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Abstract

With over 230,000 hours of audio/video recordings of a child growing up in the home
setting from birth to the age of three, the Human Speechome Project has pioneered a
comprehensive, ecologically valid observational dataset that introduces far-reaching new
possibilities for the study of child development. By offering In vivo observation of a child's
daily life experience at ultra-dense, longitudinal time scales, the Speechome corpus holds
great potential for discovering developmental insights that have thus far eluded
observation. The work of this thesis aspires to enable the use of the Speechome corpus for
empirical study of emotional factors in early child development. To fully harness the
benefits of Speechome for this purpose, an automated mechanism must be created to
perceive the child's emotional state within this medium.

Due to the latent nature of emotion, we sought objective, directly measurable correlates
of the child's perceived emotional state within the Speechome corpus, focusing exclusively
on acoustic features of the child's vocalizations and surrounding caretaker speech. Using
Partial Least Squares regression, we applied these features to build a model that simulates
human perceptual heuristics for determining a child's emotional state. We evaluated the
perceptual accuracy of models built across child-only, adult-only, and combined feature
sets within the overall sampled dataset, as well as controlling for social situations,
vocalization behaviors (e.g. crying, laughing, babble), individual caretakers, and
developmental age between 9 and 24 months. Child and combined models consistently
demonstrated high perceptual accuracy, with overall adjusted R-squared values of 0.54 and
0.58, respectively, and an average of 0.59 and 0.67 per month. Comparative analysis across
longitudinal and socio-behavioral contexts yielded several notable developmental and
dyadic insights. In the process, we have developed a data mining and analysis methodology
for modeling perceived child emotion and quantifying caretaker intersubjectivity that we
hope to extend to future datasets across multiple children, as new deployments of the
Speechome recording technology are established. Such large-scale comparative studies
promise an unprecedented view into the nature of emotional processes in early childhood
and potentially enlightening discoveries about autism and other developmental disorders.
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Chapter 1

Introduction

Originally developed to study child language acquisition, the Human Speechome

Project (D. Roy, 2009; D. Roy et al., 2006) has pioneered a new kind of dataset - dense,

longitudinal, ecologically-valid - that introduces far-reaching new possibilities for the

study of child development. Consisting of over 230,000 hours of multichannel raw

audio/video recordings, the Speechome corpus forms a comprehensive observational

archive of a single typically developing child growing up in the home setting, starting from

birth to the age of 3. Due to its scale, harnessing the benefits of this data requires the

development of novel data mining strategies, manual data collection tools, analysis

methods, and machine learning algorithms that can transform the raw recorded media into

metadata, and ultimately insights, that are meaningful for answering developmental

research questions. Metadata serving this purpose includes transcribed speech, speaker

identity, locomotive trajectories, and head orientation, all of which represent ongoing

efforts surrounding the Speechome corpus. The methods and technologies designed and

implemented to date are notable advances, but collectively they only scratch the surface of

what the Speechome corpus has to offer. Of note, there are currently no existing resources

in the Speechome corpus for the study of affective research questions - those pertaining to

the understanding of emotional factors and processes in development.

Understanding the nature of emotional processes in early childhood and the inclusion

of emotion-related variables in studying other aspects of development are important

themes in the study of child development. Supported by considerable theoretical and

empirical work that describes emotion and cognition as "inseparable components of the

developmental process" (Bell & Wolfe, 2004; Calkins & Bell, 2009), there is increasing

evidence to suggest that emotions play a regulatory role in perception, learning, retrieval of

memories, and organization of cognitive states (Dawson, 1991; K. W. Fischer et al., 1990;

Trevarthen, 1993; Wolfe & Bell, 2007). Emotions are often described in developmental



psychology as organizers that shape behavior (Cole et al., 1994; K. W. Fischer et al., 1990;

Trevarthen, 1993). "[Emotions] are a part of the dynamic generation of conscious,

intelligent action that precedes, attracts, and changes experiences," Trevarthen writes

(1993). Through conditioning, habitual patterns of emotion influence long-term

development. Such emotional patterns comprise and define a child's temperament (Kagan,

1994; Wolfe & Bell, 2007), which has been found to correlate with outcomes in social

competence (Lemerise & Arsenio, 2000), cognitive development, and language

performance (Wolfe & Bell 2001). Temperament has also been linked to psychopathologies

such as depression, bipolar disorder, drug abuse, and psychosis (Camacho & Akiskal, 2005;

Rothbart, 2005; Sanson et al., 2009).

In attachment theory (Bowlby, 1973), the earliest bonds formed by infants with their

mothers are thought to be central in influencing development. Here, emotion is said to

organize the "security or insecurity of the mother-infant relationship, which is then

internalized as a working model and carried into subsequent relations" (Cassidy, 1994;

Cole et al., 1994; Simpson et al., 2007). Many works in infancy research confirm this theory

by demonstrating that emotion organizes the development of social relations, physical

experience, and attention (Cole et al., 1994; Klinnert et al., 1983; Rothbart & Posner, 1985;

Sroufe et al., 1984).

Emotional processes are also believed to be critical in the development of language

(Bloom, 1998; Bolnick et al., 2006; Ochs & Schieffelin, 1989; Trevarthen, 1993; Wolfe &

Bell, 2007). On the one hand, emotions serve as motivators, as children learn language

initially because they strive to express their internal experiences (Bloom, 1998; Bolnick et

al., 2006; Ochs & Schieffelin, 1989). Social referencing, the act of monitoring the affective

state of those who are speaking to us, is a skill that infants acquire early and use to discover

meaning in what is said to them by caretakers (Ochs & Schieffelin, 1989). Ultimately, social

referencing teaches the infant not only how to use language to express emotional state, but

also how to understand the emotional state of others. On the other hand, there is evidence

to suggest that emotion and language compete for cognitive energy (Bloom, 1998):

children who spend more time in an affectively neutral state have been observed to show

better language development. This suggests that the regulation of emotion, particularly the



child's developing ability to self-regulate, is also an important process in facilitating

language acquisition.

Despite its importance, empirical progress in studying emotion during early childhood

development has been elusive. Just as with language acquisition (D. Roy, 2009; D. Roy et

al., 2006), empirical work in these areas has been constrained by the biases and limitations

inherent in traditional experimental designs (Trevarthen, 1993), in which observational

data is collected at a laboratory or by researchers visiting a child's home. Further, such

designs naturally involve sparse longitudinal samples spaced weeks or months apart,

adding up to mere snapshots of a child's development that offer "little understanding of the

process of development itself " (Adolph et al., 2008; D. Roy, 2009). Such sparse sampling

can misrepresent the actual course of development, as studies of children's physical growth

have shown (Johnson et al., 1996; Lampl et al., 2001). While sampling every three months

produces a smooth, continuous growth curve, sampling infants' growth at daily and weekly

intervals reveals a non-continuous developmental process in which long periods of no

growth are punctuated by short spurts (Adolph et al., 2008; Johnson et al., 1996; Lampl et

al., 2001). Sparse sampling is also likely to produce large errors in estimating onset ages,

which are useful in screening for developmental delay. By offering In vivo observation of a

child's daily life experience at ultra-dense, longitudinal time scales even to the order of

milliseconds, the Speechome corpus holds great potential for discovering developmental

insights that have thus far eluded observation.

The work of this thesis is dedicated to enabling the use of Speechome's dense,

longitudinal, ecologically valid observational recordings for the study of emotional factors

in early child development. In any research question surrounding early emotional

processes, the child's emotional state is a key variable for empirical observation,

measurement, and analysis. Due to the immense scale of the Speechome corpus, these

operations must be automated in order to fully harness the benefits of ultra-dense

observation. Our main challenge is therefore to furnish an automated mechanism for

determining the child's emotional state within the medium of Speechome's audio-visual

recordings.

Like pitch and color, however, emotional state is not an objective physical property,

but rather a subjective, highly perceptual construct. While there is an objective
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physiological component that accompanies the "feeling" of an emotion, the experience itself

is the perceptual interpretation of this feeling. For example, a physiological increase in

heart rate and blood pressure often accompanies the emotional experience of "fear", as part

of the reflexive "fight-or-flight" response of the autonomic nervous system to perceived

threats or dangers (Goodwin et al., 2006). The outward, physical expression of this

emotional experience becomes the medium through which others perceive a person's

emotional state. Facial expressions, physiological measures such as heart rate and

respiration, loudness and intonation of the voice, as well as bodily gestures, all provide

objective physical clues that guide the observer in perceiving a person's latent internal

emotional experience. The latent nature of emotion means that we can only speak of a

person's perceived emotional state in the context of empirical observation.

In the Speechome recordings, the vocal and visual aspects of the child's outward

emotional expressions are the main objective perceptual cues to the child's internal

emotional state that are available for empirical study. In addition, caretaker response can

also provide contextual clues, such as a mother providing comfort when the child is upset.

To automate the observation, measurement, and analysis of the child's perceived emotional

state in the Speechome corpus, we seek directly measurable correlates of the child's

perceived emotional state among these objective perceptual cues. In this thesis, we focus

exclusively on the acoustic attributes of the child's vocal emotional expression and

surrounding adult speech. We apply these vocal correlates to build an emotion recognition

model that simulates human perceptual heuristics for determining a child's emotional

state. Creating separate models for specific longitudinal, dyadic, and situational subsets of

the data, we also explore how correlations between perceived child emotion and vocal

expression vary longitudinally during the 9 to 24 month developmental period, dyadically

in relation to specific caretakers, and situationally based on several socio-behavioral

contexts. In the process, we develop a data mining and analysis methodology for modeling

perceived child emotion and quantifying intersubjectivity that we hope to extend to future

datasets across multiple children, as new deployments of the Speechome recording

technology are established.

One area of developmental research that has served as a specific inspiration for this

work is autism. Emotional state is a construct with much relevance to the study and



treatment of autism. Chronic stress and arousal modulation problems are major

symptomatic categories in the autistic phenotype, in addition to abnormal socio-emotional

response (De Giacomo & Fombonne, 1998) that has been attributed to profound emotion

dysregulation (Cole et al., 1994). Stress is associated with aversive responses; in particular,

aversion to novel stimuli (Morgan, 2006). For this reason, it has been proposed that

chronic stress and arousal modulation problems negatively affect an autistic infant's ability

to engage in social interaction during early development (Morgan, 2006; Volkmar et al.,

2004) and onwards. Missing out on these early interactions can lead to problems in

emotional expressiveness, as well as in understanding and perceiving emotional

expressions in others (Dawson, 1991).

Understanding the early processes by which such deficiencies emerge in autistic

children can be a significant breakthrough towards early detection and developing effective

therapies. At the same time, such insights from autism can also inform our understanding

of neurotypical socio-emotional development:

Because children with autism have deviant development, rather than simply delayed

development, studies of their patterns of abilities offer a different kind of opportunity for

disentangling the organization and sequence of [normal socio-emotional] development.
(Dawson, 1991)

Forthcoming new deployments of the Speechome recording technology are part of a

greater vision to launch large-scale comparative studies between neurotypical and autistic

children using Speechome's dense, longitudinal, ecologically-valid datasets. Due to the

salience of emotional factors in autism research, such comparative studies would seek to

ask many affective research questions of the Speechome corpora. By modeling child

emotion in the Speechome corpus for the purpose of creating an automated emotion

recognition mechanism within this medium, we hope to prepare Speechome for the service

of such questions, setting the stage for an unprecedented view into the nature of emotional

processes in early childhood and potentially enlightening new discoveries about autism

and other developmental disorders.



1.1 Related Work

With applications in human-computer interaction, developmental research, and early

diagnosis of developmental disorders, there is a sizeable and growing body of work related

to automatic recognition of emotional states via acoustic analysis of vocal attributes

(Douglas-Cowie et al., 2003; Scherer, 2003; Ververidis & Kotropoulos, 2006). In our

discussion of related work, we begin with the most general area of prior work in this field -

emotion recognition from adult speech - and then proceed to works that are addressing

emotion recognition in child vocalizations and related developmental research questions.

1.1.1 Emotion Recognition from Adult Speech

A large proportion of prior research in this area focuses on emotion recognition in

adult speech, for the purpose of developing intelligent interfaces that can accurately

understand the emotional state of the human speaker and act in accordance with this

understanding. For example, Hansen and Cairns (1995) trained a speech recognition

system for aircraft cockpits using stressed speech. Several ticket reservation systems have

benefited from emotion recognition models that detect annoyance or frustration, changing

their response accordingly (Ang et al., 2002; Schiel et al., 2002). Similar successes have

been achieved in call center voice-control applications (Lee & Narayanan, 2005; Petrushin,

1999). France et al (France et al., 2000) have successfully applied emotion recognition of

adult speech as a diagnostic tool in medical applications. In addition to all of the above

examples, Ververidis and Kotropoulos (2006) note the relevance of emotional speech

recognition methods to psychology research, in coping with the "bulk of enormous speech

data" to systematically extract "speech characteristics that convey emotion" (Mozziconacci

& Hermes, 2000; Ververidis & Kotropoulos, 2006).

Social robotics has also received attention in emotion recognition research (Batliner et

al., 2006; Breazeal, 2001; Breazeal & Aryananda, 2002; Oudeyer, 2003). As we discuss

further in Section 1.1.2, studies have also sought to develop emotion recognition systems

using child speech, aimed at child-robot interaction (Batliner et al., 2006), with applications

in the study and treatment of autism (Dautenhahn, 1999; Scassellati, 2005; Tapus et al.,



2007), among other things. The task of creating a social robot that can respond

appropriately and flexibly to the affective state of its human companions in the course of

natural conversation is particularly challenging, because the scope of emotions is

unconstrained. In contrast, specialized aircraft cockpits and ticket reservation systems

listed above only need to detect a small subset, such as stress, annoyance, and frustration.

However, applications in social robotics and intelligent interfaces in general, require that

an emotion recognition model generalize across speakers, since a single robot or interface

may interact with many different people. In our case, however, we set out to create a model

that is only relevant within the speech corpus of a single child. Each corpus would have its

own model built separately using that corpus.

Because of the challenges involved in obtaining datasets of natural, spontaneous

emotional speech recordings and applying them for focused experimental analysis, much of

this work has called upon actors to simulate various specific emotions as needed by the

goals of each study (Banse & Scherer, 1996; Burkhardt et al., 2005; Dellaert et al., 1996;

Douglas-Cowie et al., 2003; Hozjan et al., 2002; Lay New et al., 2003; Lee et al., 2004; Navas

et al., 2004; Seppanen et al., 2003). Each study differs based on the set of acoustic features

they use, and the categories of emotion they classify. For high quality recordings enabling

acoustic analysis, they record in a sound-proof studio, which intrinsically reduces

spontaneity of recorded speech. Further, little is known about the relationship between

acted and spontaneous everyday emotional speech (Douglas-Cowie et al., 2003), so the

utility of results obtained using acted speech is questionable. At the very least, using this

methodology misses out on the rich variability of subtle grades of emotion that occur

during the course of natural conversation in real-life social situations. In spontaneous

speech, canonical emotions such as happiness and anger occur relatively infrequently, and

the distribution of emotion classes is highly unbalanced (Neiberg et al., 2006).

The inadequacy of acted-speech methodologies has led to many attempts at collecting

and annotating naturalistic speech for the study of vocal emotion. Strategies have included:

- Fitting volunteers with long-term recorders that sample their daily vocal interactions

(Campbell, 2001)



* Recording telephone conversations (Campbell, 2001) and call center dialogs (K. Fischer,

1999; Lee & Narayanan, 2005; Neiberg et al., 2006; Vidrascu & Devillers, 2005)

* Placing a microphone between subjects talking in an informal environment, such as at

the dinner table to record conversations during family meals (Campbell, 2001), a desk

in the workplace to record job interviews (Rahurkar & Hansen, 2002) and interactions

between coworkers (Campbell, 2001), and in a doctor's office (France et al., 2000)

* Recording user sessions at the interface system for which the emotion recognition

mechanism was being developed (Steiniger et al., 2002)

Other works have used movie sequences as well as radio and television clips as an

improvement in naturalism over acted laboratory readings (Douglas-Cowie et al., 2000;

Greasley et al., 1995; Roach et al., 1998; Scherer, 2003; Sharma et al., 2002). Recording

quality, background noise, crosstalk, and overlapping speech are among the challenges that

these works have encountered and tried to address (Douglas-Cowie et al., 2003; Truong &

van Leeuwen, 2007).

A major bottleneck in emotion recognition research that uses naturalistic speech

databases is the tedious, error-prone, and time-consuming manual annotation that is

necessary to pick out and sort the salient exemplars according to the categories being

studied, such as utterances corresponding to a particular emotion. In some cases, the

subjects are asked, immediately after a recording session, to annotate the emotions that

they felt during the recording process (Busso & Narayanan, 2008; Truong et al., 2008). In

most other cases, annotation is done independently of the data collection process, by

researchers.

Related to the annotation problem is the question of which emotion coding labels to

include in the annotation taxonomy. Studies such as (Greasley et al., 1995; Greasley et al.,

2000; Greasley et al., 1996) develop and evaluate coding schemes for annotating emotion

in natural speech databases. Among the design parameters of a coding scheme, these

studies examine parameters such as:



* Free-choice codings vs. fixed-choice codings (Greasley et al., 2000). In free-choice

codings, annotators use their own words to describe the emotion of an utterance as

they see fit. In fixed-choice codings, the annotator has to choose from a hard-coded set

of labels.

* Categorical vs. dimensional categorization (Douglas-Cowie et al., 2003; Scherer, 2003).

A categorical, or discrete, design subdivides the range of human emotions into a set of

fundamental qualitative categories, such as joy, contentment, interest, surprise, unease,

anger, and pain (Douglas-Cowie et al., 2003). A dimensional design maps emotional

states to numerical coordinates within a two- or three-dimensional space, such as those

proposed by Schlosberg (1952), Osgood et al (1957), and Ortony et al (1988), and

applied by many others (J. A. Bachorowski & Owren, 1995; Feldman-Barrett, 1995;

Greasley et al., 2000). Each axis defining these spaces corresponds to an orthogonal

attribute of emotional expression, such as valence - the pleasantness or unpleasantness

of the emotion, and arousal - the degree of emphasis, power, or excitement in the

emotion. Emotional utterances are then rated according to a graded scale along each of

these axes.

* Granularity of categorized emotion (Douglas-Cowie et al., 2000; Stibbard, 2000) - the

finer-grained the characterization, the more categories there are, and the less

occurrences of each category in the dataset. However, fewer but more inclusive

categories may aggregate multiple finer emotional states each having distinct acoustic

properties, resulting in less successful recognition mechanisms when modeling them as

a single super-emotion.

1.1.2 Emotion Recognition from Child Vocalizations

While adult speech has laid the groundwork of the field, more relevant to the work of

this thesis are the many studies that have sought to develop emotion recognition systems

for child vocalizations. We reference the following relevant themes that have influenced

system designs and methodologies among this body of work:



e Detecting vocalizations that correspond to a specific single emotion, such as crying or

laughing (Gustafson & Green, 1989; Nwokah et al., 1993; Ruvolo & Movellan, 2008). We

discuss (Ruvolo & Movellan, 2008) in greater detail below (Section 1.1.2.1).

- Diagnosing developmental impairments based on the acoustic properties of a specific

type of emotional vocalization, such as crying or laughing. (Fuller, 1991; Garcia &

Garcia, 2003; Hudenko et al., 2009; Petroni et al., 1995; Petroni, Malowany, Johnston, &

Stevents, 1994; Schonweiler et al., 1996; Varallyay Jr et al., 2007). We discuss (Garcia &

Garcia, 2003; Hudenko et al., 2009; Petroni et al., 1995; Varallyay Jr et al., 2007) in

greater detail below (Section 1.1.2.2).

* Distinguishing between emotional and communicative vocalizations (Papaeliou et al.,

2002). We include (Papaeliou et al., 2002) in the discussion of Section 1.1.2.2.

* Distinguishing between two or more different emotional states (Batliner et al., 2006;

Petrovich-Bartell et al., 1982; Scheiner et al., 2002; Shimura & Imaizumi, 1994). We

discuss (Scheiner et al., 2002) and (Batliner et al., 2006) further in Section 1.1.2.3.

1.1.2.1 Cry Detection

Ruvolo and Movellan (2008) implemented robust cry detection to support the

immersion of social robots in childhood education settings. A robust cry detection

mechanism gives these robots the useful function of assisting teachers with managing

classroom mood, by offering emotional support and stimulation to a crying child or alerting

the teacher in more serious cases. The challenge of building a cry detector for this purpose

is the noisy and unpredictable nature of the preschool setting - a natural attribute of

naturalistic settings that is also shared by the Speechome corpus.

A full day of audio was recorded in the preschool environment, totaling 6 hours.

Human annotators labeled 40 minutes of this audio corpus, 2-sec audio clips at a time,



according to whether a cry was present or not present in each clip. Spatio-Temporal Box

filters are applied to spectrograms of each clip, forming the feature set for training and

classification, with Gentle-Boost as the classification algorithm. The resulting cry detector

achieved a classification accuracy of 94.7% for 2-sec audio clips and also found 8-sec clips

to achieve even better accuracy of 97%.

1.1.2.2 Diagnosis and Study of Developmental Impairments

Hudenko et al (2009) found vocal acoustics of laughter to have discriminatory value in

distinguishing between neurotypical and autistic children. This study was done on older

children, ranging in age from three to ten years of age. Fifteen autistic children aged eight

to ten were each matched, in part of the study, with neurotypical children sharing the same

Verbal Mental Age, resulting in the large range in ages overall. Each child was recorded in

individual laboratory sessions in which a Laugh-Assessment Sequence (LAS) was used to

elicit laughter through playful interaction between examiner and child. Annotation of these

recordings coded laugh utterances according to criteria established by (J. Bachorowski et

al., 2001), with Cohen's kappa of 0.95. Various acoustic measures, such as voicing, laugh

duration, number of "syllables", and pitch-related metrics were computed for each laugh

utterance, and then evaluated using ANOVA for significance in distinguishing between

neurotypical and autistic groups. Results of this analysis show voicing to be a highly

significant discriminatory feature: while neurotypical children exhibited both voiced and

unvoiced laughter in significant proportions, autistic children primarily exhibited voiced

laughter, with only a negligible amount of unvoiced laughter.

Varallyay Jr et al (2007) build on the work of Schonweiler (1996) and Wermke (2002)

in characterizing developmental trends in the melody of infant cries to detect hearing

impairments and central nervous system disorders in infants. A database of 2460 crying

samples from 320 infants was collected as part of a 5-year-long data collection in several

hospitals and homes. Although these were ecologically valid settings, background noise

was not an issue, because the recordings were made in quiet places. Acoustic analysis of

fundamental frequency was used to classify cries according to a set of canonical melody

shape primitives. The frequency of occurrence of each melody shape was then plotted



across 12 different age groups ranging from 0 to 17 months of age. In earlier work,

Varallyay Jr et al (2004) compared several acoustic features of cry vocalizations between

normal and hard-of-hearing infants and found differences in fundamental frequency and

dominant frequency.

On a related note, Garcia and Garcia (2003) developed an automatic recognition

system for distinguishing between normal infant cries and the pathological cries of deaf

infants using Mel-Frequency Cepstral Coefficients. The crying of infants ranging from 0 to 6

months of age was recorded in clinics by pediatricians, who also annotated the recordings

at the end of each session. A total of 304 MFCC-related features were computed, submitted

to PCA for dimensionality reduction, and finally applied to a feed-forward neural network.

Up to 97.43% classification accuracy was achieved.

Like Garcia and Garcia (2003), Petroni et al (1995) used feed-forward neural networks

for modeling acoustic attributes of infant cries. Here, the goal was to automate the

classification of pain vs. non-pain infant cries. Inspired by the work of Waz-Hockert (1985)

and Fuller (1991), their underlying motivation behind was developing an automatic

recognition system for clinical settings to aid in "diagnosis of pathology or for identifying

the potential of an infant at risk (Petroni, Malowany, Johnston, & Stevents, 1994)". Sixteen

healthy 2-6 month old infants were recorded in a total of 230 cry episodes within a hospital

setting. The cries were elicited by one of three stimulus situations: pain/distress,

fear/startle, and anger/frustration. The latter two categories were grouped together as a

single class, and the goal of the classification was to distinguish between pain/distress cries

and everything else. Accuracies of up to 86.2% were achieved.

Papaeliou et al (2002) implemented acoustic modeling of emotion as a general mode of

expression, in order to distinguish between emotive and communicative intent in infant

vocalizations. Their motive in developing such a mechanism was to facilitate

developmental study and diagnostic insight into communicative and emotional disorders,

such as William and Down syndrome, as well as autism. Using this classifier to discriminate

acoustically between the two modes of expression, their goal was to examine the

hypothesis that infants' ability to vocally distinguish between emotions and communicative

functions may serve as an index of their communicative competence later on (Bloom,

1998). According to Trevarthen (1990) and Bloom (1998), the extent to which infants



differentiate between emotional and communicative expression reflects how effectively

they can regulate interpersonal communication. As a first step in examining this

hypothesis, Papaeliou et al investigated whether infants vocalizations can be differentiated

acoustically between emotive and communicative functions in the second half of the first

year of life. The vocal repertoire of infants between the ages of 7 to 11 months was

recorded in the infants homes, every 2 weeks in four 7-minute sessions of spontaneous

play with their mothers. Like Speechome and several of the works listed above, they placed

great value on ecologically valid observational conditions:

"The home environment is considered more appropriate for obtaining representative
samples of the infants' vocal repertoire than the unfamiliar laboratory environment."

(Papaeliou et al., 2002)

Annotation to attribute emotional or communicative intent to each vocalization was done

in separate interview sessions with the mothers, by having the mothers review the

videotape recordings and identify what they felt their baby was expressing in each instance

of videotaped interaction. In acoustic analysis of vocalizations, crying, laughing, vegetative

(i.e., bodily) sounds, and child speech were excluded, as well as vocalizations that overlap

with a caretaker's voice or external noise. A set of 21 acoustic features were computed for

each vocalization and submitted to a Least Squares Minimum Distance classifier, using

leave-one-out cross validation to evaluate recognition accuracy. An overall classification

accuracy of 87.34% relative to mothers' interpretations was achieved.

1.1.2.3 Distinguishing Multiple Emotional States

As part of a study of infant vocal development, Scheiner et al (2002) built a classifier to

distinguish acoustically between multiple emotional states. A comprehensive vocal

repertoire was recorded of 7 healthy infants during the course of their first year of life,

starting at the age of 7 to 10 weeks and ending at 53 to 58 weeks. Recordings were made

by the parents themselves, in familiar surroundings, at intervals of 4 to 6 weeks. Each

"session" took the form of a week-long assignment: parents were given a prescribed set of

situations to record during the course of one week. The parents also served as the



annotators, indicating for each recorded situation the one of seven specific emotions they

assumed their infant was expressing, such as joy, contentment, unease, anger, etc. Various

acoustic features were computed for each vocalization, and a stepwise discriminant

function was used to implement the classification. As part of the analysis, 11 call types were

identified and used as additional discriminatory features to help with classification,

including cry, coo/wail, babble, squeal, moan, etc. Significant differences in the acoustic

structure of call types, and some emotional states within these call types, were found. In

particular, discrimination was far better when grouping the more specific annotated

emotional states into broad categories such as positive and negative. A longitudinal

analysis also showed significant acoustic changes in some of the emotion-qualified

(positive/negative) call types.

