large, because of the scale. Orders and inventories
are measured in simulated units, like in the QWSG, and not in real units. Moreover,
when (O, Θ) orders are used, Figures 7.1, 7.3, 7.5, 7.7, 7.9, 7.11, and 7.13 represent
the sum of the two types of orders (Opi

w + Θpi
w), and Figures 7.2, 7.4, 7.6, 7.8, 7.10,

7.12, and 7.14 the sum of inventory and backordered orders (I i
w + Obi

w + Θbi
w). Finally,

note that these seven figures are obtained with empty initial inventories, except for the
Sawmill with Schemes B and D (∀i ∈ {1, 2, 3, 4, 5, 6-lumber}, I i

1 = 0 with all schemes,
I6−paper
1 = 0 with A, A’, A”, B’ and C, and I6−paper

1 = 6 with B and D), because of the
problem addressed in Subsection C.4 (how to aggregate lumber and paper requirements
by the Sawmill?) leads to less “pretty” curves due to backorders induced by this problem.
Nevertheless, in the next subsection, all Tables 7.2, 7.3, 7.4 and 7.5 will be obtained
with empty initial inventories (∀i, I i

1 = 0) for all companies. Let us also recall that
Figures 7.1 to 7.14 are all obtained under the Step market consumption pattern.

Simulation Outputs with Ordering Scheme A

The ordering rule used in Scheme A gives very poor results. For example, the Sawmill
orders more than one hundred products in some weeks in Figure 7.1, while the market
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Figure 7.1: Orders in Scheme A (with O+Θ orders, without information centralization).

demand is only 17, according to the Step demand in Table 7.1, and Sawmill’s inventories
are over seven hundred units and are sometimes negative, that is, there are backorders
in Figure 7.2.

Simulation Outputs with Ordering Scheme A’

Next, Figure 7.3 shows demand in the supply chain when every company uses Scheme A’.
There are almost no bullwhip effect in this demand, because only some peaks of the
demand (i.e., some overorders) appear in Figure 7.3, while curves representing compa-
nies’ orders are similar to the market consumption (first curves) during the rest of the
time. For example, the Sawmill orders as the market consumes, except when the Sawmill
places the three huge orders represented by the three peaks of placed orders in the last
curve in Figure 7.3. The problem is every company’s peaks are too large, which leads
to huge inventory levels in Figure 7.4.
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Figure 7.2: Inventories in Scheme A (with O + Θ orders, without information central-
ization).

Comparison of Schemes A and A’

Ordering schemes used in Schemes A and A’ do not use information sharing, i.e., our first
principle, but Scheme A’ has very stable orders, conversely to Scheme A. The difference
between these two schemes is that A’ almost satisfies our second principle, because
companies react only once, twice or three times to each market consumption change,
which is reflected by the maximum of three peaks on demand curves in Figure 7.3.

Since Scheme A’ does not use (O, Θ) orders, this reduction of the bullwhip effect
cannot be explained by information sharing. Another way to explain this reduction is to
focus on the basis upon which orders are placed. On the one hand, Scheme A’ bases its
orders on demand, and stabilizes orders very quickly according to the market demand.
On the other hand, we have seen that Scheme A bases its orders both on demand and
on inventory variations, and thus, its orders fluctuate as many times as inventory. Since
there are several inventory variations for each market change (this is true for all the
tested Schemes A, A’, A”, B, B’, C or D), orders in Scheme A never stabilize.
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Figure 7.3: Orders in Scheme A’ (with O+Θ orders, without information centralization).

The fact that A’ only bases its orders on the incoming demand, while A consid-
ers both the incoming demand and the inventory level, explains why there is a great
bullwhip effect in Scheme A, but not in Scheme A’. These two experiments show that or-
ders based on demand instead of on inventory reduces the bullwhip effect in the QWSG.
However, orders based on demand may be inefficient in practice, even if they are the
best ones in the QWSG, because they ignore that actual inventories are affected by
breakage, spoilages, thefts. . .. In short, the bullwhip effect is almost eliminated with A’
in our simulations, while it was really important with A. This shows that:

Demand-based orders with A’ are more efficient in reducing the bullwhip
effect than orders considering both demand and inventory level in A. But,
as we have just stated, such a demand-driven scheme is not applicable in
practice.

Another drawback of A’ is the fact that each company should react only once to
each market consumption change according to our second principle, while the SawMill
has three peaks of orders in Figure 7.3. From our point of view, this is a problem
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Figure 7.4: Inventories in Scheme A’ (with O + Θ orders, without information central-
ization).

because the number and the amplitude of these peaks are not easy to predict, and thus,
managing inventories with A’ is not easy to effect. In other words, overorders are much
too great, which lead to huge inventory levels in Figure 7.4, and the way to regulate
this is not clear at a first glance.

Although the goal of this thesis is not the study of this scheme, it would be inter-
esting to study how to obtain this regulation in Scheme A’ as a future work, in order to
keep the short bullwhip effect, but with a lower amplitude, so that inventory is managed
in a more efficient way. Maybe Scheme A’ could both manage inventories and reduce
the bullwhip effect without the information sharing with (O, Θ) orders required by our
two principles.
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Figure 7.5: Orders in Scheme A” (with O + Θ orders, without information centraliza-
tion).

Simulation Outputs with Ordering Scheme A”

Figures 7.5 and 7.6 show the behaviour induced by Scheme A” , i.e., by an (s, S) ordering
policy. The (s, S) policy is based on the model of the Economic Order Quantity (EOQ)
from the inventory management literature, in which the company orders for (S − I)

products when its inventory I is lower than s. This model aims at optimizing the cost of
the inventory system of a company that is assumed to be isolated, and not in a supply
chain. We have adapted this optimization model to our simulation in Subsection B.2.
The results of this optimization shows that, for every company i, C i

realistic is minimum
when s = 0 and S = Oiiw, where Oiiw is the company i’s incoming order in Week w.

These parameters are optimal under the assumptions in the EOQ. The problem is
that these hypothesis are not met in our simulation. The unfulfilled assumptions from
EOQ are as follows:

• the considered company has infinite sources of products as supplier;
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Figure 7.6: Inventories in Scheme A” (with O + Θ orders, without information central-
ization).

• the demand is steady.

The first hypothesis from EOQ is not satisfied in our simulation, because backorders
may occur with all suppliers, and thus, these suppliers cannot be viewed as an infinite
source of products for their clients. Therefore, the assumption in EOQ of cycling
operations in each inventory system, presented later in Figure B.1, does not hold. The
second hypothesis, i.e., demand is steady, also does not hold, since we use the Step
demand market pattern for the moment, and next, the nineteen patterns indicated in
Table 7.1, and also since no companies address a steady demand to its supplier. The
fact that these two assumptions are not met generate two problems, incurring at the
same time:

1. First problem: Since the first assumption (suppliers may have backorders, while
they are modelled in EOQ as infinite sources of products) does not hold, makes
the supply chain work in a very inefficient way, or, in more general terms, when
every company optimizes its decisions locally, the overall supply chain behaviour
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is very poor.

The typical supply chain behaviour in our simulator is as follows. When the
market consumption increases, each retailer has a backorder, and orders each
week such as to eliminate it (they order (S − I) products, where I < 0 is the
inventory level representing their backorder). But there are not enough products
by the wholesaler to fulfill this demand. Therefore, the wholesaler orders more
products than the quantity ordered by the Retailer, which leads to a much bigger
backorder by the next supplier. Finally, all companies overorder too much product
in comparison to the market consumption. In fact, the market consumption is 17
products/week, while the Sawmill orders up to 2,632 products in Week 20!

This huge number is due to the “domino effect” that has just been outlined, and
visible in the hump in orders in Figure 7.5 that are higher with the Sawmill than
with the retailers: retailers increase their orders to remove their backorder, which
makes wholesalers have a greater stockout than retailers. Therefore, wholesalers
increase their orders more than retailers, which makes their supplier have a much
greater stockout than retailers and wholesalers.

2. Second problem: The second assumption (each company’s demand is steady)
causes the cycling operations of inventory system to be disturbed. In fact, when
the demand is steady, orders are all equal in each week: order in Week w is (i)
equal to order in Week w + 1, and (ii) received in Week w + 4. On the contrary,
when the demand is no longer steady, order in Week w is different from order in
Week w + 1.

When a stockout occurs in week w, the company orders (S − I) products in
weeks w, w + 1, w + 2 and w + 3, and also probably w +4, w + 5, . . . to eliminate
this stockout. As a consequence, the company orders too much product, because it
should only order the quantity corresponding to the stockout aggravation between
the previous and the current week, while the (s, S) policy tries to eliminate the
entire stockout in each week.

For example, when the inventory level is -3 in week w, and -7 in week w + 1,
the company should order in Week w in order to eliminate the backorder of 3,
and in week w + 1 to eliminate the aggravation of this backorder, that is, the
company should order for 4 products. On the contrary, the (s, S) policy causes
the company to try to eliminate a backorder of 3 in week w (which is right), and a
backorder of 7 in week w+1 (which is wrong). Therefore, when a stockout occurs
in week w, the quantity ordered in week w is correct, but too much products are
ordered in weeks w + 1, w + 2 and w + 3, and perhaps w + 4, w + 5, . . ..

As a consequence, companies order more and more when they have backorders,
which makes their inventory level explode, when ordered products eventually ar-
rive from the Forest. For instance, Sawmill’s paper inventory fluctuates from
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-3,336, i.e., a backorder of 3,336 units, to 7,198 2 in Figure 7.6, because this
company orders more than 2,000 units during six weeks in Figure 7.5, while the
market consumption is only 17!

We do not compare A” with any other scheme, since it is related to no other scheme.
The interest of A” is only to implement the well-known (s, S) rule, and to have a math-
ematical description allowing optimizing its parameters, as shown in Subsection B.2.

Simulation Outputs with Ordering Scheme B

Scheme B is the implementation of our two principles without information centraliza-
tion, which thus uses (O, Θ) orders. Orders with Scheme B are presented in Figure 7.7.
Peaks correspond to two concurrent events:

• Θ coming from the client are transmitted to the supplier;

• non-zero Θ are emitted, because the company becomes aware of the market con-
sumption change at the same time as Θ are received.

This explains why PaperMill’s peak is higher than LumberWholesaler’s and PaperWholesaler’s,
which are themselves higher than LumberRetailer’s and PaperRetailer’s in Figure 7.7. In-
deed, the following scenario occurs:

• Both retailers have a peak, because they emit Θ when the market consumption
jump from eleven to seventeen.

• Two weeks later, both wholesalers receive both the new value of the market con-
sumption in O, and non-zero Θ. The wholesalers transmit these Θ, and add to
them their own Θ, because O has changed. As a consequence, the peak by the
wholesalers is twice as high as the peaks by the retailers.

• Six weeks later, the Sawmill receives Θ from the LumberWholesaler, and eight
weeks later from the PaperMill. Each time, the Sawmill transmits the incoming Θ,
and reacts to the change in O by emitting new Θ.

2In fact, this is a decimal number. In general, decimal numbers may appear in inventory level and
placed orders with all of our seven ordering schemes, because of the aggregation method of lumber
and paper orders by the Sawmill: this company orders half its lumber requirements plus half its paper
requirements.
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Figure 7.7: Orders in Scheme B (with (O, Θ) orders, without information centraliza-
tion).

Figure 7.8 illustrates the inventory behaviour presented in Section 5.4:

• Inventory levels start decreasing when the considered company becomes aware of
the market consumption increase (this increases is reflected in O). At this time,
companies emit Θ to order more products, so that their inventory level increases
up to its initial level.

• In general, this increase of O and the reception of non-zero Θ causes the supplier
of the considered company to be in backorder. A a result, the inventory continues
to decrease. However, the inventory increases sometimes with some companies,
because their supplier does not incur this backorder (in particular, the inventories
by both retailers in Figure 7.8 increase up to their initial level six weeks after
the market consumption increases, then remains at this level for a week, before
decreasing again).

• These two previous points show that the change occurs in the distribution of
backorder duration in the supply chain. The backorder is very important for the
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Figure 7.8: Inventories in Scheme B (with (O, Θ) orders, without information central-
ization).

Sawmill, but lasts a shorter duration than for the wholesalers3 (i.e., the second
curve from the bottom in Figure 7.8).

This point is one of the contributions of this thesis: our two principles make that
the inventory variations may disturb more the retailers, while the classic situation
of the bullwhip effect disturbs the Sawmill more.

Of course, this disturbance depends on how backorders are measured: we can refer
either to the importance of the backorder, that is, how negative the inventory level
is, or to the duration. In fact, a company may prefer to have a lot of unfulfilled
orders for a short period (case of the Sawmill in Figure 7.8), than a few unfulfilled
orders for a longer period (case of the wholesalers in Figure 7.8).

3We do not refer to the retailers here, because this is not very clear in Figure 7.8, but our presentation
in Section 5.4 shows that, in theory, inventory fluctuations (and thus, possible backorders) are also
longer by retailers than by the Sawmill.
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Comparison of Schemes A’ and B

Orders placed with Scheme A’ in Figure 7.3 have a pattern very similar to orders placed
with Scheme B in Figure 7.7. In fact, except for some peaks, orders placed with these
two schemes are similar to the market consumption. Therefore, both schemes reduce
the bullwhip effect very much. We can note that A’ and B are similar in two respects:

1. Schemes A’ and B both place orders only based on demand. This allows reducing
the bullwhip effect, but they need some adaptations to manage inventory in real
life, because they only consider incoming demand, and ignore the inventory level,
while we have seen that, this level may fluctuate for any reason, such as breakage,
spoilage, theft. . ..

2. Scheme B respects our second principle (only one over- or underorder as a reac-
tion to a market consumption change), while Scheme A’ is very near that, only
three overorders occur (i.e., three peaks of demand) in Figure 7.3 per market
consumption change.

Simulation Outputs with Ordering Scheme B’

Figures 7.9 and 7.10 presents supply chain behaviour with Scheme B’. Scheme B’ has
very variable orders and inventories, but less than Scheme A. In other words, there is
a large bullwhip effect in Figure 7.9, which, in return induces very variable inventories
in Figure 7.10.

Comparison of Schemes B and B’

Both schemes B and B’ use information sharing with (O, Θ) orders, and both satisfy
our first principle, i.e., the lot-for-lot ordering policy eliminates the bullwhip effect,
but does not manage inventories. On the other hand, B’ does not respect our second
principle (only one over- or underorder as a reaction to a market consumption change),
while B does.

However, orders never stabilize with Scheme B’, while they do with Scheme B. This
shows an important point:

Order stabilization, i.e., the reduction of the bullwhip effect, is not only due
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Figure 7.9: Orders in Scheme B’ (with (O, Θ) orders, without information centraliza-
tion).

to information sharing with (O, Θ) orders, but also due to the two proposed
principles, that should necessarily be satisfied together.

From a more general viewpoint, this means that information sharing is only a tool
required to reduce the bullwhip effect, but the main issue is how to use the shared
information.

Simulation Outputs with Ordering Scheme C

Scheme C is similar to A, except that information centralization is applied. As a con-
sequence, companies using C base their order on the actual market consumption rather
than on incoming orders. Figure 7.11 shows that Scheme C incurs the bullwhip effect,
which leads in return to variability in inventory levels in Figure 7.12.



Chapter 7. First Series of Experiments: Homogeneous Supply Chains 161

Lumber retailer
Paper retailer

Lumber wholesaler
Paper wholesaler

Paper mill
Lumber sawmill

Paper sawmill

0
5

10
15

20
25

30
35

40
45

50
Week

Company (retailers -> sawmill)

-150
-100
-50

 0
 50

 100
 150
 200
 250
 300

Inventory

Figure 7.10: Inventories in Scheme B’ (with (O, Θ) orders, without information central-
ization).

Comparison of Schemes A and C

When we compare the orders placed with Scheme A in Figures 7.1, and orders placed
with Scheme C in Figure 7.11, we have a confirmation that information centralization
reduces the amplification of demand variability, which next leads to lower inventory in
Figure 7.12. In fact, Schemes A and C only differ with the use or not of information
centralization and none of them use (O, Θ) orders. In conclusion:

Information centralization is a good strategy to reduce the bullwhip effect,
as formally proven by others [Simchi-Levi et al., 2000].

Next, we obtain Scheme D from B by adding (O, Θ) orders to Scheme C.
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Figure 7.11: Orders in Scheme C (with O + Θ orders, with information centralization).

Simulation Outputs with Ordering Scheme D

Scheme D in Figures 7.13 and 7.14 gives results very similar to Scheme B in Figure 7.7
and 7.8: the bullwhip effect is significantly reduced, because company ordering patterns
look like the market consumption except for a few peaks, as reflected in Figure 7.13.
In short, the following scenario occurs in the supply chain:

• When market consumption changes, every company knows it, because of informa-
tion centralization. As a consequence, every company orders both in O the new
value of the market consumption, and in Θ in order to receive more products,
because they know that ordering and shipping delays will cause their inventory
level to decrease. These Θ correspond to the first peak by every company in
Figure 7.7.

• Two weeks later, all companies, except both retailers, receives the Θ issued by
their client. These companies only transmit these Θ to their supplier, without
emitting new Θ, since they have already reacted to the change in the market
consumption.
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Figure 7.12: Inventories in Scheme C (with O + Θ orders, with information centraliza-
tion).

• Four and six weeks later, the same events are repeated, but by fewer companies.

We can note that both retailers emit more Θ than the other companies. This is due to
the fact that they sell directly to end-customers. In fact, there are two different types
of position in the supply chain:

• Retailers: when the market consumption changes, both retailers (i) ship more
product to fulfill end-customer demand, (ii) order in O the new value of the
market consumption, and (iii) order in Θ additional products to stabilize their
inventory on its initial level.

• All companies, except retailers: when the market consumption changes, every
company (ii) orders in O the new value of the market consumption (which is
multi-casted by the retailers), and (iii) orders in Θ additional products to stabilize
their inventory on its initial level.



Chapter 7. First Series of Experiments: Homogeneous Supply Chains 164

Lumber customer
Paper customer
Lumber retailer

Paper retailer
Lumber wholesaler

Paper wholesaler
Paper mill

Sawmill

0
5

10
15

20
25

30
35

40
45

50
Week

Company (customer -> sawmill)

 0
 5

 10
 15
 20
 25
 30
 35
 40

Sum of two orders

Figure 7.13: Orders in Scheme D (with (O, Θ) orders, with information centralization).

As we can see, only the retailers have the action (i) to carry out. This action causes their
inventory level to decrease more than other companies’ inventory. As a consequence,
the parameter λ, which rules the emission of Θ, is greater by retailers than by other
companies.

In conclusion, D has the best results among Schemes A, A’, A”, B, B’, C and D,
because inventories fluctuate only a little in Figure 7.14, while the bullwhip effect has
almost disappeared in Figure 7.13.

Comparison of Schemes B and D

Schemes B and D both implement our two principles, but D uses information cen-
tralization in addition. Inventory levels are very stable with these two schemes (cf.
Figures 7.8 and 7.14). The difference between Schemes B and D is, that D applies
information centralization, which allows companies to react more quickly to the change
in market consumption. This is the reason why inventories decrease less with D in
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Figure 7.14: Inventories in Scheme D (with (O, Θ) orders, with information centraliza-
tion).

Figure 7.14, than with B in Figure 7.8, which avoids some stockouts, and therefore
improves customer service levels.

The use of information centralization is also the reason why there are more peaks
but with a lower amplitude, with Scheme D in Figure 7.13, than with B in Figure 7.7:
for each company using D, the first peak corresponds to the emission of Θ, and later
peaks are the transmission of Θ from client to supplier.

These peaks correspond to the emission of Θ. We can note here that companies
using B and the retailers using D emit the same quantity of Θ. This quantity is set by
the parameter λ. In other words, retailers use the same value of λ in B and D, while
the other companies only use this value when they use B. In fact, the other companies
apply a lower value of λ when they use D, that is, overorders have a lower amplitude by
these companies when they use D. As a consequence, the bullwhip effect is lower with D
than with B, which confirms that information centralization reduces the bullwhip effect.

After that, when B is applied and, as announced in Section 5.4, inventory variations
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last a longer time for retailers than for the most upstream supplier (Sawmill), while
the situation is inversed with the five other ordering schemes: inventory fluctuations
are greater by the Sawmill than by Retailers in Figures 7.2, 7.4, 7.6, 7.10, and 7.12.
Nevertheless, the amplitude of inventory variation remains the greatest by the Sawmill
with all ordering schemes. As a consequence, depending on their position in the supply
chain, and depending on the way that backorders are considered (e.g., backorders are
ignored, or conversely backorders cost too much money), companies may thus prefer B
than other schemes, or the contrary.

Nevertheless, when information centralization is applied, i.e., with D, backorders
last four weeks for both retailers and both wholesalers, six weeks for the PaperMill,
and eight weeks for the Sawmill (we can count the weeks in Figure 7.14, because each
week is represented by a point). Therefore, only B has the change in the distribution
of backorders that was previously stated.

Discussion

Only Schemes B and D implement our two principles. These two schemes also induce
the lowest bullwhip effect, and the fewest inventory fluctuations among the seven tested
ordering schemes. This shows that adopting our two principles incurs excellent results
for the entire supply chain.

Next, we can question whether we can drop one of the proposed principles:

• Principle 1: Only B, D and B’ satisfy our first principle, but B’ incurs much worse
results than B and D, which shows the necessity for our first principle.

• Principle 2: Only B, D and A’ satisfy our first principle, but A’ incurs much worse
results than B and D, which shows the necessity for our second principle.

We recall that we have noted that only A’ incurs some peaks in orders, that is, the
bullwhip effect lasts a very short period with A’. As a consequence, A’ should be studied
further as a future work, in particular because it does not require information sharing,
conversely to our two principles.

All these results were obtained with the Step market consumption pattern. We
now execute our seven ordering schemes with the eighteen other market consumption
patterns of Table 7.1. The following Tables 7.2, 7.3, 7.4 and 7.5 present the value of
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the four measures of each ordering rule efficiency for the same set of 7 ∗ 19 experiments
(seven ordering rules × nineteen market consumption patterns). The four metrics are (i)
the standard deviation of orders, (ii) the induced costs, (iii) the sum of backorders and
(iv) the standard deviation of inventory levels (with backorders measured as negative
inventory levels). Tables 7.2, 7.3, 7.4 and 7.5 present these data. As previously stated,
these four tables are obtained with empty initial inventories (∀i, I i

1 = 0). The next
subsections detail these tables.

7.3.2 Comparison of the Bullwhip Effect Under the Nineteen
Market Consumption Patterns

The standard deviation of orders, which is the first considered metric, is the direct
quantification of the bullwhip effect. Table 7.2 summarizes this data for PaperMill. For
the sake of simplicity, further details for all other companies are in Tables B.6, B.7, B.8
and B.9 in Subsection B.5.1. Each column in Table 7.2 presents the standard deviation
of orders placed by the PaperMill under the nineteen considered consumption patterns.

For example, when all companies place orders with Scheme A and under the Step
demand pattern, the standard deviation of PaperMill’s orders is 51, while the second
column in Table 7.2 says that the standard deviation of the market consumption is
only 1.6. Therefore, orders placed by the PaperMill in this experiment are much more
variable than the market consumption. These data have to be compared line by line.
For each line, i.e., for each demand pattern, the lowest standard deviation is underlined.
Since the values in Table 7.2 measure the bullwhip effect, Scheme D generally incurs
the lowest bullwhip effect among the seven tested ordering schemes, except for the
ten random distributions of demand. Indeed, when demand is random, there is no
distinction among C and D: under this demand, the reduction of the bullwhip effect is
thus due to information centralization, because information centralization is the only
characteristic shared by C and D. When information centralization is not used, B incurs
the lowest bullwhip effect (C is better than B, but C uses information centralization).
Shortly, our two principles on which B and D are based are not contradicted, except
when demand is random and information centralization is used.

Notice here that the goal of our two ordering schemes is to have a standard deviation
of orders that is the nearest possible to the standard deviation of the market demand for
all companies, but companies can only have a standard deviation equal or superior to the
market’s. Other approaches for reducing the bullwhip effect use smoothing techniques
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Market Scheme
consum- A A’ A” B B’ C D

ption
1 Step 1.6 51 105.7 547.7 10.6 42.7 7.1 4.5

2 Inversed Step 1.6 33.2 37.4 345.6 10.6 28.8 13.1 4.5
3 Dirac 0.8 18.7 111.8 90.8 15.2 17 4.4 6.2

4 Inversed Dirac 0.8 25.6 142.8 778.2 15.2 43.5 8.1 6.2
5 Increase 14.4 108.1 22.2 590.8 16.7 16.6 16.3 16
6 Decrease 14.4 27.9 20.3 1,928.2 16.7 41.7 20.6 16

7 Weak seasonality 0.7 3.6 98.4 205.5 11.6 10.6 0.9 4.2
8 Medium seasonality 1.2 25.3 73.7 38.7 11.7 15.2 4.7 3.2
9 Strong seasonality 1.8 27.1 59.3 100.7 11.7 19.8 12 6.5
10A Uniform random 1.8 30.3 275.4 576.1 32.8 37.7 10.1 13.6
10B Uniform random 1.7 39.1 206.4 644.8 25.5 38.8 11.2 10.6
10C Uniform random 1.7 36.1 215.1 43.3 28.1 41.4 9.4 11.7
10D Uniform random 1.7 35 181.8 349.2 26.6 50.1 13.5 10.2
10E Uniform random 1.9 38.9 244.3 64 31.5 51.9 9.4 13
10F Uniform random 1.8 35.3 214.4 125.9 26.8 37.6 7.1 11.9
10G Uniform random 1.9 37.9 246.1 281.8 31.5 23.1 6.7 14.7
10H Uniform random 1.9 39.5 243.6 378.6 30.5 68.9 10 11.7
10I Uniform random 1.8 36.1 263 540.1 31.3 46.8 7.3 13
10J Uniform random 1.8 28.9 261.4 754.5 28.4 33.5 8.8 12.9

Table 7.2: Standard-deviation of PaperMill’s orders, i.e., σOp5
w+Θp5

w
(detailed in Ta-

bles B.6, B.7, B.8 and B.9).

which allow companies to have a standard deviation inferior to the market’s. In other
words, the market consumption fluctuates, but companies smooth this fluctuation and
order in a more steady way. We discuss the use of such smoothing techniques to extend
our work in the concluding chapter.

7.3.3 Comparison of the costs incurred under the nineteen mar-
ket consumption patterns

Our second metric, the overall supply chain cost calculated with the “improved” method,
is an indirect measure of the bullwhip effect reduction. Nevertheless, it is more im-
portant for companies than the standard deviation of orders, because their goal is to
maximize their profit rather than reduce the bullwhip effect. In this context, Table 7.3
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presents the supply chain cost Cimproved for the the same experiments as Table 7.2.

Numbers in Table 7.3 are the costs for the entire supply chain, like in the QWSG:
each unit in inventory costs each week half the cost of a backordered unit, and client’s
costs are (37/50)% higher than supplier’s costs (cf. the definition of Ci

improved in Sec-
tion 7.2). For the sake of simplicity, individual costs Ci

improved are detailed for every
company in Tables B.10, B.11, B.12 and B.13 in Subsection B.5.2; we only focus on
overall supply chain cost for the moment. Each line presents the overall supply chain
cost under a particular demand pattern. For example, when all companies use Scheme A
under the Step demand pattern, the supply chain cost is $40,055, which is not the lowest
value in this line. The lowest value is underlined. If the companies had used D, the
overall cost would have been lowered to $6,626.

We now draw some conclusions in two successive parts: we first deal with Schemes C
and D, next with A, A’, A”, B and B’. First, we can note that costs with Scheme D are
underlined for half of the considered demand patterns, and that costs with C are also
often underlined. These two schemes use information centralization. Similarly to the
first metric in the previous subsection, D is generally more efficient than C with the nine
first demand patterns, while D is as efficient as C with the ten last demand patterns.
This shows that results are quite obvious with demand patterns without random process
(in this case, our two principles often allow incurring the lowest supply chain cost), while
the use of random demand incurs fuzzy conclusions (in this case, only the information
centralization explains why C and D incur the better results).

When we compare A, A’, A”, B and B’, that is, when we compare the ordering
schemes that do not apply information centralization, we can see that B always incurs
the lowest supply chain cost. In particular, B should be compared with B’, because
both use information sharing with (O, Θ) orders: B’ incurs much higher costs that B.
As a consequence, when information centralization is not applied, our two principles
always incur the lowest supply chain cost.

The QWSG costs are an aggregated view of the backorders and inventory levels next
measured in Tables 7.4 and 7.5. We now focus on these two metrics.
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Scheme
A A’ A” B B’ C D

1 Step 1,418 905 8,943 135 747 2,081 84
2 Inversed step 157 65 5,755 16 215 157 0

3 Dirac 246 1,021 1,461 39 186 206 45
4 Inversed Dirac 300 967 12,942 113 473 233 91

5 Increase 3,259 417 9,617 126 664 7,956 96
6 Decrease 48 0 32,178 0 70 0 0

7 Weak seasonality 43 203 3,129 143 154 22 48
8 Medium seasonality 247 107 608 374 333 206 81
9 Strong seasonality 255 189 1,643 422 556 651 164
10A Uniform random 221 233 9,257 366 581 297 262
10B Uniform random 447 247 10,616 604 542 345 115
10C Uniform random 388 473 531 343 511 632 158
10D Uniform random 118 605 5,433 360 593 179 104
10E Uniform random 623 714 6,127 393 505 374 175
10F Uniform random 437 779 1,996 321 259 474 132
10G Uniform random 549 1,323 4,999 600 551 630 369
10H Uniform random 352 772 6,451 367 1,033 393 88
10I Uniform random 807 1,638 10,221 922 966 933 287
10J Uniform random 361 217 13,596 209 229 300 104

Table 7.4: Sum of PaperMill’s backorders, i.e.,
∑

w(Ob5
w +Θb5

w) (detailed in Tables B.14,
B.15, B.16 and B.17).

7.3.4 Comparison of the Customer Service Level Under the
Nineteen Market Consumption Patterns

Our third metric is the sum of backorders, which is a metric for the customer service
level presented in Table 7.4 (as for the two previous metrics, further details can be
found in Tables B.14, B.15, B.16 and B.17 in Subsection B.5.3). This sum has to be
minimized, because when it is zero, clients have the products they want, or else they
have to wait for their availability. This measure is included in costs, but we separate it
for now. In fact, backorders can be avoided by overstocking, which increases costs but
reduces this measure. Therefore, costs are more important than the sum of backorders,
but the way of pricing a backorder depends on the manager’s choice. In particular,
a manager could choose that backorders cost nothing while we choose that they cost
twice the inventory holding price.
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Next, backordered O and Θ (Ob and Θb) are taken into account in the same way and
added up on the fifty weeks of a simulation. This sum is only presented for PaperMill
in Table 7.4. Other companies are detailed in Tables B.14, B.15, B.16, and B.17 in
Appendix B. The data in Table 7.4 are obtained with empty initial inventories. For
example, for Scheme A under the Step demand pattern, PaperMill has 1,418 delays for
shipping products. This number does not mean 1,418 orders were lately fulfilled. In
fact, the sum of backorders increases by one unit if an order cannot be fulfilled the first
week, the sum of backorders increases by two units if an order cannot be fulfilled the
first and the second weeks, etc. Again, the lowest value for each consumption pattern
is underlined. Scheme D almost always has the best results, followed by B. This shows
that our two principles incur good customer service levels. Scheme C still incurs good
results, even if they are not as good as with the two first metrics.

7.3.5 Comparison of the Inventory Levels Variations Under the
Nineteen Market Consumption Patterns

The last metric is the standard deviation of inventories (with backorders measured as
negative inventory levels), which is used to choose the target inventory level. In fact,
when the standard deviation of inventories increases, the target inventory level has
to increase to avoid stockouts. In other words, safety inventory has to be increased.
Therefore, when this measure decreases, inventory levels also decreases which reduces
companies’ costs (i.e., the second metrics) without increasing their sum of backorders
(i.e., the third metrics). Data in Table 7.5 presents the fluctuation of PaperMill’s in-
ventory, when backorders are seen as negative inventory levels: the more these values
are, the more PaperMill’s inventory fluctuates. For example, under the Step demand
with Scheme A, the PaperMill’s standard deviation of inventory is 180.2, which is much
higher than the underlined minimum, 14.4 with Scheme D. The best possible value is
zero, i.e., always steady inventory and never backorders, but this is only attainable when
the whole demand is perfectly known in the future, which is not possible in practice
because there are always forecasting errors. In general, Scheme D has the best results
followed by B, but there are several exceptions. In particular, C has sometimes better
results than B.

Data for the other companies are presented in Tables B.18, B.19, B.20 and B.21 in
Subsection B.5.4. In this appendix, notice that the standard deviation of inventories
is greater for upstream suppliers than for retailers for all ordering schemes. This is
induced by the bullwhip effect. For schemes B and D, this fact conceals the fluctuation
of inventory levels for a shorter period by upstream suppliers than by retailers, as
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Scheme
A A’ A” B B’ C D

1 Step 180.2 324.7 4,495.5 22.8 65.8 23.9 14.4
2 Inversed step 153.6 108.5 2,766.7 20.8 42.2 24.1 9.4

3 Dirac 42.6 405.7 714.4 7.8 19.5 6.9 6
4 Inversed Dirac 54.1 441.6 6,370 11.1 69.2 12.5 6

5 Increase 185.2 30.8 4,764.8 42.2 131.3 114.3 30.5
6 Decrease 97.5 30.2 15,538.9 16 42.8 50.6 9.6

7 Weak seasonality 2 608.4 1,235.8 3.1 6.4 0.5 1.4
8 Medium seasonality 69.9 321.6 289 13.8 13.8 6.7 8.7
9 Strong seasonality 98 238.8 840.3 27.2 44.4 27.8 17.4
10A Uniform random 72.4 1,714 4,524.3 21.8 31.6 15.2 12.9
10B Uniform random 114.2 1,671 5,310.2 22.4 57.1 16.3 8.3
10C Uniform random 110.2 1,979.7 194 20.9 95.5 17.4 9.7
10D Uniform random 137 1,303.9 2,713.4 23.9 63 23.2 10.7
10E Uniform random 96 1,894.2 436.1 23.2 43.9 11.2 10.4
10F Uniform random 101.6 1,672.7 994.8 17.4 51.6 15.1 10.2
10G Uniform random 107.6 1,771.9 2,478.1 22.5 25.6 8 11.2
10H Uniform random 124.7 2,045.9 3,346.4 23.1 69.6 16.5 11.1
10I Uniform random 134.1 1,787.3 4,318.6 22.3 50.2 10.6 11.3
10J Uniform random 99 1,902.5 6,753.4 20.9 42.2 11 10.4

Table 7.5: Standard-deviation of PaperMill’s inventories and backorders, i.e., σI5+Ob5+Θb5

(detail in Tables B.18, B.19, B.20 and B.21).

explained in Section 5.4. In fact, the upstream suppliers’ standard deviation is bigger
because their fluctuation is greater, which is not true for the other ordering schemes.

7.3.6 Synthesis of the Results with the Four Metrics

In conclusion, Tables 7.2, 7.3, 7.4 and 7.5 show that Scheme D is almost always the best
choice for all companies to reduce the bullwhip effect when the demand is not random.
When the demand is random, D has no obvious advantage over C, which shows that
information centralization is the main reason of good results under random demand. On
the contrary, when information centralization is not allowed, B has the better results,
which shows the strengh of our two principles.
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7.4 Comments

Our experimental results conform to our predictions described in Chapter 5: the bull-
whip effect is greatly reduced and inventory variations are longer for upstream suppliers
than for retailers. Moreover, our two ordering schemes B and D actually follow the two
proposed principles presented in Subsection 5.2, i.e., lot-for-lot orders eliminate the
bullwhip effect, and companies should react only once to each market consumption
change. Since this reaction has to be correctly interpreted by its supplier, information
sharing based on (O, Θ) orders permits this supplier to distinguish between the market
change (visible in O) and inventory fluctuation (i.e., the consequence of the change
of O which is visible in Θ). This stabilizes the whole supply chain at the same level,
i.e., at the actual market consumption. If we aggregate O and Θ under the form of
X = O +Θ, the level O at which companies have to stabilize their orders is lost for up-
stream companies because they do not know which part is required by the market and
which part reflects inventory variations induced by delays, i.e., a cause of the bullwhip
effect. Sharing information about market consumption is a way to align companies
behaviour to the same goal: to deliver products to clients, and Θ are only required by
supply chain dynamics.

