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Abstract

Objectives: Investigate the conditions and the analysis strategies required so

endophenotypes related to a disease help discover genetic variants involved in the disease.

Methods: Association with disease susceptibility variants is examined as a function

of the relationships between disease status, endophenotype values and the genotype at

another disease or endophenotype susceptibility locus assumed to be previously known,

using approximate linear models of allele frequencies as a function of these variables and

simulations in the context of family studies when the endophenotype is dichotomous.

Results: Under genetic mechanisms where the risk allele of the tested locus has an

effect exclusively in subjects with the endophenotype, the risk allele frequency differences

between affected and unaffected subjects are much greater in the subset of subjects with an

endophenotype impairment than in those without such impairment, and power gains are

obtained when testing association under a joint disease-endophenotype model, both with

two-locus or single-locus tests. However, with moderate main effect on risk of disease or

endophenotype impairment, testing directly the association between risk allele and disease

or endophenotype is more powerful than testing under a joint disease-endophenotype model.

Conclusions: Joint modeling of disease and endophenotype should be used only in parallel

with standard disease association testing.

Keywords: expected allele frequency; family-based association; linear model; generalized

disequilibrium test; power; quasi-likelihood score test; simulation study

1. Background

In the genetic study of complex diseases, additional phenotypic measurements

are increasingly taken to uncover traits related to the disease phenotype, called

endophenotypes [1, 2]. The term endophenotype is commonly used to describe traits that
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are minimally: 1) associated with a disease, 2) heritable, 3) present whether or not the

illness is active (state-independent), 4) co-segregating with the disease in families and 5)

present in non-affected relatives at a higher rate than in the population [1].

Most often, endophenotypes are used as an univariate or multivariate phenotype in

genetic association studies, in place of the disease diagnosis. It has been recognized that

crude estimates of association parameters between genetic variants and endophenotypes

in samples ascertained conditionally on disease status can be biased when both the

genetic variant and the endophenotype are associated with disease status, and corrections

for that bias have been proposed for samples of unrelated disease cases and controls

(see [3] and [4] for recent proposals and reviews of prior work). One model developed

for linkage analysis of a quantitative trait and a dichotomous disease status [5], and

applied to test jointly linkage to major depression and quantitative endophenotypes [6],

assumes a restrictive latent dependence structure between the two traits and does

not take into account ascertainment on the disease status. Others have proposed to test

jointly the association to the disease status and an endophenotype in case-control samples [7].

Keeping in mind the ultimate goal to detect genetic variants involved in the etiology

of the disease, we adopt the view that the optimal way to use an endophenotype in

an association study should be the one that best reaches that goal. It will depend on

the relationship between the endophenotype, the disease and genetic variants (those to

be discovered as well as those already known to be associated to the disease and/or

endophenotype). This is to our knowledge the first study to investigate these relationships

with respect to the associations with genetic variants that they generate.

The co-segregation of a disease and an impairment on an endophenotype in densely
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affected families represents evidence for genetic variants influencing both traits. These

genetic variants may differ from the genetic variants underlying the same impairment in a

general population, for which recent studies suggest a genetic architecture similar to that of

complex traits [8]. This is why the analysis of an endophenotypes to uncover disease-related

variants is most relevant in families where the disease of interest is present. This work

therefore focuses on the context of familial association studies.

Controlling biases in estimates of parameters related to an endophenotype due to

ascertainment of families based on the disease status of their members is much more complex

than in case-control samples. The only practical approach that fully protects against

ascertainment biases is to condition on the phenotype. In the context of familial association

studies, this is currently manageable only with categorical phenotypes. As far as we know,

current methods for association to quantitative traits in families assume random sampling

of pedigrees, and merely assess the robustness of the methods to ascertainement based

on a disease related to the quantitative trait (see [9] for a recent example). In this work

we therefore examine a dichotomous endophenotype. For quantitative endophenotypes, a

cut-off point below which a subject’s score is interpreted as being impaired can be applied

to dichotomize it. The bivariate phenotype formed by a dichotomous disease status and a

dichotomous endophenotype has thus four categories.

For disease phenotypes, analysis methods conditioning on the phenotype in families

essentially compare allele or genotype frequencies between affected and unaffected subjects

(or pseudo-controls), either within familly [10, 11] or at the population level [12, 13]. The

magnitude of these expected differences determines the power to detect association to the

genetic variants. Thus, we examine retrospectively allele frequencies in subjects in the four
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phenotypic categories formed by the disease and endophenotype to determine the analysis

strategy to adopt.

Nevertheless, our starting points are genetic risk mechanisms describing prospectively

the probability, or penetrance, of the phenotype categories given the genotype. We

begin by reviewing the model forms that have been proposed to represent association

with predictor variables applicable to this context. Next, we translate prospective risks

into allele frequencies. Allele frequencies and their ratios do not however reduce to

simple expressions of the parameters of the prospective risk mechanisms. Our approach

has been to express allele frequency as an approximate linear model of the disease and

endophenotype status and the genotype at a known disease or endophenotype susceptibility

locus. This allowed us to 1) examine relevant special cases of relationships between allele

frequencies and these variables and derive the constraints on the risk mechanisms that

are required to obtain them and 2) examine the expected allele frequencies under a set

of genetic mechanisms all involving a form of modifying effect of the tested locus on a

known susceptibility locus, and various additional effects. The approximate linear models

of allele frequency were estimated from expected allele frequencies in unrelated individ-

uals, and from simulation in pedigrees ascertained for a minimal number of affected subjects.

Finally, we illustrate our recommendations about the most powerful approach

by presenting the power of statistical tests proposed elsewhere by ourselves [14] and

others [10, 12] under representative scenarios of genetic mechanisms that we have studied.
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2. Methods

2.1. Notation

Let Y1 and Y2 be binary variables coding the presence (1) or absence (0) of the

endophenotype impairment and the disease, respectively. Let Xl denote the proportion of

a given allele in a genotype at the lth biallelic locus, taking values 0, 1
2

and 1, such that

the allele frequency equals the expectation of the genotypic variable, e.g. E[X1] at locus 1.

When two loci are considered, we assume locus 1 is known to be associated with the disease

or endophenotype, and locus 2 is being tested. When a single locus is considered, we drop

the index. We assume throughout that the allele coded by Xl is the allele increasing risk.

