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We introduce an intuitive model that describes both the emergence of community structure and the evolution
of the internal structure of communities in growing social networks. The model comprises two complementary
mechanisms: One mechanism accounts for the evolution of the internal link structure of a single community,
and the second mechanism coordinates the growth of multiple overlapping communities. The first mechanism
is based on the assumption that each node establishes links with its neighbors and introduces new nodes to the
community at different rates. We demonstrate that this simple mechanism gives rise to an effective maximal
degree within communities. This observation is related to the anthropological theory known as Dunbar’s number,
i.e., the empirical observation of a maximal number of ties which an average individual can sustain within its
social groups. The second mechanism is based on a recently proposed generalization of preferential attachment
to community structure, appropriately called structural preferential attachment (SPA). The combination of these
two mechanisms into a single model (SPA+) allows us to reproduce a number of the global statistics of real
networks: The distribution of community sizes, of node memberships, and of degrees. The SPA+ model also
predicts (a) three qualitative regimes for the degree distribution within overlapping communities and (b) strong
correlations between the number of communities to which a node belongs and its number of connections within
each community. We present empirical evidence that support our findings in real complex networks.
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I. INTRODUCTION

Networks are at the center of the quantitative analysis
of social systems [1]. They encode the social ties among
different individuals within a mathematical construct that
allows a quantitative assessment of the role of individuals in
social networks through various measures and the analysis
of correlations among them [1,2]. One instance of these
correlations, the similarity between the neighborhoods of
different nodes (individuals), has received particular attention
since links tend to be clustered in tightly connected groups
[3,4]. Networks are often expressed as a superposition of such
densely connected groups, and we refer to this decomposition
as the community structure of a network [5,6].

We consider the problem of modeling both the emergence
of community structure in social networks and the growth of
the internal structure of these communities. Many community
detection algorithms and community modeling efforts consider
a fully random, or Erdős-Rényi (ER), internal structure [7–11].
This is a principled approach, in the sense that it relies
on minimal a priori information, but it is unfortunately
incompatible with most common growth processes in two
respects. One, it ignores the temporal aspect of community
growth [12]. Two, it ignores the fact that nodes can have very
heterogeneous structural roles in complex networks [13].

The preferential attachment mechanism (PA) [13–15] offers
a simple way to include the temporal and heterogeneous
aspects of complex networks in growth processes. PA is based
on the assumption that a node’s current state is a good indicator
of its future behavior. We take inspiration from the PA model
[13] and its recent extension to community structure [16,17].
We combine heterogeneous PA at the level of communities
with minimal a priori information for the internal structure

of communities. That is, we postulate simple rules for the
growth of the internal structure of communities. In so doing,
we provide a new growth process that reproduces a number of
important properties of overlapping community structures and
complex networks.

The structure of the paper is as follows. In Sec. II, we de-
scribe a process by which a single community and its structure
may grow. We find an upper bound on how many connections
an average individual may maintain as the community grows.
This finding is discussed in relation to the anthropological
theory known as Dunbar’s number. In Sec. III, we incorporate
this internal community growth process within a preferential
attachment model at the community structure level and provide
a recipe for its implementation. This yields a general model
for the concurrent growth of overlapping and heterogeneous
communities. In Sec. IV, we compare our model to empirical
data and investigate its implications. We find that our model
generates networks whose global statistics are comparable
to that of real networks and that their internal community
structure contain correlations also present in empirical data
sets. We close with a short conclusion in Sec. V and relegate
some of the technical details to two Appendices.

II. GROWTH OF A SINGLE COMMUNITY

In this first section, we introduce a simple model that
describes the growth of a single community, independently
of the rest of the network. The model builds on the recent ob-
servation that the rate of growth of a community is predicted by
preferential attachment [16–18]. This hypothesis is known to
reproduce some of the statistical properties of the community
structure of real networks [16,17]. It can be interpreted as if
each node in a community introduces new nodes at a fixed
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rate: The more nodes, the faster the community grows with
respect to other competing communities in the same network.
In what follows, we combine this node creation mechanism to
an elementary link creation mechanism and obtain a reasonable
model for the growth of a single community.

