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Résumé
Cette thèse vise à modéliser numériquement des barrages en enrochements pendant les 

phases de construction et de mise en eau. Ceci est fait en se basant sur des essais en 

laboratoire et l’analyse des données de l'instrumentation insitu. Des essais triaxiaux en 

compression monotone à déformation/contrainte contrôlée sont effectués sur des 

assemblages compactés de particules de granit. Les échantillons utilisés en laboratoire ont 

initialement été préparés à différentes densités sèches et à différentes granulométries. Une 

loi de comportement élastoplastique parfait, en considérant l’élasticité non linéaire est 

implémentée dans le logiciel FLAC. Ceci est fait pour modéliser le comportement des 

particules de roche pendant les essais. Le nouveau modèle est basé sur le comportement 

hyperbolique, en considérant le critère de rupture de Mohr-Coulomb avec une règle 

d'écoulement non associé pour considérer la dilatance à cause du cisaillement. La technique 

de relaxation des contraintes de Nobari-Duncan est également implémentée dans FLAC 

avec les procédures modifiées et les nouveaux algorithmes pour reproduire les 

déformations causées par le mouillage. À l'aide de neuf paramètres, le modèle réussi à 

reproduire le comportement observé pendant les essais triaxiaux et à caractériser 

l'assemblage des particules de roche. Les effets de temps et de saturation sont également 

discutés en détail. Finalement, le modèle est utilisé pour la modélisation des étapes de la 

construction et de la mise en eau du barrage en enrochement LG4 construit au Québec, 

Canada. Les résultats de la modélisation sont comparés avec les données de 

l'instrumentation. Aussi, les efforts antérieurs de modélisation de ce barrage et les 

avantages du nouveau modèle sont discutés. 

  



 iii
 

Abstract
This thesis contributes to the field of numerical modeling of rockfill dams during 

construction and impoundment based on laboratory research and field instrumentation. 

Data is presented from monotonic triaxial compression tests, in both stress and strain-

controlled conditions, on compacted assemblages of granite rock particles prepared in the 

laboratory using different initial dry densities and grain size distribution. A nonlinear 

elastic-perfectly plastic constitutive model is implemented into the commercial software, 

FLAC, to simulate the behavior of the rock particles during the tests. The new 

implemented model is the traditional hyperbolic model coupled with the Mohr-Coulomb 

plastic failure criteria, and with a non-associated flow rule to consider shear dilatancy. The 

Nobari-Duncan stress relaxation technique with modified procedures and algorithms is also 

implemented in FLAC to reproduce the collapse deformations due to wetting. Using nine 

parameters, the model is successful to capture the observed behavior in the triaxial tests 

and to characterize the assemblage of rock particles. The effects of time and saturation are 

also discussed in detail. Finally, the model is used to simulate the construction and 

impoundment stages of LG4 rockfill dam in Quebec, Canada. The results of the modeling 

of both stages are compared with the instrumentation data and previous efforts of the 

modeling of this dam and the advantages of the new model are discussed.  

 

 

 



 iv
 

Foreword
This thesis is a part of the industrial chair at Laval University titled as «optimisation du 

cycle de vie des barrages en remblai» funded by CRSNG and Hydro Québec. The first 

phase of the research in this chair has started on autumn 2009 with the main objective to 

develop tools for analyzing and predicting the behavior of embankment dams in the  

Province of Québec. It is divided into three categories: (i) characterisation of the materials; 

(ii) instrumentation and monitoring the behavior of the dams; (iii) numerical modeling and 

prediction of the behavior of the dams.  

The laboratory tests were conducted at the geotechnical lab of Laval University under 

supervision of Prof. Jean-Marie Konrad and Mr. François Gilbert. The material used in the 

experiments was gathered from the shell zone of Romaine-2 rockfill dam which was under 

construction during the course of this research. The simulations were carried out using the 

FLAC software. The computer codes and scripts and the results of the modeling are given 

in the appendices and are original. The data of the LG-4 rockfill dam was provided by Dr. 

Marc Smith from Hydro Québec who also shared his great experience in different dam 

projects in province of Québec. 

I would like to thank my supervisor Professor Jean-Marie Konrad for giving me valuable 

advice and support whenever needed, and the supervisor of the laboratory Mr. François 

Gilbert for preparing the triaxial test setup and providing the results of the strain controlled 

tests presented in the third chapter. I would also like to extend my appreciation to the 

members of jury who studied my thesis and provided very useful comments to make it 

better: Prof. Eduardo Alonso from Universitat Politècnica de Catalunya, Prof. Serge 

Leroueil from Université Laval and Dr. Marc Smith from Hydro Quebec; and also to the 

other professors and staff of my university who shared their knowledge and experiences: 

Prof. Denis Leboeuf, Prof. Jean Côté, Dr. Marc Lebeau and Mr. Luc Boisvert. Last but not 

least, I gratefully thank my family and friends who supported me during the hard time and 

also for the great memories we had in the beautiful Quebec City. 

 



 v
 

I dedicate this work to my country Iran where 
I have studied and acquired knowledge for 

twenty years. 
 

 



 

Table of contents 
Résumé ................................................................................................................................... ii
Abstract ................................................................................................................................. iii
Foreword ................................................................................................................................ iv
Table of contents .................................................................................................................... vi
List of tables ........................................................................................................................ viii
List of figures ......................................................................................................................... ix
Nomenclature ...................................................................................................................... xiii
1 Introduction ..................................................................................................................... 1
2 A review of constitutive models implemented in modeling the behavior of rockfill 
dams during construction and impoundment .......................................................................... 9

2.1 Introduction ........................................................................................................... 10
2.2 Physical and engineering properties of rockfill .................................................... 10
2.3 Constitutive modeling ........................................................................................... 11

2.3.1 Linear elastic model .......................................................................................... 12
2.3.2 Non-linear elastic models ................................................................................. 13
2.3.3 Anisotropic elastic model ................................................................................. 18
2.3.4 Elasto-Plastic models ........................................................................................ 21
2.3.5 Barcelona model (critical state concept) ........................................................... 30
2.3.6 Hypoplastic models ........................................................................................... 35

2.4 Comparison of constitutive models ...................................................................... 41
2.5 Conclusion ............................................................................................................ 44

3 Modeling the behavior of a compacted assemblage of rock particles during monotonic 
triaxial compression tests ...................................................................................................... 60

3.1 Introduction ........................................................................................................... 61
3.2 Constitutive equations ........................................................................................... 62

3.2.1 Elastic formulation ............................................................................................ 64
3.2.2 Plastic formulation ............................................................................................ 65

3.3 Laboratory testing ................................................................................................. 67
3.3.1 Triaxial setup .................................................................................................... 68
3.3.2 Specimen preparation ....................................................................................... 68
3.3.3 Membrane penetration ...................................................................................... 69
3.3.4 Strain rate .......................................................................................................... 69

3.4 Test results ............................................................................................................ 70
3.5 Calibration of the implemented model ................................................................. 71
3.6 Discussion of the test results ................................................................................. 74

3.6.1 Dilative behavior ............................................................................................... 75
3.7 Conclusion ............................................................................................................ 76

4 Modeling the deterioration of contact points in a compacted assemblage of rock 
particles during monotonic triaxial compression .................................................................. 97

4.1 Introduction ........................................................................................................... 98
4.2 Constitutive model .............................................................................................. 100

4.2.1 Dry-wet transition ........................................................................................... 101
4.2.2 Uniaxial compression condition ..................................................................... 101
4.2.3 Triaxial compression condition ...................................................................... 102



 vii
 

4.2.4 Application in numerical modeling ................................................................ 103
4.2.5 Creep deformations ......................................................................................... 106

4.3 Laboratory tests ................................................................................................... 106
4.3.1 Material tested ................................................................................................. 107
4.3.2 Specimen preparation ..................................................................................... 107
4.3.3 Triaxial setup .................................................................................................. 108
4.3.4 Strain rates in strain controlled tests ............................................................... 109
4.3.5 Stress rates in stress controlled tests ............................................................... 110

4.4 Test results .......................................................................................................... 112
4.4.1 Strain controlled tests ...................................................................................... 112
4.4.2 Stress controlled tests ...................................................................................... 113

4.5 Implementation of the numerical model ............................................................. 115
4.5.1 Strain-controlled tests ..................................................................................... 115
4.5.2 Stress-controlled tests ..................................................................................... 116

4.6 Discussion of test results ..................................................................................... 118
4.7 Conclusion .......................................................................................................... 118

5 Numerical modeling of the construction and impoundment stages of LG4 rockfill dam
 148

5.1 Introduction ......................................................................................................... 149
5.2 Constitutive model .............................................................................................. 149
5.3 LG4 dam ............................................................................................................. 151
5.4 Parameters of the model ..................................................................................... 152
5.5 Analysis of the construction stage ...................................................................... 154
5.6 Analysis of the impoundment of the reservoir .................................................... 156
5.7 Conclusion .......................................................................................................... 161

6 Conclusion .................................................................................................................. 182
References ........................................................................................................................... 190
Appendix 1 – FISH scripts .................................................................................................. 197

1- HPD model (UDM) .................................................................................................... 198
2- Stress relaxation due to wetting .................................................................................. 206

Appendix 2 – complete results of the modeling of LG4 ..................................................... 214
1-construction stage ........................................................................................................ 214
2-impoundement stage .................................................................................................... 214

 



 

List of tables 
 
Table  1-1- high rockfill dams around the world ..................................................................... 8
Table  2-1 – Application of different constitutive laws in modeling rockfill dams ............... 59
Table  3-1. Triaxial test condition .......................................................................................... 93
Table  3-2. Hyperbolic parameters in the published test data of rockfill dams ..................... 94
Table  3-3.  model parameters for the assemblage of granite particles in the conducted 

triaxial tests ................................................................................................................... 96
Table  4-1- elasto plastic parameters of the implemented model ........................................ 145
Table  4-2. Strain-controlled triaxial compression test conditions ...................................... 145
Table  4-3- Stress-controlled triaxial compression test conditions ...................................... 146
Table  4-4- calibrated elasto-plastic parameters of the tested material ................................ 147
Table  4-5- change of modulus numbers related to the duration of stress controlled tests. . 147
Table  5-1- Elastic and plastic parameters of HPD model ................................................... 179
Table  5-2- Specifications for placement of materials of different zones of LG4 dam ....... 179
Table  5-3- Elastic parameters used in previous simulations of the construction stage of LG4 

dam. ............................................................................................................................. 180
Table  5-4- HPD model parameters for different zones of  LG4 dam used in current study 

(dry material). ............................................................................................................. 180
Table  5-5- Hydraulic conductivities of different zones of the dam. ................................... 181
Table  5-6 – Effects of saturation on the parameters of the HPD model; the values in 

parentheses are for saturated material ......................................................................... 181



 

List of figures 
 
Figure  1-1. Different stages of the lifespan of a rockfill dam: (a) preparation of the 

foundation, construction in layers; (b) increasing the level of the water of the reservoir 
in several steps; (c) operation: creep, changing the level of the reservoir, seismic 
motion ............................................................................................................................. 8

Figure  2-1 – Schematic of the Bi-linear model ..................................................................... 46
Figure  2-2 – Schematic of the K-G model ............................................................................ 46
Figure  2-3- Stress-strain curve for the nonlinear hyperbolic model; after Singh et al. (2009)

 ...................................................................................................................................... 47
Figure  2-4- Introducing the inelasticity in hyperbolic model by the means of unloading-

reloading modulus (Kur) ............................................................................................... 48
Figure  2-5- variation of bulk modulus with confining stress in logarithmic scale ............... 49
Figure  2-6- Calculation of the collapse deformation due to wetting using triaxial test results 

and comparison of stress-strain and volume change curves for dry, wet, and dry-wet 
specimens;  after Nobari and Duncan (1972) ............................................................... 50

Figure  2-7- Perfect plastic yield surfaces in principal stress space (a)Tresca (b)Von Mises 
(c) Mohr-Coulomb (d) Drucker-Prager ........................................................................ 51

Figure  2-8- Drucker-Prager and Mohr-Coulomb yield surfaces in the deviatoric plane ...... 52
Figure  2-9- Comparison of Lade and Matsuoka-Nakai failure surfaces with Mohr-Coulomb 

and circumscribed Drucker-Prager surfaces in the deviatoric plane. ........................... 53
Figure  2-10- Yield surfaces for Lade’s double hardening model ......................................... 54
Figure  2-11- Conical failure criteria of the Lade’s double hardening model; and its 

expansion in deviatoric space ....................................................................................... 54
Figure  2-12- Predicted and measured behavior in triaxial tests of rockfill material from 

Roadford dam by (a) Mohr-Coulomb model with constant dilation angle; (b) Lade’s 
model  with stress dependent volumetric behavior; after Kovacevic et al. (2008). ...... 55

Figure  2-13- Rockfill oedometer test setup with a relative humidity control system; after 
Oldecop and Alonso (2001) .......................................................................................... 56

Figure  2-14- Pressure dependence of the maximum void ratio emax, the minimum void ratio 
emin, and the critical void ratio ec; after Bauer (2009). .................................................. 57

Figure  2-15- Estimation of solid hardness from an isotropic compression test in a semi-
logarithmic representation; after Bauer (2009). ............................................................ 57

Figure  2-16- Influence of the reduction of the solid hardness on the compression behavior
 ...................................................................................................................................... 58

Figure  2-17- Influence of the reduction of the solid hardness on the limit void ratios. ....... 58
Figure  3-1 typical stress-strain-volume change behavior of sand samples in triaxial tests; 

after Habib and Luong (1978) ...................................................................................... 78
Figure  3-2 Schematic of the implemented model ................................................................. 79
Figure  3-3 Granite rockfill particles ..................................................................................... 80
Figure  3-4- Gradation curve of the tested material ............................................................... 81
Figure  3-5 Triaxial specimen after the test ........................................................................... 82
Figure  3-6 Observed stress-strain-volumetric behavior of the dry specimens in the 

monotonic triaxial tests ................................................................................................. 83



 x
 

Figure  3-7 Observed stress-strain-volumetric behavior of the saturated specimens in the 
monotonic triaxial tests ................................................................................................. 84

Figure  3-8 Variations of hyperbolic parameters in published laboratory test data on rockfill
 ...................................................................................................................................... 85

Figure  3-9 Calibration of the implemented model with the experimental data for dry 
specimens with density of  2000 kg/m3 (a) Calibration of , , , ,  at the 
confining pressure of 100 kPa (reference pressure) (b) Calibration of m, n, , and  
for a different confining pressure of 300 kPa. (c) Prediction of the behavior at 600kPa
 ...................................................................................................................................... 86

Figure  3-10 Comparison of numerical model and experimental data for dry specimens with 
dry density of 1900 kg/m3 ............................................................................................. 87

Figure  3-11 Comparison of numerical model and experimental data for saturated specimens 
with dry density of 2000 kg/m3 ..................................................................................... 88

Figure  3-12 Comparison of numerical model and experimental data for saturated specimens 
with dry density of 1950 kg/m3 ..................................................................................... 89

Figure  3-13 Variations of steady state friction angle with confining stress, density, and 
saturation of the tested material. ................................................................................... 90

Figure  3-14 Variations of dilation angle with confining stress, density, and saturation of the 
tested material. .............................................................................................................. 91

Figure  3-15 Reference dilation angle .................................................................................... 92
Figure  4-1.Schematic of the implemented constitutive model ........................................... 120
Figure  4-2. Effect of adding water to air-dry specimen at constant axial pressure and at 

constant volume, in one-dimensional compression test; after Burland (1965) ........... 121
Figure  4-3- Distribution of contact force in an assemblage of rock particles at constant 

stress condition. (a) Initial equilibrium (b) The disruption of contacts due to breakage 
of particles (c) redistribution after collapse or creep deformations; reaching a new 
equilibrium. ................................................................................................................. 122

Figure  4-4- Comparison of stress-strain and volume change curves for dry, wet and dry-wet 
specimens in triaxial compression test; after Nobari and Duncan (1972) .................. 123

Figure  4-5 – Modified grain size distribution of the triaxial specimens along with the 
prototype and parallel gradations. ............................................................................... 124

Figure  4-6. Comparison of number of contact points and patterns of breakage of particles in 
ideal uniform and non-uniform samples. .................................................................... 125

Figure  4-7- Angular granite grains with different particle sizes used in preparation of the 
triaxial specimens ....................................................................................................... 126

Figure  4-8- Influence of time on strength of concrete specimens; after R sch (1960) ...... 127
Figure  4-9- Changing strain rate with time during each increment of stress-controlled test; 

in relation to different stages of creep; after Arenson and Springman (2005) ........... 128
Figure  4-10– Vertical stress increments during the stress controlled triaxial compression 

tests ............................................................................................................................. 129
Figure  4-11. Stress-strain and volume change behavior of the specimens in the strain 

controlled  triaxial  compression tests ......................................................................... 130
Figure  4-12- Applied vertical stress during the stress controlled triaxial compression test #2

 .................................................................................................................................... 131
Figure  4-13- Measured axial strain during the stress controlled triaxial compression test #2

 .................................................................................................................................... 132



 xi
 

Figure  4-14- Measured volumetric strains during the stress controlled triaxial compression 
test #2 .......................................................................................................................... 133

Figure  4-15- Mean axial strain rates during the stress controlled triaxial compression test #2
 .................................................................................................................................... 134

Figure  4-16 – Stress-strain response of the specimen in stress controlled test #2 .............. 135
Figure  4-17- Volume change-axial strain response of the specimen in stress controlled test 

#2 ................................................................................................................................ 136
Figure  4-18- Stress-strain behavior of the dry material in strain-controlled tests .............. 137
Figure  4-19- Changes of volumetric strain of the dry material in strain-controlled tests ... 138
Figure  4-20- Stress-strain behavior of the saturated specimens in strain-controlled tests .. 139
Figure  4-21- Changes of volumetric strain of the saturated specimens in strain-controlled 

tests ............................................................................................................................. 140
Figure  4-22- Creep components of the dry specimen during the stress controlled test #2 

followed by collapse deformations due to the saturation. .......................................... 141
Figure  4-23- Gradual softening of the dry specimens with time during the stress controlled 

tests ............................................................................................................................. 142
Figure  4-24- Stress-strain relation of the specimens during the stress-controlled tests ...... 143
Figure  4-25- Volume change of the specimens during the stress controlled tests .............. 144
Figure  5-1- Cross section of LG4 dam at highest elevation of the crest ............................ 163
Figure  5-2- Grain size distribution of material used in construction of different zones of 

LG4 dam ..................................................................................................................... 163
Figure  5-3- Results of triaxial test  on a rockfill material similar to that of the shell of LG4 

dam (zone 3); after Marsal (1967) .............................................................................. 165
Figure  5-4- Results of triaxial test  on the sand and gravel of the filter zone (zone 2); after 

Massiéra et al. (1989) .................................................................................................. 166
Figure  5-5- Comparison of different constitutive behaviors of the rockfill material of the 

shell of LG4 dam in virtual triaxial compression tests, generated by FLAC at reference 
confining pressure . .................................................................. 167

Figure  5-6- Finite difference mesh of LG4 dam ................................................................. 168
Figure  5-7- Settlement contours of LG4 dam at the end of construction ........................... 169
Figure  5-8- Measured settlements on the axis of the core of LG4 dam at the end of 

construction, with predictions of different constitutive models and parameters. ....... 170
Figure  5-9- Elements reaching the failure envelope (in purple) during the simulation of 

construction stage. ...................................................................................................... 171
Figure  5-10- Contours of Elastic modulus at the end of construction of LG4 dam ........... 171
Figure  5-11- Calculated vertical stress contours of LG4 dam at the end of construction .. 172
Figure  5-12- Profiles of maximum principal stress (kPa) at different heights at the end of 

construction. ................................................................................................................ 173
Figure  5-13- Profiles of minimum principal stress (kPa) at different heights at the end of 

construction. ................................................................................................................ 173
Figure  5-14 - Hydraulic transit states during the flow calculations in the filter zone. ....... 174
Figure  5-15- Collapse of the saturated elements result in shear stress on the face of 

saturation. .................................................................................................................... 174
Figure  5-16- Calculated vertical displacement contours at the end of impoundment of LG4 

dam .............................................................................................................................. 175
Figure  5-17- Calculated horizontal displacement contours at the end of impoundment of 

LG4 dam ..................................................................................................................... 175



 xii
 

Figure  5-18- Calculated vertical total stress contours at the end of impoundment of LG4 
dam and comparison with measured values. .............................................................. 176

Figure  5-19- Calculated vertical effective stress contours at the end of impoundment of 
LG4 dam and comparison with measured values. ...................................................... 176

Figure  5-20- Contours of unloading stress due to wetting in the direction of the maximum 
principal stress ............................................................................................................ 177

Figure  5-21- Contours of unloading stress due to wetting in the direction of the minimum 
principal stress ............................................................................................................ 177

Figure  5-22 - Calculated horizontal effective stress contours at the end of impoundment of 
LG4 dam ..................................................................................................................... 178

Figure  5-23- Elements reaching the failure envelope (in purple) during the simulation of the 
impoundment .............................................................................................................. 178

 
  



 xiii
 

Nomenclature
 
Description Symbol 

parameter of the original hyperbolic model; parameter 
of anisotropic elastic model ; coefficient in the 
modified Nobari-Duncan procedures  
parameter of the original hyperbolic model (Konder 
and Zelasko, 1963); parameter of anisotropic elastic 
model; coefficient in the modified Nobari-Duncan 
procedures 
Bulk modulus 

cohesion in Mohr-Coulomb failure criteria; parameter 
of anisotropic elastic model; coefficient in the 
modified Nobari-Duncan procedures  
effective cohesion in Mohr-Coulomb failure criteria 

parameter of power-law model; parameter of Lade’s 
double hardening model 
uniformity coefficient; ratio of the sieve size that 
permits passage of 60% of the media by weight to the 
sieve size that permits passage of 10% of the media 
material by weight 
parameter of anisotropic elastic model; coefficient in 
the modified Nobari-Duncan procedures 
parameter of power-law model; strain rate tensor in 
hypoplasticity theory 
the sieve size that permits passage of 60% of the 
media by weight 
maximum grain size 

parameter of anisotropic elastic model; void ratio 

critical state void ratio 

maximum void ratio 

minimum void ratio 

Young’s modulus 

initial or maximum Young’s modulus at small axial 
strain (0.01 %) in hyperbolic formulation 
maximum Young’s modulus in dry condition 

maximum Young’s modulus in wet condition 

secant Young’s modulus 

secant Young’s modulus in dry condition 



 xiv
 

secant Young’s modulus in wet condition 

tangential Young’s modulus 

parameter of anisotropic elastic model  

failure function of HPD model 

stiffness factor in hypoplastic model  

density factor in hypoplastic model 

failure function in elasto-plastic formulation 

potential function of HPD model 

shear modulus 

potential function in elasto-plastic formulation 

tangential shear modulus in K-G model 

initial tangential shear modulus in K-G model 

solid hardness of the grain assembly under isotropic 
compression in hypoplastic model 
maximum solid hardness before wetting in hypoplastic 
model 
current solid hardness in hypoplastic model 

degraded solid hardness depending on the relative 
moisture content of the grains and time in hypoplastic 
model 
isotropic tensor-valued function in hypoplasticity 
theory  
work hardening parameter for the conical failure 
surface of Lade’s double hardening model 
work hardening parameter for the cap failure surface 
of Lade’s double hardening model 
first stress tensor invariant 

third stress tensor invariant 

relative dilatancy index in Bolton theory of dilation 

relative density index in Bolton theory of dilation 

second deviatoric stress tensor invariant 

second deviatoric stress tensor invariant at failure in 
anisotropic elastic model 
function of Lode’s angle to define potential function 
of elasto-plastic models 
parameter of anisotropic elastic model 

increase of cohesion with suction in Barcelona model 



 xv
 

coefficient of lateral earth presser at rest 

bulk modulus number in hyperbolic model 

bulk modulus number of dry material in Nobari-
Duncan stress relaxation technique 
bulk modulus number of wet material in Nobari-
Duncan stress relaxation technique 
elastic modulus number in hyperbolic model 

elastic modulus number of dry material in Nobari-
Duncan stress relaxation technique 
elastic modulus number of wet material in Nobari-
Duncan stress relaxation technique 
tangential bulk modulus in K-G model 

initial tangential bulk modulus in K-G model 

unloading elastic modulus number in hyperbolic 
model 
parameter of Lade’s double hardening model 

bulk modulus exponent in hyperbolic model; material 
constant in Lade’s double hardening model  
bulk modulus exponent of dry material in Nobari-
Duncan stress relaxation technique 
bulk modulus exponent of wet material in Nobari-
Duncan stress relaxation technique 
slope of critical state strength in q-p space 

material constant in Drucker-Prager failure function 

slope of critical state strength in dry condition  

slope of critical state strength in saturated condition  

function to consider the effect of suction on rockfill 
strength in Barcelona model; changes between two 
extreme values of  and  
elastic modulus exponent in hyperbolic model 

elastic modulus exponent of dry material in Nobari-
Duncan stress relaxation technique 
elastic modulus exponent of wet material in Nobari-
Duncan stress relaxation technique 
material constant in Lade double hardening model 

function of friction angle to define the failure function 
in HPD model 
function of dilation angle to define the potential 
function of HPD model 
mean stress;  in triaxial condition 



 xvi
 

hardening parameter in Barcelona model 

function to define the yield stress for isotropic 
condition in Barcelona model 
function to consider the effect of suction on rockfill 
strength in Barcelona model 
threshold yield mean stress for the onset of clastic 
phenomena in Barcelona model 
atmospheric pressure 

deviatoric stress;  in triaxial condition 
material constant in Lade double hardening model 

empirical coefficient for adjusting the stress-strain 
curve in hyperbolic model 
coefficient for adjusting the dry stress-strain curve in 
Nobari-Duncan stress relaxation technique 
coefficient for adjusting the wet stress-strain curve in 
Nobari-Duncan stress relaxation technique 
degree of saturation; suction in Barcelona model 

initial suction in Barcelona model 

material constant in Lade double hardening model 

stress tensor 

stress rate tensor 

normalized stress deviator  

accumulated plastic work associated with the conical 
failure surface in Lade’s double hardening model 
accumulated plastic work associated with the cap yield 
surface in Lade’s double hardening model 
parameter of modified Nobari-Duncan stress 
relaxation technique to define maximum principal 
stress in wet condition from minimum principal stress 
in wet condition 
parameter of modified Nobari-Duncan stress 
relaxation technique to define maximum principal 
stress in wet condition from minimum principal stress 
in wet condition 
parameter of anisotropic elastic model; parameter of 
Lade’s double hardening model; non-associativeness 
of potential function in Barcelona model; parameter of 
hypoplastic model 
parameter of K-G model 

parameter of K-G model 

rate of change of clastic compressibility with total 



 xvii
 

suction  in Barcelona model 

anisotropic factor in anisotropic elastic model; 
parameter of Lade’s double hardening model; 
parameter of hypoplastic model 
parameter of K-G model 

plastic strains associated with the conical yield surface 
of Lade’s double hardening model 
horizontal strain increment (x axis) in plain strain 
formulation 
vertical strain increment (y axis) in plain strain 
formulation 
shear strain increment in x-y plane in plain strain 
formulation 
change of friction angle with confining stress in HPD 
model 
horizontal stress increment (x axis) in plain strain 
formulation 
vertical stress increment (y axis) in plain strain 
formulation 
shear stress increment in x-y plane in plain strain 
formulation 
change of dilation angle with confining stress in HPD 
model 
plastic expansive work in Lade’s double hardening 
model 
strain 

strain rate in strain controlled triaxial test 

maximum principal strain 

intermediate principal strain 

minimum principal strain 

rate of change of maximum principal strain; rate of 
change of axial strain in triaxial setup 
axial strain 

radial strain 

volumetric strain 

rate of change of volumetric strain 

volumetric strain increment 

elastic volumetric strain increment 

plastic volumetric strain increment 

friction angle in Mohr-Coulomb failure criteria 



 xviii
 

steady state friction angle at the reference pressure in 
HPD model 
effective friction angle  

critical state friction angle; constant volume friction 
angle 
critical state friction angle in triaxial strain condition 

peak friction angle in triaxial strain condition 

parameter of Lade’s double hardening model 

Poisson’s ratio 

Lode’s angle 

compressibility coefficient in Barcelona model 

compressibility coefficient in Barcelona model 

compressibility parameter related to the delayed nature 
of the particle breakage mechanisms in Barcelona 
model 
volumetric compressibility for saturated conditions in 
Barcelona model 
compressibility parameter in Barcelona model 

maximum principal stress; axial stress in triaxial 
setting 
maximum principal stress in dry condition just before 
wetting in Nobari-Duncan stress relaxation technique 
maximum principal stress just after wetting in Nobari-
Duncan stress relaxation technique 
intermediate principal stress 

minimum principal stress; radial stress in triaxial 
setting 
minimum principal stress in dry condition before 
wetting in Nobari-Duncan stress relaxation technique 
minimum principal stress just after wetting in Nobari-
Duncan stress relaxation technique 
confining pressure ; equal to radial stress in triaxial 
setting 
normal effective stress on the failure plane 

plastic instantaneous compressibility in Barcelona 
model 
deviatoric stress 

deviatoric stress in large deformations or in steady 
state  
ultimate deviatoric stress in hyperbolic formulation 



 xix
 

effective shear stress on the failure plane 

material constant in Lade double hardening model; 
velocity of degradation of solid hardness in 
hypoplastic model 
dilation angle 

dilation angle at reference pressure in HPD model 



 

1 Introduction 
 

 



 2
 

Rockfill has been known since ancient times as a useful, reliable, and durable construction 

material and has been used in different types of structures with different construction 

methods (e.g. dumped, compacted in layers, hand or equipment placed). In the last century, 

rockfill dams have become recognized for their high resistant to seismic loads due to their 

large flexibility and capacity to absorb large seismic energy and for adaptability to widely 

varying site conditions, construction methods and economy. Moreover, they have been 

successfully constructed to great heights up to 340 m in Russia and up to 170 m in Canada 

(Table  1-1). Almost all of these dams have performed safely with no major evidence of 

instability. The economic advantages and good response of these dams to various site and 

loading conditions made them an excellent option in many regions of the world such as 

Quebec, China and Australia. 

It seems obvious that the primary function of rockfill in embankment dams is to provide 

structural support for the impervious zone of the dam (e.g. till, clay or asphaltic core and 

concrete face). Many researchers made determination of properties of rockfill material 

using the procedures and concepts of soil mechanics in order to calculate the stress states 

and patterns of deformation inside the body of rockfill dams (e.g. conducting large scale 

triaxial or shear tests or application of Darcy’s law and mechanics of continuum media in 

prediction of their behavior). Rockfill samples have extreme heterogeneity, great change in 

particle sizes (ranging from a few centimeters to few meters), variety of gradation, particle 

shape and mineral constituencies and predominant large average particle size (average 

particle size of at least 5 cm). Some researchers in the past such as Jansen (1988) assumed 

that it was impossible and impractical to adapt the soil mechanics-type tests and 

mathematical concepts to predict the behavior of such material. This resulted in the fact that  

many of these dams were constructed based on the designers’ engineering judgements and 

experiences, and using the existing tables and closed form solutions of the time but without 

conducting adequate laboratory testing or any numerical modeling of the behavior. 