Another classifier similarly using vocal acoustics to distinguish emotional states of

children was built for a very different purpose by Batliner et al (2006): to create social

robots that respond appropriate to emotions in children's speech. In addition to the

motivations they list - edutainment and child-robot communication - we note that there is

an emerging research movement for developing social robots to assist in therapies for

developmentally impaired children, particularly in autism (Scassellati, 2005). Autistic

children have been observed to respond remarkably well to social robots, demonstrating

"positive proto-social behaviors" that they rarely show otherwise (Scassellati, 2005). Social

robots have been found to generate a high degree of motivation and engagement in autistic

children, including those who are unlikely or unwilling to interact socially with human

therapists (Scassellati, 2005). Thus, social robots can potentially be useful intermediaries

between the autistic child and the caretaker or therapist, teaching autistic children about

social interactions, and providing insights to better understand autistic behavior.

In Batliner's study, school-children aged 10-13 were individually given an AIBO robot

to play with in a classroom within their school and instructed to talk to it "like they would

talk to a friend" (Batliner et al., 2006). The play session was recorded and then annotated

to capture the following emotional states in the child's speech: joyful, surprised, emphatic,

helpless, touchy/irritated, angry, motherese, bored, reprimanding, and other non-neutral.

Acoustic features of the child's utterances were used to train a classifier that combines

several machine learning algorithms, such as neural networks, and support vector



machines. Various combinations were tested, and the best performing achieved a

recognition rate of 63.5%.

1.2 Thesis Overview

In this section, we summarize the contributions of this thesis and provide a preview of the

results.

1.2.1 Contributions

The contributions of this thesis are threefold:

First, we develop a methodology that is designed to introduce the child's perceived

emotional state to the set of variables available for study in current and future Speechome

datasets. With over 230,000 hours of recording, the scale of the Speechome corpus requires

an automated approach. Our goal in this methodology is therefore to answer the question:

How can we go about building a mechanism for automated recognition of a child's

perceived emotional state in the Speechome corpus? We combine machine learning and

data mining strategies to define a recipe for creating such a mechanism.

Second, using this methodology, we seek to derive a set of vocal acoustic correlates of

the child's perceived emotional state, with which we can effectively model human

perceptual heuristics, asking the question: How well can such a model simulate human

perception of a child's emotional state? We model the child's perceived emotional state

using acoustic features of the child's vocalizations and surrounding adult speech sampled

from a child's 9-24 month developmental period. We evaluate the perceptual accuracy of

models built using child-only, adult-only, and combined feature sets within the overall

sampled dataset, as well as controlling for social situations, vocalization behaviors (such as

crying, babble, speech, and laughing), individual caretakers, and developmental age. The

perceptual accuracy of these models is given by the strength of the correlation between the

acoustic vocal features chosen by the model and the child's perceived emotional state.

Third, as part of our comparative analysis we explore socio-behavioral, dyadic, and

developmental patterns that emerge among these correlations. Increases in correlation



between a child's vocal expression and the child's perceived emotional state may indicate

an increase in emotional expressiveness. Changes in correlation between surrounding

adult speech and a child's perceived emotional state may suggest changes in child-

caretaker intersubjectivity. In our exploratory analysis, we ask the following questions:

* To what degree does surrounding adult speech reflect the child's perceived

emotional state?

* Does the speech of certain caretakers correlate with the child's perceived emotional

state more clearly than others?

Do any stronger correlations between perceived child emotions and adult speech

emerge in social situations or when the child is crying, babbling, or laughing?

Are there any longitudinal trends in correlation that might indicate developmental

changes in emotional expressiveness or intersubjectivity during the child's growth

from 9 to 24 months of age?

1.2.1.1 Developing a Methodology

Among the options available for modeling perceived emotional state and automating

emotion recognition in a raw audio/video recording medium such as Speechome are vocal

acoustics, facial expressions, and postural analysis. In this work, we focus on vocal

expression as the first step towards a multimodal emotion recognition system, including

both the child's vocalizations and surrounding adult speech in the modeling process.

The first step in modeling human perception of a child's emotional state is to gather

examples of actual human perceptions with which to train the model. In machine learning

terminology, these examples are called the ground truth of human perception by which the

model is trained. As part of our methodology, we design, implement, and deploy an

annotation interface, questionnaire, and sampling strategy for collecting ground truth from

the Speechome recordings about the child's vocalizations and the perceived emotional



state that corresponds to each. We represent emotional state using two parameters -

valence (i.e. Mood) and arousal (i.e. Energy) - that together form Schlosberg's two-

dimensional space for characterizing affect (Schlosberg, 1952). Using the manually

annotated child vocalization intervals, we implement a data mining solution to query the

periods of adult speech from the Speechome corpus that occur in proximity to each

vocalization. Computing a set of 82 acoustic features for each child vocalization and

window of surrounding adult speech, we then apply Partial Least Squares regression to

model the child's perceived emotional state given these features.

1.2.1.2 Building a Model for Perceiving Child Emotion

With Partial Least Squares regression as our modeling algorithm of choice, we apply

10-fold cross validation to evaluate the perceptual accuracy of these models. Our metric for

these evaluations is adjusted R-squared, which is derived from the Mean Squared Error

given by the cross-validation procedure and normalized based on sample size and number

of modeled components. In addition to recognition success, adjusted R-squared is

synonymously represented in analytical literature as a measure of goodness of fit, and

therefore correlation, between predictor and response variables. In the context of our

model, the acoustic features are the predictors, and the <Mood, Energy> pair representing

the child's emotional state is the response.

We present our evaluation of perceptual accuracy as a comparative analysis between

child-only, adult-only, and combined models across socio-behavioral, dyadic, and

longitudinal subsets of the data. The purpose of this multidimensional analysis is to

investigate methodological parameters for optimizing the design of an automated emotion

recognition mechanism. For example, if perceptual accuracy is significantly higher in social

situations, an emotion recognition mechanism would benefit from building a separate

model for social situations that is applied conditionally only during social situations.

Similarly, a particular caretaker's speech may happen to correlate exceptionally well with

the child's perceived emotional state, improving the performance of an emotion

recognition mechanism if applied conditionally in contexts involving that caretaker.



In addition to social situations, the socio-behavioral contexts that we use in this work

vary according to different vocalization behaviors of the child: crying, laughing, babble,
speech, bodily (e.g. sneezing, coughing) and other emoting. The Other Emoting category

includes all other vocalizations, such as cooing, whining, fussiness, and squealing, which are

for the most part amorphous and difficult to define and distinguish. We include these

distinctions of vocal behavior in our comparisons in order to investigate whether

vocalizations tied to specific emotions, such as crying and laughing, bear higher

correlations with perceived emotional state. Also, we wish to control for possible

differences in acoustic properties that may be inherent in certain vocalization types. In

particular, vocal emotional expression may take on a different form in a general-purpose

communication medium such as babble or speech than in a purely emotive vocalization

such as crying, whining, squealing, laughing, or cooing. Also, we filter out bodily

vocalizations such as sneezing and coughing, which carry no emotional significance, in

order to evaluate the impact of the noise they might introduce in a model that includes all

vocalizations regardless of contextual distinction.

Longitudinally, it is natural to expect that vocal emotional expression changes over

time in the course of development. Research has found that the vocal tract anatomy

experiences significant changes during early childhood, such as the condescensus of the

larynx (Warlaumont et al., 2010). These physiological changes, together with cognitive

growth, greater kinesthetic control of the vocal tract, and improvements in emotional self-

regulation, all strongly suggest that vocal emotional expression changes developmentally

as well. Building an emotion recognition mechanism to cover the entire 9 to 24 month

period could abstract from the strengths of any correlations that may be specific to a

particular stage of development. To investigate this hypothesis, we also build and evaluate

models for each month's worth of data separately.

1.2.1.3 Exploratory Analysis

We plot adjusted R-squared across socio-behavioral, dyadic, and longitudinal subsets

of the data and investigate whether there are any patterns that appear to be

developmental, or conditional to a social situation, vocal behavior, or caretaker. In addition
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to evaluating perceptual accuracy of each model, we interpret adjusted R-squared as an

indicator of correlation between the child's perceived emotional state and the vocal

expression of the child and caretakers. In the case of models that were built using adult-

only feature sets, this correlation can be viewed as a measure of intersubjectivity, or

empathy, reflecting caretakers' vocally expressed sensitivity to the child's emotional state.

1.2.2 Results preview

Our results show great potential for achieving robust vocal recognition of a child's

perceived emotional state in the Speechome corpus, with child and combined models

achieving overall adjusted R-squared values of 0.54 and 0.59, respectively. Interpretation

of adjusted R-squared is given by a scale in which 0.2-0.12 is a small effect size, 0.13-0.25 is

a medium effect size, and 0.26 or higher is a large effect size. Thus, we interpret the

recognition performance of both child and combined models trained on the overall dataset

to be consistent with an appreciably large effect size. As demonstrated by Figure 1-1(a),

recognition performance is markedly consistent across socio-behavioral contexts.
Evaluating PLS Regression Models for Perceived Child (mood, energy) Longitudinal Analysis of PLS Regression Models for Predicting Child (mood, energy)

using Child and Surrounding Adult Prosodic Features: Using Child and Surrounding Adult Prosodic Features
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Figure 1-1. Previews of (a) Adjusted R-squared and Response Variance across Socio-
Behavioral Contexts, for all time and all caretakers in aggregate. (b) Longitudinal Trends of
Adjusted R-squared for All Vocalizations, regardless of Socio-Behavioral context
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Figure 1-2. Previews of Longitudinal Trends of Adjusted R-squared for (a) Babble and (b) Other
Emoting contexts. In Babble, we see a marked downward progression in correlation with the child's
emotional state for adult speech surrounding the child's vocalizations, as well as a mild downward
pattern in correlation of the child's vocal expression with the child's own emotional state. In Other
Emoting, we see a mild upward progression in the child's emotional expressiveness over time that
seems to counter the downward trend in Babble.

The high recognition performance described above corresponds to models built using

data from the entire developmental time frame of 9-24 months in aggregate. In our

longitudinal analysis, we observe the perceptual accuracy of month-specific models to be

even higher: for the data covering all socio-behavioral contexts in aggregate, average

adjusted R-squared was 0.67, ranging from 0.62 to 0.76. The longitudinal trend for this

overall dataset, shown in Figure 1-1(b), does not show any progressive rise or fall in

recognition accuracy over time. This suggests that in the general case, the correlation

between perceived child emotion and both child and adult vocal expression is not subject

to developmental change. However, we do observe striking longitudinal progressions when

looking at trends for specific socio-behavioral contexts, notably Babble, and Other

Emoting/Social Other Emoting, as shown in Figures 1-2(a, b). We discuss our

developmental hypotheses regarding these progressions in Chapter 6.

..........



1.3 Roadmap

The rest of this thesis is organized as follows. Chapter 2 provides some background

about the Human Speechome Project - its origins, recording infrastructure, present data

corpus, and future directions. In Chapter 3, we describe the data collection methodology -

the implementation of the annotation interface, design and deployment of our sampling

strategy and annotator questionnaire, our data mining solutions for minimizing annotation

volume, and an evaluation of inter-annotator agreement. Our analysis methodology is

detailed in Chapter 4, from post-processing of annotated data, to acoustic feature

extraction, and ending with our use of Partial Least Squares regression: our rationale for

choosing this method, the experimental design for our exploratory analysis, and an

explanation of adjusted R-squared, our metric for evaluating recognition accuracy. Chapter

5 presents the results of the analysis, and we discuss their implications in Chapter 6.



42



Chapter 2

The Human Speechome Project

Because the goal of this thesis is to prepare the Speechome corpus for the study of

emotional factors in child development, the Human Speechome Project is at the heart of

our methodology. To put our work into context, this chapter describes the Human

Speechome Project in greater detail - its origins, purpose, infrastructure, speech database,

and future directions, focusing on aspects of each that are relevant to our work.

The Human Speechome Project (D. Roy et al., 2006), launched in August, 2005, was

conceived with the complementary dual purpose of embedding the study of child language

development in the context of the home, while capturing a record of the developmental

process at an unprecedented longitudinal scale and density. The home of a family with a

newborn child, who is now known to be typically developing, was equipped with cameras

and microphones in every room, as well as a set of servers for data capture, all networked

together to record and store the data. Over the course of three years, more than 230,000

hours of audio/video recordings were made of the child's daily waking life using this

system.

This dense, longitudinal, naturalistic dataset is an innovation that promises

fundamental advancement in understanding infant cognitive and linguistic development,

and for understanding and treating developmental disorders that affect language and social

interaction, such as autism. Its longitudinal density, characterized by an average of 9.5

hours of daily recording over the course of three years, enables the study of developmental

research questions at variety of hierarchical time scales. The shape of developmental

change can be very different at more fine-grained hourly or daily time scales than in a

weekly or monthly big-picture perspective (Adolph et al., 2008), and depending on the

research question, both can offer valuable insights about the same developmental process

(Adolph et al., 2008; Noonan et al., 2004). For many developmental questions, the right

sampling frequency is unknown a priori and must be determined empirically through trial
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and error (Adolph et al., 2008). The ultra-dense nature of the Speechome corpus facilitates

this kind of exploration and makes possible the discovery of developmental phenomena

that occur at very fine-grained time scales.

The ecological validity of the Speechome corpus, characterized by recording of the

child growing up within the natural context of the home setting and interacting with his

caretakers in daily life situations, addresses a commonly expressed need among

developmental researchers (Baranek, 1999; Bloom, 1973; Bruner, 1983; Nelson, 1974; D.

Roy et al., 2006; Trevarthen, 1993). Traditional research studying child language

development has typically asked parents to bring their children into a lab, or has sent

researchers to videotape the child at home for just a couple hours per week. Bruner

recognized the importance of context sensitivity in language acquisition processes and thus

favored observation within the home setting (Bruner, 1983; D. Roy et al., 2006). Trevarthen

echoes the same concerns regarding the study of socio-emotional development:

We need to put observations of the communicative and emotional characteristics of infants,
when they are actively interacting with people and natural events and adaptively regulating
their experiences, in the context of experimental studies that have sought to measure
different parts of the system in isolation.

(Trevarthen, 1993)

A similar need for ecologically valid observation has been expressed regarding the

psychotherapy of emotion dysregulation, as well as the study and treatment of

developmental disorders such as autism (Baranek, 1999; Cole et al., 1994; Hayes et al.,

2008; Hayes et al., 2004; Kientz et al., 2005). With ongoing initiatives to collect additional

Speechome datasets across multiple neurotypical and autistic children, the Human

Speechome Project has introduced new possibilities in meeting this need.

2.1 Data Capture

Each room and hallway of the participating family's home was equipped with omni-

directional, mega-pixel resolution color digital cameras and highly sensitive boundary layer

microphones, embedded in the ceiling as shown in Figure 2-1, totaling 11 cameras and 14
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microphones. The cameras use a fisheye lens, which allows a complete panoramic view of a

room with little or no loss of data. Fisheye lenses are common in surveillance for this same

reason. Motorized shutters conceal the cameras when not recording, swinging open when

recording is turned on. The resulting view (Figure 2-2) provides wide coverage, at the

expense of details such as facial expressions, which are lost due to the overhead

perspective (D. Roy et al., 2006). The boundary layer microphones use the ceiling as a

sound pickup surface, producing high quality speech recordings that reduce background

noise, enabling reliable speech transcription. Their sensitivity can capture with clarity not

only soft vocalizations even at a whisper level, but also subtle acoustic nuances of vocal

expression more generally.

Figure 2-1. Speechome Camera and Microphone Embedded in the Ceiling of a Room.

The family was given full control of recording and privacy management; recording

could be turned on and off at will using miniature wall-mounted touch displays, shown in

Figure 2-3. The interface of these displays consisted of four virtual buttons: a video

recording switch (camera icon), an audio recording switch (microphone icon), an "oops"

button (exclamation point icon) for retroactively erasing recordings that the family may

want off the record, and an "ooh" button (asterisk icon) for flagging notable events, such as

the child's first steps. Eight such control devices were mounted throughout the house, next

--- -------------



to the light switches, with each control mapping to cameras and microphones within a

specific zone of the house.

Figure 2-2. Speechome Overhead Figure 2-3. Speechome Recording
Camera View Control Interface

The cameras and microphones are all network-enabled and were wired to a server

infrastructure set up in the basement of the home. A specialized data capture application1

was developed specifically for the Human Speechome Project, and was continuously

running on these servers, sampling audio at greater than 48 KHz, capturing video at 14

frames per second whenever motion was detected (only one frame per second whenever

motion was not detected), and performing real-time video compression. The server

infrastructure and data capture application were designed to handle the high performance

storage and computational processing involved in assembling an average of 9.6 hours of

high quality audio/video recordings per day. With video compression, approximately 300

gigabytes of raw data accumulated each day (D. Roy et al., 2006).

Daily recording continued from birth through the age of three, adding up to over

230,000 hours of raw audio/video, and taking up at least one petabyte (1 million

gigabytes) of storage (D. Roy, 2009; D. Roy et al., 2006). For the purpose of studying

language development, post-processing, speech transcription, and generation of other new

I BlackEye, by Philip DeCamp.
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metadata has focused on the period during which the child ranges from 9 to 24 months of

age. This 488-day period consists of 4,260 hours of recording time across 444 days,

capturing approximately 70-80% of the child's waking hours (D. Roy, 2009).

2.2 Speechome Database

To gather meaningful observations out of this vast sea of data recording, it is necessary

to first develop specialized data mining tools. A speech processing pipeline (D. Roy, 2009)

consisting of an array of fully- and semi-automated technologies has been implemented to

collect speech-related metadata from the raw Speechome audio/video recordings, for the

purpose of creating a dataset for studying child language development. This dataset is

commonly denoted as the Speechome database. Together, the raw media recordings and the

Speechome database form the Speechome corpus. We describe in this section the portion of

the speech processing pipeline and Speechome database that is relevant to our work in this

thesis.

The main focus of this pipeline has been to obtain a comprehensive set of speech

transcripts that capture all words heard and produced by the child from 9 to 24 months of

age. Because of the naturalistic environment in which the Speechome recordings were

made, the audio contains frequent instances of background noise, overlapping speakers,

and spontaneous speaking styles with varying degrees of articulation, all of which present

challenges to automatic speech recognition (D. Roy, 2009). With automatic speech

recognition tests producing an error rate of well over 75% (D. Roy, 2009), a process of

manual speech transcription became a necessary element in the speech processing

pipeline.

The pipeline begins with fully automated mechanisms that extract the portions of the

14-channel audio stream that are most likely to contain speech and prepare them for

streamlined manual speech transcription: these mechanisms are channel selection, speech

detection, and speech segmentation (B. C. Roy & Roy, 2009; D. Roy et al., 2006). As

described in (D. Roy, 2009), a Channel Selection module chooses the audio channel with the

highest persistent energy as the most basic heuristic for narrowing down the audio field.



Next, a Speech Detection module applies a boosted decision tree to classify 30ms frames of

audio as either speech or not speech. Of the frames identified as speech, a Speech

Segmentation module stitches adjacent frames together and separates them at pauses to

form speech segments. Speech segments are the basic audio units that are ultimately

passed to manual speech transcription.

Prior to speech transcription, however, these speech segments are further filtered such

that only child-available and child-produced speech is transcribed. This is done using

metadata about child presence that has been previously collected using a combination of

heuristic algorithms and manual video annotation. Using this information, the Child-

Availability Filter retains for speech transcription only those speech segments that occur

when the child is present in a given room.

Speech transcription itself is streamlined through the use of BlitzScribe, an interface

that accelerates transcription time by a factor of 4 to 6 over other available transcription

tools (B. C. Roy & Roy, 2009; D. Roy, 2009). BlitzScribe synchronizes playback to the

transcriber's speech of transcription by internally applying the fully automated modules

described above and passing the resulting speech segments to the transcriber, who then

simply listens and types.

Finally, a speaker identification mechanism implemented by Miller (2009) for the

Human Speechome Project uses a boosted decision-tree classifier to automatically identify

speech segments as having been uttered by either the child, mother, father, nanny, or other.

The classifier was trained using acoustic features 2 computed from a set of hand-labeled

samples of each speaker's utterances. The other category includes houseguests, occasional

nanny substitutes, sounds made by the child's toys, and voices heard over speakerphone,

among other things.

The metadata and transcriptions generated via this semi-automated process of speech

transcription collectively form the Speechome database. Speech transcription is ongoing at

the time of this writing; at least 28% of the audio corpus covering the 9-24 month period

has been transcribed, involving over 1,200 hours of transcribed speech segments and

yielding over 3 million transcribed words (D. Roy, 2009).

2 Mel-Frequency Cepstral Coefficients (MFCCs)



Chapter 3

Data Collection Methodology

The Speechome corpus, described in Chapter 2, promises an unprecedented

perspective into child behavior and development within the context of the home and

interactions with caretakers - a perspective that could yield insight and answer behavioral

research questions on a rich hierarchy of time scales, from a second-by-second account of

environmental factors that might suddenly cause a child to cry, to a developmental

trajectory of emotional variability as it changes over the course of 24 months. Towards

harnessing the benefits of such dense, longitudinal, naturalistic data for the study of child

emotion, our goal in this thesis is to investigate acoustic correlates that can effectively

model the child's perceived emotional state within the medium of the Speechome corpus.

The model that we propose to build determines the child's perceived emotional state

using acoustic features of the child's vocalizations and surrounding adult speech within the

Speechome audio. We represent emotional state according to Schlosberg's two-

dimensional space for characterizing affect (Schlosberg, 1952). In our work specifically, it

takes the form of a <Mood, Energy> pair, in which Mood and Energy are numerical

variables that each range in value from 1 to 5. Mood represents the valence of the

emotional state, which tells us whether, and to what extent, the child is sad (negative

valence) or happy (positive valence). Energy represents the arousal in the emotional state -

the degree to which the child is relaxed (low arousal) or excited (high arousal). We

describe our methods of building such a model in Chapter 4 and evaluate its perceptual

accuracy across longitudinal, dyadic, and socio-behavioral contexts in Chapter 5.

Before we can build such a model, however, our first challenge is to extract meaningful

metadata from the raw Speechome recordings that would serve as the ground truth about

the child's emotional state and vocalizations. Ground truth corresponds to human

perception, the gold standard by which we wish to train our model to perceive the child's

emotional state. Training a model involves giving it examples, or more precisely, sets of

features that describe these examples, that are labeled with the human-perceived state.



Given enough examples, a well-trained model can accurately "perceive" the correct state,

given a new set of input features. In order to collect these examples of human perception,

manual human annotation is necessary. To set up large-scale manual annotation of the

child's emotional state and vocalizations, we implemented a new annotation interface and

hired a group of annotators to indicate their perceptions using this interface.

Annotators were provided with configured sets of Speechome audio/video clips that

were sampled evenly throughout the child's 9-24 month developmental period. We

describe our longitudinal sampling strategy in more detail in Section 3.2.3.3. Within each

clip, annotators were asked to annotate time intervals for two types of events: child

vocalizations, and adult speech or other noise that overlaps with the child vocalizations.

For each vocalization, annotators rated the Mood and Energy of the child, each on a scale

from 1 to 5, and answered questions pertaining to the behavioral nature of the vocalization

(e.g. crying, laughing, babble), as well as whether it occurs in proximity to a social situation

involving the child.

The rest of this chapter proceeds as follows. In section 3.1, we describe in detail our

implementation of a highly configurable annotation interface and supporting

infrastructure. Section 3.2 describes the particular configuration that we apply in deploying

this interface for our specific research goals, as summarized above - including our

questionnaire design, and our longitudinal sampling strategy in selecting clips for

annotation. Section 3.3 describes the annotators and the annotator training process.

Finally, in section 3.4 we present the results of our inter-annotator agreement analysis.

3.1 Infrastructure

Towards realizing a data collection process that is driven by manual human

annotation, we3 implemented a software infrastructure consisting of an annotation

interface and a central back-end database, and set up a networked cluster of annotation

machines to support multiple concurrent annotators. In our implementation, we take into

3 In preference for the classic convention of academic writing, "we" and "our" always refers to work done by
the author as part of this thesis.



account design considerations surrounding interface usability and portability, integration

with persistent data storage that is transparent to the annotator, seamless administration

of assignments, and ease of querying the data for analysis.

3.1.1 Interface Design and Implementation

The interface for browsing, playback, and annotation of the Speechome recordings was

implemented using Java, with heavy use of its Swing/AWT libraries, and consists of three

modular components: media browsing and playback, time interval annotation, and

question & answer (Q&A) forms. Although the annotation in this work primarily involves

audio events, the interface was designed to support both audio and video annotation. In

addition, the context afforded by multiple modalities makes video valuable for audio

annotation, and vice versa. Thus, the media browsing and playback component

implements a simultaneous, synchronized audio/video presentation of the Speechome

recordings. The interval annotation component enables the user to specify the temporal

range of specific event types observed during the course of media playback. Q&A forms

present sets of questions for the annotator to answer about the recording and annotated

intervals. The interval annotation component and Q&A forms are both easily configurable

and can therefore be extended to arbitrary event types and question sets, as needed for

other annotation goals. As will be described in Section 3.1.3, the database design supports

this modularity.

3.1.1.1 Media Browsing and Playback

A pre-existing API4 and utilities for playback of the raw, proprietary Speechome audio

and video format files were available for programmatic uses. We developed our framework

for browsing and retrieval of Speechome media clips using this Speechome playback API.

4 An Application Programming Interface (API) is a set of software modules that have been developed to
serve as a library for other programmers to use and apply for their own purposes, if the functionality of any of
its modules fits their needs.

s Developed by Philip DeCamp.



The browsing and retrieval usage workflow first presents a list of clips, which we call a

playback browser list, to the user, as shown in Appendix A, Figure 1. The user then browses

the list by clicking on the desired clips, one at a time. The playback browser list takes as

input a clip configuration file (CCF), which specifies a start date and time, end date and

time, video channel number, and audio channel number for each clip, and builds the

playback browser list at runtime based on the configuration specified by the input file.

Times are specified to millisecond precision. Following is an arbitrary example of a

specification of clip entries in a CCF:

2006-06-01 10:20:38.175 ~ 2006-06-01 10:20:39.345 ~ 23 - 3
2006-06-0110:20:39.33 - 2006-06-0110:20:42.54 - 23 ~ 3
2006-06-0110:20:42.525 ~ 2006-06-0110:20:44.58 ~ 23 ~ 3
2006-06-01 10:22:40.17 ~ 2006-06-01 10:22:42.6 ~ 23 ~ 3

When a user clicks on a particular clip in the playback browser list, the clip-specific

playback and annotation interface (PAI) appears, which consists of a media playback

module, the interval annotation interface, and Q&A forms, as indicated in Appendix A,

Figure 2.

Features of the media playback module include a video playback viewer, a slider

control that is synchronized with the timeline of the playback, a play/pause toggle button,

and a fast-forward playback speed control.

3.1.1.2 Interval Annotation

Aligned below the media playback module, the interval annotation module consists of a

set of annotation tracks, in which annotations made by the user appear, and an audio

waveform track, as indicated in Appendix A, Figure 2. A vertical black line, or tracer, moves

along the annotation and waveform tracks in sync with media playback, to support greater

precision during annotation.