From a more general point of view, companies may use Θ in different ways: to
reduce or increase their inventory, companies may emit non-zero Θ (not anytime, but
according to our two principles) that will not be interpreted by suppliers as market
consumption changes, to balance scrappings due to production contingency, etc.

(O, Θ) orders with information centralization is a special (and improved) case of
(O, Θ) orders, because both allow every company to know the actual market consump-
tion. In fact, when (O, Θ) orders are used without information centralization, order O

is equal to market consumption, which is the piece of information broadcasted by in-
formation centralization. The first difference between these two systems lies in market
consumption propagation speed, information O is as slow as orders while information
centralization supposes each company knows in real-time the market consumption de-
mand (retailers multicast the market consumption to the whole supply chain). The
second difference between (O, Θ) orders and information centralization is the fact that
information centralization requires a stable supply chain structure to allow retailers to
multicast market consumption to the whole supply chain, while (O, Θ) orders use a
more decentralized approach.

As stated several times, we could try to reduce the bullwhip effect with smoothed
orders by placing orders based on forecasts. In our experiments, this would make the
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stabilization period longer. For example, with the classic QWSG market consumption
(i.e., a steady market, except in Week five when there is a change that remains), com-
panies would overorder less than in Scheme B, but this overordering would be longer
and during this period, companies would not know what the market consumption is. In
other words, instead of having only one peak by company for each market change, there
would be a less high plateau than the peak but during a longer period. However, this
does not contradict our two principles: there is only one reaction per market change,
but this reaction is only different.

For industrial practitioners, the lesson of this discussion is that they have to transmit
consumption by retailers when they place orders to their suppliers. That is, X(= O+Θ)

represents the order they would normally place (e.g., this value is given by their (s, S)

policy, but care has to be taken to satisfy our two principles), but also the market
consumption O seen by retailers. This information allows their suppliers to have a
better understanding of the dynamics of the supply chain. Collaboration is therefore
very important to reduce the bullwhip effect.

Finally, one crucial result is the change in the distribution of inventory variation be-
tween the current bullwhip effect and the supply chain behaviour induced by Ordering
Scheme B and D. In fact, the bullwhip effect disturbs upstream suppliers (Forest) more
than retailers because orders are more stable at the market end and order restabiliza-
tion comes from the market. On the contrary, with our Ordering Schemes B and D,
there is a fewer number of order fluctuations and what disturbs companies now are in-
ventory fluctuations. The companies most disturbed by the bullwhip effect are the ones
disturbed for the shortest period with Ordering Scheme B and D. In fact, we stated
at the end of Subsection 5.4 that upstream suppliers are less disturbed with inven-
tory variations than retailers, because these variations last longer with retailers than
by upstream suppliers, and inventory restabilization comes from the most upstream
company. As Scheme D has better results than Scheme B, information centralization
improves Ordering Scheme B efficiency. Fortunately, retailers also have the greatest
incentive to have this information centralization because of the change in the distribu-
tion of inventory variation, and fortunately, retailers are the companies that provide
information centralization by multicasting in real-time the actual market consumption.
More precisely, when (O, Θ) orders are used, retailers should insist for multicasting the
market consumption. We check these kinds of propositions in Section 8.4. But before
doing so, we adapt our simulation to the Québec forest industry. This concludes this
first series of experiments.
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7.5 Conclusion

This chapter has presented the first series of experiments, in which we verify that the
two principles, that we proposed in Chapter 5, actually reduce the bullwhip effect. To
this end, we have also proposed two ordering schemes based on these two principles.
In this chapter, we compared their efficiency with five other ordering schemes. Such a
comparison was repeated for each of the nineteen market consumption patterns, that
we consider in this dissertation. These comparisons were made following four metrics,
which are the direct measure of the bullwhip effect, the logistics costs incurred by the
bullwhip effect, the backorders incurred, and the average inventory level measured as
the variation of inventory levels.

Three main points appear in these comparisons. First, when our two principles are
used at the same time, the bullwhip effect is much reduced, and inventories are managed
efficiently by every company, which validates our two principles. We have also noted,
that both principles are required, and not only one. Second, information sharing is
required to reduce the bullwhip effect, but companies also have to know how to use
the shared information. A part of this knowledge is provided by our two principles,
even if these principles do not explain the efficiency of Scheme C. Third, demand-based
ordering schemes perform better than schemes that take into account both demand and
inventory level. In particular, we have noted that one demand-based scheme (i.e., A’)
could be improved as a future work, because it induces the bullwhip effect over a very
short period. However, demand-based schemes are not efficient in practice, because they
ignore inventory levels. One may object that our two schemes are also only based on the
demand. This is true for these two schemes, but our two principles give companies the
freedom to order according to their inventory level. In fact, our second principle allows
over- or underordering, when there is a market consumption change, so that inventories
are well managed. Of course, defining what is such a change in practice should also be
investigated.

We can extend this study by stating that our two principles, and thus Schemes
B and D, change the dynamics in the supply chain. Some companies may prefer one
dynamic of the supply chain, while others may prefer the dynamics incurred by another
scheme. As a consequence, we can wonder which ordering schemes are preferred by each
company. Moreover, there may be some incompatibilities between these individual
preferences. For example, if the Sawmill likes information centralization, while the
retailer does not like it, the Sawmill cannot force the retailer to achieve it. This is the
kind of question addressed in the next chapter.



Chapter 8

Second Series of Experiments:
Heterogeneous Supply Chains

The first series of experiments, presented in Chapter 7, has assumed that the supply
chain was homogeneous, that is, every company used the same ordering scheme, and
the question was to determine if our two ordering schemes B and D reduce the bullwhip
effect more than the five other schemes. The second series of experiments now checks if
each company has individual incentives to use one of our two ordering schemes B and D.
In fact, it does not because an ordering scheme incurs the minimum of the overall supply
chain cost that this reduction is equally reflected in each company, because a company
may have a higher cost to reduce other company’s costs. Moreover, each company
could prefer the whole supply chain cooperates by using B or D, except itself. In this
case, the company would profit from others’ effort, without participating in this effort.
To address such questions of incentives, we no longer focus on the reduction of the
bullwhip effect, as we did in Chapter 7, but we are interested in the money saved by
this reduction. The methodology to achieve this, is described in Section 8.1.

Since we consider costs of companies in this chapter, it is important to make them
meaningful. As a consequence, we adapt the method of cost calculation, introduced
in Section 7.2, to realistic costs resembling the Québec forest industry. Then, we opti-
mize ordering parameters, in order to minimize the overall supply chain cost calculated
with this method. These settings of costs and ordering parameters are explained in
Section 8.2.

Next, the concepts from game theory, that were presented in Section 4.2, are adapted
to our model, and illustrated in Section 8.3.



Chapter 8. Second Series of Experiments: Heterogeneous Supply Chains 178

Since the context of this second series of experiments is clarified, we finally present
this series in an iterative way. We successively assume that:

1. the supply chain behaves like a single company: it tries to minimize its costs.
In other words, every company belongs to the same player-coalition, who forces
every company to use the same ordering scheme, which is exactly the case of the
homogeneous supply chain studied in Chapter 7;

2. the PaperRetailer no longer belongs to this coalition. Therefore, we have two
players: the PaperRetailer decides for itself, and the RestOfTheSupplyChain forces
the five other companies to use the same ordering scheme;

3. three players control the supply chain: the LumberRetailer decides alone, the Pa-
perRetailer also decides for itself, and the RestOfTheSupplyChain forces the four
other companies to use the same ordering scheme;

4. each of the six companies in the Québec Wood Supply Game (QWSG) is controlled
by a different player.

In these four cases (where each subsection is presented in a subsection), simulation
outputs are analyzed according to concepts from game theory. These experiments,
their analysis and some comments are presented in Section 8.4.

8.1 Description and Computational Complexity of our
Methodology

The basic idea of our methodology is to simulate all combinations of the three ordering
schemes A”, B and D among the six companies, and to analyze these simulations with
concepts from game theory. In comparison with the previous chapter, we keep A” ,
because it is an (s, S) ordering policy, which is classic in inventory management, and
B and D, because they follow our two principles to reduce the bullwhip effect, while
we drop A, A’, B’ and C, because they were only used to understand the two principles
on which B and D have been designed. For each of the first nine market consumption
patterns1 in Table 7.1, i.e., Step, Inversed step, Dirac, Inversed Dirac, Increase, Decrease,

1We drop the ten Uniform random market patterns, because we are not able to determine the optimal
ordering schemes’ parameters in a clean way in Section 8.2, i.e., each pattern 10A to 10J would have
its own optimized parameters, instead of the same parameters for all random demand patterns.
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Algorithm 8.1 methodology in the second series of experiments
returns orders and inventory level for each company and each week
for each of the nine first market consumption patterns m in Table 7.1 do

optimizeInventories(m)
simulateSupplyChain(m)
analyzeSimulation(m)

and Weak, Medium and Strong seasonalities, we carry out the three steps outlined in
Algorithm 8.1, and described now:

optimizeInventories(): This first step is outlined in Algorithm 8.2, presented in Sec-
tion 8.2, and detailed in Sections B.3 and B.4 in Appendix C. This step aims at
obtaining the best value of initial inventory levels {I i

1}N
i=1, when the supply chain

is homogeneous. In fact, initial conditions are very important for Schemes B and
D, because they are designed so that inventory levels eventually stabilize on their
initial level after a demand change. With such optimization, inventory levels with
D are lower than with B, and thus, this optimization allows benefiting from the
information centralization in D.

Algorithm 8.2 describes how we have every company use Scheme B, and we let the
Solver find the value of every I i

1 that minimizes the overall supply chain cost C. We
call {I i−B

1 }N
i=1 these optimal parameters. Next, we repeat these operations when

every company applies Scheme D instead of B in order to get {I i−D
1 }N

i=1. Note
that we do not consider Scheme A” , because it was set up in Chapter 7, according
to the mathematical model called Economic Order Quantity, and we have found
that the optimal initial inventories are {I i−A′′

1 }N
i=1 = 0 for every company i.

As we have just mentioned, we have used the Solver included in Microsoft Ex-
cel 2000 to find the sets {I i−B

0 }N
i=1 and {I i−D

0 }N
i=1 minimizing C. According

to Microsoft Corp. [2004b], the Solver uses the Generalized Reduced Gradient
(GRG2) algorithm developed by Leon Lasdon and Allan Waren [Lasdon et al.,
1978]. We have not found the complexity of this algorithm, but only some com-
parisons of the computation time with some other algorithms.

However, we now give an estimation of the time required by the step optimizeIn-
ventories(). In fact, 2∗9 = 18 of such optimizations are carried out in this chap-
ter, because we optimize inventories, when the supply chain is homogeneous and
uses either B or D, and under 9 market consumption patterns. Each optimization
takes a total time of around 40 seconds on our 2 Ghz PC, that is 9 ∗ 40 = 360

seconds, or 6 minutes for all runs of optimizeInventories().

simulateSupplyChain(): This step is oulined in Algorithm 8.3. During 36 = 729
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Algorithm 8.2 optimizeInventories(m)
returns {I i−B

0 }6
i=1 and {I i−D

0 }6
i=1

set LumberRetailer to r1 =B
set PaperRetailer to r2 =B
set LumberWholesaler to r3 =B
set PaperWholesaler to r4 =B
set PaperMill to r5 =B
set Sawmill to r6 =B
optimize {I i

0}6
i=1 with the Solver, such as Crealistic is minimized under the consump-

tion m

save the optimal values {I i−B
0 }6

i=1

set LumberRetailer to r1 =D
set PaperRetailer to r2 =D
set LumberWholesaler to r3 =D
set PaperWholesaler to r4 =D
set PaperMill to r5 =D
set Sawmill to r6 =D
optimize {I i

0}6
i=1 with the Solver, such as Crealistic is minimized under the consump-

tion m

save {I i−D
0 }6

i=1

simulations, Excel computes the values of the six individual costs {Ci}N
i=1 for all

combinations of the three ordering schemes among the six companies, where each
simulation starts with the initial inventories {I i−A′′

0 }N
i=1, {I i−B

0 }N
i=1 or {I i−D

0 }N
i=1

found by optimizeInventories(). Each simulation produces a set of costs {Ci}N
i=1.

We can note here, that the sets {I i−A′′
1 }N

i=1, {I i−B
1 }N

i=1 and {I i−D
1 }N

i=1, found in op-
timizeInventories(), minimize C, when every company uses the same ordering
scheme, while this is not the case in our 36 = 729 simulations, because companies
are allowed to use different ordering schemes (heterogeneous supply chain). As a
result, homogeneous supply chains are favored in comparison with heterogeneous
supply chains, because the optimization carried out in optimizeInventories()
were made with homogeneous supply chains. However, we will see in our results
in Subsection 8.4.2, that heterogeneous supply chains may also incur the lowest
value of C.

As future work, we should correct this point by moving optimizeInventories()
into simulateSupplyChain(), as illustrated by simulateSupplyChain’() in
Algorithm 8.4. Algorithm 8.4 shows how to optimize before each simulation,
and thus, also before the simulation of heterogeneous supply chains. Since more
optimizations are carried out, the computation time increases a lot!
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Algorithm 8.3 simulateSupplyChain(m)
returns sets of simulated costs {Ci}6

i=1 and C

for each r1 ∈ {A”, B, D} do
set LumberRetailer to use r1 with I1

0 = either 0, I1−B
0 or I1−D

0

for each r2 ∈ {A”, B, D} do
set PaperRetailer to use r2 with I2

0 = either 0, I2−B
0 or I2−D

0

for each r3 ∈ {A”, B, D} do
set LumberWholesaler to use r3 with I3

0 = either 0, I3−B
0 or I3−D

0

for each r4 ∈ {A”, B, D} do
set PaperWholesaler to use r4 with I4

0 = either 0, I4−B
0 or I4−D

0

for each r5 ∈ {A”, B, D} do
set PaperMill to use r5 with I5

0 = either 0, I5−B
0 or I5−D

0

for each r6 ∈ {A”, B, D} do
set Sawmill to use r6 with I6

0 = either 0, I6−B
0 or I6−D

0

simulate the supply chain under the consumption m

save the simulated value of {Ci}6
i=1 and C

Let us evaluate the computation time for simulateSupplyChain() in Algo-
rithm 8.3. Similar to the rest of this dissertation, we call N the number of agents,
and |Ri| the number of ordering rules available to agent i. |R1|× |R2|× . . .×|RN |
simulations are carried out to find the values of functions Ci. Since the duration of
each simulation depends linearly on the simulation duration Ds (this is the num-
ber of simulation weeks) and on the number of simulated companies N , the com-
plexity order of simulateSupplyChain() is O(N×Ds×{maxi(|Ri|)}N). For ex-
ample, in this section, N = 6, Ds = 50 and maxi(|Ri|) = 3, because |Ri| = 3 for all
agent i, and thus, the complexity of our simulations is O(6×50×36) = O(218, 700).
If we consider a supply chain model with additional companies, e.g., when there
are several suppliers for each wholesaler, N may take greater values, and the
problem thus becomes intractable.

In practice, a macro written in the language Visual Basic for Applications (VBA),
included in Excel, makes the 36 = 729 changes of the 3 ordering schemes among
the 6 company-agents. Each run of this macro generates the 6 ∗ 36 individual
costs needed to build the game corresponding to a particular market consumption
pattern. Each run of this macro takes around 6 minutes. Since 9 consumption
patterns are considered in this chapter, a total of around 9 ∗ 6 = 54 minutes is
required to run the simulations for the nine consumption patterns.

analyzeSimulation(): This step is outlined in Algorithm 8.5, and its results are pre-
sented in Section 8.4. After each run of simulateSupplyChain(), the obtained
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Algorithm 8.4 simulateSupplyChain’(m) (one possible improvement on Algo-
rithms 8.2 and 8.3).

returns sets of simulated costs {Ci}6
i=1 and C

for each r1 ∈ {A”, B, D} do
for each r2 ∈ {A”, B, D} do

for each r3 ∈ {A”, B, D} do
for each r4 ∈ {A”, B, D} do

for each r5 ∈ {A”, B, D} do
for each r6 ∈ {A”, B, D} do

set LumberRetailer to use r1

set PaperRetailer to use r2

set LumberWholesaler to use r3

set PaperWholesaler to use r4

set PaperMill to use r5

set Sawmill to use r6

optimize {I i
0}6

i=1 with the Solver, such as Crealistic is minimized under
the consumption m

save the values of {Ci}6
i=1 and C

costs {Ci
i=1}N and C are copied in a new sheet of the spreadsheet (i.e., not in

the sheet of the simulator), which collects simulation outputs. Therefore, we only
have to ask the minimum of all C to Excel to get the minimum supply chain cost.

Then, {Ci
i=1}N are multiplied by −1, and copied into a Gambit file. Gambit opens

this file, and looks therein iteratively for strictly dominated strategies, which are
saved in any document (e.g., the draft of an article). Finally, Gambit looks for
every pure Nash equilibria in the remaining strategies, and we also save them.

Let us now consider the time required by analyzeSimulation(). As pointed out
in Section 4.3, we do not know the complexity of finding Nash equilibria, but
we noted that eliminating first strictly dominated strategies, much reduces the
computation time without losing any Nash equilibria [McKelvey et al., 2004]. In
fact, this elimination is almost instantaneous on our computer, while the com-
putation of Nash equilibria in a complete game takes some minutes (this time is
quite variable: between 40 seconds to 3 minutes). In total, the computation of
Nash equilibria with the nine consumption patterns, takes around 25 minutes.

Finally, the methodology in Algorithm 8.1 takes around 6 minutes for optimizeIn-
ventories(), plus 54 minutes for simulateSupplyChain(), plus 25 minutes for ana-
lyzeSimulation(), that is around 1 hour and a half of pure computation time. A much
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Algorithm 8.5 analyzeSimulation(m)
returns sets of dominated strategies, Nash equilibria and minima of C

copy the 36 values of C in an Excel sheet
apply the function min() to these C

save the minima of C

copy the 36 sets {Ci}6
i=1 in a Gambit file

add a minus sign in front of these {Ci}6
i=1 in the Gambit file

compute iteratively all strongly dominated strategies with Gambit
save dominated strategies
apply Gambit method EnumPureSolve to find all Nash equilibria
save Nash equilibria

longer time is ignored here, which is the time to write macros in Excel that switches each
company from an ordering scheme to another, to convert data from Excel to Gambit, to
copy Nash equilibria and dominated strategies from Gambit to a file, and so on.

8.2 Realistic Costs and Optimization of Initial Inven-
tory Levels

In this section, we adapt to the Québec wood industry the “improved” costs introduced
in Section 7.2, and we optimize parameters in the three ordering schemes, so that the
supply chain cost is minimum. This optimization outlines optimizeInventories() in
Algorithm 8.2. Next, we look for optimal values of parameters in Schemes B and D.
Indeed, we look for the value of λ stabilizing the inventory level on its initial level, next
we seek every company’s initial inventory, that reduces the overall supply chain cost.

8.2.1 Realistic costs

Conversely to Chapter 7 and to our previous papers [Moyaux et al., 2004c, 2003a,b],
we adapt cost parameters from the Québec wood industry to the cost function in the
QWSG. More precisely, the calculation of company i’s cost Ci is adapted from the
method in the QWSG, in which it is the sum of company i’s inventory plus twice the
sum of its backorders during the whole simulation, that is, Ci

QWSG =
∑50

w=1{I i
w + 2 ∗

(Obi
w + Θbi

w)}. An annual factor of 37% was added to this cost in Subsection 7.2, such
as Ci

improved = (0.37/50+1)α∗Ci
QWSG, where α = 0, 1 or 2, depending on the considered
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company i. This “improved” cost is the basis that is next translated into “realistic” cost
in the following way.

Firstly, one of two conversion factors is applied:

• CF lumber translates lumber units in the QWSG into quantity of lumber measured
in Mpmp, that is, thousand pmp -in French “pied mesure planche”- where 1 pmp
is a 1 inch × 1 foot × 1 foot piece of wood,

• CF paper translates paper units in the QWSG into quantity of paper measured in
tma, that is, anhydrous metric ton, which represents between 2.5 and 2.8 m3,
depending on the type of wood.

Secondly, we consider a Sawmill that processes 70,000 Mpmp/year of lumber, which
also represents 63,000 tma/year of paper, because there is a transformation ratio of 0.9
tma/Mpmp2. This corresponds to a classic Sawmill in Québec [Kruger, 2004].

Next, we calibrate the two market demands, so that they represent 70,000 Mpmp/year
of lumber and 63,000 tma/year of paper, which corresponds to the capacity of the
Sawmill that we consider, and thus, of our supply chain, but may not reflect the demand
on a real market. In order to transform every consumption pattern in Table 7.1 into
these two quantities, we use the two conversion factors CF lumber = 70, 000/

∑50
w=1 Dlumber

w

and CF paper = 63, 000/
∑50

w=1 Dpaper
w . For example, with the Step market consumption

pattern,
∑50

w=1 Dlumber
w =

∑50
w=1 Dpaper

w = 11+11+11+11+17+17+17+ . . .+17+17 =

11 ∗ 4 + 17 ∗ 46 = 826 units, and thus CF lumber = 70, 000/826 = 85 Mpmp/units and
CF paper = 63, 000/826 = 76 tma/units, where units are the products simulated in the
QWSG.

Thirdly, we use real sale prices to convert these quantities into Canadian dollars
(CAD), by applying the prices P lumber = 430 CAD/Mpmp, P 6-paper = 125 CAD/tma
and P 5-paper = 690 CAD/tma (paper has two prices, because the PaperMill transforms
it, and thus increases its value). We have taken these parameters from Pribec
[Conseil de l’Industrie Forestière du Québec, 2004]3. Finally, we apply a ratio of 0.37/50
that represents logistic costs (37% per year, (37/50)% per week because our year counts
fifty weeks) according to Nahmias [1997], like in improved costs in Chaper 7. This leads

2This also represents an input of 315,000 m3/year of wood coming from the Forest, because there
is a transformation ratio of 4.5 m3/Mpmp, but we do not use this information in our simulation.

3I thank Martin Cloutier (CRIQ -Québec Industrial Research Center- and Master’s student in
For@c), who kindly gave me these parameters.
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us to use the costs in Equations 8.1, 8.2, 8.3, 8.4, 8.5 and 8.6 in this chapter.

C1
realistic = CF lumber ∗ P lumber ∗ 0.37

50
∗ (1 +

0.37

50
)2 ∗

50∑
w=1

{I1
w + 2 ∗ (Ob1

w + Θb1
w)} (8.1)

C2
realistic = CF paper ∗ P 5-paper ∗ 0.37

50
∗ (1 +

0.37

50
)2 ∗

50∑
w=1

{I2
w + 2 ∗ (Ob2

w + Θb2
w)} (8.2)

C3
realistic = CF lumber ∗ P lumber ∗ 0.37

50
∗ (1 +

0.37

50
) ∗

50∑
w=1

{I3
w + 2 ∗ (Ob3

w + Θb3
w)} (8.3)

C4
realistic = CF paper ∗ P 5-paper ∗ 0.37

50
∗ (1 +

0.37

50
) ∗

50∑
w=1

{I4
w + 2 ∗ (Ob4

w + Θb4
w)} (8.4)

C5
realistic = CF paper ∗ P 5-paper ∗ 0.37

50
∗

50∑
w=1

{I5
w + 2 ∗ (Ob5

w + Θb5
w)} (8.5)

C6
realistic = CF lumber ∗ P lumber ∗ 0.37

50
∗∑50

w=1{I6-lumber
w + 2 ∗ (Ob6-lumber

w + Θb6-lumber
w )}

+CF paper ∗ P 6-paper ∗ 0.37
50

∗∑50
w=1{I6-paper

w + 2 ∗ (Ob6-paper
w + Θb6-paper

w )} (8.6)

For example, under the Step demand, C1
realistic = 85∗430∗ 0.37

50
∗(1+ 0.37

50
)2∗∑50

w=1{I1
w+

2 ∗ (Ob1
w + Θb1

w)} = 274.49 ∗∑50
w=1{I1

w + 2 ∗ (Ob1
w + Θb1

w)}. We recall that all costs in
this chapter are in Canadian dollars for a market consumption of 70,000 Mpmp/year
of lumber and 63,000 tma/year of paper, and that the demand patterns in Table 7.1
represent the distribution of these lumber and paper demands during a year. In the
rest of the dissertation, all costs are “realistic”, and thus, we drop this subscript, i.e.,
∀i, Ci = Ci

realistic. Note that realistic costs incur greater numbers than improved costs,
and thus, the unit is now k$ (= 103$), instead of $.

We now optimize A”, B and D according to these prices. In order to understand how
these optimizations are obtained, we recall that:

• A” is a classic (s, S) ordering policy, in which the company orders for I − S

products, when inventory I is lower than s. In this case, s and S are the two
parameters to optimize, so that the inventory system of the company has the
lowest cost, Since this scheme does not assume, that companies collaborate, the
parameters s and S are optimized, so that each company cost is minimum.
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• B and D are the two ordering schemes that follow our two principles, in which
companies use (O, Θ) orders. In these two schemes, O is an order, that follows
the lot-for-lot policy. The emission of orders Θ is ruled by a parameter λ, so that
the inventory level eventually stabilizes on its initial level. λ only depends on
the ordering and shipping delays, but the initial inventory level is also important,
because it is chosen to balance between inventory holding and backorder costs.
Since B and D assume that companies collaborate, we choose λ so, that the total
supply chain cost is minimum.

8.2.2 Optimization of Scheme A”

Scheme A” requires the same optimization as in Chapter 7. This optimization is pre-
sented in Subsection B.2, and was also used in Chapter 7. In this chapter, we keep the
same parameters as in Chapter 7, that are:

• s = 0;

• S = Oiiw, where Oiiw is the company i’s incoming order in week w;

• ∀i, I i−A′′
1 = 0, that is, all initial inventories are empty.

8.2.3 Optimization of Scheme B

We now set the two parameters λ and I i
1 (i.e., company i’s inventory in the first week)

in Scheme B. Parameter λ is easier to choose than the initial inventory level, because λ

only depends on the delays between each company and its direct supplier(s), while
the initial inventory level depends both on the demand and on the pricing function.
In particular, if backorders were considered as free, the optimal value of the initial
inventory level would be zero, because companies would only want to avoid holding
products in inventory.

The first parameter, λ, represents the quantity of Θ to send to eventually stabilize
the inventory at its initial level, when the market consumption becomes steady. This
parameter only depends on the ordering and shipping delays between the considered
company and its direct supplier. We can note here, that λ is not set with an optimization
process.
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The second parameter, I i
1, depends on the structure of the supply chain and on the

cost function. It results from an optimization process, and we call its result I i−B
1 . We

first seek the good value of λ, because it rules the process of inventory stabilization,
and next the optimal value of I i

1, because the incurred cost depends on this parameter,
which indicates the level at which inventory eventually stabilizes, when the demand is
steady.

• λ: In our simulations, we use λ = 4 for every company, as detailed in Subsec-
tion B.3, because this value is the sum of ordering and shipping delays.

• I i
1: Since inventory levels fluctuate during a longer period with the retailer than

with its suppliers, and since this fluctuation is more important for the suppliers
than for the retailer, the optimal initial inventory level is not the same for all
companies. Since the ordering scheme B is collaborative, we define the optimal
initial inventories as the inventory levels incurring the lowest cost C for the whole
supply chain (which may be different from the optimal initial inventory for each
company). This optimum is experimentally obtained on our simulation with the
Solver in Microsoft Excel. Section B.3 further explains this optimization, whose
result is presented in column “Ordering scheme B” in Table 8.1. This optimization
impacts on the simulation outcomes.

The format of data in Table 8.1 is [I1
1 , I

2
1 , I

3
1 , I

4
1 , I

5
1 , I

6−lumber
1 , I6−paper] → C1 + C2 +

C3 + C4 + C5 + C6 = C. For example, with Scheme B and under the Step demand,
[0, 0, 0, 30, 0, 39, 39] → 173 + 198 + 139 + 609 + 282 + 703 = 2, 104 k$ means that the
supply chain cost C is minimum when the two Retailers and the LumberWholesaler have
empty initial inventories, the PaperWholesaler has 30 items, the PaperMill has nothing,
and the SawMill 39 units of lumber and 39 units of paper at the beginning of the
simulation. This initial state of the supply chain leads to a cost C = 2, 104 k$ for the
supply chain when all companies use B. In this case, for example, the SawMill incurs a
cost of C6 = 703 k$ for its two inventories.

8.2.4 Optimization of Scheme D

The rule D is very similar to B, and therefore has the same two parameters λ and In
1 to

be set up. These two setups have to be carried out in the same order: first λ, next In
1 :

• λ: Since Scheme D uses information centralization, market consumption informa-
tion travels instantaneously in the supply chain, and therefore, the ordering delay
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does not have to be taken into account to set λ.

Now, λ is only equal to the shipping delay, i.e., λ = 2. This is true for all
companies, except for both retailers. In fact, retailers have to use the same λ as
with Scheme B, i.e., λretailer = 4, which is equal to the sum of the shipping delay
and of the ordering delay.

This difference between retailers and all other companies is due to the fact, that
retailers have to overorder more (by sending Θ �= 0) than other companies, because
they do two things when the market consumption changes: they send Θ and ship
products corresponding to the new consumption. On the other hand, all other
companies do only one thing: they send Θ. In fact, orders received by companies,
except retailers, will have the new value of the market when the ordering delay has
elapsed, because every company places orders with this new value in O as soon
as this value appears on the market. Two weeks later, these companies will ship
products corresponding to the new consumption, like retailers, but two weeks after
them. As a consequence, retailer’s inventory varies greater than others’ inventory,
and thus, they have to send more positive or negative Θ.

Subsection B.4 describes how to choose λ. We only note here that in our simu-
lations, every company uses λ = 2, except retailers that use λ = 4, or in other
terms, retailers use the same λ than with B.

• I i
1: The difference between rules B and D is the use of information centraliza-

tion, which allows improving the reactivity of the supply chain to changes on
the market. More precisely, this improvement reduces inventory fluctuations, and
therefore, the duration of backorders and of overstockings. Since inventories fluc-
tuate less with Scheme B than with D, every company saves money if it chooses
a lower initial inventory with Scheme D.

The optimal initial inventory is obtained with Solver in Microsoft Excel with the
same method as B. This is explained in Subsection B.4. The results are summa-
rized in Table 8.1, with the same format as parameters for B.

8.3 Adaptation of Game Theory Concepts to our
Simulation

The three ordering schemes optimized in the previous section are simulated in the next
section. Before these simulations, we adapt definitions of game theory in Subsection 4.2
to our needs. After this adaptation, we illustrate their use on a classic game called the
Prisonners’ Dilemma.
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Market cons.
pattern

Ordering
scheme A”

Ordering
scheme B

Ordering
scheme D

1. Step

[0, 0, 0, 0, 0, 0, 0]
→2,658+5,988+14,764

+35,574+98,680+149,945
=307,609 k$

[0, 0, 0, 30, 0, 39, 39]
→173+198+139
+609+282+703

=2,104 k$

[0, 0, 0, 0, 12, 24, 24]
→109+208+75
+159+265+416

=1,232 k$

2. Inversed
step

[0, 0, 0, 0, 0, 0, 0]
→1,061+1,853+12,471

+22,331+72,635+107,140
=217,491 k$

[0, 0, 0, 0, 0, 6, 6]
→30+48+93

+140+260+242
=813 k$

[0, 0, 0, 0, 0, 6, 6]
→30+43+51

+74+101+173
=470 k$

3. Dirac

[0, 0, 0, 0, 0, 0, 0]
→692+955+2,796

+6,945+25,737+38,319
=75,444 k$

[0, 0, 0, 6, 0, 0, 0]
→61+28+61

+166+100+119
=535 k$

[0, 0, 0, 0, 0, 0, 0]
→48+95+53+
94+110+56

=456 k$

4. Inversed
Dirac

[0, 0, 0, 0, 0, 0, 0]
→3,299+6,732

+19,531+41,176
+120,053+176,755

=367,546 k$

[0, 0, 0, 0, 0, 0, 0]
→73+114+73
+114+114+80

=568 k$

[0, 0, 0, 0, 0, 0, 0]
→58+102+55
+97+75+38

=427 k$

5. Increase

[0, 0, 0, 0, 0, 0, 0]
→1,327+2,722+5,553

+18,267+49,087+75,991
=152,947 k$

[10, 10, 26, 26, 43,
69, 69]→8+17+28

+50+105+308
=516 k$

[10, 9, 19, 19, 28,
58, 58]→8+32+19

+37+69+364
=529 k$

6. Decrease

[0, 0, 0, 0, 0, 0, 0]
→3,692+7,029

+23,648+48,107
+143,390+215,647

=441,513 k$

[0, 0, 0, 0, 0, 0, 0]
→57+82+141

+204+312+275
=1,071 k$

[0, 0, 0, 0, 0, 0, 0]
→57+82+95

+150+206+144
=734 k$

7. Weak
seasonality

[0, 0, 0, 0, 0, 0, 0]
→1,563+1,748+5,583

+9,089+22,739+32,454
=73,176 k$

[0, 1, 4, 6, 4, 2, 2]
→83+154+55
+174+79+179

=724 k$

[2, 1, 2, 1, 2, 0, 0]
→68+90+40
+66+50+41

=354 k$

8. Medium
seasonality

[0, 0, 0, 0, 0, 0, 0]
→509+864+1,494

+1,886+10,492+14,645
=29,890 k$

[5, 4, 14, 9, 7, 4, 4]
→129+151+267
+342+519+571

=1,979 k$

[4, 4, 5, 5, 3, 0, 0]
→91+135+191
+271+324+230

=1,242 k$

9. Strong
seasonality

[0, 0, 0, 0, 0, 0, 0]
→621+958+2,902

+5,893+29,358+43,320
=83,052 k$

[8, 8, 16, 16, 12, 16,
16]→160+220+311

+480+868+887
=2,926 k$

[6, 6, 11, 11, 11, 8,
8]→162+239+294
+415+522+428

=2,058 k$

Table 8.1: Optimal initial inventories and induced costs of homogeneous supply chains
(recall of Table C.7).
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8.3.1 Definitions

The 729 sets of costs {Ci}6
i=1 obtained in simulateSupplyChain are used to build a

game in the normal form, that consists [Cachon and Netessine, 2003] of:

• players, who are here the six company-agents written as i;

• strategies ri, which are the three ordering rules A”, B, and D available to each
company i (we use indifferently the terms “rule”, “scheme” and “strategy”);

• payoffs/utilities, which are here “replaced” by all company’s costs Ci.

This latter replacement is due to the fact, that we do not consider a company’s utility
but its inventory and backorder costs. Since we assume production cost is equal to zero,
we could refer to profit by adding a minus sign to the costs, but instead of that, we only
consider costs in order to facilitate the readability of data. Therefore, agents do not want
to maximize their utility, but they seek to minimize their costs. The main adaptations
between our notations and traditional economic definitions, come from this difference,
and other adaptations are due to the use of supply chain management vocabulary. We
recall that, similar to the rest of this dissertation, companies are written as power, e.g.,
Ci is company i’s cost, and C is the overall supply chain cost.

The following definitions are adapted from Jehle and Reny [2000]’s book:

Strategic form game: A strategic form game is a tuple G = (Ri, ci)N
i=1, where for

each agent i = 1, . . . , N , Ri is the finite set of ordering rules available to agent i,
and Ci : ×N

j=1R
j → � describes agent i’s cost as a function of the strategies chosen

by all agents. The values of the functions Ci are obtained through simulations
in simulateSupplyChain(). In this dissertation, there are N = 6 agents, each
having the cost function Ci : R1 × R2 × R3 × R4 × R5 × R6 → �.