A. Description of the model and mean-field analysis

We model the growth of a single community with a
continuous-time Markov process. The model is simply stated.
A community is initially represented by a small graph, e.g.,
a triad or a single node. Each of these nodes recruit new
nodes at a constant rate ρr ; at time t , the growth rate ṅ(t)
of the community is therefore proportional to ρrn(t), where
n(t) is the size of the community. Whenever a new node is
recruited, it is at first only connected to the node who recruited
it (its degree k, i.e., number of neighbors, therefore equals 1
within the community). To allow for denser communities, we
introduce another mechanism whereby each node initiates the
creation of an undirected link at a constant rate ρ� (unless it is
already connected to every node). A second node is randomly
selected to complete the link (note that we exclude self-loops
and multiple links).

The average number mk(t) of nodes with degree 1 < k <

n − 1 within an average community of size n(t) can be
followed through continuous time t with the interdependent
set of rate equations

ṁk(t) = ρr (mk−1 − mk) + ρ�(mk−1 − mk)

+ ρ�X

[
(�n� − k)mk−1

Z
− (�n� − k − 1)mk

Z

]
, (1a)

where �n� is the integer part of n, where X := ∑�n�−2
k′=1 mk′(t) is

the number of nodes that can initiate link creation events, and
where Z := ∑�n�−2

k′=1 (�n� − 1 − k′)mk′(t) is the total number of
potential links. The first term accounts for the arrival of new
nodes: Each node recruits at rate ρr and gains new connections
accordingly. This creates a flow that brings a node of degree
k − 1 to degree k [positive effect on mk(t)] and node of degree
k to degree k + 1 [negative effect]. The second term is due to
the creation of new links: Each node initiates the creation of a
new link at rate ρ�, and the net effect on mk(t) is identical to that
of the node creation mechanism. The third term accounts for
the increase in degree incurred by a node randomly selected to
complete new links. Events of this type occur at rate ρ�X and
affect nodes of degree k with probability (�n� − k − 1)mk/Z.

Equation (1a) is only valid when 1 < k < n − 1 for two
reasons. One, nodes of degrees k = �n� − 1 cannot initiate or
receive new links. Two, node creation only involves nodes of
degree k = 1. Another set of rate equations is therefore needed
to handle the limit cases. We find

ṁ0(t) = 0, (1b)

ṁ1(t) =ρrn− ρrm1−ρ�

[
m1 +X

(�n� − 2)m1

Z

]
, (1c)

ṁ�n�−1(t) = m�n�−2

(
ρr + ρ� + ρ�

X

Z

)
− ρrm�n�−1, (1d)

ṁ�n�(t) = ρrn�n�−1. (1e)

Note that the set of Eqs. (1) becomes inconsistent when
�n� � 2, since we obtain different equations for a same
compartment mk(t). Fortunately, we do not need Eqs. (1)
to track the evolution of the community when n � 2—this
evolution is deterministic. A community that contains a
single node must first grow: The only node is already of
maximal degree, and link creation events never occur. The
same reasoning applies to the case of n = 2. Therefore,
whenever n(t0) � 2, we can instead use the initial condition
�m(t0) = (m0 = 0,m1 = 2,m2 = 1), i.e., track the community
starting from the point where randomness plays a role. If
temporal information is important, then one can compute
the expected amount of time spent in configurations of sizes
n � 2 and correct the prediction a posteriori (the delay is an
exponentially distributed random variable).

Summing Eqs. (1a)–(1e), one finds

ṅ(t) ≡
�n�∑

k=1

ṁk(t) = nρr . (2)

This last equation, together with the observation that
dpk(t)/dt = d[mk(t)/n(t)]/dt , allows us to describe the sys-
tem in terms of the average community size n rather than as a
function of time. We find

d

dn
pk(n) = (pk−1 − pk)

n
+ r

(pk−1 − pk)

n
− pk

n

+ rX

nZ
[(�n� − k)pk−1 − (�n� − k − 1)pk], (3)

and limit cases similar to the expressions listed in Eqs. (1).
This formulation has the added benefit of highlighting the
dependency in the relative ratio of events r := ρ�/ρr . We
validate Eq. (3) in Fig. 1, where we show that the numerical
solutions of this system of differential equations capture the
important features of the growth dynamics [19]. Agreement is,
however, not perfect. Discrepancies between simulations and
the solutions of Eq. (3) can be traced back to the continuous
approximation involved in writing differential mean-field
equations for discrete quantities, as well as the absence of
structural correlation in this type of model. The net effect is
a shift of the prediction toward higher degrees for the bulk of
the distribution.