The interval annotation paradigm is determined by a mapping between event types,

display colors, and keystrokes, which we call a trackmap. This mapping is completely

configurable based on annotation needs (see Section 3.1.1.3), and is by no means limited to



the specific application presented in this thesis. The particular mapping configured for a

runtime instance of the interface application is displayed for user reference at the upper

right-hand area of the PAI, as shown in Appendix A, Figure 2.

Annotation Input Modalities

In the interval annotation module, one annotation track is created and displayed for

each event type in the configured trackmap. When a user types one of the keys in the

mapping while playback is on, an interval annotation begins to "evolve" in its

corresponding annotation track, starting from the point in the playback timeline when the

user pressed the key, in the color specified by the mapping. As playback continues, the

interval annotation extends horizontally, in sync with the pace of playback, until the user

presses that key again to toggle the annotation off.

This method of annotation, and several other features in the interval annotation

module, were inspired by the elegant design of the VCode annotation interface (Hailpern &

Hagedorn, 2008). VCode itself could not serve our purposes due to the nonstandard media

formats in which the Speechome recordings are stored and the infeasibility of converting

the multiple terabytes used in this work to standard formats. This incompatibility, initially

considered a setback, necessitated the development of a new annotation interface - the

interface being described in this chapter - which provided the opportunity to integrate the

VCode-inspired annotation paradigm with a database infrastructure, and to include the

Q&A forms (see Section 3.1.1.3) as part of the annotation process.

Developing a standalone annotation interface also enabled experimentation with other

forms of user annotation input. The audio waveform track serves as a convenient, efficient

alternative input modality, where the user can highlight the desired portion of the

waveform and type the key that corresponds to the event being annotated. Highlighting the

waveform is done by pressing the left mouse button at the desired start point, dragging to

the desired end point, and releasing the left mouse button. The highlighted portion is

displayed as a shaded region that extends as the mouse drags forward. When the mouse is

released, playback is automatically initiated for just that highlighted portion.



If the user decides to annotate this highlighted time interval with one of the mapped

event types, she types the corresponding key and the annotation interval appears in its

correct track, for the exact interval denoted by the highlighted region. (The highlighting in

the waveform track also automatically disappears at this time.) Otherwise, if the user

decides not to make an annotation for the shaded region, the user can simply move on by

highlighting another region, or by clicking the mouse anywhere in the interval annotation

module. Benefits of this "highlight, listen, and type" annotation method include a more

streamlined, pro-active annotation process and greater precision in annotating audio

events due to the additional contextual guidance given by the waveform.

Object-oriented Hierarchy6

Each interval annotation is represented in the interface implementation as a distinct

instance of a Java class, Annotation. Each track is implemented as an instance of the Track

class, which acts as a container for Annotation objects of a particular color, corresponding

to a particular keystroke. Annotation objects can be moved, deleted, or resized; we include

these features to enable the annotator to adjust interval annotations for greater precision

after they have been initiated, and to give the annotator an opportunity to re-evaluate the

annotation after listening to the clip again.

An Annotation object is specified by a color, label, width, and horizontal start position

within a Track. Vertical start position and height are constant for all Annotations. A unique

Annotation ID is also generated for an Annotation object at creation time; this is the

primary key that indexes the Annotation within the database (see Section 3.1.2). Upon

creation, the Annotation object initiates an update to the database, which saves its start

time, end time, and event label to the database schema, along with its unique Annotation ID

6 For the non-technical reader, Object-oriented programming (OOP) is a software development methodology
that organizes implementation into a set of "Objects," or "Classes." Each Object type is defined by the
programmer to contain of a set of functions and state variables; these variables can be other Objects with
different functionalities. Certain Objects might inherit functionality from other Objects. These containment
and inheritance relationships among different Object types form a hierarchical, object-oriented
implementation. Java, our language of choice, is an Object-oriented programming language, which is why our
description includes references to "Objects" and "Classes."



and metadata to identify the user who made the annotation and the clip in which this

annotation was made. Section 3.1.2 describes this database schema in greater detail.

Transformation functions to map between horizontal track image space (i.e. pixel space)

and playback timeline space are implemented as part of the Track object functionality.

During the database update process, these transformations are applied to the horizontal

start and end coordinates of an Annotation object to obtain the timestamps that define the

annotation interval.
Annotation

AnnotationTip AnnotationTip tracer

TrackLN
Track

TrackI

AudioTrack

t
TrackimagePanel

Figure 3-1. Annotation Interface Components. The annotation interface consists of a set of Track objects,
one of which is a specialized AudioTrack. The regular Track objects are containers for Annotation objects -
each Track holds a different event type. An Annotation object includes two AnnotationTips, one at each
end, which enable the user to resize the Annotation object. The AudioTrack presents the waveform of the
audio and implements the "highlight, listen, and type" annotation method.

The interval annotation module panel, TrackimagePanel, is a container for multiple

Track objects, as well as a single AudioTrack object, which is a subclass of Track. The

AudioTrack object constructs a smoothed waveform image from the audio clip and

implements the "highlight, listen, and type" annotation input modality described above.

The waveform image is computed by extracting amplitudes from the raw bepcm format of

the audio for the presented clip (sampling rate 48000 Hz) and smoothing using a three-

point averaging filter.

This hierarchical, object-oriented design (Figure 3-1) provides a modular platform for

features such as resizing, moving and deleting Annotation objects within a Track. Each of

these operations immediately causes the Annotation object to update its entry in the

. .... ... ..... ::% .. ........
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database accordingly. For simplicity and usability, an additional element of design was

needed to make the resizing and moving features as intuitive as possible for the user. Both

moving and resizing an Annotation lend themselves most naturally to the ubiquitous left-

click-and-drag mouse input paradigm. However, because moving and resizing are two

separate functions, this presents the problem of how to enable the user to apply the same

input modality for two different features.

Fortunately, there is a difference in the position where the user would tend to click an

object in order to move it, as opposed to resizing it. For example, this difference is apparent

in the design of windowed operating system interfaces, as shown in Figure 3-2, which

harnesses the natural tendency to initiate a move of a window or any onscreen element by

clicking somewhere in the middle of the operable region. Similarly, the intention to resize

tends to focus the user's attention to the edges of a window.

Figure 3-2. Moving vs. Resizing in a Windowed Operating System.

Whether the design of move and resize operations in windowed operating systems has

been inspired by natural user tendencies, or users have been ingrained into these

tendencies after decades of working with such operating systems, this usage model is

intuitive for users. We therefore felt that it should be both preserved and harnessed in the

usage model for moving and resizing Annotation objects.



Moving is done
from the middle

-- s--~--. .- -. - - - ~Resizing is done
from the edges

Figure 3-3. Moving vs. Resizing Annotations.

To implement this, we developed a new object type, called an AnnotationTip,

represented graphically as a thin vertically oriented rectangle (Figure 3-1). Each

Annotation object contains two AnnotationTips of the same color - one located at the start

position of the Annotation object, and the other at the end position. Resizing is done by

left-clicking and dragging an AnnotationTip, while moving is done by left-clicking

anywhere on the Annotation object in the region between the AnnotationTips and

dragging to the desired new location. When the mouse moves over an AnnotationTip, the

shape of the cursor changes from an arrow into a pair of perpendicularly crossed lines,

which helps guide the user to the appropriate usage and region distinctions.

3.1.1.3 Question & Answer Forms

In the course of usage workflow, the annotator also encounters the question & answer

(Q&A) forms feature, which presents to the annotator a set of questions to be answered

about a clip. The Q&A forms feature implements a mechanism for collecting metadata

about the clip and each interval annotation as needed for the research question at hand. Its

highly configurable design enables the researcher to develop a questionnaire that best

serves the research question at hand, and to fluidly modify it throughout the research

....... .. .. .. - .. ................. . .... ...... ...... _ _ . ........ .. . .......... ........................ .... . . ....



process by simply specifying a different question configuration file (QCF). Figure 3-4 shows

the basic QCF format. For the actual QCF used in this work, please refer to Appendix B. The

resulting interface display is shown in Appendix A, Figures 2 and 3.

Multichoice;Label I;Choice l AChoice2AChoice3
Scale;Label2;Choice I @I - Choice2@2 - Choice3@3 - Choice4@4 - Choice5@5
MultichoiceAnnv;Label3;Choice I AChoice2
ScaleAnnv;Label4; Choice I@ I - Choice2@2 - Choice3@3
ScaleAnns;Label5; Low@ I - 2@2 - Medium@3 - 4@4 - High@5;3
Trackmap;LabeI6;v,Event I,Green,true - a,Event2,Blue,true ~ s,Event3,Orange,true

Figure 3-4. Question Configuration File (QCF) Format. Each line configures a new question to be
presented to the annotator through the annotation interface's Q&A forms feature. Lines 1 and 3 define
Multichoice questions, and lines 2, 4, and 5 define Scale questions. Lines 1 and 2 specify clip-level questions.
Lines 3 and 4 specify annotation-level questions that appear only when annotations are created with the
keystroke v. Line 5 specifies an annotation level question of type Scale that will appear only for annotations
created with keystroke s, with default value preset to 3 in its scale slider. Line 6 specifies the trackmap for
interval annotation, which defines three event types, corresponding to keystrokes v, a, and s.

To summarize, each line of the QCF defines a separate question, using four fields - type,

label, choices, and an optional default value. There are three types of questions that are

supported by this interface: Multichoice, Scale, and Trackmap. A Multichoice question

presents a list of choices, from which the user must select only one. A Scale question

presents a range to the user in the form of a slider, with ticks at integer numerical values

that correspond to question-specific nominal values, and asks the user to indicate a rating

in the slider relative to the presented range.

The Trackmap entry is not a question, per se, but instead defines the mapping between

event types, display colors, and keystrokes that is put into effect for interval annotation.

Only one Trackmap is recognized per runtime instance of the interface. Each Trackmap

"choice" maps a keystroke to an event type and a color. The interval annotation module

(see Section 3.1.1.2) depends on this entry in the QCF to configure the number of Tracks

and the keystrokes and colors that correspond to each Track. If the Trackmap specification

is omitted from the QCF, no TracklmagePanel is displayed. In this case, no interval

annotation is possible, and the Playback and Annotation Interface (PAI) can only be used as

a clip-browsing interface.



The question type specifies not only whether it is a Multichoice, Scale, or Trackmap

question, but also whether it is to be presented to the user at the clip level or at the

annotation level. The latter is only applicable to Multichoice and Scale questions. When

presented at the clip level, questions appear on the right hand panel of the PAI, below the

Trackmap (see Appendix A, Figure 2). Annotation-level questions appear in a pop-up dialog

window whenever the user creates a new annotation of that type, as shown in Appendix A,

Figure 3.

The type field for annotation-level questions must additionally specify the annotation

event type to which it corresponds. This is indicated using the key character that maps to

that event in the Trackmap. For example, question type MultichoiceAnna defines a

multichoice question that appears only when annotations are created with the keystroke a,

while a MultichoiceAnn-b question would only appear for annotations created with the

keystroke b. The particular keystroke characters used in this specification must correspond

to one of the event type mappings in the Trackmap configuration described above.

The question label is the text of the question being asked, and the choices are

specified according to the format that corresponds to the question type, as shown in Figure

3-4. Optionally, a default value can also be specified for a question, so that this choice

appears preselected in the Q&A form before the user makes a selection. Configuring a

default value is of particular use for scale questions, because they automatically come with

a preset value at the beginning of the slider when a default value is not specified. In many

cases, the beginning (i.e. extreme left) value of the slider represents an extreme condition

or rating; if the slider comes preset to an extreme value, this could introduce bias into the

mind of the user that subconsciously prefers values closer to that extreme. Thus, for certain

kinds of questions, it can be more desirable to have the default value set at the middle of

the slider, so that user bias is centered around a neutral or medium rating.

3.1.2 Administration Interface

We also implemented an administrative tool for use by the researcher, to facilitate

distribution of assignments, creation of new user accounts, and checking the status of
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assignments for each annotator. The interface, shown in Figure 3-5, presents a list of clip

configuration files (CCFs) and question configuration files (QCFs) to the administrator. An

assignment is created for a selected user by choosing one CCF and one QCF from their

respective lists and pressing "Submit." These lists are constructed from the contents of two

dedicated directories, <clipDir> and <qDir>, which separately hold CCFs and QCFs,

respectively. The paths to <clipDir> and <qDir> are specified as input parameters. The

administrative tool also includes functionality for creating new users and viewing the

completion status of each user's assignments.
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Figure 3-5. Administration Interface. Assignments are made by choosing an annotator from the User menu at
the top, a Clip Configuration File (CCF) from the list on the left, and a Question Configuration File (QCF) from the
list on the right, and clicking "Submit" New user accounts are created by clicking "Create User." Completion status
of assignments can be viewed per annotator, under "Show Assignments."

3.1.3 Database Design & Usage Workflow

The annotation interface and the administration interface both communicate with a

database that was set up to hold the annotation data and questionnaire answers. The

database runs on a PostgreSQL v8.3 database management system (DBMS) platform, and

the interfaces connect to it through SSL, using the Java JDBC libraries. Figure 3-6

summarizes the schema design. The rest of this section describes the details of this design

... .... ........... . . .... ...................



in context, by stepping through the usage workflow, from administration of assignments, to

the creation of new annotations and submission of completed clips by the annotator.

3.1.3.1 Administration Workflow

When the administrator creates a new assignment using the administration tool, the

selected CCF and QCF are imported into the database. CCFs, also called clip lists, are stored

in the clip-lists table, indexed by a unique clipjistid. A clip list is specified by its file

name, which is stored in the description field, and the file contents, stored as the

clip-config-file field. QCFs are stored in a similar way in the anntypes table, indexed by a

unique anntype-id and specified by a description (the name of the file), and qfile (the

contents of the file).

If cliplists does not already have an entry that matches the contents and file name of

the CCF being submitted, then this CCF is added as a new entry. Next, its contents are

parsed, each line specifying an individual clip, as described in Section 3.1.1.1. For each of

these clips, a new entry is created in the clips table. The clips table stores global clip

specifications independently of any particular assignment, including the start and end

times of the clip (clip-start, clip-end), the audio and video channel numbers

(audio-channel, videochannel), the cliplist-id from which it came, and a unique clip-id

index.

Similarly, the QCF submitted to the database through the administration tool as part of

the creation of a new assignment is first checked against the existing entries of the

anntypes table. If no matching file name and contents are found, then it is added to the

table and parsed to extract and index the individual questions that are specified by the QCF.

These individual questions are stored in the questions table, specified by the

question-label, qtype-name (the question type, as described in Section 3.1.1.3), the

anntype-id of the QCF from which it came, and a unique questionid index. The choices

for each question are indexed in the question-choices table, which maps each

choice-label and unique choiceid to its corresponding question-id.



assignments
- I (primary key)
- usemame
- clipjlistid
- anntype-id

assignedcilips
- assigned clipjid (primary key)
-clip id

- is_complete
(line of text in CCF specifying this clip)
(reference to enclosing CCF)

(primary key)
(start timestamp of annotated interval)
(end timestamp of annotated interval)
(event type)
(reference to assigned clip in which this annotation was made)

(primary key)
(contents of QCF)
(fiename of QCF)

questions
- question-id (p
- anntype-id
- question-label (t
- qtypename (t

annanswers
- answerjId (primary key)
- question id
- choice id
- annid

clip_answers
-answer-id (primary key)
-question-id
-choice id
-assigned-clip-id

rimary key)
eference to enclosing QCF)
ext of question)
ype: SCALE or MULTICHOICE)

questionchoices
-choice id (primary key)
-question-id (reference to enclosing question)
-choke-label

CCF - Clip Coniguration Fle
QCF - Question Confguration File

Figure 3-6. Schema Design. Tables are listed in bold. Fields are color coded to indicate cross-references that
join two tables together via primary keys. For example, because assignments are defined by a CCF/QCF pair,
each entry in the assignments table is specified in part by a reference to an entry in the clip-lists table, indexed
by its primary key cliplist-id, and a reference to an entry in the anntypes table, indexed by its primary key,
anntypejid.

clplists
- clip list id
-clip confglie
-description

(primary key)
(contents of CCF)
(filename of CCF)

clips
- clip-id
-clip-start
-clipend
-video_channel
-audio_channel
-descrip
-clip-list-id

(primary key)
(start timestamp)
(end timestamp)

annotations
- annid
- intvLstart
- intviend
- label
- assigned-clip-id

anntypes
- anntype-id
- qle
- description



An entry is then added to the assignments table to create the assignment; it is

specified by the cliplistid and anntype-id of its corresponding CCF and QCF,

respectively, as well as the username to which it is assigned and a unique assignment-id.

Next, each clip that belongs to the CCF indicated by this assignment's cliplist-id is

imported into the assigned-clips table, with a unique assigned-clip-id, where it is

mapped to its corresponding global clip-id indexed in the clips table and its

assignmentid. A fourth field, is-complete, is initially set to false; this value becomes true

when the annotator denoted by username submits her annotations and Q&A for this clip.

3.1.3.2 Annotation Workflow

When the annotator logs into the annotation interface, the application retrieves her

active assignments from the assignments table and computes the percentage of assigned

clips that have been completed within each assignment. These assignments are displayed

as a list, as shown in Figure 3-7, from which the annotator can select one assignment at a

time. A status bar indicates the proportion complete for each assignment. In the

administration tool, the administrator can mark assignments as deactivated so that they no

longer appear in this list. Upon selecting an assignment from her list, the annotator

receives the playback browser list described in Section 3.1.1.1 and shown in Appendix A,

Figure 1. Selecting a clip from the list brings up the playback and annotation interface

(PAI), as shown in Appendix A, Figure 2.

Whenever a new annotation is created by the annotator in the PAI, a new entry is

created in the annotations table, specifying the start and end times of the annotated

interval (intvlstart, intvlend), the event label of the annotation (label), and the

assigned-clip-id that defines the context of this annotation. The assigned-clip-id in turn

maps to its assignmentid and the username, thus allowing a full accounting of which

annotations were made by each user, in each assignment. Each annotation receives its own

unique identifier, annid.



Assignment 0 m (Z6D
Assignment 1 CEDi)
Assignment 2 CN7D
Assignment 3 W CIED
Assignment 4 CNZD
Assignment 5 ChD

Figure 3-7. Annotator's List of Assignments. Status bars indicate the percentage of clips that have been
completed in each assignment. To open an assignment, the annotator clicks its corresponding "Open" button.

Answers to Q&A forms are stored in the clip-answers and ann-answers tables for

clip-level and annotation-level questions, respectively. Both tables map the questionid to

the selected choice-id, and indexes each answer with a unique answerjid. The

clip-.,answers table also maps each answer entry to its corresponding assigned-clip-id,

while the ann-answers table maps each answer entry to its corresponding annid. When

the annotator is finished making annotations and answering questions for a clip, she

presses the "Finished, submit clip for review" button, which closes the PAI for the current

clip and changes the value of is-complete to true in the assigned-clips table. Henceforth,

this clip is listed in the playback browser list with a marker indicating its completed status,

as indicated in Appendix A, Figure 1.

The annotator can also return to a previously annotated clip or specific annotation to

review or change answers and interval placements. Whenever the application opens the

PAI for a clip or the Q&A window for an annotation, it always checks the database first for

any annotations and answers that this user may have already made for that assigned clip or

specific annotation in the past, and imports them into the interface display.

3.2 Applied Input Configuration

With a modular, highly configurable annotation infrastructure in place, we designed a

specific trackmap, questionnaire, and Speechome dataset sampling strategy to address the

research questions in this work, and applied them as input configuration parameters to the

...........



annotation interface. This section describes the design choices that we made in this

configuration.

3.2.1 Trackmap

Annotators were asked to annotate two types of events: child vocalizations, and adult

speech or other noise that overlapped with the child vocalizations. Appendix A, Figure 2

indicates this trackmap configuration, as seen by the annotator. Child vocalization events

were mapped to the "v" key and displayed in green in the annotation track. Overlapping

adult speech/noise events were mapped to the "a" key and displayed in blue.

3.2.2 Questionnaire

The questionnaire design includes both clip-level and annotation-level questions. At

the clip level, annotators are asked the following questions:

1. Does this clip include child vocalizations?

Options are yes or no. If the answer is no, then the annotator is free to move on to

the next clip.

2. Are there adults talking or other noise during any part of the child's
vocalizations?

Options are yes or no. If the answer is yes, then the time intervals of the

overlapping noise must be annotated.

3. Is there any activity in this clip that might suggest a social situation
involving the child and a caretaker? (See instruction sheet for
examples.)

Options are yes or no. This question was added to enable comparative study of the

child's perceived emotional state between social and non-social situations.



Each clip could have multiple child vocalizations. Because an annotator may wish to answer

vocalization-specific questions differently for each individual vocalization, we also present

to the annotator a set of annotation-level questions, which appear in a new window

whenever the annotator creates a new child vocalization annotation. For each child

vocalization, annotators are asked the following questions:

1. Which of the following best represents the nature of the vocalization?

Options are crying, laughing, other emoting, bodily (e.g. sneeze, cough), babble,

speech. This question was included to serve several purposes. First, it enables us to

separately study vocalizations that are clearly crying or laughing. Secondly, the

bodily (e.g. sneeze, cough) option enables us to weed out vegetative sounds that

by definition carry no emotional message. Finally, because babble/speech has clear

syllabic structure that pure emoting (which includes crying, laughing, and other

emoting) does not generally have, the acoustic vocal correlates for the same

perceived emotional state may be different between these two classes of

vocalizations, simply due to fundamental acoustic differences between them. Thus,

it may be useful to build separate models depending on the nature of the

vocalization.

2. Please rate the energy of this vocalization. If it varies within the
vocalization, rate its maximum energy: (1 = Lowest energy, 5 = Highest
energy).

Options are integers on a scale from 1 to 5, with 1 labeled Low, 3 labeled Medium,

and 5 labeled High. This question is intended to capture arousal, one axis of

Schlosberg's two-dimensional space for characterizing affect (Schlosberg, 1952).

Ratings of 1 could include soft cooing or a whining sigh or a raspberry (Scheiner et

al., 2002). These ratings often occur when the child is sleepy or very relaxed.

Ratings of 2 might include absent-minded babble that is ongoing while the child is



occupied with something else. Regular babble epitomizes a 3 rating, although some

instances of animated whining and cooing may also fall into this category. Many

instances of crying, short of outright screaming, would fall into the category of 4,

along with animated babble. Any kind of screaming or shouting, whether due to

crying or excitement, would correspond to an energy label of 5.

3. Please rate the child's mood on the following scale: (1 = Most negative,
5 = Most positive).

Options are integers on a scale from 1 to 5, with 1 labeled Negative, 3 labeled

Neutral, and 5 labeled Positive. This question captures valence, the second axis of

Schlosberg's two-dimensional space for characterizing affect (Schlosberg, 1952). A

value of 1, or Most Negative, represents a very sad mood, such as the child crying. A

valence rating of 2 includes instances of slight whining or fussiness. Babble in which

there is no obvious positive or negative mood is an example of a rating of 3. Cooing

and pleasant "happy-baby" sounds fall under the category of 4. A 5 valence includes

expressions of excitement, delight, and amusement that characterize an especially

happy mood.

4. How clearly do your answers above describe the vocalization?

Options are integers on a scale from 1 to 5, with 1 labeled No choices fit, 3 labeled

Multiple choices fit equally, and 5 labeled Clear fit. This question was intended

primarily to help explain and mediate disagreements between annotators.

3.2.3 Input Dataset

To derive the set of clips applied as the input dataset for annotation, we put together a

strategic combination of existing Speechome metadata: automatic speech detection (B. C.

Roy & Roy, 2009), child presence video annotations (B. C. Roy, 2007), and speaker

identification labels (Miller, 2009). In addition, we designed a longitudinal sampling



strategy to allow exploration of developmental trajectories in relation to the research

questions in this work.

3.2.3.1 Existing Relevant Speechome Metadata

As described in Chapter 2, prior work by Brandon Roy (B. C. Roy, 2007; B. C. Roy & Roy,

2009) developed a mechanism for automatic detection of speech and applied it to the raw

Speechome audio data. This effort produced a database of speech segments - a set of sound

clips that includes all sound produced by human voice in the Speechome corpus,

segmented at pauses and syllabic junctures occurring within the flow of human vocal

expression. Each segment consists of a time interval specification and an association with a

particular room of the house, based on the audio or video channel that recorded it. Each

channel corresponds to an individual microphone (audio) or camera (video) device that

was installed in a particular room of the house.

While comprehensive, the set of segments produced by the automatic speech detection

mechanism contains many false positives - segments that only contain non-speech sounds

that were not produced by the human voice, such as sirens in the distance, music, noise

from laundry, and toy sounds. For this reason, the manual speech transcription process

developed by Roy (2007) includes an option for the transcriber to mark a segment as "Not

Speech". These flags are also stored in the Speechome database, and were applied in this

work to filter out the non-speech segments.

Roy (2007) also previously implemented and deployed a video annotation process to

track the presence of the child within the home. This annotation data also produced

segments; in this context, each segment represents a time interval during which the child

was present in a particular room.

An automated machine learning algorithm implemented by Miller (2009) labeled all

speech segments in the Speechome database with speaker identification. Each label was

assigned along with a confidence rating - a fractional value between 0 (lowest confidence)

and 1 (highest confidence). This algorithm assigned five different labels, corresponding to

the father, the mother, the primary nanny, the child, and other. The other category includes
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houseguests, occasional nanny substitutes, sounds made by the child's toys, and voices

heard over speakerphone, among other things.

1 - 1 - Father
.90.9........... .......- Nanny

0.8 - 0.8 ~-- Mother
0.7 - 0.7 . __-_. - . - Child
0.6 -0.6
0.5 . 0.5

0.3 0.3-

01 0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

confidence Threshold confidence Threshold

Figure 3-8. Accuracy and Yield of Miller's Speaker Identification Algorithm.
(data credit: (Miller, 2009))

Figure 3-8 shows the accuracy and yield of Miller's speaker identification algorithm for

different confidence thresholds and speakers (Miller, 2009). The confidence threshold in

these graphs specifies the minimum confidence value required to accept a speaker ID label

assigned by the algorithm; any segments labeled with confidence value less than this

threshold are deemed inconclusive with respect to specific speaker identification.

Depending on the chosen confidence threshold and the particular speaker, the accuracy of

these speaker classifications ranges from 73.9% to 100%, while carrying a tradeoff of

decreasing yield with increasing accuracy. Accuracy for the mother (73.9%) at threshold =

0 is significantly lower than for the father (86.4%), nanny (85.5%), and child (89.9%), and

this relative pattern continues even as all the accuracies increase at higher thresholds.

3.2.3.2 Constructing the Input Dataset

Because the annotation in this work focuses on isolating and characterizing child

vocalizations, our goal in constructing the input dataset for annotation was to retrieve all

audio that could possibly contain child vocalizations, while minimizing the number of

... .... .............. .. .. ................................ . ..... .



irrelevant clips that the annotators would need to sort through. Unlike video, which can be

fast-forwarded to some degree without loss of meaning, audio must be heard at its

naturally recorded rate, in order to maximize perceptual accuracy of the child's emotional

state. Thus, it is critical to filter out as much irrelevant audio as possible from the

annotation dataset.