2.2. Disease-endophenotype models

2.2.1. Review of models for bivariate dichotomous outcomes

Various types of models for the distribution of a pair of binary outcome variables

have been proposed in other contexts of regression on predictor variables, which we denote

collectively by the vector X. We review them here in the context of the joint distribution

of a dichotomous disease status and a dichotomous endophenotype as a function of the

observed genotypes of an individual.

polytomous In this type of models, the probability of each combination of Y1 and Y2 other than a

reference category (taken to be Y1 = 0, Y2 = 0) are modeled separately by functions of

the predictor variables with each their own coefficients, that is P [Y1 = 1, Y2 = 0|X] =

f1(βX), P [Y1 = 0, Y1 = 0|X] = f2(βX), P [Y1 = 1, Y2 = 1|X] = f3(βX) and P [Y1 =

0, Y2 = 0|X] = 1− P [Y1 = 1, Y2 = 0|X]− P [Y1 = 0, Y2 = 1|X]− P [Y1 = 1, Y2 = 1|X].

The two variables Y1 and Y2 are treated on the same footing [15, Section11.4].
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transition They suppose that Y1 preceeds Y2, which applies to the context where an

endophenotype is an intermediate trait and the disease is the final outcome. The

probability of response for Y1 is modeled as a function of the predictor variables

P [Y1 = 1|X] = f(βX), and the second variable Y2 as a function of Y1 and the predictor

variables P [Y2 = 1|Y1, X] = f(γ(X, Y1, XY1)), where (X, Y1, XY1) denotes the vector

of all terms involving X, Y1 and XY1, and γ(.) denotes a linear combination [16].

marginal This approach adds to a marginal model of the probability of response for Y1 and

Y2, P [Y1 = 1|X] = f(β1X) and P [Y2 = 1|X] = f(β2X) , a model for a parameter

of association between Y1 and Y2, for instance the odds ratio (OR) [17]. This model

will not be considered further in this work, since the interest is not in the effect of

polymorphisms on the association between the disease status and the endophenotype,

but rather in their effect on the risk of the various combinations of these two

components of the phenotype.

In the next section, we study properties of general polytomous and transition models

and describe statistical tests applicable to analyze a dichotomous disease status and

endophenotype. In section 2.2.3, we examine specific scenarios of genetic mechanisms as

instances of such models.

2.2.2. Classes of models and statistical tests for dichotomous disease status and

endophenotype

Polytomous and transition models that we consider generalize the usual two-locus

logistic model for a dichotomous trait:

log

(
P [Y = 1|X1, X2]

P [Y = 0|X1, X2]

)
= η0 + η1X1 + η2X2 + η3X1X2 (1)
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In the polytomous model, logistic functions are specified for each phenotype category

against the reference category. For the combinations of a dichotomous disease status and

dichotomous endophenotype, we have:

log

(
P [Y1 = 1, Y2 = 0|X1, X2]

P [Y1 = 0, Y2 = 0|X1, X2]

)
= β10 + β11X1 + β12X2 + β13X1X2

log

(
P [Y1 = 0, Y2 = 1|X1, X2]

P [Y1 = 0, Y2 = 0|X1, X2]

)
= β20 + β21X1 + β22X2 + β23X1X2 (2)

log

(
P [Y1 = 1, Y2 = 1|X1, X2]

P [Y1 = 0, Y2 = 0|X1, X2]

)
= β30 + β31X1 + β32X2 + β33X1X2

Statistical tests for testing genetic association with categorical traits in family samples

fall under two broad classes of approaches: population level analysis and within-family

conditional analysis. For the population level analysis, we adopt the Maximum Quasi-

Likelihood Score (MQLS) test of [12] which has been developed to optimize power to test

for association to dichotomous phenotypes in related individuals but has not been derived

for polytomous phenotypes. In our evaluation of power to detect association under various

genetic mechanisms (see section 3), we applied it to the disease status (MQLSd), to the

endophenotype status (MQLSe) and to endophenotype impairment with disease against all

other combinations of disease and endophenotype status (MQLSde). For the within-family

conditional analysis, we adopted the score test for dichotomous phenotypes in general

pedigrees derived by [10] under the name ”Generalized disequilibrium test” (GDT). We

have extended the GDT to an outcome with K > 2 levels and to two unlinked loci under

the polytomous logistic regression model 2 [14]. We applied this new test to interaction

coefficients and subsets of coefficients in model 2 and a single locus polytomous model

(model 2 with X2 only). The coefficients in that model are labelled β(1L). We note here

that the score test of a single coefficient of a logistic function attached to an outcome

category under a polytomous model is a contrast between the sum of the corresponding X

terms over subjects in the outcome category and over subjects in all other categories. Hence,

the test of the coefficient β3(1L) for the endophenotype impairment with disease category is
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comparable to MQLSde. We denote ”cpoly” the conditional test of locus 2 under model 2,

i.e. the 6 d.f. test of the null hypothesis β12 = β13 = β22 = β23 = β32 = β33 = 0, and

”cdisease” and ”cendo” the conditional test of locus 2 under model 1 for the disease status

and the endophenotype, respectively, i.e. the 2 d.f. test of the null hypothesis η2 = η3 = 0.

The original GDT was applied to the disease status (GDTd) and to the endophenotype

status (GDTe).

The general two-locus transition model for a dichotomous disease status and

endophenotype can be written as:

P [Y1 = 1|X1, X2] = f(β0 + β1X1 + β2X2 + β3X1X2) (3)

P [Y2 = 1|Y1, X1, X2] = f(γ0 + γ1X1 + γ2X2 + γ3X1X2 (4)

+γ4Y1 + γ5X1Y1 + γ6X2Y1 + γ7X1X2Y1)

The transition model permits to specify sub-models where either trait is conditionally

independent of the allele count at a locus, given the other variables. We consider here two

such conditions: conditional independence between the endophenotype and X2 given X1

and, in addition, conditional independence between the disease status and X1 given the

endophenotype Y1 and X2. The first condition gives the model:

P [Y1 = 1|X1, X2] = P [Y1 = 1|X1] = f(β0 + β1X1) (5)

P [Y2 = 1|Y1, X1, X2] = f(γ0 + γ1X1 + γ2X2 + γ3X1X2 (6)

+γ4Y1 + γ5X1Y1 + γ6X2Y1 + γ7X1X2Y1)

while the two conditions together give:

P [Y1 = 1|X1, X2] = P [Y1 = 1|X1] = f(β0 + β1X1) (7)



– 10 –

P [Y2 = 1|Y1, X1, X2] = P [Y2 = 1|Y1, X2] = f(γ0 + γ2X2 (8)

+γ4Y1 + γ6X2Y1)

2.2.3. Example scenarios

We consider two-locus mechanisms of the disease and endophenotype where the two

loci interact to cause the disease, such that disease risk depends directly on the genotype

at both loci (as opposed to mechanisms where the effect of one locus is entirely mediated

by the endophenotype as in equation (9)). In scenarios where one locus has an effect on

the disease status only (not the endophenotype), we assume that it is locus 2 and focus on

methods to detect that locus (see Figure 1). We present examples of scenarios represented

by polytomous and transition models with the common characteristics that the A allele of

locus 1 is marginally associated to the endophenotype and the presence of risk alleles at

locus 2 shifts the effect of locus 1 risk alleles from an effect on the risk of endophenotype

impairment without disease (Y1 = 1, Y2 = 0) to an effect on the risk of endophenotype

impairment with disease (Y1 = 1, Y2 = 1). For the polytomous models, this behaviour is

obtained through a negative β13 and a positive β33. For transition models, it is obtained

through the interaction terms involving locus 1 and 2. The risk allele frequency was set

to 0.1 at locus 1 and varied between 0.1 and 0.5 at locus 2. The specificities of each

polytomous model representations of genetic mechanisms are presented in Section 4.2 and

the values of the coefficients corresponding to each scenario are given in Table 1, while the

specificities of each transition model representations of genetic mechanisms are presented in

Section 4.3 and the coefficients are given in Table 2.
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2.3. Study of allele frequencies implied by the two-locus mechanisms

The variations in allele or genotype frequencies at locus 2 as a function of the disease

status and endophenotype value and the genotype at locus 1 determine the power of the

analysis strategies applied to detect locus 2. These allele or genotype frequencies, as well

as their ratios do not however reduce to simple expressions of the polytomous or transition

models above. In particular, ratios still depend on the population genotype frequency at

locus 2. To interpret allele frequency at locus 2, we express them using an approximate

linear model of the disease and endophenotype status and the genotype at locus 1. Special

cases can however be derived under certain conditions, and we present them in section 2.3.2.

2.3.1. Linear models of allele frequency

We have observed that, for a given set of genotype frequencies and a given genetic

mechanism, the allele frequency at locus 2 as a function of the disease and endophenotype

status and the genotype at locus 1 of an individual is well approximated by a simple linear

model. Our approach has therefore been to examine example scenarios of mechanisms and

to select and fit parsimonious retrospective linear models of the allele frequency at locus

2 given the disease and endophenotype status and the genotype at locus 1 to them. We

also fitted models ignoring locus 1. We used the weighted sum of squared errors (SSE)

between the actual and predicted allele frequencies of each combination of disease and

endophenotype status and genotype at locus 1 as fit criterion, where each combination

is weighted by its prevalence in the population. Details on model selection are given in

section 1 of the Appendix.
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In families ascertained based on some criterion such as a minimal number of affected

subjects, the allele frequency in a member of the family depends on the phenotype of

all his relatives. Computing the allele frequency in one subject taking into account the

ascertainment criterion for the entire family is much more complicated than in unrelated

subjects. Computation of empirical allele frequencies observed in samples of simulated

families meeting the ascertainment criterion thus becomes a more practical solution in this

case. The process to simulate disease phenotype, endophenotype and genotype data in

families is explained in section 2 of the Appendix. The parameters of our simulation study

are described in section 3.

2.3.2. Special cases of alleles frequency models and required conditions on risk mechanisms

An important special case is when allele frequencies at locus 2 can be expressed as a

function of Y1 and Y2 alone. Under conditional independence between the disease status Y2

and allele proportion at locus 1 X1 specified in equation (9), X1 provides no information on

X2 when the endophenotype Y1 is observed in addition to Y2. In that case,

E[X2|X1, Y1, Y2] = E[X2|Y1, Y2] = δ0 + δ1Y1 + δ2Y2 + δ3Y1Y2 (9)

The consequence of this result is that association between the phenotype and the genotype

at locus 2 can be tested under one-locus models with optimal power. Using the genotype at

locus 1 in a two-locus model provides no further information.

Another important special case is when genotype frequencies at locus 2 depend on

Y2 only when the endophenotype impairment is present (Y1 = 1) or, said otherwise, the

genotype frequencies at locus 2 do not depend on Y2 when the endophenotype impairment
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is absent (Y1 = 0), i.e.

P [X2|Y1 = 0, Y2] = P [X2|Y1 = 0], Y2 = 0, 1,∀X2 (10)

The same property for the allele frequency at locus 2 derives from the definition of

expectation:

E[X2|Y1 = 0, Y2] = E[X2|Y1 = 0], Y2 = 0, 1

A corrolary is that the allele frequency at locus 2 as a function of Y1 and Y2 can be described

exactly by the linear model E[X2|Y1, Y2] = β0+β1Y1+β2Y1Y2 i.e. there is no main effect of Y2.

This special case is obtained when the prospective risk mechanisms satisfy certain

conditions, which are specific to each type of model. For a polytomous logistic model, the

required condition is that the logistic function contrasting Y2 = 1 and Y2 = 0 when Y1 = 0

is a constant, namely for an arbitrary vector of covariates Z:

log

(
P [Y1 = 0, Y2 = 1|X2, Z]

P [Y1 = 0, Y2 = 0|X2, Z]

)
= β20 (11)

For a transition model, the condition is that X2 appears in the model only in product

terms with Y1, so that the terms are equal to 0 when Y1 = 0. Mathematically, this can be

expressed as:

P [Y2 = 1|Y1, X2, Z] = f(γ0 + g1(Z) + Y1g2(X2, Z)), (12)

where g1(Z) and g2(X2, Z) are arbitrary functions of X2 and Z.

Conditioning on a fixed level of a covariate vector Z gives a less stringent version of 10.