Figure 1 shows that small and medium communities are
highly homogeneous, while the degree distributions in larger
communities are heavily skewed. This heterogeneity arises
from the history of the community; the few nodes that join
early, when growth is slower, can create more links than the
many nodes who join the community as growth accelerates.
The separation in three regimes holds for arbitrary values of r ,
with the transition from homogeneous to heterogeneous degree
distributions occurring at higher community sizes n for larger
values of r (see the scaling arguments in Appendix A).

B. Approximate average degree

A simpler point of view can be adopted to gain further
insights into the relation between the average degree 〈k〉 =
2L/n of a node and the size n(t) of its community [L(t) is the
number of links in the community at time t].
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FIG. 1. Degree distributions {pk} for various community sizes n, with relative event ratios r = ρ�/ρr = 9 [(a)–(c)] and r = 49 [(d)–(f)].
We compare the solutions of Eq. (3) (small dots) with the average of 20 000 Monte Carlo simulations (closed symbols). Lines are added to the
analytical results to guide the eye. The analytical expressions are integrated from the initial condition �p(t0) = (p0 = 0,p1 = 2/3,p2 = 1/3)
with n = 3 (a dyad), and each distribution (empirical and analytical) corresponds to a snapshot of the average internal degree distribution as
the community reaches a fixed average size n. A bulge appears in the distributions for n 	 1. It is the signature of a peloton dynamics [17]. We
gather some remarks on this dynamics in Appendix A.

As previously stated, a node will not initiate the creation of
new links if its degree equals n − 1 (see Sec. II A), while the
rest of the nodes create new links at a rate ρ�. The total link
creation rate is therefore given by

dL(t)

dt
= n(t)ρr + n(t)ρ�[1 − pn−1(t)], (4)

where n(t)ρr is the contribution of the node recruiting process
and where the second term merely states that only nodes of
degree k < n − 1 contribute to the creation of new links within
the community at a rate ρ�.

If we assume a uniform and uncorrelated distribution of
links among nodes, and define Lmax(n) = n(n − 1)/2—the
maximal number of links in a community of size n(t)—then
pn−1(n), the probability that a randomly selected node is of
maximal degree n − 1, can be approximated by

p̃n−1(n) 

[

L(n)

Lmax(n)

]n−1

. (5)

Using Eqs. (2) and (5), we express the rate of change of L as
a function of the average size n(t) at time t :

dL(n)

dn
= dL

dt

dt

dn
= 1 + r

{
1 −

[
L(n)

Lmax(n)

]n−1
}

. (6)

While the actual link distribution is neither uniform nor
uncorrelated in the model (see Fig. 1), we will see that our
approximation is robust enough and that Eq. (6) accurately
reproduces the average degree (see Sec. II C).

A simple analysis of Eq. (6) highlights an interesting feature
of the model. For large sizes n, the factor [L(n)/Lmax(n)]n−1

goes rapidly to zero, such that a maximal link creation rate

dL(n)

dn

 1 + r (7)

is attained. Hence, the intensive quantity L(n)/n → (1 + r)
converges toward a constant that depends on the parametriza-
tion of the model alone. Considering that one link equals two
stubs (or degree), the asymptotic average degree is directly
related to the parameter r through:

〈k〉 = 2L(n)

n
→ 2(1 + r). (8)

This indicates a maximal average number of connections in a
social group.

C. Relation with Dunbar’s number

The results shown in Fig. 2 highlight two different behaviors
of the average number of links per individual in relation
to the size of a social group. For low average sizes n,
the mean degree 〈k(n)〉 scales linearly with the community
size n. In other words, our model captures the fact that
everybody knows everybody within small groups (e.g., family
or close friends). At larger sizes n, 〈k(n)〉 reaches the plateau
2(1 + r) given by Eq. (8). From this point onwards, an average
individual will not gain new connections when the potential
number of connections is increased. So, while there is no
maximal community size per se, there is a maximal number of
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FIG. 2. Degree 〈k(n)〉 of an average node as a function of
community size n. We compare the prediction of Eq. (6) (lines) with
the average of 50 000 Monte-Carlo simulations for r = 2 (lozenge),
r = 4 (inverted triangles), r = 8 (squares), r = 16 (circle), and
r = 32 (triangles).

connections that an average individual might possess within a
given group (e.g., large companies or online communities).