To this end, we began constructing the annotation dataset by focusing on a single room

in the house - the living room; only segments associated with this room are used. The

rationale for limiting the current study to one room, despite the availability of multiple

rooms in the Speechome corpus, is twofold. First, this focus enables us to explore the

methodology in this work longitudinally through the complete 9 to 24 month period while

keeping the amount of audio to be annotated within a manageable volume. Second, a

single-room developmental observation model is consistent with future plans for the

Speechome Recorder, described in Chapter 6. A compact, portable version of the original

Speechome recording setup, the Speechome Recorder has been developed to enable large-

scale deployment of the Speechome recording technology. A Speechome Recorder will be

placed in a single room in each participating child's home. This room will be chosen by the

family based on where both the child and caretakers spend a large portion of the day in

play and other daily activity. Thus, the methodology developed and examined in our work,

and the results of our analysis, based on data from a single room, would be directly

applicable to the new corpora forthcoming from the Speechome Recorders.

We initially constructed the target dataset by taking the intersection between the

speech segments and the segments indicating the presence of the child in the room. Later,

the speaker identification labels and associated confidences were used to filter out

segments likely to contain no child vocalizations. A parametric analysis, described in detail

in Section 3.2.3.4, enabled us to choose an optimal configuration of confidence thresholds

for each adult speaker that minimizes the number of child vocalizations that are filtered

out, while also minimizing the number of irrelevant segments - purely adult speech or

other noise - that are left in the dataset. Finally, the configuration of confidence thresholds

determined to be optimal in this analysis was applied to the rest of the dataset to render

the filtering.



3.2.3.3 Longitudinal Sampling Strategy

In the Speechome dataset, a day holds particular relevance as a fundamental unit of

segmentation in the flow of observational data, because activities within a day are self-

contained and do not carry over into the next day. In contrast, shorter time units such as

hours and minutes are relatively arbitrary discrete boundaries when it comes to most

human activities, even the fairly regular ones such as mealtimes, as they arise and dissipate

in a continuous manner within the flow of daily life. This is even more the case when it

comes to the spontaneous, volatile, dynamic realm of a child's emotions. We therefore used

the "day" as our sampling unit.

At least two days per month were sampled on a monthly basis from 9-15 months, and

one day per month every 3 months from 15 to 24 months. Each day's worth of segments,

derived according to the method described in Section 3.2.3.2, was annotated in full. The

chosen dates are listed below:

05/16/2006 07/02/2006 10/05/2006
05/21/2006 07/10/2006 10/19/2006
06/01/2006 08/07/2006 01/04/2007
06/08/2006 08/22/2006 04/09/2007
06/11/2006 09/06/2006 04/27/2007
06/24/2006 09/17/2006 07/06/2007

Where two or more days per month were chosen for annotation, at least one day was

chosen near the beginning of the month, and another day near the end of the month, to

spread out the sampling as evenly as possible. Due to the real-world nature of the

Speechome recordings and the non-sequential sampling strategy of speech transcription,

the spacing between days varies, being partly conditional on how much recording data is

available for any given day, and whether the full set of metadata described in Section

3.2.3.1 is available yet for that day. (For example, there are no speech segments or other

metadata available at all for the entire second half of July, 2006 at the time of this writing.)

Some days had very little recording to begin with, and certain other days had corruptions,

missing audio or video, or background noise (e.g. due to laundry) that could potentially be

problematic in audio analysis. Also, two extra days (06/01/06 and 06/08/06) were added

in the month of June, 2006 to maintain consistency in statistical analysis, because post-



processing revealed that the two dates 6/11/06 and 06/24/06 collectively yielded less

than half as many vocalizations as did each of the months of May, July, and August.

An extra day (04/09/07) was also chosen for the month of April, 2007, counter to the

sampling strategy for the child's developmental period of 15-24 months, because the day

originally chosen (4/27/07) heavily features the child's newborn sibling. We study these

two days separately to control for any anomalous patterns that may be due to the

extraordinary events on April 27.

3.2.3.4 Speaker ID Filtering Analysis

As described in Section 3.2.3.1, we applied speaker ID metadata to filter out irrelevant

segments from the annotation dataset in order to minimize overall annotation time. In the

context of this work, irrelevant segments are those that do not contain child vocalizations.

Because the focus of annotation was to capture as many child vocalizations as possible, we

wished to retain not only segments labeled as the child, but also segments labeled as an

adult or other speaker if they contain a child vocalization. The speaker ID algorithm assigns

a confidence value to each segment by subdividing the segment into windows, determining

a speaker label for each window, and using a voting mechanism across these windows to

see which speaker is most prevalent in the segment. This means that a segment labeled as

an adult or other can indeed contain child vocalizations, especially if the confidence is fairly

low. To minimize the number of such child vocalizations that are lost by filtering out

adult/other segments, we filtered them out only if their speaker ID confidence value was

greater than a certain confidence threshold chosen for that speaker, as described in more

detail below.

In implementing our filtering operation, the problem was to determine the optimal set

of confidence thresholds across speakers that maximizes both the effectiveness and

accuracy of this filtering process. We conducted a parameteric analysis to determine these

optimal confidence thresholds for each of the non-child speakers. We denote the resulting

set of four optimal confidence thresholds as the optimal confidence threshold configuration.

Our criteria in determining optimality in this filtering problem were as follows: if the

thresholds are too high, very few adult/other segments would be filtered out, offering no



time savings and making the filtering operation useless. This was the more conservative

option, as leaving in adult segments would simply give annotators more segments to listen

to. Because the clip for an irrelevant segment contained no child vocalizations, annotators

would simply move on to the next clip with no harm done except for the extra time

required to listen to it. However, if the thresholds are too low, too many adult/other

segments containing child vocalizations would be filtered out, leaving out useful

vocalization instances from our analysis.

Thus, an optimal confidence threshold configuration is one that minimizes the number

of child vocalizations filtered out, while at the same time providing a useful reduction in the

number of segments submitted for annotation by filtering out irrelevant segments. In the

context of this filtering problem, we define the following terms:

- True Positives (TP) - segments containing child vocalizations that the filtering

process accepts into the filtered annotation dataset

e False Positives (FP) - segments that do not contain child vocalizations, but are still

accepted into the filtered annotation dataset

e True Negatives (TN) - segments not containing child vocalizations that are

correctly filtered out of the annotation dataset

- False Negatives (FN) - segments that contain child vocalizations, but are filtered

out of the annotation dataset

Restating the problem in these terms, the goal is to minimize the number of false negatives,

while still providing an effective filter by filtering out false positives.

Minimizing false negatives is equivalently described as maximizing the sensitivity of the

filtering configuration, where sensitivity is computed as the ratio of segments correctly

accepted as containing child vocalizations (TP) to all the segments that indeed contain

vocalizations (TP+FN):



sensitivity = TP
(TP + FN)

Analogously, minimizing false positives can be equivalently described as maximizing the

specificity of the filtering configuration. Specificity is defined as the ratio of irrelevant

segments correctly filtered out (TN) to all irrelevant segments (FP+TN):

specificity = TN
(FP + TN)

For any given confidence threshold configuration, we determined the optimal confidence

threshold configuration as follows. First, we chose a set of already annotated speech

segments for the analysis. For each speech segment in this set, we retrieved its assigned

speaker ID label and confidence value. If the speaker ID was labeled as the child, then we

immediately accepted this segment into the annotation dataset. Otherwise, if the

confidence value was greater than the threshold configured for that speaker, then this

segment was rejected from annotation: with a non-child speaker ID label that was hereby

considered accurate, the segment was not likely to contain child vocalizations. Otherwise,

the segment was accepted into the annotation dataset, because there was a chance that

child vocalizations may be present.

We then queried annotated answers to clip-level question #1 ("Does this clip include

child vocalizations?") for this set of segments, to serve as the perceptual ground truth for

the evaluation. An answer of "yes" for a segment marked "accepted" were tallied as TPs,

while an answer of "no" added to the count of FPs. Analogously, "no" answers for segments

marked "rejected" were tallied as TNs, while "yes" answers added to the number of FNs.

We repeated this process for a variety of confidence threshold configurations and

computed sensitivity and specificity for each configuration, using its corresponding TP, FP,

TN, and FN totals. We plotted an ROC curve (1-specificity vs. sensitivity), as well as

filtering ratio as a function of sensitivity, to evaluate the tradeoff between accuracy and

effectiveness of the filtering process. Using these graphs as a guide, we chose a desired

range of filtering ratios. We then ranked all threshold configurations falling within this



range by sorting along three criteria: first, in order of decreasing filtering ratio; second, in

order of decreasing sensitivity; and third, in order of decreasing specificity. Finally, we

chose the first threshold configuration in the ranking as the optimal one for the specified

range of filtering ratios.

Six days' worth of speech segments were already fully annotated when speaker ID

metadata became available: 5/16/06, 5/21/06, 6/11/06, 6/24/06, 7/2/06, and 7/10/06.

In our parametric analysis method described above, we used this set of segments to

indicate which segments actually contain child vocalizations and which do not. We

assembled a complete set of confidence threshold permutations, with confidence

thresholds ranging from 0 to 1 at intervals of 0.05, for each speaker label besides the child.

There were four speaker labels under consideration: father, mother, nanny, and other. With

20 possible confidence thresholds for each of four speaker labels, we analyzed a total of

160,000 different threshold configuration permutations.
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Figure 3-9. Evaluation of tradeoffs between Sensitivity, Specificity, and Filtering Ratio for
different confidence threshold configurations: (a) ROC Curve (b) Sensitivity as a Function
of Filtering Ratio. Each individual data point in these graphs is a different confidence threshold
configuration. The goal is to find an optimal confidence threshold configuration for filtering out
adult speech from the annotation dataset using Speaker ID labels and confidence thresholds. A
confidence threshold configuration is a set of four confidences, one for each non-child speaker,
that each serve as cutoff thresholds for their corresponding speaker. Segments labeled as that
speaker are rejected if Speaker ID assigned a confidence greater than the confidence threshold
for that non-child speaker.

....... .... ..... .. ..



Confidence Threshold # Segments Filtering Accuracy
Confi ration After Filtering

Father Nanny Mother Other Accepted Rejected TP FP TN FN TP FP Filter
(TP+FN (FP+TN Ratio

0.60 0.75 0.45 0.55 5500 2356 2496 3004 2121 235 0.914 0.586 0.30
0.55 0.75 0.35 0.65 5107 2749 2412 2695 2430 319 0.883 0.525 0.35
0.70 0.50 0.40 0.45 4714 3142 2327 2387 2738 404 0.852 0.466 0.40
0.35 0.70 0.35 0.50 4321 3535 2239 2082 3043 492 0.820 0.406 0.45
0.55 0.45 0.25 0.50 3929 3927 2127 1802 3323 604 0.779 0.351 0.50
0.35 0.40 0.45 0.40 3536 4320 2015 1521 3604 716 0.738 0.297 0.55

Table 3-1 Optimal Confidence Threshold Configurations. A confidence threshold configuration is a set of
four confidences assigned by Miller's speaker ID algorithm - one for each non-child speaker. Segments
assigned a confidence higher than the confidence threshold for that speaker are rejected from the annotation
dataset as irrelevant, because they are deemed likely to be purely that speaker, and therefore would not
contain any child vocalizations. The accuracy and effectiveness of this assumption for a given confidence
threshold configuration is evaluated in terms of sensitivity and specificity, using as ground truth the set of
segments that had already been annotated at the time. A different optimal confidence threshold configuration
is derived depending on the desired filtering ratio. Highlighted in yellow is the configuration chosen for
filtering the rest of the dataset.

Figure 3-9 shows the resulting ROC and Filtering Ratio graphs. Each data point in these

graphs corresponds to a particular threshold configuration permutation. Determining the

optimal tradeoff primarily depends on how much sensitivity one is willing to give up to

gain an extra 5 or 10% of dataset reduction, and therefore annotation time savings.

An optimal configuration, chosen from a set of viable options, was determined as

shown in Table 3-1, with a filtering ratio of 0.3. This was a conservative choice, made with

the intention of keeping the number of false negatives at a minimum while still obtaining

some useful reduction in annotation volume. Table 3-1 also lists several other possible

options that were considered, which exchange some sensitivity for a larger filtering ratio.

The parametric analysis described above showed each of these options to be the clearly

optimal ones for their respective filtering ratios.

Using the chosen threshold configuration, the speaker ID filtering process was applied

to the remainder of the input annotation dataset, which was still awaiting annotation.

Table 3-2 shows the resulting reduction in annotation volume for each day's worth of

segments. The dates that were annotated after filtering realized the benefits of the

reduction. These dates are highlighted in Table 3-2. The filtering ratio is lower on average

for the rest of the dates, than for the dates that were used to compute the threshold



configuration, and ranges from as low as 0.175 to a high of 0.311. Overall, the speaker ID

filtering process reduced the amount of segments to be heard by annotators by 22%.

Date Total # Segments Accepts Rejects Filtering Ratio

05/16/2006 1807 1336 471 0.260

05/21/2006 1064 750 314 0.295

06/11/2006 1361 919 442 0.325

06/24/2006 791 554 237 0.300

07/02/2006 1220 845 376 0.308

07/10/2006 1619 1103 516 0.319

08/07/2006 1323 1003 319 0.241

08/22/2006 2014 1607 407 0.202

09/06/2006 1118 807 311 0.278

09/17/2006 2130 1468 662 0.311
10/05/2006 1982 1622 360 0.182
10/19/2006 1884 1554 330 0.175
01/04/2007 1755 1423 332 0.189
04/09/2007 3227 2471 756 0.234
04/27/2007 2689 2121 568 0.211

07/06/2007 2180 1869 311 0.143

Table 3-2. Applied Speaker ID Filtering Results. Highlighted in blue are the days for which the

chosen confidence threshold configuration was applied to filter out irrelevant segments from the

annotation dataset. Filtering out 100 segments saves roughly 2 hours of annotation time. Overall,

filtering by speaker ID reduced the amount of segments to be heard by annotators by 22%, for a total

time-savings of roughly 87 hours.

In addition to the filtering ratio, the raw number of rejected segments also tells us how

much annotation time speaker ID filtering saved, regardless of the total number of

segments in a given day. In practice, each set of 100 segments takes roughly an hour to

annotate. With each segment being annotated by two annotators, filtering out 100

segments saves 2 hours of annotation time. Thus, filtering by speaker ID saved as many as

14-16 hours of annotation time for a given day (e.g., rejecting 756 segments in the

04/09/07 data), and provided an average time-savings of 9 hours per annotated day. In

total, speaker ID filtering reduced annotation time by roughly 87 hours.

---- ---- ---- --------------- ..... .
.. ....... ... .. ..



3.3 Annotation Process

Annotation took place from January through May 2010. Seven undergraduate students

were recruited through MIT's Undergraduate Research Opportunities Program to serve as

annotators. Their demographics are listed in Table 3-3, with numerical identifiers assigned

for confidentiality.

ID Gender Class Year School Major Started
1 Female Freshman MIT Math 1/10

2 Female Freshman MIT Biology 1/10
3 Male Freshman MIT EECS 2/10

4 Male Sophomore MIT Math/EECS 1/10
5 Female Sophomore MIT EECS 1/10

6 Female Junior MIT Brain & Cognitive Science 1/10
7 Female Senior Wellesley Neuroscience 2/10

Table 3-3. Annotator Demographics.

All annotators underwent a period of adjustment and training. The first two weeks in

January involved testing out the annotation interface and supporting infrastructure. During

this time, annotators were given a test dataset and a variety of event types to annotate and

questions to answer. By completing these assignments, annotators gained experience in

interface usage. In the second half of January, a preliminary version of the actual input

configuration (trackmap and questionnaire) used in this work was deployed to the

annotators. During this preliminary trial, the paradigm for distribution of assignments

across annotators was also established: each assignment, consisting of 100 segments 7, was

assigned to two annotators so that inter-annotator agreement could later be measured.

After roughly three weeks of pilot testing and revisions of the questionnaire, we deployed

the final version of the input configuration described in Section 3.2 in early February.

At this point, evaluation of inter-annotator agreement and interviews with the

annotators revealed the challenges involved in achieving agreement on annotators'

subjective perceptions of a child's affective state. Across the board, annotators expressed

difficulty in judging how extreme (or not) a child's energy and mood are relative to the

7 Each day's worth of segments was subdivided into groups of 100 to create these assignments. The last
assignment for a day contained less than 100 segments -- specifically, the remainder after this subdivision.



child's overall range. Also, definitions were needed to clarify the distinctions between

crying, laughing, babble, and other emoting for answers to annotation-level question #1

("Which of the following best represents the nature of the vocalization?").

To address these problems, two measures were taken to create a formal training

process for the annotators. First, a one-page instruction sheet was provided to the

annotators as a quick reference to definitions, rules of thumb, and example social situation

cues. A copy of this instruction sheet is included as Appendix C. The definitions established

for the choices in annotation-level question #1 are as follows:

Crying - in a child, it is an inarticulate, often prolonged expression of a negative state, and can range
from soft weeping to screaming, depending on the energy of expression. It can also begin with whining
or other fussy vocalizations.

Laughing - expressing certain positive emotions, especially amusement or delight, by a series of
spontaneous, usually unarticulated sounds, such as heehee, hehe, haha.

Bodily - a vocalization that is produced by reflexive bodily functions and therefore carries no
emotional content, such as a sneeze, cough, or burp.

Babble - a vocalization where the child is attempting to express speech, with or without emotion. It
must include at least two clearly articulated consonant-vowels, i.e. at least two clear syllables.

Speech - the child is clearly speaking in articulated, recognizable words.

Other Emoting - any other vocalization uttered by the child

As can be expected within the continuous spectrum of a child's emotional expressions,

annotators observed many borderline cases where they found it hard to tell whether the

child was crying or simply emoting, and similarly, whether the child was laughing or

emoting. To address this ambiguity, annotators were instructed to choose other emoting

to characterize these borderline cases.

The second measure was a training process created to familiarize the annotator with

the child's overall temperament and range of expression. Three sets of clips were put

together, one for each of annotation-level questions #1 (Nature), #2 (Energy), and #3

(Mood). Each set presented a range of canonical examples for each of the options in the

corresponding question. The example clips were chosen to represent the full range of the

child's expressive tendencies, as well as a good spectrum of possibilities within each rating

option. Each clip was labeled with the question and the suggested answer for that clip.
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An interface was implemented for browsing the labeled clips in each set (Appendix A,

Figure 4), creating three "guides" for acquainting annotators with the child's

temperament8 . Annotators were asked to browse through these guides from beginning to

end. The guides were also added to the Q&A interface (Appendix A, Figure 3), each under

its corresponding question. This was done to enable the annotator to refer back to the

guides while annotating with just a press of a button, to help disambiguate difficult cases.

All annotators finished this training process by February 22. Speaker ID metadata

became available in mid-February, and after the analysis in Section 3.2.3.4 was done, input

datasets filtered using speaker ID were introduced for annotation the first week of March.

3.4 Agreement Analysis

In this section, we evaluate the inter-annotator agreement for the four questions in the

questionnaire that involve subjective judgment on the part of the annotator. Originally

described in Section 3.2.2, these questions are restated in Table 3-4 and mapped to a one-

word label that will henceforth be used to refer to these questions, for ease of exposition.

Agreements are computed as follows. First, all individual child vocalization annotations

and the question responses for each annotation are queried and assembled into

ResultRecord objects. A ResultRecord associates a time interval and question label with the

choices that annotators selected for this time interval and question. Using a Hashtable, the

ResultRecord maps each choice option to a Vector of annotator usernames who selected

that choice. Initially, a distinct ResultRecord object is created for each individual child

vocalization annotation in the database. In other words, the Hashtable of choices in each

initial ResultRecord contains only a single key - the option chosen by the annotator who

made this annotation - and a Vector of size 1 that contains only the username of that

annotator.

8 Thanks to Jason Hoch, one of the annotators, for his contributions to the implementation of the annotator
training guide interface.
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Label Question Options
Social Is there any activity in this clip that might suggest a Yes, No

social situation involving the child and a caretaker?
(See instruction sheet for examples.)

Nature Which of the following best represents the nature of Crying, Laughing, Bodily, Babble,
the vocalization? Speech Other Emoting

Energy Please rate the energy of this vocalization. If it varies 1,2,3,4,5
within the vocalization, rate its maximum energy: (1
= Lowest energy, 5 = Highest energy)

Mood Please rate the child's mood on the following scale: 1,2,3, 5
________(1 = Most negative, 5 = Most positive)________________

Table 3-4 Subjective Questions Evaluated in Agreement Analysis.

Then, individual ResultRecords whose time intervals intersect with each other are

aggregated into a single ResultRecord. Non- intersecting portions are split off (and

corresponding Hashtable contents are copied over) into separate ResultRecord objects.

Splitting is necessary to handle the case where one annotator may have indicated multiple

brief vocalization intervals, while another annotator may have simply annotated one long

vocalization, for the same period of time. In the former case, each of the vocalizations may

have been given a different set of question responses, while in the latter case, there is only

one set of responses for the entire period. Thus, one portion of this time period may hold

an agreement, while another portion may hold a disagreement. With splitting, each of these

portions would be aggregated into separate ResultRecord objects, and would duly capture

the agreement as well as the disagreement.

Finally, the number of agreements is tallied within this set of aggregated

ResultRecords. For a given question, an agreement is defined to be a vocalization interval

for which two or more annotators made the same choice. This was expressed

programmatically by checking whether a ResultRecord's Hashtable contains at least one

Vector value of size 2. Because this Vector contains the usernames of the annotators who

made the same choice, size a 2 means that at least two annotators agreed with each other.

For the scale type questions, namely Energy and Mood, we consider agreement across

four different rating metrics: the original 5-point scale {1, 2, 3, 4, 5}Pt, two versions of a



collapsed 3-point scale with options denoted as {1, 2, 3}3pt, and a 9-point scale {1, 1.5, 2, 2.5,

3, 3.5, 4, 4.5, 5}9Pt resulting from accepting disagreements by 1 point as agreements and

averaging them to obtain the new agreed value. The two versions of the 3-point scale differ

according to how the intermediate values 2 and 4 in the original 5-point scale are

categorized in the collapsed 3-point system, with specific mappings as follows:

e 3-point Scale Version A: {1,2}sPt {1} 3pt , {3}sPt -) {2} 3Pt, and {4,5}spt 4 {3} 3pt

* 3-point Scale Version B: {1}sPt {1} 3 pt, {2,3,4}spt - {2} 3Pt, and {5}spt 4 {3}3 pt.

Table 3-5 summarizes the inter-annotator agreement for each question and scale type

variant. Agreement is measured according to two metrics: probability of agreement

P(Agreement), and Cohen's Kappa, which adjusts for any role of random chance in

contributing to agreement (Cohen, 1960). Cohen's Kappa is calculated using the formula:

K P(Error) - P(Agreement)

1- P(Error)

where P(Error) is the probability of two annotators agreeing by chance, as if they were

effectively flipping coins to make their ratings. Cohen's Kappa therefore provides an

agreement metric that tells us not only how much annotators agreed with each other, but

also the extent to which that agreement meaningfully represents a correlation between

annotator ratings and the characteristics of the child vocalization events being annotated.

We interpret the value computed for Kappa according to the following commonly used

rating system (Altman, 1991):

Poor agreement = Less than 0.20

Fair agreement = 0.20 to 0.40

Moderate agreement = 0.40 to 0.60

Good agreement = 0.60 to 0.80

Very good agreement = 0.80 to 1.00



Label Vocalizatis # Agreed P(Agreement) P(Error) ohen' Kappa

Social 11518 9518 0.826 0.612 0.552

Nature 11470 7972 0.695 0.391 0.499

Energy (5 pt scale) 11543 5537 0.480 0.253 0.304

Energy (3 pt scale A) 11543 6996 0.576 0.317 0.422

Energy (3 pt scale B) 11543 9470 0.820 0.712 0.376

Energy (9 pt scale) 11543 10543 0.913 0.142 0.899

Mood (5 pt scale) 11544 5838 0.506 0.273 0.321

Mood (3 pt scale A) 11544 6856 0.593 0.306 0.413

Mood (3 pt scale B) 11544 10298 0.892 0.840 0.324

Mood (9 pt scale) 11544 11000 0.953 0.177 0.943

Table 3-S. Agreement Calculations. Very good agreement is highlighted in yellow (9 point scale for both
Energy and Mood). Moderate agreement is highlighted in green.

As can be seen in Table 3-5, the Social and Nature questions achieve moderate agreement,

with Kappa values of 0.522 and 0.499, respectively. Among the four scale type variants for

the Energy and Mood questions, the 9-point scale seems to be by far the most robust option

for further analysis: both questions achieved very good agreement, with Kappa values of

0.899 and 0.943, respectively. The original 5-point scale achieved fair agreement, with

Kappa values of 0.304 and 0.321, respectively. Of the two 3-point scales considered,

version A was superior to version B for both Energy and Mood: version A achieved

moderate agreement with Kappa values of 0.422 and 0.413, respectively, while version B

had only fair agreement with Kappa values of 0.376 and 0.324, respectively.

Agreement percentages per individual annotator for each question are included in

Appendix D.

..... .......... ..................... .......... .... .. .. ...... ......... ..... . . ... ..... ...... -- ----- ...... . ...................... .............
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Chapter 4

Analysis Methodology

In our analysis methodology, we seek to create a model that simulates human

perception of a child's emotional state, given the child's vocalizations and the adult speech

surrounding the vocalization. Acoustic features of the child's vocalizations and surrounding

adult speech serve as the independent (input) variables, and the <Mood, Energy> ratings

made by annotators serve as the dependent (response) variables. In the process, we

investigate the degree to which surrounding adult speech alone can indicate a child's

perceived emotional state, how such correlations may differ for specific child-caretaker

dyads, and the nature of any longitudinal trends in these dyadic relationships as the child

develops from 9 to 24 months of age. We apply these research goals to different subsets of

the data to explore social context as given by annotator responses to the Social question, as

well as the nature of the vocalization given by answers to the Nature question. Henceforth,

we define the combination of the Social and Nature answers for each vocalization to be the

vocalization's socio-behavioral context.

This chapter describes our implementation of this analytical methodology, starting

with the raw annotation data collected as described in Chapter 3. The analysis process

involves three phases. First, a data processing phase takes the collected annotation data,

creates indices for agreed Q&A answers, and generates four distinct sets of raw audio

fragments from the Speechome data corpus, using the time interval annotations for child

vocalizations and overlapping noise/adult speech. These four sets of audio fragments are

(1) The child vocalizations themselves, pruned of any overlapping noise/adult speech

(2) Adult speech occurring within a 30 second window before each child vocalization,



(3) Adult speech occurring with a 30 second window after each child vocalization, and

(4) The concatenation of (2) and (3) into adult speech surrounding each child

vocalization. Our implementation of this data processing pipeline is described in

Section 4.1.

The second phase of analysis extracts a set of 82 acoustic vocal features from the raw audio

fragments. Section 4.2 describes each of these features and the functionality that we

developed to implement the feature extraction process.

Finally, we apply Partial Least Squares (PLS) Regression to build perceptual models of

child emotion using these acoustic features. In order to address the research questions

above, we built multiple different models, each using a different longitudinal or socio-

behavioral subset of the data. Section 4.3 describes our rationale for choosing PLS

Regression, the experimental designs that implement this regression methodology, and our

metric for evaluating the regression models.