In that case,

P [X2|Y1 = 0, Y2, Z = z] = P [X2|Y1 = 0, Z = z], Y2 = 0, 1,∀X2 (13)
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The same property for the allele frequency at locus 2 derives from the definition of

expectation:

E[X2|Y1 = 0, Y2, Z = z] = E[X2|Y1 = 0, Z = z], Y2 = 0, 1

The interpretation of (12) is that the probabilities P [X2|Y1 = 0, Y2 = 0, Z] and

P [X2|Y1 = 0, Y2 = 1, Z] are superimposed curves or surfaces as a function of an univariate

or multivariate Z. If the probability does not depend on Z, then the curve or surface is flat.

Note that Z can be X1, the allele count at locus 1.

For a polytomous logistic model, the required condition becomes that the logistic

function contrasting Y2 = 1 and Y2 = 0 when Y1 = 0 is a function of Z alone, namely for an

arbitrary vector of covariates Z:

log

(
P [Y1 = 0, Y2 = 1|X2, Z]

P [Y1 = 0, Y2 = 0|X2, Z]

)
= g(Z) (14)

Proofs that models satisfying the above conditions imply the special cases 10 and 13

are given in section 3 of the Appendix.

3. Simulation study

The first goal of the simulation study was to explore the distribution of disease

status and endophenotype resulting from the models described in previous sections in

families ascertained based on the disease status of their members. The second goal was

to illustrate our recommendations about the most powerful approach by presenting the

power of statistical tests to detect locus 2 and relate it to the characteristics of the genetic

mechanisms. We simulated the endophenotype Y1 under the two locus mechanism specified

for that trait in transition models or after marginalizing over Y2 under polytomous models,
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as in [18]. The computer package Simla [19] was used to simulate Y1 and marker genotypes

of the family members as described in section 2.1 of the Appendix.

In families, the complex phenotypes of relatives depend on one another through

multiple genes and possibly common environmental exposures. It is therefore unrealistic

to assume that the genotypes at the two loci included in a mechanism suffice to generate

a realistic dependance structure between relatives. A more plausible simulation scheme is

described in section 2 of the Appendix. We applied it to simulate the disease status Y2,

with the values of γ from the selection of scenarios described in section 2.2.3, a value of

σ = 1 giving a weak dependance between the disease status of relatives in addition to the

considered genotypes, a value of α = log(4) and a value of ν = 0.01.

3.1. Family structure and ascertainment scheme

The family structure used in the simulations is a 3-generation 16-members family

depicted in Figure 2, where a disease and endophenotype configuration obtained in our

simulation study is depicted as illustration. Our ascertainment criterion required a cousin

pair affected by the disease (see section 2.3 of the Appendix for more details). The disease

and endophenotype status of all family members was assumed to be observed. For each

scenario 10,000 families were generated. For the power comparisons, these families were

divided into 100 samples of 100 families.

3.2. Fitting linear models to allele frequencies

The risk allele frequency at locus 2 was estimated for each of the 12 combinations of

the disease status and endophenotype levels and the genotype at locus 1 by counting the
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alleles observed in the subjects falling in these 12 categories among the 160,000 subjects

from a sample of 10,000 16-member families. Linear models for the risk allele frequency at

locus 2 were then fitted by minimizing the SSE for the 12 combinations weighted by the

estimated frequencies as we have done on the theoretical frequencies in unrelated individuals

(Section 2.3.1). We elected to use a simple allele count instead of a more sophisticated

estimate taking into account dependance between the genotypes of subjects in the same

family because allele counts remain unbiased in presence of dependance and we were not

concerned with estimating the variability of the estimates given the large size of the sample

that we simulated.

4. Results

4.1. Distribution of disease status and endophenotype under the example

scenarios

Epidemiological parameters resulting from each scenario when the population risk

allele frequency (pRAF) at locus 2 is 0.3 are given in Table 3. The figures were similar with

pRAFs of 0.1 and 0.5 (not shown). The intercept parameters in the scenarios were selected

to achieve a disease prevalence around 1% and an endophenotype impairment prevalence in

unaffected subjects between 10 - 15% in unrelated individuals. Under our ascertainment

criterion, disease prevalence reaches about 15% in the family sample.

The endophenotype impairment prevalence in the unaffected subjects does not have the

same interpretation in ascertained family samples where unaffected subjects are relatives

of affected individuals than in unrelated subjects with no information on the phenotype of

relatives, which can be seen as population controls. The prevalence of the impairment in
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affected and unaffected subjects from the ascertained families (60 - 70% in affected subjects,

15 - 20% in unaffected subjects) was higher than the prevalence in unrelated affected and

unaffected subjects (48 - 58% in affected subjects, 10 - 13% in unaffected subjects). This is

an effect of the direct dependence of the disease diagnosis on the endophenotype introduced

into the simulation scheme. Families containing multiple subjects with an endophenotype

impairment then tend to contain more affected subjects, and therefore have a greater

probability of being ascertained. This implies that the endophenotype impairment is more

prevalent not only in the affected subjects, but also in the unaffected subjects. The higher

prevalence of alleles increasing the risk of both disease and endophenotype impairment

could also have contributed to the increased prevalence in ascertained families. We found

this contribution to be negligible, as the prevalences of the endophenotype impairment in

families simulated without direct dependence of the disease diagnosis on the endophenotype

status were similar to those from the unrelated subjects (results not shown).

With the simultaneous increase in prevalence of the endophenotype impairment

in affected and unaffected subjects, the OR measuring the association between disease

diagnosis and endophenotype impairment remained roughly at the same level for the same

polytomous model of genetic scenario between the ascertained family samples and the

unrelated subjects (7 - 8 with the exception of scenario P4 with an OR around 12). For the

genetic scenarios represented by transition models, the ORs between 7 - 9 in the unrelated

individuals increased by about one unit in the ascertained families due to a proportionally

greater endophenotype impairment prevalence increase in the affected subjects compared to

the unaffected ones.
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4.2. Selection of polytomous models of genetic scenarios

In what follows, X1 denotes the A allele proportion at locus 1 and X2 the B allele

proportion at locus 2. The values of the polytomous model coefficients corresponding to

each scenario are given in Table 1. Scenario P1 is the base scenario with only interaction

terms and the other scenarios were constructed by introducing various main effect terms.

Scenarios P1 and P4 satisfy condition 11 in unrelated subjects. Scenario P3 satisfies only

the less stringent condition 14.