However each rockfill dam, as all other important geotechnical engineering structures, has 

its unique geometry and hydro-mechanical characteristics, and is required to be designed 

and constructed based on a detailed analysis of its behavior. All the details of construction, 

impoundment and operation should be justified by the means of numerical and theoretical 

analysis and laboratory testing. 
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Hunter and Fell (2003) reported the behavior of several rockfill dams around the world, 

considering the factors influencing the stress conditions, strength and compressibility of the 

embankment materials and the interaction between embankment zones. These previous 

field experiences have shown that although each rockfill dam behaves differently, there are 

some common important aspects at each stage of its life which must be considered when 

trying to model the behavior.  Figure  1-1 shows the three main stages of the lifespan of a 

rockfill dam and the sub-stages as follows:  

1. Construction of the dam: Preparation of the foundation and placement of the layers 

of material over foundation up to the desired level. Mechanical behavior of the 

whole structure is most important at this stage. 

2. Filling of the reservoir: Rising the level of the water of the reservoir, flow of water 

through the body of the dam, collapse of saturated elements and subsequent stress 

adjustments. Analyzing the hydro-mechanical interactions must be considered at 

this stage. 

3. Dam Operation: Time-dependent behavior, variation in reservoir level and possible 

seismic motions are the main features of this stage.  

In order to have a reliable analysis of the rockfill embankments, it is important to provide 

physical explanations to the observations of the previous cases in the history and the 

laboratory experiments and to define constitutive equations to simulate the observed 

behavior using numerical models. This characterization of the behavior must be done for all 

stages of the lifespan of the dam as mentioned above by considering the most important 

physical aspects of the material in each stage. Some of the most important aspects of the 

behavior of material used in the construction of dams are nonlinearity and stress 

dependency of the parameters, plastic and dilative behavior, time-dependent and collapse 

settlements due to wetting. With the development of numerical procedures and 

advancement of laboratory testing methods in recent years, it has become more and more 

common to numerically model the behavior of such structures considering these important 

characteristics of the material. The design of rockfill dams is gradually improving by 

complements accomplished by theoretical analysis and laboratory testing research. 
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Different constitutive equations based on elasticity and/or plasticity theories have been 

proposed to predict the behavior of the granular material. Some of these models have been 

implemented into numerical codes by researchers around the world in order to predict the 

behavior of rockfill dams. 

Linear elastic models were initially applied in modeling of the rockfill dams (e.g. Adikari 

and Parkins, 1982; Eisenstein and Law, 1977; Geddes et al., 1973; Naylor et al., 1986). The 

results were reasonable because the stress state was often far away from failure in those 

rockfill dams. Improving from linear elastic behavior, the non-linear models (Chu et al., 

2010; Duncan et al., 1980a) and elasto-plastic analysis (Fu and Bauer, 2009; Lade, 1977; 

Oldecop and Alonso, 2001) have become widely accepted in recent years. More complex 

stress-strain relationships should be able to model the behavior of the rock particles more 

accurately. However the difficulty of the calibration of the parameters of these models 

using the limited test results for rockfill samples makes them less applicable in practice. 

Moreover the initial assumptions and experimental relations taken in the formulation of 

some of these constitutive models are not necessarily extendible to compacted samples of 

large rock particles as they exist in rockfill dams.  

Selecting an appropriate stress-strain relationship is primarily involved with balancing 

simplicity and accuracy of the model. The hyperbolic model is probably the most applied 

and stable constitutive model which has been implemented in numerical modeling of 

rockfill dams of different kind worldwide. There is a large database available for calibration 

of the parameters based on general physical and engineering properties of rockfill samples. 

However it is inherently elastic and does not model plastic deformation in a fully logical 

way; it is also incapable of modeling the dilative behavior of compacted granular material. 

These shortcomings should be addressed in order to improve the results of the numerical 

model especially when a zoned dam with contrast in compressibility of different zones is 

considered. In addition, the relaxation technique in hyperbolic formulation which is used in 

the modeling of the collapse settlements due to wetting (Escuder et al., 2005; Nobari and 

Duncan, 1972) could be improved to increase the stability of the numerical model. 

The main analytical method is either the finite element method (FEM) or the finite 

difference method (FDM) which allows for the stress and deformation behavior of the 
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rockfill dam in various conditions to be obtained and the possible deformation patterns or 

failure modes to be predicted (Cruz et al., 2009). In FDM method, the explicit solution is 

applied to solve the stress-strain equations and to calculate the response of the numerical 

mesh. This approach has the advantage that the solution is numerically stable even when 

the problem is not statically stable, allowing examination of large strains and displacements 

prior to failure. In addition, satisfying the dynamic equilibrium using a step-by-step explicit 

time domain procedure is more efficient in calculating the response of the geotechnical 

structures where the stress path affects the final response and the stages of construction 

should be modeled as close as possible to the reality. FLAC (Fast Lagrangian Analysis of 

Continua) (Cundall, 1987) is a commercial software which uses the finite difference 

method and also allows the user to input specific constitutive models. Large displacements 

and strains are calculated by updating the nodal coordinates of the finite difference grid. 

Also, the effect of pore pressure on the soil behavior is examined by analyzing the fluid-

mechanical interactions. FLAC has been used widely for conducting academic research at 

universities and also as professional numerical modeling software in engineering firms. 

This fact has encouraged the direct application of the scientific findings in the industry. 

In the current PhD research, the first two stages of the lifespan of rockfill dam mentioned 

above are considered for numerical modeling (i.e. construction and impoundment). 

Constitutive equations and procedures to calibrate the model and to characterize the 

behavior of rockfill in different stages of the simulation (e.g. hydro-mechanical interactions 

during impoundment) are presented. The predictions of the model are validated using the 

results of laboratory experiments and insitu instrumentation of LG4 dam constructed in 

Quebec from 1979 to 1981 and impounded from March 1983 to December 1983. The order 

of the presentation of these topics is as follows: 

In chapter 2, different constitutive models mostly applied in the modeling of the behavior 

of granular material in dam engineering are reviewed (nonlinear elastic, anisotropic elastic, 

double hardening, critical state, hypoplastic). Considering the most important 

characteristics of rockfill material (nonlinearity, stress path dependency, plastic and 

dilative behavior, water and time effects), a comparison is made between these models. The 

hyperbolic model, if coupled with an appropriate failure envelope and a potential function 
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to take into account the plastic and dilative behavior is the most balanced model in terms of 

simplicity and accuracy.  This is specially the case for the material used in the construction 

of dams in the Province of Quebec: rock particles with high compressive strength and small 

amount of collapse due to saturation. 

In chapter 3, a new implementation of the hyperbolic model is presented which considers 

the non-linearity and stress-dependency of the parameters and overcomes the shortages of 

the classic model by considering both plasticity and dilation using the Mohr-Coulomb 

failure criteria and a non-associated flow rule. This new implementation is referred as HPD 

model in the coming chapters (H stands for the hyperbolic model, P for plasticity and D for 

dilation). The elastic and plastic formulations of this constitutive model are presented along 

with a discussion of the results of monotonic compression triaxial tests conducted on 

assemblages of compacted granite particles. Procedures to calibrate the nine parameters of 

the model are also presented using the test results and large database existing in the 

literature for both hyperbolic model and Mohr-Coulomb failure criteria. The HPD model 

is shown to be able to capture the key behaviors during the tests with fair accuracy. 

The time-dependent and collapse settlements due to wetting are discussed in chapter 4. The 

modified stress relaxation technique with new algorithms to increase the stability of the 

numerical solution is used to calculate the amount of these deformations. The procedures 

are implemented into FLAC and validated using the data from several monotonic triaxial 

compression tests on dry, saturated and dry-saturated samples and in stress and strain 

controlled conditions. The samples in these triaxial tests have a more uniform particle 

distribution comparied to the prototype rockfill. This was decided in order to increase the 

amount of (i) creep deformations and (ii) settlements due to wetting, during the 

experiments. These two phenomena are discussed based on the theories from fracture 

mechanics (Lade et al., 2010; Oldecop and Alonso, 2001). In this framework, particle 

breakage and deterioration of contact points generally control the behavior the rockfill 

masses over time and the deformations accelerate with the introduction of water in the 

form of liquid or vapor. The stress relaxation technique and the HPD model are shown to 

be capable of predicting this kind of behavior by changing the two compressibility 

parameters of the model over time in a logarithmic scale. 
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Finally in chapter 5, the HPD model is applied to the modeling of LG4 dam constructed in 

Quebec, Canada. The results of modeling are compared with the instrumentation data and 

the important observations of the field and numerical model are discussed. 
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Figure  1-1. Different stages of the lifespan of a rockfill dam: (a) preparation of the 

foundation, construction in layers; (b) increasing the level of the water of the reservoir in 
several steps; (c) operation: creep, changing the level of the reservoir, seismic motion 

 

 
 
 
 
 

 
Dam name Country Height (m) 
Rogun Russia 335 
Nurek Russia 300 
Mica Canada 242 
Sainte Marguerite 3 Canada 170 
La Grande 4 Canada 125 
Oroville USA 230 
Areia Brazil 160 
El Infiernillo Mexico 150 

 

Table  1-1- high rockfill dams around the world
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2 A review of constitutive models implemented in 
modeling the behavior of rockfill dams during 
construction and impoundment 
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2.1 Introduction
The purpose of this chapter is to explore the literature for the previous efforts made for the 

analysis of the behavior of the granular material in order to simulate two stages of the 

lifespan of a rockfill dam: construction and filling of the reservoir. This is a non-exhaustive 

study of constitutive models mostly applied in modeling of the behavior of granular 

material in dam engineering. Firstly, the physical and engineering properties of the so 

called rockfill material will be discussed followed by a brief description of constitutive 

modeling of the behavior of such material. The chapter will continue with presentation of 

various constitutive models utilized worldwide in the simulation of construction steps and 

reservoir impounding sequences of rockfill dams in an increasing order of complexity as: 

Isotropic linear elastic model 
Non-linear elastic models 
o Power law model 
o K-G model 
o Hyperbolic model 
Anisotropic elastic model 
Elasto-plastic models 
o Perfect plastic models 

Mohr-Coulomb  
Drucker-Prager 

o Double hardening model 
Barcelona model (based on critical state soil mechanics) 
Hypoplastic models (rate dependent models) 

 

Finally, the most practical and applicable constitutive model which could represent the 

most important characteristics of the compacted rock particles in an embankment, while 

being relatively easy to calibrate and requiring less testing, will be identified and the 

possible modifications to improve the model will be presented. 

2.2 Physical and engineering properties of rockfill 
Rockfill is a kind of granular material which is composed of hard particles including 

sedimentary, igneous, and metamorphic rocks. The main physical properties of rockfill 

material are density, grain size distribution, void ratio, and particle shape which could be 

related to the engineering properties such as stress-strain relation, compressibility, and 
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strength of the material. The compressibility of the material is mainly controlled by 

arrangement of particles which is related to density and gradation. The same rock with 

different gradations will result in different compressibilities. The shear strength of rockfill 

includes the action of sliding friction and the interlock between particles which is affected 

by shear dilation and particle breakage.   

When rockfill is wetted, additional deformation results. This phenomenon is similar to the 

collapse in soils. However, in soil mechanics, the assumption is that collapse happens due 

to the reduction of the negative pore water pressures, while in rockfill it is mostly caused by 

breakage of particle edges and rearrangement of grains. It occurs independently of the 

rockfill submersion. As long as the water reaches the contact points, even from a rain fall or 

high relative humidity, it might be sufficient to reduce the strength and provoke the 

collapse of the material. The amount of deformations decreases with increasing density or 

initial water content. 

2.3 Constitutive modeling 
In numerical modeling of rockfill dams, the constitutive model is the most important 

element of the analysis. The stress and deformation analysis needs comprehensive 

consideration of different factors including: stress-strain relationship, strength and 

deformation properties, non-linear work hardening, dilation, plastic yielding, anisotropy, 

collapse due to wetting, creep, stress path and stress history, composition of particles, etc. 

For such complicated material properties, there is no comprehensive model representing all 

factors. In practice, the development of the constitutive model is essentially limited to 

determine the mathematical model to best fit the observations of laboratory or field data 

using the main factors of the material’s stress-strain relations. Most of the common 

constitutive models used for rockfill material are based on two main theories: (i) linear or 

non-linear elasticity, and (ii) elasto-plasticity. However, in the last decade, some other 

theories like critical state theory or hypo-plasticity have also been used to model rockfill 

materials. Although these theories seem to be superior to the previous ones at first, since 

they have been initially proposed for cohesive and soft soils, their applicability in modeling 

rockfill material is questionable. Furthermore, calibration of these models is much more 
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difficult and requires more laboratory testing with specific procedures which are not 

suitable for samples containing large rock particles.  

The most important aspect in the analysis of granular material is the stress-dependency of 

properties which means all the deformation and strength parameters will change with the 

stress state. Moreover, the stress-strain relationship of granular material is highly non-

linear. The changes of volume also impact the patterns of deformation and distribution of 

stress inside the body of the dam. Stress-dependency and nonlinearity could be well 

modeled using the nonlinear elasticity theory. However, for the proper consideration of the 

volume changes which include both volume reduction and dilation, and the plastic 

deformations, the elasto-plastic models with application of multiple yield surfaces and the 

non-associated flow rule are theoretically perfect. However these models still have many 

difficulties in determination of parameters, laboratory testing, and computational efforts. A 

nonlinear elastic model is more practical and applicable but has its own shortages. In the 

following sections, different constitutive equations will be presented along with pros and 

cons of each in the modeling of rockfill material. 

2.3.1 Linear elastic model 
Although soils are far from being linear elastic, because of simplicity, it is very common 

for geotechnical engineers to characterize the behavior of geomaterials using the idealized 

linear isotropic elastic model. The results are reasonable only if the stress state is far away 

from failure which usually prevails in rockfill dams. Hence it is not surprising that this kind 

of analysis has been successful in many case histories of rockfill dams worldwide (e.g. 

Adikari and Parkins, 1982; Eisenstein and Law, 1977; Geddes et al., 1973; Naylor et al., 

1986). Only two elastic constants are needed to characterize the stress-strain behavior of 

isotropic linear materials which are often Young’s modulus, E, and Poisson’s ratio, . 

These constants can be estimated by constant equivalent compressibility method (Penman 

et al., 1971) which says that the internal distribution of vertical displacement during the 

construction of a thick layer can be predicted by the use of constant Young’s modulus 

determined to give the correct final displacement of a point half-way up the complete layer. 
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NGI (1987) reported that the simple linear model gave better predictions of overall strains 

and displacements in different sections of Storvatn dam (a rockfill dam with asphaltic core 

constructed in Norway in 1987) than the more complicated models such as nonlinear elastic 

which were intended to be an improvement over the former. The measurements of internal 

displacements indicated that the strains prevailing inside the dam were small, and less than 

one percent and the materials were found to be linear in most laboratory and field tests in 

this low stress-strain range. The rockfill was sluiced and heavily compacted during the 

construction and impoundment of the dam followed closely the construction stage. The 

settlements were compensated during the construction stage and remained in the elastic 

zone. It was therefore possible to model the behavior in linear form in the numerical model 

and to accurately calculate the stresses and movements within the dam. On the other hand, 

more complicated models were more difficult to calibrate using the limited test data 

available for the materials of Storvatn dam which brought uncertainty into the calculations 

and resulted in the fact that the simple linear model was superior in this case. 

Considering the behavior of the material during the first filling of the reservoir, Justo 

(1991) proposed procedures to model the behavior of the rockfill material after wetting 

using the linear elastic model and considering different separated processes of collapse, 

buoyancy, and water loading. The collapse of material after the filling of the reservoir was 

simulated by a decrease in Young’s modulus of the material while keeping a constant 

Poisson's ratio. He showed the effectiveness of his method in the prediction of movements 

inside the body of two rockfill dams constructed in Spain: Yeguas dam and Martin Gonzalo 

dam (Justo, 1988). Justo and Saura (1983a) also developed a three-dimensional finite 

element method, linear-elastic in principle, considering the no-tension strength of rockfill 

and different moduli according to the direction of stress change. This method was applied 

to three-dimensional modeling of the Infiernillo dam and other rockfill dams with relatively 

good results (Justo et al., 1989). 

2.3.2 Non-linear elastic models 
These models were developed in an attempt to fit the data from different laboratory 

experiments such as triaxial or oedometric tests, and to consider important aspects of the 

behavior of granular material such as nonlinearity and stress-dependency, as well as the 



 14
 

relationship between the volumetric strain  and axial strain  or axial stress . There 

are several constitutive models which belong to this category such as power law model, K-

G model, hyperbolic model and Chu et al. (2010) model which will be briefly explained in 

the following sections: 

2.3.2.1 Power law model 

Rowe (1971) developed the relationship between volumetric strain, , and axial stress, , 

in an oedometric compression test by a power law of the following form: 

 

Where  is the atmospheric pressure,  and  are dimensionless parameters. By 

differentiating this equation, the expression for the tangential Young’s modulus, , can be 

derived using the value of Poison’s ratio, , estimated from theory of elasticity using  the 

coefficient of lateral earth pressure at rest for normally consolidated soils  : 

 

Where  is related to the friction angle, , according to , or determined 

from the odometer test as : , by measuring the radial stress, . At least three 

parameters are required in this model to represent loading conditions. With the results of 

oedometric tests, Skinner (1975) used the above relationship to derive the closed form 

solution for the settlement profile on the center line of an embankment constructed of 

rockfill. Naylor (1991) also applied this model in numerical analysis of embankment dams 

considering additional parameters to model unloading. Modeling other aspects such as the 

dilative-contractive volume change, wetting effects, or time-dependent deformations cannot 

be performed using this model. 

2.3.2.2 K-G model 

It was recognized a long time ago that modeling of soils in terms of the bulk modulus, , 

and the shear modulus, , had some advantages over the use of Young’s modulus, , and 

Poisson’s ratio,  (Naylor and Pande, 1981; Potts and Zdravkovic, 2001). This model is an 
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extension of the bi-linear model (Figure  2-1) which assumes that the bulk and shear 

stiffness are constant until the stress state reaches the failure condition; then the tangential 

shear modulus, , is set to a very small value. In the modified Naylor’s K-G model, the 

tangential (incremental) bulk, , and shear, , moduli are explicitly defined in terms of 

stress invariants: 

 

 

Where   is the first stress invariant and  is the second deviatoric stress tensor which are 

representative measures of confining stress and shear stress, respectively. Parameters of the 

model are , , , , . As with a bilinear model, the parameters can be selected 

such that the incremental shear stiffness becomes very small when failure is approached 

(i.e. setting a negative ).Values of the parameters of the failure surface (e.g. cohesion and 

friction angle if a Mohr-Coulomb failure surface is used) are therefore used when 

determining the values of the five mentioned input parameters. The resulting stress-strain 

curves for this model are shown in Figure  2-2. Although this model has relatively simple 

expressions, the parameters can only be determined by special isotropic compression tests 

and shear tests under the condition of constant confinement (i.e. ) 

2.3.2.3 Hyperbolic model 
The original hyperbolic model is attributed to Konder and Zelasko (1963). In its initial form 

it was originally formulated to fit undrained triaxial test results and was based on two 

parameters and the implicit assumption that Poisson’s ratio was 0.5. This original model 

was based on the following hyperbolic equation: 

 

Where  and  are the major and minor principal stresses,  the axial strain and  and  

are material constants. However it has been extensively developed by Duncan and Chang 

(1970) by introducing some factors to modify Poisson’s ratio with stress state. The number 
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of parameters needed to define the model also increased to nine and the model was applied 

in numerical modeling of dams (Seed et al., 1975). Later the elastic modulus and bulk 

modulus were formulated to change with stress state which were more representative of the 

behavior of geomaterials (Duncan et al., 1980a). The latter model is based on the 

generalized Hooke’s law of elastic deformations and could be formulated for plain strain 

condition as follows: 

 [Eq. 2-6]

Where ,  are normal stress increments,  is the shear stress increment,  ,  

are normal strain increments,  is the shear strain increment , E is Young’s modulus , 

and B refers to the bulk modulus. By varying the values of Young’s modulus and/or bulk 

modulus with the state of stresses, it is possible to model the soil behavior and the 

important characteristics which are nonlinearity, inelasticity, and stress-dependency. 

Duncan and Chang (1970) considered changing Young’s modulus, but with a constant bulk 

modulus. For this purpose, three coefficients were introduced: , ,  which related the 

tangential modulus to the confining stress level ( ) and failure envelope as follows: 

 [Eq. 2-7]

Where: 

 

 

As could be seen in Figure  2-3, the nonlinearity was modeled in the context of the above 

mentioned formulation and in a form of hyperbolic curve. In addition, as shown in 

Figure  2-4, by introducing a different modulus during unloading (Kur) the inelasticity was 
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represented. The value of Kur for unloading and reloading is between 1.2 to 3.0 times the 

value of KE for loading, in rigid and soft soils, respectively. 

Wong and Duncan (1974) employed the tangent value of Poisson’s ratio which varied with 

confining pressure and percentage of strength mobilized to model the volume change 

behavior. For this purpose three different coefficients were introduced, which were d, G, 

and F. This was not a versatile approach for modeling soil behavior. Duncan et al. (1980a) 

introduced a more applicable formulation in which the bulk modulus of the soil varies with 

confining pressure, and is independent of the percentage of strength mobilized. At high 

stress levels, this assumption provides a more reasonable means of representing the 

mechanical properties of geomaterials. For this purpose, as shown in Figure  2-5, they 

introduced two new coefficients,  and , in the following form: 

 

During the past years many analyses of rockfill dams have been based on this constitutive 

model and some computer codes have been developed for this purpose: ISBILD (Ozawa 

and Duncan, 1973), FEADAM (Duncan et al., 1984; Duncan et al., 1980b; Saboya and 

Byrne, 1993). In the application of this model, the following limitations should be 

understood and the model should only be used in appropriate conditions: 

1. The model is based on the generalized Hooke’s law and the equations are most 

suitable prior to failure. 

2. The equations do not include volume changes due to changes in shear stress or 

shear dilatancy. 

3. The parameters are empirical coefficients which depend on the limited range of 

testing conditions such as water content, soil density, and drainage condition. When 

the physical condition changes, the parameters also change. 

The parameters of the hyperbolic model can also be determined by the means of a series of 

drained triaxial or oedometric tests. The procedures for estimating the parameters are 
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described by Duncan et al. (1980a). Other researchers have provided other methods 

(Massiéra et al., 1999) and the computer code KOEDO (Merheb-Harb, 1993) to determine 

these parameters more accurately, especially for the case of analysis of stress and 

deformation in embankment dams. 

The hyperbolic model has shown to well represent the behavior of rockfill material during 

the past years (Cruz et al., 2009). Using the procedures introduced by Nobari and Duncan 

(1972), and later modified by Escuder et al. (2005), this model can be implemented to 

model the behavior of the dams during the filling of the reservoir. As shown in Figure  2-6, 

this is done by calculating the wet stresses and imposing an internal unloading (stress 

relaxation technique) at the moment of saturation, which is an important advantage over 

other constitutive models. However, the proposed procedures for modeling the collapse 

deformations involve an iterative procedure in which the values of principal stresses that 

minimize two complicated error functions must be obtained. This might introduce 

instability in the numerical process and needs to be improved. In addition, as mentioned 

above, there are some limitations in the hyperbolic model (i.e. plasticity and dilatancy) 

which also require to be solved if desired to be applied in modeling dams which may 

experience plastic deformations in some zones (e.g. high shear zones on the interfaces of 

zoned dams).  

2.3.3 Anisotropic elastic model 
Recently Chu et al. (2010) proposed  a constitutive model for gravely soils based on the 

theory of elasticity which is characterized by the following features: (i) significant shear-

induced volumetric deformations prior to failure; (ii) modulus stiffening under hydrostatic 

loading, and degradation under shearing  similar to the relationships proposed by Lo Presti 

et al. (1999) and Tatsuoka et al. (1997); (iii) stress-induced anisotropy based on the concept 

presented by Weng et al. (2008) and Graham and Houlsby (1983). In this model, the 

Drucker–Prager criterion was adopted which had a linear failure envelope when expressed 

in terms of stress invariants of the three-dimensional stress components as: 
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Where  is a representative measure of shear stress at failure, and parameters  and  are 

the slope and cohesive intercept of the Drucker–Prager failure envelope, respectively. 

Deformation moduli B and G vary according to the invariants of the stress tensor:  (first 

stress invariant) and  (second deviatoric stress tensor) which are representative measures 

of hydrostatic stress and shear stress, respectively. The initial shear modulus and bulk 

modulus are assumed to be linearly related to the hydrostatic stress as: 

 

 

Where parameters  and  determine how rapidly the initial shear and bulk moduli increase 

as the confining pressure increases, and  and  are the initial shear and bulk moduli values 

with no confining pressure. The greater the four values, the higher shear and bulk modulus. 

The degradation behavior is considered nonlinear during all shearing phases as: 

 

 

The increasing and decreasing of these modulus result in diverse deformational behavior. 

To incorporate the contraction–dilation characteristics of the deformation behavior, the 

compliance matrix in the principal stress coordinate was defined as: 
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 [Eq. 2-16]

Where  is the anisotropic factor which can be calculated using the shear stress at failure 

and two model parameters (e and f) as:

 [Eq. 2-17]

When , the above compliance matrix is identical to the constitutive relationship of 

isotropic linear elastic materials. However, for compacted assemblages of rock particles 

under shearing,  can differ from 1. In such cases, shear-induced volumetric deformation 

occurs.  

There are eight parameters required for this model which can be calibrated using the results 

of several triaxial tests. Material parameters have physical meanings and are relatively 

versatile in simulating gravelly soils under different loading conditions. However, the 

choice of Drucker-Prager failure envelope is not very suitable for the modeling of rock 

particle assemblages and the plastic deformations could not be predicted correctly. 

Moreover, introducing the anisotropic compliance matrix will make the future 

developments of the model very complex (i.e. for the prediction of other phenomena such 

as collapse deformations due to wetting or creep). The more reliable way of predicting the 

plastic deformations and shear-induced volume changes is the introduction of the failure 

envelope as established in the classical theory of elasto-plasticity and the use of more 

suitable failure envelopes for non-cohesive geomaterials.  
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2.3.4 Elasto-Plastic models 
Comparing to the previously described models, elastoplastic stress-strain relationships are 

capable of modeling the behavior of geomaterials quite readily. In spite of the presence of 

different elastoplastic constitutive models in literature, these have not been widely used in 

modeling rockfill dams due to the following reasons: (i) Complexity of such analyses 

considering different materials and stages of construction and operation of a rockfill dam. 

(ii) Difficulties associated with testing rockfill materials and calibration of the constitutive 

models. (iii) Small zones of plastic yielding discovered in the previous attempts to model 

such structures using elastoplastic models. (iv) Limited existence of dilative behavior in 

rockfill dams (Potts and Zdravkovic, 2001). However, the modeling of plastic and dilative 

behavior has a more subtle advantage which concerns the pattern of deformation during 

yielding. This is clearly shown by Naylor et al. (1975) who analyzed the behavior during 

construction of embankment dams using different constitutive models. They showed that 

the patterns of deformation were sensitive to the type of model being used. Non-compatible 

results of the modeling with respect to the instrumentation data were also reported by other 

researchers who used elastic models to simulate the construction stage of rockfill dams. 

This was considerable especially for the excessive predictions of horizontal displacements 

(Boncompain and Massiéra, 1991; Kovacevic et al., 1994; NGI, 1987; Verma et al., 1985). 

A large variety of elasto-plastic models are presented in the literature which have been 

proposed to characterize the stress-strain behavior of geomaterials. Many of them have 

been originated from the concept of critical state soil mechanics (i.e. Cam clay model and 

its modifications). As reported by Duncan (1994) most of the applications of these models 

in the analysis of embankment dams were associated with dams on soft ground where the 

overall behavior was governed by the soft materials of the foundation. Very few examples 

of application of such elasto-plastic models to predict the behavior of rockfill dams on solid 

rock foundations have been reported. This is due to the fact that rockfill can be considered 

as an extreme granular material and the suitability of critical state models to predict the 

behavior of such material is questionable (Potts and Zdravkovi , 1999). These models were 

originally developed for sedimentary clays. Compacted fills have behavior pattern similar 

to sands, and the elastoplastic models originally proposed for sands can better capture such 

behavior.  
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2.3.4.1 Perfect plastic models 
The constitutive models in elastoplastic framework with perfect plastic behavior could have 

different failure envelopes such as Tresca, von Mises, Mohr-Coulomb, and Drucker-Prager. 

The yield surfaces of these models in the principal stress space are shown in Figure  2-7 

(Potts and Zdravkovi , 1999).  The first two models are generally expressed in terms of 

total stress and applied to undrained soil behavior, while the next two models consider the 

effective stress state which is a necessity in order to describe the general behavior of 

geomaterials. The two models, Mohr-Coulomb and Drucker-Prager, have been generally 

adopted in the numerical modeling of granular materials. 

If the results of laboratory tests are plotted in terms of effective stresses, it is usual to 

assume that the tangent to the failure circles from several tests, performed with different 

initial effective stresses, is straight and can be expressed as: 

 

Where  and  are the shear and normal effective stresses on the failure plane, and the 

cohesion, , and friction angle, , are strength parameters of the model. This equation can 

be rewritten in the principal stress space as: 

 [Eq. 2-19]

This is called the Mohr-Coulomb failure criterion and is adopted as the yield function: 

 [Eq. 2-20]

In finite element modeling, it is more convenient to write this equation in terms of the stress 

invariants, , ,  which are representatives of mean effective stress, deviatoric stress, and  

inclination of major principal stress (Lode’s angle): 
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 [Eq. 2-22]

 [Eq. 2-23]

The principal stresses can be expressed in terms of these alternative invariants using the 

following expression: 

 [Eq. 2-24]

Therefore, substituting these equations into the Mohr-Coulomb failure criterion and 

rearranging gives: 

 

Where: 

 

It is evident from Figure  2-7 that when plotted in three dimensional principal stress space, 

Mohr-Coulomb yield surface has corners which imply singularities in the yield function 

(i.e. the partial derivatives with respect to the stress components are not unique at corners) 

and need to be dealt within the numerical analysis by the use of some elaborate computer 

codes. However, some earlier pioneers of the subject sought simplifications to overcome 

the corner problem without the use of more computer resources. The most common way to 

remove the edges was to modify the Mohr-Coulomb yield function so that it plots as a 

cylindrical cone. This can be achieved by replacing  in Mohr-Coulomb failure 
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criterion by a constant, , which means the yield function is independent of the direction 

of principal stresses. The yield function then becomes: 

 [Eq. 2-27]

Where  is a material constant. This form of yield function is often called the Drucker-

Prager or extended von Mises yield function. In Figure  2-8, the irregular hexagon of the 

Mohr-Coulomb surface is compared with the circular shape of the Drucker-Prager surface 

in the deviatoric plane. Two alternative Drucker-Prager circles are shown, one 

circumscribes, while the other inscribes the hexagon.  The choice of the correct  that 

provides the best fit of the circle to the hexagon is then required. Moreover, although the 

smooth shape of the Drucker-Prager surface excludes the singularities and consequently 

facilities the implementation of this model into the computer codes, but the simplification 

in the failure function deviates the model from the conventional soil mechanics concepts. 

This means that both yield and strength of the Drucker-Prager model are dependent on the 

intermediate principal stress and independent of the directions of the principal stresses. 

These differences can have serious effects in the analysis problems (Potts and Zdravkovic, 

2001). Using the Mohr-Coulomb model has the advantage that the numerical model is 

compatible with the conventional soil mechanics.  

As shown in Figure  2-9, Lade and Duncan (1975) and Matsuoka and Nakai (1974) have 

also suggested other failure surfaces which are continuous in deviatoric plane stresses by 

replacing the  function in Mohr-Coulomb failure criterion with the following 

expression: 

 

Where  is a function of Lode’s angle, , and can be obtained from different equations 

which were proposed for Lade’s surface or Matsuoka and Nakai’s surface, respectively. 