4.1 Data Processing

The data processing pipeline can be summarized as follows. First, the annotated child

vocalization time intervals are pruned to remove any periods of overlapping noise or adult

speech. Next, WAV audio files are generated from the Speechome corpus for each pruned

child vocalization. The audio fragments for surrounding adult speech are then also derived,

and WAV files generated, using the pruned child vocalization time intervals as templates. In

parallel, indices of agreed answers are created for each of the four questions in Table 3.4.

The start and end times of the pruned vocalization intervals serve to uniquely index each

generated audio fragment and agreed Q&A answer according to its corresponding child

vocalization. Finally, the WAV audio files are submitted to the feature extraction process

(see Section 4.2).



4.1.1 Pruning

Prior to pruning, we compute all time interval intersections across annotators in the

set of all collected annotations. This is done separately for child vocalization annotations

and overlapping noise/adult speech, in a process of aggregation and splitting of

ResultRecords that is very similar to, and in fact a direct extension of, the implementation

described in Section 3.4. Instead of tallying Q&A agreements, here we aggregate only the

time interval annotations within each event type. Since each clip could have multiple

vocalization and noise annotations, the agreed time intervals occurring during each clip are

organized in vector sets that are mapped, using a Hashtable, to the corresponding clip-id.

Pruning is then done by iterating through the set of agreed noise intervals, searching

for any intersections within the set of child vocalization intervals, and pruning these

intersections from the vocalization intervals. Indexing both sets of agreed time intervals -

child vocalizations and overlapping noise/adult speech - by clip-id enabled us to

implement an efficient pruning algorithm by reducing this search space to just the small set

of aggregated and split annotations occurring within a single clip.

For each intersection found between a noise interval and a vocalization interval, there

are four distinct cases to consider, each one involving a different pruning operation:

1. The intersection is at the beginning of the vocalization interval. We simply

prune the noise off by changing the start time of the vocalization to the end time of

the noise interval.

2. The intersection is at the end of the vocalization interval. Conversely to case 1,

pruning is done by changing the end time of the vocalization to the start time of the

noise interval.

3. The intersection is somewhere in the middle of the vocalization interval. In

this case, the noise splits the vocalization interval into two fragments. We adjust

either the start or end time (but not both) in the original vocalization interval to



reflect the first vocalization fragment, and construct an additional ResultRecord to

hold the second vocalization fragment created by this split.

4. There is a complete overlap between the noise interval and vocalization

interval. The vocalization is removed completely from the analysis dataset.

After this pruning operation, the resulting adjusted and/or split vocalization intervals are

checked whether they are "zero-length", based on a configured threshold, and if so, they are

removed from futher analysis. In this work, "zero-length" is defined as being shorter than

100ms, so that vocalization fragments are thrown out if they are too short to be

perceptually meaningful to a human listener. Otherwise, they are added to the master set of

pruned vocalizations to be analyzed from this point forward.

4.1.2 Generating WAV files

In preparation for feature extraction (Section 4.2), we extract the raw audio from the

Speechome corpus, and generate a WAV audio file, for each specific time interval that we

have computed in this master set of pruned child vocalizations. This extraction and

conversion process was implemented by applying input-output functions already existing

and available for use in the Speechome software library to extract specific time intervals of

audio from the Speechome corpus, as well as WAV encoding functions in the JavaZoom AVS

Audio Converter API 9.

4.1.3 Surrounding Adult Speech

As part of this work, we are studying what adult speech surrounding a child

vocalization can reflect about the child's perceived emotional state. To this end, we

implemented a module called GenWavsAdult that computes the time intervals for adult

speech surrounding each child vocalization and generates WAV files for these intervals.

9 http://www.javazoom.net/index.shtml



Specifically, GenWavsAdult returns all adult speech occurring within a user-specified

window before and after each child vocalization in the form of WAV files, and an index

mapping the adult speech intervals to child vocalizations. The output can include all adult

speech, or focus in on only the speech of a particular adult, to enable a dyadic analysis

between the child and a specific adult.

GenWavsAdult begins its derivation of adult speech intervals surrounding each child

vocalization by retrieving all the pruned child vocalization time intervals within a

particular date range, specified by input parameters <dateRangeStart> and

<dateRangeEnd>. For each child vocalization, specific time intervals T1 and T2 are

computed to cover a user-specified time window before the child vocalization and after,

respectively. In this work, both window lengths have been set to 30 sec, as a time interval

that reasonably captures the child's attention span. It seems reasonable to expect that any

emotional transitions relevant to a particular vocalization would evolve within the time

frame of the child's attention span before and after that vocalization.

Given a computed window T (this is done separately for T = T1 and T = T2), the task

now is to find all speech segments that overlap with T. Because GenWavsAdult can be run

on the entire corpus of 1.6 million segments, and was initially implemented with the

intention to do so, an IntervalTree - an augmented binary search tree with red-black

balancing (Cormen et al., 2001) - was implemented from scratch and applied to improve

the efficiency of the search.

The set of all speech segments occurring between <dateRangeStart> and

<dateRangeEnd> in the Speechome database is first organized into an IntervalTree

structure S. A separate IntervalTree C is also built out of all the pruned child vocalization

intervals. Then, the window T is submitted to the IntervalTree search function on tree S,

which returns a set V of all segments that overlap with T. Finally, for each segment in V, the

exact overlapping time interval I is computed, and using the IntervalTree C of child

vocalizations, any child vocalizations occurring during interval I are pruned out.

The end result of this process is a set of audio fragments that collectively represent all

audio of human speech within window T that is not produced by the child. This set of adult



speech fragments in window T is saved in a Hashtable that maps it to the child vocalization

from which T was computed. Thus, for T = T2 with a window length of 30 sec, a given child

vocalization will be mapped to the set of adult speech fragments that occur during the 30

seconds before this vocalization.

Finally, the audio corresponding to each adult speech fragment is retrieved from the

Speechome corpus and written to a WAV file, as in Section 4.1.2. Also, an index file is

written, which contains all the mappings between child vocalizations and their

corresponding adult speech fragments.

4.1.4 Generating Agreement Indexes

For each of the four subjective questions in Table 3-4 (Social, Nature, Mood, and

Energy), including the multiple scale variants for the Mood and Energy questions, we

create an agreement index that maps all agreed answers to the pruned vocalization

intervals to which they correspond. In the PLS Regression analysis (see Section 4.3), we use

these indices to compute subsets of vocalizations that correspond to agreed answers for

each question, and to coordinate their prosodic features with their matching answers for

the regression. Agreements among answers for each pruned child vocalization are

computed according to the methods described in Section 3.4.

4.2 Feature Extraction

The feature extraction process takes the generated WAV files and computes a set of 82

acoustic and prosodic features for each child vocalization and its adjacent windows of adult

speech. The features are computed via Praat, a widely used toolkit for speech analysis and

synthesis (Paul Boersma & Weenink, 2010). The features extracted for analysis are

summarized in Table 4-1 and described in greater detail in Section 4.2.1.



Attribute Metrics Units Interpolation
Intensity Min, Mean, Max, Stdev dB Parabolic

Pitch Min, Mean, Max, Stdev Hertz Parabolic
Mean absolute slope Semitones n/a

Stylized Pitch Contour # stylized pitch points Quantity n/a

Fast Fourier Transform (FFT) Centroid, Stdev Hertz n/a
Skewness, Kurtosis Unitless

Min, Mean, Max, Stdev dB None

Long-Term Average Spectrum (LTAS) Frequency of Min, Hertz None
Frequency of Max

Harmonics-to-Noise Ratio (HNR) Min, Mean, Max, Stdev dB Parabolic

Harmonics-to-Noise Ratio (HNR) Time of Min, Time of Max Seconds Parabolic

Mel-Frequency Cepstral Coefficients Mean, Stdev Mel n/a
(MFCCs), #1 - 16 (separately for each MFCC)
Formants, #1 - 5 Min, Mean, Max, Stdev Hertz Parabolic

Table 4-1. Acoustic Features Extracted for Analysis

4.2.1 Features

This section describes the specific features extracted for analysis within the context of

Praat syntax. As shown in Table 4-1, the set of 82 features is constructed using eight

attributes of the audio signal. Two of the attributes - MFCCs and Formants - characterize

an audio signal across multiple coefficients or dimensions. To obtain our features, we read

each input WAV file into a Praat Sound object, and then compute multiple attribute-specific

metrics accessible through the Praat API to quantify each of these attributes or attribute

dimensions. Metrics include minimum, mean, maximum, standard deviation, and various

others, as listed in Table 4-1.

4.2.1.1 Intensity

The Praat Intensity object provides query access to the intensity contour for a given

utterance. Using the Praat API of available query functions, we compute four intensity-

related features for our analysis, with parabolic interpolation: the minimum, mean,

maximum, and standard deviation of the intensity contour.

The following syntax is used to create a Praat Intensity object from a Sound object,

with parameters set to their default values as recommended by Praat (Paul Boersma &

Weenink, 2010):
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To Intensity... <min-pitch> <timestep> <subtractmean?>

with <min_pitch> set to 100 Hz, <time_step> set to 0, and <subtractmean?> set to "yes".

The <min_pitch> parameter specifies the minimum periodicity frequency, which

determines the smoothing window for removing pitch-related variations in intensity. The

<timestep> parameter specifies the time step used in the resulting intensity contour; set to

0, as per the default, the time step is computed as one quarter of the effective window

length: 0.8/min.pitch. Set to "yes", the <subtractmean?> parameter normalizes the intensity

contour by removing any DC offset that may have been introduced as an artifact of

microphone recording.

4.2.1.2 Pitch

We compute five pitch-related features: minimum, mean, maximum, standard

deviation, and mean absolute slope. Our motivation for including the latter in our set of

features, in addition to the first four self-explanatory metrics, is that it tells us the general

trend of the pitch contour - does the voice generally rise or fall in the child vocalization or

adult response? Although mean absolute slope is a rather aggregate representation of the

pitch contour, it is widely used for this purpose, particularly in the context of affect analysis

(Breazeal, 2001; Chuang & Wu, 2004; Liscombe et al., 2005; Slaney & McRoberts, 1998;

Ullakonoja, 2010). Section 4.2.1.3 describes an additional aggregate feature that we derive

from the pitch contour to characterize its time-varying behavior from a more fine-grained

perspective.

We generate the pitch contour by instantiating a Praat Pitch object from a Sound

object, using the following syntax:

To Pitch... <time-step> <pitch-floor> <pitchceiling>

The time step and pitch floor are set to the default value of 0.01 sec and 75 Hertz,

respectively. Together, pitch floor and pitch ceiling define the pitch range. The standard

pitch range for adults is from 75 to 600 Hertz (Paul Boersma & Weenink, 2010; Petroni,



Malowany, Johnston, & Stevens, 1994; Ullakonoja, 2010). Our choice of pitch ceiling takes

into account the kinds of extremes in high pitch that can occur when a young child cries or

squeals in excitement, as well as the imitative rise and exaggerated range expansion in

adult pitch that is characteristic of "motherese" (Dominey & Dodane, 2004). The pitch

ceiling filters out any pitches above this value, if they occur.

To adequately capture a full range of affective extremes, we set the pitch ceiling to a

generous 2000 Hz (Clement et al., 1996; Petroni, Malowany, Johnston, & Stevens, 1994;

Zeskind, 2005). Such a large pitch range is inevitable in the study of child emotion, but it

bears the brunt of the tradeoff between undersampling with a frame size that is too short

relative to the pitch floor and losing the stationarity property with a frame size that is too

long relative to the pitch ceiling. Using a pitch floor of 75 Hz in the context of high-pitched

child vocalizations, this tradeoff is tipped in favor of nonstationarity, which could lead to

smearing of FO values at the high end of the spectrum.

4.2.1.3 Stylized Pitch Contour

To capture some meaningful information, in aggregate, about the time-varying pitch

movements during a child vocalization or surrounding adult speech, we include a feature

that is inspired by the pitch contour stylization approach of Hart et al (1990). Pitch

contour stylization is a technique that reduces the curves of a pitch contour to a set of

straight-line segments that approximate the large-scale pitch variations within an

utterance. From the stylized representation, it is then possible to compute the number of

major direction changes indicated by the varying slopes of the stylized segments. This can

be done by counting the number of segments in the stylization, or equivalently, the number

of stylized pitch points, or vertices separating the segments.

We stylize the pitch contour by calling Praat's PitchTier: Stylize... function with a

frequency resolution of 2 semitones, and then compute the number of stylized pitch points

using the query function PitchTier:Get number of points. Both functions are part of

the API available in Praat's PitchTier object, which represents a time-stamped pitch

contour. Please refer to the example Praat scripts in Appendix E for more details on the

syntax used for this procedure.



4.2.1.4 Fast Fourier Transform

The Fast Fourier Transform (FFT) is an operation that takes the time-varying

amplitudes of the audio signal and maps the spectrum of frequencies that occur, effectively

converting the signal representation from the time domain to the frequency domain

(McClellan et al., 1999). The FFT thus facilitates analysis of the spectral properties of

frequencies occurring within the audio signal. In Praat, we obtain the FFT using the

Sound:To Spectrum... function. We compute four metrics using the FFT, as described

below:

e Centroid, or center ofgravity - the average frequency in a spectrum.

- Standard Deviation - measures how much the frequencies in the spectrum deviate

from the Centroid.

- Skewness - measures how much the shape of the spectrum below the Centroid is

different from the shape above it.

e Kurtosis - which measures the extent to which the shape of the spectrum around

the Centroid is different from a Gaussian shape.

Praat allows us to compute each of these metrics using two kinds of weights: (1) the

absolute spectrum, where the absolute value of the complex spectrum IS(f)I is used directly

as the weight for frequency f; and (2) the power spectrum, which raises IS(f)I to the power

of 2. Thus, the FFT gives us a total of eight spectral features.

4.2.1.5 Long-Term Average Spectrum (LTAS)

Long-Term Average Spectrum (LTAS) is defined as the logarithmic power spectral

density (PSD) as a function of frequency. This produces a histogram of frequencies that

tells us which frequencies are most or least dominant in the signal, and the degree to which



each frequency plays a role. We compute LTAS from the FFT using Praat's Spectrum:To

Ltas... function with a bandwidth of 125 Hz, as per the settings used in Kovacic and

Boersma (2006) and Kovacic et al (2003). The features that we extract from the LTAS are

the minimum, mean, maximum, and standard deviation of the log PSD, measured in

decibels (dB), as well as the frequencies of the minimum and the maximum, in Hertz.

4.2.1.6 Harmonics-to-Noise Ratio (HNR)

Another parameter demonstrated to be meaningful in characterizing emotion in the

human voice is Harmonics-to-Noise Ratio (HNR). Various studies have found correlations

between emotional content in speech and HNR (Klasmeyer & Sendlmeier, 1995; Tato et al.,

2002) and, using HNR as part of the feature space, have built classifiers for spoken affect

with some success. Yumoto et al (1984) used HNR as a metric for the degree of hoarseness

of an utterance. Rank and Pirker (1998) described HNR as representing the "breathiness"

in the voice, and applied it as one of the parameters for synthesizing emotional speech.

We compute HNR as a function of time using built-in Praat functionality that performs

an acoustic periodicity detection on the basis of a forward cross-correlation analysis (Paul

Boersma & Weenink, 2010). The following syntax and parameters, applied to a Sound

object, define this function call:

To Harmonicity (cc). <frame duration>
<pitch -floor>
<silence-threshold>
<# periods per window>

The frame and window are two separate constructs in this function's internal cross-

correlation algorithm, which is described in detail in (P. Boersma, 1993). The algorithm

performs a short-term analysis - computation is done only on local sections, or frames, of

the overall signal at a time. The frame duration determines the temporal length of each of

these sections. Window refers to the Hanning window of the frame, to which the Fast

Fourier Transform is applied as part of the algorithm. Frame duration is set to 30 ms and

pitch floor to 75 Hz as in Section 4.2.1.2. The silence threshold is the signal amplitude

below which values are considered to indicate silence. This parameter is set to the standard



default value of 0.1. For the last parameter, number of periods per window, we follow

Praat's recommendation of 4.5 as the value that is best for speech (P. Boersma, 1993).

We query six aggregate features from the HNR time series for our analysis feature set:

minimum, mean, maximum, standard deviation, as well as the times (relative to the

timeline of the utterance) of the minimum and maximum values.

4.2.1.7 Mel-Frequency Cepstral Coefficients (MFCCs)

Mel-Frequency Cepstral Coefficients (MFCCs) form a model, using the mel-frequency

scale, that takes into account the human auditory frequency response (Davis &

Mermelstein, 1980; Ververidis & Kotropoulos, 2006). This has made MFCCs a popular

choice in modeling the phonetic content of speech (Nwe et al., 2003), because they provide

a better representation of the signal than do the simple frequency bands in the power

spectrum (Ververidis & Kotropoulos, 2006). However, because MFCCs suppress the

fundamental frequency (Jensen et al., 2009), which has been consistently found to be a

significant correlate with spoken affect, there have been mixed results in applying MFCCs

in the context of emotion recognition from speech (Beritelli et al., 2006; Nwe et al., 2003).

Nevertheless, MFCCs have been found to hold potential in classification of spoken

affect (Kamaruddin & Wahab, 2008). We include the mean and standard deviation for each

of 16 MFCCs in our feature vector, in part to evaluate their effectiveness in the context of

child vocalizations, and also to harness their physiological realism in modeling speech from

the perspective of human perception. We suspect that MFCCs would add a useful

dimension that would complement the set of other attributes (Intensity, Pitch, FFT, LTAS,

and Formants) in our feature space. It is human perception, after all, that is the gold

standard for emotion recognition.

4.2.1.8 Formants

The vocal tract carries a set of important resonances called formants. Particular

formant frequencies manifest themselves as peaks in the frequency spectrum of an

utterance (Sundberg, 1977) and appear as groups of high-intensity harmonics in a
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spectrogram (Smith, 2007). The formant frequencies are determined by the shape of the

vocal tract as the lips, tongue, pharynx, and jaw move in the process of vocal expression

(Ali et al., 2006; Sundberg, 1977).

In turn, the shape of the vocal tract is influenced by a person's emotional state

(Oudeyer, 2003; Ververidis & Kotropoulos, 2006), e.g. as constrictions occur in the throat

due to stress. For this reason, formants have been consistently included in feature vectors

for synthesis and recognition of emotional speech (Ali et al., 2006; Burkhardt & Sendlmeier,

2000; Martland et al., 1996; Murray & Arnott, 1993; Schroder, 2001; Ververidis &

Kotropoulos, 2006). The research done in this area has found formants to be useful

acoustic correlates of emotion in speech. Other works have even applied formants to the

study of emotive meaning in dog barks and other animal vocalizations (Clemins & Johnson,

2006; Molnar et al., 2008; Soltis, 2009; Soltis et al., 2005).

We use Praat's Sound: To Formant (burg)... function to compute the first 5 formants

for each child vocalization and surrounding adult utterance. To Formant (burg)... is the

variation of Praat's formant implementation that is recommended for general use.

Internally (Paul Boersma & Weenink, 2010), it computes LPC coefficients with a Gaussian-

like window, using the Burg algorithm, as given by Childers (1978).

Input parameters to this function are time step (seconds), maximum number of

formants, maximum formant (Hertz), window length (seconds), and pre-emphasis

starting point (Hertz). Standard default values are used for all input parameters, except

one: the maximum formant is set to 8000 Hertz, as recommended by Praat for a young

child' 0 . The time step is configured as 0.0 such that Praat sets it internally to 25% of the

window length. Maximum number of formants is set to 5, because we are computing the

first 5 formants. Window length is set to 25 ms, for which Praat uses a Gaussian-like

window that is effectively 50ms long. The final pre-emphasis starting point parameter is

left at the recommended 50 Hertz; pre-emphasis is described as a smoothing operation that

optimizes the spectrum for formant analysis (Paul Boersma & Weenink, 2010).

Table 4-2 lists the main physiological correlates for each of the five major formants.

For our feature set, we query the minimum, mean, maximum, and standard deviation of

10 http://fonsg3.hum.uva.nl/praat/manual/SoundToFormantburg_.html



each of the formants per utterance, with parabolic interpolation. This yields a total of 20

formant-based features.

Formant # Main Physiological Correlates
1 Amount of opening in the jaw (Sundberg, 1977); Any constriction or

expansion in pharynx and front half of the oral part of the vocal tract (Ali et
al., 2006), including distance of the tongue from the roof of the mouth 1'

2 Shape of the body of the tongue (Sundberg, 1977); The frontness or
backness of the highest part of the tongue during the production of the
vowel + degree of lip rounding4 (Ali et al., 2006); Constriction/expansion of
the back vs. front of the tongue (Ali et al., 2006)

3 The position of the tip of the tongue (Sundberg, 1977); phonemic quality of
specific speech sounds (Ali et al., 2006)

4, 5 Voice quality by various internal organs of the vocal tract (Ali et al., 2006;
Sundberg, 1977)

Table 4-2. Physiological Correlates for Formants 1-S

4.2.2 Automated Feature Extraction Process

A set of Praat scripts is generated programmatically and then run using the command-

line interface invocation of Praat. For child features, the set of Praat scripts is built using

the list of pruned vocalizations computed in Section 4.1.1, one script for each vocalization.

For adult features, the index of mappings between vocalizations and surrounding adult

speech fragments given by GenWavsAdult (Section 4.1.3) is used instead. Example Praat

scripts for a child vocalization as well as surrounding adult speech are included in

Appendix E.

For the surrounding adult speech, the resulting Praat script first concatenates the

fragments corresponding to each child vocalization, with periods of silence filling in any

breaks due to pruned overlapping child vocalizations. The features described in Section

4.2.1 are then computed for the concatenated audio sequence. This process is identical for

child vocalizations, except that each vocalization WAV file is submitted directly to Praat for

feature extraction, with no need for concatenation of fragments.

11 http://cslu.cse.ogi.edu/tutordemos/SpectrogramReading/ipa/formants.html



4.3 Partial Least Squares Regression

We use Partial Least Squares (PLS) Regression to build a model for perceiving a child's

emotional state (represented by the two variables, Mood and Energy), given the vocal

acoustic features described in Section 4.2. PLS regression is a multivariate statistical

method for modeling a set of dependent variables in relation to a very large set of

independent variables. Simply stated, PLS regression generalizes and combines concepts

from Principal Components Analysis (PCA) and Multiple Regression (Abdi, 2003),

performing an internal factor analysis designed to capture most of the information in the

independent variables (input) that is useful for modeling the dependent variables

(response) (Garthwaite, 1994).

The term partial least squares specifically means the computation of the optimal least

squares fit to part of a correlation or covariance matrix (McIntosh et al., 2004; Pirouz,

2006; Wold, 1982). The part of the correlation or covariance matrix that the least squares

are fit to is the "cross-block" correlation between the input variables and the response

variables (Pirouz, 2006). PLS measures covariance between two or more blocks of

variables and creates a new set of variables that is optimized for maximum covariance

using the fewest dimensions (McIntosh et al., 1996; Pirouz, 2006). In this new set of

variables, the input data matrix X and the response data matrix Y are modeled as linear

combinations of a set of orthogonal factors, also known as latent variables, or components

(De Vries & Ter Braak, 1995).

PLS is often compared to its closest alternative, Principal Components Regression

(PCR). Like PCR, PLS regression takes as an input parameter the number of components to

retain; when smaller than the feature space, this reduces dimensionality and guards against

overfitting. In such comparative analyses, however, PLS Regression models consistently

demonstrate superior classification accuracy and generalizability, with the smallest

number of components (Garthwaite, 1994; The MathWorks; Yeniay & Goktas, 2002). This

superior performance of PLS is attributed to the fact that PLS includes consideration of the

response in addition to the inputs when forming these components, whereas PCR simply

applies PCA internally to the inputs prior to regression. PLS is therefore considered

especially useful for constructing prediction equations when there are many independent
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variables and comparatively little sample data, particularly when the random error

variance is large (Garthwaite, 1994; Hoskuldsson, 1988). However, even though there are

no specific sample size requirements, the smaller the sample, the more likely that the

model will be fitted to noise in data instead of the true distribution (Tobias, 1995).

A commonly used example in expositions of PLS regression involves a dataset from the

field of chemometrics modeling that consists of 401 features and only 60 samples (Kalivas,

1997). The effectiveness of PLS regression when applied to this dataset, in terms of both

completeness of the model and generalizability, speaks to its robustness against overfitting

and small sample sizes (Garthwaite, 1994; The MathWorks; Tobias, 1995). With 82 features

in our feature vector, and sample sizes that get quite small for certain subsets of the data

(see Section 4.3.1), these characteristics make PLS regression an appealing method for our

analysis.

4.3.1 Experimental Design

As part of our experimental design, we apply PLS regression to different subsets of the

data, not only looking at the dataset as a whole, but also isolating more specific social and

behavioral contexts based on agreed answers to the Social and Nature questions in the

annotator questionnaire (Chapter 3). Table 4-3 lists these contexts and the number of

samples corresponding to each, both for the overall time period, and per individual

months' worth of data. The two dates in April 2007 are listed separately, because our

intention for that period (15-24 months of age) is to study one day's worth of data per

month. For the month of April, however, having first started with April 27, it became

apparent that this day was unusual due to the new presence of the child's newborn sibling

who had recently arrived from the hospital. For this reason, we collected an additional

day's worth of data that month, April 9, and study it separately to control for any

anomalous patterns that may be due to the extraordinary events on April 27.
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Socio-Behavioral SampleSize_________
Soi-ev Total May Jun Jul Aug Sep Oct Jan Apr 9 Apr 27 Jul

06 06 06 06 06 06 07 07 07 07
All Vocalizations 7376 527 495 911 965 741 843 625 1175 582 512
Social Situations 3857 284 187 522 501 337 562 367 638 251 208
All Nonbodily 4986 428 350 762 708 513 609 405 665 294 252
Social Nonbodily 3796 258 187 508 498 334 556 365 634 248 208
All Crying 398 70 22 109 48 59 25 23 27
Social336 41 103 47 40 25 21

All Laughing 57
Social Laughing 52
All Babble 656 26 103 33 67 53 144 120 87
Social Babble 506 63 23 59 47 130 96 60
All Speech 442 73 245 53 70
Social Speech 418 54 241 53 69
All Other Emoting 3433 350 306 617 549 412 515 254 242 107 81
Social Other Emoting 2484 210 160 381 381 262 470 241 229 85 65

Table 4-3. Sample sizes, per situational and monthly subsets of the dataset. Subsets highlighted
in yellow were retained for analysis.

Subsets with fewer than 20 samples are left out of the analysis. For the Laughing

contexts, this leaves out all of the monthly subsets, which eliminates Laughing from our

longitudinal analysis. For each of the remaining 113 subsets, highlighted yellow in Table

4-3, we build five PLS Regression models, each distinguished by a different set of input

variables:

(1) The 82 child vocalization features;

(2) The 82 features for adult speech before each vocalization;

(3) The 82 features for adult speech after each vocalization;

(4) The 82 features for adult speech surrounding each vocalization; and

(5) All of the above together, totaling 328 features.

Section 4.3.2 describes the procedures and parameters used to build each individual PLS

Regression model.

.......... . .. ...................... . .... .... ..
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The input response variables are the Mood and Energy ratings selected and agreed

upon by annotators during the data collection phase (Chapter 3). We define agreement

according to the 9-point scale described in Chapter 3, because this method produced the

highest inter-annotator agreement by far in our evaluation of different scale variants. In the

9-point scale method, disagreements differing by one point are considered agreements

with a value that is the average of the two ratings.