4.2.1. Scenario P1

Under this scenario, locus 2 influences the risk of disease vs. endophenotype only when

a locus 1 endophenotype-related allele is present. The two loci have no effect on the risk

of disease in absence of the endophenotype. The phenotype-specific frequency of the risk

allele B of locus 2 as a function of locus 1 genotype in unrelated individuals is displayed

in Figure 3A when the B allele population frequency is 0.3. On the plot, one can see that

phenotypic categories differ in pRAF only when at least one A allele is present at locus 1.

In presence of the A allele, the largest pRAF difference is observed between affected and

unaffected subjects with the endophenotype. The pRAFs of the two disease statuses do not

differ in subjects without the endophenotype.

The B allele frequency E[X2|X1, Y1, Y2] is well described by the linear models on the

left side of table 4 (SSE ≤ 1% in unrelated individuals). As expected from property 14,

E[X2|X1, Y1 = 0, Y2 = 0] and E[X2|X1, Y1 = 0, Y2 = 1] are identical linear functions

of X1, which equal the population B allele frequency in carriers of the reference aa

genotype (X1 = 0). The pRAF difference between affected and unaffected subjects with
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the endophenotype (X1Y1Y2 term) increases with the pRAF, but at a slowing rate. In

ascertained families, the pRAF is elevated, particulary in carriers of the AA genotype at

locus 1, and the contrast between affected and unaffected subjects is somewhat attenuated

compared to unrelated subjects, but the same linear model provides a good fit to the data

(SSE = 3% for a pRAF of 0.3), indicating that property 14 is approximately satisfied.

If we consider only the genotype at locus 2, the one-locus expressions for the B allele

frequency are on the right side of table 4. These expressions are exact in unrelated subjects,

since scenario P1 satisfies condition 11, and provide an excellent fit in ascertained families

(SSE = 3% for a pRAF of 0.3). Among subjects with the endophenotype (Y1 = 0), the

contrast between affected and unaffected subjects is attenuated compared to its maximal

value in carriers of the AA genotype at locus 1 (for a pRAF = 0.3, we have 0.061 compared

to 0.396 - (-0.070) = 0.466 in unrelated individuals).

As expected from the above observations, a score test of locus 2 conditional on genotype

at locus 1 with the joint Y1, Y2 phenotype, β33, resulted in the highest power, while tests

considering only either the disease status or the endophenotype and locus 2 had low power

(Figure 4A).

In summary, scenario P1 exemplifies a mechanism with only interaction effects, where

pRAF differences at locus 2 are maximized in carriers of the risk allele at locus 1.
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4.2.2. Scenario P2

Scenario P2 differs from scenario P1 in that the locus 2 genotype has an effect on the

risk of the disease independently of the locus 1 genotype. This is reflected in the pRAF

at locus 2 on Figure 3B and the linear models for E[X2|X1, Y1, Y2] on the left side of

table S1 (SSE ≤ 1% in unrelated individuals). If we consider only the genotype at locus

2, the one-locus expressions for the pRAF are on the right side of table S1 (SSE ≤ 2.1%

for unrelated subjects). Both types of models indicate a much higher pRAF in affected

than in unaffected subjects, whether an endophenotype impairment is present or not. In

ascertained families, the pRAF is greatly elevated and the difference in pRAF is reduced

(right side of table S1).

The strong marginal association between the allele proportion X2 and the disease

phenotype Y2 implies that the power of a standard association test is expected to be good.

The much higher contrast in pRAF between affected and unaffected subjects in carriers of

two risk alleles at locus 1 (0.241 + 0.161 - (-0.063) = 0.465 with pRAF = 0.3 in unrelated

individuals) could provide a boost in power under two-locus models considering locus 1,

although all pRAF differences are attenuated in ascertained families when the pRAF =

0.3. We observe on Figure 4B that tests of association to the dichotomous disease status

have 100% power, whether they are single-locus (MQLSd, GDTd) or conditionnal on locus

1 (cdisease). Tests involving Y1 and Y2 (MQLSde, β3(1L), cpoly) have only slightly lower

power, but the small difference may be misleading given the ceiling effect on power under

this scenario.
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4.2.3. Scenario P3

Scenario P3 differs from scenario P1 in that the locus 1 genotype has an effect on the risk

of the disease independently of the locus 2 genotype, in addition to its effect on the risk of the

endophenotype impairment. This locus 1 effect on the risk of disease has little impact on the

pRAF at locus 2 given the disease and endophenotype status and the genotype at locus 1,

as can be seen by comparing Figure 3C and 3A. Indeed, the best fitting linear models of the

B allele frequency are similar to the corresponding expression for Scenario P1, except for the

magnitude of the interaction term (left side of table S2, SSE ≤ 0.2% for unrelated subjects).

As expected from property 14, E[X2|X1, Y1 = 0, Y2 = 0] and E[X2|X1, Y1 = 0, Y2 = 1]

are identical linear functions of X1. If we consider only the genotype at locus 2, the

one-locus expression for the pRAF is also similar to that for Scenario P1, except here it

is not an exact expression since scenario P3 does not satisfy condition 11(Right side of

table S2. SSE ≤ 0.02% for unrelated subjects).

As with Scenario P1, pRAF differences at locus 2 are maximized in carriers of the risk

allele at locus 1 and a score test of locus 2 conditional on genotype at locus 1 with the joint

Y1, Y2 phenotype, β33, resulted in the highest power.

4.2.4. Scenario P4

Scenario P4 differs from scenario P1 in that the locus 2 genotype has an effect on

the risk of endophenotype impairment. The scenario is such that risk alleles at either

locus 1 or locus 2 increase the risk of endophenotype impairment, but having both results

in no further risk increase. Figure 3D illustrates the implications for the pRAF at locus
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2. In carriers of the reference aa genotype at locus 1, there is a difference in pRAF

at locus 2 between subjects with and without the endophenotype impairment, while in

carriers of the AA genotype at locus 1, only the affected subjects with an endophenotype

impairment differ in pRAF at locus 2 from the other three groups of subjects. The

B allele frequency E[X2|X1, Y1, Y2] is well described by the linear model on the left

side of table S3 (SSE ≤ 0.5% for unrelated subjects). As expected from property 14,

E[X2|X1, Y1 = 0, Y2 = 0] and E[X2|X1, Y1 = 0, Y2 = 1] are identical linear functions of X1.