New model parameters are required in order to define these surfaces. Lade’s surface is 
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more appropriate for modeling the granular material and will be discussed later in this 

chapter. 

To complete the plastic formulation of perfectly plastic Mohr-Coulomb model, a plastic 

potential function is required. An associated flow rule was classically adopted as: 

 

Where  and  are potential and failure state factors, respectively. However there are 

three drawbacks to this approach: (i) the magnitude of the plastic volumetric strain 

(dilation) is much larger than observations in real geomaterials; (ii) once the soil yields, it 

will dilate forever, which is not correct for geomaterials reaching a constant volume 

condition at large strains. (iii) Using this formulation, the plastic volumetric strain is 

independent of the stress state and material properties (e.g. density and degree of 

saturation). The first drawback can be partly rectified by adopting a non-associated flow 

rule, where the plastic potential function is assumed to take a form similar to that of the 

yield surface but with friction angle( ) replaced by a smaller dilation angle ( ) which 

gives: 

 

Where: 

 [Eq. 2-31]

 

The abbreviation  in the above equations refers to plastic potential and  refers to the 

current stress state which is assumed to be on the yield surface. Although the use of a non-

associated flow rule solves the first drawback mentioned above, and enables the magnitude 

of the incremental plastic volumetric strain to be restricted (due to smaller value of the 
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dilation angle compared to the friction angle), but this basic model still predicts increasing 

volumetric strains, no matter how far the soil is sheared or how much the confinement is 

(the next two drawback mentioned above). This is unrealistic and can give unreasonable 

predictions in some conditions, and should be corrected by modifying the angle of dilation 

with plastic strain and/or state of the stresses. 

To summarize, the perfectly plastic Mohr-Coulomb model requires 5 parameters which are: 

. It is assumed to be perfectly plastic which means there is no 

hardening/softening law adopted in the formulations, and the parameters of the yield and 

potential functions are constant, independent of plastic strain and plastic work: 

 

 

Although this restricts the ability to reproduce real soil behavior, it forms the basis of the 

classical soil mechanics. Further improvements to these equations can be made by 

introducing hardening or softening plasticity, or modification of potential function to better 

predict the volumetric strains. Development of critical state constitutive models is also a 

further advance in the use of plasticity theory in geomechanics; however the applicability 

of these concepts in modeling rockfill behavior is questionable from the points of view of 

determination of the correct parameters (i.e. laboratory and insitu testing), and applicability 

of these concepts to a medium containing very large rock particles.  

The basic Mohr-Coulomb model has been used to model embankment dams worldwide 

(Hunter and Fell, 2003). It has the initial linear elastic formulations and the procedures 

introduced by Justo (1991) can be implemented to predict the collapse deformations due to 

wetting. The main shortages of this model in predicting the behavior of rockfill dams 

during construction and impoundment are the initial linear elastic part and independency of 

the elastic parameters to the stress state which can be replaced by nonlinear behavior with 

elastic constants to vary with stress and/or strain level. Moreover, the plastic potential 

function could be modified to take into account the dependency of the dilative behavior of 

the granular material to the stress state, density, and saturation ratio. 
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2.3.4.2 Double hardening model 
The Lade double hardening model was proposed by Lade (1977) and involved two work 

hardening/softening yield surfaces, called conical and cap yield surfaces as shown in 

Figure  2-10. If a soil element is plastic and is on the both yield surface (e.g. Point (a) in 

Figure  2-10), its behavior depends on the direction of the stress path. If directed above 

these surfaces (into zones 2, 3, and 4 in Figure  2-10) it will expand one or both yield 

surfaces, depending on the stress path. However if the stress path is directed below the 

yield surfaces (into zone 1 in Figure  2-10) the behavior is considered nonlinear elastic. The 

purely elastic response is described by isotropic elasticity. Lade and Nelson (1984) derived 

an alternative expression for Young’s modulus based on the principle of conservation of 

energy with the following expression: 

 [Eq. 2-35]

Where  and  are stress tensor invariants;  is the reference pressure (atmospheric 

pressure);  is Poisson’s ratio;  and  are material constants. The Conical failure criterion 

has a curved shape in  space and a rounded triangular shape in the deviatoric plane as 

shown in Figure  2-11. The yield function has the following equation: 

 [Eq. 2-36]

Where  is material parameter;  is stress tensor invariant and is related to the other 

invariants ( , , and ) using the following equation: 

 [Eq. 2-37]

The work hardening parameter (  for the conical failure surface is given by the following 

equation: 
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Where  is material parameter;  and  are functions which relate the incremental plastic 

strains associated with the conical yield surface ( ) with the plastic expansive work 

( ) and accumulated plastic work ( ) using 4 material parameters ( ) as: 

 

 

The plastic non-associated potential function relating to this yield surface takes the 

following form: 

 [Eq. 2-41]

Where  and  are material parameters; ,   are the stress tensor invariants; and  is the 

hardening parameter as defined before. The second yield surface forms a cap on the open 

end of the conical yield surface as shown in Figure  2-10. This cap surface is shaped as a 

sphere with its center at the origin of principal stress space. It is defined by the following 

equation: 

 

Where  is the stress tensor invariant defined as: 

 

The work hardening parameter ( ) for the cap failure surface is given by: 
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Where  and  are material parameters;   is the accumulated plastic work associated 

with the cap yield surface. The plastic potential function is obtained by assuming associated 

flow rule conditions, therefore:  

 

To summarize, this model is an example of constitutive model that involves two yield 

surfaces and is based on concepts of nonlinear elasticity and isotropic work 

hardening/softening plasticity theory. This model is appropriate for simulating the behavior 

of granular materials and has been used at Imperial College for modeling the behavior of 

fill materials in the construction of embankments. However the fourteen input parameters 

in this model are difficult to derive from results of standard laboratory tests for rockfill 

material; moreover the model’s implementation into numerical modeling analysis is not 

straight forward (Kovacevic et al., 1994) and need some specific techniques which makes 

the development of model for further analysis of the rockfill dam more complicated (e.g. 

collapse settlements due to wetting; time-dependent settlements). Kovacevic et al. (2008) 

have provided examples of its use in assessing movements of six embankment dams 

constructed in United Kingdom. This model predicted the horizontal movements 

reasonably well comparing to other models. The likely causes for good predictions are: (i) 

stress dependent potential plastic function in Lade’s model which capture the different 

dilative behaviors at different stress states as shown in Figure  2-12; (ii) the ability of the 

Lade’s model to account for the pre-peak plastic strains, which are qualitatively quite 

different from the elastic strains predicted by the models explained before. Yet Lade’s 

model cannot correctly predict the deformations after the first reservoir impounding which 

is an important aspect in modeling an embankment dam. The following two constitutive 

models have been proposed recently in order to capture the behavior after wetting and in 

the long term. These models have been formulated in two different frameworks: critical 

state concept and hypoplasticity.
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2.3.5 Barcelona model (critical state concept) 
Alonso et al. (1990) presented a constitutive model for describing the stress-strain behavior 

of partially saturated soils (slightly or moderately expansive). This model was formulated 

within the framework of hardening plasticity using two independent sets of stress variables: 

the excess of total stress over air pressure and the suction.  On reaching saturation, the 

mode1 becomes a conventional critical state model. This model was initially kept as simple 

as possible in order to provide a basic framework from which extensions would be possible, 

and was formulated for isotropic and biaxial stress states. The calibration was based on 

laboratory tests on compacted kaolin and a sandy clay samples.    

Later, Oldecop and Alonso (2001) modified this basic model for rockfill materials to4 

include the effect of water on compressibility and collapse phenomena. Breakage of rock 

particles and fracture propagation were basic underlying mechanisms controlled by the 

relative humidity of the air filling the rockfill voids. The results of oedometer tests on a 

quartzite slate rockfill, in which saline solutions were used in order to impose a controlled 

relative humidity to the air flow, were used to calibrate the proposed constitutive model 

(Figure  2-13). During the test, the air flows through the rockfill voids, impelled by the 

pump. In a wetting path, the relative humidity imposed by the solution in the air flow was 

larger than the current relative humidity within the rock pores. Water vapor was transported 

from the vessel to the rockfill voids by advection.  Further transport of water vapor occurs 

from rockfill voids to rock pores by molecular diffusion owing to the relative humidity 

gradient created between rockfill voids and rock pores. From a thermo-dynamical point of 

view, water vapor condensed within the rock pores wherever the width of the pore was 

smaller than approximately twice the radius of curvature at equilibrium of the gas-liquid 

interface. The absorption of water by the rockfill specimen during the test was measured by 

recording the loss of weight of the solution vessel. The aim of this system was to produce a 

gradual variation in the specimen water content by adding controlled quantities of water in 

a uniform manner across the specimen. A significant finding of Oldecop and Alonso (2001) 

was that bringing the relative humidity within the specimen to its maximum (i.e.100% 

relative humidity) led to a collapse strain equal to that observed in flooded specimens. 
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The elasto-plastic constitutive model proposed by Oldecop and Alonso (2001) was 

consistent with the basic deformation framework and most of its parameters had a physical 

meaning. Alonso et al. (2005), Alonso et al. (2011), and Costa and Alonso (2009) applied 

this constitutive model in simulation of the construction stage and impoundment of Beliche 

dam and Lechago dam. Later, Oldecop and Alonso (2007) extended the model in a 

framework rooted on the phenomenon of crack propagation in rock particles induced by 

stress corrosion mechanisms to explain macroscopic observations from long-term strain 

records obtained in large-diameter oedometer tests on compacted gravels which 

demonstrated that strains could be linearly related with the logarithm of time. They 

proposed that delayed compressibility coefficients were proportional to the conventional 

stress-induced compressibility coefficients. A new model of crack propagation in loaded 

disc-shaped particles was developed in order to explain the nature of particle breakage and 

its relationship with time, macroscopic stress and total suction.  

In the formulation of the Barcelona model, volumetric compressibility of rockfill is 

assumed to have two components, whose origins are a particle rearrangement and a particle 

breakage phenomenon. The second is highly dependent on the prevailing relative humidity 

(or, alternatively, the total suction, ) at the rockfill particles. The second mechanism is 

active beyond a threshold mean stress, . Isotropic compressibility is described by the 

following equations: 

 

 

where  is the incremented volumetric strain,  is the mean total stress, and  and  

are compressibility parameters. , which is made dependent on total suction, describes 

a deformation mechanism based on particle breakage, and accounts for some macroscopic 

phenomena observed in rockfill testing: the compressibility of rockfill increases as the 

material is wetted, and the rockfill collapses, under constant confining stress, when the 

ambient relative humidity is increased. The superscript ‘ ’ in  alludes to the delayed 
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nature of the particle breakage mechanisms. An appropriate function for the clastic 

compressibility parameter  was found to be: 

 

Where  is the volumetric compressibility for saturated conditions and  is a material 

parameter. The atmospheric pressure, , is introduced to avoid indeterminacies for 

saturated conditions ( ).  is restricted by .  

Rockfill elastic behavior is characterized by two compressibility coefficients  and , and 

a Poisson ratio, . The compressibility coefficients  and  are defined as follows:  

 

 

Where the volumetric elastic strains  and  are induced by total stress and suction 

changes. It should be noted that the elastic bulk modulus defined in the above equations 

does not depend on the mean stress which is a shortcoming of the constitutive model for 

rockfill material with stress dependent compressibility. The swelling stiffness coefficient  

is, in general, very small, except for expansive claystones and shales, and a default value of 

zero is usually suitable. 

For isotropic conditions, the yield stress, , is defined by the following expression: 

    if  

  if  

Where  defines the position of the yield curve, and it was identified as the yield stress for 

a very dry rockfill. A simple volumetric hardening was proposed to follow the evolution of 

: 
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Where the plastic volumetric strains, , may be obtained through 

consistency conditions.  

The model was extended to triaxial stress conditions (stress variables ; 

) by means of a family of elliptical yield curves similar to the constitutive 

equations which are based on critical state concept. The yield surface, F, in a space (p, q, s) 

was defined by  

 

The constitutive model based on the elliptical yield function was a simple choice but 

provided satisfactory results as shown by Alonso et al. (2005). The effect of suction on 

rockfill strength was introduced through parameters  and . Parameter   

provides an apparent cohesive intercept that serves to approximate the real non-linear 

strength envelopes found in testing. The dependence of the critical-state slope M on s also 

helps to introduce suction effects on rockfill limiting shear conditions.  is simply 

defined as a linear function of suction:  

 

Where  is a material parameter. As the available experimental data on rockfill often 

consist of tests performed on dry or flooded specimens,  was defined in terms of two 

extreme values:  and .  corresponds to the relative humidity existing at the 

laboratory and  corresponds to saturated conditions. The transition from  to  

takes place for an increase in suction from a zero value, when the specimen is saturated, to 

a very high value, typically a few tens or even hundreds of MPa for the relative humidity 

prevailing in laboratories. The following experimental expression was proposed by Alonso 

et al. (2005) to model this variation:  
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In order to maintain the model’s simplicity, the same non-associated manner proposed for 

the cohesive soils by Alonso et al. (1990) was considered for the rockfill, and a potential 

function G was defined using an additional material parameter, , as follows: 

 

Altogether there are 12 parameters in this model: elastic modulus, , Poisson’s ratio , 

Plastic instantaneous compressibility , clastic compressibility for saturated 

condition , the rate of change of clastic compressibility with total suction , slope of 

critical state strength for dry condition , slope of critical state strength for saturated 

condition , increase in cohesion with suction , threshold yield mean stress for the 

onset of clastic phenomena , non-associativeness of plastic potential function , initial 

suction , initial mean yield stress . Several laboratory tests are required to calibrate the 

parameters of the model for a particular rockfill material including large-scale oedometer 

and triaxial tests with the requirement of controlling the relative humidity of the samples 

during the tests.  

The compressibility relations for the rockfill were described by linear functions relating 

strain and stress. The threshold stress  and the hardening parameter ,  have no 

equivalent in the case of unsaturated soils. An important aspect, from a fundamental 

perspective, is that the suction term, s, has a different meaning in this constitutive model. In 

soil mechanics, it is generally accepted that, for low-plasticity unsaturated soils and silts, s 

is identified with the capillary or matric component of suction. However, the role of suction 

in the case of rockfill as utilized in this model is different. Following the ideas of Oldecop 

and Alonso (2001) suction controls the velocity of crack propagation in rockfill particles. 

Therefore no direct mechanical action should be assigned to the suction term in this case. It 

is a state variable externally controlled by boundary conditions and flow phenomena. The 

crack propagation velocity depends on the total energy of the water on propagating cracks, 

and therefore it is measured by the relative humidity or, alternatively, by the total suction. 
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An alternative formulation was also proposed by Oldecop and Alonso (2001) in which the 

isotropic compressibility, yield surface and hardening law were expressed in terms of rock 

water content (instead of suction). However the general trends were similar to what 

explained here, and this alternative approach had not any advantage over the explained one. 

The distinction may prove significant in situations in which the chemical composition of 

the water, which controls the osmotic component of total suction, is a relevant variable. But 

this is probably not very important in applications in dam engineering. 

To sum up, the initial critical state model based on unsaturated soil mechanics concepts 

which was proposed by Alonso et al. (1990) have been very successful in capturing the 

behavior of cohesive soils. However the extension of this model to characterize the 

behavior of rockfill material which is an extreme granular material might be questionable. 

The particular definition of suction within rock pores, the elliptical shape of the failure 

envelope and formulation of the potential function which lacks the stress dependency of the 

volumetric behavior as required for granular material are the main shortages. The difficulty 

of the calibration of the parameters and test procedures will limit the application of this 

constitutive model in practice of dam engineering. However this model is of the most 

advanced constitutive models which have been successfully applied in modeling of the 

behavior of compacted rock particles in dam engineering. 

2.3.6 Hypoplastic models 
The previous constitutive model for wetting deformations was developed in order to relate 

the wetting deformation to the degree of saturation and the so-called suction of the rockfill 

material and fall into the scope of unsaturated soil mechanics. These kinds of models can 

capture particular properties of wet and fine grained materials, but rarely reflect the time 

dependent reduction of the stiffness of weathered materials. Hypo-plasticity introduced the 

so-called solid hardness in the sense of a continuum description to take into account the 

state of weathering of the material over time. With a degradation function for the solid 

hardness, the time dependent evolution of creep and stress relaxation could be modeled. 

Similar procedures can be implemented to predict the behavior of the material during 

wetting. 
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The concept of hypo-plasticity was generally developed to model clay or soft soils without 

recourse to the concepts in elasto-plasticity theory such as yield surface, plastic potential 

function and decomposition of deformations into elastic and plastic parts (Gudehus, 2004; 

Huang et al., 2006; Masin, 2005, 2007). In hypo-plasticity, the constitutive equation is of 

the rate type, where the objective stress rate tensor, , is expressed by an isotropic tensor-

valued function, , that depends on the simplest case on the current effective stress tensor, 

 , and the strain rate tensor, : 

Using the above equation, the inelastic material properties are modeled with an 

incrementally nonlinear form, where the tensor function, , in the above equation is 

decomposed into the sum of the tensor function , which is linear in the rate of 

deformation , and the tensor function , which is nonlinear in : 

 

Using this concept, Bauer and Zhu (2004) were the first to model the wetting deformation 

of stressed and moisture-sensitive weathered rockfill materials in a simplified manner by a 

reduction of the solid hardness which was implemented in the tensor function, , in the 

above equation. In this context, the so-called solid hardness is related to the isotropic 

compression of the grain assembly in the way of a continuum description and does not 

mean the hardness of an individual grain (Gudehus, 2004).  

Recently some hypo-plastic constitutive models were proposed for modeling the long term 

behavior and wetting deformation of weathered and moisture-sensitive rockfill materials. 

These models take into account the influence of the current density, the effective stress 

state, the moisture sensitive solid hardness and the rate of deformation. The most advanced 

one which could be implemented in modeling of the rockfill behavior was proposed by Fu 

and Bauer (2009) with embedding of an evolution equation for the reduction of the solid  

hardness over time which permits the prediction of creep and stress relaxation. This hypo-

plastic constitutive equation for the evolution of the stress is based on nonlinear tensor-

valued functions depending on the current void ratio, stress, deformation rate, moisture 
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dependent solid hardness, and rate of reduction of the solid hardness. In this kind of hypo-

plastic constitutive model, an additional term appears which is proportional to the rate of 

the solid hardness and to the current stress state. The void ratio e is taken into account as an 

additional state variable in the constitutive equation and is related to the strain rate tensor 

as: 

 

With maximum and minimum limits and the critical value (referring to the critical state of 

the material) which are all pressure dependent and decrease with an increase of the mean 

pressure , as illustrated in Figure  2-14.  

The upper bound  is related to an isotropic compression starting from the loosest 

possible skeleton with grain contacts, and it can be approximated for a wide range of 

pressures using the following compression relation proposed by Bauer (1996): 

 

Where , denotes the value of  for p = 0.  is the solid hardness of the grain 

assembly under isotropic compression and has the dimension of stress. As shown in 

Figure  2-15, the quantity of  is defined for the isotropic stress ( ) at which the 

compression curve in a semi-logarithmic representation shows the point of inflection 

(Bauer, 2009). The exponent  is a dimensionless constant and is related to the inclination 

of the compression curve. For high pressures, the void ratio in the above equation tends to 

zero, which can be explained by grain plasticization and grain crushing. The same pressure 

dependence for  on  is postulated by Gudehus (1996) for the other void ratios , and 

 as: 
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where  and , are the appropriate void ratios for p = 0 and are obtained with 

conventional index tests. Using these values and concepts, the proposed tensor function of 

the hypoplastic constitutive equation has the following representation: 

 

with: 

 

 

Where: 

 

 is adopted to the stress limit condition given by Matsuoka and Nakai (1974), as illustrated 

in Figure  2-9, and is related to the critical friction angle , the current normalized stress 

deviator , and its Lode angle  as: 

 

The influence of the mean pressure  and the current void ratio  on the response of the 

constitutive equation is taken into account with the stiffness factor  and the density factor 

. The dilatancy behavior, the peak stress ratio, and strain softening are related to the 

density factor , which represents a relation among the current void ratio , the pressure 

dependent critical void ratio , and minimum void ratio : 



 39
 

 

Where  is a model parameter. The stiffness factor  mainly depends on the solid 

hardness , the mean pressure , and the ratio of the maximum void ratio  to the 

current void ratio e. The full representation of the density factor reads as: 

 

Where  is a model parameter. This relation is obtained from a consistency condition that 

links the compression relation with the general form of the constitutive equation, as 

outlined by Gudehus (1996). In order to model the influence of reduction of the stiffness of 

a stressed rockfill due to the reaction with water or over time (creep deformations), the 

constant solid hardness  is replaced by the moisture- and history-dependent state quantity 

 which reduces over time or with increasing moisture. The influence of the reduction of 

the solid hardness on the compression behavior is shown in Figure  2-16. The current state 

of the solid hardness, , ranges within   . Herein, the upper limit  is 

the solid hardness before wetting and the lower limit  is the final degraded quantity 

depending on the relative moisture content of the grains (and also the time span in the creep 

analysis). The reduction of the solid hardness also leads to a reduction of the pressure 

dependent limit void ratios and critical void ratio, which is more pronounced for higher 

stress levels, as illustrated in Figure  2-17.  

 If a reaction with water takes place, the process of reduction of the soil hardness is 

modeled using the following evolution equation as proposed by Bauer (2009): 

 

Where the parameter   is related to the rate of reduction of the solid hardness with time, 

 denotes the current state, and  denotes the final value of the solid hardness (i.e.  

depends on the state where the reaction of the solid material with water is completed). 

Wetting can lead to a continuation of the process of disintegration of the grain material, and 
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the value of  is not a material constant. The above relation reflects the experimental 

observation that the amount of the rate of reduction of the solid hardness is higher for a 

larger difference between  and . For , the reduction rate is zero. The 

integration of this equation over time yields the solid hardness  as a function of the 

reduction time t, which is represented by the following exponential function (Fu and Bauer, 

2009): 

 

This equation describes the time dependent transition which is the reduction of the solid 

hardness from the dry state  to the final state reached under the water saturated state 

. 

Altogether there are 10 parameters in this hypoplastic model ( , , , , , ,  

, ,  and ). Assuming that all these parameters are independent of the moisture 

content of the sample (which is not necessarily true), the only parameters related to the 

degradation of the material are the solid hardness for the water saturated state  and the 

degradation velocity . The value of  can be calibrated based on a drained isotropic 

compression test for the water saturated material, and the value of  can be related to a 

creep or stress relaxation tests. The other constitutive parameters can be calibrated for the 

dry (and saturated) state of the material based on the experiments on the rockfill material 

and reproducing the results with numerical models. Several types of tests are required to 

estimate the correct values of these parameters: triaxial tests, compression tests, index tests. 

Some of these constitutive constants which don’t have a clear physical meaning are more 

difficult to calibrate (i.e. , , ).  

There are some experimental relations in the proposed model which are not necessarily 

applicable to all kind of rockfill materials (e.g. the relation for pressure dependency of the 

upper bound void ratio  to the isotropic pressure  and postulation of its parameters for 

the other void ratio limits , and ). Both relations for stiffness and density factors (  

and ) which are key factors in definition of the constitutive model are based on these 

experimental relations. Moreover, the critical friction angle  is assumed to be constant 
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for the material regardless of the state of stress or water content, which is not true as shown 

by other researchers such as Barton and Kjarnesli (1981), Leps (1970), and Marachi et al. 

(1969). These shortages bring uncertainty in the implementation of this model in dam 

engineering, although the rate dependency of these kinds of constitutive models makes 

them suitable for modeling the creep phenomena in rockfill material. The simple idea of 

reduction of the solid hardness from the dry state to the final state using a single parameter 

(rather than changing the whole set of the parameters due to wetting) is interesting and can 

be used in other more stable methods (e.g. hyperbolic model) to predict the wetting or creep 

deformations.  

2.4 Comparison of constitutive models 
In reviewing constitutive laws spanning from linear elastic to models based on critical state 

concept, Naylor (1991) concluded that a stress-strain law should ideally incorporate the 

following characteristics of the rockfill material in order to successfully capture the 

behavior of this material during construction and impoundment of a rockfill dam: 

1. The increase in bulk stiffness which occurs with increasing stress level (i.e. the 

concave form of an isotropic compression or oedometer stress-strain curve) 

2. The reduction in shear stiffness which occurs with increasing deviator stress (i.e. the 

convex form of the triaxial test deviator stress-strain curve) 

3. A Mohr-Coulomb or similar type of failure criterion. This implies that an 

incremental shear modulus tends to zero as the failure state is approached. 

4. A higher stiffness on unloading 

5. The effects of dilatancy, i.e. the tendency of a stiff soil such as a well compacted 

granular fill to increase its volume on shearing. 

6. Collapse settlement, i.e. the reduction in volume of initially dry material when 

saturated (or even wetted). 
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The models described in this chapter were divided into elastic and elasto-plastic models 

(except for the hypoplastic models which are based on completely different concepts). The 

elastic models incorporate characteristics (1), (2) and (6) and to some extent (3) but not (5). 

Characteristic (4) can also be incorporated in elasticity only by user decision on what 

constitutes unloading and the alternation of stiffness parameters for the region in which this 

occurs. Basic elasto-plastic models incorporate characteristics (3), (4) and to some extent 

(5) but not (1), (2) nor (6). The more advanced elasto-plastic and hypoplastic models can in 

principal incorporate all of the above six characteristics, but implementation is different. 

In Table  2-1, a brief comparison is made between the discussed constitutive models. The 

simplest models (i.e. linear elastic, anisotropic elastic and elastic-perfectly plastic models) 

have many limitations in capturing the key behaviors and their implementations are 

recommended to the initial stages of the modeling and where there are no zones of strongly 

differing stiffness. On the other hand, the advanced constitutive models (i.e. double 

hardening, hypoplastic and critical state models) have many limitations in calibrating and 

require much more laboratory testing and computer resources which make the 

implementations very difficult and only a few cases have been practically modeled using 

these models.  The nonlinear elastic models are the most common constitutive laws applied 

in dam engineering in which the simplicity and accuracy are well balanced. 

Among the different nonlinear elastic models, the hyperbolic model has been the most 

applied constitutive model in simulating rockfill dams around the world. It has the 

advantages that it can capture the nonlinear and stress-dependent behavior and that the 

parameters involved has physical significance and can be evaluated using the results of the 

conventional triaxial tests. However it is inherently elastic and does not model plastic 

deformation in a fully logical way; it is also incapable of modeling the dilative behavior of 

compacted granular material. In spite of these shortcomings, Duncan (1992) reported more 

than twenty successful cases from the literature which have implemented the hyperbolic 

stress-strain relationship in the finite element analysis of the embankment dam. These cases 

involved analysis that was done mostly after, and also a few before the fact (type C1 and 

type A predictions according to Lambe’s classification). Cruz et al. (2009) also mentioned 

more examples of such implementation in modeling the behavior of CRFDs (i.e. Concrete 
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Face Rockfill Dam) in China, Brazil and Australia. This brings up the fact that the 

hyperbolic model is probably the most stable constitutive model which has been 

implemented in numerical modeling of rockfill dams of different kinds worldwide and that 

there is a big database available for calibration of the parameters based on general physical 

and engineering properties (such as particle gradation and  density). 

As explained by Potts and Zdravkovic (2001), there has been some efforts to couple the 

hyperbolic relation with some perfectly plastic failure criteria (such as Mohr-Coulomb)  in 

an attempt to improve the prediction of the plastic deformations and dilative behavior. This 

is especially important when modeling zoned dams with contrast in compressibility of 

different zones. However the basic elasto-plastic laws which have been used for this 

purpose were themselves limited in predicting the correct behavior of the compacted rock 

particles. As a matter of fact, both the yield and potential functions of Mohr-Coulomb 

failure criteria need to be modified before coupling. Provided that these functions of the 

Mohr-Coulomb model be modified to capture the key behavior of compacted assemblages 

of rock particles as exist in rockfill dams (e.g. stress dependency of both friction and 

dilation angle), it can very well cover the shortcomings of the hyperbolic model as shown 

in Table  2-1. 

 Most of the efforts in modifying the yield function of the Mohr-Coulomb model were to 

overcome the corner problem which implied singularities in the basic model during 

numerical modeling (as shown in Figure  2-9). However the additional parameters which 

exist in the modified continuous failure surfaces (i.e. failure surfaces without corners in the 

deviatoric plane) require more laboratory testing to be calibrated for a given material which 

again introduces uncertainties and difficulties in the modeling process (e.g. Lade double 

hardening model). Alternatively, these corners can be dealt with in the computer program; 

this involves some elaborate computer codes which inevitably results in the use of more 

computer resources. Considering the existing powerful computers these days, this is not an 

important issue anymore. Stress-dependency of the failure envelope and dilation angle is 

much more important to consider as a modification of the constitutive law to better capture 

the behavior of compacted assemblages of rock particles. 
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The associated (or even non-associated) flow rule with constant dilation angle in the Mohr-

Coulomb model has also restrictions in prediction of volumetric strains on failure envelope 

(Figure  2-12). The previous efforts in addressing this problem were to allow the angle of 

dilation to vary with plastic strain using some hardening or softening rules and introducing 

new parameters for the model. Although this was logical but the dependency of the dilation 

angle to the confining stress and the physical properties of the material (e.g. density, degree 

of saturation) have not been fully addressed in these strain hardening laws. These are 

important issues of the behavior of the granular material (Bolton, 1986) that should also be 

considered in modeling of rockfill dams during construction and impoundment. 

2.5 Conclusion 
A summary of constitutive models which have been used in the past to model the behavior 

of rockfill dams during construction and impoundment was presented in order of increasing 

complexity. Selecting an appropriate stress-strain relationship is primarily involved with 

balancing simplicity and accuracy. While it seems reasonable that more complex stress-

strain relationships should be able to model the behavior of the rock particles more 

accurately, there is no benefit in using a very complex relationship to analyze the problem 

where the simpler representation of the stress-strain behavior would result in an acceptable 

accuracy. Moreover the applicability of the more complex constitutive models in 

simulating the rockfill material is often questionable because of: (i) the difficulty of the 

calibration of the model using the limited test results of such material in practice, and (ii) 

the initial assumptions and experimental relations taken in the formulation of these 

constitutive models are not necessarily extendible to compacted samples of large rock 

particles as exist in rockfill dams.  