We evaluate each model for its accuracy in perceiving the child's emotional state using

adjusted R-squared, as described in Section 4.3.2. We plot adjusted R-squared overall for

the 9-24 month period as a function of the social and behavioral context. For each of these

contexts, we also plot the same metrics longitudinally as a function of the ten regression

models in the month-by-month timeline. Finally, we repeat both socio-behavioral and

longitudinal analyses for specific child-caretaker dyads.

4.3.2 Parameters, Procedures, and Metrics

We compute PLS regression models for our analysis using Matlab's plsregress

function, with 10-fold cross validation, which takes as input an input data matrix X, a

response data matrix Y, and the number of PLS components to retain. The input dataset is

normalized with the zscore function prior to input. As output, pisregress returns:

e Factor loadings for X and Y - the coefficients that specify the linear combinations

comprising the internally constructed PLS components.

- Scores - the projections of the original input data onto the new space defined by the

PLS components.

- Regression coefficients B that define the constructed model.

e Mean-squared error (MSE) - the variance in the test dataset that is unexplained by

the model. By computing the difference between the responses predicted by the
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model and the actual responses in the testing dataset for each observed set of input

values, MSE evaluates a model's ability to predict new samples when applied to

another dataset in the same feature space. An MSE closer to zero means better

generalizability, and therefore, better accuracy when applied to a new set of input

data points.

Selecting Optimal # PLS Components:
Crying, Child Features, Overall 9-24 month period

0.9-

0.8-

0.7-

0.6-

0l 60 10 20 30 40
# PLS components

50 60

Figure 4-1. Deriving the optimal number of PLS components for a model. This particular
example is for PLS regression applied to the Crying subset of child vocalization features, covering the
overall 9-24 month period. A clear minimum MSE value occurs at 4 PLS components, beyond which
MSE starts to rise. We therefore build the PLS model for this subset of data using 4 PLS components.

For each individual model, we derive the optimal number of PLS components to retain

by first running plsregress using 50 components, plotting MSE as a function of number of

components 12, and choosing the minimum (Hubert & Vanden Branden, 2003; Rosipal &

12 Internally, plsregress does an iterative analysis of MSE, in which it computes MSE incrementally starting

from just one component, and adding another component each time until all the components in the model are
included. Thus, MSE is returned by plsregress in the form of a vector equal in length to the number of
components, plus one, to account for a constant term in the model. Each element of this vector is the MSE
that is computed for the number of components signified by its index in the vector.

X: 4
Y: 0.6458

... .. . ........ ....... .......... .... .. .. ...... ..
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Trejo, 2001; The MathWorks), as demonstrated by Figure 4-1. Appendix F lists the optimal

number of components for each of our overall (9-24 month period) models.

For each individual model, we derive the optimal number of PLS components to retain

by first running plsregress using 50 components, plotting MSE as a function of number of

components 13, and choosing the minimum (Hubert & Vanden Branden, 2003; Rosipal &

Trejo, 2001; The MathWorks), as demonstrated by Figure 4-1. Appendix F lists the optimal

number of components for each of our overall (9-24 month period) models.

To evaluate the performance of each model and explore the correlations that it

represents, we compute adjusted R-squared, R . First we externally compute R-

squared, a measure of the goodness of fit of the model14, using the following formula:

n P
Y - IxjBj

R 2 _= = SSerr

1y .. y)2 SSW
i=1

Equation 4-1. Formula for computing R-squared

where n is the number of samples; p is the number of input variables; Y is the vector of

multivariate response values for sample i; Bi is the regression coefficient corresponding to

feature j in the model; x, is the input value for feature j in sample i; and Y is the mean of

the response values over all samples, a vector in which the mean for each dimension of the

response is stored in a separate element.

The term ( XiB feeds the inputs xi1 into the model, computing the response that is
j=1

predicted by the model, given the input predictor values. The numerator in the second term

13 Internally, plsregress does an iterative analysis of MSE, in which it computes MSE incrementally starting
from just one component, and adding another component each time until all the components in the model are
included. Thus, MSE is returned by plsregress in the form of a vector equal in length to the number of
components, plus one, to account for a constant term in the model. Each element of this vector is the MSE
that is computed for the number of components signified by its index in the vector.
14 http://en.wikipedia.org/wiki/Coefficientofdetermination
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of Equation 4-1 is therefore computing the sum of squares of the differences between the

actual response values Y and the predicted response values over all n samples. This value

is SSerr, the residual sum of squares' 5 . The denominator is computing the sum of squares of

the differences between the actual response values and the sample mean, which is defined

as SSo,, the total sum of squares16.

R-squared represents the proportion of variability in the training data that is

accounted for by the regression model, or how well the regression line approximates the

input data points. When R-squared is close to 1, this means a good fit; when close to 0, a

poor fit. Because PLS regression is a form of linear regression, R-squared can also be

equivalently defined and interpreted as the square of the sample correlation coefficient

between the predictor data and the response data.

However, due to the statistical shrinkage effects known to occur in regression

analysis' 7 , R-squared alone cannot be used as a meaningful comparison of models with

varying numbers of explanatory terms and samples. We therefore adjust R-squared to

obtain a metric that is normalized against both sample size and number of explanatory

terms. In the context of PLS Regression, the number of explanatory terms in each model is

the optimal number of PLS components that we select for that model, using the heuristic in

Figure 4-1. We apply the following formula to compute adjusted R-squared (Harlow,

2005):

R2 =1-(1-R 2 ) n-i MSE
"* n-q-1 MST

Equation 4-2. Formula for Computing Adjusted R-Squared

where R2 is the R-squared value computed in Equation 4-1, n is the sample size, and q is the

number of explanatory terms, or PLS components, used to build the model. The second

term of Equation 4-2 is equivalently described as ratio of Mean Squared Error (MSE) (i.e,

unexplained variance) and Mean Square for Treatments (MST) (i.e. explained variance),

and is the inverse of the F-test statistic, where F = MST/MSE (Keller, 2009).

15 http://en.wikipedia.org/wiki/Coefficient-ofdetermination
16 http://en.wikipedia.org/wiki/Shrinkage_(statistics)
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Table 4-4. Effect Size Scale for Interpreting adjusted R-squared

We use adjusted R-squared to evaluate the effect size of our models (Cohen, 1992;

Harlow, 2005). Because effect size is a measure of the strength of the relationship between

input and response variables, this is directly related to R-squared as a measure of

correlation, as well as the classification accuracy of a model. To interpret the effect size of a

model given by its adjusted R-squared, we use the standard scale (Cohen, 1992; Harlow,

2005) listed in Table 4-4.

Effect size Adjusted R-squared Range

Small 0.02 r < 0.13

Medium 0.13 R R < 0.26

Large 0.26 s R
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Chapter 5

PLS Regression Analysis Results

We have conducted an exploratory Partial Least Squares regression analysis to

investigate the potential for creating a model that can simulate human perception of child

and adult vocal expression to determine a child's emotional state. To implement our

methodology, we applied the methods described in Chapter 4 to the data on the child's

vocalizations and perceived emotional state that we collected in Chapter 3. In addition to

modeling the dataset as a whole, we built separate PLS regression models that isolate

specific socio-behavioral, dyadic, and longitudinal contexts. We examined the strength of

the correlations that these models have captured between the child's perceived emotional

state and both child and surrounding adult vocal acoustic features. Mapping these

correlations enabled us to explore

e The degree to which caretaker speech reflects the emotional state of the child;

e How these correlations differ for specific child-caretaker dyads;

* Whether any stronger correlations emerge in certain social or behavioral situations

(such as when the child is crying, babbling, or laughing); and

e Any longitudinal trends that might reveal a developmental progression of these

correlations during the child's growth from 9 to 24 months of age.

Our analysis, and the results we present in this chapter, is structured in two parts. In the

first part (Section 5.1), we evaluate PLS regression models across socio-behavioral contexts

using the data from the entire 9 to 24 month period at once. The second part (Section 5.2)

is a longitudinal study in which we build separate PLS models for each month of data and
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track how their perceptual accuracy changes during the child's development from 9 to 24

months of age. We look at these longitudinal trends separately for each of the socio-

behavioral contexts analyzed in Section 5.1.

Although orthogonal in the insights they reveal, both studies have a similar design as

described in detail in Chapter 4 and summarized here for clarity. For each category (socio-

behavioral contexts in the first study, months in the second study), we built separate PLS

regression models for each of five feature sets:

(1) Child - the set of 82 features computed from the child's vocalizations

(2) Adult before - the set of 82 features computed from adult speech occurring

within 30 seconds before each child vocalization

(3) Adult after - the set of 82 features computed from adult speech occurring within

30 seconds after each child vocalization

(4) Adult surrounding - the set of 82 features computed from the concatenation of

(2) and (3); in other words, adult speech surrounding each child vocalization

(5) All of the above (or combined) - the union of all four feature sets above,

consisting of 82x4 = 328 features.

Each study consists of an overall and a dyadic component. The overall component

represents all caretakers as a group. In computing the adult before, adult after, and adult

surrounding feature sets, no distinction was made based on caretaker identity. In the

dyadic component, we computed these feature sets separately for each caretaker (see

Section 4.1.3), repeated the analysis for each child-caretaker dyad, and compared

differences between them. Our dyadic analysis focuses on the three main caretakers of the

child: the Father (Adult 0), the Nanny (Adult 1), and the Mother (Adult 2).

Our main metric in this analysis is adjusted R-squared, as described in Section 4.3. The

many synonymous analytical interpretations of adjusted R-squared - such as the effect size,
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the square of the correlation coefficient, variance explained, goodness of fit, and the

likelihood of a model's predictive accuracy - make it a versatile metric that is well suited for

our exploratory analysis. In parallel, we also plot the variance of the response variables

(mood and energy) to account for any cases where adjusted R-squared might increase due

to low variance in the response.

5.1 Adjusted R-squared Across Socio-Behavioral Contexts

In this section, we present the results of our first study, in which we built and

evaluated PLS regression models for the overall 9 to 24 month time period, across the 14

socio-behavioral contexts listed in Table 4-3. Section 5.1.1 gives the results for all adults as

a group, and Section 5.1.2 gives the dyad-specific results. As a brief overview, we make the

following observations for discussion in Chapter 6:

e All adjusted R-squared values for both child and combined models qualify as very

large effect sizes, with values much greater than the 0.26 cutoff given by Cohen

(1992) and Harlow (2005). This strong model performance, suggesting high

correlation, is quite consistent regardless of socio-behavioral context.

- Combining all child and adult-only feature sets yields only slightly better model

performance than just using the child features.

- Adult-only models generally have much smaller adjusted R-squared than child or

combined models. Even so, adult-only models achieve medium effect size in many

contexts, including the overall dataset, all social situations and nonbodily

vocalizations.

e The adult-only results reveal some interesting correlations that may point to

common patterns of adult behavior in response to specific socio-behavioral

contexts: correlations tend to be highest for crying, and lowest for babble and
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speech. Social situations tend to bring out a slight increase in correlation between

adult speech and perceived child emotion. Adult speech after a child's Social

Laughing vocalizations is significantly more correlated than before or surrounding.

- Adult-aggregate models (Section 5.1.1), which represent all caretakers as a group,

tend to have equal or higher adjusted R-squared values than dyad-specific models

(Section 5.1.2).

* Some notable caretaker-specific patterns emerge in the dyadic analysis. In

particular, the Nanny generally tends to have the highest adjusted R-squared among

the caretakers. Among the more specific contexts, the Nanny is most correlated in

Crying contexts, the Mother has the highest adjusted R-squared in Laughing

contexts, and the Father is highest correlated in Social Babble and Social Speech.

5.1.1 All Adults

Figure 5-1 shows adjusted R-squared as a function of socio-behavioral context, for

child, adult, and combined' 8 PLS models computed for all time and all caretakers in

aggregate. The variances for each of the two response variables, mood and energy, are also

included for reference. The best performing PLS models are those built using the combined

feature set that includes all four child and surrounding adult feature sets. Here, adjusted R-

squared ranges from 0.54 to 0.6, with an average of 0.58, with marked consistency across

socio-behavioral contexts. PLS models for the child also indicate high correlations (range:

0.5 to 0.57, average: 0.536), although they are slightly smaller than for the combined

feature set. Like the combined models, the child models are consistent across contexts,

with the exception of Laughing and Social Laughing. Here, adjusted R-squared for the child

drops to 0.34 and 0.35, respectively. We note that all adjusted R-squared values for both

child and combined models qualify as very large effect sizes, with values much greater

than the 0.26 cutoff given by Cohen (1992) and Harlow (2005).

18 Henceforth, we use all of the above and combined interchangeably to describe the feature set that takes
the union of the child, adult before, adult after, and adult surrounding feature sets.
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Evaluating PLS Regression Models for Perceived Child (mood, energy)
using Child and Surrounding Adult Prosodic Features:

Adjusted R-squared Across Socio-Behavioral Contexts

Figure 5-1. Adjusted R-squared and Response Variance across Socio-Behavioral Contexts, for all time

and all caretakers in aggregate.

Compared to the child and combined models, PLS models built using adult-only

feature sets maintain a significantly smaller adjusted R-squared, ranging between

negligible (less than 0.02) to a high of 0.25. Average adjusted R-squared is 0.13 for adult

surrounding, 0.097 for adult before, and 0.096 for adult after. Particularly interesting,

however, is that for many contextual subsets, including the overall dataset as a whole, the

adult-only models achieve an adjusted R-squared greater than 0.13, which is interpreted as

a medium effect size by Cohen and Harlow. Table 5-1 lists these cases together with their

adjusted R-squared values for each of the adult-only models. Of special note among these

results are the Crying contexts, both overall and in social situations, which elicit the highest

adjusted R-squared performance among adult-only models. However, we note the drop in

........ ..... .. .. .. .. .. .111111111", ...... ' . .... .... - ... .. . ... .... .. . . .. ......... ... . . ... . . ..... ...........
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mood variance during crying, which may partially explain the rise in adjusted R-squared.

We discuss this point further in Chapter 6.

Adult Surrounding Adult Before Adult After

Context ad Context adj Context adj

Overall 0.138 All Social Situations 0.144 All Social Situations 0.133
Social Situations 0.176 Social Nonbodily 0.147 Social Nonbodily 0.136
All Nonbodily 0.162 Social Crying 0.247 All Crying 0.146
Social Nonbodily 0.178 Social Crying 0.212
All Crying 0.216 Social Laughing 0.168
Social Crying 0.255

Table 5-1. Adjusted R-squared of Socio-Behavioral Contexts Eliciting Medium Effect Size in
Adult-Only PLS Regression Models. This is notable, because it suggests that adult speech
surrounding a child's vocalization can tell us something meaningful about the child's emotional state.

Also interesting among the adult-only results is the performance of the adult after

model in the Social Laughing context. It achieves a significantly higher adjusted R-squared

than either adult before or adult surrounding, even qualifying as a medium effect size,

with a value of 0.168. This result may reflect a pattern of caretakers laughing in response to

the child's laughter, which would seem to be a natural, common occurrence in a social

context.

Adjusted R-squared drops significantly for Babble and Speech in the adult-only models,

even becoming negligible for Social Speech. With this one exception, social situations

across behavioral contexts tend to bring out a slight increase in correlation between adult

speech and child emotion.

5.1.2 Dyadic Analysis

In Figure 5-2, we compare adjusted R-squared trends between dyads, for each adult-

based feature set separately, across socio-behavioral contexts. Each graph in Figure 5-2

corresponds to one of the four adult-related feature sets - adult before, adult after, adult

surrounding, and combined - and plots adjusted R-squared as a function of context for the

Father, Nanny, and Mother. We also include the corresponding overall trend from Section
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5.1.1, Figure 5-1 as a dotted line, to compare how PLS models for each individual adult

compare with the aggregate PLS models representing all adults as a group. As a general

pattern, we observe that, with just a few exceptions, the aggregate models representing all

caretakers as a group tend to have equal or higher adjusted R-squared values than the

dyad-specific models.

- - - All Adults Adjusted R-Squared vs. Soclo-Behavioral Contexts,
- Adult 0: Father

S Adult 1: NannyByDa
-- -Adult 2: Mother. . . . .
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Figure 5-2. Dyadic Analysis of Adult-Specific PLS Models across Socio-Behavioral Contexts.

Among the three dyads, however, adjusted R-squared tends to be highest overall for

the Nanny, indicating a consistently higher correlation between the Nanny's speech and the

child's emotions than for the other caretakers. Within this overall trend, we note in

particular the Social Crying context, in which the Nanny's models consistently score the

highest across feature sets among the caretakers: 0.191 using adult before, 0.297 using

adult after, 0.217 using adult surrounding, and 0.636 using the combined feature sets.

Adjusted R-squared for All Crying is also consistently higher in all the Nanny's models

... ............ .. -- ..............
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relative to the other dyads, with values of 0.142 for adult before, 0.148 for adult after,

0.170 for adult surrounding, and 0.616 for combined.

In certain other contexts, such as Laughing, the Mother has significantly higher

correlation than other caretakers, as seen by the adjusted R-squared values of 0.256 and

0.318 for All Laughing and Social Laughing, respectively, that are achieved by her adult

surrounding models. The latter, 0.318 for Social Laughing, falls into the large effect size

scale, and is, in fact, the highest value achieved by any adult-only model in this part of the

analysis. In the combined feature set, however, it is the Nanny who achieves the highest

adjusted R-squared in Social Laughing, with a value of 0.641, compared to 0.561 for the

Mother and 0.423 for the Father.

Adjusted R-squared for the Father tends to slightly exceed the other caretakers in

Social Babble and Social Speech contexts, with values of 0.584 and 0.599 in the

corresponding combined models, which even surpass the adult-aggregate models for these

contexts (values: 0.5744 and 0.585, respectively).

Beyond these differences, we observe that the Mother and Father have fairly similar

patterns of correlation across socio-behavioral contexts. Where they diverge, it is in most

cases because of greater similarity to the Nanny, such as for All Babble in adult

surrounding for the Father, All Crying in adult after for the Mother, and All Laughing in

combined for the Mother. In any case, given the zoomed-in scale shown in Figure 5-2, all

differences beyond those already mentioned are negligible.

5.2 Longitudinal Analysis

In this section, we present the results of the longitudinal analysis, in which we build

and evaluate month-specific PLS regression models, and investigate any progressive trends

over time that may indicate a developmental trajectory. In Section 5.2.1, we describe the

results for all adults as a group. Section 5.1.2 briefly addresses the dyad-specific results.

Our observations from this longitudinal analysis are summarized as follows:
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e For the most general contexts - All Vocalizations, Social Situations Only, All

Nonbodily Vocalizations, and Social Nonbodily Vocalizations - the trends are flat,

showing no consistent, progressive increases or decreases in correlation (and thus,

perceptual accuracy) over time. These four contexts produce very similar

longitudinal graphs.

e Month-specific models tend to have significantly higher adjusted R-squared than

time-aggregate models, both individually, and on average.

e Month-specific combined models tend to improve upon their corresponding child

models to a greater degree than do time-aggregate models.

e We observe notable longitudinal progressions in adjusted R-squared within the

Crying, Babble, and Other Emoting contexts: increasing over time for Crying and

Other Emoting, and decreasing for Babble. Child and combined models achieve very

high values of adjusted R-squared during these progressions, above 0.80.

- No notable dyad-specific patterns emerge beyond the confirmation that adult-

aggregate models tend to be consistently more accurate than, or at least equal in

performance to, each adult individually.

5.2.1 All adults

Figure 5-3 shows the longitudinal adjusted R-squared trends for the four most general

socio-behavioral contexts in our analysis: All Vocalizations, Social Situations Only, All

Nonbodily Vocalizations, and Social Nonbodily Vocalizations. We present them here as a

group, because all four graphs bear a clear similarity to each other. Our first observation is

that these trends are flat, showing no consistent, progressive increases or decreases in

correlation (and thus, perceptual accuracy) over time. Adjusted R-squared is roughly

within the same scale of variance at 15-24 months as at 9 months and remains within this
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range throughout the period of analysis. However, in several more specific contexts, such

as Crying, Babble, and Other Emoting, we do observe notable longitudinal changes in

correlation, which we describe later in this section.

Longitudinal Analysis of PLS Regression Models for Predicting Child (mood, energy)
Using Child and Surrounding Adult Prosodic Features
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Our second observation from the graphs in Figure 5-3 is that adjusted R-squared for

the month-specific models is consistently higher than their time-aggregate counterparts

that were analyzed in Section 5.1 (Figure 5-1). To illustrate this pattern more clearly, we

present in Table 5-2 a comparison between the adjusted R-squared values of each time-

aggregate model and the mean, minimum, and maximum adjusted R-squared of its

corresponding month-specific models. Table 5-2 shows these statistics for the combined,

child, and adult surrounding feature sets.

Table 5-2 demonstrates that this pattern holds consistently for all socio-behavioral

contexts and all feature sets: the mean adjusted R-squared of month-specific models is

higher than the adjusted R-squared of the corresponding time-aggregate models. For the

most general context, All Vocalizations, the time-aggregate combined model has an

adjusted R-squared of 0.58, while the month-specific combined models average out to 0.67

(range: 0.62 to 0.76), a significant increase in correlation and perceptual accuracy.

Similarly, the time-aggregate child model has an adjusted R-squared of 0.54, while the

month-specific mean is 0.59, with a range of 0.51 to 0.69. This holds even for adult-only

models: the time-aggregate R-squared for adult surrounding is 0.14 in the All

Vocalizations context, compared to a monthly mean of 0.21 (range: 0.09 to 0.38). Although

not included in Table 5-2, the adult before and adult after models are consistent in this

pattern as well.

Combined Child Adult Surrounding

Context Overall Long itudinal Overall Lon gitudinal Overall Lon gitudinal
(Fig 5-1) mean min max (Fig 5-1) mean Min max (Fig 5-1) mean min max

All Vocalizations 0.58 0.67 0.62 0.76 0.54 0.59 0.51 0.69 0.14 0.21 0.09 0.38

Social Only 0.58 0.70 0.62 0.78 0.54 0.61 0.51 0.71 0.18 0.23 0.04 0.43

All Nonbodily 0.58 0.67 0.63 0.75 0.54 0.60 0.52 0.70 0.16 0.22 0.09 0.38

Social Nonbodily 0.58 0.70 0.63 0.78 0.54 0.62 0.52 0.71 0.18 0.24 0.04 0.48

All Crying 0.59 0.78 0.31 1.00 0.57 0.76 0.61 0.97 0.22 0.40 0.09 1.00

Social Crying 0.60 0.86 0.71 1.00 0.55 0.74 0.61 0.98 0.26 0.51 0.13 0.81

All Babble 0.56 0.73 0.56 0.98 0.52 0.68 0.54 0.88 0.10 0.32 0.01 0.79

Social Babble 0.57 0.82 0.60 0.99 0.52 0.66 0.53 0.84 0.12 0.26 0.00 0.60

All Speech 0.54 0.71 0.58 0.87 0.50 0.63 0.49 0.78 0.08 0.18 0.06 0.39

Social Speech 0.59 0.73 0.57 0.95 0.53 0.64 0.48 0.80 0.03 0.18 0.04 0.39

All Other Emoting 0.57 0.70 0.54 0.78 0.55 0.64 0.47 0.77 0.10 0.21 0.09 0.35

Soc Other Emoting 0.59 0.75 0.55 0.92 0.56 0.66 0.43 0.78 0.12 0.23 0.03 0.38

Table 5-2. Comparing Overall Performance of Month-by-Month models with Time-Aggregate models.
For each Socio-Behavioral context, adjusted R-squared is significantly higher on average when using month-
specific models than when using a time-aggregate model built using data from the overall 9-24 month period.
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Our third observation from Figure 5-3 is that month-specific combined models for

these four contexts tend to improve upon their corresponding child models to a greater

degree than do time-aggregate models. In the All Vocalizations context, we note

improvement by as much as 0.014 in the Jan 2007 data. On average, the month-specific

combined models among the four contexts in Figure 5-3 outperform the child models by

0.08 adjusted R-squared, with a minimum improvement of 0.06. This is in contrast to the

difference of 0.04 in the time-aggregate case (Figure 5-1).

Despite the longitudinal consistency of adjusted R-squared in Figure 5-3, we observe

notable longitudinal progressions in the Crying, Babble, and Other Emoting contexts. As

mentioned in Chapter 4, we exclude Laughing from longitudinal analysis due to monthly

sample sizes less than 20 across the board. Also, due to sparseness of Speech vocalizations

in the first six months of our longitudinal timeline (see Table 4-3), there are not enough

data points in the graphs for All Speech and Social Speech to reveal any meaningful

longitudinal trends. The longitudinal graphs for All Speech and Social Speech are included

in Appendix G.
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The longitudinal trends for Crying and Social Crying in Figure 5-4 show an increasing

progression in correlation (and perceptual accuracy) over time for the child and combined

models. Also, correlations indicated by adjusted R-squared are generally much larger than

in the more general contexts of Figure 5-3, with an average of 0.78 (Crying) and 0.86

(Social Crying) for combined and 0.76 (Crying) and 0.74 (Social Crying) for child.

SocloBehavoralSample SizeSocio-Behavioral May Jun Jul Aug Sep Oct Jan Apr 9 Apr 27 Jul
06 06 06 06 06 06 07 07 07 07

All Crying 398 70 22 109 48 59 25 23 27
Social Crying 336 41 103 47 40 25 21 27

Table 5-3. Total and Monthly Sample Sizes for the All Crying and Social Crying Contexts.

Although the steadily increasing longitudinal progression for the child seems to be a

clear, consistent trend for both All Crying and Social Crying, we note the particularly small

sample sizes (between 21 and 27) for Jun 2006, Oct 2006, Jan 2007, and Apr 9 2007, listed

in Table 5-3. Based on results in our other graphs in this work that include small sample

sizes (see Figure 5-5, for example), there appear to be no consistent patterns indicating

that sample size is an issue. We do concede, however, that using 328 features in the

combined feature set (and potentially even 82 features) for just 20 or so samples may be

reaching the limits of PLS regression's robustness against overfitting. For this reason, we

reserve any final conclusions about the progressions in Figure 5-4, and the strength of the

correlations that occur, pending further analysis with more samples.

In contrast to the increasing trends for Crying, Figure 5-5 shows a clear theme of

downward longitudinal trends within the Babble contexts. The three most striking,

compelling progressions occur in All Babble, for the child, adult surrounding, and

combined feature sets. For child, adjusted R-squared begins at 0.88 in Jun 2006, at 10

months of age, and decreases in a zig-zag manner to a low of 0.54 during Apr 9 2007, at 20

months of age, remaining at 0.60 and 0.62 thereafter. For adult surrounding, adjusted R-

.. .........
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squared decreases in a nearly linear progression starting at 0.79 in Jun 2006 and ending at

near zero, with 0.06 on Apr 9 2007 and 0.02 in Jul 200719.

Longitudinal Analysis of PLS Regression Models for Perceived Child (mood, energy)
Using Child and Surrounding Adult Prosodic Features
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Figure 5-5. Longitudinal Trends in Adjusted R-squared for All Babble (left) and Social Babble (right).

Socio-Behavioral Sample ize
Context Total May Jun Jul Aug Sep Oct Jan Apr 9 Apr 27 Jul

06 06 06 06 06 06 07 07 07 07
All Babble 656 /4 7//r 26 103 33 67 53 144 120 87
Social Babble 506 63 23 59 47 130 96 60

Table 5-4. Total and Monthly Sample Sizes for All Babble and Social Babble contexts.