If we consider only the genotype at locus 2, the one-locus expressions for the pRAF

are on the right side of table S3. These expressions are exact in unrelated subjects, since

scenario P4 satisfies condition 11. The marginal association between the allele count

X2 and the endophenotype provides power to detect locus 2. The largest effect size is

however obtained when considering locus 1 and 2 together (0.246 - (-0.069) = 0.32 with

pRAF = 0.3). In the simulations, power is highest for the tests of association with the

dichotomous endophenotype, either the single locus MQLSe and GDTe tests or the cendo

test conditionning on locus 1 (Figure 4D).

4.2.5. Scenario P5

Scenario P5 differs from scenario P1 in that the two loci interact to cause the disease,

irrespective of the endophenotype status, as reflected in the pRAF at locus 2 presented on

Figure 3E. The B allele frequency E[X2|X1, Y1, Y2] is well described by the linear models on

the left side of table S4 (SSE = 0.03% for unrelated subjects). The one-locus models best

fitting the B allele frequency considering only the genotype at locus 2 are on the right side

of table S4 (20% < SSE < 32% for unrelated subjects).
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In the two linear models, terms involving the endophenotype are smaller than the

terms involving the disease. This suggests that a classical interaction analysis of locus 1

and 2 with respect to the disease alone would be powerful, and that the modeling of the

endophenotype would provide no benefit. This is indeed what the simulations show, with

the highest power being achieved by a conditional test of locus 2 given locus 1 under the

classical two-locus model for the dichotomous disease phenotype (cdisease) (Figure 4D).

4.3. Selection of transition models of genetic scenarios

As we saw in section 2.2.2, mechanisms where the disease status Y2 does not depend

directly on the genotype at locus 1 represented by X1 as specified in equation 9 imply

that the pRAF at locus 2 does not depend on X1. Therefore, when the goal is to detect

association to locus 2, X1 brings no information given the endophenotype Y1 and should

not be included in the analysis. The analysis strategies should then be selected among

one-locus models.

We consider here the alternative situation where the disease status Y2 depends directly

on X1, X2 and Y1. We examine transition models where Y1 depends only on X1 (equation 8),

a restriction that is not possible with polytomous models. The values of the coefficients

corresponding to each transition model are given in Table 2. Scenarios T1 and T3 satisfy

condition 11.

4.3.1. Scenario T1

Like in scenario P1, locus 2 influences disease risk only in presence of an endophenotype

impairment and a locus 1 risk allele, through the triple interaction term. The phenotype-

specific frequency of the risk allele B of locus 2 when the B allele population frequency
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equals 0.3 is displayed in Figure 5A. On the plot, one can see that, in presence of the A

allele, affected subjects with the endophenotype impairment differ from the other three

groups which all have an approximately constant pRAF of 0.3. The B allele frequency

E[X2|X1, Y1, Y2] is well described by the linear model reported in table 5 (SSE ≤ 0.5% for

unrelated subjects). In ascertained families, the contrast between affected and unaffected

subjects is somewhat attenuated compared to unrelated subjects, but the same linear model

provides a good fit to the data (SSE = 17% for a pRAF of 0.3).

If we consider only the genotype at locus 2, the one-locus expressions for the pRAF are

on the right side of table 5. These expressions are exact in unrelated subjects, since scenario

T1 satisfies condition 12, and provide an excellent fit in ascertained families (SSE = 4%

for a pRAF of 0.3). Among subjects with the endophenotype impairment (Y1 = 1), the

contrast between affected and unaffected subjects (0.027 - (-0.001) = 0.028 with pRAF

= 0.3) is attenuated compared to its maximal value in carriers of two A risk alleles at

locus 1 (0.17 - (-0.01) = 0.18). Even though the true underlying mechanism is a transition

model, the existence of a genetic effect on disease only in presence of an endophenotype

impairment gives the test of the interaction term β33 for the category Y1 = 1, Y2 = 1 under

a polytomous model greater power than tests of association to the dichotomous disease

status or endophenotype (Figure 6A).

4.3.2. Scenario T2

Under this scenario, there is no triple interaction X1X2Y1 on the multiplicative risk

of disease. The interaction term between locus 1 and 2 X1X2 is present in subjects with

and without an endophenotype impairment, but multiplies a larger risk in subjects with

an impairment than in those without. The pRAF at locus 2 does not differ substantially
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between subjects with and without an impairment on the endophenotype (Figure 5B).

Consequently, the best fitting linear model (SSE ≤ 3.3% for unrelated subjects) does not

involve Y1, as can be seen on the left side of table S5.

If we consider only the genotype at locus 2, the one-locus expression for the pRAF

is a simple function of Y2 (see right side of table S5). The absence of Y1 indicates that

the endophenotype Y1 need not be considered in the analysis while the higher contrast

between affected and unaffected subjects in carriers of the AA genotype at locus 1 than

in the general population (0.160 - (-0.003) = 0.163 compared to 0.019 with pRAF=0.3)

suggests that conditioning on locus 1 will provide a power gain. In the simulation study, the

higher power of the conditional test of locus 2 given locus 1 under the classical two-locus

model for the dichotomous disease phenotype (cdisease) or the polytomous model (β33)

compared to the single locus GDTd counterpart is consistent with this observation, but we

also notice that single locus MQLS tests achieve a level of power similar to the conditional

tests. (Figure 6B).

4.3.3. Scenario T3

Scenario T3 differs from scenario T1 in that the locus 2 genotype has an effect on the

risk of the disease independently of the locus 1 genotype. This is reflected in the pRAF

presented on Figure 5C. The B allele frequency E[X2|X1, Y1, Y2] is well described by the

linear models reported in table S6 (SSE ≤ 1.0% for unrelated subjects).

If we consider only the genotype at locus 2, the one-locus expressions for the pRAF

are exact, since scenario T3 satisfies condition 12(see right side of table S6), and provide an

excellent fit in ascertained families (SSE = 3% for a pRAF of 0.3). Among subjects with

the endophenotype (Y1 = 1), the contrast between affected and unaffected subjects (0.111 -
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(-0.004) = 0.12 with pRAF = 0.3) remains sufficiently important compared to its maximal

value in carriers of the AA genotype at locus 1 (0.18 + 0.08 - (- 0.016) = 0.28) to confer

good power to a single-locus analysis of X2. This is what we observe in the simulations,

where a test of β3(1L) in the polytomous model and the MQLSde test with X2 achieving

both a power of 0.87 (Figure 6C). Tests of association with the disease status ignoring the

endophenotype have lower power than the tests taking the endophenotype into account.