In the province of Quebec where this study is done, the rock particles used in the 

construction of rockfill dams have high compressive strength and good resistance to 

saturation. However, the dams are generally designed to have several zones with different 

compressibilities which introduces zones with high shear, and the need to consider 

plasticity and dilation. The hyperbolic model, if coupled with an appropriate failure 

criterion, seems to be the most balanced constitutive law for the purpose of modeling 

rockfill dams in Quebec during construction and impoundment. The modified failure and 



 45
 

the potential functions should consider the dependency of both friction angle and dilation 

angle to key physical properties of the rock particles (e.g. stress state, density and degree of 

saturation). Another potential enhancement to this model is the algorithms proposed by 

Nobari and Duncan (1972) and modified by Escuder et al. (2005) in a finite difference 

context which are not robust and should be improved in order to increase the stability of the 

simulation of the wetting process.  
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Figure  2-1 – Schematic of the Bi-linear model 

 

 
 
 
 
 

 
Figure  2-2 – Schematic of the K-G model 
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Figure  2-3- Stress-strain curve for the nonlinear hyperbolic model; after Singh et al. (2009) 
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Figure  2-4- Introducing the inelasticity in hyperbolic model by the means of unloading-

reloading modulus (Kur) 
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Figure  2-5- variation of bulk modulus with confining stress in logarithmic scale 
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Figure  2-6- Calculation of the collapse deformation due to wetting using triaxial test results 

and comparison of stress-strain and volume change curves for dry, wet, and dry-wet 
specimens;  after Nobari and Duncan (1972) 
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Figure  2-7- Perfect plastic yield surfaces in principal stress space (a)Tresca (b)Von Mises 

(c) Mohr-Coulomb (d) Drucker-Prager 
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Figure  2-8- Drucker-Prager and Mohr-Coulomb yield surfaces in the deviatoric plane 
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Figure  2-9- Comparison of Lade and Matsuoka-Nakai failure surfaces with Mohr-Coulomb 

and circumscribed Drucker-Prager surfaces in the deviatoric plane. 
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Figure  2-10- Yield surfaces for Lade’s double hardening model 

 

 

 
Figure  2-11- Conical failure criteria of the Lade’s double hardening model; and its 

expansion in deviatoric space 
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Figure  2-12- Predicted and measured behavior in triaxial tests of rockfill material from 

Roadford dam by (a) Mohr-Coulomb model with constant dilation angle; (b) Lade’s model  
with stress dependent volumetric behavior; after Kovacevic et al. (2008). 
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Figure  2-13- Rockfill oedometer test setup with a relative humidity control system; after 

Oldecop and Alonso (2001) 
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Figure  2-14- Pressure dependence of the maximum void ratio emax, the minimum void ratio 

emin, and the critical void ratio ec; after Bauer (2009). 

 

 
Figure  2-15- Estimation of solid hardness from an isotropic compression test in a semi-

logarithmic representation; after Bauer (2009). 
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Figure  2-16- Influence of the reduction of the solid hardness on the compression behavior 

 
 
 
 
 

 
Figure  2-17- Influence of the reduction of the solid hardness on the limit void ratios. 
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nonlinearity stress-
dependency

plastic 
deformation 

and unloading

dilative 
behavior

collapse 
due to 

wetting

creep 
deformations

Calibration 
of 

parameters

Application in dam 
engineering

linear elastic No No No No Yes to some 
extent very easy Extensively used in 

the past but not lately.

Non-linear 
elastic Yes Yes to some 

extent No Yes to some 
extent easy Several applications 

Anisotropic 
elastic Yes Yes No Yes No No not easy Not applied

perfectly 
plastic No No to some 

extent
to some 
extent

to some 
extent No easy Considering an initial 

linear elastic behavior  

Double 
hardening Yes Yes Yes Yes to some 

extent No difficult Some applications in 
Imperial College

Barcelona Yes to some 
extent Yes to some 

extent Yes to some 
extent difficult Few applications 

Hypoplastic Yes Yes Yes Yes Yes Yes difficult Not applied

Table  2-1 – Application of different constitutive laws in modeling rockfill dams 
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3 Modeling the behavior of a compacted assemblage of 
rock particles during monotonic triaxial compression 
tests
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3.1 Introduction
Testing and numerical modeling of the behavior of rockfill materials based on soil 

mechanics concepts have been a challenge for both engineers and scientists. The difficulty 

arises from the comparatively unique nature and extremely wide-ranging variations of the 

material. Many researchers have tried to make determination of the properties of rockfill 

conform to usual procedures and concepts of geotechnical engineering (Barton and 

Kjarnesli, 1981; Jansen, 1988; Leps, 1970; Marachi et al., 1972). In addition, different 

constitutive equations based on elasticity and/or plasticity theories have been proposed to 

predict the behavior of coarse grained non-cohesive soils (Chu et al., 2010; Duncan and 

Chang, 1970; Fu and Bauer, 2009; Oldecop and Alonso, 2001). Some of these equations 

have been used worldwide to predict the behavior of rockfill masses. The data needed to 

calibrate the parameters of these models are often obtained from performed laboratory tests. 

In order to have satisfactory predictions of rockfill behavior, the parameters of the model 

such as elastic modulus, bulk modulus, plasticity parameters, etc. need to be determined as 

precisely as possible using typical geotechnical testing procedures. However, due to the 

problems which exist in testing a rockfill sample with irregular boulders up to 2 m in size, 

there is the inevitable need for simplifying procedures (e.g. using parallel grain-size 

distribution with smaller maximum particle size (Lowe, 1964) which would lead to the 

introducing the grain size factor). This brings up the idea to keep the constitutive equations 

less complex, considering only the important characteristics of the particular problem 

involved. Hence, the parameters of the model could be more confidently determined with 

less testing required. 

With the ultimate goal of modeling rockfill in dams, the traditional hyperbolic model have 

shown to be stable and to capture the behavior relatively well (Massiéra et al., 1989; Mellah 

et al., 2000; Saboya and Byrne, 1993). The main advantage of this model is its simplicity 

while being capable of representing the nonlinearity and stress dependency of the material. 

However as mentioned by Duncan et al. (1980a) there are two shortages of this model 

which could mistakenly affect the results of the modeling of a rockfill dam: (i) due to its 

elastic formulations the behavior at and after failure cannot be modeled correctly;  and (ii) 

the relationships do not include shear dilatancy.  
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It has thus been decided to introduce a failure envelope in the formulation of the 

constitutive model to predict the behavior of the material at failure in order to apply this 

model confidently in the simulations. Moreover, by introducing the plastic formulation with 

a non-associated flow rule, both of the above mentioned problems can be overcome.  This 

is especially important when the dam contains different zones. The interface regions could 

undergo high shear stresses and could reach the failure envelope and possibly have a 

dilative behavior. Houlsby (1991) summarized different classical methods for representing 

the dilatancy of granular soils in the context of plasticity. He showed that all the equations 

express the concept that dilation rate is primarily controlled by density, but also reduces 

with increasing stress level. This kind of behavior has to be considered in the definition of 

the flow rule in the current study.  

In this paper the nonlinear elastic relationships proposed by Duncan et al. (1980a) are 

modified and coupled with the Mohr-Coulomb failure criteria and a non-associated flow 

rule to consider shear dilatancy based on the theory presented by Rowe (1962). These 

constitutive equations are implemented into the commercially code, FLAC, to reproduce 

the observed behavior of an assemblage of rock particles in drained monotonic 

compression triaxial tests conducted in strain controlled conditions. Finally, by comparing 

results of the modeling and data from the laboratory, limitations and effectiveness of the 

implemented model are discussed. 

3.2 Constitutive equations 
The constitutive relations implemented in this paper are the elastic hyperbolic model 

coupled with the Mohr Coulomb failure criteria. Both of these models deal with the 

minimum and maximum principal stresses which make the coupling very effective. The 

schematic is shown in Figure  3-2: A model which is capable of capturing the nonlinear 

behavior prior to failure as well as the plastic deformations on the yield surface. It sould be 

noticed that the initial hyperbolic shape does not predict the plastic deformations which 

occur from the onset of shearing. The empirical unloading-reloading modulus which had 

been introduced by Duncan et al. (1980a) for this purpose is omitted as there is no need for 

such criterion in a monotonic test setup. Moreover, the stress criterion in the definition of 

this modulus is not reliable to capture the unloading and reloading in complex stress paths 
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and could have led to unrealistic energy production during the simulation. Neglecting this 

empirical coefficient could often increase the stability of the numerical model. The more 

reliable way of predicting the plastic deformations is the introduction of the failure 

envelope as established in the classical theory of elasto-plasticity.  

Mohr-Coulomb model which is the simplest realistic model for geomaterials has been well 

established in geotechnical engineering practice. Geomaterials are modeled as elastic below 

and plastic on the failure envelope. When the stress state reaches the Mohr-Coulomb failure 

envelope, the plastic deformations can be properly determined using elasto-plasticity 

formulations. Both shear and volumetric plastic strain increments can be related using a 

non-associated flow rule and a dilation angle. In the original Mohr-Coulomb model, elastic 

and plastic parameters remain constant throughout the analysis which is a simplification of 

the real behavior. However, in this research, hyperbolic equations are used to update the 

parameters during the simulation and before the failure envelope is reached. The 

calculation of the dilation parameters are also considered as follows. 

Dilative behavior in compacted packages of grains should be generally considered in terms 

of energy and related to the secant friction angle as demonstrated by Rowe (1962). Using 

this concept, Bolton (1986)  has shown that the friction angle, in any given confining stress,  

could be calculated as: 

 

Where  is the secant friction angle;  is the constant volume friction angle at large 

strains (or the steady state friction angle as referred in this paper);  is the dilation angle. In 

the above equation, the shear strength is related to the rate of dilation. In reality, the rate of 

dilation is changing during the shearing of a compacted soil, and as a result, a peak is 

normally observed in the stress-strain curve. This is obvious in the typical results of triaxial 

tests performed on compacted sand samples as shown by Habib and Luong (1978) in 

Figure  1-1. there are three important states in this figure: characteristic state, peak friction 

angle and critical state. The dilative behavior starts at characteristic state and the rate of 

dilation increases until it reaches its maximum value corresponding to the pick friction 

angle. The dilation reduces afterwards and finally reaches the zero volumetric change at 
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critical state. However due the fact that large rock particles break under high stresses near 

failure envelope before they override, this peak is normally not observed in the results of 

triaxial tests on rockfill samples. In other words, due to the particle breakage the dilative 

behavior of compacted assemblages of rock particles are not accompanied with a large pick 

in stress-strain curve. In the implemented model, it is assumed that the rate of dilation is 

constant under any given confining stress (i.e.  Perfect plasticity formulation is utilized with 

no strain hardening involved) and the secant friction angle is not changing and no peak is 

considered. This is an approximation and should be understood when using this model in 

simulations. Monitoring the plastic strains and limiting the rate of dilation of the elements 

is also essential in this approach. That is why dotted line was shown in Figure  3-2. 

3.2.1 Elastic formulation 
Hyperbolic formulations, like those introduced by Konder and Zelasko (1963) and Duncan 

and Chang (1970) have been adopted for plain strain condition and based on the 

generalized Hooke’s law of elastic deformations in the following form : 

 

Where ,  are normal stress increments;  is shear stress increment;  ,  are 

normal strain increments;  is shear strain increment; E is Young’s modulus; B is bulk 

modulus. By linking the elastic parameters to the stress state, it is possible to model the soil 

behavior and the important characteristics of it, which are, nonlinearity and stress-

dependency. In each increment of the analysis the elastic parameters are updated as 

follows: 
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Where  and  are modulus numbers;  and  are modulus exponents;  is the 

reference pressure (atmospheric pressure);  is the confining stress. These equations imply 

higher modulus with increasing confinement. The rate of this increase is defined by the 

modulus exponents  and . 

The nonlinear stress-strain curve can be represented by the equation of the following form: 

 

 is related to the compressive strength at failure by: 

 

 is an empirical coefficient used to adjust the stress-strain curve. A database of 20 

different rockfill samples from published dam sites worldwide is shown in Table  3-2. 

 is often a suitable default setting.  can be derived from Mohr-Coulomb 

failure criterion and expressed as: 

 

This formulation implies decreasing of the tangent elastic modulus with increasing shear 

stress while the bulk modulus is independent of the percentage of the strength mobilized 

(Duncan et al., 1980a). 

3.2.2 Plastic formulation 
The Mohr-Coulomb failure criterion was considered for the material. Because there is no 

cohesion in rockfill, the failure envelope involves only the friction angle ( ). Despite this 

simple choice of soil behavior, it will be illustrated that the model is capable of capturing 

the rockfill behavior. Yield and potential functions have similar forms but with different 

parameters. The yield function is defined by: 
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Where:   

 

The potential function has the following form: 

 

Where: 

 

Four parameters reflecting the plastic behavior are required in order to determine the 

friction and dilation angles corresponding to the yield and potential functions described 

above.  These can be written as: 

 

 

Where   is the fiction angle at reference pressure ;  is the change of friction angle 

with confining stress; is the dilation angle at reference pressure ;  is the change of 

friction angle with confining stress; The reference friction angle (  is the steady state 

friction angle (also known as constant volume friction angle, ) at the reference pressure 

( . It is dependent on the mineralogy, particle shape, and grain size distribution of the 

material, but not on the density or degree of saturation. However, there is much influence 

of all these physical properties on the reference dilation angle ( ). 
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Bolton (1986) assumes a unique steady state angle based on a large database of tests on 

granular materials which leads to the correlation for triaxial strain as: 

 

This is a modified version of [Eq.3-1] for triaxial formulation, where  is the peak 

friction angle in triaxial strain condition;  is the constant volume friction angle (i.e. 

steady state friction angle ) in triaxial strain condition;  is a relative dilatancy index which 

relates the relative density ( ) and applied confining stress level ( ) as: 

 

Bolton (1986) also found that the rate of dilation was independent of the strain and could be 

defined as: 

 

This supports the idea of a unique angle of dilatancy as this angle is related to the ratio of 

volumetric strain to axial strain as shown by Schanz and Vermeer (1996). Moreover, [Eq. 

3-15] and [Eq. 3-16] suggest that the rate of dilation increases linearly with density and 

decreases linearly with logarithm of applied stress. This kind of behavior was implemented 

in the constitutive equations as shown in [Eq. 3-13]. 

3.3 Laboratory testing 
A laboratory testing program was undertaken to evaluate the behavior of the compacted 

assemblages of rock particles under monotonic loading. This program was also designed to 

study the effects of saturation, confining stress, and density on the stress-strain-volumetric 

characteristics of theses specimens. The data from these tests is used to calibrate the 

parameters of the implemented model. Five sets of angular granite grains with different 

uniform particle sizes were used to prepare the specimens to be tested (Figure  3-3). These 

sets were obtained from crushing and sieving the granite boulders from the shell zone of the 

Romaine2 dam, which was under construction in Quebec, at the time of the experimental 
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program. For each specimen being tested, the appropriate quantities of oven-dried grains 

were mixed according to the parallel gradation curve to the prototype rockfill as shown in 

Figure  3-4. It should be noted that the maximum particle size of the specimens was 25 mm 

which is a rather a gravel sample.  

3.3.1 Triaxial setup 
Polished stainless steel end platens were used in all tests. The platens had several holes to 

provide drainage of water during the saturated tests. Fine wire meshes wrapped in paper 

filters were used on both platens to prevent the fine soil particles to block these drainage 

holes. Nominal sample dimensions were a height of 300 mm and a diameter of 150 mm. 

The samples were initially subjected to the desired confining pressure (i.e. 100, 300, or 600 

kPa) and then axially strained at 5% per hour for dry tests; and 1% per hour in drained 

condition for saturated tests. The samples were saturated by allowing water to pass through 

the base of the triaxial cell and using the top drainage system for removing air voids. This 

allows reaching saturation degrees up to a maximum of 92%. In order to reach higher 

degrees of saturation some additional techniques are required which was not considered in 

the current study. The data were collected every 30 seconds by an acquisition system and 

recorded using a dedicated personal computer. The test conditions are summarized in 

Table  3-1. 

3.3.2 Specimen preparation 
The samples were prepared in a split mold attached to the base pedestal of the triaxial test 

equipment. In order to minimize density variation within a specimen, five equal pre-

weighted and oven-dried portions of the granite rock particles were mixed and compacted 

to a predetermined height. Initial dry densities of 1800 and 1900 kg/m3 were targeted using 

the vibratory compaction. The application of the confining stress to the specimen resulted 

in an uncontrolled increase of the initial density obtained in the mold, which was more 

evident in the saturated samples (Table  3-1). The increased density was considered in the 

analysis and calculated by measuring the volumetric changes of the specimen during the 

consolidation stage. 
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3.3.3 Membrane penetration 
There is a phenomenon referred to membrane penetration in any triaxial test of grainy 

materials (Kiekbusch and Schuppener, 1977; Lade and Hernandez, 1977; Molenkamp and 

Luger, 1981). This is due to the fact that the sample is subjected to a confining stress, and 

could be problematic in measurements of volumetric change when CIU testing is conducted 

and pore pressure builds up. However, the difficulty in the conducted CID tests with 

specimens containing angular grains up to 20 mm in size was the rupture of the rubber 

membrane during the axial straining of the samples. This was especially important for the 

dry samples. Even a tiny hole in the membrane would have introduced the water to the 

samples and distorted the desired test conditions as well as volumetric measurements. Thin 

plastic sheets were loosely attached around the rubber membrane to form a stiff cylindrical 

support against the penetration of the angular rock particles. A second rubber membrane 

was installed over the plastic sheets to seal the whole specimen during the triaxial testing. 

Figure  3-5 shows the specimen after the experiment. The colored plastic sheets are visible 

underneath the translucent membrane. The grains have slightly deformed the plastic sheets 

and the rubber membranes. However, the sealing membranes were not damaged and 

functioned very well during the tests. 

3.3.4 Strain rate 
The effects of rate of straining on the stress-strain behavior of the specimens in triaxial tests 

have been firstly reported by Whitman (1957b). In a strain-controlled test, if the rate of 

straining is smaller, the more time is allowed for the sample to relax. Consequently, smaller 

shear stresses are calculated at a given deformation increment. The final result is a stress-

strain curve which plots lower. Matesic and Vucetic (2003) have reviewed the previous 

experimental studies and confirmed that axial strength, and secant modulus increase 

approximately linearly with the logarithm of the strain rate. The rates included in their 

research ranged between 0.00003 and 3000 %/s.  

The appropriate choice of the rate of straining depends on the characteristics of the material 

being tested as well as the geotechnical problem involved. While the common strain rate 

chosen for monotonic testing of sands is about 1 %/min (approximately 0.01 %/s), larger 

rates are useful in studying the cyclic behavior. Whitman (1957a) and Mitchell (1976) 
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reported that clays are much more susceptible to this rate effect. In this research, the large 

scale tests were performed with the ultimate goal of modeling the behavior of rock particles 

in a rockfill dam. The strain rates chosen for the assemblages of relatively large rock 

particles were 5 and 1 %/hour (approximately 0.001 and 0.0003 %/s) for dry and saturated 

tests, respectively. The strain rates were reduced for the saturated samples in order to 

provide the full drainage condition during the experiments.  

3.4 Test results
The stress-strain curves and the volumetric changes during the axial straining of the dry 

samples at various densities, and confining stresses are shown in Figure  3-6. All of the six 

tests in these figures display the same general trends: nonlinear behavior at the beginning of 

the tests followed by a constant strength at higher strains; the samples tested did not display 

much strain-softening characteristics. The following behaviors were also observed:

1. The rigidity of the specimens increased with both confining stress and density. 

2. The steady state strength of the specimen was increased with confining stress; there 

was not much influence of density or degree of saturation observed in this final 

strength.  

3. There was not much dilation observed for the specimens with densities of 1900 

kg/m3. However, as the densities were increased to 2000 kg/m3, the dilative 

behavior was recorded.  

4. The rate of dilation decreased with confining stress. At confining stress of 300 kPa 

and above, no dilation were observed for the specimens with the density of 1900 

kg/m3. The stress threshold for dilative behavior was more than 600 kPa when the 

density rose to 2000 kg/m3. 

Six saturated samples were axially strained in drained condition in order to study the effects 

of water. The stress-strain-volumetric curves are shown in Figure  3-7. The same general 

behaviors mentioned above were also observed in these figures. However, the saturation 

decreased the rigidity and the rate of dilation; steady state strength at confining pressures of 

100, 300 and 600 kPa are 400, 950, 1450 kPa for both dry and saturated specimens.  
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3.5 Calibration of the implemented model 
The previously described constitutive equations were implemented into the commercial 

software FLAC 6.0 (ITASCA Consulting Group, 2008). Single-element tests were done 

with FLAC, exercising the implemented model over stress paths similar to those of the 

physical tests, and plotting the similar graphs to compare the results and calibrate the 

parameters of the model. The initial parameters chosen for the model were selected from 

published laboratory test data on rockfill as shown in Table  3-2 (Adikari and Parkins, 1982; 

Broughton, 1970; Casagrande, 1965; Duncan et al., 1980a; Feizi-Khankandi et al., 2008; 

Hall and Gordon, 1963; Marachi et al., 1969; NGI, 1987; Saboya and Byrne, 1993).  The 

data in this table were used to plot the variations of the six hyperbolic parameters 

respectively in Figure  3-8. 

The relatively rounded shapes of the graphs for  and  show the less variability of these 

two parameters in different rockfill samples. The hyperbolic fitting parameter  changes 

from a minimum of 0.51 for a sub-rounded quartzite with D60=10 mm used in the transition 

zone of Furnas dam to a maximum of 0.80 for a massive basalt with maximum particle size 

of 500 mm and Cu=14 used in the shell of Foz do Areia dam.  A value of  would 

be a good initial guess for most rockfill material. This value could slightly increase with 

angularity and maximum size of the particles. The friction angle  varies from a maximum 

of 58 degree for a rounded sandy gravel with D60=10 mm and Cu=17 used in Rowallan dam 

to a minimum of 38 degree for a mixture of massive basalt and fault breccia used inside the 

body of Foz do Areia dam.  

The two modulus numbers , and  which represent the shear and volumetric rigidity of 

the material vary significantly in different rockfill samples as reported in the literature. This 

is also obvious from the irregular shape of the graphs for these two parameters in 

Figure  3-8. The elastic modulus number  changes from a minimum of 210 for a sub-

angular granite gneiss with D60=79 mm, Cu=20, and unit weight of 1980 kg/m3 used in the 

shell of Mica dam to a maximum of 3000 for a well compacted crushed rock with 

maximum particle size of 40 mm, and unit weight of 2150 kg/m3 used in the transition zone 

of Storvatn dam. The volumetric modulus number  changes from a minimum of 52 for a 

badly compacted angular diorite with D60=93 mm, Cu=5 , and unit weight of 1700 kg/m3 
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used in the shell of Infiernillo dam to a maximum of 1650 for the well compacted crushed 

rock used in the transition zone of Storvatn dam mentioned above. Both of these 

coefficients increase with density and uniformity coefficient, and decrease with angularity 

and maximum size of the particles.

The two modulus exponents n, and m which represent the dependency of the shear and 

volumetric modulus to the changing of the confining stress as stated in [Eq. 3-3] and [Eq. 

3-4] vary in different rockfill samples as shown in Figure  3-8. The higher exponents mean 

more dependency of the rigidities to the changing confining stress. The shear modulus 

exponent n varies from a minimum of 0.1 in Foz do Areia dam to a maximum of 0.65 in 

Garmrood dam. The volumetric modulus exponent m changes from a minimum of 0.0 in 

Round Butte dam to a maximum of 0.57 in Furnas dam. Both of these exponents increase 

with angularity and maximum size of the particles.

It should be noted that the hyperbolic parameters are not fundamental soil properties, but 

only values of empirical coefficients which represent the behavior of the material under 

certain conditions. Therefore they are not unique and different sets of parameters could 

represent a single material. Considering the physical properties of the specimens being 

tested which are Dmax=20 mm, D60=9 mm, Cu=11, and angular rock particles with dry 

densities between 1900 and 2000 kg/m3, the hyperbolic parameters were initially selected 

as shown in Table 3-3.  These parameters were subsequently modified to best fit the 

observed behavior at the reference confining pressure (i.e. 100 kPa) for both dry and 

saturated specimens with different densities, as shown in Table  3-3. The order in which the 

parameters were modified was: 

1. Friction angle  using the final strength of the material as stated in [Eq. 3-7] 

=  

2. Shear modulus number  and the fitting parameter  to best fit the initial 

nonlinear stress-strain behavior 

3. Bulk modulus number  and dilation angle  to best fit the volumetric behavior. 
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4. The test results in a different confining stress (i.e. 300 kPa) were required to 

calibrate modulus exponents n, and m as well as two other plastic parameters , 

and . As these four parameters represent the change of the behavior with 

confining stress. 

The above procedure is shown in Figure  3-9 for dry specimens with density of 2000 kg/m3. 
The versatility of the model was tested using the same set of fitted parameters to predict 
material responses under a different stress path (i.e. confining pressure of 600 kPa). The 
calculated stress-strain-volumetric behaviors are shown in Figure  3-10 to   
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Figure  3-12 for other tests along with the experimental data. In each figure, the 

performance of the implemented model is demonstrated by comparing laboratory results 

with model simulation results.  

3.6 Discussion of the test results  
Except for the slight strain-hardening characteristics of the samples with density of 2000 

kg/m3, the model was able to capture the behaviors of the tested material with a good 

precision. Model parameters used in reproduction of the tests are given in Table  3-3. 
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Comparing the calibrated parameters of the model in different tests resulted in the 

following conclusions which conform to the previously discussed behaviors of the 

specimens in the tests: 

1. Variations of steady state friction angle in different tests can be observed in 

Figure  3-13. The intersection of the curves with the vertical axis represents the 

reference friction angle ( ). The slope of the curves represents the change of 

friction angle with logarithm of the confining stress ( ). Neither changing the 

density, nor saturation of the specimen had much influence on the friction angle (  

and ) and the steady strength of the material. As expected, these two parameters 

were related to the intrinsic properties of the material being tested such as 

mineralogy, particle shape and the size of the grains.  

2. All other plastic and elastic parameters reduced after saturation. However, the major 

changes were observed in the modulus numbers (  and ) which indicated a 

softer response of the saturated samples to the shearing stress. The decrease of the 

dilation angle with saturation ) also means less dilative behavior of the wetted 

samples. 

3. The modulus numbers (  and ) and the reference dilation angle ( ) increased 

with density. 

4. Modulus exponents (n and m) decreased with density, which means as the 

specimens become denser the behavior would be less dependent to changes of 

confining stress. 

3.6.1 Dilative behavior 
Figure  3-14 presents the linear relation between the calculated dilation angles and logarithm 

of confining stress in the tests which demonstrated dilative behavior. The intersection of the 

curves with the vertical axe represents the reference dilation angle . The slope of the 

curve represents the change of friction angle with logarithm of the confining stress . The 

parallel curves of denser samples (dry density of 2000 kg/m3) suggest the independence of 

 to the density and the degree of saturation. A value of =10.8 was calculated for these 
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specimens. The same slope was assumed for the less compacted material as shown by 

dotted lines in Figure  3-14 which could be related to the unchanging mineralogy, shape and 

size of the grains. Also, the intersection of the curves with the horizontal axe in this figure 

indicates the minimum confining pressure at which the dilation of a specimen with a given 

density would be suppressed. 

Figure  3-15 indicates the linear increase of the reference dilation angle  with density for 

both dry and wet specimens. The calculated values of this parameter suggest a decrease of 

1.5 degrees as a result of wetting of the tested material. The linear relation in this figure 

corresponds to the assemblage of particles in the current study and may not be used directly 

to estimate the reference dilation angle of other samples of rockfill. This linear relation is 

however similar to the [Eq. 3-15] presented by Bolton (1986), and suggests that no dilation 

would be expected for dry densities less than 1880 kg/m3  and 1910 kg/m3 for dry and 

saturated specimens, respectively. Also, the intersection of the curves with the horizontal 

axe in Figure  3-14 indicates the minimum confining pressure in which the dilation would 

be suppressed in any given density.  

3.7 Conclusion 
The chapter described a relatively simple constitutive model and examined its performance 

by comparing it to the results of the conducted triaxial tests on assemblages of granite rock 

particles from a dam site in Quebec, Canada. Drained monotonic compression tests were 

conducted in strain controlled condition on both dry and saturated specimens with 

different densities and confining pressures. The data from these tests were used to calibrate 

the parameters of the presented model. The constitutive model was the nonlinear 

hyperbolic model coupled with mohr-coloumb failure criteria. This model was capable of 

capturing the following characteristics observed in the labratory: (1) modulus stiffening due 

to increasing confinment and modulus degradation due to increasing shear stress (2) steady 

state strength and plastic deformations on the failure envolope (3) shear induced volumetric 

changes or dilative behavior of dense samples.  

The main shortcoming of the model was that it could not capture the plastic deformations 

occuring from the very beginning of the shear loading of rockfill material; indicating that 
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the model is not appropriate in problems involving unloading-reloading loops and 

hysteresis behavior. Also, it could not capture the strain hardening behavior and the peak 

friction angle in very dense samples. However, with the use of nine parameters, the model 

was shown to provide satisfactory predictions of the observed behavior during monotonic 

compresion triaxial tests on samples with dry densities of 1900 to 2000 kg/m3, respectively. 

The parameters of the model are relalated to the physical properties of the assemblages of 

rock particles such as density, shape and size of the grains, and degree of saturation. They 

can be determined from the results of triaxial tests or existing database in the literature for 

both hyperbolic and Mohr-Coulomb models which makes it an efficient constitutive model 

to be used in engineering practice.  

The ultimate goal of this research was to predict the behavior of the rockfill material of 

Romaine2 dam with the use of the simplest constitutive equations while keeping only the 

most important aspects of the problem. Nobari and Duncan (1972)  and Escuder et al. 

(2005) have introduced procedures to reproduce the plastic deformations caused by wetting 

using the hyperbolic model. This opens new possibilities for future research which could be 

the implementation of these procedures into the current model in order to simulate the 

behavior of the rockfill during construction and first impoundment of the dam. 
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Figure  3-1 typical stress-strain-volume change behavior of sand samples in triaxial tests; 

after Habib and Luong (1978)
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Figure  3-2 Schematic of the implemented model 
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Figure  3-3 Granite rockfill particles 
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Figure  3-4- Gradation curve of the tested material 
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Figure  3-5 Triaxial specimen after the test 
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Figure  3-6 Observed stress-strain-volumetric behavior of the dry specimens in the 
monotonic triaxial tests 
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Figure  3-7 Observed stress-strain-volumetric behavior of the saturated specimens in the 

monotonic triaxial tests 
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Figure  3-8 Variations of hyperbolic parameters in published laboratory test data on rockfill 
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Figure  3-10 Comparison of numerical model and experimental data for dry specimens with 
dry density of 1900 kg/m3 
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Figure  3-11 Comparison of numerical model and experimental data for saturated specimens 
with dry density of 2000 kg/m3 
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Figure  3-12 Comparison of numerical model and experimental data for saturated specimens 

with dry density of 1950 kg/m3 
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Figure  3-13 Variations of steady state friction angle with confining stress, density, and 
saturation of the tested material. 
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Figure  3-14 Variations of dilation angle with confining stress, density, and saturation of the 
tested material. 
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Figure  3-15 Reference dilation angle 
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confining stress test condition initial dry density Dry density after deformation rate

(kPa) 
 

(kg/m3) (kg/m3) (%/hr) 

100 
dry 1810 1900 5 

1920 2010 5 

saturated 1810 1950 1 
1900 2010 1 

300 
dry 1810 1930 5 

1900 1970 5 

saturated 1810 1950 5 
1900 2060 1 

600 
dry 1810 1970 5 

1900 2070 5 

saturated 1810 2020 1 
1900 2100 1 

Table  3-1. Triaxial test condition 
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Corresponding figure kg/ K n K m Rf 

Initial  1900- 2 0. 1 0. 0. 4 - - - 
dry Figure  3-10 1900 2 0. 6 0. 0. 4 9 1 1

Figure  3-9 2000 3 0. 1 0 0. 4 9 9 1
saturat

ed

 1950 1 0. 6 0. 0. 4 9 3 1
 2000 2 0. 1 0 0. 4 9 7 1

*The dry densities are considered at the end of consolidation.  