Adjusted R-squared for combined mirrors the zig-zag shape of the child trend, but has

a slightly steeper downward slope, starting at 0.98 in June 2006 (10 months of age) and

ending at 0.64 in Jul 2007 (24 months of age). For Social Babble, the most striking trends

are for adult before and adult after. The child and combined trends are flat, however,

showing none of the decreasing slope seen in the All Babble context.

19 The apparent anomaly at Apr 27 2007, may be explained by the unusual circumstances of that day, as
noted in Chapters 3 and 4.
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It is in the context of Other Emoting that we observe what is perhaps the most

interesting longitudinal progression in our results, where adjusted R-squared for child and

combined increase steadily over time. As demonstrated by Figure 5-6, we see this

progression in both All Other Emoting and Social Other Emoting contexts, with the latter

demonstrating a slightly steeper upward slope for combined. In All Other Emoting, the

child trend starts with adjusted R-squared values of 0.52 at 9 months of age, in May 2006,

and 0.47 at 11 months, in Jul 2006, but gradually rises over time, through values within the

0.60 to 0.69 range, ending with 0.74 at 20.5 months of age (Apr 27 2007) and 0.77 at 24

months (Jul 2006). The combined feature set starts higher, with 0.65 at 9 months of age

(May 2006), but drops to a low of 0.54 at 11 months (Jul 2006) and increases progressively

to end with 0.76 in Jul 2007, at 24 months of age. Along the way, the combined models

consistently produce adjusted R-squared values above 0.70 starting at 13 months (Sep

2006), reaching a high of 0.78 at 20 months (Apr 9 2007).

The trends for Social Other Emoting are similar, with slight amplifications. Most

notably, the combined feature set shows appreciably higher adjusted R-squared values

across the board than for All Other Emoting, starting with 0.71 and 0.75 in May and Jun
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2006 (9 and 10 months of age), respectively, then falling to a low of 0.55 at 11 months in Jul

2006, and increasing steadily thereafter, reaching into the 0.80 and 0.85 range and ending

at a high of 0.92 at 24 months of age, in Jul 2007. The significance of these clear upward

progressions, developing over time into very high correlations above 0.80, is supported by

the fact that the monthly sample sizes for Other Emoting (shown in Table 5-5) are all

decisively large enough to be practicable in PLS regression analysis.

Socio-Behavioral Sample Size

Context Total May Jun Jul Aug Sep Oct Jan Apr 9 Apr 27 Jul
06 06 06 06 06 06 07 07 07 07

All Other Emoting 3433 350 306 617 549 412 515 254 242 107 81
Social Other Emoting 2484 210 160 381 381 262 470 241 229 85 65

Table 5-5. Total and Monthly Sample Sizes for All Other Emoting and Social Other Emoting Contexts.

5.2.2 Dyadic Analysis

In our analysis, we have also explored longitudinal trends between dyads. No notable

dyad-specific patterns emerged, beyond the confirmation that adult-aggregate models tend

to be consistently more accurate than, or at least equal in performance to, each adult

individually, as we observed in Section 5.1.2. There are some occasional exceptions to this

rule, such as the Father in the Speech contexts on Apr 27 2007 and in Jul 2007. However,

we note that these exceptions, and the longitudinal variations between dyads more

generally, may be due to some caretakers being more present than others during that

month's worth of annotated data. Interpretation of these results may benefit from

accounting for the degree to which each adult was present during each month's worth of

data; we do not compute this here, but leave it as an indication for future extensions of this

analysis. The graphs for the dyadic longitudinal analysis are included for reference in

Appendix H.
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Chapter 6

Discussion and Conclusions

In this thesis, we have developed and applied a methodology for modeling vocal

acoustic correlates of the child's perceived emotional state within the Speechome corpus.

To evaluate the potential of this methodology for creating an effective emotion recognition

mechanism to support empirical study of early emotional processes in the Speechome

corpus, we have conducted an exploratory analysis in Chapter 5 that compares child-only,

adult-only, and combined models across socio-behavioral, dyadic, and longitudinal subsets

of the data. Our experimental designs in this investigation have enabled us to evaluate the

degree of perceptual accuracy that our modeling methodology achieves for a young child

aged 9 to 24 months, as well as any methodological parameters that may be useful for

optimizing perceptual accuracy. In addition, mapping the accuracy of these models across

contexts has brought forth some preliminary insights about the vocal development of a

child's emotional expression during this prelinguistic age period, en route to language.

Quantifying the accuracy of adult-only models has also given us a rough measure of

intersubjectivity, revealing developmental trends and caretaker-specific differences in the

course of longitudinal and dyadic analysis.

6.1 Building a Perceptual Model for Child Emotion

Our results show great potential for automating the detection of a child's perceived

emotional state in the Speechome corpus, by using child and adult vocal acoustic features.

In Chapter 5, we observed consistently high adjusted R-squared values for Partial Least

Squares (PLS) regression models built using only child features, as well as using a

combined feature set that includes the adult feature sets along with these child features.
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We are particularly encouraged by the consistency of these results, not only across specific

socio-behavioral contexts, but also in the overall dataset, with the All Vocalizations context

yielding adjusted R-squared values such as 0.54 and 0.59 for time-aggregate child and

combined models, respectively, and 0.59 and 0.67 on average for corresponding monthly

models. Such high adjusted R-squared values put the significance of these models, and the

strength of the correlations they represent, well within the large effect size range, which is

defined as 0.26 or greater.

Consistency across socio-behavioral contexts suggests that it may be unnecessary to

build a specific classifier for distinguishing between them to capture optimal perceptual

accuracy, simplifying the task of automating the perception of child emotions from

naturalistic audio. In particular, this suggests that we may be able to eliminate the Social

and Nature questions from our annotation methodology in future applications. This is an

encouraging simplification, because the inter-annotator agreement for these questions was

rather low, with Cohen's kappas of 0.552 and 0.499, respectively. On the other hand, the

low agreement might itself suggest an ambiguity in our design of the Social and Nature

questions that caused answers to these two questions to be unreliable. Given such low

agreement, there is a possibility that annotators missed distinctions between certain

contexts that may have been salient in our investigation.

This consistency also raises the possibility that we could build an overall model that

would be consistently accurate in its perceptions regardless of the nature of the

vocalization or whether it occurs during a social situation. We observe such consistency in

several forms among our results, not only in the stability of adjusted R-squared values

across contexts, but also in the similarity between longitudinal trends for All Vocalizations,

Social Situations Only, Nonbodily Vocalizations, and Social Nonbodily Vocalizations.

Although Social subsets of each behavioral context tend to bring out a very slight increase

in adjusted R-squared, these qualities suggest that there is not much to gain by detecting

social situations or filtering out bodily vocalizations, towards building a perceptual model

of a child's emotions.

At first glance, Crying seems to be one exception to this rule, producing the highest

adjusted R-squared values among the socio-behavioral contexts. In the monthly models,

improvements in perceptual accuracy over other contexts range between 0.1 and 0.2 on
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average, even achieving near-perfect correlation in some months. This high correlation is

not surprising, since Crying is a very specific vocal behavior with characteristic acoustic

properties that have been used to build robust cry detectors (Ruvolo & Movellan, 2008).

Crying is also a context in which adults tend to respond with a relatively predictable

repertoire of speaking styles characteristic of comforting the child. Interestingly, we note

that the All Crying context is highest correlated in the child models, while Social Crying is

highest correlated for combined and adult-only models. This pattern is just as one would

expect, with models that involve adult features correlating more strongly within social

situations, because it is in a social situation that an adult reacts directly to comfort a crying

child.

However, we discount the significance of this superior recognition accuracy within

Crying contexts, as well as its pertinence towards building a technology for perceiving child

emotion in naturalistic audio recordings. Crying is a special case in that mood variance is

restricted to less than half of the total rating scale; by definition, a young child cries only

when his mood carries a negative valence. As mentioned above, there is also relatively low

variability in adult response behavior to a child crying. Less variance to capture makes the

classification task simpler and much more likely to succeed. What is most important to

consider, however, is whether it is useful or meaningful to be able to detect a child's

perceived emotional state if we already know that the child is crying. Beyond detecting

subtle nuances within the state of negative valence (Gustafson & Green, 1989), this would

seem to be a trivial task with little benefit.

On a similar note, we ask ourselves the question: is it worth computing feature sets for

surrounding adult speech and including them in creating a perceptual model of child

emotion? Judging by time-aggregate models alone, in which combined models introduce

only a slight improvement over child models 20, the answer would be no. However, on a

monthly basis, we observe that combined models introduce significant improvement over

child models, which suggests that, on a per-month scale, adult data may be worth including

in order to maximize the overall perceptual accuracy of our model.

20 We treat the low perceptual accuracy of the time-aggregate child models in Laughing as an

uncharacteristic anomaly that may be due to the small sample size for this context, and we therefore leave it

out of the discussion.
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This point is especially relevant, considering our key observation that monthly models

tend to significantly outperform time-aggregate models on average: mean adjusted R-

squared for monthly models is significantly higher than the adjusted R-squared value of the

time-aggregate model for the corresponding socio-behavioral context. Besides its

developmental implications, which we discuss in Section 6.2, this finding suggests that it is

better to build separate models for each month of data than to have a single model for the

entire dataset as a whole.

In light of these results, our recommendation for building a perceptual model for child

emotion in applying Speechome for the study of emotional processes in early development

is to use a feature set that combines child and adult acoustic vocal features and have

separate models per month of data. In addition to this configuration, we add one more

parametric recommendation: the dyadic analysis shows us that adult-aggregate models

tend to be perceptually better than, or at least equal to, each adult individually. It is

therefore preferable to build a single model using all adults than to build specific models

for each adult, obviating the need for person-specific speaker identification to obtain

optimal perceptual accuracy. However, a mechanism for distinguishing child from adult

speech would still be in order.

Our results hold much promise towards building a fully automated technology for

perceiving child emotion in naturalistic audio, but there is still some work to be done to

achieve this vision. The high adjusted R-squared values that we observe in this work still

depend on knowing the exact boundaries of a child's vocalizations, unobscured by noise or

overlapping adult speech. As a next step, we recommend repeating this study using raw

speech segments identified as child-produced by Speaker ID instead of our meticulously

annotated child vocalization intervals. In this thesis, we have established a baseline by

which we can evaluate the performance of this less stringent and more highly automated

definition of child vocalizations. If overlapping adult speech and other noise proves to be

detrimental to perceptual accuracy, a robust filter for removing overlapping adult speech

and other noise from a child vocalization using spectral analysis and other signal

processing methods could implement the missing link.
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6.2 Developmental Insights

In addition to building a high-performing perceptual model, our results also

demonstrate the potential of our methodology to reveal developmental insights into

perceived child emotion and adult-child intersubjectivity. Although the work of this thesis

is effectively a case study involving data for a single child, our longitudinal analysis has

brought forth several interesting observations that seem to hint at developmental

phenomena, inviting further validation by applying this methodology across multiple

children. We recap these observations here and offer some hypotheses to explain their

developmental significance.

The flat longitudinal trends for the most general contexts (All Vocalizations, Social

Situations Only, All Nonbodily Vocalizations, and Social Nonbodily Vocalizations) seem to

suggest that, in the general daily life experience of the child, the correlation between the

child's perceived emotional states and the acoustic features of the child's vocalizations

stays consistent over time, and is not an attribute that is subject to developmental change

at this age. The same can also be said of surrounding adult speech - in that the correlation

with child emotion stays fairly constant in the general case - indicating a consistency in the

quality of intersubjectivity between child and caretakers during this period of

development.

While the correlation itself may remain consistent over time, our results also

demonstrate that the particular set of acoustic vocal features that best correlate with child

emotion evolves with development, without changing the correlation itself. Our finding that

monthly models are more successful than time-aggregate models seems to suggest this

kind of developmental shift, such that looking at the time period as a whole will dilute

those correlations. We explain this as an artifact of accelerated physiological changes in

vocal tract anatomy (Kent & Murray, 1982; Vorperian et al., 2005), as well as cognitive

development in the neural mechanisms for motor control of speech production (Petitto &

Marentette, 1991; Warlaumont et al., 2010) that occur during infancy and early childhood.

Postural changes inherent to motor development from sitting/crawling at 9 months of age

to ease of walking/standing by 18 months may also affect acoustics in the child's vocal

production. These developmental processes change the baseline acoustic properties of the
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child's vocalizations (Scheiner et al., 2002; Warlaumont et al., 2010), thereby impacting the

overall relationship between acoustic features of vocal expressions and the child's

emotional state.

The flat longitudinal trends for the most general contexts (All Vocalizations, Social

Situations Only, All Nonbodily Vocalizations, and Social Nonbodily Vocalizations) seem to

suggest that, in the general daily life experience of the child, the correlation between the

child's emotional state and the acoustic features of the child's vocalizations stays consistent

over time, and is not an attribute that is subject to developmental change at this age. The

same can also be said of surrounding adult speech - in that the correlation with child

emotion stays fairly constant in the general case - indicating a consistency in the quality of

intersubjectivity between child and caretakers during this period of development.

In more specific behavioral contexts, such as Crying, Babble, and Other Emoting,

however, we have observed notable longitudinal progressions that point to changes in

correlation of acoustic vocal features with child emotion over time. In Crying, there is an

increasing trend, which we see most clearly for child models. Although the combined

models also seem to be increasing in adjusted R-squared, there is no consistent trend in the

adult-only models to suggest any adult component to this progression in the combined

models. Babble is characterized by clear downward trends, most strikingly for adult

surrounding models, and also for child and combined models. Other Emoting bears an

upward trend in both child and combined models, but no such pattern in adult-only

models.

What kind of developmental phenomena might be responsible for such progressive

changes in correlation as we have observed in Crying, Babble, and Other Emoting? Towards

answering this question, we propose several hypotheses that begin to portray a connection,

albeit loose, between the three contexts' longitudinal progressions. Our reasoning takes

into account both physiological and cognitive development, as follows:

Babble is a process of experimentation and play towards learning how to control the

developing vocal tract to produce speech (Petitto & Marentette, 1991; Vihman et al., 1985;

Warlaumont et al., 2010). This mastery develops gradually, ultimately evolving into speech,

and in the process opening a new medium for general-purpose communication. In early

stages of babble, the child's lack of intentional control of the vocal tract for speech purposes
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may more instinctively and reflexively express the child's emotional state as a consequence

of subconscious physiological responses originating in the autonomic nervous system (Fox

& Davidson, 1986; Oudeyer, 2003; Scherer, 2003; Sundberg, 1977; Ververidis &

Kotropoulos, 2006). As the child gains more control of the vocal tract, conscious intention

in channeling Babble for general-purpose communication begins to take over, and Babble

loses this intimate physiological connection to affect. This new medium for communicative

intent also offers the child new options for expressing complex emotions that just cannot

be conveyed by crying or simple emoting. The variety and nuanced subtlety of these new

emotions may make them harder to distinguish acoustically, not only for our model,

leading to decreasing adjusted R-squared, but also for the human caretaker, who would

therefore be much less likely to elicit consistent, emotion-specific caretaker responses

(Zeifman, 2005; Zeskind, 2005). The latter may contribute to the striking decrease in

correlation that we observed between the child's emotional state and acoustic features of

surrounding adult speech. Further, Bloom found that learning words and expressing

emotion compete for the child's limited cognitive resources, observing that neutral affect

promotes language development during the 9-17 month age period (Bloom, 1998). The

developmental transition from Babble to Speech therefore seems to be related to the child's

ability to maintain a neutral emotional state (Bloom, 1998). Greater emotional self-control

brings with it less of a need for extrinsic emotion regulation by caretakers (Cole et al.,

2004; Eisenberg & Spinrad, 2004; Trevarthen, 1993), which might also explain the

dramatic downward trend that we observe for adult surrounding models.

Along the same lines, the upward trends in correlation between the child's emotion

and the child's vocal expression that we see in Crying and Other Emoting seem to reflect an

inverse relationship to the downward trends in Babble. In early stages of infancy, Crying

and Other Emoting are a child's primary means of communication, with a rather varied

repertoire of cry types and sounds (Zeifman, 2005; Zeskind, 2005). As Babble and Speech

progressively take the place of Crying and Other Emoting as the child's general-purpose

mode of communication, Crying and Other Emoting gradually transition to a mode that is

reserved for expressing only raw emotion. This specialization may serve to reduce the

variability in the repertoire of acoustic patterns while increasing the consistency of

emotional expression. A longitudinal study by Scheiner et al (2002) of infants during the
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first year of life supports this hypothesis, having found increasing homogeneity of acoustic

properties of child cries with age, including a decrease in frequency range. Development of

emotion differentiation may also be a factor in these upward trends (Scheiner et al., 2002;

Trevarthen, 1993):

There is no general agreement, however, whether infants during their first months of life are able
to express specific emotions in their behavior at all (for an overview, see Strongman (Strongman,
1996)). Some authors suggest that, in the first months, the expressive behavior is to a large extent
random.

(Scheiner et al., 2002)

The evidence is clear that infants possess at birth, not only a coherent and differentiated
emotional system... but also the distinctions between 'person-related', 'thing-related', and 'body-
related' functions of emotions. Admittedly, these functions become clearer and more effective
with development, but they appear in rudimentary form in the newborn.

(Trevarthen, 1993)

Thus, with growing specificity of emotions and mastery of vocal tract control, the child may

be increasingly able to express subtle nuances that more accurately reflect his emotional

state, resulting in increased correlation between the child's emotional state and vocal

expression.

6.3 Dyadic Considerations

We included adult-only models in our analysis to explore the degree to which

caretaker speech reflects the emotional state of the child. Despite the fact that adult-only

models generally have much smaller adjusted R-squared than child or combined models,

they seem to reveal some notable insights about the dyadic context surrounding a child's

emotional state. This significantly lower correlation of adult-only models is to be expected,

since it is natural for a child's vocalizations to correspond most closely to the child's own

emotional state. Even so, adult-only models achieve medium effect sizes in many contexts,

including the overall dataset, which means that there are some fairly significant

correlations between adult speech and perceived child emotion, even when looking at the

dataset as a whole.

Within more specific contexts, we find multiple patterns that seem to derive plausible

explanations from typical behavioral tendencies. In Social Crying, for example, it seems
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natural for adults to express a characteristic repertoire of soothing tones in comforting the

child, which may explain the peak in adult-only adjusted R-squared for this context, as

noted in Section 6.1. Likewise, the relatively high correlation of adult speech after a child's

Social Laughing vocalization with the child's emotional state may reflect a pattern of

caretakers laughing in response to the child's laughter, which would seem to be a natural,

common occurrence in a social context. The lower overall correlation of adult speech with

child emotion in Babble and Speech contexts, becoming negligible for Social Speech, also

makes sense because Babble and Speech carry a separate primary purpose beyond purely

communicating emotion, as discussed in Section 6.2. With the exception of Social Speech,

however, adult-only models consistently demonstrate higher correlations in Social

Situations for each behavioral context, which seems to reflect the fact that adult speech

more purposefully addresses the child's overall emotional state in social situations. In

addition to providing insights into behavioral patterns within the child-caretaker dyad,

such observations in our adult-only results that mirror well-known caretaker tendencies

serve to further substantiate our methodology.

In exploring caretaker-specific models, our dyadic analysis also highlights individual

differences among caretakers, such as the Nanny correlating best in Social Crying contexts,

the Mother far exceeding the other caretakers in Laughing contexts, and the Father most

being highly correlated with the child's emotional state in Social Babble and Social Speech.

Most notably, the Nanny's speech tends to be significantly more correlated with the child's

emotional state, overall, in most contexts. While such insights could help optimize

perceptual accuracy by taking into account the identity of the caretaker, we find that

models built using all caretakers in aggregate are generally more successful than each

caretaker individually.

The caretaker-specific trends, however, begin to draw out a tapestry of family

dynamics that could be useful in applications other than simply determining the child

perceived emotional state. One interpretation of adjusted R-squared in adult-only models is

as a measure of intersubjectivity, or affect synchrony. We therefore envision the

methodology of our dyadic analysis to be of benefit in a variety of developmental research

areas, such as:



132

* Predicting socio-emotional outcomes using mother-infant relationship markers

(Deater-Deckard & Petrill, 2004; Forcada-Guex et al., 2006; Symons, 2001)

* Studying the relationship between extrinsic emotion regulation and the

development of self-control in child behavior (Cassidy, 1994; Cole et al., 2004;

Eisenberg & Spinrad, 2004; Feldman et al., 1999)

* Investigating caretaker-specific factors affecting child language acquisition (Bloom,

1998; Vosoughi et al., 2010)

* Studying developmental pathologies in affect synchrony, such as those seen in

attachment disorders and autism (Greenspan, 2001; Schore, 2001)

6.4 Concluding Thoughts

In this work, we have demonstrated that a high-performing model for automatically

perceiving a child's emotional state from vocal acoustic features can be created within the

Speechome corpus for a single, typically developing child. We have developed a

methodology for modeling acoustic correlates of the child's perceived emotional state

within the Speechome corpus, and we implement this methodology through a process of

manual annotation, data mining, acoustic feature extraction, and Partial Least Squares

regression. Comparative analysis of perceptual model performance across longitudinal and

socio-behavior contexts has yielded some notable developmental and dyadic insights.

The manual annotation step remains a necessary bottleneck in our methodology, in

order to establish the ground truth about the child's observed emotional state using human

perception. We have devised and applied several data mining strategies as part of our

methodology for the purpose of minimizing annotation time, including the use of Speaker

ID metadata to filter out portions of the audio that are not likely to contain child

vocalizations, which reduced annotation time by a total of 87 hours. Further, the results of

our exploratory analysis suggest a possibility for simplifying our annotation methodology
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in future applications. We observe a consistency across socio-behavioral contexts, implying

that there is not much to gain by asking annotators to indicate the behavioral nature of a

vocalization, or whether it occurs within a social situation. However, we recommend that

the socio-behavioral component of our methodology be retained, clarified to increase inter-

annotator agreement, and tested in Speechome datasets of several other children once they

become available, in order to test the generalizability of this pattern.

In modeling acoustic correlates of the child's perceived emotional state, we have found

Partial Least Squares regression to be an effective approach. PLS regression has enabled us

to capture, with robustness against overfitting, the relationship between a highly

multivariate set of input variables, consisting of 82 acoustic vocal features, and a

multivariate outcome, namely the child's emotional state as represented by Schlosberg's

two-dimensional space for characterizing affect. Using adjusted R-squared to evaluate our

models' perceptual accuracy has provided us with a versatile metric with many

synonymous interpretations, including goodness of fit, which implies correlation. In

evaluating adult-only models, adjusted R-squared may be a functional metric for

intersubjectivity. Through the use of cross validation, we include generalizability

considerations in our evaluation of perceptual accuracy; however, we recommend further

investigation with larger sample sizes and explicit training/testing datasets to confirm our

results.

In addition to evaluating perceptual accuracy, our exploratory analysis has also

brought forward several longitudinal insights, which point to developmental shifts that

may occur as the child gains mastery of the vocal tract and increases in cognitive abilities

and awareness. Because monthly models tend to outperform time-aggregate models while

still remaining consistent over time in the general case, we deduce that baseline properties

of a child's vocal emotional expression (i.e. the most significant vocal acoustic correlates)

may change over time, without changing the correlation itself. In relation to emotional

expressiveness and intersubjectivity, our exploratory observations of increasing and

decreasing trends in more specific contexts lead us to hypothesize an inverse relationship

between a general-purpose communication medium such as babble and pure emoting

vocalizations such as crying.

We qualify all of our findings with a caveat: the high perceptual accuracy, longitudinal
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progressions, dyadic patterns, and consistencies across contexts that we have observed

represent the vocal emotional expression of a single, typically developing child. Our

methodology might reveal very different results in a child who may be more inhibited

temperamentally and therefore less emotionally expressive. In addition to temperament,

there are many factors that can lead to differences in emotional and language development

among typically developing children, such as innate attachment style, parental

responsiveness, and gender. We also expect results to diverge in the presence of

developmental disorders such as autism, in which emotional expression and affect

synchrony are impaired (Greenspan, 2001; Macdonald, 2006).

6.4.1 Future directions

As we note above, the Speechome corpus currently represents data for only a single

child. To fully harness the exciting new possibilities for the study of child development

using the kind of dense, longitudinal, ecologically-valid data that the Human Speechome

Project has pioneered, similar datasets need to be recorded and assembled across multiple

children. This diversity would enable tests to evaluate the generalizability of

methodologies and insights developed around the Speechome dataset, as well as

comparative analyses between individuals within a particular group (e.g. age, gender) and

between subgroups, such as neurotypical and developmentally impaired children, in the

study of developmental disorders.

A major obstacle to such large-scale deployment has been the cost and complexity

involved in the original recording installation, where cameras and microphones were

installed in every room of the house, and great care and much expense were taken to

integrate the system seamlessly into the home (D. Roy, 2009). To address this, a compact,

portable version of the embedded Speechome recording system has been developed, called

the Speechome Recorder. The first prototype of the Speechome Recorder is shown in

Figure 6-1.

In addition to a similar overhead microphone and camera placement, the Speechome

recorder introduces a second, frontal camera. This frontal view has been added to facilitate

analysis of facial expressions and gestures, which are elusive from the bird's eye view of
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the overhead camera. Future research in characterizing emotion within the Speechome

corpus using objective measures may benefit from multimodal models that integrate facial

expressions, gestures, posture (Begeer et al., 2006; Busso et al., 2004; El Kaliouby et al.,

2006), and even physiological sensor metrics (Fox & Davidson, 1986; Goodwin et al., 2006;

Liu et al., 2008; Picard et al., 2001), with vocal acoustic correlates.

Mas

Overhead
Camera

Figure 6-1. Speechome Recorder

In the broader view, for future application, our methodology intends to create a

separate perceptual model for every child, tailored specifically to each child's

temperament, idiosyncrasies of vocal expression, developmental age, and caretakers. As

new Speechome datasets for multiple children are collected using the Speechome Recorder,

it is our hope that this methodology, applied to each child's dataset, will not only automate

the extraction of each child's affective state, but also yield comparative insights across

children about how emotional expression and caretaker intersubjectivity varies from child

.... .. .............. .......... ........ ...... .. ....... --- ---
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to child, and between neurotypical and developmentally impaired children.

Through such large-scale comparative studies, deployment of the Speechome

Recorder may facilitate the study of developmental milestones that can potentially reveal

insights into how autism and other developmental disorders evolve from infancy through

early childhood. In addition, we envision the possible application of Speechome

technologies towards implementing non-invasive continuous monitoring devices that can

inform parents of subtle deviations in their child's behavior and development. For instance,

due to the wide variability in the autistic phenotype, clinicians and caretakers in this area

have acknowledged a need for continuous monitoring and surveillance technologies after

diagnosis to better inform the choice of treatments and accommodations that would best

serve a particular individual (Hayes et al., 2008; Hayes et al., 2004; Kientz et al., 2005; Kin

et al., 2005; Lord, 2000; Zwaigenbaum et al., 2009). Further, an effective course of

treatment requires continued monitoring after intervention to validate its efficacy and

quantify the child's response to treatment (Lord et al., 2005).