5. Discussion

We have addressed in this work a topic that has been little studied before: the genetic

association patterns arising when a disease status and a dichotomous endophenotype are

considered jointly, in function of the relationships between the disease, the endophenotype

and genetic variants. We described these relationships using two established types of

prospective models for bivariate dichotomous outcomes: polytomous models and transition

models. We have focused on two-locus systems where the presence of risk alleles at locus

2 shifts the effect of locus 1 from a risk of endophenotype impairment without disease to a

risk of endophenotype impairment with disease.

We examined expected allele frequency at locus 2 in function of the disease and

endophenotype statuses and genotype at locus 1, since it is driving power to detect a locus.

First, we presented special cases of allele frequency models, in particular when locus 2 has

an effect on the risk of disease only in presence of endophenotype impairment. We derived

conditions that polytomous and transition models must satisfy to obtain these special cases.

Next, since allele frequencies or frequency ratios at locus 2 are not interpretable explicit

expressions of other parameters under the two-locus two-phenotype system considered,

we examined a selection of scenarios of polytomous and transition models that represent
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variations of our base scenario. For each of these, we approximated allele frequencies

at locus 2 in unrelated subjects by a linear function of the disease and endophenotype

statuses and allele proportion at locus 1. We also simulated data in families ascertained for

the presence of multiple affected subjects. In these simulations, we included familial and

disease-endophenotype dependence. This simulation scheme produced higher prevalences of

endophenotype impairment in both affected and unaffected members of disease-ascertained

families compared to unrelated subjects because of familial correlation, the association

parameters for the susceptibility loci remaining unchanged. This increased prevalence is

consistent with epidemiological evidence for various diseases and endophenotypes (see [20]

for a review covering schizophrenia and bipolar disorder).

We draw two general observations from our examination of a selection of genetic

scenarios represented by polytomous and transition models. First, under mechanisms

where the locus 2 risk allele has an effect exclusively in subjects with the endophenotype,

the risk allele frequency differences between affected and unaffected subjects are much

greater in the subset of subjects with an endophenotype impairment than in those without

such impairment, and power gains are obtained when testing association under a joint

disease-endophenotype model, either two-locus (scenarios P1, P3, T1 and T3) or single

locus (scenario T3) compared to testing association to the disease status alone. This

advantage vanishes however when locus 2 has a main effect on the risk of disease, even

though the allele frequency at locus 2 still depends strongly on the presence or not of the

endophenotype (scenarios P2, P5 and T2). The power advantage also vanishes when locus

2 has a main effect on the risk of endophenotype impairment, but this time to the benefit

of tests of association of the endophenotype status alone (scenario P4). When detecting

association to the endophenotype alone, inference of an effect of the locus on disease status

can only be made indirectly, through the endophenotype - disease association.
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Second, when interaction effects between locus 1 and 2 are the only effects of these

loci on the phenotype, the locus 2 allele frequency differences between affected and

unaffected subjects are much greater in carriers of risk genotypes at locus 1, and tests

of association conditioning on locus 1 genotype are more powerful than association

tests with locus 2 alone. This observation was made previously with dichotomous

disease outcomes in the context of gene-environment interaction where the environmental

exposure plays the role of locus 1 [21]. Our contribution is to show that the higher

power of conditional tests applies under joint modeling of a disease and endophenotype

(scenarios P1, P3, T1 and T3), and not only when the strongest association is seen

with the disease alone (scenarios P2, P5 and T2) or the endophenotype alone (scenario

P3). When locus 2 has a main effect on the risk of disease, the conditional tests retain

a power similar to the tests of locus 2 alone, an observation also in line with the study of [21].

Our observations are subject to a number of limitations. Given the high dimension of

the classes of two-locus mechanisms of a disease and an endophenotype that we considered,

the parameter space could not be explored exhaustively, and different behaviours may be

observed with other combinations of parameter values. In all mechanisms considered the

effect of each locus was a function of the risk allele proportion at the locus (multiplicative

odds ratios model). We anticipate that most of our observations will hold under other

mechanisms of locus effects, in particular dominant and recessive effects, where the variables

X1 and X2 become indicators of the presence of risk genotypes. The application of allelic

models to data arising from other forms of locus effects may nevertheless have unexpected

impacts on the relative power of the testing strategies that we considered. Multiple

endophenotypes may also be related to the same disease. If each endophenotype represents
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a distinct biological trait, one can hope that each will be influenced by distinct loci, so

that each endophenotype with the locus pairs associated to it and the disease will be well

described by two-locus mechanisms described in this work. It is however possible for the

same locus to be associated to multiple endophenotypes, such that models for a single

endophenotype and the disease do not result in a signal sufficient to detect new loci by

conditioning on a known one. We also assumed that the markers tested were the actual

risk variants or in perfect linkage disequilibrium (LD) with the risk variant. Imperfect LD

between a marker and the causal variant typically attenuates genetic effects; certain effects

may be attenuated to a greater extent than others, altering the relative power of the testing

strategies. Our study is also limited to two risk loci in linkage equilibrium and does not

address the impact of LD when the two risk loci are nearby. Finally, our joint disease -

endophenotype analysis under a two-locus model may not have been the most powerful

possible, since it was limited to within-family score tests, which tend to be less powerful

than population-level tests, as can be noted in this simulation study when comparing MQLS

and the GDT. The unavailability of a two-locus analysis approach with the optimality

properties of MQLS prevented us from performing such population-level analysis.

6. Conclusions

In conclusion, we showed that jointly modeling a disease, an endophenotype and

a marker at a known susceptibility locus improves the power to detect another locus

whose effect on disease susceptibility is expressed only in subjects with an endophenotype

impairment, but that modest main effects on the risk of disease suffice to revert the

advantage to association tests with the dichotomous disease status alone. Joint modeling

of disease and endophenotype should be used only in parallel with standard association
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testing with the disease status.
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Figure legends

Fig. 1.— Graphical models. Directed graphical representation of models of the rela-

tionships between disease status Y2, endophenotype value Y1 and the genotype at two loci

represented by X1 and X2. A: Endophenotype Y1 depends only on locus 1 (condition 5); B:

General model, only assuming marginal independence, or linkage equilibrium, between locus

1 and locus 2.