Table  3-3.  model parameters for the assemblage of granite particles in the conducted 
triaxial tests 
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4 Modeling the deterioration of contact points in a 
compacted assemblage of rock particles during 
monotonic triaxial compression 
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4.1 Introduction
Propagation of fissures and deterioration of the contact points between the individual 

particles are key factors in the analysis of the behavior of granular material and could be 

caused by increasing stress level or even at an unchanged stress state over time. The latter 

has been addressed as static fatigue or delayed fracture by Lemaître and Chaboche (1990) 

and Lade et al. (2010) and as time-dependent or creep behavior of rockfills by others (e.g. 

Oldecop and Alonso, 2007; Silvani et al., 2009). The fact that presence of water in the 

form of liquid or vapor will accelerate this process is well established in many articles. 

Researchers including Nobari and Duncan (1972), Maranha das Neves and Veiga Pinto 

(1989), Justo (1991), Bonelli and Anthiniac (2000), Touileb et al. (2000), and Lade and 

Karimpour (2010) have shown the profound influence of water on chemical reactions that 

lead to weakening and failure of the crack tips on the surface of the grains. This 

propagation of micro fissures in the particles produce new slides inside the granular 

mass; the interlocks between grains break and they collapse seeking more stable 

positions. A very common example of such phenomena is the settlement in the upstream 

slope shell of rockfill dams during the first impoundment. 

Different constitutive equations spanning between linear elastic methods (Justo and 

Saura, 1983b) and hypo plastic models (Fu and Bauer, 2009) have been proposed to 

predict the behavior of the rockfill material during and after the saturation. Oldecop and 

Alonso (2001) proposed a constitutive model based on the unsaturated soil mechanics to 

calculate the collapse deformation of the rockfill sample caused by wetting or increased 

relative humidity (i.e. introduction of water in the form of liquid or gas). This model is 

useful to predict the deformations of the downstream as well as upstream shell of the 

rockfill dam, and requires several oedometric and triaxial tests in different relative 

humidity to be calibrated. This model was implemented into finite element software Code 

Bright and used to model different dams in Europe (Alonso et al., 2005; Alonso et al., 

2011; Costa and Alonso, 2009).  

The more complex models are expected to capture the so called collapse phenomenon 

with greater precision. However those models also need more parameters to be 

determined; hence more laboratory testing is required. This might not always be practical 
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in engineering practice nor financially justified when dealing with heterogeneous rockfill 

samples with boulders up to 2 meters in diameter. Simplifying procedures are required in 

both laboratory testing (e.g. using parallel grain-size distribution with smaller maximum 

particle size(Lowe, 1964)) and determination of the parameters and this will introduce 

approximation and uncertainty into the modeling process; which brings us to the point to 

keep the constitutive equations less complex, considering only the important 

characteristics of the particular problem involved. 

With the ultimate goal of predicting the deformations of the upstream shell of the rockfill 

dams, Nobari and Duncan (1972) presented procedures to predict plastic deformations 

caused by wetting using the hyperbolic model (Duncan and Chang, 1970) and based on 

internal unloading of the rockfill material during saturation. These procedures were 

implemented in finite element software FEADAM to predict deformations of the 

upstream shell of rockfill dams during the first reservoir filling (Duncan et al., 1980b). 

The equations were later modified by Duncan et al. (1984) in a finite element concept and 

by Escuder et al. (2005) in a finite difference concept in order to consider the modified 

formulation of the hyperbolic model presented by Duncan et al. (1980a).  The parameters 

of this model can be calculated using the results of the triaxial tests on dry and saturated 

samples. Moreover, provided that the rate of softening of the material is known in time, 

the same procedures could be employed to predict the time-dependent deformations in a 

creep analysis (Escuder, 2001). Triaxial tests at changing strain or stress rate are required 

for this purpose. 

In this chapter two series of monotonic triaxial compression tests were conducted on 

assemblages of compacted rock particles prepared in the laboratory. Firstly, strain-

controlled tests were performed at different confining stress on both dry and saturated 

specimens to characterize the behaviors respectively. Secondly, stress-controlled tests 

were conducted on dry samples, applying a changing rate of deviatoric stress over time to 

investigate the time effects on deformations. The water was then added at different stress 

levels which were maintained constant during the saturation process in order to calculate 

the deformations caused by wetting. These experimental data were used to calibrate the 

constitutive model which was the hyperbolic model coupled with Mohr-Coulomb failure 
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criteria and a non-associate flow rule to consider shear dilatancy. The time and wetting 

effects were modeled using the modified procedures presented by Nobari and Duncan 

(1972), and Escuder et al. (2005) in a finite difference context, and new algorithms were 

presented to solve these equations. 

4.2 Constitutive model 
The constitutive model addressed in this paper is the non-linear hyperbolic model 

coupled with Mohr-Coulomb failure criteria and a non-associated flow rule to consider 

dilatancy of the compacted granular material. The coupling was done in order to 

overcome the two shortages of the traditional hyperbolic model as mentioned by  Duncan 

et al. (1980a): (i) due to its elastic formulations the behavior at and after failure cannot be 

modeled correctly;  and (ii) the original relationships do not include shear dilatancy. In 

the previous chapter, it was shown that by coupling the hyperbolic model with the Mohr-

Coulomb failure criteria, the model has a satisfactory precision in the prediction of the 

behavior of compacted assemblages of rock particles, in both dry and saturated 

conditions. Moreover the parameters of the model was estimated relatively simple from 

the results of the convectional triaxial tests or from the large database which exist in the 

literature for both hyperbolic and Mohr-Coulomb models.  

There are total of 9 parameters in this model as shown in Table  4-1.  Five parameters are 

needed to define the nonlinear elastic behavior before the failure envelope is reached. The 

post-failure behavior is simulated using perfectly plastic formulation and a non-

associated flow rule, requiring four more parameters in order to estimate the friction and 

dilation angles corresponding to the yield and potential functions in this model, 

respectively. The schematic of this model is shown in Figure  4-1. It was shown in the 

previous chapter that the same behaviors would be observed for both dry and saturated 

specimens, except for a slight decrease in some of the characteristics (i.e. rigidity and 

dilation); as a result, the stress-strain-volumetric curves for the saturated samples will be 

plotted below those of the dry samples. These different dry and saturated constitutive 

curves will be used in the calculation of the collapse deformations in the dry-wet 

transition state. 
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4.2.1 Dry-wet transition 
Considering the concepts of classical soil mechanics (Taylor, 1948; Terzaghi, 1943), 

when fluid flows through a porous medium, there are three forces acting  on the solid 

matrix: the solid weight, the buoyancy and the seepage force (Bear, 1972). Based on this 

principle, when the water is raised inside a dry rockfill mass, the effective stress is 

decreased and the swelling of the material is expected. However what happens in reality 

is often different: during the saturation of the geomaterials in the field (e.g. impoundment 

of rockfill dam) the sudden collapse under constant stress conditions has been observed 

worldwide. However, in rockfill material the settlements are due to the catalytic effect of 

water in propagation of micro fissures in individual rock particles as mentioned before, 

and could be regarded as accelerated creep deformations. Additional procedures are 

required to characterize this kind of behavior when modeling the dry-wet transition of the 

granular material in the context of classical soil mechanics (i.e. effective stress principal) 

which is explained as follows.  

4.2.2 Uniaxial compression condition
Burland (1965) conducted a series of one-dimensional tests to study the collapse 

deformation as the water was introduced into dry samples of granular material. He 

measured the deformations due to wetting in both stress and strain controlled uniaxial 

tests and in both cases the final conditions of void ratio and pressure were found to be 

very close to the compression curve for a specimen which was wetted prior to loading. 

He concluded that whether the specimen is loaded first and then wetted, or wetted first 

and then loaded does not appear to make any difference in the magnitudes of strains 

induced by both wetting and compression. In other words, when the dry specimen is 

loaded and then wetted, the behavior will shift from dry to the initially saturated 

specimen and will follow that kind of behavior afterwards. This finding was an important 

step in calculating the collapse deformations using the difference between the dry and 

saturated constitutive curves at the moment of wetting. As shown in Figure  4-2, there are 

two different main paths between the dry and saturated stress-strain curves: (i) path A-C 

which shows the amount of the collapse deformations during the wetting in a constant 

stress condition, and (ii) path A-B which shows the amount of the relaxation of stress 
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during this process in a constant strain condition. The latter was employed in the 

numerical methods as shown by King (1965), and Nobari and Duncan (1972) in which 

the changes in stress due to creep or wetting collapse during a time interval were 

computed by calculating the amount of stress relaxation which would occur if there were 

no strains during the time interval. These stress changes were subtracted from the values 

at the beginning of the increment, and then equilibrium was restored by applying 

statically equivalent nodal point forces. A similar computational procedure has been 

adopted in the analysis of movements and stress changes due to wetting in the current 

research but in a triaxial setting. 

4.2.3 Triaxial compression condition
In Figure  4-3, the dry-wet transition is shown in a triaxial setup, and in a constant stress 

condition. In Figure  4-3 (a) an assemblage of dry rock particles is schematically shown 

with distribution of the contact forces; initially the internal stresses are in balance with 

the applied stresses and the system is in equilibrium.  In Figure  4-3 (b) the transition state 

is shown which corresponds to the wetting process in the collapse calculations or 

alternatively as a time interval in creep analysis. As a result of the propagation of the 

microfissures, some particles break and leave the interlock between the grains. The 

disruption of these contact points and slippage of the grains leads to an internal unloading 

in an undrained condition. This stage corresponds to the path A-B in Figure  4-2. The final 

state is shown in Figure  4-3(c), in which the deformations have taken place in all 

directions and the element is again in equilibrium with the unchanged applied stress 

(corresponding to the path B-C in Figure  4-2). Figure  4-4 shows a comparison of the 

constitutive curves for dry, wet, and dry-wet specimens in triaxial compression test. The 

dry-wet transition was performed in a constant strain condition, and the behavior of the 

dry-wet specimen approximately followed the initially wet specimen, after wetting. It 

should be noted that the insitu condition is often the constant stress during the creep 

deformations or wetting collapse. However, using the stress relaxation technique, as 

explained above, it is possible to model the collapse phenomena in a constant strain 

condition. 
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4.2.4 Application in numerical modeling 
Two assumptions are required for reproducing the explained physical phenomenon in a 

numerical model in the triaxial condition in order to calculate the collapse movements in 

the specimen:  

1. After saturation, the deformations will be equal to the difference between the dry 

and wet constitutive curves. This assumption was firstly proposed by Burland 

(1965), and confirmed by many researchers since then. Without taking this 

assumption it was almost impossible to predict the collapse deformations from 

individual laboratory tests on dry and saturated specimens.  

2. The principal stress directions remain constant during the saturation process. 

Provided that the amount of relaxation stresses are not very large compared to the 

initial stress state, the directions of the principal stress do not change during the 

process (Nobari and Duncan, 1972). On the other hand, when the material is very 

sensitive to wetting, rotation of principal axis might occur, which introduces error 

in the calculations.  

These assumptions let the calculation of the amount of the internal unloading occurring in 

Figure  4-3 (b) to be statically applied as equivalent nodal point forces in a numerical 

analysis. The objective is to calculate these unloading stresses which are equal to the 

differences between wet (or saturated) stresses ( ) and dry stresses ( ) at 

the moment of wetting. This is possible if both dry and wet stress-strain-volume curves 

are known for the given material.  

Escuder et al. (2005) applied this methodology in a finite difference context. In their 

method, the calculation of the equivalent wet stress state involved formulating an 

iterative procedure in which the values of principal stresses were obtained by minimizing 

two error functions (two equations and two unknowns systems). However, in this 

research in order to reduce the complexity of the iterative procedure and to minimize the 

computational effort during the numerical simulation, the equations were separated into 

two independent systems to calculate the two unknowns ( ) separately, and each 

one with desired precision. This enhancement also increased the stability of the numerical 
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procedure. The minimum principal stress ( ) is firstly calculated. Knowing the first 

unknown, the maximum principal stress ( ) can be readily calculated. The main 

difficulty is then to calculate the minimum principal stress in the wet condition. The 

known parameters and condition in this system of equations are: (1) the dry stress state 

( ); (2) dry and wet behaviors (i.e. stress-strain-volume change curves); (3) 

constant strain condition.  

Writing the hyperbolic functions for the dry and wet conditions and using algebraic 

manipulation yield the final equation as:Erreur ! Source du renvoi introuvable.This 

nonlinear equation could be solved using any numerical method such as bracketing, 

Newton, or Bisection (Press et al., 2007) provided that the answer is between two given 

limits (0 and ). In the above equation the unknown is ( ) and the coefficients 

are all known and could be computed before the iterative procedure starts as follows: 

 

 

 

 

Where   is atmospheric pressure; are cohesion and friction angle of the material 

(this is the general solution for the hyperbolic formulation; in the current study of the 

granular rock particles, the cohesion is assumed to be zero);  are modulus 

numbers of the saturated material;  are modulus exponents of the saturated 

material;  is the fitting coefficient of the saturated material;  are axial and 
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volumetric strains at the moment of saturation. These strains can be computed using the 

known dry stress state and dry parameters using the following algorithm: 

1. Calculation of maximum deviatoric stress in dry condition as: 

 [Eq. 4-5]

2. Calculation of the initial Young’s modulus in dry condition as: 

 

3. Calculation of secant Young’s modulus in dry condition as: 

 [Eq. 4-7]

4. Calculation of dry bulk module as: 

 

5. Calculation of axial strain in dry condition as: 

 

6. Calculation of volumetric strain in dry condition as: 

 [Eq. 4-10]

Where are modulus numbers of the dry material;  are modulus exponents 

of the dry material;  is fitting coefficient of the dry material. Once the minimum 

principal stress ( ) is determined from [Eq. 4-1], the maximum principal stress ( ) is 

readily calculated using the following equation: 

 

Where:  
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 [Eq. 4-12]

 [Eq. 4-13]

Afterwards, the procedure is the same as explained by Nobari and Duncan (1972); it 

consists of relaxation of the wetted element based on the new wet stress state and 

bringing the element into equilibrium with the new boundary conditions which includes 

the buoyancy forces as well as pore water pressure distribution. 

4.2.5 Creep deformations 
The micro structural concepts discussed in Figure  4-3 are also applicable for the creep 

problem provided that the time interval is long enough to let the micro fissures to 

propagate which leads to the breakage of rock particles and deterioration of contact 

points. The mathematical solution for the calculation of creep deformations is the same as 

that of the previously explained dry-wet transition. The objective is to calculate the stress 

state at the end of a given time interval which corresponds to the wet stresses ( ) 

in the previous formulations. The known stress state at the beginning of this time interval 

corresponds to dry stress state ( ) in the previous equations.  This procedure is 

possible if the rate of softening of the granular material is known over the desired period 

of time, and the constitutive curves are known for the given material at both intervals. In 

order to acquire such data, laboratory tests with changing rate of loading is required to 

investigate the time effects in the behavior of the rock particles.  

4.3 Laboratory tests 
A laboratory testing program was designed to study the behavior of rock particles under 

monotonic loading and to characterize the time effects and saturation of the specimens in 

a triaxial setting. Both strain-controlled and stress-controlled tests were considered in the 

experimental program. The strain-controlled tests were conducted using a constant rate of 

straining on individual dry and saturated specimens at different confining stress to 

estimate the corresponding behaviors and to obtain the stress-strain-volume change 
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curves in both dry and saturated conditions. Stress-controlled tests were conducted using 

a changing rate of deviatoric stress over time on dry samples to investigate the time 

effects. The water was consequently added and the collapse deformations were calculated 

in a constant stress condition. The data from these tests was used to calibrate the 

parameters of the implemented model, and to verify the discussed procedures and 

algorithms.  

4.3.1 Material tested 
The rock particles used in this study were obtained from crushing and sieving the granite 

boulders of the shell zone of the Romaine 2 dam, which was under construction in 

Quebec, at the time of the experimental program. The grain size distribution of the 

material was determined using the prototype rockfill material as shown in Figure  4-5. 

There are three different curves in this figure which correspond to (i) prototype rockfill 

gradation conforming to the standard distribution used for the rockfill dams in Quebec, 

(ii) a parallel gradation using the technique explained by Lowe (1964), and (iii) the 

gradation used in the current experiments in which the percentage of fines was reduced 

from that of the parallel gradation in order to have a more uniform distribution with 

higher void ratios, and less contact points between the rock particles.  

The grain size distribution was modified in order to increase the magnitude of the 

deformations caused by deterioration of the contact points over time or by wetting.  

Figure  4-6 compares these contact points and breakage patterns in ideal uniform and non-

uniform samples. Uniform samples have fewer contact points compared to non-uniform 

distribution. Under stress-controlled test conditions grain crushing occurs at lower stress 

levels in uniform specimens samples since there will be higher stresses accumulated at 

the fewer contact points between grains (Omidvar et al., 2012). Moreover, uniform 

samples exhibit a yield-type response in a wider range of strains as the broken grains 

rearrange into the voids as shown in the lower schemes of Figure  4-6 (Hendron, 1963). 

4.3.2 Specimen preparation 
Five sets of angular granite grains with different uniform particle sizes were used to 

prepare the specimens for the test as shown in Figure  4-7. For each specimen being 
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tested, the appropriate quantities of oven-dried grains were mixed according to the 

modified gradation curve shown in Figure  4-5. The samples were prepared in a split mold 

attached to the base pedestal of the triaxial test equipment. In order to minimize density 

variation within a specimen, five equal pre-weighted portions of the granite rock particles 

were mixed and compacted using the vibratory compaction to a predetermined height 

corresponding to the dry density of 1700 kg/m3. After removing the mold, thin plastic 

sheets were loosely attached around the rubber membrane to form a stiff cylindrical 

support against the penetration of the angular rock particles. A second rubber membrane 

was then installed over the plastic sheets to seal the whole specimen during the triaxial 

testing. 

4.3.3 Triaxial setup 
Polished stainless steel end platens were used in both test series in order to minimize end-

restraint effects caused by the penetration of rock particles. The platens had several holes 

to provide drainage of water during the saturated tests. Fine wire meshes wrapped in 

paper filters were installed on both platens to prevent the fine soil particles to block the 

drainage holes. In all the tests, the nominal height of the sample was 300 mm and the 

nominal diameter was 150 mm. Two different apparatus were designed in order to 

conduct the stress and strain-controlled tests separately. The data in both test series were 

collected and recorded every one minute using a dedicated acquisition system.  

In the strain controlled device, the base platen was fixed while the upper platen displaced 

downwards to strain the sample at an adjustable rate. The dry and saturated samples were 

initially subjected to the desired confining pressure (i.e. 100, 300, or 600 kPa) and then 

axially strained at 5% per hour for dry tests; and 1% per hour in drained condition for 

saturated tests. The samples were saturated before the application of confining stress and 

by allowing water to pass through the base of the triaxial cell and using the top drainage 

system for removing air voids. The strain controlled test conditions are summarized in 

Table  4-2.  

In stress-controlled tests, the dry specimens were firstly subjected to the confining stress 

of 200 kPa. The deviatoric stress was then applied using a hydraulic valve, controlled by 
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a computer. The base platen was fixed while the axial deformation was measured using 

the installed LVDT on the top platen. The vertical stress was increased in steps of about 

50 kPa and kept constant while the axial and volumetric deformations were measured 

with time. This procedure was repeated until the desired deviatoric stress was reached 

when the water was added to the specimen through the base of the triaxial cell to reach a 

saturation degree of more than 90%. The stress state maintained constant during and after 

the saturation in order to simulate the constant stress condition. The collapse 

deformations were measured over several hours until the axial strain rate became 

constant or very small. The stress controlled test conditions are summarized in Table  4-3. 

4.3.4 Strain rates in strain controlled tests 
The effects of rate of straining on the behavior of the specimens in a triaxial test have 

been firstly reported by Whitman (1957b). This is an important issue to consider due to 

the viscous nature of geomaterials which is a well-established fact in geotechnical 

engineering practice (e.g. Leroueil and Hight, 2002; Mitchell, 1976). If the rate of 

straining is smaller, the more time is allowed for the sample to relax, allowing the 

development of smaller shear stresses at a given deformation increment. The final result 

is a stress-strain curve which plots lower. Matesic and Vucetic (2003) have reviewed the 

previous experimental studies on clay and sand samples and confirmed that axial 

strength, and secant modulus increase approximately linearly with the logarithm of the 

strain rate. The rates included in their research ranged between  and  %/s. 

Blanton (1981) have reviewed the previous experiments on rock samples and concluded 

that a small constant rate of increase in strength with increasing rate of deformation in 

logarithmic scale was often expected. However, he observed a sudden increase in 

strength above the strain rate of about  %/s. The rates included in his study ranged 

between  and   %/s. 

Considering the relation between the size of the particles being tested and the explained  

rate effect, Whitman (1957a) and Mitchell (1976) reported that clays were much more 

susceptible to this effect than the granular material and that strain-rate effect in soils 

generally increases with plasticity index and water content. Moreover, Blanton (1981) 

suggested that although higher strain rates resulted in a more brittle response of the rock 
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specimens, the increase in the failure stress was negligible for the strain rates below  

%/s. Similar results were reported by Lade et al. (2009) for drained triaxial compression 

triaxial tests on crushed coral sand performed with a constant effective confining pressure 

of 200 kPa, showing no time-effect for strain rates below 1.7 %/hour (approximately 

 %/s). 

To sum up, the appropriate choice of the rate of straining depends on the characteristics 

of the material being tested as well as the geotechnical problem involved. While the 

common strain rate chosen for monotonic testing of sands is about 1 %/min 

(approximately  %/s), the larger rates which result in higher axial strength, and 

secant modulus of the specimens are useful in studying the cyclic behavior.  In this 

research, the large scale monotonic triaxial compression tests in a strain-controlled 

condition were performed with the ultimate goal of modeling the behavior of rock 

particles in a rockfill dam. Hence, the strain rates chosen for testing these assemblages of 

relatively large rock particles were chosen 5 and 1 %/hour (approximately  and 

 %/s) for dry and saturated tests, respectively. The strain rates were reduced for 

the saturated samples in order to provide the full drainage condition during the 

experiments. These intermediate rates keep the time effect minimized for the material 

being tested, and provide a reference basis for the comparison with the results of the 

stress-controlled tests. 

4.3.5 Stress rates in stress controlled tests 
Mehta and Monteiro (1993) and R sch (1960) studied the rate-effect on the behavior of 

the structural concrete in stress controlled uniaxial compression tests following by creep 

experiments. The general behavior of the concrete samples is shown in Figure  4-8 in 

terms of applied load versus strain with time after loading at an age of 56 days as a 

parameter. There are three limiting lines in this figure, enclosing all possible relationships 

between stress and strain: (i) the elastic straight line relationship denoted as Ec on the left 

of the diagram for extremely short duration of loading; (ii) the creep limit as a curved line 

on the lower right of the diagram corresponding to a supposedly infinite duration of 

loading; (iii) a failure limit at the top of the diagram which shows decreasing strength for 

increasing load duration, and is negligible for test durations over 7 days. During the creep 
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experiments, when the stress state of the sample kept constant, the creep deformation of 

the sample is shown by horizontal arrows towards adjacent constitutive curves 

corresponding to longer test durations. The amount of the creep deformations depend on 

the duration of the creep test, as well as the sustained stress state of the sample.   

Geomaterials behave similarly in the sense that their crushing strength is time dependent. 

Lade and Karimpour (2010) showed that overall stress-strain-time behavior of granular 

specimens or particles of brittle solids exhibit the delayed fracture indicated in 

Figure  4-8: As the stress on the specimen is held constant below the short-term fracture 

stress, the time to fracture increases with decreasing stress. In particular, during a stress-

controlled triaxial compression test of granular material, if the rate of axial loading is 

larger, the less time is allowed for the sample to creep during the test; allowing the 

development of smaller deformations at a given load increment which results in recording 

a more rigid behavior of the material being tested. However, more deformations will be 

observed consequently during the creep test or after introducing the water as a catalyzer 

of the creep phenomenon. 

Standard stress-controlled test methods often require that in triaxial tests of materials the 

vertical stress be applied at a certain constant rate. This requirement cannot be satisfied at 

high deviatoric stress for samples exhibiting an elasto plastic behavior since the rate of 

deformation would become extremely high in the yield range which leads to misleading 

results. Arenson and Springman (2005) conducted stress controlled triaxial tests in which 

the vertical stress was increased in each loading increment when the axial strain rate 

became constant or very small. The general trend of the behavior of the specimens in 

each stress increment is shown schematically in Figure  4-9. The three stages of the creep 

phenomena could be identified in this figure: primary, secondary or steady state and 

tertiary creep. The latter was characterized by an increase in the strain rate up to the creep 

rupture and was recorded only at high deviatoric stress near failure; while at lower 

deviatoric stress, the strain rate didn’t change after reaching the values corresponding to 

the steady-state creep.  In order to study the softening behavior of the materials over time, 

reaching this minimum strain rate at each stress increment is a more rational requirement 

than that all the tests to be carried out under constant rate of loading.  
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For this reason, the logarithmic scale of time was considered in the current study for 

applying the deviatoric stress to the specimens of the assemblages of rock particles over 

time as shown in Figure  4-10. The solid line shows the theoretical stress increments over 

time based on a logarithmic relation, while the points are the actual measurements during 

the tests which differ slightly due to errors in the experiments. This pattern of loading 

was consistent with the constant strain rates used in the strain-controlled tests (i.e. strain 

rates between  and  %/s); and was applied in all stress controlled tests on dry 

specimens in order to have a consistent rate of loading. It should be noted that if constant 

rate of loading had been chosen for the stress controlled tests, these strain rates could not 

have been reached consistently in all stress increments. 

At the last stage of each stress-controlled triaxial test, after the specimen was saturated, it 

was allowed to deform at its final stress state for an extended time interval in order to 

approach the final creep limit as mentioned in Figure  4-8. The value of  %/s was 

considered for the target strain rate at this final stage. This also helped to calculate the 

collapse deformations due to wetting. 

4.4 Test results 

4.4.1 Strain controlled tests 
The stress-strain and volume change curves during the axial straining of the both dry and 

saturated samples at different confining stresses are shown in Figure  4-11. The test results 

display the same general trends: nonlinear behavior at the beginning of the tests followed 

by a constant strength at higher strains. Due to relatively low densities of the samples 

being tested, they did not display strain-hardening characteristics. Except for the dry 

sample tested at confining stress of 100 kPa which showed a slight dilative behavior, 

other specimens contract entirely during the triaxial compression tests with no peak 

friction angle.  

As expected, the stress-strain results of the tests with higher confining stress plot higher 

which means both rigidity and steady state strength of the specimens were increased with 

confining stress. Comparing the behavior of the dry and saturated specimens shows that:  
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1. Saturation decreased slightly the axial stiffness of the specimens. This is obvious 

by comparing the stress-strain curves of saturated specimens which plotted lower 

than those of the dry specimens at the same confining pressures. 

2. The steady strength at large strains did not change much with saturation. At 

confining pressures of 100, 300 and 600 kPa, the final strength of both dry and 

saturated samples were measured about 350, 800 and 1300 kPa, respectively. 

3. Saturation decreased the volumetric stiffness of the samples at lower confining 

stresses. This is evident by examining the volume change curves at both confining 

pressures of 100 and 300 kPa which show more volume change for saturated 

specimens at any given axial strain during the tests.   However, the contractive 

behavior of the specimens at high confining stress of 600 kPa was almost the 

same.  

4. The slight dilative behavior of the dry specimen at confining pressure of 100 kPa 

was not recorded for the saturated sample which shows that saturation decreased 

the rate of dilation. 

The above general trends conform to the previously conducted strain controlled triaxial 

compression tests on denser specimens with different grain size distributions, as reported 

in the previous chapter. The time effects and collapse deformations due to wetting of the 

rock particles will be studied using the results of the stress controlled tests. 

4.4.2 Stress controlled tests 
Typical test data for the stress controlled test on the compacted assemblages of rock 

particles are shown on Figure  4-12 to Figure  4-15. In test #2, the dry sample was first 

subjected to an isotropic stress condition equal to 200 kPa, and subsequently to an 

increase in vertical stress applied in incremental steps up to 470 kPa, using the previously 

discussed logarithmic pattern as shown in Figure  4-10 and Figure  4-12. After reaching 

the desired deviatoric stress, the water was introduced into the sample, and the 

deformations were continuously recorded at constant stress state and in drained condition 

for several hours until the minimum strain rate of %/s was reached.  
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Volume change and axial strain were measured during the isotropic consolidation in 

order to modify the dry densities as shown in Table  4-3, and during the application of the 

deviatoric stress as shown in Figure  4-13 and Figure  4-14. Following each increase of the 

vertical stress, abrupt shifting of both axial and volumetric deformations was observed. 

The rates of deformations then decreased over time in each stress increment. As 

expected, after the specimen was saturated at the last stage of the test, sudden collapse of 

the specimen was observed without any change in the stress state; which could be related 

to the important role of water in accelerating the rate of deformations due to the 

deterioration of the contact points. 

Figure  4-15 shows the rates of axial strain during the triaxial test. The high recording 

frequency, the low strains and the resolution of the installed LVDT at 0.001 mm caused 

the strain rates to oscillate around the mean value. The peak values in this figure range 

between  and %/s, and correspond to the increases of the 

vertical stress; except for the last peak of   which corresponds to the 

saturation of the specimen, and is more than 10 times smaller than the previous values. At 

each stress increment, the peak value was followed by a steep decline in the strain rate, 

converging to the minimum value which bracket between   at the beginning of 

the experiment, and  at the end.  However, the strain rates did not reach 

any absolute minimum in any of the stress increments of the entire experiments, which 

means no tertiary creep was observed for the material being tested.  

Typical stress-strain-volume change curves are shown in Figure  4-16, and Figure  4-17 for 

the stress controlled test #2 with the end of each stress increment marked. Because of the 

nonlinearity in stress-strain behavior of geomaterials in triaxial testing, the deformations 

in each increment increased with the deviatoric stress, same as the observed behavior in 

strain-controlled tests. However, the creep deformations were also added to these 

measured deformations due to the fact that time intervals were prolonged as the test 

proceeded. This time effect was more important at final stages that the sample was kept at 

constant stress state for several hours. 
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4.5 Implementation of the numerical model  
The hyperbolic model coupled with Mohr-Coulomb failure criteria was implemented into 

the commercial software FLAC 6.0 (ITASCA Consulting Group, 2008). All the 

laboratory experiments were modeled using the software, exercising the implemented 

model over stress paths similar to those of the physical tests, and plotting the similar 

graphs to compare the results and to calibrate the parameters of the model. The modified 

stress relaxation algorithms were also implemented into FLAC in order to model the 

following behaviors observed during the stress-controlled tests: (i) the softening of 

material over time and calculation of creep deformations; (ii) the dry-wet transition stage 

and calculation the collapse deformations due to wetting. 

4.5.1 Strain-controlled tests 
The data from strain-controlled tests was used to characterise the behavior of the 

compacted assemblages of rock particles being tested in both dry and saturated conditions 

and to calibrate both elastic and plastic parameters of the implemented model. The 

calibration was done using the explained procedure in the previous chapter and in the 

following order: 

1. An initial set of parameters were estimated based on the physical properties of the 

specimens such as density, grain size distribution, and angularity of the rock 

particles. The calibrated parameters of the previous chapter were considered due 

to the fact that the same rock particles were used to assemble the specimens, with 

a slight change in the particle size distribution and density. 

2. The first parameters to be fine-tuned were , , and . At confining pressures 

of 100, 300 and 600 kPa, the final strength of both dry and saturated samples were 

measured about 350, 800 and 1200 kPa, respectively which corresponded to the 

reference friction angle of  and a decrease in friction angle with 

confining stress of . The value of   adjusts the stress-strain 

curve with the hyperbolic formulation for both dry and saturated specimens. 
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3. Different elastic modulus numbers were calculated for the dry and saturated 

samples, respectively: , ; which was due to the fact that 

saturation decreased the rigidity of the samples. However, these values were not 

very different which meant that the hard granite rock particles were not very 

sensitive to the saturation (i.e. the elastic modulus number was 10% smaller in the 

saturated condition).  