Joint strategy/rule: The set r of ordering schemes (r1, r2, r3, r4, r5, r6) used by com-
panies is a joint strategy.

More precisely, r is a vector of six strategies/ordering rules, where the first rule,
r1, refers to the rule used by the LumberRetailer, the second, r2, to the rule
used by the PaperRetailer,. . . and the sixth, r6, to the rule used by the Sawmill
(again, correspondence between i and the position in the supply chain is given in
Figure 6.3, and recalled in Figure 8.1).
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Forest

Customer Lumber Lumber

Retailer Wholesaler

agent 1 agent 3

Products stream Orders stream

1 week order delay1 week shipping delay

Paper PaperCustomer Paper

Retailer Wholesaler

agent 2 agent 4 agent 5

PaperMill

Sawmill

agent 6

Wood

Figure 8.1: Forest supply chain in the QWSG (recall from Figure 6.3).

We write r−i the joint strategy used by all companies except i, and therefore
r = (ri, r−i) for any company i. For example, C(r) =

∑6
i=1 Ci(ri, r−i) is the

cost incurred by the entire supply chain, when the joint strategy r is used. In this
example, C4(r4, r−4) = C4(r4, (r1, r2, r3, r5, r6)) is the cost for the PaperWholesaler
(i = 4) of ordering with r4, when the rest of the supply chain uses the joint
strategy/rule r−4 = (r1, r2, r3, r5, r6).

Strictly dominant strategy/rule: A strategy/rule r̂i for company i is strictly domi-
nant if Ci(r̂i, r−i) < Ci(ri, r−i), for all (ri, r−i) such as ri �= r̂i.

In other words, a strictly dominant strategy/rule r̂i always incurs a lower cost Ci

for company i than any other ordering strategy/rule, whatever rule is used by the
five other companies. More precisely, the dominant strategy r̂i is always the best
choice for company i, and therefore, only this company should use it. Such best
strategies are very rare, which explains why we look rather for strictly dominated
strategies in our experiments.

Strictly dominated strategy/rule: Company i’s strategy r̂i strictly dominates an-
other of its strategies ři, if Ci(r̂i, r−i) < Ci(ři, r−i) for all r−i. In this case, we
also say that ři is strictly dominated.

This means that whatever joint rule r−i is chosen by the five other companies, a
dominated strategy ři incurs higher costs Ci than another rule r̂i. More precisely,
the dominated strategy ři is always worse than r̂i for company i. Note that we only
consider strictly dominated strategies, but never weakly dominated strategies, i.e.,
we only consider “<” and never “≤” in the previous definition.
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Next, we use the software McKelvey et al. [2004]’s Gambit 0.97.05 to remove
strictly dominated ordering schemes. Since Gambit only tries to maximize agents’
utility, it finds out how to maximize costs! To solve this problem, we add a minus
sign before our simulation outputs, in order to transform costs into profits when
companies do not earn money. We do not show these negative values in this
dissertation, in order to facilitate readability.

Pure Nash equilibrium: The joint strategy/rule r̂ is a pure Nash equilibrium if for
each company i, Ci(r̂i, r̂−i) ≤ Ci(ri, r̂−i) for all ri �= r̂i, where r̂ = (r̂i, r̂−n).

Conversely to the two above domination relations, a Nash equilibrium deals
with joint strategies and not with individual strategies. A Nash equilibrium is
a stable state of the supply chain: when companies choose the joint strategy
r̂ = (r̂1, r̂2, r̂3, r̂4, r̂5, r̂6), none of the companies has incentives to use another
ordering scheme while fully aware of the others’ behaviour. In other words, no
company wants to unilaterally deviate from it, since such behaviour would lead
to higher costs [Cachon and Netessine, 2003]. For example, if r̂1=D in the Nash
equilibrium r̂, the LumberRetailer has no incentive to change r̂1 for A” or B, when
this retailer observes others’ behaviour. This does not mean that a Nash equi-
librium is the best joint strategy for the supply chain (i.e., it does not incur the
minimum of costs C), it only means that the supply chain will remain in this
equilibrium after it is reached: it is a “shaft state”.

As previously stated, to simplify the research of Nash equilibria, we first succes-
sively eliminate all strictly dominated strategies, since no Nash equilibria are lost
by such eliminations [McKelvey et al., 2004]. Then, we look for Nash equilibria in
the reduced game with Gambit’s method “EnumPureSolve”, which finds all Nash
equilibria in pure strategy.

Minimum of overall cost C: Since we consider costs instead of profits, overall cost
C replaces the “social welfare” concept, where C = ΣiC

i.

The lower the overall cost C is, the more efficient the supply chain is. This concept
of solution is important, because competition has shifted from single companies
to supply chains [Stadtler, 2000; Kotler, 2001]. If the supply chain was only one
company, its goal would be to minimize C. The problem is that some companies
may have no incentive to reach the minimum of C, i.e., some companies may have
to sacrifice themselves by increasing their cost, in order to improve the welfare of
the rest of the supply chain. Therefore, the fact that a joint strategy incurs the
minimum of C means that this joint strategy is the best one for the supply chain
as a whole, but it does not mean that it will be used, because some companies
may have incentives to deviate from it, because it is not a Nash equilibrium. This
point leads us to introduce the following term.



Chapter 8. Second Series of Experiments: Heterogeneous Supply Chains 193

Best and good joint strategy/rule: We call “best joint strategy” (it is not a term
from game theory) a joint strategy that both minimizes C and is a Nash equilib-
rium. In the same way, we refer to “good joint strategy” for a joint strategy that
is a Nash equilibrium, but that only approaches the minimum of C.

Pareto-dominated joint strategy: the joint rule r is Pareto-dominated by r̂, if
Ci(r̂i) ≤ Ci(ri) for all companies i, and Cj(r̂j) < Cj(ri) for at least one com-
pany j.

This means that r̂ makes someone better off and no one worse off, because r̂

strictly reduces one company’s cost without increasing any other company’s cost.
In our experiments, we will use Pareto-domination with the minimum of C to try
comparing Nash equilibria. Unfortunately, Pareto-domination cannot order all
pairs of joint strategies. This is the reason for the introduction of the following
definition.

Pareto-efficient joint strategy: the joint rule r̂ is Pareto-efficient, if it is Pareto-
dominated by no other joint strategy.

In general, a Pareto-efficient joint strategy does not incur the minimum of C,
nor is it a Nash equilibrium, and therefore, it is not what we call “the best joint
strategy”.

Full collaboration: we call “full collaboration” (it is not a term from game theory)
the joint strategy in which all players apply D. This corresponds to a supply chain
at the higher level of collaboration.

Let us consider the Prisoners’ Dilemma, in order to illustrate that a Pareto-efficient
joint strategy is not a Nash equilibrium. However, the Pareto-efficient joint strategy in
this example is also the minimum of C, which is not always true.

8.3.2 Example of the Prisoners’ Dilemma

The game in Table 8.2 is an adaptation of the Prisoners’ Dilemma [Guerrien, 1995;
Sandholm, 1999; Wooldridge, 2001; Yildizoglu, 2003] to cost minimization. This game
has the following scenario [Wooldridge, 2001]:

Two men, called Player1 and Player2, are both charged with a crime and
held in separate cells. They have no way of communicating with each other
or making any kind of agreement. The two men are told (i) if one of them
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Player2

Player1
Cooperate Defect

Cooperate 1 ; 1 6 ; 0
Defect 0 ; 6 5 ; 5

Table 8.2: Adaptation of the Prisoners’ Dilemma to cost minimization.

confesses to the crime and the other does not, the confessor will go free, and
the other will be jailed for three years, and (ii) if both confess to the crime,
then each will be jailed for two years. Both prisonners know that if neither
confesses, then they will each be jailed for one year.

Table 8.2 is an instance of the game having these rules. In this table, “0 ; 6” in
the entry (Defect, Cooperate) represents costs incurred by both players, when Player1
chooses Defect and Player2 chooses Cooperate. In this situation, Player1 incurs a cost of
$0 and Player2 a cost of $6. The question is to find which joint strategy, i.e., which entry
in Figure 8.2, will be conjointly chosen by players. In fact, Player1 (respectively Player2)
chooses a line (respectively a column) so that her/his cost is minimized, because s/he is
rational, but we will see that this behaviour leads them to choose a non Pareto-efficient
joint strategy, i.e., we could make one player strictly better off without the other player
being worse off!

Cooperate is a dominated strategy for both players, because each time a player
chooses this rule, s/he would be better to change for Defect. We check this twice:

• Let us consider Player1:

– her/his cost is $1 if Player2 also chooses Cooperate;

– her/his cost is $6 if Player2 chooses Defect.

In this context, Player1 could respectively incur 0 $ and 5 $ if s/he had chosen
Defect. Therefore, whatever is chosen by Player2, Player1 prefers Defect. Cooperate
is thus dominated by Defect for Player1.

• We repeat the same reasoning by replacing Player1 by Player2 to show that Coop-
erate is a dominated strategy for Player2.

Therefore, Cooperate is a dominated strategy for both players. These dominated strate-
gies are not considered by both players, because they always incur a higher cost. When
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we remove them from Figure 8.2, (Defect, Defect) is the only remaining joint strategy.
No player has an incentive to leave it. It is thus a Nash equilibrium, and more precisely,
we call such an equilibrium a iterated dominance equilibrium (cf. Subsection 4.2.4).
The entry (Defect, Defect) is thus chosen in Figure 8.2 by our players.

The problem is that this Nash equilibrium is Pareto-dominated by (Cooperate, Co-
operate), because both players have the lowest cost there. Both players should prefer
(Cooperate, Cooperate), but both also have incentives to change for Defect too. There-
fore, (Cooperate, Cooperate) is not a Nash equilibrium, even if both players prefer it
to the Nash equilibrium (Defect, Defect). Next, (Cooperate, Cooperate) also incurs the
minimum of C (=1+1), and therefore, the minimum of C is not a Nash equilibrium in
this example. In short, (Cooperate, Cooperate) both minimizes C and Pareto-dominates
the Nash equilibrium (Defect, Defect) in this game.

No player chooses Cooperate to reach this joint strategy, because both players fear
that the other one is choosing Defect. Each player has to trust the other (e.g., by signing
a contract), if s/he wants to reach (Cooperate, Cooperate), but this does not conform to
game theory. Moreover, we can notice that all pairs of joint strategies cannot be com-
pared with Pareto-domination, e.g., (Cooperate, Cooperate) neither Pareto-dominates
nor is Pareto-dominated by (Defect, Cooperate) and (Cooperate, Defect).

We can wonder if situations resembling the Prisoners’ Dilemma appear in supply
chains, that is, if there is a joint strategy minimizing both individual and the overall
costs, but no company chooses it, because each one fears the decision of others. We
answer this question in the next section, by building a game with QWSG simulation
outcomes.

8.4 Simulation of Heterogeneous Supply Chains

This section presents the second series of experiments, in which each company may use
its preferred ordering scheme. Simulations use the method of realistic cost evaluation
and the optimal parameters of ordering schemes presented in Section 8.2. Next, the
concepts from game theory introduced in Section 8.3 are applied to analyze simulation
outcomes.

This series of experiments is presented in an iterative way: we start from the homo-
geneous supply chain in Subsection 8.4.1, in which all companies use the same ordering
scheme. Then, we assume the PaperRetailer can use another ordering scheme than the
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rest of the supply chain in Subsection 8.4.2. Next, we assume the two retailers may
decide which ordering rule they use in Subsection 8.4.3. Finally we consider in Sub-
section 8.4.4 the case of the heterogeneous supply chain, where each company decides
which ordering scheme it uses.

8.4.1 Analysis of Simulation Outcomes with one Player:
The Homogeneous Supply Chain

In this subsection, we consider the same scenario as in Chapter 7, because all companies
use the same ordering scheme, except that:

• we consider realistic costs instead of improved costs;

• initial inventories are not empty;

• the ten Uniform random market consumptions are ignored;

• only the Schemes A”, B and D are simulated.

A simulation is carried out for each of the three ordering schemes and for each of the
nine market consumption patterns, i.e., 3 × 9 = 27 simulations. For each simulation,
the individual costs Ci and the global cost C are given in Table 8.3 with the format
(r1, r2, r3, r4, r5, r6) → C1 + C2 + C3 + C4 + C5 + C6 = C. For example, for Scheme B
under the Inversed step demand in Table 8.3, the entry is (B, B, B, B, B, B)→ 30 +

48 + 93 + 140 + 260 + 242 = 813 k$, which means that the PaperWholesaler has a cost
C4 = 140 k$ and the entire supply chain C = 813 k$. In each line, the lowest cost is
underlined, e.g., in line “ Inversed step”, C = 470 k$ incurred by Scheme D is underlined,
because it is lower than C = 217, 491 k$ incurred by Scheme A” , and than C = 813 k$
incurred by Scheme B.

We can notice that Scheme D always incurs a lower cost C than Scheme B, which
itself incurs a much lower C than Scheme A” , and thus, C incurred by D is always
underlined. However, this is true for all C, but not for all Ci. In fact, some companies
are sometimes better off with Scheme B than with Scheme D. For example, with the
Step demand, the PaperRetailer incurs a cost C2 = 198 k$ with B, which is lower than
C2 = 208 k$ with D.

In this case, the problem is that PaperRetailer may disagree to multicast the market
consumption required by Scheme D, and therefore, the rest of the supply chain may not
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Market cons.
pattern

Ordering
scheme A”

Ordering
scheme B

Ordering
scheme D

1. Step

(A”, A”, A”, A”, A”, A”)
→2,658+5,988+14,764

+35,574+98,680+149,945
=307,609 k$

(B, B, B, B, B, B)
→173+198+139
+609+282+703

=2,104 k$

(D, D, D, D, D, D)
→109+208+75
+159+265+416

=1,232 k$

2. Inversed
step

(A”, A”, A”, A”, A”, A”)
→1,061+1,853+12,471

+22,331+72,635+107,140
=217,491 k$

(B, B, B, B, B, B)
→30+48+93

+140+260+242
=813 k$

(D, D, D, D, D, D)
→30+43+51

+74+101+173
=470 k$

3. Dirac

(A”, A”, A”, A”, A”, A”)
→692+955+2,796

+6,945+25,737+38,319
=75,444 k$

(B, B, B, B, B, B)
→61+28+61

+166+100+119
=535 k$

(D, D, D, D, D, D)
→48+95+53+
94+110+56

=456 k$

4. Inversed
Dirac

(A”, A”, A”, A”, A”, A”)
→3,299+6,732

+19,531+41,176
+120,053+176,755

=367,546 k$

(B, B, B, B, B, B)
→73+114+73
+114+114+80

=568 k$

(D, D, D, D, D, D)
→58+102+55
+97+75+38

=427 k$

5. Increase

(A”, A”, A”, A”, A”, A”)
→1,327+2,722+5,553

+18,267+49,087+75,991
=152,947 k$

(B, B, B, B, B, B)
→8+17+28

+50+105+308
=516 k$

(D, D, D, D, D, D)
→8+32+19

+37+69+364
=529 k$

6. Decrease

(A”, A”, A”, A”, A”, A”)
→3,692+7,029

+23,648+48,107
+143,390+215,647

=441,513 k$

(B, B, B, B, B, B)
→57+82+141

+204+312+275
=1,071 k$

(D, D, D, D, D, D)
→57+82+95

+150+206+144
=734 k$

7. Weak
seasonality

(A”, A”, A”, A”, A”, A”)
→1,563+1,748+5,583

+9,089+22,739+32,454
=73,176 k$

(B, B, B, B, B, B)
→83+154+55
+174+79+179

=724 k$

(D, D, D, D, D, D)
→68+90+40
+66+50+41

=354 k$

8. Medium
seasonality

(A”, A”, A”, A”, A”, A”)
→509+864+1,494

+1,886+10,492+14,645
=29,890 k$

(B, B, B, B, B, B)
→129+151+267
+342+519+571

=1,979 k$

(D, D, D, D, D, D)
→91+135+191
+271+324+230

=1,242 k$

9. Strong
seasonality

(A”, A”, A”, A”, A”, A”)
→621+958+2,902

+5,893+29,358+43,320
=83,052 k$

(B, B, B, B, B, B)
→160+220+311
+480+868+887

=2,926 k$

(D, D, D, D, D, D)
→162+239+294
+415+522+428

=2,058 k$

Table 8.3: Costs with one player (similar to the homogeneous supply chain presented
in Table 8.1, but with another data format).
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be able to use D and to have the cost C = 1, 232 k$. In order to avoid having the cost
C = 2, 104 k$ incurred when all companies use B, the LumberWholesaler may multi-cast
its incoming orders to the rest of the supply chain. We can expect the overall supply
chain cost to be between the two previous values of C, but we have to simulate this
scenario in order to know its exact value. In the next subsection we study a scenario
including this case, where all companies use D except the LumberRetailer who uses B.
In this case, the LumberRetailer is a player who can choose her/his ordering rule and
the RestOfTheSupplyChain is another player4.

8.4.2 Analysis of Simulation Outcomes with two players

As a first simple example of individual behaviour, we assume there are now two players:
the PaperRetailer vs. the RestOfTheSupplyChain. This is interesting, because there are
at least three reasons to study the behaviour of a retailer:

1. the bullwhip effect begins with retailers;

2. retailers are the companies that decide to use information centralization or not;

3. we noticed in Subsection 8.4.1, that retailers may have incentives not to share
information, and thus not to multi-cast the information required by information
centralization, because they may be worse off doing so.

When two players are considered, a little heterogeneity is introduced in the supply
chain. In this context, simulations are carried out with the nine joint strategies in Ta-
ble 8.4. These joint strategies are given with the format (r2; r−2), i.e., the PaperRetailer’s
strategy is first given, then the RestOfTheSupplyChain’s:

1. Simulation (A” ; A”): Both players use Rule A” , which is exactly the experiment
carried out in Subsection 8.4.1 with a homogeneous supply chain using A” .

2. Simulation (A” ; B): The PaperRetailer uses Scheme A” , and thus only gives one
piece of information to the RestOfTheSupplyChain, or more precisely, to the Pa-
perWholesaler. The PaperWholesaler is therefore the first company to use (O, Θ)

4We recall that (O, Θ) orders in Schemes B and D are vectors of orders, that are used to share
the demand information in Schemes B and D, so that our two principles proposed in Section 5.1 are
followed. We also recall that information centralization is an improvement on information sharing,
because the sharing is quicker, due to the fact that retailers multi-cast their sales in real-time to the
rest of the supply chain.
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orders in the paper sub-supply chain, and for example, O received by the PaperMill
are not the market consumption, but the output of the PaperRetailer’s rule A” .

3. Simulation (A” ; D): The PaperRetailer gives only one piece of information to the
PaperWholesaler, and does not multi-cast the market consumption required by
its suppliers. As in Simulation (B ; D), the PaperWholesaler is the first company
to use (O, Θ) orders. Moreover, the PaperWholesaler multi-casts its incoming
orders to the RestOfTheSupplyChain, i.e., the PaperMill and the Sawmill have to
take PaperWholesaler’s incoming orders as the basis for information centralization,
which is taken into account by conditions in Equations A.25 and A.26.

4. Simulation (B ; A”): The PaperWholesaler gets (O, Θ) orders from PaperRetailer,
that are fulfilled by shipping products without any adaptations, because the ba-
sic modelization of all companies manages incoming Θ, even when the considered
company does not place (O, Θ) order (cf. Equations A.2 and A.3 that describe
Tooi

w and Tobi
w). PaperWholesaler’s and other companies in RestOfTheSupply-

Chain’s orders are next based on their inventory level with Scheme A” .

5. Simulation (B ; B): Both players use Scheme B, which is exactly the experiment
carried out in Subsection 8.4.1 with a homogeneous supply chain using B.

6. Simulation (B ; D): The PaperRetailer does not multi-cast the market consumption,
but the RestOfTheSupplyChain requires this information. Therefore, like in (A” ;
D), information centralization is achieved by the PaperWholesaler. In other words,
the PaperMill and the Sawmill have to take PaperWholesaler’s incoming orders as
the nearest value of market consumption, rather than PaperRetailer’s incoming
orders.

7. Simulation (D ; A”): PaperWholesaler gets (O, Θ) orders from PaperRetailer that
are fulfilled by shipping products without any adaptations, because the basic
modelization of all companies manages incoming Θ, even when the considered
company does not place (O, Θ) order (cf. Equations A.2 and A.3 describing Tooi

w

and Tobi
w). PaperWholesaler’s and other companies in RestOfTheSupplyChain’s

orders are next based on their inventory level with Scheme A” , without taking into
account the market consumption multicasted by the PaperRetailer. Therefore, this
simulation is the same as (B, A”).

8. Simulation (D ; B): The PaperWholesaler multi-casts the market consumption, but
none of its suppliers use it. That is, the simulation is the same as (B, B), because
the difference between B and D (information centralization) is not exploited by
neither the PaperWholesaler, nor the PaperMill, nor the Sawmill.

9. Simulation (D ; D): Both players use Rule D. This is exactly the experiment
carried out in Subsection 8.4.1 with a homogeneous supply chain using D.
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RestOfTheSupplyChain

PaperRetailer

A” B D

A” (A” ; A”) (A” ; B) (A” ; D)
B (B ; A”) (B ; B) (B ; D)
D (D ; A”) (D ; B) (D ; D)

Table 8.4: The nine simulations required to study the PaperRetailer vs. the RestOfThe-
SupplyChain (two player game).

RestOfTheSupplyChain

PaperRetailer

A” B D

A” 5,988 ; 301,621 1,468 ; 14,419 1,899 ; 8,266
B 1,286 ; 54,275 198 ; 1,906 619 ; 1,507
D 1,286 ; 54,275 198; 1,906 208 ; 1,024

Table 8.5: Outcomes when the PaperRetailer and the RestOfTheSupplyChain are selfish
(two player game).

We first simulate these nine cases under a Step market consumption, that is, both
lumber and paper markets consume eleven products per week in the four first weeks,
then seventeen products per week from Week five to Week fifty (cf. Table 7.1). The
companies’ outcomes in these nine simulations are given in Table 8.5. For example,
when the PaperRetailer uses A” and the RestOfTheSupplyChain uses D, the outcome is
(1,899 ; 8,266) which means the PaperRetailer has a cost of 1,899 k$ and the RestOfThe-
SupplyChain 8,266 k$, without any distinctions between the company belonging to this
group of companies. Since we assume all companies have no income, the traditional
utility/profit maximization is achieved by minimizing costs: every company wants to
reach the entry in Table 8.5 in which its cost is the lowest.

In this context, we can note that ordering with A” is strictly dominated for the Paper-
Retailer, because it always incurs a higher cost when it uses this rule than when it uses B
or D, whatever is chosen by the RestOfTheSupplyChain. Therefore, the PaperRetailer
never chooses A” . In the same way, A” and B are dominated for the RestOfTheSupply-
Chain. We assume that both players know these facts (or they infer this information
based on history). This first turn of elimination of dominated strategies leads to Ta-
ble 8.6.

The same reasoning can be applied in a second turn of elimination of stricly dom-
inated strategies: Scheme B is dominated for the PaperRetailer. B was not dominated
for the PaperRetailer in Table 8.5, but becomes so in Table 8.6. When B is eliminated,
we obtain Table 8.7, in which only D is available to both players. The reduced game in
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RestOfTheSupplyChain

PaperRetailer
D

B 619 ; 1,507
D 208 ; 1,024

Table 8.6: New Table 8.5 after the first turn of elimination of dominated strategies.

RestOfTheSupplyChain

PaperRetailer
D

D 208 ; 1,024

Table 8.7: New Table 8.5 after the second turn of elimination of dominated strategies.

Table 8.7 has the same Nash equilibria as the original one in Table 8.5 [McKelvey et al.,
2004].

These dominances are summarized in the first line, called “Step”, in Table 8.9, in
which “1” means A” is dominated for both players and B for the RestOfTheSupplyChain
in the original game, and “2” that B becomes dominated for the PaperRetailer if “1” rules
are not taken into account.

After the iterative elimination of strictly dominated strategies, we look for Nash
equilibria in the remaining strategies. Since (D, D) is the unique survivor of the elimi-
nation of dominated strategies, it is a Nash equilibrium. If several joint strategies had
survived the elimination of strictly dominated strategies, we would have tested each of
them to check which ones are Nash equilibria, and there may be several or no equilibria.

We could have looked for Nash equilibria in the complete game in Table 8.5 instead
of Table 8.7, but it would have been a longer job. In fact, we must check if each of the
nine entries in this matrix is a “shaft state”, that is, if each player has no incentive to
change its ordering rule when it sees what is made by the other player. More precisely,
(D, D) is a Nash equilibrium in Table 8.5, because:

• if the PaperRetailer changes for A” , it increases its costs from 208 k$ to 1,899 k$,
and if this player changes for B, its cost increases to 619 k$;

• if the RestOfTheSupplyChain changes for A” , it increases its cost from 1,024 k$ to
1,906 k$, and to 54,275 k$ if it changes for B.

We can note here that a player does not wish to change its ordering rule if it does
not strictly reduces its cost. For example, if (D, D) incurred (619 ; 1,024) instead of
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RestOfTheSupplyChain

PaperRetailer

A” B D

A” 5,988+301,621=307,609 1,468+14,419=15,887 1,899+8,266=10,165
B 1,286+54,275=55,561 198+1,906=2,104 619+1,507=2,126
D 1,286+54,275=55,561 198+1,906=2,104 208+1,024=1,232

Table 8.8: Overall supply chain’s costs when the PaperRetailer and the RestOfTheSup-
plyChain are selfish.

(208 ; 1,024), the PaperRetailer would neither increase nor decrease its cost by changing
for B: (D, D) would thus remain a Nash equilibrium. On the other hand, (B, B) is not
an equilibrium, because when both players use B, the RestOfTheSupplyChain prefers to
change for D in order to decrease its cost from 1,906 k$ to 1,507 k$.

Once the Nash equilibria are determined, we wonder whether the Nash equilib-
rium (D, D) is a “good” solution for the whole supply chain. Until now, we have just
checked that no players would like to leave this joint strategy, but we do not know if
it is a good joint strategy, meaning as inducing the minimal of C while being a Nash
equilibrium. Practically, we add the PaperRetailer’s cost C2 to the RestOfTheSupply-
Chain’s cost C−2(= C1 + C3 + C4 + C5 + C6) for the nine entries in Table 8.5, which
results in C(= C1 +C2 +C3 +C4 +C5 +C6). This calculation is detailed in Table 8.8.
We can see that the minimum of costs for the supply chain is 1,232 k$ (this lowest C

is underlined in Table 8.8), which is reached for the joint strategy (D, D). Therefore,
this joint strategy is not only stable, but it is also the best joint strategy for the global
supply chain.

We do not consider Pareto-dominations in this example, because we have here only
one Nash equilibrium, while we use this relation for comparing Nash equilibria. More-
over, we can also note that a situation resembling the Prisonners’ Dilemma does not
occur here.

We did the same nine simulations for the eight other market consumption patterns
Inversed step, Dirac, Inversed Dirac, Increase, Decrease, and Weak, Medium and Strong
seasonalities detailed in Table 7.1. Analysis results of simulation outcomes are sum-
marized in Tables 8.9, 8.10, 8.11 and 8.12. For example, in Table 8.12, for the Strong
seasonality pattern, (B, D)→210+2,023=2,233 k$ indicates that the PaperRetailer uses B
and the RestOfTheSupplyChain uses D, and 2,233 k$ is the total cost for the supply
chain when these two strategies are used together, 210 k$ is the PaperRetailer’s cost and
2,023 k$ is the RestOfTheSupplyChain’s cost. (B, D) is a Nash equilibrium that does
not incur the lowest C among the nine entries of this game, because 2,233 k$ is not
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Market Paper RestOfThe
consumption Retailer SupplyChain

patterns A” B D A” B D

1. Step 1 2 - 1 1 -
2. Inversed step 1 - - 1 - -
3. Dirac 1 - 2 1 1 -
4. Inversed Dirac 1 - 2 1 1 -
5. Increase 1 - - 1 - -
6. Decrease 1 - - 1 - -
7. Weak seasonality 1 2 - 1 1 -
8. Medium seasonality 1 2 - 1 1 -
9. Strong seasonality - 2 1 1 1 -

Table 8.9: Strictly dominated strategies when the PaperRetailer and the RestOfTheSup-
plyChain are selfish.

underlined. The lowest C, 2,060 k$, is underlined, and appears in the upper entry in
each of Tables 8.10, 8.11 and 8.12.

In short, Tables 8.10, 8.11 and 8.12 show all Nash equilibria in pure strategy (second
line), if these equilibria incur the minimum of C (first line), and if they correspond to the
full collaboration of the supply chain (last line). We focus on full collaboration because
it must always incur the minimum of C: we check if this is true. The dream case would
be that full collaboration both incurs the minimum of C and is a Nash equilibrium (i.e.,
the three lines in Tables 8.10, 8.11 and 8.12 indicate the same information), because this
best joint strategy would be easy to identify. In fact, it is intuitive that full collaboration
is the best solution for the supply chain, but we hope no company has an incentive to
deviate from it. It is interesting to note the following conclusion:

Fortunately, full collaboration incurs the minimum of C and is a Nash equi-
librium under half market consumption patterns (Step, Inversed step, De-
crease, Weak seasonality and Medium seasonality).

In these patterns, full collaboration is thus both the best joint strategy (i.e., minimum
of C and Nash equilibrium) and easy to find (i.e., all companies fully collaborates).
When it is not the case, there is at least one Nash equilibrium (Nash equilibria in pure
strategies do not always occur), and one of the equilibria incur a C close to the minimum.
Finally, when there are two Nash equilibria (Inversed Dirac), the full collaboration (D,
D) is Pareto-dominant over the other equilibrium (B, B), because both players have a
lower (or equal) cost with (D, D).
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Step Inversed step Dirac Inversed Dirac

Minimum of C

(D, D)
→208+1,024
=1,232 k$

(D, D)
→43+429
=472k$

(B, D)
→90+332
=422 k$

(B, D)→89
+336=425 k$
(D, D)→102
+323=425 k$

Nash equilibria
(D, D)

→208+1,024
=1,232 k$

(D, D)→43
+429=472 k$
(B, B)→48

+765=813 k$

(B, D)
→90+332
=422 k$

(B, D)
→89+336
=425 k$

Full collaboration
(D, D)

→208+1,024
=1,232 k$

(D, D)
→43+429
=472 k$

(D, D)
→95+361
=456 k$

(D, D)
→102+323
=425 k$

Table 8.10: Results of analysis when the PaperRetailer and the RestOfTheSupplyChain
are selfish (1/3).

Increase Decrease

Minimum of C (B, B)→17+499=516 k$ (D, D)→82+652=734 k$

Nash equilibria
(B, B)→17+499=516 k$
(D, D)→32+497=529 k$

(D, D)→82+652=734 k$
(B, B)→82+989=1,071 k$

Full collaboration (D, D)→32+497=529 k$ (D, D)→82+652=734 k$

Table 8.11: Results of analysis when the PaperRetailer and the RestOfTheSupplyChain
are selfish (2/3).

We now study if all these results still hold when the PaperRetailer no longer belongs
to the player called RestOfTheSupplyChain.

8.4.3 Analysis of Simulation Outcomes with three players

We assume now that the two retailers can make their own decisions as two independent
players, while the RestOfTheSupplyChain is a third player. We have 33 = 27 different
combinations of possible ordering, because there are three players (the PaperRetailer,
the LumberRetailer and a coalition called RestOfTheSupplyChain regrouping the four
other companies), and each of them has three different choices.

Figure 8.2 presents the outcomes of these 27 simulations for the Step market con-
sumption. These outcomes could be represented in a 3 × 3 × 3 matrix, but this is not
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Weak seasonality Medium seasonality Strong seasonality

Minimum of C
(D, D)→90

+265=355 k$
(D, D)→135

+1,107=1,242 k$
(D, D)→239

+1,821=2,060 k$

Nash equilibria
(D, D)→90

+265=355 k$
(D, D)→135

+1,107=1,242 k$
(B, D)→210

+2,023=2,233 k$

Full collaboration
(D, D)→90

+265=355 k$
(D, D)→135

+1,107=1,242 k$
(D, D)→239

+1,821=2,060 k$

Table 8.12: Results of analysis when the PaperRetailer and the RestOfTheSupplyChain
are selfish (3/3).

so easy to represent on a paper. Instead, they are represented by three 3 × 3 matrices:

• the player RestOfTheSupplyChain selects which matrix will be used by choosing
the strategy A”, B or D;

• the LumberRetailer and the PaperRetailer both choose a row and a column in the
selected matrix.

These three choices are made at the same time. For example, when the RestOfThe-
SupplyChain chooses D, the LumberRetailer B and the PaperRetailer A” , the outcome is
(421 ; 2,059 ; 6,986), which means that the LumberRetailer incurs a cost of 421 k$, the
PaperRetailer 2,059 k$ and the RestOfTheSupplyChain 6,986 k$.

We can look for dominances in Table 8.2. In the first round of elimination of strictly
dominated strategies, A” incurs a higher cost for each player, whatever is chosen by the
two other players. Therefore, A” is dominated in the first round for every player. When
A” are no longer taken into account, no other ordering rules become dominated. This
single round of elimination of dominated schemes is summarized in the first line (step)
in Table 8.13 with dominances for the eight other demand patterns. When there are
several survivors, each has to be tested to check if it is a Nash equilibrium, and it is yet
possible that the game has no equilibria. Tables 8.14, 8.15 and 8.16 summarizes this
equilibrium and those obtained with the other demand patterns.

Finally, we can notice in Table 8.13 that non-collaborating is always dominated for
all players, while collaborating is rarely dominated. Next, Tables 8.14, 8.15 and 8.16
show there exists at least one Nash equilibrium for all demand patterns, and that
this equilibrium is unique under half of the considered demand patterns. Moreover,
these tables also show that full collaboration (D, D, D) is both a Nash equilibrium
and incurs the minimum of C with several demand patterns, i.e., with Step, Inversed
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The RestOfTheSupplyChain chooses A” :
PaperRetailer

LumberRetailer

A” B D

A” 2,658 ; 5,988 ; 298,963 2,664 ; 1,286 ; 51,611 2,664 ; 1,286 ; 51,611
B 867 ; 6,491 ; 397,135 867 ; 1,193 ; 43,547 867 ; 1,193 ; 43,547
D 867 ; 6,491 ; 397,135 867 ; 1,193 ; 43,547 867 ; 1,193 ; 43,547

The RestOfTheSupplyChain chooses B:
PaperRetailer

LumberRetailer

A” B D

A” 1,075 ; 1,355 ; 12,077 1,093 ; 256 ; 5,312 1,093 ; 256 ; 5,312
B 442 ; 1,468 ; 13,977 173 ; 198; 1,733 173 ; 198 ; 1,733
D 442 ; 1,468 ; 13,977 173 ; 198 ; 1,733 173 ; 198 ; 1,733

The RestOfTheSupplyChain chooses D
PaperRetailer

LumberRetailer

A” B D

A” 1,084 ; 2,011 ; 10,444 1,179 ; 696 ; 5,679 1,241 ; 332 ; 5,222
B 421 ; 2,059 ; 6,986 405 ; 638 ; 1,752 380 ; 243 ; 1,330
D 245 ; 1,899 ; 8,021 133 ; 619 ; 1,374 109 ; 208 ; 915

Figure 8.2: Outcomes when the LumberRetailer, the PaperRetailer and the RestOfThe-
SupplyChain are selfish (Step demand).

step, Decrease, Weak seasonality, Medium seasonality and Strong seasonality. This is a
good result because it means that no companies would like the entire supply chain to
collaborate without itself. Similarly to the previous subsection, when full collaboration
is a Nash equilibrium, i.e., (D, D) in Subsection 8.4.2 and (D, D, D) now, it Pareto-
dominates other equilibria, except under the Increase demand.