Interestingly, this upper bound on the average activity of
an individual 〈k(n)〉 is related to an anthropological theory
known as Dunbar’s number [20]. This theory is based on
the observed relation between neocortical size in primates
and the average size of their social groups. Its interpretation
usually involves information constraints related to the quality
of interpersonal connections and their ability to maintain such
relationships. While the importance of neocortical sizes [21]
and the generality of the results [22] are both disputable, the
fact remains that empirical evidence supports the existence of
an upper bound in the absolute number of active relationships
for an average individual in a given activity (e.g., Ref. [23]
for activities on Twitter). In fact, more recent work on social
network sizes in humans focus on the progressively higher
bounds on average internal degree observed at different social
levels or activities, e.g., neighbors, relatives, workplace, and
friend circles [24,25]. These different social levels can be
modeled as different communities around one individual (this
is the subject of the next section).

In our model, this upper bound naturally emerges and is
solely dependent on the parameter r . This parameter can
be interpreted as the ratio between the involvement of an
individual in a community, in the sense of bonding with
other members, and its contribution to the growth rate of
the community. Note that we do not interpret the plateau
as an absolute upper bound but rather as a bound on the
maximal number of connections that an average individual can
maintain. For low r (or large communities), the rate of change
in the population is higher than an individual’s involvement
such that the maximal degree stagnates. Whereas, for high
r (or small communities), the individual is able to follow
the population changes and hence create relationships with
most of its members. Different types of social organizations
will feature different r and, consequently, different values
of “Dunbar’s number” (an online social network, where
relationships are easily maintained, will entail higher values
of r than a coauthorship network, for example): Different type
of activities (networks) should also be modeled using different
values of r .

In this interpretation, the upper bound on the degree is due
to the fact that connections and introduction of new members
have linear requirements for individuals but exponential
consequences for the group. Other mathematical models
describe Dunbar’s number (e.g., Ref. [23]), usually with
arguments of priority and/or time and resources management
[26]. However, our model is based on the observed structure
of the communities of real networks and, consequently,
parsimoniously explains Dunbar’s number in terms of its two
basic units—individuals and groups—and the ratio of their
respective characteristic growth rates. The consequence of this
result for the complete community structure of social networks
is discussed in Sec. IV D. Beforehand, we must first move
from a description of the evolution of a single community
to a description of the evolution of a superposition of many
communities.

III. A GROWTH MODEL FOR NETWORKS WITH BOTH
INTER- AND INTRACOMMUNITY STRUCTURE

The model of the previous section is concerned with
the growth of an isolated community—a group of friends,
a company, or a nascent research group. Most complex
networks, however, comprise more than a single overlapping
community [6]. To use the model of Sec. II on a larger
scale, one therefore needs a mechanism to track multiple,
concurrently growing, and overlapping communities. As we
will see shortly, the structural preferential attachment (SPA)
model of Refs. [16] and [17] is both a suitable and practical
candidate.

In a nutshell, SPA builds on the popular idea that networks
can be interpreted as the projections of abstract structures
such as communities [18]. The network is not modeled
explicitly: Instead, SPA generates an assignment of nodes
to overlapping communities, and one instantiates a network
based on the community assignments, e.g., by assuming that
communities are ER graphs. SPA therefore lacks an explicit
growth mechanism for links.

In what follows, we show how to use the community
assignments of SPA jointly with the community growth
process of Sec. II. Specifically, we construct a model in which
the history of each community is described by the model of
Sec. II, and the history of the community structure is described
by SPA. In this growth model, both facets of the systems—
the internal structure and the community structure—evolve
simultaneously. But before we introduce the coupled growth
model (in Sec. III C), we first review the key ideas behind SPA.

A. Structural preferential attachment

The essence of SPA can be summarized as follows [16]. At
every discrete time step, a growth event occurs. An event marks
the birth of a new node with probability q, and the creation of
a new fully connected community of s nodes, with probability
p. When an existing node or community is involved (with
complementary probabilities 1 − q and 1 − p, respectively),
it is chosen preferentially to its past activity: A node with x

memberships or a community of size x is x times more likely
to be chosen than a node (or community) with 1 membership
(or node). This process ensures that both the membership and
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size distributions converge to a power-law distribution in the
limit of large system sizes. The probability q controls how
interconnected communities are, the probability p controls the
distribution of community sizes, and the basic size s allows
one to enforce minimal connectivity in the full system. In
SPA, links can only exist between nodes belonging to the same
community, and a large-scale connectivity of the network is
achieved through overlapping node assignments.