4. The bulk modulus numbers of the dry, and saturated specimens were calculated 

as: , , respectively; which showed 20% decrease in 

volumetric rigidity of the samples as a result of the introduction of the water. 

5. The modulus exponents were calculated as , and  for both dry and 

saturated specimens. The small values of these coefficients showed that the 

behaviors were not greatly dependent to the changes of the confining pressure. 

6. The only observed dilative behavior was during the straining of the dry specimen 

at the reference confining pressure of 100 kPa, which corresponded to the 

reference dilation angle of . The decrease of    in dilation angle 

with confining stress were considered in order to nullify the dilation angle at 

higher confining pressures. The reference dilation angle was equal to zero for the 

saturated specimens. 

Table  4-4 summarizes the calculated parameters for both dry and saturated specimens. 

Except for the slight decrease of the both modulus numbers, and the reference dilation 

angle, the rest of the parameters were not changed with saturation. The calculated stress-

strain and volume change curves using these parameters in the FLAC software are shown 

in Figure  4-18 and Figure  4-19 along with the experimental data for dry material. In each 

figure, the performance of the implemented model is demonstrated by comparing 

laboratory data with the results of the simulation.  

4.5.2 Stress-controlled tests 
Since similar specimens were used in both strain and stress-controlled tests, the 

previously calibrated model could be ideally implemented to reproduce the results of the 
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stress controlled tests. However, the specific testing procedure with changing time 

intervals in the stress controlled tests introduced the strain rate effects, and creep 

components into the measured deformations. As stated by Tatsuoka et al. (2008), and 

Augustesen et al. (2004), granular materials are not necessarily governed by the same 

basic mechanism observed for clays known as isotach behavior (i.e., there is a unique 

stress-strain-strain rate relation for a given soil).The less dependency of the behavior to 

the changes in strain rate , and the crushing of the grains during the triaxial compression 

tests are the main reasons for the non-isotach behavior of the tested material, and 

different stress-strain relations obtained from the stress and strain-controlled test 

methods. 

Unless the observed behavior during the strain-controlled tests, the typical stress-strain 

behavior for the conducted stress controlled tests did not fit over a single hyperbolic 

curve with constant rigidity (or modulus number) as shown in Figure  4-22. The observed 

behavior was enclosed between the upper and lower limits corresponding to the first and 

last stress increments, with time intervals of 0.5 and 17 hours, respectively. As the testing 

proceeded and the time intervals increased, more creep deformations were recorded 

which suggested a softer response of the material over time, with stress-strain curve 

plotted lower. This kind of behavior was similar to the time-dependant behavior of the 

concrete samples as explained in Figure  4-8. In order to characterise this time-dependent 

behavior, the modified stress relaxation technique was implemented in FLAC to 

reproduce the creep deformations, which are distinguished by horizontal lines in each 

stress increment of Figure  4-22. Using an iterative procedure, the modulus number of the 

model was adjusted in each increment, while other parameters were kept constant, in 

order to reach the same deformations as observed in the laboratory. The gradual decrease 

of the elastic modulus number as calculated in the numerical model for all the three 

stress-controlled tests are shown in Figure  4-23. The logarithmic relation shown in this 

figure was the same for all the three tests and complied with the creep phenomenon 

discussed before, i.e., the rate of softening of the material decreases over time to reach a 

steady state creep. At the final stage, after the water was introduced into the specimen, 

collapse of the rock particles due to wetting was measured. The same stress relaxation 

technique implemented in FLAC was used to model this behavior. A 10% decrease of the 
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latest modulus number was calculated in order to reproduce these collapse deformations 

in the numerical model.  

4.6 Discussion of test results
The calculated stress-strain-volume change behavior of the specimens during the stress-

controlled tests is summarized in Figure  4-24, and Figure  4-25, along with the 

experimental data. The elasto-plastic parameters used in these simulations are exactly the 

same as those calculated from strain-controlled tests as shown in Table  4-4, except for the 

modulus numbers which changed with both test methods, and durations. The change of 

modulus numbers related to the duration of stress-controlled test are summarized in 

Table  4-5. After the water was added into the specimens at different stress states, 

additional deformations were generated in the samples. Using the proposed algorithms 

and procedures (i.e. modified stress relaxation), the numerical model calculated these 

deformations with good precision. 

The fact that the same set of parameters, except for the modulus numbers, was 

implemented in the FLAC to reproduce the entire results of the laboratory, and yet the 

model was able to capture the behaviors of the tested material with a good precision, 

shows the versatility of the numerical model in capturing the observed behaviors. Smaller 

values of modulus numbers were calculated with increasing duration of the stress-

controlled tests of the dry material which indicates softer behavior of the specimens over 

time. These time effects must be considered when choosing the parameters of the model 

from results of laboratory tests and in the short and long term analysis of real engineering 

problems. 

4.7 Conclusion 
The behavior of a compacted assamblage of granite rock particles during the triaxial 

compression testing was discussed in this chapter with an emphesize on time effects and 

saturation. Two series of experiments were conducted in strain-controlled and stress-

controlled conditions on both dry and saturated samples. A relatively simple constitutive 

model was also implemented in commercial software FLAC to reproduce the results of 

the experiments and to capture the stress-strain-volume change behavior observed in the 
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laboratory. The model was the traditional hyperbolic model coupled with the Mohr-

Coulomb failure criteria. The stress relaxation procedures proposed by Escuder et al. 

(2005) were also modified and implemented in FLAC in order to simulate the 

deterioration of contact points and deformations which were caused by keeping a 

constant anisotropic stress over time and augmented by saturation.  

The results of the modeling has shown to have good agreements with the labratoray tests. 

Generally, the strain controlled parameters for dry and wet samples can be used to 

reproduce the stress-controlled tests or to model the deformations in constant stress 

condition. Only two of the total nine parameters of the model has shown sensitivity to the 

test method as well as rate of loading: the elastic modulus number(KE) and bulk modulus 

number(KB) which represent the shear and volumetric rigidity of the material, 

respectively. These parameters are considered as the key parameters in calculating the 

time-dependent as well as the collapse deformations due to wetting of the material, using 

the stress relaxation procedure which requires both dry and saturated parameters. 
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Figure  4-1.Schematic of the implemented constitutive model  
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Figure  4-2. Effect of adding water to air-dry specimen at constant axial pressure and at 

constant volume, in one-dimensional compression test; after Burland (1965)
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Figure  4-3- Distribution of contact force in an assemblage of rock particles at constant 
stress condition. (a) Initial equilibrium (b) The disruption of contacts due to breakage of 
particles (c) redistribution after collapse or creep deformations; reaching a new 
equilibrium. 

 

  

(a) (c)(b)
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Figure  4-4- Comparison of stress-strain and volume change curves for dry, wet and dry-

wet specimens in triaxial compression test; after Nobari and Duncan (1972)
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Figure  4-5 – Modified grain size distribution of the triaxial specimens along with the 

prototype and parallel gradations. 
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Figure  4-6. Comparison of number of contact points and patterns of breakage of particles 

in ideal uniform and non-uniform samples. 
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Figure  4-7- Angular granite grains with different particle sizes used in preparation of the 

triaxial specimens  
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Figure  4-8- Influence of time on strength of concrete specimens; after R sch (1960)
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Figure  4-9- Changing strain rate with time during each increment of stress-controlled test; 

in relation to different stages of creep; after Arenson and Springman (2005)
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Figure  4-10– Vertical stress increments during the stress controlled triaxial compression 
tests 
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Figure  4-11. Stress-strain and volume change behavior of the specimens in the strain 

controlled  triaxial  compression tests
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Figure  4-12- Applied vertical stress during the stress controlled triaxial compression test 
#2 
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Figure  4-13- Measured axial strain during the stress controlled triaxial compression test 
#2 
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Figure  4-14- Measured volumetric strains during the stress controlled triaxial 
compression test #2 
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Figure  4-15- Mean axial strain rates during the stress controlled triaxial compression test 

#2 
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Figure  4-16 – Stress-strain response of the specimen in stress controlled test #2  
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Figure  4-17- Volume change-axial strain response of the specimen in stress controlled 

test #2 

  



 137
 

 

Figure  4-18- Stress-strain behavior of the dry material in strain-controlled tests
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Figure  4-19- Changes of volumetric strain of the dry material in strain-controlled tests 
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Figure  4-20- Stress-strain behavior of the saturated specimens in strain-controlled tests 
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Figure  4-21- Changes of volumetric strain of the saturated specimens in strain-controlled 
tests 
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Figure  4-22- Creep components of the dry specimen during the stress controlled test #2 

followed by collapse deformations due to the saturation. 
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Figure  4-23- Gradual softening of the dry specimens with time during the stress 

controlled tests 
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Figure  4-24- Stress-strain relation of the specimens during the stress-controlled tests
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Figure  4-25- Volume change of the specimens during the stress controlled tests



 145
 

Elastic parameters Plastic parameters 

KE Elastic modulus number  fiction angle at reference pressure  

n Elastic modulus exponent  change of friction angle with 

confining stress 

KB Bulk modulus number  dilation angle at reference pressure 

m Bulk modulus exponent  change of friction angle with 

confining stress 

Rf coefficient to adjust the 

stress-strain curve (default 

value=0.7) 

  

 Table  4-1- elasto plastic parameters of the implemented model 

 
 

confining stress test condition initial dry density Dry density after strain rate

(kPa) (kg/m3) (kg/m3) (%/hr) 

100 
dry 1660 1740 5 

saturated 1660 1770 1 

300 
dry 1660 1790 5 

saturated 1660 1770 1 

600 
dry 1660 1810 5 

saturated 1660 1820 1 

 Table  4-2. Strain-controlled triaxial compression test conditions
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test 

number 

dry density after 

isotropic 

consolidation*  

(kg/m3) 

Saturation  

constant 

deviatoric 

stress (kPa) 

time 

span** 

 (hr) 

degree of 

saturation  

strain rate at 

the end of 

saturation 

(%/s) 

1 1750 340 15-150 93%  

2 1730 470 45-160 94%  

3 1740 670 340-600 92%  

*Confining stress of 200 kPa was adopted for all stress controlled tests 
**The origin of time was considered at the beginning of the application of the vertical 
stress 

Table  4-3- Stress-controlled triaxial compression test conditions  
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Dry material Wet material 

KE 200 180 

n 0.05 0.05 

KB 50 40 

m 0 0 

Rf 0.73 0.73 

41 41 

8 8 

 5 0 

 10 10 

Table  4-4- calibrated elasto-plastic parameters of the tested material

 
 
 
 
 
 
 
 
 

Test Duration (hr) KE KB 

1 15 240 210 

2 45 190 110 

3 340 150 85 

Table  4-5- change of modulus numbers related to the duration of stress controlled tests.

  



 148
 

5 Numerical modeling of the construction and 
impoundment stages of LG4 rockfill dam 
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5.1 Introduction
In the previous chapters, the HPD model (i.e. hyperbolic model implemented in FLAC 

along with components of plasticity and dilation from Mohr-Coulomb failure criteria) 

was presented and shown to be capable of capturing the key characteristics of compacted 

rock particles as observed in the large scale triaxial tests. The nine parameters of the 

model, as shown in Table  5-1, are relatively easy to calibrate for the dry material using 

triaxial test results or alternatively using the existing database in the literature for both 

hyperbolic model and Mohr-Coulomb failure criteria. It was also shown that wetting of 

the material resulted in reductions of both stiffness coefficients (  and ) and 

reference dilation angle ( ); all other parameters were almost unchanged for a given 

material regardless of the degree of saturation. The stress relaxation technique can be 

used to numerically reproduce the collapse phenomenon resulting from wetting of a 

granular material (Escuder et al., 2005; Nobari and Duncan, 1972). New algorithms were 

also proposed to solve the system of equations used in the stress relaxation technique in 

order to improve the stability of the numerical model. The HPD model and the 

procedures to simulate the wetting collapse were successfully validated using triaxial 

tests as described in the previous chapters.  

In this chapter, the constitutive model and the procedures are applied to simulate the 

construction stage and impoundment of LG4, a dam constructed in Quebec, Canada. The 

instrumentation data is compared with the results of the modeling and the behavior of the 

dam is discussed using the numerical model and the insitu recordings. 

5.2 Constitutive model 
The HPD constitutive model which is the hyperbolic model coupled with Mohr-Coulomb 

failure criteria and a non-associated flow rule to consider dilatancy was explained 

extensively in the previous chapters along with procedures for simulating the collapse of 

rockfill material due to wetting. The constitutive model and the proposed algorithms were 

validated using the results of laboratory tests on compacted assemblages of rock particles. 

In this section, a brief description is given of the different parameters of the model and 

the post failure behavior which is based on the Mohr-Coulomb failure criteria. 
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There are total of nine parameters in this model: four parameters reflecting the plastic 

response (i.e. irreversible deformations and shear induced volumetric changes); and five 

parameters reflecting the nonlinear stress-dependent elastic behavior.  The plastic 

parameters are used to define the stress-dependent yield and potential functions. The 

elastic parameters are used to calculate the two tangent elastic modulus of the hyperbolic 

model (i.e. Young’s modulus  and bulk modulus ) in the generalized Hooke’s law of 

the following form: 

 [Eq. 5-1]

In the theory of elasticity there are total of four parameters. The two other parameters 

which are Poisson’s ratio  and shear stiffness  are not independent variables but related 

to the above hyperbolic elastic parameters (  and ). As failure envelope is reached, the 

formulation of the constitutive model switches to the Mohr-Coulomb model with post-

failure values for elastic modulus which are calculated using the following equations: 

 

 

Where  and  are modulus numbers;  and  are modulus exponents;  is the 

minimum principal stress; and  is the reference pressure. Unless the initial elastic 

parameters of the hyperbolic model, both of these post failure elastic parameters are 

independent of the shear stress. These elastic parameters are dependent to the minimum 

stress (  and characterise the behavior of the material in unloading and reloading loops 

after the failure envelope is reached, as shown in the second part of the schematic of 

model in Figure  3-2. The post failure parameters also consist of the stress-dependent 

friction angle (  and dilation angle (  as: 
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These parameters are required in order to define the yield and potential functions of the 

Mohr-Coulomb type in the following forms: 

 

 

These two functions have similar forms but different parameters. The smaller values of 

the dilation angle enable the magnitude of the incremental plastic volumetric strain to be 

restricted. Moreover, the dependency of dilation angle to the confining stress and degree 

of saturation are important characteristics of compacted assemblages of rock particles, as 

demonstrated in previous chapters. 

5.3 LG4 dam 
La Grande 4 (LG4) main dam, situated 460 km from the mouth of the La Grande River in 

the James Bay Territory, is the second largest structure of the La Grande Complex of 

James Bay hydroelectric development located in northern Quebec, Canada. The La 

Grande Complex covers 176,000 km2. LG4 main dam has maximum height of 125 m, 

crest length is about 4 km and has fill volume of about 19,000,000 m3 (Paré et al., 1984). 

LG4 main dam is a zoned earth-rock fill with central till core protected by large and well 

compacted sand and gravel filter and transition zones. The dam was constructed almost 

entirely on bedrock composed of granite and gneiss of Precambrian age. The typical 

cross-section of LG4 main dam is shown in Figure  5-1. The geomaterials used for various 

embankment dams of the La Grande Complex were relatively homogeneous. The grain 

size distributions of the material used in different zones and the specifications used for 

placement of these materials are shown in Figure  5-2 and Table  5-2, respectively. 
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During the construction of the La Grande Complex, a comprehensive instrumentation 

was installed in dikes and embankment dams to measure deformations, stresses, and pore 

pressures. The instrumentations consist of inclinometers, settlement cells, linear 

extensometers, surface monuments, electrical and stand-pipe piezometers, total pressure 

cells, and weirs to measure seepage flow. These allowed monitoring the behavior of the 

embankment during the construction and the filling up the reservoir, as closely as 

possible. In the current study, the instrumentation data which was published in several 

previous papers was used to study the behavior and to compare with numerical results. 

The reliability of these instrumentations and methods of interpretation of field data are 

not discussed here. 

5.4 Parameters of the model 
Previous researchers have implemented the hyperbolic model into finite element codes to 

simulate the construction and filling of the reservoir of this dam. It was shown that 

although the trends indicated by numerical modeling analysis were generally confirmed 

by instrumentation data, final results were very sensitive to the input values used in the 

hyperbolic model. Therefore, one of the most important aspects in the past researches 

was to determine the exact values of the parameters to represent the material used in the 

construction of the dam. Marsal (1967) performed large scale triaxial tests of a rockfill 

material similar to that of the LG4 dam (Figure  5-3). The results of triaxial tests 

conducted on samples from the filter and transition zones are also shown in Figure  5-4 

(Massiéra et al., 1989). These test data were used to estimate the parameters of the 

models in the past. 

A first analysis of the dam behavior at the end of construction was presented by Garneau 

et al. (1982). A more comprehensive review of the instrumentation data, including those 

of the filling up the reservoir was made by Verma et al. (1985). Post-construction 

analyses clearly showed that studies made at the design stage had underestimated the 

elastic modulus of the till core, the granular filters, and the granular shell (Massiéra et al., 

1989); resulting in excessive settlement predictions. With a review of the data of 

deformations obtained in situ, Boncompain and Massiéra (1991) concluded that the main 

reason for this underestimation of modulus was the fact that model parameters were 
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extracted from saturated triaxial tests, while in the real site the situation was much 

different during construction. A new evaluation of parameters was done by Massiéra et 

al. (1999).  They performed the oedometric compression tests for the till core and for the 

sand and gravel of filters and transitions on partially saturated samples. They also 

recommended the values from a report from Norwegian Geotechnical Institute for the 

shell of the LG4 dam (NGI, 1987).  

In Table  5-3, the evolution of the parameters of the hyperbolic model for LG4 dam as 

proposed by the above mentioned researchers in the past years is shown. The set of 

parameter in the first column does not have the coefficients to define the Bulk modulus 

(i.e KB and m) because in the classic hyperbolic model, proposed by Duncan and Chang 

(1970), the Poisson’s ratio (instead of bulk modulus) was related to the stress level which 

did not represent the behavior of the material in high pressures and was later modified by 

Duncan et al. (1980a). The second column refers to the set of parameters proposed by 

Massiéra et al. (1989) which overestimated the compressibility of the material, resulting 

in excessive settlement predictions. These parameters were originally estimated before 

the dam was constructed and correspond to a type A prediction (i.e. a prediction which 

was made before the fact, according to Lambe’s classification). The third column refers 

to the set of parameters utilized by Szostak-Chrzanowski and Massiéra (2004) which 

were modified in order to produce the same deformations as recorded in the field, in a 

type C prediction (i.e. a prediction which was made after the construction of the dam). 

Table  5-4 summarizes the parameters of the elasto-plastic model (i.e. HPD model) used 

in the current study of the LG4 dam. These parameters are almost identical with those 

proposed by Szostak-Chrzanowski and Massiéra (2004) but plasticity and dilative 

behavior were also introduced. 

Figure  5-5 compares the stress-strain relation of different constitutive behaviors of the 

rockfill material of the shell of LG4 dam in virtual triaxial compression tests, generated 

numerically at reference confining pressure of . In this figure, the soft 

elastic behavior refers to the set of parameters with overestimated compressibility of the 

material, while the rigid elastic behavior refers to the modified set of parameters to 

reproduce the same patterns of deformation as recorded in the field. Szostak-
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Chrzanowski and Massiéra (2004) derived the latter set of parameters from the shell of 

Storvatn dam, a rockfill dam with asphaltic core constructed in Norway, which used a 

higher compaction energy than in LG4 dam. In other words, the post-construction model 

increased the rigidity of the material in order to produce the same deformation patterns as 

recorded in the field. Regarding the conducted triaxial tests as shown in Figure  5-3 and 

Figure  5-4, the material used in the construction of the LG4 dam demonstrated dilative 

behavior and should be considered in the constitutive model in order to correctly 

represent the characteristics of the construction material as shown in Table  5-4 and 

Figure  5-5. 

5.5 Analysis of the construction stage 
A two-dimensional plain strain finite difference model was developed from the section of 

the dam with maximum height, as shown in Figure  5-6. This section was chosen because 

it has the maximum deformation and stresses and has the most critical condition both 

during construction and impoundment. The construction stage was simulated using the 

multi-stage modeling technique meaning that the placement of the material was done by 

placing twenty horizontal layers. By increasing the number of layers, the height of the 

elements will be reduced and the behavior of the model will be closer to the real dam. 

Ideally the height of the elements should be equal to the real height of layers in 

construction stage. Each layer consisted of the five zones of the dam: The till core at the 

center protected by two transition zones (filters) and two zones of rockfill shell. The 

model parameters assigned to the elements of each zone are those shown in Table 4. 

Considering the relatively high rigidity of the bedrock foundation, the displacements of 

the bottom nodes of the dam were fixed. 

The settlement contours of the elements of the dam are shown in Figure  5-7. The general 

trends of the displacements are similar to the results of previous simulations based on the 

elastic hyperbolic models performed by Szostak-Chrzanowski and Massiéra (2004) using 

rigid parameters and by  Garneau et al. (1982) considering soft elastic behavior.  

Figure  5-8 compares the results of numerical modeling using different sets of parameters 

along with the measured values from the installed inclinometers at the center of the core 

of the dam. The maximum predicted settlement on the axis of the dam using the current 
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elasto-plastic model was about 24 cm which was slightly more than the measured 20 cm. 

The influence of the introduction of plasticity in the behavior of the LG4 dam is obvious 

in this figure which helps to better understand the behavior of the dam. 

The overestimation of core settlements in the current study was a result of introducing the 

plastic behavior while maintaining the same set of elastic parameters for till core and 

filter zones and reducing the rigidity of the elements of the shell of the dam as shown in 

Figure  5-5. The dam zones which underwent plastic flow are shown in Figure  5-9. The 

concentration of plastic regions (i.e. regions containing elements which suffered plastic 

flow) was on the interfaces of adjacent zones, as well as small regions inside the 

filter/transition zones. Although the existence of these regions increased slightly the 

amount of the predicted settlements of the core, but the dilative behavior of yielded 

elements after the failure and the confinement provided by surrounding elements, prevent 

them to suffer very large displacements. The propagation of plastic regions was limited 

because of the relatively high rigidity of the material used in the construction of filter 

zones. If weaker material was used in these zones (e.g. lower compaction effort or 

inappropriate grain size distribution), localisation of plastic regions could have produced 

much larger displacements and eventually the local failure and fracture inside the body of 

the dam would have been expected. 

The contours of Young’s modulus at the end of construction of LG4 dam are shown in 

Figure  5-10. The value of the elastic modulus of each element depends on the material 

properties as well as the stress path of that particular element. The multi-stage modeling 

is important in order to follow the same stress path as in the field and to generate the 

actual stress state, secant modulus and the pattern of deformation for each element and 

the whole dam. The dashed line in this figure encompasses a relatively rigid area which 

with the support of the protecting shells and the solid bedrock foundation bore the weight 

of the softer upper portion of the dam resulting in very small settlements of the core, 

limited to less than 0.2 percent of the height of the dam.  

Vertical stress contours of the dam at the end of construction are shown in Figure  5-11. 

The arching effect is easily observed in this figure. The placement of pressure cells in the 
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body of the dam is also shown. The measured stresses at the elevation of the foundation 

were 1500 kPa inside the core and 2350 kPa inside the filter zone. The calculated stresses 

at these points were 1800 kPa and 2250 kPa, respectively. The measured stresses at the 

height of 55 m were 1200 kPa inside the core and 1650 kPa inside the filter zone. The 

calculated stresses at these points were 1200kPa and 1500kPa, respectively. There were 

good agreements between calculated and measured values; and the model captured the 

arching of the stresses inside the core.  

Figure  5-12 and Figure  5-13 show the profiles of maximum and minimum principal stress 

at different heights of the dam at the end of construction. The direction of the maximum 

principal stress was almost vertical inside the core with slight tilt towards the axis of the 

dam. The amount of the tilt increased in the filter zones; and near the both upstream and 

downstream faces of the dam, the direction of the maximum principal stress was parallel 

to the surface of the shell zone. The arching effect is distinguished by the abrupt change 

of the value of the maximum principal stress at the interfaces of the core and filter zones. 

The profile of minimum principal stress has also some irregularities at these interfaces 

but no significant transmission of stress (i.e. arching effect) was calculated for the 

minimum principal stress. The irregularities of the stress profile were also observed at the 

interfaces between the filter zones and the protecting shells in this figure, but with less 

intensity. 

5.6 Analysis of the impoundment of the reservoir 
The impoundment of the reservoir of the dam was modeled using the FLAC software and 

related deformations and stress changes inside the body of the dam were calculated using 

the proposed equations and algorithms of the previous chapter (i.e. modified stress 

relaxation technique). The impoundment of the LG4 dam started almost two years after 

the construction was complete and based on the piezometers data installed inside the 

body of the dam, the pore pressure of the construction stage had dissipated before the 

filling of the reservoir started (Paré et al., 1984). In other words, there was enough time 

after the end of the construction of the dam for the pore water to completely dissipate. 

The two year delay had some time effects on the behavior of the dam and the amounts of 

deformations which are not discussed here. Similar to the construction of the dam, the 
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impoundment was modeled using the multi stage modeling technique. In each stage, the 

rise of the water level of the reservoir was modeled by applying a new hydrostatic 

pressure and hydraulic boundary condition on the upstream face of the dam 

corresponding to the raised elevation of the water. Several hydraulic and mechanical 

loops were then carried out to bring the model into the equilibrium based on the new 

boundary conditions.  

The phreatic line, flow patterns and pore pressures were calculated in hydraulic loops 

using Darcy’s law which is the default of the FLAC software. The hydraulic 

conductivities of the materials of the different zones are shown in Table  5-5. The 

anisotropic values of hydraulic conductivity of the materials are due to the fact that the 

dam was constructed with horizontal layers resulting in greater horizontal permeability 

(Smith and Konrad, 2011). Moreover, the high contrast between the permeability of 

different zones resulted in the fact that almost all of the water head dropped in the core of 

the dam. Transient states of the flow in the upstream filter zone are shown in Figure  5-14. 

During the process of reaching the steady state flow in this zone, which took few days in 

time, the core made an impermeable boundary because of much lower permeability (i.e. 

almost 100 times smaller than filters). The calculated phreatic line is approximate and 

mesh-dependent. Because of the large elements used in the lower parts of the dam, ten 

meters of the downstream is saturated which is not realistic shell (height of the elements 

of the first layer of the dam over foundation is ten meters). However, this did not have 

large effects on the calculated values of deformation and stresses of the upstream side of 

the dam which is under focus in this study. 

In each stage of the impoundment, based on the newly calculated phreatic line and 

patterns of pore water pressure, the internal unloading stress of the saturated elements and 

effects of the buoyancy forces were distributed over the finite difference mesh in 

mechanical loops. From a mechanical point of view, as shown in Table  5-6, the saturation 

resulted in a decrease of three parameters: elastic modulus number ( ), bulk modulus 

number ( ), and reference dilation angle ( ), which was thoroughly discussed in the 

previous chapters. The relatively small amounts of reduction of these parameters 

represent the general condition of the material used in construction of rockfill dams in 
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Quebec, considering the high relative humidity of the air filling the voids and the 

standard compaction effort during the construction (Oldecop and Alonso, 2001; Verma et 

al., 1985). The parameters of the wetting state of the material were required for 

calculating the unloading of the saturated elements during the impoundment of the 

reservoir. After bringing the model into the equilibrium based on the new mechanical 

boundary conditions (i.e. change of the density of the saturated elements and patterns of 

pore water pressure), the internal unloading of the elements resolved an resulted in 

collapse settlements and shear stress on the face of saturation as shown in Figure  5-15. 

The calculated vertical and horizontal displacement contours at the end of impoundment 

are shown in Figure  5-16 and Figure  5-17, respectively. Inclinometers installed inside the 

core and downstream filter recorded small values of less than 10 cm settlement during 

reservoir filling which is in agreement with the results of modeling and could be referred 

to the high resistance of the material used in the construction of the dam to wetting. 

However, three other effects of the rise in water level behind the dam could be 

distinguished in these figures: i) the hydrostatic pressure on the core caused horizontal 

displacements towards downstream; ii) The buoyant forces in the upstream side cause 

upward movements within the saturated zones; iii) Collapse of the upstream shell and 

transition zones cause downward movements within these zones. Since the dam behaved 

as a continuum, all of these patterns of displacement resulted in rotations of the body of 

the dam towards downstream or upstream. A limited region in the upstream shell 

demonstrated upward movements of about 6 cm, while the upstream filter zone had 

settled about 10 cm. The core and downstream side of the dam did not have large vertical 

displacements. These types of relative movements after the first filling of the reservoir 

may include the formation of cracks within the core of the dam, as reported in other dams 

worldwide (Giron, 1997; Hunter and Fell, 2003). However, this was not the case for LG4 

dam due to the fact that the large and well-compacted transition zones which supported 

the core had relatively small collapse deformations. 

All of the mentioned patterns of deformation were accompanied by changes in the stress 

state within the body of the dam and the source of plastic regions where large relative 

movements occurred. The calculated total vertical stress contours at the end of 
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impoundment are shown in Figure  5-18. The measured stresses at the elevation of the 

foundation were 2000 kPa inside the core and 2250 kPa inside the filter. The calculated 

stresses of these points were 2030 kPa and 2300 kPa, respectively. The measured stresses 

at the height of 55 m were 1310 kPa inside the core and 1600 kPa inside the filter. The 

calculated stresses at these points were 1350 kPa and 1450 kPa, respectively. There were 

good agreements between calculated and measured values at these locations. Comparing 

with stress contours before impoundment, as shown in Figure  5-11, the total stresses on 

the upstream side of the dam as well as the core have increased as a result of hydrostatic 

loading of the reservoir water and the increase of the density of the material from dry to 

saturated. After impoundment, the vertical total stress on the axis of the dam was 

increased by about 10 percent at the height of 55 m and about 20 percent over the 

foundation. A slight decrease of less than 5 percent of the vertical total stress was also 

observed within the downstream filter which was a result of redistribution of stress after 

the flow of water through the core and collapse of the saturated elements. 

The calculated vertical effective stress contours at the end of impoundment and the 

measured values at specific locations are shown in Figure  5-19. The measured stresses at 

the elevation of the foundation were 1275 kPa inside the core and 2175 kPa inside the 

filter. These values were calculated using the data from the total pressure cells and 

piezometers installed inside the core and filter zones. The calculated stresses at these 

points were 1280 kPa and 2200 kPa, respectively. The measured stresses at the height of 

55 m were 880 kPa inside the core and 1600 kPa inside the filter. The calculated stresses 

at these points were 1020 kPa and 1450 kPa, respectively. Comparing to the vertical 

stress contours before the impoundment as shown in Figure  5-11, the flow of water 

through the core increased the stress difference between the core and the downstream 

filter zone and hence the potential of hydraulic fracturing was increased. The effective 

stresses of saturated elements of the core were decreased more at the mid- height of the 

dam (e.g. more than 20 percent at the height of 55 m and about 10 percent over the 

foundation). The filter zone on the downstream side was not affected by the flow of the 

water and the effective stress remained almost unchanged resulting in an increase of 

arching effect between the core and the downstream filter. However this effect was less 
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important on the downstream side of the core because of the buoyancy forces acting on 

saturated filter zone.  