We check in the next subsection if these conclusions still hold in the general case,
i.e., when each company chooses its ordering scheme.

8.4.4 Analysis of Simulation Outcomes with six players:
The heterogeneous supply chain

We now study the most realistic scenario, which is also the most complex, in which each
company acts alone. More precisely, we now consider six different selfish company-
players, whose goal is to minimize their own costs, without directly considering the
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Market Lumber Paper RestOfThe
consumption Retailer Retailer SupplyChain

patterns A” B D A” B D A” B D

1. Step 1 - - 1 - - 1 - -
2. Inversed step 1 - - 1 - - 1 - -
3. Dirac 1 - - 1 - - 1 1 -
4. Inversed Dirac 1 - 2 1 - 2 1 1 -
5. Increase 1 - - 1 - - 1 - -
6. Decrease 1 - - 1 - - 1 - -
7. Weak seasonality 1 2 - 1 2 - 1 1 -
8. Medium seasonality 1 3 - 2 2 - 1 1 -
9. Strong seasonality 2 - 3 2 - 1 1 1 -

Table 8.13: Strictly dominated strategies when the LumberRetailer, the PaperRetailer
and the RestOfTheSupplyChain are selfish.

impact of their behaviour on the costs of the rest of the supply chain. However, each
company indirectly takes into account its impact on the supply chain. In fact, if a com-
pany amplifies the bullwhip effect, stockouts will occur more often in the whole supply
chain, and also in the company itself, which will cost more money for the considered
company.

This study is similar to what was done in the two previous subsections, except that
many more combinations of the three ordering schemes are considered. In fact, we
simulate 36 = 729 combinations of A′′, B and D among the six companies/players, and
we put the outcomes of these simulations in a 3×3×3×3×3×3 matrix that represents
the game in the normal form. Since it is very difficult to study such big games by hand,
we use the software Gambit to remove dominated ordering schemes and then to look for
Nash Equilibria. With this game, we address the following questions:

1. Which ordering schemes are dominated, and thus, never used?

2. Which joint strategies minimize the total supply chain costs?

3. Which joint strategies are Nash equilibria, i.e., are composed of individual strate-
gies that each company wants to keep when it sees the others’ behaviour?

4. Is it possible to order the Nash equilibria with the relation of Pareto-domination?

The most interesting joint strategies are those found at the same time in points 2. and 3.,
which we call “best joint strategies”. Let us insist that they are both (a) the overall
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Step Inversed Step Dirac

Minimum of C
(D, D, D)→109

+208+915=1,232 k$
(D, D, D)→30

+43+399=472 k$
(D, B, D)→44

+90+288=422 k$

Nash equilibria

(D, D, D)
→109+208

+915=1,232 k$
(B, B, B)
→173+198

+1,733=2,104 k$

(D, D, D)→30
+43+399=472 k$

(B, D, D)→30
+43+706=779 k$

(B, B, B)→30
+48+735=813 k$

(D, B, B)→30
+48+735=813 k$

(D, B, D)
→44+90

+288=422 k$
(B, D, D)
→61+28

+446=535 k$

Full collaboration
(D, D, D)→109

+208+915=1,232 k$
(D, D, D)→30

+43+399=472 k$
(D, D, D)→48

+95+313=456 k$

Table 8.14: Results of analysis when the LumberRetailer, the PaperRetailer and the
RestOfTheSupplyChain are selfish (1/3).

best choices because they minimize the total supply chain costs, and (b) no company
wants to change for another ordering scheme because they are Nash equilibria.

In comparison with the previous three subsections, the situation is made more com-
plex by the increase of the number of players. Therefore, conclusions of experiments are
less clear than in the three previous subsections. We now present the results performed
by Gambit.

First, iteratively dominated strategies are represented in Table 8.17, in which, num-
bers represent the turn where the corresponding rule is eliminated because it is domi-
nated by another one. This figure shows the following conclusion:

Companies sometimes have individual incentives to collaborate (because the
non collaborating rule A′′ is sometimes dominated), but they do not have an
incentive not to collaborate (because collaborating schemes B are dominated
only under the Step demand).

After the iterative elimination of strictly dominated strategies, emphasis is put on
Nash equilibria. Tables 8.18, 8.19 and 8.20 present these equilibria. The format of data
is (r1, r2, r3, r4, r5, r6) → C1 + C2 + C3 + C4 + C5 + C6 = C. For example, in the
column Step in Table 8.18, the first line, called “Minimum of C”, shows that the joint
strategy (D, D, D, D, D, D) minimizes the total supply chain costs C when the market
consumption is Step. This minimal overall cost is 1,232 k$. Since it is the minimum
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Inversed Dirac Increase Decrease

Minimum of C
(B, D, D)→49

+100+262=411 k$

(B, B, B)→8
+17+491=516 k$

(D, B, B)→8
+17+491=516 k$

(D, D, D)→57
+82+595=734 k$

Nash equilibria
(B, B, D)→53

+89+272=414 k$

(B, B, B)→8
+17+491=516 k$

(D, B, B)→8
+17+491=516 k$

(D, D, D)→8
+32+489=529 k$

(D, D, D)→57
+82+595=734 k$

(B, D, D)→57
+82+915=1,054 k$

(D, B, B)→57
+82+932=1,071 k$

(B, B, B)→57
+82+932=1,071 k$

Full collaboration
(D, D, D)→58

+102+265=425 k$
(D, D, D)→8

+32+489=529 k$
(D, D, D)→57

+82+595=734 k$

Table 8.15: Results of analysis when the LumberRetailer, the PaperRetailer and the
RestOfTheSupplyChain are opponents (2/3).

Weak seasonality Medium seasonality Strong seasonality

Minimum of C
(D, D, D)→68

+90+197=355 k$
(D, D, D)→91

+135+1,016=1,242 k$
(D, D, D)→162

+239+1,659=2,060 k$

Nash equilibria
(D, D, D)→68

+90+197=355 k$
(D, D, D)→91

+135+1,016=1,242 k$
(B, B, D)→142

+210+1,990=2,342 k$

Full collaboration
(D, D, D)→68

+90+197=355 k$
(D, D, D)→91

+135+1,016=1,242 k$
(D, D, D)→162

+239+1,659=2,060 k$

Table 8.16: Results of analysis when the LumberRetailer, the PaperRetailer and the
RestOfTheSupplyChain are opponents (3/3).

of C (of course, because this line only gives minima of C), this cost is underlined.
We can also read that the LumberRetailer has a cost C1 =109 k$, the PaperRetailer
C2 =208 k$. . . This minimum of C only occurs with (D, D, D, D, D, D) because there
is only this joint strategy in this entry of Table 8.18.

In the second line of Tables 8.18, 8.19 and 8.20, all Nash equilibria are listed. The
two equilibria for the Step pattern are (D, D, D, D, B, D), which only is a good joint
strategy because it both incurs a C close to the minimum of C and is a Nash equilibrium,
and (D, D, D, A”, D, D), which is not a good strategy because it incurs a C much greater
than the lowest. If the first equilibrium (D, D, D, D, B, D) had incurred C = 1, 232 k$
instead of C = 1, 491 k$, it would have been a best joint strategy.
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LumberRet. PaperRet. LumberWhl. PaperWhl. PaperMill Sawmill
A” B D A” B D A” B D A” B D A” B D A” B D

1. Step 1 5 - 1 - - 3 - - - - - 3 - - 2 4 -
2. Inversed step 1 - - 1 - - - - - 1 - - - - - 1 - -

3. Dirac - - - - - - - - - - - - - - - - - -
4. Inversed Dirac 1 - - 1 - - 1 - - - - - - - - - - -

5. Increase - - - - - - - - - - - - - - - - - -
6. Decrease 1 - - 1 - - 1 - - 1 - - 1 - - 1 - -

7. Weak seasonality - - - - - - - - - - - - - - - - - -
8. Medium seasonality - - - - - - - - - - - - - - - - - -
9. Strong seasonality - - - - - - - - - - - - - - - - - -

Table 8.17: Strictly dominated strategies when all companies are selfish (six player
game).

Step Inversed step Dirac

Minimum of C

(D, D, D, D, D, D)
→109+208+75
+159+265+416

=1,232 k$

(D, D, D, D, D, D)
→30+43+51

+74+101+173
=472 k$

(D, D, B, D, D, D)
→48+75+53
+74+85+61

=396 k$

Nash equilibria

(D, D, D, D, B, D)
→115+326+82
+277+186+505

= 1,491 k$
(D, D, D, A”, D, D)
→109+888+75
+47+1,900+289

=3,308 k$

(D, D, D, D, D, D)
→30+43+51

+74+101+173
=472 k$

(B, D, B, D, D, B)
→30+43+93

+74+101+199
=540 k$

(D, B, D, B, B, B)
→30+48+51

+140+260+236
=765 k$

(B, B, B, B, B, B)
→30+48+93

+140+260+242
=813 k$

(B, D, D, D, B, D)
→44+83+45+83
+87+67=409 k$

(D, B, D, D, D, D)
→44+90+45+90
+84+69=422 k$

(A”, D, A”, D, D, B)
→663+93+1,551+92
+102+2,788=5,289 k$
(A”, B, A”, D, B, B)
→709+98+1,778+98
+104+2,675=5,462 k$
(D, A”, B, D, D, A”)

→396+480+411+1,669
+1,936+1,090=5,982 k$

(B, A”, B, A”, B, B)
→61+945+61+5,826

+4,584+4,452=15,929 k$

Full collaboration
(D, D, D, D, D, D)
→109+208+75+159
+265+416=1,232 k$

(D, D, D, D, D, D)
→30+43+51+74

+101+173=472 k$

(D, D, D, D, D, D)
→48+95+53+94
+110+56=456 k$

Table 8.18: Results of simulation analysis when all companies are selfish (1/3).

Finally, the line called “Full collaboration” exhibits the costs of (D, D, D, D, D, D).
In the case of the Step demand, these costs were already given in the first of the tableau,
as it should often happens because full collaboration should incurred the minimum of C.
But in general, the costs of (D, D, D, D, D, D) only appears in the last line.
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Inversed Dirac Increase Decrease

Minimum of C

(B, B, D, B, B, D)
→46+73+46

+73+74+59=371 k$

(D, B, D, B, B, B)
→8+12+19

+40+90+311=480 k$

(D, D, D, D, D, D)
→57+82+95+150
+206+144=734 k$

Nash equilibria

(B, B, D, B, B, D)
→46+73+46

+73+74+59=371 k$
(B, B, B, D, B, D)

→54+85+54
+85+80+62=420 k$
(B, B, B, B, D, D)

→53+85+53
+85+85+68=429 k$

(B, B, B, B, B, B)
→8+17+28+50
105+308=516 k$

(D, D, D, D, D, D)
→8+32+19+37

+69+364=529 k$
(B, D, B, D, B, D)
→8+29+28+32

+136+336=569 k$
(D, A”, D, D, D, A”)

→423+785+452+2,511
+2,077+1,438=7,686 k$

(B, A”, B, D, B, A”)
→564+938+610+3,699

+3,250+1,622=10,683 k$

(D, D, D, D, D, D)
→57+82+95+150
+206+144=734 k$
(B, D, B, D, D, B)
→57+82+139+150
+206+189=823 k$
(D, B, D, B, B, B)
→57+82+104+204
+311+266=1,024 k$
(B, B, B, B, B, B)
→57+82+141+204
+312+275=1,071 k$

Full collaboration
(D, D, D, D, D, D)

→58+102+55
+97+75+38=425 k$

(D, D, D, D, D, D)
→8+32+19

+37+69+364=529 k$

(D, D, D, D, D, D)
→57+82+95+150
+206+144=734 k$

Table 8.19: Results of simulation analysis when all companies are selfish (2/3).

Let us now draw some conclusions from the outputs of Gambit. We can first notice
in Table 8.17, that non-collaborating (A”) is sometimes dominated while collaborating
(B and D) is almost never dominated. Tables 8.18, 8.19 and 8.20 show that there exists
at least one Nash equilibrium for all demand patterns, and there are no more than six
equilibria per market consumption pattern. Moreover, these figures also show, that full
collaboration (D, D, D, D, D, D) is both a Nash equilibrium, and incurs the minimum
of C (i.e., it is the best joint strategy) under three demand patterns, i.e., with Decrease,
Weak seasonality and Medium seasonality. Moreover, when (D, D, D, D, D, D) is not a
Nash equilibrium or does not incur the minimum of C, there is always an equilibrium
incurring a C very near the minimum, and in which most companies use D and the
others B (however, this is not true only with the Increase demand, because (B, B, B, B,
B, B) incurs lower costs than (D, D, D, D, D, D)). Such an equilibrium in which most
companies use D is thus a “good joint strategy”. As in the previous subsection, we can
therefore say that:

No company would like the entire supply chain to collaborate (by applying
Scheme B or D) while the considered company does not collaborate (by
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Weak seasonality Medium seasonality Strong seasonality

Minimum of C

(D, D, D, D, D, D)
→68+90+40+66
+50+41=355 k$

(D, D, D, D, D, D)
→91+135+191+271
+324+230=1,242 k$

(D, D, D, D, D, D)
→162+239+294+415
+522+428=2,060 k$

Nash equilibria
(D, D, D, D, D, D)
→68+90+40+66
+50+41=355 k$

(D, D, D, D, D, D)
→91+135+191+271
+324+230=1,242 k$
(A”, D, A”, D, D, D)
→333+131+941+297
+367+1,192=3,261 k$
(D, A”, D, A”, B, B)

→163+890+290+3,967
+4,530+3,688=13,528 k$

(B, B, D, D, D, D)
→142+210+336+474
+624+556=2,342 k$

Full collaboration
(D, D, D, D, D, D)
→68+90+40+66
+50+41=355 k$

(D, D, D, D, D, D)
→91+135+191+271
+324+230=1,242 k$

(D, D, D, D, D, D)
→162+239+294+415
+522+428=2,060 k$

Table 8.20: Results of simulation analysis when all companies are selfish (3/3).

using A”), even if a few companies use B instead of D: all companies prefer
collaboration.

In this result, it is important to recall that Scheme A” is based on a mathematical
model minimizing the cost of a single company when some assumptions are met, while
Scheme B and D do not have this formal base, but are based on collaboration through
information sharing to reduce the bullwhip effect. Moreover, the costs incurred by A”
are higher to costs incurred by B and D by several orders of magnitude, as reflected, for
example, in Table 8.3.

Finally, when there are several Nash equilibria, the Nash equilibrium incurring the
lower C always Pareto-dominates all other equilibria, except for one player with one
demand pattern: with Increase, the PaperWholesaler prefers (D, D, D, D, D, D) in which
C4 = 37 k$ and (B, D, B, D, B, D) in which C4 = 32 k$, to (B, B, B, B, B, B) in which
C4 = 50 k$. We do not have any reason to explain this irregularity, but we can only
note that this is an addition to the fact that (B, B, B, B, B, B) incurs a lower C than
(D, D, D, D, D, D).
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8.4.5 Comments

First, we only consider pure strategies in this dissertation, that is, companies use the
same ordering scheme in each of the fifty weeks of simulation. If mixed strategies had
been used, we would have used probabilities for all these rules, e.g., the PaperRetailer
would use A” during 75% of the time, and B during the remaining time. In fact, we
cannot use mixed strategies here, because:

1. Our first simulation does not allow changing companies’ ordering rule during a
simulation (but our second simulation, presented in section 6.3, can take this
constraint into account). Therefore, we cannot study supply chain transition,
when a company switches from one ordering scheme to another one. In fact, we
are not allowed to calculate the expected outcome of a simulation with mixed
strategies based on two simulations with pure strategies, because the result would
have no meaning in reality. For example, if the PaperRetailer uses A” 75% of
the time and B during the remaining time, the expected PaperRetailer’s outcome
is not 75% of its outcome in simulation in which only A” is used, plus 25% of
its outcome in a second simulation in which only B is applied. This method is
used in traditional game theory, but it is not appropriate here, because of the
transition time between the two ordering rules: when the PaperRetailer switches
to B, products previously ordered with A” will still arrive, which has an impact
on the PaperRetailer’s inventory level, and therefore on its future orders. In short,
there is an inertia in the supply chain, when companies switch ordering schemes.

2. In addition to the first point, we do not know algorithms to determine Nash
equilibria in mixed strategies requiring a reasonable time for any of our games.
The determination of Nash equilibria in pure strategies requires the comparison of
individual outcomes, while in mixed strategies, it requires the resolution of linear
equations, a more complex task. For example, we have run Gambit on the games
induced by our nine demand patterns, and we have stopped the computation after
a week on a 2.7 GHz PC, while the computation was not finished!

We have seen in section 4.3 that questions related to Nash equilibria are considered
to be harder than P and easier than NP . In other words, they are considered
to be harder than easy problems, and easier than hard problems. Nevertheless,
questions related to the computation of Nash equilibria are still being researched,
even though some game-theoretic softwares such as Gambit exists.

Experiments indicate that not collaborating is sometimes a dominated strategy while
collaborating is never dominated, which means that, in general, companies should col-
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laborate if they want to reduce their logistics costs. Then, full collaboration is, or is
very near the minimum of the overall cost C, and is also often a Nash equilibrium, which
means that no company would like to stop collaborating. Moreover, it is very easy to
identify the desirable Nash equilibria: when these equilibria do not correspond to full
collaboration, they are very near this, that is, only one or two companies use B instead
of D. Another good point is the fact that equilibria very loosely depend on the market
consumption pattern. As we analyze simulations as static games, each time the market
changes the way it consumes, the supply chain has to change its joint strategy because
the former joint strategy is no longer an equilibrium. Therefore, the experiments show
that all or most companies in the supply chain will use D with all demand patterns,
and a few may sometimes use B for any market consumption.

Moreover, there is always a Nash equilibrium, which is not always the case in game
theory when pure strategies are considered. When there are several equilibria, at least
one equilibrium is very near the minimum of C, and most companies use D and few
use B in this equilibrium. If we focus in future work on how companies decide during
a fifty week simulation which ordering scheme to use, all companies may eventually
stabilize their choice on one of our Nash equilibria. During these future simulations,
the PaperRetailer would, for example, use B during six weeks, then decide, with an
unspecified algorithm, that it will now use A” . Even if we do not have this algorithm
of ordering scheme selection, we already know that companies may eventually stop
switching, because there is always at least one Nash equilibrium. However, they may
also switch indefinitely, if they do not find this equilibrium, or if they do not recognize
it, i.e., if their algorithm of ordering scheme selection is not well designed.

When there is only one Nash equilibrium, we know that the global cost C is the
minimum, or is very near this minimum. The problem for companies is that they do
not know the number of Nash equilibria. They only know they have found one because
no companies change the way they place orders. If we look at Tables 8.18, 8.19 and 8.20
again, we can remark that Nash equilibria in which no companies use A” often have a
C near the minimum, while equilibria in which some companies use A” always occur
a much higher C than the minimum. In other words, the algorithm for switching
between A”, B and D should only consider B and D, because this insures (i) finding an
equilibrium quicker, because fewer alternatives are tried and, (ii) finding an equilibrium
incurring low overall and individual costs in the same time.

Another point concerns cost evaluation: as long as backorders cost twice the price of
inventory holding, the way to calculate individual costs Ci (Ci

QWSG, Ci
improved or Ci

realistic)
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has no impact on dominations5, Nash equilibria and Pareto-domination. This is due to
the fact that these concepts only rely on cost comparison for the same company, thus
are not sensitive to multiplication by a constant. For example, the company has the
costs CQWSG = $5, Cimproved = $5 ∗ IM and Crealistic = $5 ∗ RE with Scheme B and
CQWSG = $10, Cimproved = $10∗IM and Crealistic = $10∗RE with Scheme D (where IM

and RE are two positive constants that characterize the method of cost calculation):
whatever method of cost calculation is used, the cost incurred by B is always lower than
the cost incurred by D.

However, such a multiplication impacts on the global cost C, and therefore, changing
this method of calculation will change the joint strategies incurring the minimum of C.
Moreover, initial inventory levels also rely on C. If the relative weights of company’s
costs change (e.g., costs are identical for all companies instead of having higher costs
for clients than for suppliers due to logistics costs), all initial conditions also change.

Finally, we insist on the interpretation of outcomes in our experiments, and in
particular Nash equilibria. Such outcomes represent costs for fifty week simulations. In
other words, when companies consider them, they only base their decision on long term
costs. This means that Nash equilibria are stable states for the supply chain, when
all companies use the same time horizon. If a company considers a shorter term, it
could have an incentive to leave such equilibria. Fortunately, collaboration is often seen
as long term, because it requires companies to agree and to install some collaboration
devices, such as information technologies. This long term view required by collaboration
is in conformance with the duration of our simulations. The next section extends this
discussion about our conclusions.

8.5 Practical Implications

The main conclusion of the second series of experiments presented in this chapter can
be stated as follows: companies prefer to use our collaborative ordering schemes. More
precisely, companies prefer basic information sharing than no information sharing, and
they also prefer information centralization to basic information sharing. In practice,
this means that retailers would like to share the market consumption, and other com-
panies wish to get this information. We now discuss techniques and technological tools
supporting such information sharing, and in particular information centralization.

5However, the method of cost evaluation changes the initial inventory levels, that is, the initial
conditions of each set of 36 simulations, which may affect results.
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As presented in Subsection 2.1.1, information centralization is already implemented
in techniques such as VMI (Vendor Managed Inventory), CRP (Continuous Replenish-
mend Program) and CPFR (Collaborative Planning, Forecasting and Replenishment),
but on a few levels of a supply chain (i.e., between some companies and their suppliers).
The results of our dissertation show that these techniques should be extended to the
rest of supply chains. In fact, our results show that applying information centralization
only by retailers and wholesalers never induces the minimum of the overall supply chain
cost C, or is a Nash equilibrium. On the contrary, applying information centralization
by all companies is a Nash equilibrium incurring the minimum of the overall supply
chain cost C.

Of course, these collaboration techniques are currently based on the Internet, but
some of them are also based on older technologies, such as EDI (Electronic Data Inter-
change). On the Internet, a technology called “e-Hub” looks interesting as a support
to information centralization. We have seen, that information centralization is the best
method to follow our two principles to reduce the bullwhip effect by our two principles,
because Scheme D gives better results than B. Basically, an e-Hub can be seen as an
electronic blackboard, with which retailers share the market consumption. More pre-
cisely, Lee [2001] presents it as a node in the data network, that instantaneously and in
real-time processes and forwards all relevant information to all appropriate nodes, and
in particular, to all appropriate companies. An e-Hub can store data, process informa-
tion, and publish information in pull and/or push mode, as illustrated in Figure 8.3.

Concerning our approach, retailers can automatically multicast market consumption
in the rest of the supply chain through an e-Hub. This multicast would be instantaneous
and in real-time, as required by the information centralization used in our Scheme D.
From a more general viewpoint, e-Hub is designed to increase supply chain integration,
i.e., coordination and collaboration approach between supply chain partners to stay
competitive and enlightened. The four critical dimensions of this way to coordinate and
collaborate are information integration, synchronized planning, coordinated workflow
and new business models. To achieve these four points, companies’ information systems,
e.g., companies’ ERP as introduced in Subsection 2.3.1, are linked together through
these e-Hubs to form a “hub-and-spoke” system at the level of the supply chain [Lee,
2001].
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Figure 8.3: The e-Hub model [Lee, 2001].

8.6 Conclusion

The first series of experiments, as presented in the previous chapter, has assumed that
all companies were using the same ordering scheme. This assumption is relaxed in the
second series of experiments presented in this chapter. By doing so, we have verified
if our two principles allow companies to minimize supply chain costs and individual
costs. Thus, the reduction of the bullwhip effect was the metrics in the first series of
experiments, while costs were the metrics in this chapter.

This is the reason why costs in the QWSG were adapted to the Québec forest
context, and parameters of ordering schemes were optimized to minimize these costs.
The crucial question was to check, if companies were going to cooperate to reduce
the bullwhip effect, or if each company would like the whole supply chain to cooperate
except itself, which would eventually lead to total absence of collaboration in the supply
chain.
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Fortunately, we find that all companies have incentives to collaborate, because ba-
sic collaboration (Scheme B) and improved collaboration (Scheme D) are in the Nash
equilibria that are the most efficient for the overall supply chain, and such equilibria
Pareto-dominate other equilibria.



Chapter 9

Conclusion

9.1 Summary

In this dissertation, we have addressed the issues related to the interactions of au-
tonomous entities, and more precisely, how such entities can obtain and maintain coor-
dination in order to reduce stream fluctuations in distributed systems. The particular
case of distributed system on which we have focussed, is the supply chain modelled as
a multi-agent system. In the context of supply chains, stream fluctuations are known
as the bullwhip effect, which consists in the amplification of the demand variability.
The bullwhip effect is an issue of supply chain management, in which the variability
of orders placed by companies is amplified. This variability incurs costs due to higher
inventory levels and agility reduction. This cost has been estimated at 40-60 million
USD for a 300 kton paper mill in the north of Europe.

By considering the special case of supply chains, this reduction gives us some hints
in return to reduce stream fluctuations in other types of distributed systems, such as
multi-agent systems. For that purpose, this thesis has been divided into two parts. In
the first part, we have proposed to see delays as a cause of stream fluctuations, and we
have proposed two principles to reduce the impact of this cause. Based on these two
principles, we have then designed a decentralized decision making process to reduce the
bullwhip effect. The reduction of the bullwhip effect induced by this mechanism was
validated in a first series of experiments.

The second part of this thesis has checked with game-theoretic concepts, if all com-
panies have individual incentives to follow our two principles. In fact, it is not because
a coordination mechanism is globally efficient that individuals agree to use it, because
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coordination may have a price, and some companies may not earn enough to cover this
price. We have verified here that companies should follow our two principles because
each company increases its costs by deviating from them.

Notice that the principles and the approaches in these two parts are specific neither
to some specific supply chains, nor to some particular multi-agent systems. In fact, only
some elements of our two agent-based simulations are specific to the field of supply chain
management, and only the supply chain model and the method to calculate costs in the
supply chain are particular to the Québec wood industry. For instance, we have shown
that our solution to the bullwhip effect can often be translated into solutions for any
distributed system, and in particular, in some other multi-agent systems. This is due
to the fact that companies and agents share certain properties, such as their autonomy.

We now detail these two parts of our work. Let us recall that both series were carried
with our first simulator and that our second simulator is still under development.

9.1.1 Decentralized Coordination Mechanism

In the first part of this thesis, two decentralized decision processses (i.e., two ordering
schemes in the context of supply chains), based on information sharing, have been pro-
posed to minimize the bullwhip effect, without neglecting the importance of inventory
management and operational constraints. These ordering schemes were based on two
principles:

• The lot-for-lot ordering policy eliminates the bullwhip effect, but does not manage
inventory;

• Companies should react only once to each market consumption change by over-
or underordering.

These two principles explain why it is important that companies share their information
(i.e., companies have to know market consumption to be able to react to its changes),
and how to use the shared information (i.e., by over- or under-ordering exactly once
per market consumption change to stabilize inventory level).

The first series of experiments has validated these conceptual propositions. This
validation used a simulator inspired by the Québec forest industry, which is based on
the model of the Québec Wood Supply Game (QWSG). This game is derived from
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the Beer Game, which is a board game designed to teach the bullwhip effect. Each
company in this simulator is seen as a reflex agent that applies a given ordering rule.
We compared the reduction of the bullwhip effect incurred by our two ordering schemes
with five other rules. The second of our two schemes is an improvement on the first one
through the addition of information centralization. Information centralization consists
in the multi-casting by retailers of their sales in real-time to the rest of the supply chain.
This is an acceleration of the information sharing implied by our two principles, and
implemented in our first scheme, because the market consumption is as slow as order
in our first scheme while it is instantaneous in our second scheme.

Two main points can be drawn from the simulation outputs of this first series of
experiments. The first point is that the bullwhip effect is reduced as much as is possible,
but it cannot be totally eliminated, because a little amplification of the demand should
remain in order to avoid stockouts and overstockings, due to ordering and shipping
delays. This first point led us to propose that delays are also a cause of the bullwhip
effect, although they were only considered as an aggravating factor for another known
cause of the bullwhip effect. The second point to note is that our ordering scheme
transforms the behaviour of the supply chain. In fact, our two ordering schemes make
it so: retailers are disturbed for a longer period by inventory variations than upstream
suppliers (e.g., the forest), while order variability has almost disappeared. On the
other hand, the classic problem of the bullwhip effect is the contrary: retailers are less
disturbed by order variation than upstream suppliers.

9.1.2 Individual vs. Common Interest for Coordination

In the second part of this thesis, we check whether each company-agent in the simulation
has an individual incentive to fulfill our two principles by using one of our two ordering
schemes. While the first part only focussed on the bullwhip effect reduction, the second
part addressed financial benefits of the bullwhip effect reduction. This explains why we
first apply costs from the Québec forest industry to our simulation model. Next, we set
parameters in the three ordering rules considered in our second series of experiments.
In fact, companies in the considered scenario had to choose among three ordering rules:
(i) a classic (s, S) policy, (ii) our first ordering scheme, that requires information sharing
only between each company and its supplier, and (iii) our second scheme, that requires
information centralization. The parameters to set up in the first scheme are s and S,
and in our two ordering schemes the initial inventory level and the quantity of products
to over- or underorder at each market consumption change. Note that these three
schemes were also considered in the first part, and the other four schemes have been
dropped. Then, concepts from game theory concepts were adapted to our context.
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Finally, the second series of experiments was achieved. A simulation was carried
out for each combination of the three ordering schemes among the six companies in
the QWSG, and under nine market consumption patterns, that is, 9 ∗ 36 = 6, 561

simulations were carried out. Since the outcome of each of these 6,561 simulations is
nine individual company’s costs, a free software called Gambit was used to analyze this
huge quantity of data. This software showed that using our two ordering schemes never
results in dominated strategies, while using the (s, S) policy is quite often dominated.
We have also looked for Nash equilibria. For half of the considered market consumption
patterns, there is only one Nash equilibrium, which also incurs the lowest cost for the
entire supply chain. In fact, another result could have occured, in which each company
would have preferred the whole supply chain to collaborate (by using one of our two
ordering schemes), except itself, or, in other words, the best solution for the group
would not have matched the best individual solution. This is not the case here, because
every company has an incentive to collaborate by using one of our two schemes, which
is a very good result.

9.2 Discussion on our Methodologies

In this thesis, we have used the two methodologies that we have just recalled. The first
methodology was used in the first part of our work, and was the proposition of two
principles to design decentralized coordination mechanisms that do not induce stream
fluctuations. The second methology is at a different level than the first one, because
it deals with how to study that every agent has individual incentives to adopt our two
principles. In other words, the second methodology is used to verify whether agents
will agree to behave according to the first methodology. We now detail these two
methodologies.

9.2.1 Methodology to Propose a Decentralized Coordination
Mechanism

The first methodology deals with the coordination required to reduce the bullwhip
effect, and is summarized in our two principles. The goal of these two principles is to
guide the emergent behaviour of a supply chain towards a stable one. In summary, the
first methodology, and thus our two principles, uses communication to coordinate the
entities of distributed systems so that such systems are more stable. The experimental
results in Chapters 7 and 8 show that incurred costs can be decreased by several orders
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of magnitude when company-agents agree to share market consumption information.
Therefore, we have focussed on why to share information and on how to use the shared
information, rather than on the optimization of the parameters used in the coordination
mechanisms that instantiate our two principles. Only after we have finished designing
this methodology, we were able to perform the optimization of its parameters, as we
have done with the Solver in Chapter 8 (detail in Sections C.1 and C.2).

From a higher viewpoint, we can notice that coordination is one of the main issues
in the field of multi-agent systems, and thus, our first methodology is worth being
applied to other multi-agent applications. Indeed, we have seen in Table 3.1 that
stream fluctuations may affect several kinds of distributed systems (different kinds of
networks, multi-agent systems, economy. . .), and that the bullwhip effect is only one
instance of the generic problem of stream fluctuations. In particular, we have shown
in Subsection 5.6.2 how to apply our two principles to avoid the “slinky effect” in car
platoons in intelligent highway systems.

To introduce our coordination-based mechanism, we have presented in Subsec-
tion 4.1.2 how the multi-agent community has faced this problematic. In particular,
Boutilier [1996] proposed to classify coordination techniques into three classes, which
are used by many authors. These three broad classes are communication-based coordi-
nation, convention-based coordination and learning-based coordination. Concerning the
first class, communication in multi-agent systems provides agents with a better knowl-
edge about the context in which they make decisions. In particular, Bond and Gasser
[1988] note that communication allows agents to have an improved understanding of the
goals, plans and activities of ther agents, of the problem domain, and of the temporal
context (e.g., greater lookahead or history). That is, the coordination in a multi-agent
system may be improved if agents do not rely only on local information, but if they also
have a global view on the multi-agent system. We can note here that our two principles
make agents communicate to have such an improved coordination. But the system may
still lack of coherence, that is, it may lacks behaving like a unit, because of information
transmission lead time. To improve more the coordination of the multi-agent system,
we added information centralization, which makes all agents have the same information
at the same time.

Bond and Gasser [1988] also note that “knowing when something (information about
the external world, or information about the agent’s internal state) has changed suf-
ficiently to notify another agent is tricky”. We can relate this sentence to our second
principle, which states that companies should react only once to each market consump-
tion change, or with multi-agent words, agents should react only once to each change
in the environment. Indeed, this principle is easy to apply in our simulations, but in
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real life, some thresholds of the market consumption have still to be defined and known
by everyone, which is tricky.

9.2.2 Methodology to Check That our Two Principles Will be
Adopted

The second methodology uses multi-agent simulations to build games that we next
analyze with game-theoretic concepts. The idea is to follow these three steps:

1. simulate all combinations of the possible choices among all agents (i.e., each agent
had three possible choices, and there were six agents in Chapter 8);

2. put every simulation output in an entry of a matrix;

3. analyze this matrix as a game in the normal form.

As we can see, this methodology can be used to study a large variety of issues of incen-
tives, and more generally, to all problems of interactions that we are able to simulate.
The addition of multi-agent simulation to game theory allows enhancing the strengths
of this theory to study much more complex interactions. We now discuss the respective
advantages of analytical game theory (i.e., traditional game theory) and of simulation-
based game theory (i.e., our second methodology).

The strengths of game theory are to provide a wide range of tools (representation
of interactions as games, concepts of solution. . .) to study interactions. Traditionnally,
all these tools have been used in analytical approaches. The advantage of analytical
approaches is to be very pleasant because they allow finding solutions (Nash equilib-
ria, Pareto-efficient joint strategies. . .) analytically, and next, to comment easily these
analitycal results. In particular, singularities, such as discontinuity or particular cases,
are easy to identify.

However, it is not always possible to represent interactions analytically, because
dynamics are too complex. For example, it is very hard to represent the dynamics of
a supply chain with a little set of equations because of the discontinuity of streams
(i.e., stockouts may occur, which forces using what-if conditions in equations). This is
the reason why the models in the literature only consider two levels of a supply chain,
that is, one or several client(s) with one or several supplier(s) (cf. the models called
“joint optimization” in Subsection 4.1.1). In such cases, our methodology can be used,
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because simulations are able to study much more complex dynamics than analytical
approaches. But this ability to study more complex situations has also a price, that
is due to the replacement of the analytical description of interactions by a simulation
model. More precisely, since we rely on simulations, we are only able to run some specific
scenarios. As a consequence, to study the influence of one specific parameter, we must
carry out simulations for several values of the considered parameter. Furthermore,
the interesting values of this parameter (discontinuity. . .) are not obvious. On the
contrary to simulation-based approaches, the impact of every parameter is obvious
with analytical approaches.

In short, using traditional game theory is more pleasant because we can prove results
analytically, while using game theory with simulations (i.e., our second methodology)
allows considering much more complex/realistic dynamics, but conclusions drawn from
simulations are harder to generalize.

Finally, we can note that game theory is more and more used in computer science,
but only a few softwares as Gambit are still available, and algorithms to compute the
solutions described analytically by concepts of solutions are still under research, in
particular to improve their efficiency.