We can write rate equations to follow the numbers Nu of
nodes belonging to u groups and the number Sv of groups with
v nodes. These equations are similar to most linear preferential
attachment equations,

Nu(t + 1) = Nu(t) + qδu,1

+ 1 − q + p(s − 1)

t[1 + p(s − 1)]
[(u − 1)Nu−1(t)−uNu(t)],

(9)

Sv(t + 1) = Sv(t) + pδv,s

+ 1 − p

t[1 + p(s − 1)]
[(v − 1)Sv−1(t) − vSv(t)],

(10)

and Nu, Sv can be shown to scale as power laws, i.e., Nu ∼
u−γN and Sv ∼ v−γS , with exponents [17]

γN = 2 − q + 2p(s − 1)

1 − q + p(s − 1)
, (11)

γS = 2 − p + p(s − 1)

1 − p
. (12)

Because the growth rules are time independent and since p and
q are probabilities in the [0,1] interval, the average number of
memberships per node and average community size converge
in time. Therefore, γN and γS are always � 2 and SPA is not
expected to reproduce distributions whose asymptotic decay
exponent is smaller than 2. The interested reader is directed to
Refs. [16,17] for a complete derivation of these results.

B. Coupling a discrete and a continuous processes

Recall that our goal is to couple the mechanism of Sec. II
(hereafter the local model) and SPA. To do so, we must
first determine the relation between the time scales of the
local model and that of SPA, thereby allowing a concurrent
simulation of both processes. This is not a simple matter, since
one must reconcile the continuous nature of the local growth
mechanism with the discrete nature of SPA.

In SPA, time T̃ is measured in number of events. Without
loss of generality and for reasons that will become apparent
shortly, let us define a rescaled discrete time scale T in which
a fraction ε of the time steps lead to SPA events, such that
εT = T̃ . The community structure does not change during the
remaining (1 − ε)T time steps. Because a time step T̃ marks
the birth of a new community (of size s) with probability p, or
the growth of an existing one with complementary probability
1 − p, we can write the time dependent sum of the sizes ni(T )
of all communities as∑

i

ni(T ) = ε T [ps + (1 − p)] = ε T [1 + p(s − 1)]. (13)

The average size ni(T ) of community i in discrete time T is
then governed by a rate equation

ni(T + 1) = ni(T ) + ε(1 − p)
ni(T )

ε T [1 + p(s − 1)]

= ni(T )

[
1 + 1

T
α(p,s)

]
, (14)

where we have defined α(p,s) := (1 − p)/[1 + p(s − 1)].
Equation (14) merely states that growth events affect commu-
nity i with probability ni(T )/

∑
j nj (T ) (i.e., preferentially to

its size). In the limit of large T , (14) is equivalent to

dni(T )

dT
= ni(T )

T
α(p,s). (15)

Now, recall that the size ni(t) of a community grows
exponentially in continuous time t as (see Sec. II)

dni(t)

dt
= ni(t)ρr . (16)

Combining the time derivatives (15) and (16), we obtain a
relation between the continuous time t and the discrete time T

dt

dT
= dt

dni(t)

dni(T )

dT
= ni(T )

ni(t)

α(p,s)

ρrT
= α(p,s)

ρrT
. (17)

This result holds provided that ni(t) = ni(T ) at all time.

C. The coupled growth model: SPA+
Equation (17) tells us how fast a community evolves in

comparison with the community structure; we can use this
information to formulate an algorithm that simulates both
processes concurrently. We choose to describe the local link
creation process of Sec. II in time T . As such, the backbone of
the algorithm will be the SPA process, to which we now must
add details pertaining to the local model of Sec. II.

The first part of the local model (nodes are recruited at rate
nρr ) is easily accounted for: Whenever a node joins a new
community, we simply choose a recruiting node uniformly
among the current members of that community and form a new
link. The exponential growth of communities in SPA ensures
that this process is consistent with the model of Sec. II.