 Figure  5-20 and  Figure  5-21 show the amount of the unloading stresses due to wetting 

in directions of the maximum and minimum principal stress, respectively, as calculated 

using the stress relaxation algorithms. The downstream filter and shell zones did not 

suffer any unloading and collapse due to the fact that those elements were above the 

phreatic line and did not get saturated during the first impoundment. Although the 

increase of the relative humidity or wetting by the rainfall could have also led to the 

collapse phenomena but this kind of behavior was neglected in the current study and the 

deformations of the dam were considered closely after the first impoundment. The 

amount of unloading stresses of the saturated elements were related to the stress state at 

the moment of saturation as well as the difference between dry and wet stress-strain 

relation of the material. A maximum unloading stress of about 250 kPa was calculated in 

the direction of maximum principal stress inside both downstream and upstream filter 

zones over the foundation, which was the same location of the maximum vertical stress 

of 2200 kPa as shown in  Figure  5-11 (i.e. about 11 percent of the vertical stress was 

relaxed in the wetting process at this location). The maximum unloading stress in the 

direction of minimum principal stress was calculated inside the downstream filter zone, 

50 m above the foundation, and was about 60 kPa. The calculated horizontal effective 

stress at this point was 250 kPa meaning that more than 20 percent of the horizontal stress 

was relaxed in the wetting process at this location. Contours of the horizontal effective 

stress after the impoundment are shown in Figure  5-22. As a result of saturation and 

increase of pore water pressure, the majority of the upstream elements had horizontal 

effective stress below 250 kPa. However, none of these elements reached the negative 

stress level which could have marked a risk of hydraulic fracture if so. 

Comparing to the previous modeling of the impoundment of the LG4 dam made by 

Verma et al. (1985), the agreements between calculated and measured values improved. 

They have utilized the original hyperbolic model without the plasticity formulation. The 

dam elements which underwent the plastic flow, at least once during the calculation, are 

shown in Figure  5-23. The majority of the filter elements reached the plasticity criteria. 
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However, this does not imply that these elements reached the plasticity criteria all at 

once. The stress state of these elements reached the plastic envelope in a limited time 

span during the modeling process. The excessive deformations of these elements were 

restricted due to the bounding effect of the surrounding elements. Which brings us to one 

more point: the importance of having well-compacted filters and shell zones to prevent 

large settlements of the core during the impoundment. As if weaker material had been 

used for these zones, the chances of localization of plastic regions would have been 

higher and cracking of the core would have been expected due to large collapse 

settlements of these zones. On the other hand, the large amount of arching after 

impoundment was also considerable as shown in Figure  5-18. Although this effect also 

existed at the end of construction as shown in Figure  5-11, but the amount increased as a 

result of saturation of the core and upstream side of the dam. This effect was connected to 

the high contrast between the rigidities of the core and supporting filter/transition zones. 

This contrast should be kept to the minimum in order to minimize hydraulic fracturing. 

5.7 Conclusion 
This chapter describes the application of the HPD model (nonlinear hyperbolic model 

coupled with Mohr-Coulomb failure criteria) in dam engineering. The main advantages 

of this model for this purpose are capturing the following characteristics: (1) modulus 

stiffening and degradation due to different modes of loading; (2) Plastic deformations; (3) 

Shear induced volumetric changes. With the use of the nine parameters, the model was 

previously shown to provide satisfactory predictions of the behavior of the tested granular 

materials. In addition, this model is capable of reproducing the plastic deformations 

caused by wetting using the relaxation technique as originally proposed by Nobari and 

Duncan (1972).  

The application of model was demonstrated in modeling the construction stage and 

impoundment of LG4 rockfill dam in Quebec, Canada. The results of the modeling 

showed good agreement with the instrumentation data. Different patterns of deformation 

occurred during construction and impoundment. During the construction, the maximum 

settlements were located at mid-height of the core. After the first filling of the reservoir, 

the maximum settlements were near the crest and on the upstream side of the dam due to 



 162
 

the collapse of the upstream elements after saturation. Maximum horizontal 

displacements occurred near the crest on the downstream side of the dam which was a 

result of the hydrostatic pressure of the reservoir acting on the core. Some regions on the 

upstream shell zones experienced upward movements as a result of buoyancy forces and 

small overburden pressure. The relative magnitudes of these deformations resulted in 

variety of stress states and formation of plastic regions within the body of the dam.  

The plastic components of the constitutive model enhanced the predictions especially 

during the filling of the reservoir which involved more plastic deformations. By 

monitoring the change of different parameters of the model (e.g. elastic modulus or 

Poisson’s ratio) during the modeling process, it was possible to locate the vulnerable 

elements of the dam which had stress state close to the failure envelope (e.g. elements 

close to the crest of the dam just before the first filling of the reservoir).  

It was also shown that the relative rigidity of adjacent zones had great effect on 

propagation of regions with plastic behavior. Over-compacted filter zones would result in 

a high contrast of the compressibility with adjacent zones which may trigger hydraulic 

fracturing during the impoundment. On the other hand, weak and not sufficiently 

compacted filter and shell zones will not provide enough support for the core and 

excessive settlements during construction and impoundment will result in cracking of the 

core of the dam. In conclusion, the shell zones are better to be compacted to highest 

possible level but the compaction of transition zones should be kept to an optimum in 

order to prevent the abrupt change of the elastic modulus at the interface with the core 

and to avoid the hydraulic fracturing phenomenon. 
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Figure  5-1- Cross section of LG4 dam at highest elevation of the crest

 

 

 
Figure  5-2- Grain size distribution of material used in construction of different zones of 

LG4 dam
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Figure  5-3- Results of triaxial test  on a rockfill material similar to that of the shell of 

LG4 dam (zone 3); after Marsal (1967)
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Figure  5-4- Results of triaxial test  on the sand and gravel of the filter zone (zone 2); after 

Massiéra et al. (1989)
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Figure  5-5- Comparison of different constitutive behaviors of the rockfill material of the 
shell of LG4 dam in virtual triaxial compression tests, generated by FLAC at reference 

confining pressure .
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Figure  5-6- Finite difference mesh of LG4 dam
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Figure  5-7- Settlement contours of LG4 dam at the end of construction  
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Figure  5-8- Measured settlements on the axis of the core of LG4 dam at the end of 

construction, with predictions of different constitutive models and parameters. 

  



 171
 

 
Figure  5-9- Elements reaching the failure envelope (in purple) during the simulation of 

construction stage. 

 
 

 

Figure  5-10- Contours of Elastic modulus at the end of construction of LG4 dam  
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Figure  5-11- Calculated vertical stress contours of LG4 dam at the end of construction 
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Figure  5-14 - Hydraulic transit states during the flow calculations in the filter zone. 

 

 

 

 
 

 
Figure  5-15- Collapse of the saturated elements result in shear stress on the face of 

saturation. 
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Figure  5-16- Calculated vertical displacement contours at the end of impoundment of 

LG4 dam

 
 
 
 
 

 

 
Figure  5-17- Calculated horizontal displacement contours at the end of impoundment 

of LG4 dam
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Figure  5-18- Calculated vertical total stress contours at the end of impoundment of 

LG4 dam and comparison with measured values. 

 

 

 

 

 

 

 
Figure  5-19- Calculated vertical effective stress contours at the end of impoundment 

of LG4 dam and comparison with measured values.
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Figure  5-20- Contours of unloading stress due to wetting in the direction of the 

maximum principal stress 

 
 

 
Figure  5-21- Contours of unloading stress due to wetting in the direction of the 

minimum principal stress 
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Figure  5-22 - Calculated horizontal effective stress contours at the end of 

impoundment of LG4 dam 

 

 
 
 
 
 
 
 

 
Figure  5-23- Elements reaching the failure envelope (in purple) during the simulation 

of the impoundment
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Hyperbolic parameters 
(Elastic behaviour) 

Plasticity and Dilation parameters 

KE* Elastic modulus number  fiction angle at reference pressure  

n Elastic modulus exponent  change of friction angle with confining 

stress 

KB* Bulk modulus number dilation angle at reference pressure  

m Bulk modulus exponent  change of friction angle with confining 

stress 

Rf coefficient to adjust the 
stress-strain curve  
(default value=0.7) 

  

* These three parameters are reduced with increasing water content  

Table  5-1- Elastic and plastic parameters of HPD model  

 

 

 

Zone Lifts thickness Compaction 

1- Core (Till) 45 cm 4 passes of 45 ton pneumatic rollers 
(97% of Standard Proctor maximum 
dry density at water contents varying 
between -1% - +2% optimum) 

2- Filters (Gravely 
Sands) 

45 cm 3 passes of 5.5 ton vibratory rollers 
(minimum relative density of 70%) 

3- Shell (Rockfill) 1 – 2 m 4 passes of 9 ton vibratory rollers 

Table  5-2- Specifications for placement of materials of different zones of LG4 dam
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Till Core Filter Shell 
Reference*: 1 2 3 1 2 3 1 2 3 

sat(kg/m3) 2340 2256 2144 2320 2276 2260 2000 1962 1962 
37 37 37 42 42 42 40 40 45 

KE 1000 1000 1670 1380 4000 4500 370 370 1000 
KB - 800 1030 - 3200 2850 - 300 800 
n 0,39 0,6 0,5 0,61 0,61 0,4 0,35 0,35 0,8 
m - 0,6 0,5 - 0,6 0,4 - 0,6 0,8 
Rf 0,55 0,5 0,5 0,6 0,6 0,6 0,74 0,74 0,35 

* Reference1: (Paré et al., 1984); Reference2: (Massiéra et al., 1989); Reference 3: (Szostak-
Chrzanowski and Massiéra, 2004) 

Table  5-3- Elastic parameters used in previous simulations of the construction stage of 
LG4 dam. 

 
 
 
 
 
 
 
 
 

sat(kg/m3)      
Shell 1960 45 10 6 10 1000 0,8 800 0,8 0,7 
Filter 2260 42 8 10 10 4500 0,4 2850 0,4 0,6 

Core 2140 37 5 5 5 1670 0,5 1030 0,5 0,5 

Table  5-4- HPD model parameters for different zones of  LG4 dam used in current 
study (dry material).
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Hydraulic Conductivity (m/s) Core 
Transitions and 

Filters 
Shell 

Horizontal    high 

Vertical    high 

Table  5-5- Hydraulic conductivities of different zones of the dam.

 

 

 

 

   
Shell 6 (4) 1000 (800) 800 (640) 
Filter 10 (8) 4500 (3600) 2850 (2280) 
Core 5 (3) 1670 (1340) 1030 (825) 

Table  5-6 – Effects of saturation on the parameters of the HPD model; the values in 
parentheses are for saturated material 
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6 Conclusion
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In numerical modeling of rockfill dams selecting an appropriate stress-strain 

relationship for the material is primarily involved with balancing simplicity and 

accuracy. While it seems reasonable that more complex stress-strain relationships 

should be able to model the behavior of the rock particles more accurately, there is no 

benefit in using a very complex relationship to analyze the problem where the simpler 

representation of the stress-strain behavior would result in an acceptable accuracy. 

Moreover the applicability of the more complex constitutive models in simulating the 

rockfill material is often questionable because of: (i) the difficulty of the calibration of 

the model using the limited test results of such material in practice, and (ii) the initial 

assumptions and experimental relations taken in the formulation of some of these 

constitutive models are not necessarily extendible to compacted samples of large rock 

particles as exist in rockfill dams.  

A non-exhaustive review was performed of the constitutive models which have been 

used in the past to model the behavior of rockfill dams during construction and 

impoundment. It was concluded that considering the high strength of the rock 

particles and resistance to the wetting of the material used in construction of rockfill 

dams in Quebec, the hyperbolic model if coupled with an appropriate failure criterion 

was the most balanced constitutive law for the purpose of numerical modeling of 

zoned rockfill dams. In the context of plasticity, the failure envelope and the potential 

functions should consider the dependency of both friction angle and dilation angle to 

key physical properties of the rock particles (e.g. stress state, density and degree of 

saturation). 

Due to the elastic formulation of the traditional hyperbolic model, it cannot predict 

the behavior near the failure envelope or the dilative behavior of compacted 

assemblages of granular material. In order to overcome these shortages the classic 

constitutive equations were coupled with the Mohr-Coulomb plastic failure criteria, 

and with a non-associated flow rule to consider shear dilatancy. The implemented 

model, referred as HPD model, has nine parameters: four parameters to define the 

failure envelope and the potential function ( ,  and , )  and five parameters 

to represent the initial nonlinear elastic behavior ( , , ,  and ). The 

following characteristics of the rockfill element were modeled using this new 

implementation: 
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1. nonlinear stress-strain relation using the hyperbolic function. 

2. modulus stiffening due to increasing confinment and modulus degradation due 

to increasing shear stresses based on the classical hyperbolic formulation. 

3. steady state strength and plastic deformations on the failure envelope using the 

perfectly plastic formulation and Mohr-Coulomb failure criteria with a stress 

dependent friction angle and zero cohesion. 

4. shear induced volumetric changes or dilative behavior of dense samples by the 

means of a non-associated flow rule which included the dependency of the 

dilation angle to stress state, rate of saturation and density. 

The failure and potential functions had similar mathematical forms but were defined 

using different parameters (dilation angle and friction angles). The final strength of 

the rockfill sample was used to define the failure envolope (i.e. strength of the 

material in the final steady state or at large strains). The steady state friction angle at 

the reference pressure of 100 kPa was defined as the initial friction angle  which 

linearly decreased with increasing confinement at a rate of  in a logarithmic scale. 

The initial friction angle was shown to be independent of the density and degree of 

saturation of the material being modeled. Since no strain hardening rule was defined 

for the model, it could not capture the peak friction angle. This was chosen in order to 

keep the model as simple as possible. The potential function had the similar 

mathematical form as the failure function but with a different parameter (dilation 

angle instead of friction angle). The reference dilation angle  was defined at the 

reference confining pressure of 100 kPa in the triaxial setup which decreased with 

increasing confinement using a similar logarithmic relation as used for the friction 

angle but with different rate of . The dilation angle was shown to be dependent to 

both density and degree and saturation: it increased linearly with the dry density of the 

rockfill sample and decreased slightly (about 2 degrees) when changing from dry state 

to saturated. At each given initial dry density there existed a treshold confinig stress 

above which the dilative behavior of rock particles were prevented by excessive 

confining pressure. 

In the initial elastic formulation, the axial and volumetric rigidities were defined by 

means of the Young’s modulus and bulk modulus, respectively. Modulus numbers  
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and  were used as dimensionless parameters to represent these two moduli at 

reference confining pressure of 100 kPa, respectively. Both of these two elastic 

moduli increased with confining stress in a logarithmic relation which was defined by 

means of the modulus exponents  and , respectively. The higher were these 

exponents, the more dependent were the elastic modulus on the confining pressure. 

The modulus numbers but not the exponents were shown to be sensitive to density, 

degree of saturation and the time span of loading. This fact was utilized to model the 

softening of the material due to increasing of the degree of saturation or to calculate 

the time-dependent deformations using the stress relaxation technique. The 

adjustment parameter  was used to adjust the shape of the hyperbolic curve. After 

analyzing the database of more than twenty rockfill samples, it was concluded that 0.7 

was often a good default value regardless of the physical properties of the sample. 

Smaller values of this parameter should be cautiously used as it would dramatically 

increase the elastic rigidity without changing the modulus numbers. 

The HPD model was implemented into the commercial software, FLAC, to simulate 

the behavior of the assemblages of rock particles during the conducted drained triaxial 

monotonic compression tests. These tests were performed in two phases:  

a) In the first phase, the drained monotonic compression tests were conducted in 

strain controlled condition on both dry and saturated specimens with different 

densities and at different confining pressures. A gradation curve parallel to the 

prototype rockfill was used for the preparation of the specimens in this phase. 

The results of these tests were used to calibrate the numerical model and to 

characterize the assemblage of rock particles during the tests. 

b) In the second phase, two series of experiments were conducted and analysed 

with an emphesize on time effects and saturation. These experiments were 

monotonic triaxial compression tests in both strain-controlled and stress-

controlled conditions. They were performed on compacted assemblages of 

granite rock particles prepared in the laboratory using different initial dry 

densities and a more uniform particle gradation curve compared to the 

prototype rockfill in order to increase the amount of time-dependent 

deformations and the collapse settlements due to wetting. 
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All the parameters of the HPD model can be easily calibrated using the results of the 

drained monotonic triaxial compression test conducted at least at two different 

confining pressures. The triaxial tests at this research were conducted at three 

different confining pressures of 100, 300 and 600 kPa. The first two pressures were 

used to calibrate the parameters of the model and the third test was predicted. 

Alternatively, a database of different rockfill samples was gathered from the literature 

which could be used to estimate the parameters from the general physical properties 

(e.g. density, gradation, particle shape and mineral constituencies). A procedure was 

proposed for calibrating the parameters of the model based on any of these two 

methods. 

In the second phase strain controlled tests were conducted at constant strain rate, on 

both dry and saturated samples. The general trends conformed to the observed 

behavior during the first phase strain controlled tests which had denser specimens 

with wider grain size distributions. The time effects and collapse deformations due to 

wetting of the rock particles were studied using the results of the stress controlled 

tests. These tests were conducted at changing stress rate, on dry samples, and water 

was added at different stress levels which maintained constant during the saturation 

process in order to estimate the deformations caused by wetting. It was shown that 

rate and mode of loading had influence on the behavior of the samples which can be 

utilized to calculate the time-dependent deformations of rockfill masses. The longer 

the stress state was maintained over the assemblage of rock particles, the more 

deformation was recorded which indicated a softer behavior over time. The 

introduction of water into the dry specimens also increased the amount of 

deformations. The softening of the behavior after the introduction of water into the 

rockfill element or during a suspended stress state was related to the deterioration of 

the contact points between particles and propagation of micro fissures inside them 

which was more important at high shearing stress level (i.e. close to failure 

envelope).  

The modulus numbers were considered as the key parameters in the modeling of the 

time and saturation-related behavior. The values of these two parameters reduced 

linearly with the duration of the suspended loading in a log-log scale. Saturation also 

reduces the values of these parameters by about ten percent. All the other parameters 
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remained unchanged for a given material regardless of the timespan of loading and 

degree of saturation. Having the new set of parameters, the resulting deformations can 

be calculated at any stress state using the Nobari-Duncan procedures (also known as 

stress relaxation technique), adapted to the new constitutive equations. The new 

algorithms were also implemented in order to minimize the computational effort 

during the numerical simulation. The equations in the new algorithm were separated 

into two independent systems to calculate the two stress components ( ) 

separately; and each one with the desired precision. This enhancement also increased 

the stability of the numerical procedure. The minimum principal stress ( ) was 

firstly calculated. Knowing the first unknown, the maximum principal stress ( ) 

was readily calculated. This modified stress relaxation procedure was used to simulate 

the deterioration of contact points and reuslted deformations which were caused by 

keeping a constant anisotropic stress over time and also augmented by saturation of 

the specimens.  

The elasto-plastic parameters used in the simulations of stress-controlled tests were 

exactly the same as those calculated from the strain-controlled tests except for the 

modulus numbers that changed with test method as well as durations. Smaller values 

of modulus numbers were calculated for the stress-controlled tests which took longer 

time comparing to strain-controlled tests. This was again explained as softer behaviors 

of the specimens over time. The gradual decrease of these parameters over time was 

formulated using the logarithmic relation which also complied to the classical creep 

theory (i.e. softening of the material decreases logarithmically over time to reach a 

steady state creep). These time effects must be considered when choosing the 

parameters of the model from results of laboratory tests for the short and long term 

analysis of the behavior.  

In the last phase of the research, the application of the HPD model was demonstrated 

in modeling of the construction stage and impoundment of LG4 rockfill dam in 

Quebec, Canada. The results of the modeling showed good agreement with the 

instrumentation data. Different patterns of deformation occurred during construction 

and impoundment. During the construction, the maximum settlements were located at 

mid-height of the core. After the first filling of the reservoir, the maximum 

settlements were near the crest and on the upstream side of the dam due to the 
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collapse of the upstream elements after saturation. Maximum horizontal 

displacements occurred near the crest on the downstream side of the dam which was a 

result of the hydrostatic pressure of the reservoir water acting on the core. Some 

regions on the upstream shell zones experienced upward movements as a result of 

buoyancy forces and small overburden pressures. The relative magnitudes of these 

deformations resulted in variety of stress states and formation of plastic regions within 

the body of the dam.  

Comparing to the previous efforts for modeling the behavior of this dam, the plastic 

components of the constitutive model enhanced the predictions especially during the 

filling of the reservoir which involved more plastic deformations. By monitoring the 

change of the values of different parameters of the model (e.g. elastic modulus or 

Poisson’s ratio) during the modeling process, it was possible to locate the vulnerable 

elements of the dam which had stress state close to the failure envelope (e.g. elements 

close to the crest of the dam just before the first filling of the reservoir).  

It was also shown that the relative rigidity of adjacent zones had great effect on 

propagation of regions with plastic behavior. Over-compacted filter zones would 

result in a high contrast of the compressibility with adjacent zones which may trigger 

hydraulic fracturing during the impoundment. On the other hand, weak and not 

sufficiently compacted filter and shell zones will not provide enough support for the 

core and excessive settlements during construction and impoundment will result in 

cracking of the core of the dam. Generally, it was concluded that the shell zones 

should be compacted to highest possible level but the compaction of transition zones 

should be kept to an optimum in order to prevent the abrupt change of the elastic 

modulus at the interface with the core and to avoid the hydraulic fracturing 

phenomenon. 

In the future, the HPD model could be implemented in modeling of the behavior of 

other important rockfill dams in Quebec including Sainte-Marguerite-3 and Romaine-

2. SM3 is a rockfill dam with till core and filter zones same as the LG4. The height of 

this dam is 175 m and it experienced longitude cracks on the crest after the 

impoundment in the year 2002. R2 is another rockfill dam with an asphaltic core and 

a height of 160 m which is under construction at the moment. Another opportunity for 

the continuation of this research is application of the HPD model in modeling of the 
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creep phenomena in rockfill dams. Although the procedures for modeling of the time-

dependent deformations based on fracture mechanics were discussed in chapter 4, it 

was not applied in dam engineering in this thesis. More laboratory work and 

instrumentation data from previous dams are required in order to calibrate the 

parameters of the model for this purpose. New procedures are also needed to apply 

the stress relaxation technique in the modeling of creep in a rockfill dam and to 

calculate the deformations of the whole structure over time.   
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Appendix 1 – FISH scripts 
FISH is a programming language embedded within FLAC that enables the user to 

define new variables and functions. These functions may be used to extend FLAC’s 

usefulness or add user-defined features. For example, new variables may be plotted or 

printed, special grid generators may be implemented, servo-control may be applied to 

a numerical test, unusual distributions of properties may be specified, and parameter 

studies may be automated. 

FISH is a “compiler” (rather than an “interpreter”). Programs entered via a FLAC data 

file are translated into a list of instructions (in “pseudo-code”) stored in FLAC’s 

memory space; the original source program is not retained by FLAC. Whenever a 

FISH function is invoked, its compiled pseudo-code is executed. The use of compiled 

code (rather than interpreted source code) enables programs to run much faster. 

However, unlike a compiler, variable names and values are available for printing at 

any time. 

New constitutive models may be written in the FISH language. Once compiled 

successfully, a new model behaves just like a built-in model as far as the user is 

concerned. A user-defined model can also use properties that are defined and given 

names by the model’s author; these names act just like built-in properties. User-

written models execute more slowly than built-in models. After optimization, a FISH 

model will typically run somewhere between one-quarter and one-third the speed of a 

built-in model. However, quite often, a user-written model needs only to be installed 

in a small part of the FLAC grid, since the particular behavior that it is designed to 

reproduce may only occur locally; the material elsewhere can be represented by a 

standard model. In any case, the increased runtimes of the special model may be 

compensated by decreased human time and effort, since less work may be done trying 

to force-fit an inappropriate model. 

A user-written constitutive model is simply a FISH function containing some special 

statements and references to special variables that correspond to local entities within a 

single zone. The user-defined model (referred to as “UDM”) is called by FLAC four 

times per zone (once per triangular subzone) for every solution step. It is the task of 

the UDM to supply a new set of stress components, given strain increments and the 
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old set of stress components. The fish scripts for the elastoplastic UDM and also the 

new procedures for the stress relaxation due to wetting are presented in the following 

two sections. 

1- HPD model (UDM) 
set echo off 
def m_duncan 
  constitutive_model 111 
; Duncan parameters 
  f_prop  d_k    d_kb    d_n    d_m    d_rf   d_pa 
  f_prop  d_kw   d_kbw   d_nw   d_mw   d_rfw  d_betta d_s3t  
  f_prop  d_coh  d_fric  d_nu   d_ms3   
  f_prop  d_bulk d_shear d_kmax d_gmax  
  f_prop  d_nphi d_csnp  d_cotp 
  f_prop  d_poisson d_elas d_s1 d_s3 d_s d_t hyp_min elas_min 
  f_prop  d_s2 d_q d_p 
  f_prop  d_dphi d_phio m_ddil m_dilo 
  float $elas $bulk $dif $dia $ms3 $ms1 $e1 $e2 $cap  
  float $sphi $nphi $as11 $as22 $as33 $as12 $sl $aux $ei 
  int   $m_err 
   
; checking Duncan 
  f_prop auxx            ;ultimate derivative stress 
  f_prop hypp1 hypp2     ;hyperbolic functions 1:mathematical, 2:corrected(hyp_min) 
 
; Mohr criteria 
  f_prop  m_dil m_ten m_ind 
  f_prop  m_csnp m_nphi m_npsi m_e1 m_e2 m_x1 m_sh2 
  float   $spsi $s11i $s22i $s12i $s33i $sdif $s0 $rad $s1 $s2 $s3 
  float   $si $sii $psdif $fs $alams $ft $alamt $cs2 $si2 $dc2 $dss 
  float   $apex $pdiv $anphi $bisc $tco 
  int     $icase 
 
  f_prop  ini_d 
 
; checking Mohr 
;  f_prop  m_s1 m_s2 m_s3 
 
  Case_of  mode 
; ---------------------- 
; Initialisation section 
; ---------------------- 
    Case 1 
      hyp_min  = 0.05 
      $cap     = d_pa /10.0 
;      elas_min = d_k * d_pa * ($cap/d_pa)^d_n 
      $m_err   = 0 
      if d_fric > 89.0 then 
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        $m_err = 2 
      end_if 
      if d_coh  < 0.0 then 
        $m_err = 3 
      end_if 
      if d_pa <= 0. then 
        d_pa = 1.0 
      end_if 
      if d_nu >= 0.49 then 
        d_nu = 0.49 
      end_if 
      if $m_err # 0 then 
        nerr  = 126 
        error = 1 
     end_if 
 
; --- frictional constants --- 
 
;====== =========Mohr initiation===================1 
      $spsi    = sin (m_dil * degrad) 
      m_nphi  = (1.0 + $sphi) / (1.0 - $sphi) 
      m_npsi  = (1.0 + $spsi) / (1.0 - $spsi) 
      m_csnp  = 2.0 * d_coh * sqrt(m_nphi) 
      m_e1    = d_bulk+ 4.0 * d_shear/ 3.0 
      m_e2    = d_bulk- 2.0 * d_shear/ 3.0 
      m_x1    = m_e1 - m_e2*m_npsi + (m_e1*m_npsi - m_e2)*m_nphi 
      m_sh2   = 2.0 * d_shear 
      if abs(m_x1) < 1e-6 * (abs(m_e1) + abs(m_e2)) then 
        $m_err = 5 
        nerr  = 126 
        error = 1 
      end_if 
; --- set tension to prism apex if larger than apex --- 
      $apex = m_ten 
      if d_fric # 0.0 then 
         $apex = d_coh / tan(d_fric * degrad) 
      end_if 
      m_ten = min($apex,m_ten) 
;==================Mohr initiation===================2 
 
      $sphi  = sin (d_fric * degrad) 
      $nphi  = (1.0 + $sphi) / (1.0 - $sphi) 
      d_csnp = 2.0 * d_coh * sqrt($nphi) 
      d_nphi = $nphi - 1.0 
      if d_fric # 0.0 then 
         d_cotp = d_coh / tan(d_fric * degrad) 
      else 
         d_cotp = 0.0 
      end_if 
    Case 2 
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; --------------- 
; Running section 
; --------------- 
;==================Mohr stresses======================1 
      zvisc = 1.0 
      if m_ind # 0.0 then 
        m_ind = 2.0 
      end_if 
      $anphi = m_nphi 
; --- get new trial stresses from old, assuming elastic increments --- 
      $s11i  = zs11 + (zde22 + zde33) * m_e2 + zde11 * m_e1 
      $s22i  = zs22 + (zde11 + zde33) * m_e2 + zde22 * m_e1 
      $s33i  = zs33 + (zde11 + zde22) * m_e2 + zde33 * m_e1 
      $s12i  = zs12 + zde12 * m_sh2 
      $sdif  = $s11i - $s22i 
      $s0    =  0.5 * ($s11i + $s22i) 
      $rad   =  0.5 * sqrt ($sdif*$sdif + 4.0 * $s12i*$s12i) 
; --- principal stresses --- 
      $si    =  $s0 - $rad 
      $sii   =  $s0 + $rad 
      $psdif =  $si - $sii 
 
; --- determine case --- 
      section 
        if $s33i > $sii then 
; --- s33 is major p.s. --- 
          $icase = 3 
          $s1    = $si 
          $s2    = $sii 
          $s3    = $s33i 
          exit section 
        end_if 
        if $s33i < $si then 
; --- s33 is minor p.s. --- 
          $icase = 2 
          $s1    = $s33i 
          $s2    = $si 
          $s3    = $sii 
          exit section 
        end_if 
; --- s33 is intermediate --- 
        $icase = 1 
        $s1    = $si 
        $s2    = $s33i 
        $s3    = $sii 
      end_section 
 
; verify mohr 
;      m_s1=$s1 
;      m_s2=$s2    
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;      m_s3=$s3 
 