9.3 Future Work

Many extensions of this work are possible. First, we have outlined some of them during
this dissertation. For example, we have pointed out in Section 8.1, that the optimiza-
tions of the parameters of the ordering schemes were only performed for homogeneous
supply chains, which thus incur the minimum of the overall supply chain cost. To fix
this issue, we have proposed a method to optimize parameters for heterogeneous supply
chains as well (cf. algorithm 8.4 in replacement of Algorithms 8.2 and 8.3), but the
computation time will increase much.

Another example of extension proposed during this dissertation concerns the mar-
ket consumption patterns. Except in Chapter 7 (patterns 10A to 10J were ruled by a
statistic distribution), we have not considered that such patterns are stochastic. Al-
though, such stochastic patterns correspond to the reality, and should thus be used
in our simulations. Of course, this would much increase the number of simulations to
carry out, in order to calculate the average and standard-deviation of our four metrics
(standard deviation of placed orders, costs, number of backorders, and standard devi-
ation of inventory level) for each instance of a stochastic market consumption pattern.
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This would also much increase the computation time to find Nash equilibria. Moreover,
Nash equilibria may be different for each instance of a stochastic pattern, but we think
that this will not occur, because we hope that our results are robust.

We now propose some additional questions to extend our work.

9.3.1 How to Make Agents Take into Account their Impact on
Other Agents?

The basic question

The first possible future work concerns the evaluation of the efficiency of company-
agents. In fact, we have used two main metrics. In the first part of the thesis, we have
considered the standard deviation of orders (however, we also consider three other met-
rics, i.e., costs, backorders and variation of inventories), because it is a direct measure
of the bullwhip effect. In the second part of this dissertation, we used costs, which are
an indirect measure of the bullwhip effect. While the first metric is accurate, because it
is a fluctuation measure, and the bullwhip effect is the fluctuations of orders, the second
metrics may be improved. Precisely, we could adapt our simulation model to assume
company-agents want to maximize their utility/profit, instead of minimizing costs. In
fact, minimizing costs may cause company-agents to miss some opportunities, because,
for example, they do not invest money (which is a cost), while it should increase their
profit. Moreover, this replacement is in conformand with game theory, and economics
in general, in which agents are defined as utility maximizers, which corresponds to
company-agents that maximize their profit.

In this case, costs would take production and inventory activities into account, and
could be non-linear, e.g., in order to represent economies of scale. The supply chain
would earn money each time it sells a product to the market, and lose sales when market
consumption exceeds the quantity of products available by retailers. Backorders in the
supply chain would no longer cost money: the only goal of each company would be
that retailers have enough products. Therefore, the goal of companies would be quite
different: instead of aiming at zero inventory and zero backorders, companies would try
to maximize retailers’ sales, while minimizing their own inventory, and taking advantage
of non linear costs. Companies would only want retailers have no backorders and no
longer take care of other companies’ backorders. In fact, companies do not wish retailers
to sell as much product as possible, but wish to maximize their utility.
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How to Apply Mechanism Design to our Context?

As previously stated, company-agents are selfish, and thus, have difficulty taking into
account that they are more profitable when the rest of the supply chain is more efficient.
A method to make them consider the goal of the entire supply chain, i.e., to deliver
products to end-customers, and thus, to have products available for retailers, is to
incite them not to have too many backorders. To this end, Subsection B.4.2 ends on
a related question: How will company-agents behave if we change the relative weight
of inventory holding and backorders. For example, if backorders are considered as
costless, are company-agents going to stop collaborating? Therefore, a possible set of
experiments could study the price of backorders, where the optimum price would be
defined either as the one in which products available by retailers exactly match the
market demand, or as the one that maximizes the global supply chain benefit. In other
words, we have to find the balance between two extremes:

• If backorders cost nothing, each agent only tries to minimize its inventory level. In
fact, each agent prefers that retailers lose sales, than to pay for holding inventory.

• If backorders have an infinite cost, each agent only tries to avoid stockout. In this
case, each agent has large inventory levels.

One interesting question here, is to know if the best price of backorders is the same for
every agent, or if suppliers should pay a higher price than their clients. This question
looks strongly related to Porteus’ Responsibility Tokens presented in Subsection 4.1.1.
We recall that responsibility tokens are used to evaluate the financial penalty to pay,
when a backorder occurs. More precisely, when a company cannot ship the demanded
products, it replaces the missing products by some responsibility tokens. When a
company receives such tokens, it can ship them as if they were real products, when this
company also incurs a stockout. These products are thus shipped as some products.
When these tokens are eventually received by a retailer, they are transformed into a
financial penalty for the company that has issued them, when this retailer does not
have enough real products to fulfill its demand. On the other hand, these tokens
do not incur such a financial penalty when no stockouts occur by the retailer. In
consequence, companies only pay for backorders incurred by the retailer because of
their own backorder, and not directly for their own backorders.

More generally, making agents take into account their impact on other agents deals
with mechanism design. Mechanism design is the inverse of game theory, because game
theory studies the players’ behaviour when these players are given some rules, while
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mechanism design looks for the rules to give to players, so that these players exhibit
the desired behaviour. More precisely, the input of a mechanism is every player’s
utility function and the function of social choice of these players (we have assumed in
this dissertation, that this function of social choice was the sum of all players’ utility
functions), and the output of this mechanism is the rules to give to players. When
players use such rules, they maximize the function of social choice (which is, in our
case, the total cost of the supply chain), when they maximize their own utility function.
In other words, these rules are designed so that company-players take into account
their impact on the rest of the supply chain, when they make their decision, only by
maximizing their utility function. We have given some examples of such mechanisms in
this dissertation. For example, in Chapter 4, we have said, that some researchers have
used them to price the use of shared resources.

In this context, mechanism design could be used to modify each company’s benefit
function, so that these companies maximize the overall supply chain benefit, when they
also maximize their own benefit. Each company’s benefit function would take into
account a precise description of their expenditure (inventory holding, shippings, raw
material purchases, wages. . .) and revenue (sales), and the company would thus be able
make its decision as it is currently used to doing. The only difference would be that
these decisions have no negative impacts on the rest of the supply chain.

9.3.2 Why are Agents Reluctant to Share Information?

As future second work, it would be interesting to investigate information sharing in
real life. In fact, company-agents in our model have few disadvantages to sharing this
information. In Chapter 7, in which all company-agents use the same ordering rule, we
have seen that the more information is shared, the lower the overall cost of the supply
chain is. But the distribution of this overall cost among agents in the supply chain also
changes. This is the reason why we have studied individual incentives for information
sharing because some agents may prefer that the whole supply chain have a higher cost,
because this reduces their own cost.

Information sharing raises other problems than those related to such change in the
distribution of the global cost. Adding these other problems requires extending the
model a great deal to take into account:

• competitors, who are able to find this information, and to use it as a competitive
advantage against the agents in our supply chain. This point may concern the
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security of computer systems, in which cryptography plays a central role, by
securing the transmission of information on public networks as the Internet;

• negotiation between each agent and its supplier in our supply chain, in which
the supplier could have more power in the negotiation if he has more informa-
tion. That is, negotiating under assymetric information (i.e., agents have different
information) may change the output of this negotiation.

In both cases, each agent would still make its decision to share its information or not,
based on the decision taken by the other agents. Our methodology that applies some
concepts from game theory to analyze simulation outputs, and that was detailed in
Section 8.1, could be applied here. Other similar questions can also be studied with
this methodology:

• What happens if an agents uses (O, Θ) orders, but lies about O?

• What happens if an agent using (O, Θ) orders does not respect the second principle
by emitting Θ anytime, e.g., because it places order (O, Θ) in which Θ is chosen
such as O + Θ is given by a (s, S) ordering policy?

As previoulsy stated with the remark that “knowing when something has changed suf-
ficiently to notify another agent is tricky”, another question concerning information
sharing in real-life is the interpretation of our second principle “companies should only
react once to each market consumption change”. In fact, the market consumption is
never steady. In this condition, how to say that the market consumption has just
changed, and that company-agents are now allowed to emit Θ? Is it necessary that
every company-agent use the same threshold to characterize such a change? Do they
need to agree on a common threshold? Or does every agent to learn its own threshold
with some learning algorithm as Q-learning or a Markov Decision Process (MDP)?

9.3.3 How to Smooth Demand in the Supply Chain?

The third proposed future work is the study of the application of demand smoothing
techniques. Conversely to this thesis, other work [Dejonckheere et al., 2003, 2002] has
studied such techniques to reduce the bullwhip effect. This research only focuses on
how to smooth demand. On the contrary, we could check if companies have incentives
to use such smoothing techniques. In fact, we have seen in Section 5.1, that companies
in the QWSG amplify the bullwhip effect in order to stabilize their inventory, but they
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could also order in a steady way if they agreed to let their inventory fluctuate, and
thus to have backorders. We can note that inventory level has to be increased when
inventory variation also increases.

In this context, is it worth retailers holding excessive inventory to order in a steady
way? Or is it better that wholesalers, or another position in the supply chain, do
so? In fact, Figure 7.3 shows that the minimum of the overall supply chain cost C

varies a great deal depending on the market demand pattern. We recall that these
costs can be compared together, because they all represent the same real lumber and
wood consumptions for a year. Therefore, if retailers (or another position) had enough
inventory to absorb market fluctuations, they could place steady orders. These steady
orders would allow minimizing the overall cost of the rest of the supply chain. A part of
the money saved by the rest of the supply chain would then be given to retailers in order
to pay them for agreeing to this overstocking. Intuitively, it is a win-win situation: the
rest of the supply chain saves money, because retailers make an effort for them, and
the retailers earn money, because the rest of the supply chain pays them for smoothing
demand.

As in the second part of this thesis, each company would have to make its decision
to participate or not to this system of paying retailers, and thus, we could study this
question with the methodology in Section 8.1. The price of this system is determined by
the level of retailers’ overstocks. Of course, the companies agreeing to use this system
would share this price between themselves, and this system would only be used if at
least one company accepts to pay for it. In the case where only one agrees, it would do
so by the whole price. In the case where two or more companies agree, the way to share
the price has to be studied. Maybe the way to share this price would have an impact on
the adaption of this system by each company. Intuitively, all companies would like this
system to work, but all companies would also prefer that other companies pay for it. If
this situation occurs, Clarke [1971]’s tax could help every company behaves according
to the global behaviour of the supply chain. The idea of this tax is to separate the
decision of a company and what this company pays, because the company pays for the
social consequences of its decision.

Like our two principles to reduce the bullwhip effect, such a study may also be
interesting for any distributed system, because the involved principles are very similar
and reduce the same cause of stream fluctuations. In particular, we will be able to
propose the same kind of translation dictionary as we have proposed to translate our
solution to the bullwhip effect to multi-agent systems.

After this system is well designed, we will study its real-life implementation by merg-
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ing it with some techniques from demand management. In particular, ATP (Available
To Promise) [van der Eerden, 2002; Chien-Yu Chen and Ball, 2001] is a system to plan
production and procurement. Precisely, instead of planning production only with pro-
duction units, new units called ATP are used. ATP units are used to plan production in
advance, and these units are allocated to customers at the last moment. For example,
ATP units are used to plan a production for 30 items of product X for a set of clients 1,
and 20 other ATP units of items Y for a set of clients 2. When this allocation is made,
buyers of these 30+20 products are unknown, but the production capacity is allocated,
which allows managing the uncertainty in demand while scheduling production. Next,
when some clients 1 buy units of X, ATP is consumed to fulfill this demand, but if some
clients 1 also buy units of Y, a new production capacity has to be allocated, because
no ATP was planned for this demand. In practice, Gantt diagrams currently have one
type of information per type of product that has to be produced. ATP provides new
types of information to these diagrams so that to schedule the production for products
that are not yet ordered by clients. In conclusion, the smoothing technique proposed
in this subsection may plan the allocation of ATP units.

9.3.4 How to Consider a More Realistic Model?

Conversely to the three previous questions, a more practical issue deals with the com-
pany and supply chain models implemented in our two simulators. Indeed, we only
simulate supply chains according to the QWSG. Two series of questions arise here:

• Company model: Answering to the first series of questions requires an adaptation
of the company model in the QWSG in order to allow the processing of several
types of products and improved company behaviour, i.e., a more realistic or more
“intelligent” behaviour. An example of such an adaptation is the multi-item sce-
nario was presented in Section 5.5, but it only illustrated how to use our two
proposed ordering schemes, rather than simulating a supply chain using them.
We now illustrate the questions that could be studied by such changes in the
company model.

– How to consider companies processing different types of items, instead of
only one in the QWSG? In particular, how will companies make a trade-
off between their requirements for different types of products? How should
companies plan their production? We recall here, that planning is one of
the most important applications of artificial intelligence. The problem in
the context of multi-agent systems (and supply chains) is to plan with the
others, instead of planning alone.
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On the other hand, how does the supply chain behave when (production
and inventory) capacities are taken into account?

– How to implement the method used by companies to choose their order-
ing scheme? In fact, we have used game theory to show which ordering
scheme should be used by companies, by assuming that companies were
able to change their scheme, if they could reduce their cost by using an-
other scheme. In this process, we have specified neither how companies see
that they should change their ordering scheme, nor how they choose an-
other scheme. This corresponds to meta-rules in our simulators, that is, to
the rules that choose which ordering rule to apply. We can note, that such
meta-rules are implemented in JACKTM.

– How to improve the forecasting of future demand with some learning meth-
ods? In fact, current algorithms for demand forecasting are only based on
past demand, but some researchers use learning methods, such as Q-learning
and Markov Decision Process (MDP), to take more parameters into account,
such as the behaviour of competition, the global state of the economy, the
existence of substitution products, and so on. In this approach, the learn-
ing algorithm “learns” not only the past behaviour of the demand like in
the current approach, but also many elements in the environment that may
impact on the demand.

This approach would be a great extension of Kimbrough et al. [2002] work,
who have also applied learning techniques to supply chain management.
Since agents learn how to place order to minimize an expected cost, we
could compare how agents place orders when they minimize their own cost,
and when they minimize the overall supply chain cost.

• Supply chain model: The importance of the second series of questions is illus-
trated by two points: we can notice in Chapter 7, that the difference in the paper
and lumber sub-supply chains length can be a problem, and the study in Sub-
section C.4 of the Sawmill’s order aggregation method, shows how difficult this
problem is. Some questions about the supply chain model are:

– How to change for another supply chain model, that is, with more or less
companies and with more diverging and converging streams? In fact, we
only consider a diverging stream at the output of the Sawmill, which already
raises some questions about how to place orders, that are based on these
two streams.

– How to analyze the simulation outputs, when the simulation model has more
companies? We have seen, that simulating and analyzing the simulation
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outputs with Gambit takes around one hour and a half for six companies,
where each company has only three possible choices. If we want to consider
a more extended supply chain, e.g., five retailers for each wholesaler, and
two LumberWholesaler and three PaperWholesaler, the computation time is
going to explode, because computing Nash equilibria is not an easy problem.
In consequence, designing quicker algorithms to find equilibria would allow
simulating and analyzing more realistic supply chains, in which companies
could choose between more alternatives. Moreover, such algorithms are
interesting for computer science, economics and supply chain management,
because game theory is used in these three fields at least.

To answer these two series of questions, many enhancements of the QWSG have been
implemented in our second simulator programmed with the JACKTM toolkit. In fact,
JACKTM allows providing companies with the concepts from artificial intelligence, e.g.,
learning and planning, and from multi-agent systems, e.g., distributed simulations.
This example of distributed simulation is important, because agents are a natural way
of modelling companies. Conversely to mathematical models, such a simulation does
not require any abstractions to understand which actions are performed by each com-
pany. In consequence, anybody (and thus, company managers) can understand how
the whole supply chain behaves when each company has a particular behaviour, and
how important the coordination is in a multi-agent system (and a supply chain).

Furthermore, since JACKTM can use any Java code, adding a learning algorithm
to agents to forecast demand would be an easy task. Finally, we have previously
said, mechanism design could be used in supply chains. Agent-based simulations could
graphically show, how such a mechanism works in a supply chain.

In short, we propose to extend our model to make it more realistic. The increase of
the realism will surely increase the complexity of both the algorithms used to simulate
the supply chain, and the algorithm used by agents to make efficient decisions.

9.3.5 How to Formalize our Interactions?

We now question the possiblity of replacing our two simulators by a mathematical
model. In fact, we use the ordering scheme A” as if the demand is constant during
the whole simulation, while parameters s and S should be set with a better method,
for example, by enhancing the demonstration in Subsection 8.2.2 to consider several
companies, instead of only one. After A” , this formalism would be adaptable to calculate
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the optimal initial inventories in schemes B and D, instead of using an optimization
software on simulations as we did. If this formalisation is possible, simulation could
be dropped and game theory could be used directly to study companies incentives to
use A” , B or D.

Maybe this formalism would also explain how to set up parameters in Scheme A’.
In fact, Figure 7.3 shows that the bullwhip effect is great, but over a very short period.
This leads to a bad inventory management in Figure 7.4. If these overorders were
controlled, inventory could be managed, and the bullwhip effect minimized without
information sharing. The drawback to this scheme is, that it is only based on incoming
orders. Therefore, it could be inefficient to manage inventories in practice, because it
does not consider inventory level.

Such models already exist in the literature where they are called Joint Economic
Lot Size (JELS) or multi-echelon inventory models, as presented in Subsection 4.1.1.
We have also presented some applications to supply chain management of traffic flow
theory [Daganzo, 2003], and of the use of z-transforms or Laplace transforms from
control theory [Dejonckheere et al., 2004, 2003, 2002; Disney and Towill, 2003].
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Appendix A

Simulation Model of the Québec Wood
Supply Game

In this appendix, we describe in detail the implementation of a company in the Québec
Wood Supply Game (QWSG) in a spreadsheet program, as an extension of Section 6.2.
To this end, we first recall the notations in Section A.1, then we introduce in Section A.2
the equations that do not depend on which ordering scheme is used by the considered
company, and finally, we describe the implementation of the seven ordering schemes A,
A’, A”, B, B’, C and D in Section A.3. Note that this implementation has also been
presented in [Moyaux et al., 2004a, 2003a].

A.1 Recall of Notations

We recall that the notations introduced in Subsection 6.2.1 are as follows:

Toi
w = company i’s outgoing T ransport in week w.

Tooi
w = company i’s outgoing T ransport in week w corresp. to current O.

Tobi
w = company i’s outgoing T ransport in week w corresp. to backordered O.

ToΘi
w = company i’s outgoing T ransport in w corresp. to current and backordered Θ.

T iiw = company i’s incoming T ransport in week w.

I i
w = company i’s Inventory in week w.
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Opi
w = company i’s P laced Orders X in week w.

Ooi
w = company i’s outgoing Orders O in week w.

Oiiw = company i’s incoming Orders O in week w.

Obi
w = company i’s backordered O in week w.

Θpi
w = company i’s sent Θ in week w.

Θoi
w = company i’s outgoing Θ in week w.

Θiiw = company i’s incoming Θ in week w.

Θbi
w = company i’s backordered Θ in week w.

Dlumber
w = Oi1w = lumber market consumption in Week w.

Dpaper
w = Oi2w = paper market consumption in Week w.

As stated in Subsection 6.2.1, except the inventory I and the two market consumptions
D, the first letter in the name of these variables indicates if the considered variable is
for the shipping stream (T for transportation) or for the ordering stream (O or Θ), and
the second letter indicates if it is an incoming, outgoing, placed or backordered value of
this stream. For the sake of simplicity, the quantity of products to ship To is plit into
three parts: Too and Tob for orders O, and ToΘ for orders Θ.

We now present the equations used by any companies, next the equations that are
used only by the companies that use a particular ordering scheme.

A.2 Scheme-independent equations

In this appendix, for the sake of simplicity, i = 1 represents a retailer (any of both
retailers) and i + 1 is i’s supplier, such as i = 2 is a wholesaler, even if this is not
compatible with Figure 6.3 and with the rest of this dissertation. Therefore, Oi1w
denotes retailer’s demand, that is, the market consumption (Dlumber

w or Dpaper
w ), while

we have Oo1
w = Dlumber

w and Oo2
w = Dpaper

w in the rest of this dissertation. Relations
between variables, that do not depend on the ordering scheme used, are the same as
in [Moyaux et al., 2004c, 2003a,b], except some adaptations needed by Scheme A” , that
we describe in the next subsection. Notice that the simulation begins in Week w = 1.
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Ton
w represents products sent to its client i-1 by the company i in week w. To

make the calculation of this quantity easy, it is divided into three parts, as indicated by
Equation A.1: Tooi

w represents products that are first sent to fulfill the current order
(or the quantity of products the company is able to ship when inventory and incoming
transports are not enough), as reflected by Equation A.2. Then, the company i ships
the quantity Tobi

w of products to reduce its backorders. Finally, when orders are fulfilled
and there is no backorder left, ToΘi

w products are sent to reduce backordered Θ, called
Θbi

w (Equation A.3).

Toi
w = Tooi

w + Tobi
w + ToΘi

w (A.1)

Tooi
w =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Oiiw if I i
w−1 ≥ 0 and I i

w−1 + T iiw ≥ Oiiw

I i
w−1 + T iiw if I i

w−1 ≥ 0 and I i
w−1 + T iiw < Oiiw

Oiiw if I i
w−1 < 0 and T iiw ≥ Oiiw

T iiw if I i
w−1 < 0 and T iiw < Oiiw

(A.2)

Tobi
w =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Obi
w−1 if I i

w−1 ≥ 0 and I i
w−1 + T iiw − Tooi

w ≥ Obi
w−1

I i
w−1 + T iiw − Tooi

w if I i
w−1 ≥ 0 and I i

w−1 + T iiw − Tooi
w < Obi

w−1

−I i
w−1 if I i

w−1 < 0 and T iiw − Tooi
w ≥ −I i

w−1

T iiw − Tooi
w if I i

w−1 < 0 and T iiw − Tooi
w < −I i

w−1

(A.3)
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ToΘi
w =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−Tooi
w − Tobi

w if I i
w−1 ≥ 0 and I i

w−1 + T iiw − Tooi
w

−Tobi
w ≥ Θbi

w−1 + Θiiw and Tooi
w

+Tobi
w + Θbi

w−1 + Θiiw < 0

Θbi
w−1 + Θiiw if I i

w−1 ≥ 0 and I i
w−1 + T iiw − Tooi

w

−Tobi
w ≥ Θbi

w−1 + Θiiw and Tooi
w

+Tobi
w + Θbi

w−1 + Θiiw ≥ 0

I i
w−1 + T iiw − Tooi

w − Tobi
w if I i

w−1 ≥ 0 and I i
w−1 + T iiw − Tooi

w

−Tobi
w < Θbi

w−1 + Θiiw

−Tooi
w − Tobi

w if I i
w−1 < 0 and T iiw − Tooi

w − Tobi
w

≥ Θbi
w−1 + Θiiw and Tooi

w + Tobi
w

+Θbi
w−1 + Θiiw < 0

Θbi
w−1 + Θiiw if I i

w−1 < 0 and T iiw − Tooi
w − Tobi

w

≥ Θbi
w−1 + Θiiw and Tooi

w + Tobi
w

+Θbi
w−1 + Θiiw ≥ 0

T iiw − Tooi
w − Tobi

w if I i
w−1 < 0 and T iiw − Tooi

w − Tobi
w

< Θbi
w−1 + Θiiw

(A.4)

Backorders correspond to products needed by clients, but that cannot currently be
shipped. Their role is to memorize that products should have been shipped in the past
or in the current week, and that have to be shipped as soon as possible. In the QWSG,
backorders are noted as negative inventories, but to simplify the implementation, back-
orders are rather implemented in two separate variables: Obi

w in Equation A.5 represents
backorders created by unfulfilled O, and Θbi

w in Equation A.6 backorders created by
unfulfilled Θ.

Obi
w = Obi

w−1 + (Oiiw − Tooi
w) − Tobi

w (A.5)

Θbi
w =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Θbi
w−1 + Θiiw − ToΘi

w + Tooi
w + Tobi

w + ToΘi
w if Tooi

w + Tobi
w

+ToΘi
w < 0

Θbi
w−1 + Θiiw − ToΘi

w if Tooi
w + Tobi

w

+ToΘi
w ≥ 0

(A.6)

Incoming transport is supplier’s (i.e., company i + 1) last week outgoing transport,
therefore:

T iiw = Toi+1
w−1 (A.7)
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Θ(Op,    p) Θ(Oo,    o)

ToΘΘ(Oi,    i)

w+2
week

w w+1 w+3 w+4

company

Ti I

Too

I

Toi+1

i

Figure A.1: Some relations between variables (recall of Figure 6.4).

Inventory level is previous inventory level plus inputs minus outputs:

I i
w = I i

w−1 + T iiw − Toi
w (A.8)

Figure 6.4 (recalled in Figure A.1) shows how orders are delayed between a client i and
its supplier i + 1. Each order is placed in (Opi

w, Θpi
w), goes next in (Ooi

w+1, Θoi
w+1)

to simulate the first week of delay, and is finally put in supplier’s (Oii+1
w+2, Θii+1

w+2) to
simulate the second week of delay. This explains why incoming order (O, Θ) is the last
week client’s (company (i − 1)) outgoing transport (Equations A.9 and A.10).

Oiiw = Ooi−1
w−1 (A.9)

Θiiw = Θoi−1
w−1 (A.10)

Figure A.1 also explains how Ooi
w and Θoi

w are setup in Equations A.11 and A.12.

Ooi
w = Opi

w−1 (A.11)

Θoi
w = Θpi

w−1 (A.12)

Every company is setup in the same way, i.e., with Equations A.1 to A.12, except the
Sawmill which has the six following pairs of variables, and thus, some of the previous
equations are used twice by the Sawmill:

1. Oi6-lumber
w and Oi6-paper

w ;

2. Θi6-lumber
w and Θi6-paper

w ;

3. Op6-lumber
w and Op6-paper

w ;
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4. Θp6-lumber
w and Θp6-paper

w ;

5. I6-lumber
w and I6-paper

w ;

6. To6-lumber
w and To6-paper

w .

The Sawmill also has some additional variables Op6
w and Θp6

w to handle the interface
between these pairs of variables and the Sawmill’s supplier, i.e., the Forest. Oo6

w, Θo6
w

and T i6w are unique. In fact, we operate as if there were a paper Sawmill and a lumber
Sawmill sharing the same product input T i6w (each part of the Sawmill receives what
is in the incoming transport T i6w, because one unit of wood coming from the Forest
gives one unit of lumber and one unit of paper). Then, the rest of the lumber Sawmill
is distinct from the paper Sawmill. In particular, the lumber Sawmill would like to
place orders (Op6-lumber

w , Θp6-lumber
w ), while the paper Sawmill would like to place orders

(Op6-paper
w , Θp6-paper

w ). A problem is how to aggregate these two needs. In this paper, we
assume that:

• Op6
w = (Op6−lumber

w + Op6−paper
w )/2 and Θp6

w = (Θp6−lumber
w + Θp6−paper

w )/2

On the contrary, we have used in our previous papers [Moyaux et al., 2004c, 2003a,b]:

• Op6
w = max(Op6−lumber

w ; Op6−paper
w ) and Θp6

w = max(Θp6−lumber
w ; Θp6−paper

w )

The way to aggregate efficiently Op6-lumber
w / Op6-paper

w and Θp6-lumber
w / Θp6-paper

w into
Op6

w and Θp6
w will be studied in Subsection C.4.

A.3 Scheme-dependent equations

The previous equations describe the shipping and ordering flows in the company i. We
now focus on the unique decision made by companies in each week, which concerns the
choice of O and Θ to place, i.e., Op and Θp. This decision depends on the used ordering
scheme: the next equations are scheme-dependent. It is worth noting that incoming
Θ (called Θi) are always fulfilled automatically by shipping items to the client as real
orders. This is achieved by ToΘ in Equation A.11. In other words, all companies can
receive Θ, even when the considered company does not emit Θ.
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Scheme A: Since (O, Θ) orders are not applied in Scheme A, Θ is not used, because
orders are only placed in O, as reflected by Equations A.13.

θpi
w = 0 (A.13)

Orders are placed so that to keep a steady inventory, except that negative orders
(i.e., order cancellations) are forbidden (and thus, inventory level remains equal
or increases over time), as described in Equation A.14.

Opi
w =

{
0 if Oiiw + (I i

w−1 − I i
w) + (Obi

w − Obi
w−1) < 0

Oiiw + (I i
w−1 − I i

w) + (Obi
w − Obi

w−1) else
(A.14)

Scheme A’: Companies that use Scheme A’ place orders in a similar way than com-
panies ordering with B (B is our first proposed scheme, that applies our two
principles), except that Θ is not used (Equation A.15).

θpi
w = 0 (A.15)

Over- and underorders to stabilize inventory in Scheme B are achieved by the
emission of Θ. Since rule A’ does not use Θ, over- and underorders are achieved
in O, in the same way as Scheme B, except that negative orders (i.e., order
cancellations) are forbidden, which is implemented by Equation A.16.

Opi
w =

{
0 if Oiiw − λ ∗ (Oiiw−1 − Oiiw) < 0

Oiiw − λ ∗ (Oiiw−1 − Oiiw) else
(A.16)

We use the same λ as in Scheme B. We have seen in Chapter 7 that this ordering
scheme reduces much the bullwhip effect without requiring information sharing,
i.e., without requiring the market consumption information to be communicated
to companies, but inventory is not managed efficiently.

Scheme A”: This scheme implements an (s, S) ordering policy, and thus, no Θ are sent
in Op (Equation A.17.

θpi
w = 0 (A.17)

Each week, the company checks if inventory is lower than s. When it is the
case, the company orders products to fill its inventory up to S, as presented in
Equation A.18.

Opi
w =

{
S − I i

w if I i
w < s

0 else
=

{
Oiiw − I i

w if I i
w < 0

0 else
(A.18)

We pointed out in Subsection 8.2.2 that we look for the optimal parameters s and
S in Appendix B.2. We find that taking s = 0 and S = Oiiw is optimal for a steady
demand, and we carry out our two series of simulations with these parameters, i.e.,
we do as if the demand remained steady for all the market consumption patterns
used in this thesis.
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Scheme B: This is the first ordering scheme that we propose to reduce the bullwhip
effect by stabilizing order stream as most as possible. Incoming O, which is the
market consumption when all clients use Schemes B and/or D, is transmitted to
the client, according to the lot-for-lot policy (cf. our first principle), as reflected
in Equation A.19.

Opi
w = Oiiw (A.19)

Next, company’s requirements are added to incoming Θ, and this sum is sent as
Θ to the supplier (see Equation A.20). λ ∗ (Oiiw−1 −Oiiw) is an estimation of the
inventory decrease caused by the variation of Oi, which is caused by the market
consumption variation. We can note that our second principle (i.e., companies
order differently from the lot-for-lot policy only when O changes) is fulfilled,
because Θ are only sent when O changes.

θpi
w = θiiw − λ ∗ (Oiiw−1 − Oiiw) (A.20)

Two parameters have to be set up in B: λ and initial inventories I i
1 for every

company i. λ is chosen so that the inventory eventually stabilizes on its initial
level when the demand has been constant for a sufficient period. λ is a factor
proportionnal to the estimated number of required products and to the variation
of O. On the other hand, each I i

1 results from an optimization. How to set up
these two parameters is explained in Subsection B.3. In particular, we find that
we should use λ = 4 for all companies. We use empty initial inventories in the
first series of experiments, and the values of I i

1 given in Figure C.7 in the second
series of experiments.

Scheme B’: This scheme satisfies our first principle (because lot-for-lot orders are used
to manage O, as reflected by equation A.21), but not our second principle because
companies may react any number of times to each market consumption change
by sending Θ. Precisely, Θ are sent to keep a steady inventory like in Scheme A,
but this emission of Θ does not depend on the variation of O, as outlined in
Equation A.22.

Opi
w = Oiiw (A.21)

Θpi
w = Θiiw−1 + (I i

w−1 − I i
w) + (Obi

w − Obi
w−1) (A.22)

Scheme C: Scheme C does not use (O, Θ) orders, as reflected by Equation A.23.

Θpi
w = 0 (A.23)

Next, C is similar to A, except that information centralization is used, like in D.
Therefore, Oiiw in Equation A.14 is replaced by Oi1w in Equation A.24. Since C is
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only simulated with a homogeneous supply chain (i.e., all companies use the same
ordering scheme), we do not need to check whether the retailer of the considered
company agrees to share the market consumption information. As we will now
see, this simplification is not possible in D, which is the reason of the what-if
conditions in Equations A.25 and A.26

Opi
w = Oi1w + (I i

w−1 − I i
w) + (Obi

w − Obi
w−1) (A.24)

Scheme D: The last scheme is very similar to Scheme B, and is our second scheme
proposed to reduce the bullwhip effect. The difference with B is in the way to
choose O and Θ: the company using D can base O and Θ on market consumption
(i.e., Oi1w, because i = 1 is one of both markets in this appendix) when informa-
tion centralization is achieved by the retailer, else this company uses wholesaler’s
incoming order as a basis when retailer does not multi-cast its incoming order but
the wholesaler do,. . . else the company uses its own incoming order when none of
its clients multi-cast its incoming orders, as implemented by Equation A.25:

Opi
w =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Oi1w if the retailer (i = 1) multi-casts its incoming orders.
Oi2w if the retailer does not multi-cast its incoming orders,

but the wholesaler (i = 2) does.
. . . . . .
Oiiw if no companies multi-cast its incoming orders.

(A.25)

In the same way, Oiiw in B (Equation A.20 is replaced by the market consumption
Oi1w when it is available, or by a client’s incoming order (Equation A.26):

θpi
w =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

θiiw − λ ∗ (Oi1w−1 − Oi1w) if the retailer multi-casts its incoming orders.
θiiw − λ ∗ (Oi2w−1 − Oi2w) if the retailer does not multi-cast its

incoming orders, but the wholesaler does.
. . . . . .
θiiw − λ ∗ (Oiiw−1 − Oiiw) if no company multi-casts its incoming orders.

(A.26)

Parameters λ and I i
1 are chosen like in Scheme B. The optimization of these

parameters is explained in Subsection B.4. We find that we should use λ =

2 for all companies except retailers, and λ = 4 for retailers. We use empty
initial inventories in the first series of experiments, and the values of I i

1 given in
Figure C.7 in the second series of experiments.

A.4 Implementation of the JACKTM agents

We now describe our second simulator. More precisely, we detail the code of the plans
presented in Figure 6.9 of Subsection 6.3.3 (this figure is recalled in Figure A.2). These
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clients
PlProductionPlShippingPlHauling

Transport Deliver Make Source

PlPlannning

PlOrderingMailbox

Information stream Product stream

PlOrderNegotiation

Products
to

Orders
from

clients

Truck

Products

suppliers
from

PlOrdering to
suppliers

PlShippingForecasting
Orders

PlCheckingInMailBox

PlCheckingIn

Paper/sawmill

Figure A.2: JACKTM plans in the PaperMill and the Sawmill (recall of Figure 6.9).

plans simulate and improve the five days per week of the QWSG. Since the company-
agents are event-driven, every JACKTM plan is triggered by a particular event. For this
reason, we first present the events, then the plans in our agents. The events represent
physical quantities in the simulation, and are of the following three types:

• EvOrder: These are message events, that represent orders with the following fields:

1. _placedOrder represents the quantity O;

2. _placedToken represents the quantity Θ;

3. _orderedItem is a character string representing the type of the ordered item
(paper or lumber).

• EvShipping: These events are messages, that represent shippings with the following
fields:

1. _shippedQuantity represents the quantity of products of the shipping;

2. _shippedItem is a character string representing the type of the ordered item
(paper or lumber).
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• EvTime: These events are messages representing the time multicasted by ClockAndGui
to drive all company-agents’ plans. They have two fields:

1. _week;

2. _day.