The second part of the local model (links are created at rate
∝ nρ�) entails a more involved analysis. Let us define ñi(t) as
the effective size of community i, i.e., the number of nodes
that are allowed to create links [number of nodes of degree
k < ni(t) − 1 links within community i]. Then, in the local
model, the number of links L(t) in a community of effective
size ñi(t) grows at a rate

dL(t)

dt
= ρ� ñi(t) (18)

such that links are introduced in the community at the rate

dL(T )

dT
= dL(t)

dt

dt

dT
= ρ�

ρr

ñi(t)

T
α(p,s)

= rε(1 − p)
ñi(T )∑
j nj (T )

. (19)
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The purpose of time transformation ε T = T̃ is then apparent:
It can be adjusted to bound rε(1 − p) to the interval [0,1] for
all r ∈ R+. Since ε is an arbitrary fraction which also lies in
[0,1], we adopt the simplest choice, i.e.,

ε =
{

[r(1 − p)]−1 if r(1 − p) > 1,

1 otherwise.
(20)

Equation (19) can then be interpreted in two ways. Straight-
forwardly, we may say that at each time step dT of the SPA
process, a new link is created between the existing members of
a community of effective size ñi with a probability given by the
right-hand side of (19) for all i. Alternatively, we may say that
at each time step dT of the SPA process, a new link is created
with probability rε(1 − p) in a community selected with a
probability proportional to its effective size ñi(T )/

∑
j nj (T ).

Equation (20) ensures that this interpretation is always sen-
sible. In both interpretations, if a link must be created, we
choose two nodes of degree k < ni(T ) − 1 at random and
connect them.

Note that the ratio ñi(T )/
∑

j nj (T ) is not normalized. In
the context of the second interpretation, this implies that at each
time step dT , there is a probability 1 − ∑

i ñi(T )/
∑

j nj (T )
that no link creation event will occur. Alternatively, we may
select the community in which the link creation event occurs
proportionally to its actual size ni(T ) and connect two nodes
chosen uniformly among all the nodes of that community.
The ratio ñi(T )/

∑
j nj (T ) will then be effectively respected

if we consider that a link creation simply “fails” whenever
the first randomly selected node has the maximal number of
connections.

The above analysis yields a straightforward algorithm for
the modified version of SPA (hereafter SPA+) [27]. Starting
with disjoint and fully connected communities of size s, at
each discrete time step T :

(1) a new community of size s is created with probability
pε or an existing one (chosen preferentially with respect to its
size) grows with probability (1 − p)ε;

(1a) if a community birth event occurs, one of the s

involved nodes is a new one with probability q or an existing
one (chosen preferentially with respect to its current number
of memberships) with complementary probability 1 − q.
The other s − 1 nodes are chosen preferentially with respect
to their current number of memberships among existing
nodes;

(1b) if a community growth event occurs, the involved
node is a new one with probability q or an existing one
(chosen preferentially with respect to its current number
of memberships) with probability 1 − q. Once the node is
added to the community, we randomly select another node
in the community (uniformly) and create a link;
(2) with probability r(1 − p)ε, a new link is created in

a community chosen preferentially to its size. It connects
a uniformly chosen node, and a uniformly chosen potential
neighbor, provided that the source node is not already
connected to every node in the community.

If r(1 − p) < 1, link creation occurs on slower time scale
than community structure related events, whereas the converse
is true if r(1 − p) > 1.

D. Redundant memberships, multiple links, and self-loops

In SPA, one assumes that a community grows on its own
and that new members are drawn from an infinite reservoir
of indistinguishable nodes [17]. In practice, the reservoir is
finite and each node therein is tagged; when the system is
small and the parameters p and q take extreme values (q 
 0
for any p, the worst case being q 
 0 and p 
 0), there is a
significant probability that a node will appear more than once
in a community. To respect the relative rates of all events and
preserve the mean-field mapping of Sec. III B, we consider that
these duplicate nodes are effectively new. The implications of
this observation for the community structure are discussed at
length in Ref. [17]. There is additional implications for the
combined SPA+ model.

The fact that the same node can (and will) join the same
community more than once implies that we will create parallel
links and self-loops, because a node can become connected to
copies of itself. Because these types of links are seldom consid-
ered in empirical data sets, we collapse the redundant member-
ships into a single membership at the end of the growth process,
i.e., we merge nodes with all their duplicates within each
communities. This (a) skews the tail of the membership and
size distribution and (b) removes multiple self-loops from the
system. The net effect is that communities becomes denser on
average. We note that these redundant memberships are known
to account for a vanishingly small fraction of all memberships
when the number of communities is large and the (p,q) param-
eters are not too small [17]. The consequences of redundant
memberships should therefore subside in large networks.