Automated mechanisms and methodologies designed to support empirical study and

analysis of Speechome's dense, longitudinal, ecologically valid observational data hold

great promise for quantifying early processes of atypical development that may lead to

earlier detection and more individualized treatment. A better understanding of atypical

processes may also provide new insights into neurotypical development. In light of the

significance of emotional factors in research pertaining to child development, we hope that

the work of this thesis has brought Speechome one step closer to facilitating such advances.
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Appendix A
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Appendix B

Question Configuration File

Multichoice;Does this clip include child vocalizations?;yesAno
Multichoice;Are there adults talking or other noise during any part of the child's

vocalizations?;yesAno
Multichoice;ls there any activity in this clip that might suggest a social situation involving

the child and a caretaker? (See instruction sheet for examples.);yesAno
MultichoiceAnnv;Which of the following best represents the nature of the

vocalization?;cryingAbodily (e.g. sneeze, cough)AlaughingAbabbleAother
emotingAspeech

ScaleAnn_v;Please rate the energy of this vocalization. If it varies within the
vocalization, rate its maximum energy: (I = Lowest energy, 5 = Highest
energy);Low@ I - 2@2 - Medium@3 - 4@4 - High@5;3

ScaleAnnv;Please rate the child's mood on the following scale: (I = Most negative, 5
Most positive);Neg@ I - 2@2 - Neutral@3 - 4@4 - Pos@5;3

ScaleAnn_v;How clearly do your answers above describe the vocalization?;No choices
fit@ I - 2@2 - Multiple choices fit equally@3 - 4@4 - Clear fit@5;5

Trackmap;Using the mapping below, please indicate the time intervals of the
following:;v,Child Vocalization,Green,true ~ a,Overlapping Noise/Adult
Speech,Blue,true
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Appendix C

Annotator Instruction Sheet

Definitions

Crying - in a child, it is an inarticulate, often prolonged expression of a negative state, and can range
from soft weeping to screaming, depending on the energy of expression. It can also begin with whining or
other fussy vocalizations.

Laughing - expressing certain positive emotions, especially amusement or delight, by a series of
spontaneous, usually unarticulated sounds, such as heehee, hehe, haha.

Bodily - a vocalization that is produced by reflexive bodily functions and therefore carries no emotional
content, such as a sneeze, cough, or burp.

Babble - a vocalization where the child is attempting to express speech, with or without emotion. It must
include at least two clearly articulated consonant-vowels, i.e. at least two clear syllables.

Speech - the child is clearly speaking in articulated, recognizable words.

Other Emoting - any other vocalization uttered by the child.

Rules of Thumb

If you are undecided between...

... crying vs. other emoting -- choose OTHER EMOTING

... laughing vs. other emoting -- choose OTHER EMOTING

... babble vs. emoting -- listen for the number of clear consonant-vowels (i.e. syllables) in the vocalization.
If there are two or more, then it's babble. Less than two syllables is emoting.

Social Situation Examples

Here are some example events to look for to determine a possible social situation/interaction between the
child and caretaker. If at least one of these events occur in a clip, answer "yes" to the social
situation question.

Dialog between child and caretaker
Caretaker talking to child
Child approaching caretaker
Caretaker approaching child
Caretaker pointing
Child pointing
Close proximity between child and caretaker
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Appendix D

Per-Annotator Agreement

Table D - 1. Per-Annotator Agreement for Social Question

Annotator # vocalizations # vocalizations % agreed
annotated agreed

1 4834 4166 86.2

2 3314 2829 85.4

3 1063 401 **37.7

4 3226 2846 88.2

5 3247 2854 87.9

6 2342 1868 79.8
7 3030 2360 77.9

** The performance of Annotator #3 is clearly an outlier in the Social question. Given this anomaly,
all assignments completed by this annotator were reassigned among the other annotators. For each
of these assignments, care was taken to make sure that the annotator who initially shared an
assignment with Annotator #3 did not receive it a second time.

Table D - 2. Per-Annotator Agreement for Nature Question

Annotator # vocalizations # vocalizations % agreed
annotated agreed

1 4807 3356 69.8

2 3304 2318 70.2

3 1071 728 68.0

4 3202 2281 71.2

5 3234 2276 70.4

6 2331 1679 72.0

7 3051 2186 71.6

Table D - 3. Per-Annotator Agreement for Energy Question

Annotator # vocalizations # vocalizations % agreed # disagreements % agreed
annotated agreed by 1 pt by 1 pt

1 4834 2451 50.7 2045 93.0
2 3325 1700 51.1 1406 93.4
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3 1076 433 40.2 506 87.3
4 3226 1729 53.6 1320 94.5
5 3250 1645 50.6 1366 92.6
6 2343 949 40.5 1051 85.4
7 3112 1322 42.5 1379 86.8

Table D - 4. Per-Annotator Agreement for Mood Question

Annotator # vocalizations # vocalizations % agreed # disagreements % agreed
annotated agreed by 1 pt bys 1 pt

1 4833 2283 47.2 2376 96.4
2 3325 1652 49.7 1472 94.0
3 1076 492 45.7 508 92.9
4 3227 1549 48.0 1494 94.3
5 3252 1686 51.8 1383 94.4
6 2342 1329 56.7 913 95.7
7 3075 1634 53.1 1327 96.3
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Appendix E

Praat Script Examples

E.L Praat Script for a Child Vocalization

This example is for a pruned child vocalization starting at 1183770446787 milliseconds,

Unix epoch time (July 6, 2007 21:07:26.787 EDT) and ending at 1183770448349
milliseconds, Unix epoch time (July 6, 2007 21:07:28.349 EDT).

Read from file... /Users/sophia/prosody/wavs/childwavs/prunedvoc/pv_11
8 377 04 46 7 87 _1183770448349.wav

printline starting file 9200 of 9202: pv_1183770446787_1183770448349
select Sound pv_1183770446787_1183770448349
dur = Get total duration
printline duration = 'dur:6'
select Sound pv_1183770446787_1183770448349
To Intensity... 100 0 yes
select Intensity pv1183770446787_1183770448349
imean = Get mean... 0 0 energy
imax = Get maximum... 0 0 Parabolic
imin = Get minimum... 0 0 Parabolic
istdev = Get standard deviation... 0 0
Write to text file...
/Users/sophia/prosody/wavs/childwavs/features/pv_118

3 77044 6 787_1183770448349.Intensity

select Sound pv_1183770446787_1183770448349
To Pitch... 0.0175 2000
select Pitch pv1183770446787_1183770448349
Kill octave jumps
Interpolate
Smooth... 10
fOmean = Get mean... 0 0 Hertz
f0max = Get maximum... 0 0 Hertz Parabolic
fOmin = Get minimum... 0 0 Hertz Parabolic
fOslope2 = Get mean absolute slope... Semitones
f0stdev = Get standard deviation... 0 0 Hertz

Write to text file...
/Users/sophia/prosody/wavs/childwavs/features/pv_1

18 377 04 4 67 87 _1183770448349.Pitch

select Sound pv_1183770446787_1183770448349
manip = To Manipulation... 0.01 75 2000
Extract pitch tier
Rename... ptpv_1183770446787_1183770448349
Stylize... 2.0 Semitones
plus manip
Replace pitch tier
select PitchTier pt-pv_1183770446787_1183770448349
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numpts = Get number of points
Write to headerless spreadsheet file...
/Users/sophia/prosody/wavs/childwavs/features/pv_1183770446787_1183770448349.Stylized
select Sound pv1183770446787_1183770448349
To Spectrum... yes
fft_centroid1= Get centre of gravity... 1
fftcentroid2 = Get centre of gravity... 2
fftstd = Get standard deviation... 1
fftstd2 = Get standard deviation... 2
fftskewl Get skewness... 1
fftskew2 = Get skewness... 2
fftkurtl Get kurtosis... 1
fftkurt2 = Get kurtosis... 2

To Ltas... 125
Itas_freqofmax = Get frequency of maximum... 0 0 none
Itas_freqofmin= Get frequency of minimum... 0 0 None
Itas_max = Get maximum... 0 0 None
Itasmean = Get mean... 0 0 energy
Itasstdev Get standard deviation... 0 0 energy
Itas min = Get minimum... 0 0 None

select Sound pv_1183770446787_1183770448349
To Harmonicity (cc)... 0.03 75 0.1 4.5
hnr_min = Get minimum... 0 0 Parabolic
hnrmean = Get mean... 0 0
hnrmax = Get maximum... 0 0 Parabolic
hnrstd = Get standard deviation... 0 0
hnrtimeofmax= Get time of maximum... 0 0 Parabolic
hnrtimeofmin = Get time of minimum... 0 0 Parabolic

select Sound pv1183770446787_1183770448349
To MFCC... 16 0.015 0.005 100.0 100.0 0.0
To Matrix
Transpose
To TableOf Real
mfcclmean = Get column mean (index)... 1
mfcclstd = Get column stdev (index)... 1
mf cc2mean = Get column mean (index)... 2
mfcc2std = Get column stdev (index)... 2
mfcc3mean = Get column mean (index)... 3
mfcc3std = Get column stdev (index)... 3
mfcc4mean = Get column mean (index)... 4
mfcc4std = Get column stdev (index)... 4
mf cc5mean = Get column mean (index)... 5
mfcc5std = Get column stdev (index)... 5
mfcc6mean = Get column mean (index)... 6
mfcc6std = Get column stdev (index)... 6
mf cc7mean = Get column mean (index)... 7
mfcc7std = Get column stdev (index)... 7
mfcc8mean = Get column mean (index)... 8
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mfcc8std = Get column stdev (index)... 8
mf cc9mean = Get column mean (index)... 9
mf cc9std = Get column stdev (index)... 9
mf ccl0mean = Get column mean (index)... 10
mfccl0std = Get column stdev (index)... 10
mfccl1mean = Get column mean (index)... 11
mfccllstd = Get column stdev (index)... 11
mf ccl2mean = Get column mean (index)... 12
mf ccl2std = Get column stdev (index)... 12
mf ccl3mean = Get column mean (index)... 13
mfccl3std = Get column stdev (index)... 13
mf ccl4mean = Get column mean (index)... 14
mf ccl4std = Get column stdev (index)... 14
mf ccl5mean = Get column mean (index)... 15
mfccl5std = Get column stdev (index)... 15
mf ccl6mean = Get column mean (index)... 16
mf ccl6std = Get column stdev (index)... 16

select Sound pv_1183770446787_1183770448349
To Formant (burg)... 0.0 5 8000 0.025 50
fmtimin = Get minimum... 10 0 Hertz Parabolic
fmtimean = Get mean... 1 0 0 Hertz
fmtimax = Get maximum... 10 0 Hertz Parabolic
fmtlstd = Get standard deviation... 10 0 Hertz
fmt2min = Get minimum... 2 0 0 Hertz Parabolic
fmt2mean = Get mean... 2 0 0 Hertz
fmt2max = Get maximum... 2 0 0 Hertz Parabolic
fmt2std = Get standard deviation... 2 0 0 Hertz
fmt3min= Get minimum... 3 0 0 Hertz Parabolic
fmt3mean = Get mean... 3 0 0 Hertz
fmt3max = Get maximum... 3 0 0 Hertz Parabolic
fmt3std = Get standard deviation... 3 0 0 Hertz
fmt4min = Get minimum... 4 0 0 Hertz Parabolic
fmt4mean = Get mean... 4 0 0 Hertz
fmt4max = Get maximum... 4 0 0 Hertz Parabolic
fmt4std = Get standard deviation... 4 0 0 Hertz
fmt5min = Get minimum... 5 0 0 Hertz Parabolic
fmt5mean = Get mean... 5 0 0 Hertz
fmt5max = Get maximum... 5 0 0 Hertz Parabolic
fmt5std Get standard deviation... 5 0 0 Hertz
fileappend "/Users/sophia/prosody/wavs/childwavs/features/allfeaturesextended.txt"
pv_1183770446787_1183770448349.wav
'tab$ "imin:6''tab$ " imean:6''tab$ " imax:6'"tab$ " istdev:6'"tab$ "f0slope2:6" tab$ 'f0stdev:6"tab$ "f0min
:6''tab$' "f0mean:6"tab$"f0max:6"tab$'"fft.centroidl:6 "tab$" fft.centroid2:6"tab$" fftstdl:6" 'tab$"
fftstd2:6"tab$'" fftskewl:6''tab$" fftskew2:6''tab$" fftkurtl:6''tab$'" fftkurt2:6"tab$ "Itas_ffreqofmax:
6"tab$"Itasfreofmin:6"tab$"Itas-max:6"tab$"Itas-mean:6"tab$"ltasstdev:6"tab$"Itasmin:6"tab
$"hnr-min:6"tab$"hnr-mean:6"tab$'" hnrmax:6 'tab$' hnrstd:6 "tab$" hnrtimeofmax:6"tab$'"hnrti
meofmin:6''tab$ "mf cclmean:6''tab$' 'mf cclstd:6"tab$ "mf cc2mean:6"tab$' mf cc2std:6'tab$' mf cc3mea
n:6' tab$" mfcc3std:6' tab$"mfcc4mean:6' tab$ " mfcc4std:6'"tab$ " mfcc5mean:6 " tab$" mfcc5std:6 " tab
$ " mf cc6mean:6'" tab$ " mf cc6std:6'"tab$ " mf cc7mean:6" tab$ " mf cc7std:6" tab$ " mf cc8mean:6" tab$ " mf c
c8std:6' tab$'" mfcc9mean:6'" tab$'" mfcc9std:6 " tab$ " mfccl0mean:6 " tab$' "mfccl0std:6 'tab$ mfccl1mea
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n:6''tab$' mfccllstd:6 ''tab$ ''mfccl2mean:6 ''tab$' 'mfccl2std:6''tab$ 'mfcc13mean:6 ''tab$ 'mfccl3std:6''
tab$' mfccl4mean:6 'tab$'"mf ccl4std:6'' tab$'' mf ccl5mean:6''tab$ 'mfccl5std:6'' tab$'' mfccl6mean:6 'ta
b$' mfccl6std:6'' tab$" fmtlmin:6''tab$'' fmtlmean:6' tab$' 'fmtlmax:6' 'tab$' 'fmtlstd:6' 'tab$''fmt2min:6
''tab$''fmt2mean:6''tab$' 'fmt2max:6 ''tab$' 'fmt2std:6 ''tab$' 'fmt3min:6 ''tab$''fmt3mean:6''tab$' fmt3
max:6 ''tab$' 'fmt3std:6'' tab$' 'fmt4min:6' 'tab$' 'fmt4mean:6 ''tab$' 'fmt4max:6 ''tab$' 'fmt4std:6 ''tab$''f
mt5min:6' 'tab$' 'fmt5mean:6 'tab$ 'fmt5max:6 ''tab$' 'fmt5std:6' 'tab$''numpts''newline$'
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E.2. Example Praat Script for Adult Speech

This particular Praat script is for all adult speech occurring within a 30 second window
after the pruned child vocalization starting at 1147790847054 milliseconds, Unix epoch
time (May 16, 2006 10:47:27.054 EDT) and ending at 1147790847440 milliseconds, Unix
epoch time (May 16, 2006 10:47:27.440 EDT). Three fragments of adult speech are
combined to form this 30-second window - 74ms, 46ms, and 1410ms in duration - with
three periods of Silence synthesized to fill in the gaps -18.58 sec, 1.83 sec, and 8.07 sec in
length.

Create Sound from formula... silencevoc_1147790847440_1147790866020 Mono 0.0 18.58 48000 0
printline reading from input wav
Read from file...
/Users/sophia/prosody/wavs/adultwavs/pafter30/adaft_11477908660201147790866094.wav
Create Sound from formula... silencevoc_1147790866094_1147790867925 Mono 0.0 1.831 48000 0
printline reading from input wav
Read from file...
/Users/sophia/prosody/wavs/adultwavs/paf ter30/adaf t_1147790867925_1147790867971.wav
Create Sound from formula... silencevoc_1147790867971_1147790876040 Mono 0.0 8.069 48000 0
printline reading from input wav
Read from file...
/Users/sophia/prosody/wavs/adultwavs/pafter30/adaft_1147790876040_1147790877450.wav

printline concatenating input wavs and silence
select Sound silencevoc_1147790847440_1147790866020
plus Sound adaft_1147790866020_1147790866094
printline concatenating input wavs and silence
plus Sound silence_voc_1147790866094_1147790867925
plus Sound adaft_1147790867925_1147790867971
printline concatenating input wavs and silence
plus Sound silencevoc_1147790867971_1147790876040
plus Sound adaf t_1147790876040_1147790877450
Concatenate
Copy... adaf t4voc_1147790847054-1147790847440
Write to WAV file...
/Users/sophia/prosody/wavs/adultwavs/pafter30/may06/outwavs/adaft4voc_1147790847054_11477908474
40.wav
printline finished concatenating

printline adaf t4voc_1147790847054_1147790847440
printline computing intensity
select Sound adaft4voc_1147790847054_1147790847440
dur = Get total duration
printline duration = 'dur:6'
select Sound adaft4voc1147790847054_1147790847440
To Intensity... 100 0 yes
select Intensity adaft4voc_1147790847054_1147790847440
imean = Get mean... 0 0 energy
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imax Get maximum... 0 0 Parabolic
imin Get minimum... 0 0 Parabolic
istdev = Get standard deviation... 0 0
Write to text file...
/Users/sophia/prosody/wavs/adultwavs/pafter30/may06/features/adaft4voc_1147790847054_11477908474
40.Intensity

printline computing pitch
select Sound adaf t4voc_1147790847054_1147790847440
To Pitch... 0.01 75 2000
select Pitch adaft4voc_1147790847054_1147790847440
Kill octave jumps
Interpolate
Smooth... 10
fOmean = Get mean... 0 0 Hertz
fOmax Get maximum... 0 0 Hertz Parabolic
fOmin Get minimum... 0 0 Hertz Parabolic
f0slope2 Get mean absolute slope... Semitones
f0stdev Get standard deviation... 0 0 Hertz

Write to text file...
/Users/sophia/prosody/wavs/adultwavs/pafter30/mayO6/features/adaft4voc_114779084705411477908474
40.Pitch

printline computing stylization
select Sound adaft4voc_1147790847054_1147790847440
manip = To Manipulation... 0.01 75 2000
Extract pitch tier
Rename... pt -adaft4voc_1147790847054_1147790847440
Stylize... 2.0 Semitones
plus manip
Replace pitch tier
select PitchTier pt_adaft4voc_1147790847054_1147790847440
numpts = Get number of points
Write to headerless spreadsheet file...
/Users/sophia/prosody/wavs/adultwavs/pafter30/mayO6/features/adaft4voc_1147790847054_11477908474
40.Stylized

printline computing fft
select Sound adaft4voc_1147790847054_1147790847440
To Spectrum... yes
fftcentroid1 = Get centre of gravity... 1
fftcentroid2 = Get centre of gravity... 2
fftstdl= Get standard deviation... 1
fftstd2 = Get standard deviation... 2
fftskewl = Get skewness... 1
fftskew2= Get skewness... 2
fftkurtl = Get kurtosis... 1
fftkurt2 = Get kurtosis... 2

printline computing Ltas
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To Ltas... 125
Itas-freqofmax= Get frequency of maximum... 0 0 none
Itasfreqofmin= Get frequency of minimum... 0 0 None
Itas max = Get maximum... 0 0 None
Itasmean Get mean... 0 0 energy
Itasstdev Get standard deviation... 0 0 energy
Itas min = Get minimum... 0 0 None

printline computing hnr
select 5ound adaf t4voc_1147790847054_1147790847440
To Harmonicity (cc)... 0.03 75 0.1 4.5
hnr_min = Get minimum... 0 0 Parabolic
hnrmean = Get mean... 0 0
hnr max = Get maximum... 0 0 Parabolic
hnrstd = Get standard deviation... 0 0
hnrtimeofmax = Get time of maximum... 0 0 Parabolic
hnrtimeofmin = Get time of minimum... 0 0 Parabolic

printline computing mfcc's
select Sound adaf t4voc_1147790847054_1147790847440
To MFCC... 16 0.015 0.005 100.0 100.0 0.0
To Matrix
Transpose
To TableOf Real
mf cclmean = Get column mean (index)... 1
mf cclstd = Get column stdev (index)... 1
mfcc2mean = Get column mean (index)... 2
mfcc2std = Get column stdev (index)... 2
mfcc3mean = Get column mean (index)... 3
mfcc3std = Get column stdev (index)... 3
mf cc4mean = Get column mean (index)... 4
mfcc4std = Get column stdev (index)... 4
mfcc5mean = Get column mean (index)... 5
mfcc5std = Get column stdev (index)... 5
mfcc6mean = Get column mean (index)... 6
mfcc6std = Get column stdev (index)... 6
mfcc7mean = Get column mean (index)... 7
mfcc7std = Get column stdev (index)... 7
mf cc8mean = Get column mean (index)... 8
mfcc8std = Get column stdev (index)... 8
mf cc9mean = Get column mean (index)... 9
mf cc9std = Get column stdev (index)... 9
mf ccl0mean = Get column mean (index)... 10
mfccl0std = Get column stdev (index)... 10
mf cclmean = Get column mean (index)... 11
mfccllstd = Get column stdev (index)... 11
mf ccl2mean = Get column mean (index)... 12
mfccl2std = Get column stdev (index)... 12
mf ccl3mean = Get column mean (index)... 13
mfccl3std = Get column stdev (index)... 13
mf ccl4mean = Get column mean (index)... 14



168

mfccl4std = Get column stdev (index)... 14
mf ccl5mean = Get column mean (index)... 15
mfccl5std = Get column stdev (index)... 15
mf ccl6mean = Get column mean (index)... 16
mfccl6std = Get column stdev (index)... 16

printline computing formants
select Sound adaft4voc_1147790847054_1147790847440
To Formant (burg)... 0.0 5 8000 0.025 50
fmtlmin = Get minimum... 10 0 Hertz Parabolic
fmtlmean = Get mean... 10 0 Hertz
fmtImax Get maximum... 10 0 Hertz Parabolic
fmtlstd = Get standard deviation... 10 0 Hertz
fmt2min = Get minimum... 2 0 0 Hertz Parabolic
fmt2mean = Get mean... 2 0 0 Hertz
fmt2max = Get maximum... 2 0 0 Hertz Parabolic
fmt2std = Get standard deviation... 2 0 0 Hertz
fmt3min = Get minimum... 3 0 0 Hertz Parabolic
fmt3mean = Get mean... 3 0 0 Hertz
fmt3max = Get maximum... 3 0 0 Hertz Parabolic
fmt3std = Get standard deviation... 3 0 0 Hertz
fmt4min= Get minimum... 4 0 0 Hertz Parabolic
fmt4mean = Get mean... 4 0 0 Hertz
fmt4max= Get maximum... 4 0 0 Hertz Parabolic
fmt4std Get standard deviation... 4 0 0 Hertz
fmt5min= Get minimum... 5 0 0 Hertz Parabolic
fmt5mean = Get mean... 5 0 0 Hertz
fmt5max = Get maximum... 5 0 0 Hertz Parabolic
fmt5std Get standard deviation... 5 0 0 Hertz

printline appending features to file
fileappend
"/Users/sophia/prosody/wavs/adultwavs/pafter30/may06/features/allfeatures extendedadaf t-prunedma
y06.txt" adaf t4voc_1147790847054_1147790847440
'tab$' imin:6 "tab$" imean:6 'tab$'" imax:6"tab$" istdev:6 " tab$ fOslope2:6' tab$"f0stdev:6 'tab$'" fOmin
:6'" tab$' f0mean:6'" tab$'" f0max:6 'tab$ 'fft centroidl:6 " tab$" ffftcentroid2:6'" tab$'" fftstdl:6''tab$"
fftstd2:6 'tab$'" fftskewl:6 'tab$'" fftskew2:6'" tab$'" fftkurtl:6 'tab$' fftkurt2:6' tab$'" Itas-freqofmax:
6 "tab$ " ltasifreqofmin:6' tab$ " Itas max:6' tab$ "Itasmean:6 "'tab$ "Itasstdev:6 "'tab$ " Itasmin:6 " tab
$ "hnr_min:6'" tab$" hnrmean:6 " tab$'" hnrmax:6'" tab$" hnrstd:6'" tab$' hnrjtimeofmax:6'" tab$'" hnr-ti
meofmin:6' tab$'" mfcclmean:6 " tab$'" mfcclstd:6 " tab$'" mfcc2mean:6' tab$' mfcc2std:6 " tab$'" mfcc3mea
n:6'" tab$'" mfcc3std:6 tab$' mfcc4mean:6' tab$ " mfcc4std:6 tab$'" mfcc5mean:6'" tab$'" mfcc5std:6 tab
$ "'mf cc6mean:6 "'tab$ "mf cc6std:6 "'tab$ "'mf cc7mean:6' tab$ "mf cc7std:6 "tab$ "mf cc8mean:6 "tab$ "mf c
c8std:6'" tab$'" mfcc9mean:6' tab$'" mfcc9std:6'" tab$'" mfccl0mean:6'" tab$'" mfccl0std:6 " tab$ mfcclmea
n:6' tab$' mfccllstd:6'" tab$'" mfccl2mean:6'" tab$'" mfccl2std:6' tab$' mfccl3mean:6'" tab$'" mfccl3std:6"
tab$'" mfccl4mean:6'" tab$'" mfccl4std:6 tab$' mfccl5mean:6'" tab$'" mfccl5std:6'" tab$'" mfccl6mean:6 " ta
b$' mfccl6std:6'" tab$'" fmtmin:6'" tab$ fmtimean:6'" tab$'" fmtImax:6'" tab$'" fmtlstd:6'" tab$'" fmt2min:6
"tab$f' fmt2mean:6'" tab$'" fmt2max:6' tab$'" fmt2std:6' tab$f' fmt3min:6'" tab$ " fmt3mean:6' tab$'" fmt3
max:6'" tab$ " fmt3std:6' tab$'" fmt4min:6'" tab$'" fmt4mean:6 tab$'" fmt4max:6 tab$'" fmt4std:6'" tab$"f
mt5min:6" tab$" fmt5mean:6" tab$" fmt5max:6" tab$'" fmt5std:6" tab$'" numpts newline$'



169

Appendix F

Optimal Number of PLS Components

Table F-1 lists the optimal number of PLS Components for each of our overall (9-24 month
period) models. These numbers were derived using a heuristic technique in which we plot
Mean-Squared Error (MSE) as a function of components and choose the minimum value. In
many cases, this graph of residual variation contains a clear global minimum beyond which
MSE begins to rise with additional components.

This listing is provided for illustration; we also apply the same heuristic to the monthly
subsets for all the contexts but do not list them here.

Table F- 1. Optimal Number of PLS Components for Overall Models

Adult
Context Child Combined

Before After Surr

All 24 19 50 50 25
Social Situations Only 16 15 17 14 16
Not Bodily 24 21 50 49 17
Social Not Bodily 15 15 17 16 14
Crying 5 4 3 3 5
Social Crying 3 4 5 4 4
Babble 4 4 4 1 6
Social Babble 4 4 4 2 6
Speech 5 3 3 3 5
Social Speech 6 2 1 3 6
Other Emoting 11 16 18 16 13
Social Other Emoting 10 17 15 11 12
Laughing 2 1 1 1 3
Social Laughing 2 1 1 2 3

. ... . ............... ....
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Appendix H

Longitudinal Analysis: Dyadic Results
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