There are two other types of message events used for interactions between the ClockAndGui
agent and the company-agents. These two additional types of message have no physical
meaning, but are needed by the simulation in the following way:

• EvAskForUpdateGUI: This message event is sent by company-agents to ClockAndGui
in order to display on screen the company-agent’s state;

• EvInitGUI: This message is sent by company-agents to ClockAndGui at the be-
ginning of the simulation to initialize the display, and is similar to EvAskForUp-
dateGUI, except that it also contains capacity parameters.

We now present the plans triggered by these events. We describe these plans below,
according to their role (a general description of the function achieved by the rule),
preconditions (which event drives the plan) and their action (what the agent does when
the precondition is true)1. Note that all company-agents’ plans are driven by events
EvTime, except plans whose name finishes by “MailBox” that are driven be a message
event EvOrder or EvShipping.

• PlCheckingInMailBox

Role: Receive products coming from the supplier’s truck and put them in com-
pany’s raw material inventory.

Precondition: arrival of products, i.e., an event EvShipping is received.

Action: the quantity of products indicated in EvShipping is added to company’s
variable _rawMaterialInventory.

• PlHauling

Role: deliver products to the company’s client.

Precondition: EvTime sent by the ClockAndGUI agent indicates the 1st day in week.

Action: send to the client an event EvShipping indicating the last quantity shipped
in _productsInTruck.

1See Figure 6.7 (recalled in Figure A.3) for the signification of notations.
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Figure A.3: The PaperMill and Sawmill model (recall of Figure 6.7).

• PlOrderNegociation

Role: Negociate the price, quantity, shipping date... with the supplier.

Precondition: EvTime sent by the ClockAndGUI agent indicates the 2nd day in
week.

Implementation: This plan has not been implemented.

• PlOrdering

Role: order to suppliers the current company’s demand, i.e., apply a Lot-for-Lot
ordering rule without information sharing with (O, Θ) orders.

Precondition: EvTime sent by the ClockAndGUI agent indicates the 3rd day in week.

Implementation: send to the supplier an event EvOrder indicating the last arrived
O and Θ received by PlOrderingMailBox.

• PlOrderingSS

Role: place an order to suppliers with a (s, S) ordering policy, i.e., the ordering
scheme A” . This plan replaces PlOrdering.

Precondition: EvTime sent by the ClockAndGUI agent indicates the 3rd day in week
and _rawMaterialInventory is lower than s (the parameter in the (s, S) ordering
policy).
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Implementation: send to the supplier an event EvOrder indicating the difference
between S, i.e., the parameter in the (s, S) ordering policy, and _rawMaterialIn-
ventory.

• PlOrderingMailBox

Role: orders placed by clients arrive here. As orders may arrive anytime, they are
not received by PlOrdering or PlOrderingSS, but by this MailBox.

Precondition: arrival of an order, i.e., an event EvOrder is received.

Implementation: O and Θ indicated in EvOrder are memorized.

• PlProduction

Role: describe how and when to produce a new batch of products.

Precondition: EvTime sent by the ClockAndGUI agent indicates the 4th day in week.

Implementation: if production time has elapsed, i.e. _week in EvTime is superior
to company’s _beginningProductionWeek + _productionDuration, (i) move items
from _workInProcessInventory into _finishedProductInventory, and (ii) if a new
batch of products can be launched, process it, else set _beginningProductionWeek
such as this plan triggers the following week.

• PlShipping

Role: Ship products demanded in last order by client. There is exactly one in-
coming order per week because if the client wants nothing, it orders zero.

Precondition: EvTime sent by the ClockAndGUI agent indicates the 5th day in week.

Action: (i) try to fulfill current O and backordered O, (ii) try to fulfill current
Θ and backordered Θ, and (iii) put these four quantities into company’s _prod-
uctsInTruck.

• PlPlanning

Role: Plan which product to produce if the company processes different kinds of
products.

Precondition: EvTime sent by the ClockAndGUI agent indicates the 6th day in week.

Implementation: This plan has not been implemented.

• PlShippingForecasting

Role: Anticipate the future demand of the customer.

Precondition: EvTime sent by the ClockAndGUI agent indicates the 7th day in week.

Implementation: This plan has not been implemented.
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All these plans belong to the PaperMill and the Sawmill. As the four companies in
the distribution network and the two Customers do not produce anything, the following
plan replaces PlProduce:

• PlNoProduction

Role: move products from _rawMaterialInventory to _finishedProductInventory with-
out delays, when PlProduction is not used.

Precondition: EvTime sent by the ClockAndGUI agent indicates the 4th day in week.

Implementation: move items from _rawMaterialInventory into _finishedProductIn-
ventory if _finishedProductInventory has enough room.

Finally, both Customers have neither PlHauling nor PlShipping, and they have a
special version of the plan PlOrdering:

• PLOrdering

Role: place orders according to the market consumption pattern.

Precondition:EvTime sent by the ClockAndGUI agent indicates the 3rd day in week.

Implementation: send to the supplier (here, a Customer) an event EvOrder indicat-
ing the market consumption.



Appendix B

Detail about Simulations with a
Homogeneous Supply Chain

This appendix presents the simulation of the homogeneous supply chain, that is, the
first series of experiments of Chapter 7. To this end, we first detail our nineteen market
consumption patterns in Section B.1.

Then, we show how we choose the two parameters of Scheme A” in Section B.2,
of A’ and B in Section B.3, and of D in Section B.4. We should notice here that we
do not optimize the unique parameter (i.e., the initial inventory level) of Schemes A,
B’ and C, because we optimize no initial inventory level in this appendix. Indeed, we
take empty initial inventories for all schemes in the first series of experiments. We only
optimize this parameter for the second series of experiments in Appendix C, because
it depends on the method used to calculate cost, that is, on either Ci

QWSG, Ci
improved

(cf. Section 7.2), or Ci
realistic (cf. Paragraph 8.2.1). Since we only use realistic costs in

the second series of experiments (i.e., our most realistic series), we do not perform this
optimization of initial inventory levels for the first series of experiments.

Finally, we gives all simulation outputs in Section B.5.

B.1 Market Consumption Patterns

Table B.1 gives for each week the consumption of both (lumber and paper) markets
under the nine first patterns. Note that both markets have the same consumption, which
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Week 1.
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1 11 17 11 17 11 57 11 11 11
2 11 17 11 17 11 57 11 11 11
3 11 17 11 17 11 57 11 11 11
4 11 17 11 17 11 57 11 11 11
5 17 11 17 11 12 56 12 12 12
6 17 11 11 17 13 55 11 13 13
7 17 11 11 17 14 54 10 12 14
8 17 11 11 17 15 53 11 11 13
9 17 11 11 17 16 52 12 10 12
10 17 11 11 17 17 51 11 9 11
11 17 11 11 17 18 50 10 10 10
12 17 11 11 17 19 49 11 11 9
13 17 11 11 17 20 48 12 12 8
14 17 11 11 17 21 47 11 13 9
15 17 11 11 17 22 46 10 12 10
16 17 11 11 17 23 45 11 11 11
17 17 11 11 17 24 44 12 10 12
18 17 11 11 17 25 43 11 9 13
19 17 11 11 17 26 42 10 10 14
20 17 11 11 17 27 41 11 11 13
21 17 11 11 17 28 40 12 12 12
22 17 11 11 17 29 39 11 13 11
23 17 11 11 17 30 38 10 12 10
24 17 11 11 17 31 37 11 11 9
25 17 11 11 17 32 36 12 10 8
26 17 11 11 17 33 35 11 9 9
27 17 11 11 17 34 34 10 10 10
28 17 11 11 17 35 33 11 11 11
29 17 11 11 17 36 32 12 12 12
30 17 11 11 17 37 31 11 13 13
31 17 11 11 17 38 30 10 12 14
32 17 11 11 17 39 29 11 11 13
33 17 11 11 17 40 28 12 10 12
34 17 11 11 17 41 27 11 9 11
35 17 11 11 17 42 26 10 10 10
36 17 11 11 17 43 25 11 11 9
37 17 11 11 17 44 24 12 12 8
38 17 11 11 17 45 23 11 13 9
39 17 11 11 17 46 22 10 12 10
40 17 11 11 17 47 21 11 11 11
41 17 11 11 17 48 20 12 10 12
42 17 11 11 17 49 19 11 9 13
43 17 11 11 17 50 18 10 10 14
44 17 11 11 17 51 17 11 11 13
45 17 11 11 17 52 16 12 12 12
46 17 11 11 17 53 15 11 13 11
47 17 11 11 17 54 14 10 12 10
48 17 11 11 17 55 13 11 11 9
49 17 11 11 17 56 12 12 10 8
50 17 11 11 17 57 11 11 9 9

Table B.1: Details of the nine lumber consumptions patterns in Table 7.1.
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is not the case under the ten other patterns in Tables B.2 and B.3. Indeed, Table B.2
details the lumber market consumption under the ten Uniform random patterns, and
Table B.3 describes the paper consumption under these ten same patterns. Tables B.2
and B.3 are two different instances of the same uniform random distribution over [11; 17].
We generate these ten instances once in order to simulate our seven ordering schemes
under the same demands.

We now indicate how we have set up the parameters in Scheme A” .

B.2 Parameters of Scheme A”

Since Scheme A” is an (s, S) ordering policy (we recall that, in this policy, each company
orders for S − I products when its inventory level I is lower than s), we can use a
mathematical model called Economic Order Quantity (EOQ) to optimize its parameters
s and S. We recall that we stop using notations introduced in Subsections 6.2.1 and we
use instead notations of the EOQ model presented in Paragraph 2.1.2. The EOQ model
describes the evolution of the level of an inventory system. With this description, we
can determine the optimal quantity Q∗ to order and the optimal backorder level b∗ to
minimize the cost of the considered inventory system. After, s and S are deduced of Q∗

and b∗, which is our goal.

We show first why we need to adapt the classic EOQ model to our simulation of the
QWSG, then we actually perform this adaptation.

B.2.1 Why the Classic EOQ Model Has to Be Adapted to the
QWSG

We first try to apply directly the results in Paragraph 2.1.2 to fit to our simulation of
the QWSG. To this end, we evaluate Q∗ in Equation 2.8 (recalled in Equation B.1),
and b∗ in Equation 2.9 (recalled in Equation B.2).

Q∗ =

√
2AD

h(1 − D/P )
− (πD)2

h(h + π̂)

√
h + π̂

π̂
(B.1)

b∗ =
(hQ∗ − πD)(1 − D/P )

h + π̂
(B.2)

When we know Q∗ and b∗, we find s and S as follows:
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Week 10A 10B 10C 10D 10E 10F 10G 10H 10I 10J
1 16 15 11 16 13 16 17 12 15 14
2 13 15 15 13 12 13 15 13 14 15
3 16 12 16 12 16 13 16 16 12 15
4 11 17 15 12 14 16 17 17 11 12
5 15 16 15 16 14 12 12 16 14 15
6 14 12 16 15 14 12 13 14 12 12
7 17 16 16 14 17 12 13 13 11 13
8 16 17 13 13 11 13 16 13 12 13
9 13 15 13 15 12 17 16 14 16 16
10 15 17 11 15 12 13 16 12 12 15
11 17 15 13 15 15 12 11 17 16 16
12 12 16 14 12 15 11 16 12 16 17
13 15 16 15 16 12 12 14 14 14 11
14 11 14 15 11 14 12 12 11 15 11
15 15 16 12 13 13 14 12 16 11 17
16 11 16 12 11 16 15 14 17 17 15
17 15 13 13 15 17 15 13 16 14 12
18 12 14 16 14 11 12 15 16 14 16
19 14 11 16 15 13 15 16 12 12 15
20 11 14 17 12 12 16 13 16 15 16
21 13 13 12 14 16 11 16 14 15 17
22 13 12 11 11 16 12 14 12 14 17
23 12 16 12 11 16 15 12 14 17 14
24 13 11 13 14 16 15 16 16 13 14
25 15 12 16 14 13 16 11 15 16 13
26 17 14 16 14 15 16 11 11 13 11
27 17 15 15 15 12 16 17 15 16 13
28 14 13 15 14 17 14 16 11 11 16
29 14 15 15 14 15 12 14 16 16 14
30 13 16 15 15 17 11 16 16 13 16
31 12 14 12 12 12 12 16 14 14 14
32 13 13 15 11 14 12 16 16 15 13
33 12 16 15 13 16 16 15 15 16 14
34 15 14 14 15 13 11 15 12 14 13
35 15 11 12 14 12 13 12 15 12 14
36 13 15 11 12 13 12 16 16 16 14
37 16 16 14 14 17 12 14 11 13 16
38 15 13 12 17 14 13 11 14 15 12
39 15 16 13 17 16 15 12 12 14 13
40 15 16 14 15 17 14 12 13 14 15
41 12 14 16 13 11 12 16 11 14 13
42 11 15 12 12 15 13 14 12 11 15
43 17 17 16 17 12 11 13 12 13 11
44 13 11 12 13 15 17 16 13 11 16
45 13 11 16 16 15 13 16 14 13 15
46 15 15 16 12 15 13 17 13 12 13
47 15 12 14 11 16 14 15 12 11 17
48 12 13 14 16 12 16 16 15 16 16
49 16 12 13 14 13 17 17 12 16 15
50 15 12 14 15 11 14 17 16 13 16

Table B.2: Details of the ten Uniform random 10A to 10J consumptions patterns for the
lumber.
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Week 10A 10B 10C 10D 10E 10F 10G 10H 10I 10J
1 15 15 14 17 15 14 12 17 12 13
2 15 15 14 12 16 17 17 12 11 12
3 14 14 16 13 14 14 16 13 17 13
4 15 12 15 12 16 16 12 12 16 13
5 14 12 12 13 17 16 12 13 14 11
6 16 15 15 11 13 14 16 16 13 12
7 15 16 17 13 16 15 13 15 16 12
8 12 16 14 12 15 15 13 11 11 12
9 12 14 12 11 15 16 14 16 14 14
10 15 15 15 12 17 17 16 15 16 15
11 16 15 13 14 15 14 11 16 16 12
12 15 15 15 14 12 17 15 15 14 12
13 13 17 11 12 12 13 12 11 11 13
14 15 13 13 14 15 13 17 13 12 11
15 17 14 11 13 15 13 16 12 15 17
16 14 14 12 12 16 15 14 11 14 16
17 12 16 17 11 13 14 13 15 17 15
18 12 13 13 13 12 14 14 13 13 15
19 12 13 15 16 11 16 15 15 15 15
20 13 16 12 16 12 14 13 13 15 12
21 15 12 15 11 15 11 16 15 13 16
22 14 16 13 13 13 12 15 14 12 16
23 16 14 15 16 12 15 14 16 15 16
24 12 14 16 13 15 17 11 13 12 11
25 17 13 15 15 13 14 13 12 13 12
26 15 14 14 17 14 16 16 15 14 12
27 13 11 13 11 17 13 17 17 16 15
28 14 16 16 12 11 12 15 11 14 11
29 16 17 15 15 17 13 15 13 13 14
30 11 13 16 14 15 14 17 13 12 16
31 16 13 16 14 16 12 16 11 14 14
32 12 15 15 15 13 15 15 11 14 16
33 16 12 14 15 16 14 15 16 14 14
34 15 12 16 17 15 11 12 15 15 15
35 13 14 15 16 16 12 15 15 14 11
36 17 15 14 13 12 13 16 15 17 14
37 17 13 15 14 16 17 13 14 13 11
38 16 13 17 14 17 13 13 15 15 15
39 14 15 17 13 15 16 15 15 17 13
40 16 15 12 13 14 11 15 11 14 12
41 11 16 11 14 17 13 16 16 13 15
42 11 14 14 16 12 13 12 14 12 12
43 16 16 12 13 14 14 12 12 17 15
44 12 16 13 11 11 14 17 13 12 13
45 17 12 16 14 12 12 12 15 17 12
46 13 13 12 11 16 12 15 16 15 12
47 14 14 12 15 12 11 11 12 12 15
48 14 15 13 12 12 13 15 11 15 15
49 11 12 17 14 12 13 12 14 14 13
50 13 17 15 13 11 16 16 16 16 16

Table B.3: Details of the ten Uniform random 10A to 10J consumptions patterns for the
paper.
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• s is given by Equation 2.10, recalled in Equation B.3. Note that m = [τ/T ], where
[x] is the integer part of x, e.g., [1.9] = 1;

s =

{
τD − mQ − b if τ − mT ≤ T3 + T4

((m + 1)(Q/D) − τ)(P − D) − b else
(B.3)

• S is calculated with Equation B.4.

S = s + Q∗ (B.4)

In our simulation of the QWSG, we assume that:

• there is no production, that is, production rate is infinite: P → +∞;

• since there is no production, production cost is zero: C = 0;

• order placing is free: A = 0;

• the inventory carrying cost per unit per week is taken into account: h �= 0 (e.g.,
h = $1 in CQWSG).

• the duration-independent shortage cost is zero: π = 0;

• the shortage cost per item short week is taken into account: π̂ �= 0 (e.g., π̂ = $2

in CQWSG);

• the time between the placement and the receipt of an order is four week: τ = 4.

A problem occurs when we replace P, C, A and π by the previous values in Equation B.1
and B.2 in order to find the optimal values of Q∗ and b∗ in the QWSG. In fact, if
A = π = 0 then Q∗ = 0 in Equation B.1.

This result is compliant with real-life: when order placing is expensive (great A),
companies accept to pay higher inventory holding cost, that is, companies order for
more products (great Q) in order to order less often. On the other hand, if order
placing is free (A = 0), companies would like to order all the time (time is continue in
the basic EOQ, and thus T = Q/D = 0 is possible), but for very few items (almost
zero), and therefore Q = 0 minimizes the annual inventory system cost. Unfortunately,
time is not continue in the QWSG and T = Q/D = 0 is thus impossible: companies are
allowed to place each week at most one order, rather than an infinite number of orders.

We can also see this problem from another viewpoint. The QWSG does not take
ordering cost into account (A = 0), and therefore, the total cost is only made of costs
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proportional to Q, which are minimum when Q = 0. We recall that the idea of EOQ is
that the optimal order quantity Q∗ corresponds to a trade-off between costs proportional
to Q (inventory holding, backorder. . .) that increase with Q, and costs proportional to
1/Q (ordering cost. . .) that decrease with Q. Since we only have costs proportional
to Q in the QWSG, the optimal value is Q∗ = 0 and the total cost of the inventory
system is zero. But we have just seen that Q∗ = 0 is not possible, because it implies
T = Q/D = 0 and time continuity. Moreover, it is obvious that the company needs to
order for Q∗ > 0 in order to fulfill its demand!

To solve this problem, we rewrite entirely the EOQ model under discrete time from
the beginning.

B.2.2 Adaptation of the EOQ model to the QWSG

We adapt the EOQ model from its most basic formulation, rather than from the more
complete one used above and described in Subsection 2.1.2. Precisely, backorders and
production costs are not taken into account. Like in the classic EOQ model, the fol-
lowing assumptions apply [Hax and Candea, 1984]:

1. demand is continuous at a constant rate;

2. the process continues infinitely;

3. no constraints are imposed (on quantitites ordered, storage capacity, available
capital, etc,);

4. replenishment is instantaneous (the entire order quantity is received all at once
as soon as the order is released)1;

5. all costs are time-invariant;

6. no shortages are allowed;

7. quantity discounts are not available.
1We have seen in Subsection 7.3 that this assumption may be a problem in supply chain manage-

ment, because the supplier may have backorders. This assumption is also a problem in the QWSG and
in our simulations. Unfortunately, removing this assumption requires to model the suppliers’ inventory
system, in order to know when it is backordered, which is not an easy problem. However, the models
called “Joint Optimization” in Subsection 4.1.1 allow doing so.
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Time

Inventory level

QWSG classic EOQ

t1 t3 t4 t5 t6 t7 t8t2

D Q

0

Imax

Q − D

Q − 2D

Figure B.1: A cycle for the inventory system in the QWSG.

In this context, Figure B.1 represents the behaviour of the considered inventory system
when demand is discrete: the thin line represents the inventory level of a real inventory
system (like in the classic EOQ model), while the thick line represents the inventory
considered in the QWSG. The difference between the reality and the QWSG is due to
the discretization of time in the QWSG. We use the same notations as the classic EOQ
model:

• Q is the ordered quantity, i.e., the quantity of incoming transports;

• D is the demand rate, i.e., the number of products demanded by the client per
time unit tw (there are fifty time units t1 to t50 during a fifty week simulation).

The company receives Q products at the beginning of t4 but only pays for holding
Q−D products in inventory (cf. level indicated by the thick line) because D products
are shipped to the client. Precisely, Q products are in inventory during a part of t4,
but we ignore that because time is discrete, and we only consider the inventory level at
the end of t4.

The cycle {t1, t2, t3} is identical to the cycle {t4, t5, t6}. The duration of each cycle
is Q/D; to see that, consider that the less you order in Q, the more frequent you place
orders to fulfill the demand D. A fifty-week simulation has thus 50 ∗ D/Q cycles. We
note w the week such as tw is Week w, e.g., Week w = 1 in t1. The charged inventory
level in Week tw is Q−wD, which thus costs h(Q−wD). Since we note h the inventory
carrying cost per item per week, the annual total cost K of the inventory system is
therefore given by Equation B.5 (note that the annual total cost K corresponds to Ci
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in the rest of this dissertation).

K = 50
D

Q

Q/D∑
w=1

h(Q − wD) = 50
D

Q

[
hQ

Q

D
− hD

Q
D

(Q
D

+ 1)

2

]
= 25h(Q − D) (B.5)

Clearly, K = 0 when Q∗ = D, that is, the inventory system incurs no cost when
the company orders what is ordered by its client. Since our model does not accept
backorders (cf. assumption (6) above), Q < D is not allowed, and therefore K > 0,
which is a confirmation that the company cannot earn money by holding inventory!
Since we cannot obtain a lower K than K = 0, we do not try to relax the assumption
(6) (no backorders allowed) by checking if companies should sometimes incur backorder
to save money. Since the duration of a cycle is Q∗/D = D/D = 1, the company has to
place an order each week, and not only at Weeks t3 and t6 as illustrated in Figure B.1
(i.e., Figure B.1 does not represent the optimal behaviour of the inventory system in
the QWASG).

Finally, we can now apply Equations B.3 and B.4 to determine s and S in Scheme A” .
In our case, m = [τ/T ] = [4/1] = 4, next τ−mT = 4−4∗1 = 0 and T3+T4 = 1+0 = 1,
thus τ − mT ≤ T3 + T4. Therefore, s = τD − mQ∗ − b = 4D − 4D − 0 = 0. Next,
according to Hax and Candea [1984], S = s + Q∗ = 0 + D = D.

If we stop using notations specific to the model EOQ and we use instead the same
notations as the rest of this dissertation, the optimal parameters are s = 0 and S = Oiiw,
where Oiiw is the company i’s incoming order in Week w. Moreover, all initial inventories
are empty: ∀i, I i

1 = 0. We now present the seting of the parameters in Scheme B.

B.3 Parameters of Scheme B

Scheme B has two parameters. The first parameter, λ, represents the quantity of
Θ to send to stabilize eventually the inventory on its initial level when the market
consumption has been steady for a sufficient period. This parameter only depends
on the ordering and shipping delays between the considered company and its direct
supplier. The second parameter, I i

1 (company i’s inventory in the first week), represents
the initial inventory level. This parameter depends on the structure of the supply chain
and on the cost function. As stated in the introduction of this appendix, we only seek
the good value of λ, because we assume in our first series of experiments (cf. Chapter 7)
that all initial inventories are empty. However, Appendix C.1 will show how we carry
out this optimization for our second series of experiments.
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1 week 2 week 3 week 4 week
shipping shipping shipping shipping

delay delay delay delay
1 week ordering delay 2 3 4 5
2 week ordering delay 3 4 5 6
3 week ordering delay 4 5 6 7

Table B.4: Correct λ for ordering scheme B for different ordering and shipping delays
for all market demand patterns (also applicable for retailers using Scheme D).

B.3.1 Value of λ

The longer the delay between the order placement and the shipping reception is, the
greater the inventory level fluctuates. Since Θ is sent to counter this inventory fluctu-
ation, the value of Θ only depends on the ordering and shipping delay. All companies
use the same value of λ to calculate Θ. Table B.4 gives the value of λ to use. These
values are determined by simulations in which we adapt λ for each company such as
inventory levels eventually stabilize on their initial levels under the Step market con-
sumption pattern (we use this pattern, because it is steady after a unique change at
the beginning of the simulation). For example, the last entry in Table B.4 is 7, which
means that all companies must use λ = 7 when there is a four week shipping delay
and a three week ordering delay. This figure suggests that λ is equal to the sum of the
ordering delay and of the shipping delay.

In short, the accurate value of λ only depends on the delays between the considered
company and its direct supplier. The determination of this value does not require any
optimization. The second parameter depends, at least, on the market consumption and
has therefore to be adapted to the situation.

B.3.2 Initial inventory levels

As previously stated, we take empty initial inventories in the first series of experiments:
for any company i, I i

1 = 0.

We now carry out the same job with Scheme D.



Appendix B. Detail about Simulations with a Homogeneous Supply Chain 278

B.4 Parameters of Scheme D

The rule D is very similar to B and has therefore the same two parameters λ and I i
1 to

be set up. These two setups have to be carried out in the same order: first λ, next I i
1.

B.4.1 Value of λ

We have seen with Scheme B that λ is equal to the sum of ordering and shipping de-
lays. Since Scheme D uses information centralization, market consumption information
travels instantaneously and in real-time in the supply chain, and therefore, the ordering
delay has not to be taken into account to set λ. Consequently, λ is now only equal to
the shipping delay.

This is true for all companies, except for both retailers. In fact, retailers have to
use the same λ as with Scheme B, i.e., λretailer is equal to the sum of the shipping delay
and of the ordering delay. This difference between retailers and all other companies is
due to the fact that retailers have to overorder more (by sending Θ �= 0) than other
companies because they do two things when the market consumption changes:

• they emit Θ;

• they ship products corresponding to the new consumption.

On the contrary, all other companies only emit Θ. In fact, orders adressed to other
companies will have the new value of the market when the ordering delay will have
elapsed. In particular, wholesalers have to wait the ordering delay before they receive
orders from their retailer with the new value of the market consumption. Other com-
panies also have to wait the ordering delays before they receive orders with the new
market consumption. At this time, other companies will ship products corresponding
to the new consumption, but they do so some weeks after retailers2. Therefore, re-
tailer’s inventory fluctuates more than others’ inventory, and thus, they have to send
more positive or negative Θ. Table B.5 gives the value of λ that eventually stabilizes
inventories on their initial level for all companies except retailers. Retailers still take λ

in Table B.4.
2As a consequence, the ordering stream in the supply chain reacts instantaneously to the changes of

the market consumption, while the ordering stream only react two weeks later. It could be interesting
to find an ordering scheme in which the ordering stream also reacts instantaneously to the change of
the market consumption, because this should increase the efficiency of the supply chain.
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1 week 2 week 3 week 4 week
shipping shipping shipping shipping

delay delay delay delay
1 week ordering delay 1 2 3 4
2 week ordering delay 1 2 3 4
3 week ordering delay 1 2 3 4

Table B.5: Correct λ for ordering scheme for all market demand patterns D for different
ordering and shipping delays (not applicable to retailers).

B.4.2 Initial inventory levels

Like B, we take empty initial inventories for Scheme D in Chapter 7: for every company i,
I i
1 = 0.

We now detail the simulation outcomes that were only outlined in Chapter 7.

B.5 Simulation outcomes

This section details for all companies the simulation outcomes, that were only presented
for the entire supply chain or for the Sawmill in Section 7.3. Similarly to Chapter 7,
these simulations are carried out in the first series of experiments with a homogeneous
supply chain, that is, all companies place orders with the same ordering scheme. The
goal of this first series is to check the efficiency for reducing the bullwhip effect of our
two ordering schemes, and therefore, of the two principles on which they are based. As
the bullwhip effect is measured as the standard deviation of placed orders, Tables B.6,
B.7, B.8 and B.9 first present this metric. Next, we focus on costs induced by the bull-
whip effect when the “improved” method for cost evaluation is applied. Tables B.10,
B.11, B.12 and B.13 detail all company’s costs. Then, we focus on the two parame-
ters aggregated in this cost: backorders and inventory levels. Tables B.14, B.15, B.16
and B.17 first give each company’s sum of backorders, while Tables B.18, B.19, B.20
and B.21 show inventory fluctuations measured as a standard deviation.
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Market
consumption

Scheme A Scheme A’

1 Step 1.6 14.3; 13.3; 28.2; 26.5; 51; 42.6 3.8; 3.8; 20.7; 20.7; 105.7; 274.6
2 Inversed Step 1.6 7.9; 7.9; 17.9; 17.3; 33.2; 37.3 2.3; 2.3; 6.7; 6.7; 37.4; 97.9

3 Dirac 0.8 4.1; 3.9; 8.8; 8.8; 18.7; 15.8 4.5; 4.5; 22.1; 22.1; 111.8; 301.2
4 Inversed Dirac 0.8 5.4; 4.8; 14.1; 12.1; 25.6; 25.2 4.2; 4.2; 26.9; 26.9; 142.8; 372

5 Increase 14.4 33.4; 30.6; 59.6; 54.9; 108.1; 85.6 14.9; 14.9; 15.4; 15.4; 22.2; 45.1
6 Decrease 14.4 14.7; 14.7; 18.6; 17.4; 27.9; 31 14.9; 14.9; 15.4; 15.4; 20.3; 41.1

7 Weak seasonality 0.7 1.2; 1.3; 1.8; 2.3; 3.6; 2.7 4.4; 4.4; 19.7; 19.7; 98.4; 228.6
8 Medium seasonality 1.2 4.5; 6.1; 10.6; 13.6; 25.3; 28.1 4.5; 4.5; 15; 15; 73.7; 186.7
9 Strong seasonality 1.8 7.8; 6.3; 16.4; 13.2; 27.1; 30.4 4.7; 4.7; 13; 13; 59.3; 151.8
10A Uniform random 1.8 9.1; 6.9; 20; 15.4; 30.3; 27.4 11.1; 11; 54.9; 55.9; 275.4; 601.1
10B Uniform random 1.7 9.3; 10.6; 20.1; 21.8; 39.1; 36.5 10.4; 9.5; 54.1; 42.5; 206.4; 524.8
10C Uniform random 1.7 10.7; 9; 22.1; 19.2; 36.1; 42.7 8.7; 9.9; 42.6; 44.9; 215.1; 541.7
10D Uniform random 1.7 9.8; 9; 22.3; 19.2; 35; 51 10.4; 9; 49.5; 40.6; 181.8; 445.3
10E Uniform random 1.9 5.2; 9.9; 12.2; 20.9; 38.9; 35.2 10.8; 10.7; 53.2; 50.5; 244.3; 633.3
10F Uniform random 1.8 8.6; 9; 18.8; 19; 35.3; 33.1 9,4; 9.4; 42.9; 42.9; 214.4; 579.7
10G Uniform random 1.9 7.4; 9.1; 18; 19.3; 37.9; 33.4 10.2; 11.4; 52; 53.5; 246.1; 572.9
10H Uniform random 1.9 8.2; 11.2; 18.3; 23.7; 39.5; 45.8 11; 10.2; 57.4; 49.7; 243.6; 628.2
10I Uniform random 1.8 9.6; 9.4; 21.3; 19.2; 36.1; 33.9 11.6; 10.9; 59.9; 54.1; 263; 676.1
10J Uniform random 1.8 7.3; 6.7; 16.9; 15; 28.9; 30.6 10.1; 10.1; 50.7; 51.9; 261.4; 638.5

Table B.6: Standard-deviation of orders, i.e., σOpi
w+Θpi

w
(extension of Table 7.2, 1/4).

B.5.1 Comparison of the Bullwhip Effect

Let us look at the first metric. Each entry in Tables B.6, B.7, B.8 and B.9 presents the
standard deviation of orders placed by each company in the order of Figure 6.3. For
example, for Scheme A under the Step demand in Table B.6 (which also corresponds to
the curves in Figures 7.1 and 7.2 in Section 7.3), 14.3; 13.3; 28.2; 26.5; 51; 42.6 means
that the orders placed by the PaperMill have a standard deviation of 51, while the second
column in Table B.6 says that the standard deviation of the market consumption was
only 1.6. Therefore, orders placed by the PaperMill in this experiments are much more
variable than the market consumption.

These data have to be compared line by line in the four Tables B.6, B.7, B.8 and B.9
(there are four tables because there are not enough room on the paper, but these
tables could be merged in a unique one). For example, under the Step demand, the
Sawmill’s standard deviation of orders is 42.6 with Scheme A, 274.6 with Scheme A’,
795.7 with Scheme A” , 8.7 with Scheme B, 58.5 with Scheme B’, 4.9 with Scheme C
and 4.2 with Scheme D. Therefore, Scheme D has the lowest bullwhip effect among
these seven ordering schemes, followed by C and B. When we repeat this reasoning for
the other companies and for the eighteen other market consumption patterns, we note
that the conclusion of Subsection 7.3.2 holds for every company. In fact, Scheme D
generally incurs the lowest bullwhip effect among the seven tested ordering schemes,
except for the ten random distributions of demand in which C is as good as D. When
information centralization is not used, B incurs the lowest bullwhip effect (C is better
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Scheme A”

1 Step 27; 31.7; 105.1; 155.7; 547.7; 795.7
2 Inversed step 17.8; 15.8; 64.5; 74.2; 345.6; 530.7

3 Dirac 14.4; 12.7; 20.7; 24.8; 90.8; 132.7
4 Inversed Dirac 30.7; 35.5; 145.2; 200.8; 778.2; 1155.2

5 Increase 57.4; 67.8; 105.8; 181.3; 590.8; 861.3
6 Decrease 73; 77.2; 351.3; 450.5; 1,928.2; 2915.9

7 Weak seasonality 16.8; 15.6; 48.7; 61.2; 205.5; 278.9
8 Medium seasonality 13.4; 15.8; 17.7; 37.6; 38.7; 57.9
9 Strong seasonality 13.9; 13.3; 22.4; 23.7; 100.7; 155.5
10A Uniform random 25.9; 28.3; 126.9; 149.3; 576.1; 828.6
10B Uniform random 26.3; 28.9; 127; 162; 644.8; 960.8
10C Uniform random 20.3; 19.7; 63.4; 50.5; 43.3; 112
10D Uniform random 22.7; 20.4; 107.4; 93.2; 349.2; 502.1
10E Uniform random 19.2; 16.5; 55.5; 23.2; 64; 115.5
10F Uniform random 18,7; 16.1; 28; 39; 125.9; 179.2
10G Uniform random 24; 19.7; 60.7; 72.2; 281.8; 453.7
10H Uniform random 18.5; 23.8; 41.2; 112.1; 378.6; 642.6
10I Uniform random 26.3; 32.2; 97.8; 151.8; 540.1; 835.7
10J Uniform random 22.4; 27.6; 75.4; 173.7; 754.5; 1240.1

Table B.7: Standard-deviation of orders, i.e., σOpi
w+Θpi

w
(extension of Table 7.2, 2/4).

than B, but C uses information centralization). Therefore, our two principles on which B
and D are based are not contradicted, except when demand is random and information
centralization is applied, in which case, our two principles need to be enhanced to take
the efficiency of C into account.

B.5.2 Comparison of the Costs Incurred

The second metric, the induced costs, is an indirect measure of the bullwhip effect
reduction. However, it is more important for companies than the standard deviation of
orders, because their goal is to maximize their profit rather than reducing the bullwhip
effect. Therefore, Tables B.10, B.11, B.12 and B.13 present the costs for the same
experiments than Tables B.6, B.7, B.8 and B.9.

Numbers in the tables are costs for each company evaluated with the method called
“improved” in Section 7.2: each unit in inventory costs weekly half the cost of backo-
rdered units. Data in Tables B.10, B.11, B.12 and B.13 are thus the individual and costs
of inventories and backorders in the whole supply chain for fifty weeks. The format of
the data is C1 + C2 + C3 + C4 + C5 + C6 = C, e.g., for the Scheme A under the Step
demand in Table B.10, the PaperMill has a cost C5 = 8, 526 $ and the whole supply
chain C = 40, 055 $.