IV. RESULTS AND DISCUSSION

The SPA model has previously been shown to capture
many properties of the community structure of real networks
[16,17], such as the distribution of community sizes, of node
memberships, and of community degrees. We now investigate
these properties anew by modeling three social networks:
Two coauthorship networks obtained from the arXiv circa
2005 [28] and from MathSciNet circa 2008 [29], as well as
the email exchange network of Enron [30]. We detect their
community structure with five different algorithms: A link
clustering algorithm [31] (LCA), a greedy clique expansion
algorithm [32] (GCE), the order statistics local optimization
method [33] (OSLOM), a greedy modularity optimization of
line-graphs algorithm [34] (LG), and a modified version of the
classical clique percolation algorithm [28,35] (CCPA). This
provides us with a total of 15 systems from which we have
selected 5 representative examples: arXiv as described by
both the CCPA and LCA, Enron as described by the GCE
and OSLOM algorithms, and MathSciNet as described by
the GCE algorithm. Note that three of the above algorithms
(LCA, LG, CCPA) identify link partitions, while the other two
directly find overlapping node communities. We translate link
partitions into node communities to analyze every algorithm
on a common basis, where the true community of a link is
unknown.

We model a real network by estimating a value for the tuple
of parameters (p̂,q̂,r̂). The details of the parameter estimation
procedure are gathered in Appendix B. In a nutshell, we use
the community structure of the real network to first estimate p
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FIG. 3. Reproduction of the global statistics of the community structure of real networks by SPA+. We detect the community structure with
standard algorithms and then fit SPA+ to the global statistics of the resulting network–overlapping community structure pair (see Appendix B
for details). The networks, community detection algorithms and parameters (in square brackets) are the following: (a) arXiv with CCPA
[0.60,0.58,4.74], (b) arXiv with LCA [0.61,0.16,0.76], (c) Enron with LG [0.25,0.18,1.59], (d) Enrom with OSLOM [0.20,0.85,2.2], and
(e) MathSciNet with GCE [0.07,0.75,0.74]. Empirical complementary cumulative distribution functions (CCDFs) are shown using closed
symbols. The solid curves are obtained by averaging the corresponding quantities over 200 realizations of SPA+. The initial condition of each
simulation contains between N/100 and N/10 disconnected nodes, and the simulation is stopped when the network reaches its final sizes of
N = 30 561 nodes for arXiv [(a) and (b)], N = 36 692 nodes for Enron [(c) and (d)], and N = 391 529 nodes for MathSci (e). All reproductions
are realized with s = 1.

and q (yielding p̂ and q̂). We then obtain an estimate r̂ of r by
fitting the model of Sec. II to the internal degree distributions
of each community. The final number of nodes N and the basic
community size s are both fixed by the empirical data set. N

is trivially the number of nodes in the real network, and we
select s = 1 in all cases, because it leads to networks with
more than one component, a feature of the empirical data sets
listed above.

The SPA+ model is, in some sense, minimal. One parameter
controls the amount of overlap (q), one parameter controls
the distribution of community sizes (p), and one parameter
controls the density of these communities (r).

A. Global statistics

In Fig. 3 we compare the statistical properties of SPA+
networks with their empirical counterparts. In this respect,
the new contribution of the present study is the global degree
distribution: SPA models the distribution of community sizes
and node memberships, while the growth mechanism of Sec. II
models the degree distribution within each community. The
degree distribution of the network is an emerging property
of the SPA+ model, since it is not modeled directly. It is
necessarily fat tailed, because it arises from the convolution of
two fat-tailed distributions (memberships and sizes) [17]. The
parameter r [and thus the local model of Sec. II] controls the
speed of the decay of the degree distribution through its effect
on the relation between community size and average degree.