Fig. 2.— Structure of simulated families. A phenotypic configuration typical of the

simulated families is depicted.

Fig. 3.— Theoretical risk allele frequencies under polytomous models. Theoretical

frequency of risk allele B at locus 2 by number of A alleles at a known susceptibility locus

1, disease and endophenotype status, when the population B allele frequency = 0.3. Panels

A to E represent polytomous models P1 to P5.

Fig. 4.— Power of family-based association for polytomous models. Power of the

various family-based association testing strategies described in section 2.2.2 at a significance

level α = 0.05. Panels A to E represent polytomous models P1 to P5 with a population risk

allele frequency at locus 2 = 0.3.

Fig. 5.— Theoretical risk allele frequencies under transition models. Theoretical

frequency of risk allele B at locus 2 by number of A alleles at a known susceptibility locus

1, disease and endophenotype status, when the population B allele frequency = 0.3. Panels

A to C represent transition models T1 to T3.
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Fig. 6.— Power of family-based association for transition models. Power of the

various family-based testing strategies described in section 2.2.2 at a significance level α =

0.05. Panels A to C represent transition models T1 to T3 with a population risk allele

frequency at locus 2 = 0.3.

Tables

Table 1: Regression coefficients of the example polytomous model scenarios

β11 β12 β13 β21 β22 β23 β31 β32 β33

scenario P1 log(2) 0 -log(2) 0 0 0 0 0 log(16)

scenario P2 log(2) 0 -log(2) 0 log(4) 0 0 log(4) log(4)

scenario P3 log(2) 0 -log(2) log(4) 0 0 log(4) 0 log(4)

scenario P4 log(2) log(2) -log(2) 0 0 0 0 log(2) log(4)

scenario P5 log(2) 0 -log(2) 0 0 log(16) 0 0 log(16)
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Table 2: Regression coefficients of the example scenarios of the

disease status within transition models a

γ1 γ2 γ3 γ4 γ5 γ6 γ7

scenario T1 0 0 0 log(8) 0 0 log(4)

scenario T2 0 0 log(4) log(8) 0 0 0

scenario T3 0 0 0 log(5) 0 log(2) log(4)

a The model for the endophenotype is of the form 5 with β1 =

log(2).

Table 3: Disease and endophenotype impairment prevalences in unrelated individ-

uals and ascertained families.

Unrelated individuals Ascertained families

P (Y2)
a P0(Y1)

b P1(Y1)
c ORd P (Y2)

a P0(Y1)
b P1(Y1)

c ORd

polytomous scenarios

scenario P1 0.0076 0.125 0.534 8.04 0.147 0.191 0.646 7.83

scenario P2 0.0076 0.125 0.520 7.60 0.149 0.189 0.629 7.37

scenario P3 0.0089 0.125 0.524 7.70 0.153 0.191 0.628 7.27

scenario P4 0.0086 0.098 0.573 12.38 0.148 0.152 0.690 12.68

scenario P5 0.0081 0.125 0.500 7.00 0.149 0.192 0.612 6.76

transition scenarios

scenario T1 0.0106 0.120 0.540 8.61 0.160 0.173 0.678 10.21

scenario T2 0.0108 0.120 0.528 8.18 0.162 0.174 0.666 9.57

scenario T3 0.0094 0.120 0.486 6.93 0.156 0.181 0.633 7.92

a P (Y2 = 1), the disease prevalence.

b P (Y1 = 1|Y2 = 0), the endophenotype prevalence in the unaffected subjects.

c P (Y1 = 1|Y2 = 1), the endophenotype prevalence in the affected subjects.

d P (Y1=1|Y2=1)
P (Y1=0|Y2=1)

/
P (Y1=1|Y2=0)
P (Y1=0|Y2=0)
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Table 4: Values of the coefficients of linear models of the population risk allele frequency at locus

2 for polytomous phenotype scenario P1.

Model conditional on X1 Model ignoring X1

pRAFa Intercept X1 X1Y1 X1Y1Y2 Intercept Y1 Y1Y2

Unrelatedb 0.1 0.100 0.004 -0.029 0.206 0.100 -0.004 0.024

0.3 0.300 0.009 -0.070 0.396 0.301 -0.008 0.061

0.5 0.500 0.009 -0.086 0.404 0.501 -0.010 0.076

Ascertained familiesc 0.3 0.315 0.050 -0.083 0.316 0.322 -0.010 0.048

a Population risk allele frequency

b Least square fit to expected allele frequency at locus 2 for each combination of explanatory

variables

c Least square fit to empirical allele frequency at locus 2 for each combination of explana-

tory variables in data simulated under the familial dependence simulation model with

σ2 = 1.0, α = log(4) = 1.386 and ν = 0.01 in 3-generation 16-members family depicted

in Figure 2 ascertained for at least a cousin pair affected by the disease
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Table 5: Values of the coefficients of linear models of the population risk allele frequency

at locus 2 for transition scenario T1.

Model conditional on X1 Model ignoring X1

pRAFa Intercept X1Y1 X1Y1Y2 Intercept Y1 Y1Y2

Unrelatedb 0.1 0.100 -0.004 0.078 0.100 -5e-4 0.011

0.3 0.300 -0.010 0.170 0.300 -0.001 0.027

0.5 0.500 -0.013 0.180 0.501 -0.002 0.034

Ascertained familiesc 0.3 0.309 -0.010 0.143 0.310 -0.003 0.025

a Population risk allele frequency

b Least square fit to expected allele frequency at locus 2 for each combination of ex-

planatory variables

c Least square fit to empirical allele frequency at locus 2 for each combination of

explanatory variables in data simulated under the familial dependence simulation

model with σ2 = 1.0, α = log(4) = 1.386 and ν = 0.01 in 3-generation 16-members

family depicted in Figure 2 ascertained for at least a cousin pair affected by the

disease
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Additional Files

Appendix revision.pdf

Appendix

Section about simulating a bidimensional dichotomous phenotype in families, simulation of

Y1 and genotypes, family ascertainment, and proof of properties 10 and 13.

SupplementaryTables.pdf

Supplementary Tables

Tables of coefficients of linear models for polytomous scenarios P2, P3, P4 and P5, and

transition scenarios T2 and T3 (tables S1, S2, S3, S4, S5 and S6).