These costs have to be compared line by line in Tables B.10, B.11, B.12 and B.13
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Scheme B Scheme B’

1 Step 3.8; 3.8; 7.2; 7.2; 10.6; 8.7 24.6; 28.8; 48.4; 45; 42.7; 58.5
2 Inversed step 3.8; 3.8; 7.2; 7.2; 10.6; 8.7 22.4; 10.5; 29.3; 21.3; 28.8; 100.4

3 Dirac 5.5; 5.5; 10.3; 10.3; 15.2; 12.6 6.5; 6.2; 9.3; 12; 17; 18.4
4 Inversed Dirac 5.5; 5.5; 10.3; 10.3; 15.2; 12.6 27.6; 20.6; 40.6; 33.9; 43.5; 66.5

5 Increase 14.9; 14.9; 15.7; 15.7; 16.7; 17.3 14.8; 15.8; 15.5; 17; 16.6; 15.6
6 Decrease 14.9; 14.9; 15.7; 15.7; 16.7; 17.3 14.7; 14.7; 20; 18.6; 41.7; 79.1

7 Weak seasonality 4.4; 4.4; 8.1; 8.1; 11.6; 2.2 4.5; 4.8; 10.5; 10.1; 10.6; 22.7
8 Medium seasonality 4.5; 4.5; 8.1; 8.1; 11.7; 9.6 16.7; 7.8; 27; 14.2; 15.2; 30.1
9 Strong seasonality 4.7; 4.7; 8.3; 8.3; 11.7; 10.9 12.7; 10.6; 17; 16; 19.8; 18.9
10A Uniform random 12.1; 12.1; 22.2; 22.3; 32.8; 21.8 17.7; 22.7; 25.6; 30.8; 37.7; 81
10B Uniform random 11.4; 10; 21.4; 17.5; 25.5; 20.7 32.2; 19.7; 46.1; 28.9; 38.8; 89.9
10C Uniform random 9.4; 10.6; 17.5; 19.1; 28.1; 22.1 33.9; 21.7; 43.7; 33.5; 41.4; 130.9
10D Uniform random 10.9; 10.2; 20.4; 19.1; 26.6; 21.4 34.5; 25.4; 53.6; 34.8; 50.1; 87.6
10E Uniform random 12.6; 11.8; 23.5; 22; 31.5; 26.6 13.9; 23.9; 21.5; 28.6; 51.9; 110.2
10F Uniform random 10; 10; 18.4; 18.4; 26.8; 23.2 13.6; 14.6; 24; 28.3; 37.6; 28.1
10G Uniform random 11.2; 12.4; 21; 22.5; 31.5; 25.3 8.4; 15.4; 21.1; 22.8; 23.1; 24.6
10H Uniform random 12; 11.6; 21.7; 21.3; 30.5; 25.7 65.1; 39.8; 83.4; 56.9; 68.9; 116.9
10I Uniform random 12.2; 11.7; 22.7; 21.9; 31.3; 30.2 20.7; 32.1; 32.9; 42; 46.8; 100.3
10J Uniform random 11; 10.8; 20.5; 19.7; 28.4; 21.3 13.3; 13.6; 21.5; 24.2; 33.5; 27.5

Table B.8: Standard-deviation of orders, i.e., σOpi
w+Θpi

w
(extension of Table 7.2, 3/4).

(again, these four tables could be merged in a unique one): for example, under the Step
demand, the overall cost is C = 40, 055 $ for Scheme A, C = 181, 641 $ for Scheme A’,
C = 1, 152, 612 $ for Scheme A” , C = 9, 035 $ for Scheme B, C = 29, 556 $ for Scheme B’,
C = 21, 833 $ for Scheme C and C = 6, 626 $ for Scheme D. The lowest of these seven
costs is 6,626 $, therefore it is underlined in Table B.13. We can note that the value of C

incurred by D are often underlined when the demand is not random, which shows that
using both our two principles and information sharing incurs the lowest overall supply
chain cost. However, this result is not so obvious when demand is random, in which
case C also has good results, which shows that, in this case, information centralization
is the reason for the reduction of costs. When information centralization is not allowed,
B generally incurs the lowest individual and supply chain costs.

B.5.3 Comparison of the Customer Service Levels

The third metric is the sum of backorders, which is a metric for customer service levels.
This sum has to be minimized, because when it is zero, clients have the products they
wish, else they have to wait for their availability. This measure is also included in costs,
but we separate it for now. In fact, backorders can be avoided by overstocking, which
increases costs but reduces the sum of backorders. In particular, the following data are
obtained with empty initial inventories. Therefore, costs are more important than the
sum of backorders, but the way of pricing a backorder depends on manager’s choice. In
particular, a manager could choose that backorders cost nothing, while we choose they
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Scheme C Scheme D

1 Step 5.8; 5.4; 7.9; 7.7; 7.1; 4.9 3.8; 3.8; 4.2; 4.2; 4.5; 4.2
2 Inversed Step 5; 4.7; 10.4; 10.9; 13.1; 12.3 3.8; 3.8; 4.2; 4.2; 4.5; 4.2

3 Dirac 3.4; 3.3; 4.4; 4.2; 4.4; 3 5.5; 5.5; 5.7; 5.7; 6.2; 5.9
4 Inversed Dirac 4.5; 4.6; 6.8; 7; 8.1; 5.8 5.5; 5.5; 5.7; 5.7; 6.2; 5.9

5 Increase 15.1; 15.5; 15.4; 16.3; 16.3; 15.2 14.9; 14.9; 15.4; 15.4; 16; 16.4
6 Decrease 14.7; 14.7; 16.6; 16.6; 20.6; 22 14.9; 14.9; 15.4; 15.4; 16; 16.4

7 Weak seasonality 1.1; 1.1; 0.5; 0.5; 0.9; 0.5 4.4; 4.4; 1.6; 1.6; 4.2; 1.7
8 Medium seasonality 4.8; 4.2; 5.6; 5.3; 4.7; 3.9 4.5; 4.5; 5.4; 5.4; 3.2; 1.4
9 Strong seasonality 7.9; 6.5; 11.8; 10.2; 12; 10.4 4.7; 4.7; 6.2; 6.2; 6.5; 5.4
10A Uniform random 7.2; 5.3; 12.6; 9.1; 10.1; 9.1 12.1; 12.1; 13.8; 13; 13.6; 10.7
10B Uniform random 6.9; 7.7; 9.1; 10.6; 11.2; 8.1 11.4; 10; 9.8; 9.3; 10.6; 6
10C Uniform random 6.5; 6.1; 7.8; 9.1; 9.4; 6.5 9.4; 10.6; 10.4; 10.4; 11.7; 7.5
10D Uniform random 4.9; 4.8; 9.4; 9.8; 13.5; 11.8 10.9; 10.2; 12; 9.6; 10.2; 8.5
10E Uniform random 7.9; 6.4; 10.4; 8.9; 9.4; 7.3 12.6; 11.8; 14.2; 12.5; 13; 9.4
10F Uniform random 6.1; 5.2; 7.3; 6.6; 7.1; 5.5 10; 10; 11.1; 11.1; 11.9; 11.4
10G Uniform random 7.9; 6.5; 11.6; 6.7; 6.7; 8.4 11.2; 12.4; 10.6; 12.9; 14.7; 11
10H Uniform random 6.4; 7.1; 7.7; 10.9; 10; 8.5 12; 11.6; 13.1; 10.9; 11.7; 9.8
10I Uniform random 5.4; 6.2; 8.1; 7.1; 7.3; 6.2 12.2; 11.7; 14.1; 12.3; 13; 12.6
10J Uniform random 5.6; 6.1; 6; 7.9; 8.8; 5.7 11; 10.8; 10.5; 11.8; 12.9; 7.2

Table B.9: Standard-deviation of orders, i.e., σOpi
w+Θpi

w
(extension of Table 7.2, 4/4).

cost twice the inventory holding price.

Next, backordered O and Θ (Ob and Θb) are both taken into account and summed
on the fifty weeks of a simulation. This sum is presented in Tables B.14, B.15, B.16
and B.17 in the same format than the standard deviation of orders in Tables B.6, B.7,
B.8 and B.9. For example, for Scheme A under the Step demand pattern in Table B.14,
603; 752; 698; 950; 1,418; 2,476 means that during the simulation, LumberRetailer has
603 delays for shipping products. . . and the Sawmill 2,476 delays. This latter number
does not mean 2,476 orders were lately fulfilled. In fact, the sum of backorders increase
of one unit if an order cannot be fulfilled the first week, the sum of backorders increase
of two units if an order cannot be fulfilled the first and the second week, etc.

Again Tables B.14, B.15, B.16 and B.17 could be merged in one table, and data have
to be read line by line. For example, under the Step demand pattern, the LumberRetailer
has a sum of backorders

∑
w Ob1

w + Θb1
w = 603 with Scheme A,

∑
w Ob1

w + Θb1
w = 468

with Scheme A’,
∑

w Ob1
w + Θb1

w = 522 with Scheme A” ,
∑

w Ob1
w + Θb1

w = 549 with
Scheme B,

∑
w Ob1

w + Θb1
w = 1, 867 with Scheme B’,

∑
w Ob1

w + Θb1
w = 1, 237 with

Scheme C and
∑

w Ob1
w + Θb1

w = 348 with Scheme D. In general, Scheme D has the
lowest sum of backorders, i.e., the best customer service levels, and C is as good as D,
but results are hard to generalize.
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Scheme A Scheme A’

1 Step
2,048+2,401+6,716+6,184
+8,526+14,180=40,055 $

950+1,288+3,687+3,883
+24,285+147,548=181,641 $

2 Inversed Step
604+608+5,318+5,274

+8,018+17,212=37,034 $
615+620+2,744+2,755

+8,159+50,700=65,593 $

3 Dirac
373+370+963+974

+2,112+4,414=9,206 $
595+597+6,276+6,067

+30,148+182,627=226,310 $

4 Inversed Dirac
409+467+2,114+1,609
+2,942+6,539=14,080 $

546+552+5,364+5,169
+32,156+193,287=237,074 $

5 Increase
5,595+6,261+6,735+6,666
+9,715+16,709=51,681 $

2,193+2,651+1,331+1,779
+1,832+21,285=31,071 $

6 Decrease
2,241+2,257+2,204+2,204
+4,433+11,683=25,022 $

447+450+463+467
+3,080+19,204=24,111 $

7 Weak seasonality
43+47+52+74

+102+360=678 $
130+131+6,080+6,027

+34,607+197,492=244,467 $

8 Medium season,
271+367+744+1,506

+2,517+7,214=12,619 $
384+391+3,101+3,132

+18,175+115,309=140,492 $

9 Strong season,
597+575+2,972+1,964

+4,271+10,395=20,774 $
538+542+2,240+2,208

+13,484+85,906=104,918 $

10A Uniform random
577+316+3,459+1,290

+3,083+10,800=19,525 $
1,087+639+32,977+19,613

+89,427+522,438=666,181 $

10B Uniform random
710+1,056+3,353+4,962
+5,934+11,944=27,959 $

625+547+25,417+18,756
+91,070+485,764=622,179 $

10C Uniform random
1,435+632+4,515+2,743
+4,887+12,290=26,502 $

967+581+13,941+25,554
+121,170+589,506=751,719 $

10D Uniform random
836+505+5,244+4,831

+7,898+20,786=40,100 $
496+920+23,065+18,792

+82,375+493,257=618,905 $

10E Uniform random
452+768+861+3,976

+4,212+13,647=23,916 $
1,237+716+26,488+24,341

+107,933+560,033=720,748 $

10F Uniform random
674+767+3,537+2,620
+4,637+8,711=20,946 $

617+670+22,995+22,951
+105,647+574,952=727,832 $

10G Uniform random
430+906+2,654+2,971

+4,702+10,722=22,385 $
892+973+23,803+27,143

+117,002+620,073=789,886 $

10H Uniform random
1,058+1,177+2,425+8,330
+7,115+19,982=40,087 $

1,121+1,088+25,297+25,598
+124,447+643,499=821,050 $

10I Uniform random
650+1,275+4,000+3,910
+6,198+11,218=27,251 $

714+1,095+30,739+23,237
+115,290+653,941=825,016 $

10J Uniform random
610+501+1,924+2,541

+4,131+10,496=20,203 $
610+603+23,303+19,819

+101,265+556,209=701,809 $

Table B.10: Supply chain costs Cimproved (detail of Table 7.3, 1/4).

B.5.4 Comparison of the Inventory Level Variations

The last metric is the standard deviation of inventories when backordered are measured
as negative inventory levels. This metric is used to choose the target inventory level.
In fact, when the standard deviation of inventories increases, the target inventory level
has to increase to avoid stockouts/backorders. Therefore, when this measure decreases,
inventory levels also decreases, which reduces companies’ costs without increasing their
sum of backorders, i.e, without reducing the level of customer services.

Data in Tables B.18, B.19, B.20 and B.21 have the same format as usually, and
represent the same experiments (in particular, initial inventories are empty). For ex-
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Scheme A”

1 Step
9,826+15,544+54,587+92,350

+256,175+724,130=1,152,612 $

2 Inversed Step
2,733+3,324+32,124+40,052
+130,279+367,581=576,093 $

3 Dirac
1,725+1,667+6,974+12,125
+44,937+125,497=192,925 $

4 Inversed Dirac
12,490+17,709+73,953+108,319
+315,815+878,362=1,406,648 $

5 Increase
9,700+13,770+40,584+92,410

+248,327+725,541=1,130,332 $

6 Decrease
29,010+38,524+185,796+263,649
+785,848+2239,739=3,542,566 $

7 Weak seasonality
3,868+3,025+13,815+15,731
+39,353+107,174=182,966 $

8 Medium seasonality
1,260+1,495+3,698+3,263
+18,158+49,029=76,903 $

9 Strong seasonality
1,536+1,658+7,180+10,199
+50,809+141,923=213,305 $

10A Uniform random
10,979+14,090+69,758+86,357
+245,792+680,554=1,107,530 $

10B Uniform random
11,549+14,745+69,592+96,380
+284,016+777,811=1,254,093 $

10C Uniform random
4,719+2,166+35,485+6,720
+13,944+95,361=158,395 $

10D Uniform random
8,332+6,858+57,637+50,517
+149,477+368,053=640,874 $

10E Uniform random
3,482+2,081+26,223+7,259
+29,063+76,913=145,021 $

10F Uniform random
2497+2479+10,148+20,082
+64,881+180,851=280,938 $

10G Uniform random
5,291+5,702+21,517+45,037
+155,594+446,370=679,511 $

10H Uniform random
2,798+9,207+20,086+54,819
+177,438+555,669=820,017 $

10I Uniform random
11,057+18,478+45,104+90,048
+248,705+751,017=1,164,409 $

10J Uniform random
6,532+12,154+29,710+107,759

+355,061+1,057,264=1,568,480 $

Table B.11: Supply chain costs Cimproved (detail of Table 7.3, 2/4).

ample, under the Step demand with Scheme A in Table B.18, 33.7; 38.3; 140.2; 119.6;
180.2; 267.8 means the LumberRetailer’s standard deviation of inventory is 33.7. . . and
the Sawmill’s standard deviation of inventory is 267.8. The best possible value is zero,
i.e., inventory always steady, but this is only possible to get this best value when the
whole demand is prefectly known in the future, which is not possible in practice because
there is always a forecasting error.

Again, Tables B.18, B.19, B.20 and B.21 could be merged and data have to be
compared line by line. For example, under the Step demand, the LumberRetailer’s
standard deviation of inventory is 33.7 with Scheme A, 19.7 with A’, 187.7 with A” ,
20.5 with B, 28.7 with B’, 14.6 with C and 13.4 with D. In general, Schemes B, C and
D have the best results.
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Scheme B Scheme B’

1 Step
1,114+1,871+985+1,760
+1,457+1,848=9,035 $

3,674+4,120+4,369+5,670
+4,800+6,923=29,556 $

2 Inversed Step
466+109+651+274

+489+1,248=3,237 $
1,574+704+2,058+1,442
+2,262+9,397=17,437 $

3 Dirac
152+178+151+177
+175+486=1,319 $

664+684+1,074+1,261
+1,233+1,882=6,798 $

4 Inversed Dirac
276+301+276+300
+300+486=1,939 $

2,415+2,128+3,497+3,479
+3,538+6,316=21,373 $

5 Increase
5,967+10,093+5,230+9,710

+7,906+7,848=46,754 $
11,257+14,847+13,458+20,501

+17,897+17,348=95,308 $

6 Decrease
447+450+1,108+1,116
+1,709+3,924=8,754 $

2,241+2,257+2,133+2,176
+1,959+7,122=17,888 $

7 Weak seasonality
288+378+234+315
+273+675=2,163 $

240+271+342+349
+336+871=2,409 $

8 Medium seasonality
1,085+1,096+1,151+1,118

+1,070+2,418=7,938 $
1,081+586+1,339+778
+906+2,565=7,255 $

9 Strong seasonality
1,638+1,599+1,388+1,700
+2,066+3,579=11,970 $

1,416+1,610+1,809+2,618
+2,969+4,320=14,742 $

10A Uniform random
787+1,663+823+1,740
+1,528+2,693=9,234 $

1,392+1,191+2,201+1,574
+1,457+5,115=12,930 $

10B Uniform random
1,899+1,792+1,986+1,868
+1,947+2,648=12,140 $

2,093+1,784+2,253+2,887
+3,098+5,814=17,929 $

10C Uniform random
2,991+1,575+1,965+1,540
+1,489+3,208=12,768 $

3,133+2,137+4,451+3,497
+4,016+8,785=26,019 $

10D Uniform random
1,934+1,134+1,948+1,224
+1,248+2,687=10,175 $

2,683+1,291+3,518+2,153
+2,944+8,276=20,865 $

10E Uniform random
1,604+1,976+1,376+2,049
+2,203+2,936=12,144 $

1,111+1,586+978+1,805
+2,473+5,984=13,937 $

10F Uniform random
873+1,198+991+1,265
+1,201+2,548=8,076 $

1,231+1,470+1,658+2,163
+2,377+3,868=12,767 $

10G Uniform random
1,092+2,203+1,118+1,783
+1,610+2,871=10,677 $

374+1,734+988+2,265
+1,909+2,910=10,180 $

10H Uniform random
2,910+1,046+2,672+1,169
+1,169+3,043=12,009 $

3,075+2,095+3,357+3,189
+3,669+9,164=24,549 $

10I Uniform random
988+2,737+793+2,560
+2,586+3,057=12,721 $

1,610+2,650+1,462+3,401
+3,616+6,801=19,540 $

10J Uniform random
1,759+1,111+2,087+1,108
+1,224+2,729=10,018 $

1,331+1,256+2,134+1,873
+2,133+4,300=13,027 $

Table B.12: Supply chain costs Cimproved (detail of Table 7.3, 3/4).

Notice that standard deviation of inventories is greater for upstream suppliers than
for retailers for all ordering schemes. This is induced by the bullwhip effect. For
schemes B and D, this hides the fact that inventory level fluctuates for a shorter period
by upstream suppliers than by retailers. In fact, upstream suppliers’ standard deviation
is bigger because their fluctuation is greater, which is not true for the other ordering
schemes.

Finally, all these tables show that Scheme D is often the best choice for all companies.



Appendix B. Detail about Simulations with a Homogeneous Supply Chain 287

Scheme C Scheme D

1 Step
2,510+3,326+2,718+4,322
+4,193+4,764=21,833 $

706+1,460+580+1,352
+1,136+1,392=6,626 $

2 Inversed Step
627+632+1,385+1,576
+1,364+2,842=8,426 $

466+77+542+132
+180+1,020=2,417 $

3 Dirac
347+374+499+540
+487+683=2,930 $

120+166+132+164
+191+216=989 $

4 Inversed Dirac
404+452+572+669

+693+1,097=3,887 $
221+268+210+256
+198+216=1,369 $

5 Increase
9,196+12,812+9,396+16,533
+16,029+16,804=80,770 $

3,586+7,819+2,750+7,317
+6,008+5,140=32,620 $

6 Decrease
2,241+2,257+2,164+2,180
+2,526+6,068=17,436 $

447+450+750+822
+1,126+2,612=6,207 $

7 Weak seasonality
25+27+46+56
+43+82=279 $

213+249+128+193
+146+265=1,194 $

8 Medium seasonality
421+334+572+550
+473+887=3,237 $

497+564+611+636
+624+767=3,699 $

9 Strong seasonality
821+814+1,371+1,309
+1,724+2,992=9,031 $

997+1,125+1,129+1,255
+1,261+1,760=7,527 $

10A Uniform random
436+367+885+721

+852+1,756=5,017 $
632+980+697+1,021
+918+1,313=5,561 $

10B Uniform random
635+525+1,014+910
+998+1,629=5,711 $

836+704+915+689
+509+1,031=4,684 $

10C Uniform random
1,396+603+1,540+1,068
+1,374+2,845=8,826 $

1,359+771+1,307+828
+623+1,641=6,529 $

10D Uniform random
312+347+816+797

+1,195+2,296=5,763 $
1,263+716+1,263+736
+590+1,879=6,447 $

10E Uniform random
666+389+790+608

+872+1,692=5,017 $
909+779+972+852

+742+1,320=5,574 $

10F Uniform random
597+694+848+1,155

+1,150+1,448=5,892 $
609+698+648+752
+648+885=4,240 $

10G Uniform random
366+1,205+910+1,515
+1,271+1,599=6,866 $

728+1,351+705+1,320
+1,270+2,018=7,392 $

10H Uniform random
992+483+1,088+1,629
+1,041+2,740=7,973 $

2,493+799+1,811+938
+630+2,615=9,286 $

10I Uniform random
406+1,221+714+1,760
+1,881+1,989=7,971 $

595+1,396+585+1,394
+1,314+1,900=7,184 $

10J Uniform random
743+660+1,189+884
+728+2,280=6,484 $

1,058+757+1,146+776
+601+1,573=5,911 $

Table B.13: Supply chain costs Cimproved (detail of Table 7.3, 4/4).
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Scheme A Scheme A’

1 Step 603; 752; 698; 950; 1,418; 2,476 468; 630; 408; 570; 905; 2,962
2 Inversed step 0; 0; 23; 23; 157; 536 0; 0; 0; 0; 65; 736

3 Dirac 144; 148; 138; 174; 246; 366 72; 84; 163; 201; 1,021; 3,395
4 Inversed Dirac 155; 162; 152; 223; 300; 545 25; 36; 82; 113; 967; 3,725

5 Increase 2,707; 3,011; 1,953; 2,510; 3,259; 4,727 1,081; 1,297; 661; 877; 417; 594
6 Decrease 0; 0; 0; 0; 48; 298 0; 0; 0; 0; 0; 7

7 Weak seasonality 18; 22; 20; 33; 43; 43 46; 48; 12; 18; 203; 671
8 Medium seasonality 112; 140; 107; 147; 247; 514 140; 143; 42; 47; 107; 430
9 Strong seasonality 167; 167; 181; 236; 255; 665 201; 201; 91; 91; 189; 508
10A Uniform random 46; 75; 94; 118; 221; 317 15; 88; 14; 30; 233; 1,189
10B Uniform random 98; 171; 165; 303; 447; 1,162 72; 111; 76; 87; 247; 880
10C Uniform random 447; 161; 553; 249; 388; 1,111 332; 118; 255; 106; 473; 1,319
10D Uniform random 57; 24; 133; 60; 118; 650 43; 4; 0; 0; 605; 2,151
10E Uniform random 210; 151; 140; 253; 623; 2,205 81; 107; 106; 108; 714; 2,085
10F Uniform random 208; 206; 306; 294; 437; 760 153; 182; 97; 137; 779; 2,616
10G Uniform random 15; 348; 79; 367; 549; 798 3; 216; 9; 242; 1,323; 2,745
10H Uniform random 355; 57; 369; 151; 352; 1,764 183; 5; 146; 3; 772; 2,144
10I Uniform random 78; 363; 114; 514; 807; 1,137 51; 299; 14; 334; 1,638; 3,706
10J Uniform random 136; 177; 184; 185; 361; 708 51; 86; 26; 23; 217; 1,487

Table B.14: Sum of backorders, i.e.,
∑

w(Obi
w + Θbi

w) (extension of Table 7.4, 1/4).

Scheme A”

1 Step 522; 708; 1,758; 3,057; 8,943; 25,304
2 Inversed step 403; 295; 1,199; 1,622; 5,755; 15,681

3 Dirac 332; 259; 306; 456; 1,461; 4,000
4 Inversed Dirac 671; 880; 2,682; 4,200; 12,942; 35,277

5 Increase 1250; 1595; 1687; 3,390; 9,617; 27,617
6 Decrease 1431; 1766; 6,448; 9,807; 32,178; 87,360

7 Weak seasonality 309; 286; 838; 1,119; 3,129; 8,739
8 Medium seasonality 279; 360; 324; 521; 608; 1,629
9 Strong seasonality 309; 217; 353; 437; 1,643; 4,561
10A Uniform random 555; 676; 2,336; 3,025; 9,257; 24,653
10B Uniform random 563; 695; 2,337; 3,403; 10,616; 28,671
10C Uniform random 469; 496; 1,076; 787; 531; 3,055
10D Uniform random 460; 422; 1,979; 1,830; 5,433; 13,853
10E Uniform random 525; 490; 1,261; 2,180; 6,127; 16,941
10F Uniform random 434; 330; 404; 678; 1,996; 5,538
10G Uniform random 527; 493; 747; 1,464; 4,999; 14,453
10H Uniform random 372; 498; 677; 1,946; 6,451; 20,681
10I Uniform random 537; 707; 2,145; 3,375; 10,221; 27,849
10J Uniform random 418; 627; 1,128; 3,826; 13,596; 39,577

Table B.15: Sum of backorders, i.e.,
∑

w(Obi
w + Θbi

w) (extension of Table 7.4, 2/4).
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Scheme B Scheme B’

1 Step 549; 915; 249; 387; 135; 84 1,867; 1,937; 872; 1,125; 747; 1,726
2 Inversed step 192; 16; 204; 16; 16; 293 486; 65; 567; 189; 215; 2,879

3 Dirac 75; 87; 51; 63; 39; 42 322; 319; 202; 238; 186; 518
4 Inversed Dirac 124; 135; 113; 124; 113; 264 905; 771; 865; 679; 473; 1,694

5 Increase 2,940; 4,936; 352; 1,006; 126; 40 5,546; 7,261; 1,535; 3,430; 664; 407
6 Decrease 0; 0; 0; 0; 0; 0 0; 0; 0; 0; 70; 615

7 Weak seasonality 140; 179; 120; 173; 143; 69 103; 118; 117; 144; 154; 453
8 Medium seasonality 535; 536; 340; 372; 374; 300 533; 248; 572; 319; 333; 791
9 Strong seasonality 807; 782; 453; 615; 422; 321 627; 716; 553; 671; 556; 737
10A Uniform random 338; 802; 192; 629; 366; 572 482; 526; 325; 594; 581; 2,191
10B Uniform random 949; 867; 746; 715; 604; 224 929; 785; 522; 672; 542; 2,020
10C Uniform random 1,474; 764; 686; 543; 343; 513 1,424; 849; 719; 695; 511; 3,655
10D Uniform random 925; 518; 818; 337; 360; 846 1,301; 418; 745; 557; 593; 1,768
10E Uniform random 789; 967; 457; 597; 393; 612 504; 745; 424; 629; 505; 1,782
10F Uniform random 428; 584; 245; 368; 321; 553 557; 642; 534; 431; 259; 1,062
10G Uniform random 494; 1072; 356; 625; 600; 940 85; 863; 154; 567; 551; 726
10H Uniform random 1,434; 467; 1,025; 412; 367; 1,003 1,459; 836; 1369; 752; 1,033; 2,396
10I Uniform random 493; 1,387; 210; 958; 922; 611 725; 1313; 399; 1,072; 966; 2,570
10J Uniform random 865; 529; 780; 296; 209; 706 681; 553; 480; 355; 229; 941

Table B.16: Sum of backorders, i.e.,
∑

w(Obi
w + Θbi

w) (extension of Table 7.4, 3/4).

Scheme C Scheme D

1 Step 1,237; 1,627; 1,343; 2,129; 2,081; 2,342 348; 714; 84; 198; 84; 36
2 Inversed step 0; 0; 40; 42; 157; 329 192; 0; 204; 0; 0; 216

3 Dirac 153; 165; 216; 233; 206; 274 59; 81; 35; 57; 45; 127
4 Inversed Dirac 167; 184; 223; 259; 233; 384 97; 119; 86; 108; 91; 142

5 Increase 4,531; 6,266; 4,664; 8,146; 7,956; 8,402 1767; 3824; 96; 382; 96; 22
6 Decrease 0; 0; 0; 0; 0; 77 0; 0; 0; 0; 0; 91

7 Weak seasonality 12; 13; 19; 24; 22; 33 100; 122; 61; 86; 48; 63
8 Medium seasonality 178; 147; 247; 237; 206; 345 245; 276; 87; 122; 81; 30
9 Strong seasonality 308; 351; 420; 509; 651; 1295 482; 550; 182; 275; 164; 85
10A Uniform random 48; 127; 114; 254; 297; 445 272; 471; 111; 251; 262; 342
10B Uniform random 237; 194; 381; 334; 345; 536 397; 330; 161; 175; 115; 150
10C Uniform random 670; 266; 749; 396; 632; 1,308 666; 364; 284; 136; 158; 279
10D Uniform random 51; 5; 135; 74; 179; 433 605; 313; 386; 147; 104; 375
10E Uniform random 306; 136; 322; 242; 374; 700 444; 373; 210; 149; 175; 366
10F Uniform random 247; 299; 338; 482; 474; 573 288; 332; 173; 167; 132; 265
10G Uniform random 64; 585; 175; 745; 630; 434 310; 659; 115; 375; 369; 396
10H Uniform random 469; 33; 514; 126; 393; 1,122 1256; 356; 510; 120; 88; 515
10I Uniform random 122; 589; 181; 866; 933; 752 242; 682; 126; 343; 287; 331
10J Uniform random 350; 293; 584; 391; 300; 874 519; 356; 238; 173; 104; 225

Table B.17: Sum of backorders, i.e.,
∑

w(Obi
w + Θbi

w) (extension of Table 7.4, 4/4).
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Scheme A Scheme A’

1 Step 33.7; 38.3; 140.2; 119.6; 180.2; 267.8 19.7; 24.2; 51.2; 56.8; 324.7; 1,869.7
2 Inversed step 6.2; 6.2; 88.6; 85.9; 153.6; 308.3 4.1; 4.1; 24.2; 24.2; 108.5; 663.6

3 Dirac 4.6; 4.4; 18.7; 18.9; 42.6; 74 8.4; 8.7; 79.9; 83.4; 405.7; 2,330.8
4 Inversed Dirac 6; 7.1; 39.3; 28.1; 54.1; 110.2 6.2; 6.8; 70.2; 73.2; 441.6; 2,551.7

5 Increase 51; 59.4; 141.8; 107.6; 185.2; 288.1 14.9; 22.9; 13.3; 21.5; 30.8; 275
6 Decrease 29.1; 29.1; 32.5; 31.3; 97.5; 233.6 3.1; 3.1; 4.3; 4.3; 30.2; 234.7

7 Weak seasonality 0.7; 0.7; 1.1; 1.2; 2; 6.2 2.5; 2.4; 100; 102.1; 608.4; 3,618
8 Medium seasonality 3.9; 5.9; 16.7; 40.3; 69.9; 152.4 5.9; 5.9; 52.5; 52.7; 321.6; 2,104
9 Strong seasonality 11.1; 10.2; 66.1; 44.3; 98; 226.1 7.7; 7.7; 39.5; 40; 238.8; 1,524.4
10A Uniform random 9.4; 6.5; 63.9; 27.2; 72.4; 224.2 12.6; 13.3; 451.6; 363.9; 1,714; 9,793.8
10B Uniform random 12.2; 17.8; 71.3; 97.7; 114.2; 215.6 11.6; 10; 382.6; 339.9; 1,671; 9,337.8
10C Uniform random 22.6; 11.3; 92; 62.3; 110.2; 248.3 15.6; 10.1; 222.1; 378; 1,979.7; 10,145.8
10D Uniform random 12; 8; 98.9; 81.3; 137; 419 8.5; 12.3; 344.9; 285.4; 1,303.9; 8,131.2
10E Uniform random 4.5; 15.5; 17.2; 100.5; 96; 211 19.7; 14.2; 432.3; 415.4; 1,894.2; 10,039.2
10F Uniform random 10.9; 12.8; 71.1; 55.8; 101.6; 180 10.9; 11.4; 359.2; 366.2; 1,672.7; 9127.8
10G Uniform random 7; 12.5; 50.5; 62.3; 107.6; 220 11.1; 15.5; 378.2; 392.2; 1,771.9; 10,016.5
10H Uniform random 16.2; 15.8; 45.2; 145.5; 124.7; 312.9 18.1; 12.8; 429.4; 390.3; 2,045.9; 11,264.4
10I Uniform random 11.7; 20.3; 86.1; 75.3; 134.1; 195.5 11.3; 17.9; 506.6; 368.7; 1,787.3; 10,731.5
10J Uniform random 11.4; 9; 41.9; 48.1; 99; 223.3 10.2; 11.1; 354; 366.8; 1,902.5; 10,438.5

Table B.18: Standard-deviation of inventories, i.e., σI+Op+Θp (extension of Table 7.5,
1/4).