;=====================Mohr stresses=====================2 
 
;=====================Mohr Criteria======================1 
      section 
; --- shear yield criterion --- 
        $fs    = $s1 - $s3 * $anphi + m_csnp 
        $alams = 0.0 
; --- tensile yield criterion --- 
        $ft    = m_ten - $s3 
        $alamt = 0.0 
; --- tests for failure --- 
        if $ft < 0.0 then 
           $bisc = sqrt(1.0 + $anphi * $anphi) + $anphi 
           $pdiv = -$ft + ($s1 - $anphi * m_ten + m_csnp) * $bisc 
           if $pdiv < 0.0 then 
; ---      shear failure --- 
              $alams = $fs / m_x1 
              $s1 = $s1 - $alams * (m_e1 - m_e2 * m_npsi) 
              $s2 = $s2 - $alams * m_e2 * (1.0 - m_npsi) 
              $s3 = $s3 - $alams * (m_e2 - m_e1 * m_npsi) 
              m_ind = 1.0 
           else 
; ---      tension failure --- 
              $alamt = $ft / m_e1 
              $tco= $alamt * m_e2 
              $s1 = $s1 + $tco 
              $s2 = $s2 + $tco 
              $s3 = m_ten 
              m_ind = 3.0 
              m_ten = 0.0 
           end_if 
        else 
           if $fs < 0.0 then 
; ---      shear failure --- 
              $alams = $fs / m_x1 
              $s1 = $s1 - $alams * (m_e1 - m_e2 * m_npsi) 
              $s2 = $s2 - $alams * m_e2 * (1.0 - m_npsi) 
              $s3 = $s3 - $alams * (m_e2 - m_e1 * m_npsi) 
              m_ind = 1.0 
           else 
; ---      no failure --- 
              zs11 = $s11i 
              zs22 = $s22i 
              zs33 = $s33i 
              zs12 = $s12i 
              exit section 
           end_if 
        end_if 
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; --- direction cosines --- 
        if $psdif = 0.0 then 
          $cs2   = 1.0 
          $si2   = 0.0 
        else 
          $cs2   = $sdif       / $psdif 
          $si2   = 2.0 * $s12i / $psdif 
        end_if 
; --- resolve back to global axes --- 
        case_of  $icase 
          case 1 
            $dc2  = ($s1 - $s3) * $cs2 
            $dss  =  $s1 + $s3 
            zs11  = 0.5 * ($dss + $dc2) 
            zs22  = 0.5 * ($dss - $dc2) 
            zs12  = 0.5 * ($s1  - $s3) * $si2 
            zs33  = $s2 
          case 2 
            $dc2  = ($s2 - $s3) * $cs2 
            $dss  =  $s2 + $s3 
            zs11  = 0.5 * ($dss + $dc2) 
            zs22  = 0.5 * ($dss - $dc2) 
            zs12  = 0.5 * ($s2  - $s3) * $si2 
            zs33  = $s1 
          case 3 
            $dc2  = ($s1 - $s2) *$cs2 
            $dss  =  $s1 + $s2 
            zs11  = 0.5 * ($dss + $dc2) 
            zs22  = 0.5 * ($dss - $dc2) 
            zs12  = 0.5 * ($s1  - $s2) * $si2 
            zs33  = $s3 
        end_case 
        zvisc = 0.0 
      end_section 
;====================Mohr Criteria===================2 
 
; --- accumulate stresses for the zone --- 
      $as11 = $as11 + zs11 
      $as22 = $as22 + zs22 
      $as33 = $as33 + zs33 
      $as12 = $as12 + zs12 
; --- update properties --- 
      if zsub > 0.0 then 
        $as11 = $as11 / zsub 
        $as22 = $as22 / zsub 
        $as33 = $as33 / zsub 
        $as12 = $as12 / zsub 
;       - minor compressive stress - 
        $dif = $as11 - $as22 
        $dia = sqrt ($dif*$dif + 4.0 * $as12 * $as12) 
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        $ms3 = min(-($as11 + $as22 + $dia) * 0.5,-$as33) 
        d_s3 = $ms3 
        $ms3 = max($ms3,$cap) 
;       - major compressive stress - 
        $ms1 = max(-($as11 + $as22 - $dia) * 0.5,-$as33) 
        d_s1 = $ms1  
        $ms1 = max($ms1,$cap) 
        d_s2 = -($as11+$as22+$as33+d_s1+d_s3) 
;----------------------------------------------------------------- 
      if m_ind = 0.0 then        ;**check for plasticity  
;       - new moduli - 
        $aux = $ms3 * d_nphi + d_csnp 
        $sl  =  max($ms1 - $ms3,0.0) / $aux 
        $ei  = d_k * d_pa * ($ms3/d_pa)^d_n 
        $elas= (1.0 - d_rf * $sl)^2 * $ei 
;       minimum hyp 
        $elas= max($elas,hyp_min*$ei)  
;----------checking Duncan---------------- 
        auxx=$aux 
        hypp1 = (1.0 - d_rf * $sl)^2 
        hypp2 = $elas / $ei 
;----------------------------------------- 
        $elas = min($elas,$ei) 
        if d_kb = 0.0 then 
;          - Poisson's ratio is constant - 
           d_bulk    = $elas / (3.0 * (1.0 - 2.0 * d_nu)) 
           d_shear   = $elas / (2.0 * (1.0 + d_nu)) 
           d_poisson = (3.0 * d_bulk - 2.0 * d_shear) / (6.0 * d_bulk + 2.0 * d_shear) 
           d_elas    = (9.0 * d_bulk * d_shear) / (3.0 * d_bulk + d_shear) 
        else 
;          - Poisson's ratio between 0 and 0.49 - 
           $bulk   = d_kb * d_pa * ($ms3/d_pa)^d_m 
           $bulk   = min($bulk, 17.0 * $elas) 
           $bulk   = max($bulk, $elas / 3.0) 
           d_bulk  = $bulk 
           d_shear = 3.0 * $elas * $bulk / (9.0 * $bulk - $elas) 
           d_poisson = (3.0 * d_bulk - 2.0 * d_shear) / (6.0 * d_bulk + 2.0 * d_shear) 
           d_elas    = (9.0 * d_bulk * d_shear) / (3.0 * d_bulk + d_shear) 
        end_if 
      else                     ;**bypassing Duncan to Mohr model 
        d_bulk    = d_kb * d_pa 
        d_elas    = d_k  * d_pa   
        d_shear   = 3.0  * d_elas * d_bulk / (9.0 * d_bulk – d_elas) 
        d_poisson = (3.0 * d_bulk - 2.0 * d_shear) / (6.0 * d_bulk + 2.0 * d_shear)  
      end_if 
        $as11 = 0.0 
        $as22 = 0.0 
        $as33 = 0.0 
        $as12 = 0.0 
        d_s   = (d_s1 + d_s3) / 2.0 
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        d_t   = (d_s1 - d_s3) / 2.0 
        d_q   = (d_s1 - d_s3)  
        d_p   = (d_s1 + d_s2 + d_s3) / 3.0 
 
;==============Mohr parameters update===================1 
; ---stress dependent dialation and friction angle--- 
        d_fric  = d_phio - d_dphi * log($ms3/ d_pa) 
        d_fric  = max (d_phio / 2.0 , d_fric) 
        d_fric  = min (d_phio       , d_fric) 
        m_dil   = m_dilo - m_ddil * log($ms3/ d_pa) 
        m_dil   = max (0.0    , m_dil) 
        m_dil   = min (m_dilo , m_dil) 
; --- intermidiate parameters--- 
        $sphi   = sin (d_fric * degrad) 
        $spsi   = sin (m_dil * degrad) 
        m_nphi  = (1.0 + $sphi) / (1.0 - $sphi) 
        m_npsi  = (1.0 + $spsi) / (1.0 - $spsi) 
        m_csnp  = 2.0 * d_coh * sqrt(m_nphi) 
        m_e1    = d_bulk+ 4.0 * d_shear/ 3.0 
        m_e2    = d_bulk- 2.0 * d_shear/ 3.0 
        m_x1    = m_e1 - m_e2*m_npsi + (m_e1*m_npsi - m_e2)*m_nphi 
        m_sh2   = 2.0 * d_shear 
        if abs(m_x1) < 1e-6 * (abs(m_e1) + abs(m_e2)) then 
          $m_err = 5 
          nerr  = 126 
          error = 1 
        end_if 
; --- set tension to prism apex if larger than apex --- 
        $apex = m_ten 
        if d_fric # 0.0 then 
           $apex = d_coh / tan(d_fric * degrad) 
        end_if 
        m_ten = min($apex,m_ten) 
        $nphi  = (1.0 + $sphi) / (1.0 - $sphi) 
        d_csnp = 2.0 * d_coh * sqrt($nphi) 
        d_nphi = $nphi - 1.0 
        if d_fric # 0.0 then 
           d_cotp = d_coh / tan(d_fric * degrad) 
        else 
           d_cotp = 0.0 
        end_if 
;=================Mohr parameters update================2 
 
      end_if 
    Case 3 
; ---------------------- 
; Return maximum modulus 
; ---------------------- 
      cm_max = d_kmax + 4.0 * d_gmax / 3.0 
      sm_max = d_gmax 
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    Case 4 
; --------------------- 
; Add thermal stresses 
; --------------------- 
      ztsa = ztea * d_bulk 
      ztsb = zteb * d_bulk 
      ztsc = ztec * d_bulk 
      ztsd = zted * d_bulk 
  End_case 
end 
opt m_duncan 
def ini_duncan 
   loop i (1,izones) 
   loop j (1,jzones) 
;           j = build_j 
;           i = build_i 
;           j = 1  
           if model(i,j) = 111 then 
           if ini_d(i,j) # 7 then 
;           - frictional constants - 
            ini_d(i,j)=7 
            d_fric(i,j)=d_phio(i,j) - d_dphi(i,j) * log(-sxx(i,j) / d_pa(i,j)) 
            d_fric(i,j)=min(d_phio(i,j)     ,d_fric(i,j)) 
            d_fric(i,j)=max(d_phio(i,j)/2.0 ,d_fric(i,j)) 
            m_dil(i,j)   = m_dilo(i,j) - m_ddil(i,j) * log(-sxx(i,j)/ d_pa(i,j)) 
            m_dil(i,j)   = max (0.0    , m_dil(i,j)) 
            m_dil(i,j)   = min (m_dilo(i,j) , m_dil(i,j)) 
; 
            $sphi = sin (d_fric(i,j) * degrad) 
            $nphi = (1.0 + $sphi) / (1.0 - $sphi) 
            $csnp = 2.0 * d_coh(i,j) * sqrt($nphi) 
            $nphi = $nphi - 1.0 
            if d_fric(i,j) # 0.0 then 
               $cotp = d_coh(i,j) / tan(d_fric(i,j) * degrad) 
;           else 
               $cotp = 0.0 
            end_if 
;           - minor compressive stress - 
            $esxx= sxx(i,j) + pp(i,j) 
            $esyy= syy(i,j) + pp(i,j) 
            $eszz= szz(i,j) + pp(i,j) 
            $dif = $esxx - $esyy 
            $dia = sqrt ($dif*$dif + 4.0 * sxy(i,j) * sxy(i,j)) 
            $ms3 = min(-($esxx + $esyy + $dia) * 0.5,-$eszz) 
            $ms3 = max($ms3,$cap) 
            $ms1 = max(-($esxx + $esyy - $dia) * 0.5,-$eszz) 
            $ms1 = max($ms1,$cap) 
; 
            $sl  = max($ms1 - $ms3,0.0) / ($ms3 * $nphi + $csnp) 
; 
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             $ei = d_k(i,j)  * d_pa(i,j) * ($ms3/d_pa(i,j))^d_n(i,j) 
             $elas = $ei * (1.0 - d_rf(i,j) * $sl)^2 
;           - initial bulk and shear from initial Young modulus - 
            if d_kb(i,j) = 0.0 then 
;              - Poisson's ratio is constant - 
               d_bulk(i,j)  = $elas / (3.0 * (1.0 - 2.0 * d_nu(i,j))) 
               d_shear(i,j) = $elas / (2.0 * (1.0 + d_nu(i,j))) 
            else 
;              - Poisson's ratio between 0 and 0.49 - 
               $bulk   = d_kb(i,j) * d_pa(i,j) * ($ms3/d_pa(i,j))^d_m(i,j) 
               $bulk   = min($bulk, 17.0 * $elas) 
               $bulk   = max($bulk, $elas / 3.0) 
               d_bulk(i,j)  = $bulk 
               d_shear(i,j) = 3.0 * $elas * $bulk / (9.0 * $bulk - $elas) 
            end_if 
;           - maximum bulk and shear for stability from max s3 - 
            $elas = d_k(i,j)  * d_pa(i,j) * (d_ms3/d_pa(i,j))^d_n(i,j) 
            if d_kb(i,j) = 0.0 then 
;              - Poisson's ratio is constant - 
               d_kmax(i,j)  = $elas / (3.0 * (1.0 - 2.0 * d_nu(i,j))) 
               d_gmax(i,j)  = $elas / (2.0 * (1.0 + d_nu(i,j))) 
            else 
               $bulk = d_kb(i,j) * d_pa(i,j) * (d_ms3/d_pa(i,j))^d_m(i,j) 
               $bulk = min($bulk, 17.0 * $elas) 
               $bulk  = max($bulk, $elas / 3.0) 
               d_kmax(i,j)  = $bulk 
               d_gmax(i,j)  = 3.0 * $elas * $bulk / (9.0 * $bulk - $elas) 
            end_if 
         end_if 
         end_if 
      end_loop 
      end_loop 
end 
 

2- Stress relaxation due to wetting 
def collapse 
if ex_1(zi,zj) # 7 then 
;---------------------------------------------- 
;        Equation Definitions 
;---------------------------------------------- 
;  --- initialization --- 
   $coh    = d_coh(zi,zj) 
   $sinphi = sin(d_fric(zi,zj) * degrad)  
   $cosphi = cos(d_fric(zi,zj) * degrad)  
   $Pa     = d_pa(zi,zj) 
   $nw     = d_nw(zi,zj) 
   $mw     = d_mw(zi,zj) 
   $max_relax = $pa/20 
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;  --- initial stress state --- 
   $s11   = -syy(zi,zj)  
   $s22   = -sxx(zi,zj)  
   $s33   = -szz(zi,zj) 
   $s12   =  sxy(zi,zj) 
   $diff  = $s11 - $s22 
   $diaa  = sqrt ($diff * $diff + 4.0 * $s12  * $s12) 
   $si_    = ($s22 + $s11 + $diaa) / 2 
   $sii_   = ($s22 + $s11 - $diaa) / 2 
   $psdif_ = $si_ - $sii_ 
;  --- determine case --- 
   section 
     if $s33 < $sii_ then 
;  --- s33 is minor p.s. --- 
       $icase_ = 3 
       $s1_    = $si_ 
       $s2_    = $sii_ 
       $s3_    = $s33 
       exit section 
     end_if 
     if $s33 > $si_ then 
;  --- s33 is major p.s. --- 
       $icase_ = 2 
       $s1_    = $s33 
       $s2_    = $si_ 
       $s3_    = $sii_ 
       exit section 
     end_if 
;  --- s33 is intermediate --- 
     $icase_ = 1 
     $s1_    = $si_ 
     $s2_    = $s33 
     $s3_    = $sii_ 
   end_section 
;  $S3d   = max(($s2_+$s3_)/2,$cap)   
   $Scd   = max(($s2_+$s3_)/2,$cap)   
   $S3d   = $s3_ 
;  $Sdd   = max($s1_,$cap) - $S3d     ; no need anymore, with mohr envolope 
   $Sdd   = $s1_ - $S3d 
   $S1d   = $Sdd + $S3d 
;  ---  direction cosines --- 
   if $psdif_ = 0.0 then 
      $cs2_ = 1.0 
      $si2_ = 0.0 
   else 
      $cs2_ = $diff / $psdif_ 
      $si2_ = 2.0 * $s12 / $psdif_ 
   end_if 
;==================== ======================================== 
;  --- dry calculation --- 
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   $Sddf  = (2 * $coh * $cosphi + 2 * $s3d * $sinphi) / (1 - $sinphi) 
   $Eid   = d_k(zi,zj) * $Pa * (($S3d/$pa) ^ d_n(zi,zj)) 
   $Esd   = (1 - d_rf(zi,zj) * $Sdd / $Sddf) * $Eid 
;   if $Esd < 0.0 then                 ; no need anymore, with mohr envolope 
;      $Esd = 0.001 * $Eid 
;   end_if 
   $Bd    = d_kb(zi,zj) * $pa * (($S3d/$pa) ^ d_m(zi,zj)) 
   $Ead   = $Sdd/$Esd 
   $Evd   = $Eid / 3 / $Bd  *  $Sddf * $Ead / ($Sddf + d_rf(zi,zj) * $Eid * $Ead) 
;  $Evc   = d_betta(zi,zj) * ($S3d - d_s3t(zi,zj))     
   $Scd   = max(0.0,$Scd - d_s3t(zi,zj))              ;isotropic collapse, based on confining 
stress  
   $Evc   = d_betta(zi,zj) * $Scd 
   $Evc   = max(0.0,$Evc) 
   $Eac   = $Evc / 3 
   $Eal   = max (0.0,$Ead - $Eac) 
   $Evl   = max (0.0,$Evd - $Evc) 
; 
   if $Eal = 0.0 then                ; so much isotropic collapse 
      $answer = $max_relax 
   else  
      if $Evl = 0.0 then 
         $answer = $max_relax 
      else 
         $answer = -7.7e-7 
      end_if 
   end_if 
;======================================================== 
;  --- wet calculation --- 
 if $answer = -7.7e-7 then 
   $a     = (2 * $coh * $cosphi) / (1 - $sinphi) 
   $b     = (2 * $sinphi) / (1 - $sinphi) 
   $c     = d_rfw(zi,zj) * d_kw(zi,zj) * ($pa ^ (1 - $nw)) * $Eal 
   $d     = 3 * d_kbw(zi,zj) * $Evl / d_kw(zi,zj) / ($pa ^($mw - $nw)) / $Eal 
;---------------------------------------------- 
;           Numerical Recipes  
;---------------------------------------------- 
;  --- Bracketing the answer ---> $xb1,$xb2 
   $x1    = $max_relax         ; minimum limit 
   $x2    = $S3d               ; maximum limit 
   $dx    = ($x2 - $x1) / 50 
   $answer= 0.0 
   section  
      $xb1= -13.0              ;flag for success of bracketting 
      $xb2= -13.0 
      $xc = $x1 
      $fp = ($a * ($xc ^ ($nw - $mw)) + $b * ($xc ^ (1+$nw - $mw)))  
      $fp = $fp / ($a + $b * $xc + $c * ($xc ^ $nw)) - $d  
      loop iii(1,50) 
         $xc = $xc + $dx 
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         $fc = ($a * ($xc ^ ($nw - $mw)) + $b * ($xc ^ (1+$nw - $mw)))  
         $fc = $fc / ($a + $b * $xc + $c * ($xc ^ $nw)) - $d 
         if ($fc * $fp) < 0 then 
            $xb1 = $xc - $dx 
            $xb2 = $xc 
            exit section 
         end_if 
         $fp=$fc 
      end_loop 
   end_section 
;  ---checking the bracket function success(flag) ---- 
   section 
;     ---define $y1, $y2--- 
      $y1 = ($a * ($x1 ^ ($nw - $mw)) + $b * ($x1 ^ (1+$nw - $mw)))  
      $y1 = $y1 / ($a + $b * $x1 + $c * ($x1 ^ $nw)) - $d  
      $y2 = ($a * ($x2 ^ ($nw - $mw)) + $b * ($x2 ^ (1+$nw - $mw)))  
      $y2 = $y2 / ($a + $b * $x2 + $c * ($x2 ^ $nw)) - $d  
      if $xb1=-13.0 then   
         if $y1 * $y2 < 0.0     ; there is answer but bracket could not get it 
            $xb1 = $x1  
            $xb2 = $x2 
         else 
            if $y1>0 then       ; there is no answer in bracket and $y1 , $y2 > 0 
               $answer = $x1 
               exit section  
            end_if 
            if $y2<0 then       ; there is no answer in bracket and $y1 , $y2 < 0 
               $answer = $x2 
               exit section 
            end_if 
         end_if 
      end_if  
   end_section 
;  --- Solving with Bisection method --- 
   section 
   if $xb2#-13.0 then 
      $f     = ($a * ($xb1 ^ ($nw - $mw)) + $b * ($xb1 ^ (1+$nw - $mw)))  
      $f     = $f / ($a + $b * $xb1 + $c * ($xb1 ^ $nw)) - $d  
      if $f<0.0 then  
         $rtb = $xb1 
         $dx  = $xb2 - $xb1 
      else 
         $rtb = $xb2 
         $dx  = $xb1 - $xb2 
      end_if 
 
      loop iii(1,40) 
         $xmid = $rtb + $dx / 2 
         $dx   = $dx / 2 
         $fmid = ($a * ($xmid ^ ($nw - $mw)) + $b * ($xmid ^ (1+$nw - $mw)))  
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         $fmid = $fmid / ($a + $b * $xmid + $c * ($xmid ^ $nw)) - $d 
         if $fmid <= 0.0 then 
            $rtb = $xmid 
         end_if 
         if abs($dx) < $pa/1000 then           ;precision of the $answer= $pa/1000 
            $answer = $rtb 
            exit section 
         end_if 
         if $fmid = 0.0 then  
            $answer = $rtb 
            exit section 
         end_if 
      end_loop 
      if iii>39 then 
         $answer = $rtb 
      end_if 
   end_if 
   end_section 
 end_if 
;============================================================
= 
; --- wet stress calculation --- 
;   $s3w   = $answer 
;   $coef     = 0.5/($ead ^ 0.88) 
;   $coef=exp(_coef * hypp1(zi,zj)) 
   $coef=(10.0*($s3d/$pa))^(hypp1(zi,zj)) 
   $answer2  = $s3d-($s3d-$answer)/$coef 
   $s3w      = $answer2 
   $s3w      = min($s3w , $s3d) 
   $s3w      = max($s3w , $max_relax) 
; 
   if hypp1(zi,zj)>0.20 then 
      $Eiw   = d_kw(zi,zj) * $Pa * (($S3d/$pa) ^ $nw) 
      $Sdwf  = (2 * $coh * $cosphi + 2 * $s3d * $sinphi) / (1 - $sinphi) 
      $n     = $Eal * $Eiw 
      $m     = d_rfw(zi,zj) * $Eiw * $Eal / $Sdwf 
      $sdw   = $n / (1 + $m) 
   else 
      $Eiw   = d_kw(zi,zj) * $Pa * (((($S3w+$S3d)/2)/$pa) ^ $nw) 
      $Sdwf  = (2 * $coh * $cosphi + 2 * (($S3w+$S3d)/2) * $sinphi) / (1 - $sinphi) 
      $n     = $Eal * $Eiw 
      $m     = d_rfw(zi,zj) * $Eiw * $Eal / $Sdwf 
      $sdw   = $n / (1 + $m) 
   end_if 
; 
   $sdw   = min($sdw , $Sdd) 
   $sdw   = max($sdw , 0.0) 
   $s1w   = $sdw + $s3w  
;  $delta1= abs($S1d - $s1w)   ;alternative determination of delta 1&2 
;  $delta2= abs($S3d - $s3w) 
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   $delta2 = abs($S3d - $s3w) 
   $delta1 = abs($sdd-$sdw+$delta2) 
 
   $s1_    = max(0.0 , $s1_ - $delta1) 
   $s2_    = max(0.0 , $s2_ - $delta2) 
   $s3_    = max(0.0 , $s3_ - $delta2) 
;======================================================== 
;  ---  direction cosines --- 
   if $psdif_ = 0.0 then 
      $cs2_ = 1.0 
      $si2_ = 0.0 
   else 
      $cs2_ = $diff / $psdif_ 
      $si2_ = 2.0 * $s12 / $psdif_ 
   end_if 
; --- resolve to global axes --- 
   case_of $icase_ 
      case 1 
         $dc2       = ($s1_ - $s3_) * $cs2_ 
         $dss       =  $s1_ + $s3_ 
         syy(zi,zj) = -0.5 * ($dss + $dc2) 
         sxx(zi,zj) = -0.5 * ($dss - $dc2) 
         sxy(zi,zj) =  0.5 * ($s1_  - $s3_) * $si2_ 
         szz(zi,zj) = -$s2_ 
      case 2 
         $dc2        = ($s2_ - $s3_) * $cs2_ 
         $dss        =  $s2_ + $s3_ 
         syy(zi,zj)  = -0.5 * ($dss + $dc2) 
         sxx(zi,zj)  = -0.5 * ($dss - $dc2) 
         sxy(zi,zj)  =  0.5 * ($s2_  - $s3_) * $si2_ 
         szz(zi,zj)  = -$s1_ 
      case 3 
         $dc2        = ($s1_ - $s2_) *$cs2_ 
         $dss        =  $s1_ + $s2_ 
         syy(zi,zj)  = -0.5 * ($dss + $dc2) 
         sxx(zi,zj)  = -0.5 * ($dss - $dc2) 
         sxy(zi,zj)  =  0.5 * ($s1_  - $s2_) * $si2_ 
         szz(zi,zj)  = -$s3_ 
   end_case 
; --- switching to wet properties --- 
   d_k(zi,zj)  = d_kw(zi,zj)  
   d_kb(zi,zj) = d_kbw(zi,zj) 
   d_n(zi,zj)  = d_nw(zi,zj) 
   d_m(zi,zj)  = d_mw(zi,zj) 
   d_rf(zi,zj) = d_rfw(zi,zj) 
;  - frictional constants - 
   $sphi = sin(d_fric(zi,zj) * degrad) 
   d_nphi(zi,zj) = (1.0 + $sphi) / (1.0 - $sphi) 
   d_csnp(zi,zj) = 2.0 * d_coh(zi,zj) * sqrt(d_nphi(zi,zj)) 
   d_nphi(zi,zj) = d_nphi(zi,zj) - 1.0 
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   if d_fric(zi,zj) # 0.0 then 
      d_cotp(zi,zj) = d_coh(zi,zj) / tan(d_fric(zi,zj) * degrad) 
   else 
      d_cotp(zi,zj) = 0.0 
   end_if 
;  - minor compressive stress - 
   $esxx= sxx(zi,zj) + pp(zi,zj) 
   $esyy= syy(zi,zj) + pp(zi,zj) 
   $eszz= szz(zi,zj) + pp(zi,zj) 
   $diff = $esxx - $esyy 
   $diaa = sqrt ($diff*$diff + 4.0 * sxy(zi,zj) * sxy(zi,zj)) 
   $ms3 = min(-($esxx + $esyy + $diaa) * 0.5,-$eszz) 
   $ms3 = max($ms3,$cap) 
   $ms1 = max(-($esxx + $esyy - $diaa) * 0.5,-$eszz) 
   $ms1 = max($ms1,$cap) 
;     if m_ind = 0.0 then        ;BYPASSING the check for plasticity  
;       - new moduli - 
        $aux = $ms3 * d_nphi(zi,zj) + d_csnp(zi,zj) 
        $sl  =  max($ms1 - $ms3,0.0) / $aux 
        $ei  = d_k(zi,zj) * d_pa(zi,zj) * ($ms3/d_pa(zi,zj))^d_n(zi,zj) 
        $elas= (1.0 - d_rf(zi,zj) * $sl)^2 * $ei 
;       minimum hyp 
        $elas= max($elas,hyp_min(zi,zj)*$ei)  
;----------checking Duncan---------------- 
;        auxx(zi,zj)=$aux 
;        hypp1(zi,zj) = (1.0 - d_rf(zi,zj) * $sl)^2 
;        hypp2(zi,zj) = $elas / $ei 
;----------------------------------------- 
        $elas = min($elas,$ei) 
        if d_kb(zi,zj) = 0.0 then 
;          - Poisson's ratio is constant - 
           d_bulk(zi,zj)    = $elas / (3.0 * (1.0 - 2.0 * d_nu(zi,zj))) 
           d_shear(zi,zj)   = $elas / (2.0 * (1.0 + d_nu(zi,zj))) 
           d_elas(zi,zj)    = $elas 
           d_poisson(zi,zj) = 0.5 - d_elas(zi,zj) / 6.0 / d_bulk(zi,zj)  
        else 
;          - Poisson's ratio between 0 and 0.49 - 
           $bulk   = d_kb(zi,zj) * d_pa(zi,zj) * ($ms3/d_pa(zi,zj))^d_m(zi,zj) 
           $bulk   = min($bulk, 17.0 * $elas) 
           $bulk   = max($bulk, $elas / 3.0) 
           d_bulk(zi,zj)    = $bulk 
           d_shear(zi,zj)   = 3.0 * $elas * $bulk / (9.0 * $bulk - $elas) 
           d_elas(zi,zj)    = $elas 
           d_poisson(zi,zj) = 0.5 - d_elas(zi,zj) / 6.0 / d_bulk(zi,zj)  
        end_if 
;==================Mohr parameters update=====================1 
        d_fric(zi,zj) = d_phio(zi,zj) - d_dphi(zi,zj) * log(-sxx(zi,zj)/$Pa) 
        d_fric(zi,zj) = min(d_phio(zi,zj)     ,d_fric(zi,zj)) 
        d_fric(zi,zj) = max(d_phio(zi,zj)/2.0 ,d_fric(zi,zj)) 
        m_dilo(zi,zj) = m_dilo(zi,zj) - 1.5 
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        m_dil(zi,zj)  = m_dilo(zi,zj) - m_ddil(zi,zj) * log(-sxx(zi,zj)/$Pa) 
        m_dil(zi,zj)  = max (0.0    , m_dil(zi,zj)) 
        m_dil(zi,zj)  = min (m_dilo(zi,zj) , m_dil(zi,zj)) 
; 
        $sphi    = sin (d_fric(zi,zj) * degrad) 
        $spsi    = sin (m_dil(zi,zj) * degrad) 
        m_nphi(zi,zj)  = (1.0 + $sphi) / (1.0 - $sphi) 
        m_npsi(zi,zj)  = (1.0 + $spsi) / (1.0 - $spsi) 
        m_csnp(zi,zj)  = 2.0 * d_coh(zi,zj) * sqrt(m_nphi(zi,zj)) 
        m_e1(zi,zj)    = d_bulk(zi,zj)+ 4.0 * d_shear(zi,zj)/ 3.0 
        m_e2(zi,zj)    = d_bulk(zi,zj)- 2.0 * d_shear(zi,zj)/ 3.0 
        m_x1(zi,zj)    = m_e1(zi,zj) - m_e2(zi,zj)*m_npsi(zi,zj)  
        m_x1(zi,zj)    = m_x1(zi,zj) + (m_e1(zi,zj)*m_npsi(zi,zj) - 
m_e2(zi,zj))*m_nphi(zi,zj) 
        m_sh2(zi,zj)   = 2.0 * d_shear(zi,zj) 
        $fff           = 1e-6 * (abs(m_e1(zi,zj)) + abs(m_e2(zi,zj))) 
        $ff            = abs(m_x1(zi,zj)) 
        if $ff < $fff then 
          $m_err = 5 
          nerr   = 126 
          error  = 1 
        end_if 
; --- set tension to prism apex if larger than apex --- 
        $apex = m_ten(zi,zj) 
        if d_fric(zi,zj) # 0.0 then 
           $apex = d_coh(zi,zj) / tan(d_fric(zi,zj) * degrad) 
        end_if 
        m_ten(zi,zj) = min($apex,m_ten(zi,zj)) 
        $nphi  = (1.0 + $sphi) / (1.0 - $sphi) 
        d_csnp(zi,zj) = 2.0 * d_coh(zi,zj) * sqrt($nphi) 
        d_nphi(zi,zj) = $nphi - 1.0 
        if d_fric(zi,zj) # 0.0 then 
           d_cotp(zi,zj) = d_coh(zi,zj) / tan(d_fric(zi,zj) * degrad) 
        else 
           d_cotp(zi,zj) = 0.0 
        end_if 
;===================Mohr parameters update=====================2 
 
ex_1(zi,zj) = 7 
ex_2(zi,zj) = $s3d 
ex_3(zi,zj) = $s3w 
ex_4(zi,zj) = $s1d 
ex_5(zi,zj) = $s1w 
ex_6(zi,zj) = $answer 
ex_7(zi,zj) = $answer2 
ex_8(zi,zj) = $coef 
ex_9(zi,zj) = $delta1 
ex_10(zi,zj)= $delta2 
end_if 
end 
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Appendix 2 – complete results of the modeling of LG4 

1-construction stage  
The numerical modeling for the construction stage has been performed in twenty 

steps. The output of the FLAC is presented in the following figures. These results are 

extracted from four stages of the construction with dam heights of 35 m, 75 m, 110 m 

and 125 m. 

2-impoundement stage  
Same as the construction stage, impoundment is also modeled using the multi-step 

modeling technique, and in 20 steps. The results are presented from four different 

reservoir levels: 30 m, 70 m, 100 m and 120 m. 

 

 
Figure  6-1. maximum unbalanced force (N) during simulation of the construction of LG4 dam. The 

model reaches the equilibrium after each placement of the materials. 
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