Scheme A”

1 Step 187.7; 270.1; 831; 1,542.2; 4,495.5; 1,2315.9
2 Inversed step 61.5; 76.5; 606.9; 818.1; 2,766.7; 7,658.4

3 Dirac 35.5; 35.3; 128; 198.6; 717.4; 1,954.3
4 Inversed Dirac 236.8; 344.5; 1,318.8; 2,101.4; 6,370; 17,247.5

5 Increase 204.4; 310.5; 724.8; 1,678.5; 4,764.8; 13,438.6
6 Decrease 520; 727.7; 3,269.2; 5,034.4; 15,538.9; 43,311.6

7 Weak seasonality 89.4; 77.2; 378.9; 465.4; 1,235.8; 3,242.8
8 Medium seasonality 26.8; 32.7; 78; 82.5; 289; 756.1
9 Strong seasonality 33.8; 38.9; 136.4; 178.7; 840.3; 2,299.5
10A Uniform random 195.6; 253.8; 1,138.7; 1,529.4; 4,524.3; 12,269.2
10B Uniform random 205.6; 266.8; 1,153.2; 1,729.8; 5,310.2; 14,176.9
10C Uniform random 94.4; 43.3; 492.6; 141.2; 194; 1,317.9
10D Uniform random 157.5; 137.1; 950.5; 878.1; 2,713.4; 6,574.3
10E Uniform random 71.3; 45.2; 393.2; 147.1; 436.1; 1,169.1
10F Uniform random 50.2; 51.7; 168.6; 304.3; 994.8; 2690.2
10G Uniform random 111.6; 123.1; 300.4; 688; 2,478.1; 6,879.7
10H Uniform random 55.7; 167.8; 296.8; 909.4; 3,346.4; 10,052.2
10I Uniform random 190.8; 317.8; 682.9; 1,505.3; 4,318.6; 12,597.5
10J Uniform random 135.5; 227.1; 493.7; 1,966.4; 6,753.4; 19,373.8

Table B.19: Standard-deviation of inventories, i.e., σI+Op+Θp (extension of Table 7.5,
2/4).
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Scheme B Scheme B’

1Step 20.5; 23.2; 20.6; 23.5; 22.8; 35.5 28.7; 38.2; 51.4; 71; 65.8; 140.3
2Inversed step 6.6; 5.2; 14.1; 12.5; 20.8; 35.5 28.7; 13.3; 41.1; 26.3; 42.2; 179.7

3Dirac 2.6; 2.7; 4.6; 4.7; 7.8; 22 7.1; 7.2; 13.2; 15.4; 19.5; 27.3
4Inversed Dirac 7.9; 8; 9; 9.1; 11.1; 22 43.1; 34.9; 74.4; 61.8; 69.2; 117.6

5Increase 29.9; 55.7; 25.6; 51.2; 42.2; 39.4 74.4; 103.3; 91; 147.2; 131.3; 123.4
6Decrease 3.1; 3.1; 9; 9; 16; 39.4 29.1; 29.1; 33.3; 30.3; 42.8; 163.5

7Weak seasonality 4.2; 5.5; 2.7; 3.5; 3.1; 2.7 4.5; 4.8; 7.6; 6.7; 6.4; 21.8
8Medium seasonality 8.8; 8.8; 11.4; 10.5; 13.8; 39.1 17.5; 8.9; 31.2; 12.5; 13.8; 49.6
9Strong seasonality 10.8; 10.1; 14.3; 13; 27.2; 57.7 19; 22.2; 30; 39.3; 44.4; 61.9

10A Uniform random 9.3; 13.4; 14.1; 15.8; 21.8; 42.5 22.9; 20.5; 38.6; 34.1; 31.6; 101.7
10B Uniform random 13.5; 14.4; 18.1; 16.5; 22.4; 41.2 26.1; 24.1; 45.2; 43.5; 57.1; 121.7
10C Uniform random 18.3; 13.5; 16.8; 16; 20.9; 53.2 40.9; 37.8; 97.8; 72.8; 95.5; 200.7
10D Uniform random 17.2; 12.1; 19.6; 17; 23.9; 37.6 36.3; 23; 73.7; 40.7; 63; 158.9
10E Uniform random 12.2; 16.4; 18.4; 17; 23.2; 49.1 14.6; 25.5; 18.9; 30.4; 43.9; 155.3
10F Uniform random 6.3; 7.2; 12.1; 12.6; 17.4; 40.6 13.9; 18.5; 25.6; 35.3; 51.6; 66.1
10G Uniform random 12.7; 15.1; 16.8; 15.3; 22.5; 42.2 7.2; 15.8; 17.7; 26.9; 25.6; 46.1
10H Uniform random 16.9; 12.2; 17.7; 18.3; 23.1; 45.3 47.1; 33.7; 80.4; 64.3; 69.6; 211.1
10I Uniform random 10.2; 15.2; 14.1; 17; 22.3; 47.6 19.6; 28.3; 27; 44.8; 50.2; 137.7
10J Uniform random 14.7; 10.8; 20.7; 15; 20.9; 44 16.3; 15.7; 31.7; 29.1; 42.2; 65.7

Table B.20: Standard-deviation of inventories, i.e., σI+Op+Θp (extension of Table 7.5,
3/4).

Scheme C Scheme D

1 Step 14.6; 16.9; 20.5; 25.2; 23.9; 27.2 13.4; 16; 13.1; 16.2; 14.4; 18.3
2 Inversed step 5.6; 5.6; 20.2; 23.3; 24.1; 47.3 6.6; 4.8; 9.8; 8.1; 9.4; 18.3

3 Dirac 3.9; 4.1; 6.3; 6.6; 6.9; 9 2.6; 3; 5; 4.9; 6; 8.4
4 Inversed Dirac 5.3; 5.7; 8.5; 9.8; 12.5; 15.6 5.4; 6.1; 6.6; 7.2; 6; 8.4

5 Increase 59.2; 86.6; 60.6; 115.2; 114.3; 116.3 17.6; 41; 14.4; 37.1; 30.5; 22.4
6 Decrease 29.1; 29.1; 30.6; 30.6; 50.6; 125.7 3.1; 3.1; 6.5; 6.5; 9.6; 22.4

7 Weak seasonality 0.4; 0.4; 0.8; 0.8; 0.5; 1.1 2.8; 3.5; 1.8; 2.4; 1.4; 4.3
8 Medium seasonality 5.6; 4.1; 8.3; 7.5; 6.7; 13.1 3.9; 3.5; 8.3; 7.4; 8.9; 11.6
9 Strong seasonality 12.3; 9.9; 25.3; 20.4; 27.8; 44.1 7.8; 6.9; 14.2; 12.9; 17.4; 27.8
10A Uniform random 7.2; 6.1; 17.5; 11.8; 15.2; 29.8 7.5; 8.4; 11.7; 11.9; 12.9; 16.5
10B Uniform random 9.2; 7.9; 15; 14.1; 16.3; 26.2 6.9; 6.3; 11.6; 9.6; 8.3; 13.1
10C Uniform random 11; 7.5; 15.6; 16.3; 17.4; 22.7 8.1; 6.7; 12.3; 10.9; 9.7; 15.6
10D Uniform random 5.4; 4.8; 14.1; 14; 23.2; 34.8 9.3; 8.1; 11.9; 11.9; 10.7; 15
10E Uniform random 7.3; 6.4; 12.1; 9.3; 11.2; 17.9 6.7; 6.4; 12; 10.1; 10.4; 14.3
10F Uniform random 7.3; 7.9; 11.4; 14.2; 15.1; 17.3 5.2; 5; 9.7; 9.5; 10.2; 14.5
10G Uniform random 6.9; 7.5; 17.1; 7.9; 8; 25.1 8.7; 7.9; 12.3; 10.3; 11.2; 15.3
10H Uniform random 8.3; 7.4; 10.8; 24.2; 16.5; 25.2 10; 8.1; 11.9; 13.6; 11.1; 12.3
10I Uniform random 6.6; 7.8; 11.9; 9.9; 10.6; 16.3 7.7; 7; 10.5; 10.1; 11.3; 13.9
10J Uniform random 7.5; 7.5; 10.1; 11.3; 11; 15.4 7.7; 6.6; 12.3; 10.8; 10.4; 14.9

Table B.21: Standard-deviation of inventories and backorders, i.e., σI+Ob+Θb (extension
of Table 7.5, 4/4).
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Detail about Simulations with a
Heterogeneous Supply Chain

Since simulation outputs depend on the parameters and on the initial conditions, we
optimize them in this appendix for the case of the heterogenous supply chain (cf. second
series of experiments in Chapter 8). We only consider Scheme A”, B and D in Chap-
ter 8, but Scheme A” has been optimized in Section B.2. As a consequence, we only
present now the optimization of the parameters of Schemes B and D. We discuss the
results of these optimizations in Section C.3. Finally, we present the problem that the
Sawmill faces when it places orders based on its two (lumber and paper) requirements
in Section C.4.

C.1 Optimization of Scheme B

Like in Section B.3 for homogeneous supply chains, the first parameter of Scheme B is
λ, which represents the quantity of Θ to send to eventually stabilize the inventory on its
initial level when the market consumption has been steady for a sufficient period. This
parameter only depends on the ordering and shipping delays between the considered
company and its direct supplier. The second parameter, I i

1 (company i’s inventory in
the first week) represents the initial inventory level. This parameter depends on the
structure of the supply chain and on the cost function. We have first to seek the good
value of λ because it rules the process of inventory stabilization, and next the good
value of the initial inventory level because the incurred cost depend on this level, which
is also where inventory stabilizes.
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C.1.1 Value of λ

We have already explained how to choose λ in Section B.3. Therefore, we take its value
in Table B.4. In particular, we take λ = 4 in our simulation, because there are two
weeks of ordering and shipping delays, like in the first series of experiments.

C.1.2 Initial inventory levels

Since inventory levels fluctuate during a longer period by the retailer than by its sup-
pliers and this fluctuation is more important by the suppliers than by the retailer, the
optimal initial inventory level is not the same for all companies. Since the ordering
scheme B is collaborative, we define the optimal initial inventories as the inventory lev-
els incurring the lowest cost C for the whole supply chain, which may be different from
the optimal initial inventory for each company under the assumption that their supplier
has never backorders (this second assumption was made to optimize A” in Section B.2).
This optimum is experimentally obtained on our simulation with the Solver in Microsoft
Excel. We have studied three different ways of optimizing:

1. all initial inventory levels may be different, even lumber and paper Sawmill initial
inventories (Table C.1). The format of data is [I1

1 , I
2
1 , I

3
1 , I

4
1 , I

5
1 , I

6−lumber
1 , I6−paper] →

C1+C2+C3+C4+C5+C6 = C. For example, when ordering and shipping delays
are both equal to two weeks, [0, 0, 30, 0, 0, 0, 78] means that the supply chain
cost C is minimum when the two retailers, the PaperWholesaler and the PaperMill
have empty initial inventory, the LumberWholesaler has 30 items, the Sawmill no
units of lumber and 78 of paper. This initial state of the supply chain leads to a
cost C = 1, 944 k$ for the supply chain, where, for example, the Sawmill incurs a
cost of C6 = 480 k$ for its two inventories.

2. all initial inventories may be different, except that lumber and paper Sawmill
inventories are equal (Table C.2). This is the optimization method used next
for our experiments. The format of data is the same as above: [I1

1 , I2
1 , I

3
1 , I

4
1 , I

5
1 ,

I6−lumber
1 , I6−paper] → C1 + C2 + C3 + C4 + C5 + C6 = C. We can note that the

constraint I6−lumber
1 = I6−paper is satisfied for all entries in Table C.2.

3. all companies have the same initial inventory level, in order to check if it worth
to differentiate companies. Table C.3 show the results. The format of data is the
same as above: [I1

1 , I
2
1 , I

3
1 , I

4
1 , I

5
1 , I

6−lumber
1 , I6−paper] → C1 + C2 + C3 + C4 + C5 +

C6 = C. We can note that the constraint I1
1 = I2

1 = I3
1 = I4

1 = I5
1 = I6−lumber

1 =

I6−paper is satisfied for all entries in Table C.3.
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We do not discuss Tables C.1, C.2 and C.3, but we can rapidly note that companies do
not prefer the same optimization scenario: some companies prefer Table C.1, and others
C.2 and C.3. Moreover, both costs and optimum levels of initial inventory increase with
the length of delays.

C.2 Optimization of Scheme D

Scheme D is very similar to B and has therefore the same two parameters λ and I i
1 to

be set up. These two setups have to be carried out in the same order: first λ, next I i
1.

C.2.1 Value of λ

We have previously determined λ in Section B.4. We take its value in Table B.5. More
precisely, since there are two weeks of ordering and shipping delays in our simulation,
we take λ = 2 for all companies, except both retailers for which we take λ = 4.

C.2.2 Initial inventory levels

The difference between rules B and D is the use of information centralization which al-
lows to improve the reactivity of the supply chain to changes on the market. Precisely,
this improvement reduces inventory fluctuations, and therefore, the duration of backo-
rders and of overstockings. Since inventories fluctuate less with Scheme B than with D,
every company saves money if it chooses a lower initial inventory with Scheme D. The
optimal initial inventory is obtained again with the Solver in Microsoft Excel for the
same three different ways of optimizing as in Subsection B.3:

1. all initial inventory levels may be different, even by lumber and paper Sawmill
(Table C.4). The format of data is again [I1

1 , I
2
1 , I

3
1 , I

4
1 , I

5
1 , I

6−lumber
1 , I6−paper] →

C1+C2+C3+C4+C5+C6 = C. For example, when ordering and shipping delays
both are two weeks, the following notation [0, 0, 0, 0, 12, 6, 24] means that the
supply chain cost C is minimum when all Retailers and Wholesalers have empty
initial inventory, the PaperMill has 12 units in inventory, and the Sawmill 6 units
of lumber and 24 of paper in its two inventories. This initial state of the supply
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chain leads to a cost C = 1, 183 k$ for the supply chain, where, for example, the
Sawmill incurs a cost of C6 = 255 k$ for its two inventories.

2. all initial inventories may be different, except that lumber and paper Sawmill
inventories are equal (Table C.5). The format of data is the same as above:
[I1

1 , I
2
1 , I

3
1 , I

4
1 , I

5
1 , I

6−lumber
1 , I6−paper] → C1 + C2 + C3 + C4 + C5 + C6 = C with

the constraint I6−lumber
1 = I6−paper. We use this method of optimization in our

experiments.

3. all companies have the same initial inventory level, in order to check if it is worth
differentiating companies. Table C.6 shows the results. The format of data is the
same as above: [I1

1 , I
2
1 , I

3
1 , I

4
1 , I

5
1 , I

6−lumber
1 , I6−paper] → C1 + C2 + C3 + C4 + C5 +

C6 = C with the contraint I1
1 = I2

1 = I3
1 = I4

1 = I5
1 = I6−lumber

1 = I6−paper.

C.3 Discussion and Implications for our Simulations

Parameter λ is easier to choose than the initial inventory level, because λ only depends
on the delays between each company and its direct supplier(s), while the initial inventory
level depends on the demand, on the pricing function and on the dynamics/structure of
the supply chain. For example, if backorders were considered as free, the optimal value
of initial inventory level would be zero, because companies would only want to avoid
holding products. During the optimization process of initial inventories, the Solver often
converges on local optima. These local optima leads to very similar values of C, but the
distribution of this cost among companies change. In other words, for some companies i,
Ci is higher in some optimum than in others, while C remains quite constant for the
whole supply chain. This may be a problem in our experiments, because we check
individual companies’ incentives for using an ordering scheme instead of another. In
fact, two investigations could be done here:

• First investigation: The first possbile investigation is to find the global optimum
with an exhaustive search. Since we only use integer values for initial inventories,
and if we assume the optimal value of initial inventories cannot exceed one hun-
dred items, we have to test one hundred values for each decision variable of this
problem, where each initial inventory level is a decision variable. For example,
the first optimization method assumes all inventories are independent. Therefore,
there are seven decision variables in this method, and 1007 values have to be tested
for the whole supply chain. With the second optimization method, both Sawmill’s
inventories are equal. In this case, 1006 values have to be tested. Finally, the
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third optimization method assumes all initial inventories are equal, therefore only
100 values have to be tested.

• Second investigation: We could next do the second investigation in which we
would check if the results presented in Section 8.4 still hold with local optima
near of the global optimum. This second investigation would give us an idea of
the robustness of our results.

For the specific case of our second series of experiments, we let each company in
our second series of experiments choose its initial inventory level and the Sawmill has
the constraint that I6−lumber

1 = I6−paper, which corresponds to the second optimization
method in Subsections B.3.2 and B.4.2. In this context, we have to extend the entry
“Ordering 2” and “Shipping 2” in Tables C.2 and C.5 for the eight other market con-
sumption patterns, because Tables C.2 and C.5 only hold for the Step pattern. This
extension is presented in Table C.7. Therefore, the initial inventory levels in Scheme B
and D used in our second series of experiments in Section 8.4 have to be set up accord-
ing to Table C.7. The format of data is the same as in Tables C.1 to C.6, except the
addition of two numbers between parenthesis after C. The meaning of these numbers
is clarified in the next subsection. Since we also use Scheme A” with empty initial
inventory in our experiments, the costs it induces are also presented in Table C.7.

Finally, it is interesting to note that all costs in this dissertation are calculated
under the assumption that a unit in inventory costs half a backordered unit. Since
the only difference between “QWSG costs”, our “improved costs” and our “realistic
costs” is a multiplicative constant depending on the considered company, and since
optimization is carried out to minimize the sum of individual company’s costs, optimal
initial inventories are different when considering these three methods of cost evaluation.
The overall supply chain cost also changes with these three methods of cost calculation.
But the Nash equilibria are exactly the same, because they are determined by comparing
costs within a single company, and thus, the multiplication by a constant does not
change the equilibria.

On the contrary, we can wonder what would happen if we changed the ratio of 1/2
between inventory holding cost and backorder cost. In particular, if the pricing function
considered that backorders are free, the optimal value of initial inventory level would
be zero, because companies would only want to avoid to hold products in inventory.
It could be interesting to change the relative weights given to inventory holding and
backorders in order to check if results of the second series of experiments would be
affected. In fact, this will change the optimal value of initial inventories, but results
from the analyze of simulation outcomes may also change. In particular, Nash equilibria
found in Section 8.4 may change.
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Market cons.
pattern

Ordering
scheme A”

Ordering
scheme B

Ordering
scheme D

1. Step

[0, 0, 0, 0, 0, 0, 0]
→2,658+5,988+14,764

+35,574+98,680+149,945
=307,609 k$ (2; 2)

[0, 0, 0, 30, 0, 39, 39]
→173+198+139
+609+282+703
=2,104 k$ (2; 2)

[0, 0, 0, 0, 12, 24, 24]
→109+208+75
+159+265+416
=1,232 k$ (2; 2)

2. Inversed
step

[0, 0, 0, 0, 0, 0, 0]
→1,061+1,853+12,471

+22,331+72,635+107,140
=217,491 k$ (2; 2)

[0, 0, 0, 0, 0, 6, 6]
→30+48+93

+140+260+242
=813 k$ (2; 2)

[0, 0, 0, 0, 0, 6, 6]
→30+43+51

+74+101+173
=470 k$ (2; 2)

3. Dirac

[0, 0, 0, 0, 0, 0, 0]
→692+955+2,796

+6,945+25,737+38,319
=75,444 k$ (2; 2)

[0, 0, 0, 6, 0, 0, 0]
→61+28+61

+166+100+119
=535 k$ (2; 2)

[0, 0, 0, 0, 0, 0, 0]
→48+95+53+
94+110+56

=456 k$ (2; 2)

4. Inversed
Dirac

[0, 0, 0, 0, 0, 0, 0]
→3,299+6,732

+19,531+41,176
+120,053+176,755
=367,546 k$ (2; 2)

[0, 0, 0, 0, 0, 0, 0]
→73+114+73
+114+114+80
=568 k$ (3; 2)

[0, 0, 0, 0, 0, 0, 0]
→58+102+55
+97+75+38

=427 k$ (2; 2)

5. Increase

[0, 0, 0, 0, 0, 0, 0]
→1,327+2,722+5,553

+18,267+49,087+75,991
=152,947 k$ (2; 2)

[10, 10, 26, 26, 43,
69, 69]→8+17+28

+50+105+308
=516 k$ (2; 2)

[10, 9, 19, 19, 28,
58, 58]→8+32+19

+37+69+364
=529 k$ (3; 4)

6. Decrease

[0, 0, 0, 0, 0, 0, 0]
→3,692+7,029

+23,648+48,107
+143,390+215,647
=441,513 k$ (2; 2)

[0, 0, 0, 0, 0, 0, 0]
→57+82+141

+204+312+275
=1,071 k$ (2; 2)

[0, 0, 0, 0, 0, 0, 0]
→57+82+95

+150+206+144
=734 k$ (1; 1)

7. Weak
seasonality

[0, 0, 0, 0, 0, 0, 0]
→1,563+1,748+5,583

+9,089+22,739+32,454
=73,176 k$ (1; 2)

[0, 1, 4, 6, 4, 2, 2]
→83+154+55
+174+79+179
=724 k$ (1; 1)

[2, 1, 2, 1, 2, 0, 0]
→68+90+40
+66+50+41

=354 k$ (1; 1)

8. Medium
seasonality

[0, 0, 0, 0, 0, 0, 0]
→509+864+1,494

+1,886+10,492+14,645
=29,890 k$ (2; 2)

[5, 4, 14, 9, 7, 4, 4]
→129+151+267
+342+519+571
=1,979 k$ (1; 1)

[4, 4, 5, 5, 3, 0, 0]
→91+135+191
+271+324+230
=1,242 k$ (2; 2)

9. Strong
seasonality

[0, 0, 0, 0, 0, 0, 0]
→621+958+2,902

+5,893+29,358+43,320
=83,052 k$ (2; 2)

[8, 8, 16, 16, 12, 16,
16]→160+220+311

+480+868+887
=2,926 k$ (2; 2)

[6, 6, 11, 11, 11, 8,
8]→162+239+294
+415+522+428
=2,058 k$ (2; 2)

Table C.7: Optimal initial inventory for two-week ordering and shipping delays when
all initial inventories may be different except by the Sawmill (recalled in Table 8.1).
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C.4 The particular case of the Sawmill

We now study how the Sawmill should take into account both its lumber and paper
requirements when this company places orders. An illustration of the importance of
this question is the fact that the PaperRetailer, the PaperWholesaler and the PaperMill
may incur backorders if the Sawmill ignores them because it only focuses on delivering
lumbers. Precisely, the Sawmill is modelled as two subcompanies sharing incoming trans-
ports and placing a common order (Op6

w, Θp6
w). Therefore, the Sawmill can either base

its orders on lumber incoming orders (Oi6-lumber
w , Θi6-lumber

w ) or on paper incoming orders
(Oi6-paper

w , Θi6-paper
w ). To fulfill these two incoming orders, each subcompany would like

to place either the order (Op6-lumber
w , Θp6-lumber

w ) or the order (Op6-paper
w , Θp6-paper

w ). In
general, (Op6

w, Θp6
w) = f(Op6−lumber

w , Op6-paper
w , Θp6−lumber

w , Θp6−paper
w ). In all this thesis,

the aggregation method is a mean, that is, the function f calculates two means, as
shown by Equation C.1. The cost incurred by this first method has been presented in
Table C.7.

(Op6
w, Θp6

w) = (
Op6-lumber

w + Op6-paper
w

2
,
Θp6-lumber

w + Θp6-paper
w

2
) (C.1)

In this section, we study the supply chain behaviour when f is different. First, we
set f as a maximum, according to Equation C.2. The costs incurred are presented in
Table C.8.

(Op6
w, Op6

w) = (max(Op6−lumber
w , Op6-paper

w ), max(Θp6-lumber
w , Θp6-paper

w )) (C.2)

This is the aggregation method used in our previous papers [Moyaux et al., 2004c,
2003a,b]. Next, we assume in Table C.9 that the Sawmill only considers its paper
requirements, as illustrated by Equation C.3:

(Op6
w, Op6

w) = (Op6-paper
w , Θp6-paper

w ) (C.3)

Finally, we assume in Table C.10 that the Sawmill only considers its lumber require-
ments, as reflected by Equation C.4:

(Op6
w, Op6

w) = (Op6-lumber
w , Θp6-lumber

w ) (C.4)

We can now explain the meaning of the numbers between parenthesis in Tables C.7,
C.8, C.9 and C.10. It is the ordering of incurred C and C6 under the four previous sce-
narios. For example, let us consider Scheme A” under the Step demand. In Table C.10,
i.e., when the Sawmill only consider its lumber requirements to place orders, the whole
supply chain has an overall cost C = 120, 656 k$. On the other hand, in Table C.7, i.e.,
when the Sawmill orders the mean of its lumber and paper needs, C = 307, 609 k$, which
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Market cons.
pattern

Ordering
scheme A”

Ordering
scheme B

Ordering
scheme D

1. Step

[0, 0, 0, 0, 0, 0, 0]
→2,393+5,527+12,944

+30,845+87,224+184,786
=323,719 k$ (3; 3)

[0, 0, 0, 30, 0, 0, 0]
→257+260+222
+671+340+1,310
=3,060 k$ (4; 4)

[0, 0, 0, 0, 13, 23, 23]
→111+206+78
+157+279+629
=1,460 k$ (4; 4)

2. Inversed
step

[0, 0, 0, 0, 0, 0, 0]
→1,014+1,921+11,293

+20,852+65,194+126,389
=226,663 k$ (3; 3)

[0, 0, 0, 0, 0, 0, 0]
→30+43+93

+135+254+1,722
=2,277 k$ (4; 4)

[0, 0, 0, 0, 0, 0, 0]
→30+43+51

+74+101+349
=646 k$ (4; 4)

3. Dirac

[0, 0, 0, 0, 0, 0, 0]
→704+980+2,282

+6,001+23,080+46,401
=79,448 k$ (3; 3)

[0, 0, 0, 6, 0, 0, 0]
→59+28+58

+167+97+3,314
=3,723 k$ (4; 4)

[0, 0, 0, 0, 0, 0, 0]
→48+81+53
+80+96+714

=1,072 k$ (4; 4)

4. Inversed
Dirac

[0, 0, 0, 0, 0, 0, 0]
→2,867+6,581+16,901

+37,137+102,015+215,589
=381,090 k$ (3; 3)

[0, 0, 0, 0, 0, 0, 0]
→18+35+19

+35+36+2,110
=2,253 k$ (4; 4)

[0, 0, 0, 0, 0, 0, 0]
→40+75+37
+71+49+455
=728 k$ (4; 4)

5. Increase

[0, 0, 0, 0, 0, 0, 0]
→1,154+2,307+4,719

+16,647+41,186+89,044
=155,057 k$ (3; 3)

[10, 10, 26, 26, 42,
29, 29]→24+13+43

+41+81+410
=612 k$ (3; 4)

[9, 10, 19, 20, 33,
24, 24]→22+12+22

+31+76+224
=389 k$ (2; 2)

6. Decrease

[0, 0, 0, 0, 0, 0, 0]
→3,079+6,570+22,088

+44,117+127,175+255,475
=458,504 k$ (3; 3)

[0, 0, 0, 0, 0, 0, 0]
→57+82+141

+204+312+677
=1,473 k$ (4; 4)

[0, 0, 0, 0, 0, 0, 0]
→57+82+104

+150+206+253
=851 k$ (4; 4)

7. Weak
seasonality

[0, 0, 0, 0, 0, 0, 0]
→1,976+2,036+8,025

+13,337+20,673+39,131
=85,178 k$ (3; 3)

[0, 0, 4, 7, 0, 0, 0]
→81+131+79

+181+67+5,179
=5,718 k$ (4; 4)

[2, 2, 1, 1, 1, 0, 0]
→50+108+49
+53+62+1,067
=1,388 k$ (4; 4)

8. Medium
seasonality

[0, 0, 0, 0, 0, 0, 0]
→481+743+1,986

+2,272+8,204+18,844
=32,530 k$ (3; 3)

[5, 4, 4, 10, 4, 0, 0]
→112+163+311
+305+677+3,404
=4,972 k$ (4; 4)

[4, 4, 5, 5, 2, 0, 0]
→91+131+242
+276+351+764
=1,856 k$ (4; 4)

9. Strong
seasonality

[0, 0, 0, 0, 0, 0, 0]
→630+997+2,701

+5,603+26,684+58,517
=95,132 k$ (3; 3)

[8, 8, 11, 16, 12, 0, 0]
→183+220+392
+509+857+2,728
=4,889 k$ (4; 4)

[7, 7, 10, 11, 10, 0, 0]
→171+235+305
+430+524+707
=2,372 k$ (4; 4)

Table C.8: Tables C.7 when the Sawmill bases its order on the maximum of lumber and
paper requirements.
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Market cons.
pattern

Ordering
scheme A”

Ordering
scheme B

Ordering
scheme D

1. Step

[0, 0, 0, 0, 0, 0, 0]
→3,499+7,337+18,095

+39,383+98,223+211,855
=378,392 k$ (4; 4)

[0, 0, 0, 30, 0, 54, 54]
→168+194+134
+593+298+1,001
=2,388 k$ (3; 3)

[0, 0, 0, 0, 12, 24, 24]
→109+208+75
+159+265+485
=1,302 k$ (3; 3)

2. Inversed
step

[0, 0, 0, 0, 0, 0, 0]
→1,051+1,822+14,212

+26,002+83,653+170,972
=297,712 k$ (4; 4)

[0, 0, 1, 0, 0, 12, 12]
→30+48+113

+140+260+322
=913 k$ (3; 3)

[0, 0, 0, 0, 0, 12, 12]
→30+43+51

+74+101+220
=517 k$ (3; 3)

3. Dirac

[0, 0, 0, 0, 0, 0, 0]
→690+1,022+3,809

+8,207+28,343+60,550
=102,621 k$ (4; 4)

[0, 0, 0, 0, 0, 6, 6]
→39+84+39
+84+83+237
=566 k$ (3; 3)

[0, 0, 0, 0, 0, 0, 0]
→48+95+53
+94+110+59
=459 k$ (3; 3)

4. Inversed
Dirac

[0, 0, 0, 0, 0, 0, 0]
→4,076+7,999+22,233

+47,950+129,481+264,112
=475,851 k$ (4; 4)

[0, 0, 0, 0, 0, 0, 0]
→36+61+37
+62+62+93

=351 k$ (2; 3)

[0, 0, 0, 0, 0, 0, 0]
→58+102+55
+97+75+42

=431 k$ (3; 3)

5. Increase

[0, 0, 0, 0, 0, 0, 0]
→1,523+3,158+7,080

+19,872+48,956+96,250
=176,839 k$ (4; 4)

[10, 10, 26, 26, 42,
58, 58]→18+12+37

+40+80+248
=435 k$ (1; 1)

[10, 11, 19, 19, 28,
34, 34]→8+22+19

+28+49+256
=383 k$ (1; 3)

6. Decrease

[0, 0, 0, 0, 0, 0, 0]
→3,859+7,019+26,345

+54,854+159,617+340,845
=592,539 k$ (4; 4)

[0, 0, 0, 0, 0, 0, 0]
→57+82+139

+204+312+251
=1,045 k$ (1; 1)

[0, 0, 0, 0, 0, 8, 8]
→52+82+90

+150+206+213
=793 k$ (2; 2)

7. Weak
seasonality

[0, 0, 0, 0, 0, 0, 0]
→1,784+1,589+2,650

+6,832+33,264+62,366
=108,485 k$ (4; 4)

[1, 0, 8, 7, 0, 8, 8]
→42+136+155
+188+55+388
=964 k$ (3; 3)

[0, 1, 1, 1, 3, 1, 1]
→39+95+63
+62+64+58

=380 k$ (2; 2)

8. Medium
seasonality

[0, 0, 0, 0, 0, 0, 0]
→506+845+1,703

+2,004+11,809+23,449
=40,316 k$ (4; 4)

[5, 4, 11, 11, 18, 7, 7]
→130+166+319
+349+646+642
=2,252 k$ (3; 3)

[4, 4, 5, 5, 2, 0, 0]
→91+131+203
+276+314+182
=1,197 k$ (1; 1)

9. Strong
seasonality

[0, 0, 0, 0, 0, 0, 0]
→703+893+3,607

+7,146+32,116+70,095
=114,560 k$ (4; 4)

[8, 8, 22, 18, 16, 22, 22]
→197+240+396
+539+846+1,041
=3,259 k$ (3; 3)

[6, 6, 11, 11, 11, 6, 6]
→160+239+276
+404+518+457
=2,054 k$ (1; 3)

Table C.9: Table C.7 when the Sawmill bases its order only on paper requirements.



Appendix C. Detail about Simulations with a Heterogeneous Supply Chain 307

Market cons.
pattern

Ordering
scheme A”

Ordering
scheme B

Ordering
scheme D

1. Step

[0, 0, 0, 0, 0, 0, 0]
→2,393+5,527+12,931

+30,454+15,007+54,344
=120,656 k$ (1; 1)

[0, 0, 0, 7, 12, 0, 0]
→257+384+222
+444+303+223
=1,833 k$ (1; 1)

[0, 0, 0, 0, 12, 24, 24]
→109+208+75
+159+265+346
=1,163 k$ (1; 1)

2. Inversed
step

[0, 0, 0, 0, 0, 0, 0]
→1,451+2,383+12,225

+21,314+22,686+36,438
=96,497 k$ (1; 1)

[0, 0, 0, 0, 0, 0, 0]
→33+66+96

+157+277+161
=790 k$ (1; 1)

[0, 0, 0, 0, 0, 0, 0]
→30+43+51

+74+101+126
=423 k$ (1; 1)

3. Dirac

[0, 0, 0, 0, 0, 0, 0]
→704+980+2,282

+5,976+6,438+13,280
=29,660 k$ (1; 1)

[0, 0, 0, 6, 0, 0, 0]
→59+28+58

+167+97+112
=521 k$ (1; 1)

[0, 0, 0, 0, 0, 0, 0]
→48+95+53
+94+110+53
=453 k$ (1; 1)

4. Inversed
Dirac

[0, 0, 0, 0, 0, 0, 0]
→3,896+7,268+17,444

+36,671+24,407+61,788
=151,474 k$ (1; 1)

[0, 0, 0, 0, 0, 0, 0]
→36+61+37
+62+62+73

=331 k$ (1; 1)

[0, 0, 0, 0, 0, 0, 0]
→52+92+49
+88+66+34

=382 k$ (1; 1)

5. Increase

[0, 0, 0, 0, 0, 0, 0]
→1,154+2,307+4,702

+15,264+6,093+34,221
=63,741 k$ (1; 1)

[10, 10, 25, 26, 42,
82,82]→19+22+38

+60+113+398
=650 k$ (4; 3)

[11, 9, 19, 19, 82,
27, 27]→15+38+19

+48+377+147
=645 k$ (4; 1)

6. Decrease

[0, 0, 0, 0, 0, 0, 0]
→4,703+7,729+22,827

+44,033+38,117+73,234
=190,643 k$ (1; 1)

[0, 0, 0, 0, 0, 0, 0]
→57+82+141

+204+312+301
=1,097 k$ (3; 3)

[0, 0, 0, 0, 0, 0, 0]
→57+82+104

+150+206+229
=827 k$ (3; 3)

7. Weak
seasonality

[0, 0, 0, 0, 0, 0, 0]
→3,296+3,941+12,559

+13,121+20,238+22,332
=75,487 k$ (2; 1)

[0, 0, 4, 6, 2, 8, 8]
→95+116+96

+124+163+257
=851 k$ (2; 2)

[2, 2, 1, 1, 3, 3, 3]
→62+89+43
+62+56+95

=407 k$ (3; 3)

8. Medium
seasonality

[0, 0, 0, 0, 0, 0, 0]
→481+743+1,870

+2,269+4,770+5,347
=15,480 k$ (1; 1)

[4, 4, 15, 12, 9, 4, 4]
→121+156+265
+330+630+614
=2,116 k$ (2; 2)

[4, 4, 5, 5, 3, 3, 3]
→94+135+195
+274+333+267
=1,298 k$ (3; 3)

9. Strong
seasonality

[0, 0, 0, 0, 0, 0, 0]
→630+997+2,701

+5,603+9,647+14,958
=34,536 k$ (1; 1)

[8, 8, 17, 16, 13, 10, 10]
→164+221+388
+464+909+741
=2,887 k$ (1; 1)

[6, 6, 11, 11, 11, 9, 9]
→158+239+313
+415+537+420
=2,082 k$ (3; 1)

Table C.10: Table C.7 when the Sawmill bases its order only on lumber requirements.
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is much higher than with the previous aggregation method. Next, C = 323, 719 k$ in
Table C.8, and C = 378, 392 k$ in Table C.9. C = 120, 656 k$ in Table C.10 is the
lowest of these four values of C. This explains why the first number between parenthesis
for Scheme A” and Step demand is a “one” in Table C.10. The second highest cost has
a “two” as first number between parenthesis in Table C.7, etc.

When these first numbers between parenthesis are considered, we can note that the
aggregation with the max function almost always incurs the highest C with Schemes B
and D, and the second highest cost with Scheme A” . Unfortunately, our previous pa-
pers [Moyaux et al., 2004c, 2003a,b] use this aggregation method, which makes the
supply chain efficiency lower in these papers than in this dissertation! We did so in
order to avoid backorders, and thus to reduce costs, because the cost of a backordered
unit is twice the cost of a unit in inventory. Unfortunately, experiments show that this
was not a good strategy.

Results are less clear for the three other aggregation methods, because we cannot
find such regularity in Tables C.7, C.9 and C.10. The first number between parenthesis
in Table C.10 is more often “one” than in the two other Tables, but if we focus on values
of C, this result is only clear for ordering scheme A” , because values of C for Schemes B
and D are very near in Tables C.7 and C.10. In conclusion, the aggregation method
used by the Sawmill in this dissertation is not the best one, but its results are not very
far from it.

Next, the second number between parenthesis has the same meaning as the first
one, but for ordering the Sawmill’s costs C6 instead of the overall supply chain costs C.
This second number is very important, because it concerns the company that has to
decide which aggregation method to use: the Sawmill will choose the ordering scheme
indexed as “one” for itself (i.e., the second number between parenthesis), rather than for
the supply chain. In general, the two numbers between parenthesis are identical, and
therefore, the above comments still hold. This also indicates that the Sawmill’s interest
about this question is the same as the whole supply chain’s interest.
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