Figure 3 shows that SPA+ can reproduce the degree
distribution of the real data set, if the overlapping communities
decomposition of the network is in line with our modeling
hypotheses. That is, SPA+ can generate degree distributions
with the correct shape only if the detected community
structure is heterogeneous. By heterogeneous, we mean that
the distributions of community sizes and node memberships
are either power laws or power laws with an exponential
cutoff. As long as we consider such systems, we can fit both

the size and membership distribution robustly [17,36] [see
Figs. 3(a)–3(c)]. Due to the nature of our model, the quality
of the predicted degree distribution is inherently connected to
the quality of the predicted size and membership distributions.
SPA+ does poorly in two cases [see Figs. 3(d)–3(e)], and since
the membership distributions are well represented in all cases
studied, the culprits lay mainly with the size distributions. In
Fig. 3(d), we diverge from the data at low community sizes
and fail to account for an extremely large community (of
size n = 1384). In Fig. 3(e), the empirical size distribution
decays asymptotically slower than the behavior accessible
to the model, i.e., γN � 2 [Eq. (11)]. We also note that the
statistics of real data sets do contain kinks and bumps (real or
spurious) that cannot be reproduced by simple growth models
like SPA+, although the average behavior can be well captured
[see Figs. 3(a) and 3(c)].

B. Local statistics

In Sec. II, we have established that, according to our model,
the internal degree distributions of growing communities
could display three different regimes: A highly homogeneous
regime where every node is nearly of the maximal degree, a
homogeneous regime where the bulk of the nodes has similar
degrees, and a heterogeneous regime where the majority of
the nodes have low degrees (while a few nodes are highly
connected). These regimes can be observed in a number
real networks, once their community structure is uncovered
by algorithms designed for the detection of overlapping
communities. In Fig. 4, we present the three regimes in
the arXiv coauthorship network, as detected by the CCPA
algorithm. The figure illustrates two important facts. On the
one hand, it puts the internal model of Sec. II on firmer
empirical ground—it confirms that the evolution of the internal
degree distribution of arXiv is captured by the model. On the
other hand, it emphasizes that the internal degree distributions
of the uncovered communities can be quite distinct from
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FIG. 4. Average internal degree distribution in arXiv with over-
lapping communities detected by CCPA. The results are averaged
over communities of sizes (a) n = 7 [646 communities], (b) n =
10, . . . ,15 [340 communities], and (c) n = 30, . . . ,200 [26 commu-
nities]. We account for the relative contribution of each commu-
nity size by plotting the averaged probability P (k|n ∈ [na,nb]) =∑nb

n=na
pk(n)ω(na)/	ab, where ω(n) is the number of communities

of size n in the network and 	ab = ∑nb

n=na
ω(na). The solid line

shows the prediction of the internal model Sec. II), with r = 10 (a),
r = 7 (b), and r = 2 (c). The analytical prediction is averaged with
the weights {ω(na)} of the real network–community structure pair.
The important qualitative features of each regime is captured by the
model: The distribution becomes increasingly heterogeneous with
growing values of n and the peak of P (k|n) moves towards lower
degrees. Note that the empirical data cannot peak at k = 1, since the
CCPA detects communities by combining cliques of size � 3 [35].

random Erdős-Rényi graphs, as it is often implicitly assumed.
This further supports the recent shift towards principled
community detection algorithms which explicitly allow for
arbitrary degree distributions within communities [7,37,38].
The results of Fig. 4 must, however, be taken with some
caution. We have not performed an exhaustive search; instead
we have selected a network well reproduced by SPA+ (see
Fig. 3) and have averaged the distribution not only over all
communities of the same size n but also over many community
sizes. This procedure was necessary since there is only a
handful of communities at any given size n 	 1. A more
thorough study of real (large) networks will be able to tell us
just how prevalent the separation in three regimes actually is.

C. Correlations between the global community structure
and the local structure of communities

An additional property is also captured by SPA+. The
results shown in Fig. 5 investigate correlations between
the organization within communities and the overarching
community structure. We obtain the relation between the
average internal degree of a node within communities of size
n (i.e., the “social involvement” of an individual within a
group), and its membership number m, in empirical data sets
and the corresponding simulated networks. We quantify this
relationship by the ratio 〈k(n,m)〉/〈k(n,1)〉.

Generally, all algorithms except GCE find that nodes active
in the community structure (high number m of memberships)
tend to be also active within communities (high average
internal degree 〈k〉). Even though agreement is not perfect, our

FIG. 5. Correlations among node memberships m, community
sizes n, and average internal degree 〈k(n,m)〉 measured in relation
to 〈k(n,1)〉. Results are shown for [(a)–(d)] arXiv, [(e)–(h)] Enron,
and [(i) and (j)] MathSciNet using [(a) and (b)] CCPA, [(c) and (d)]
LCA, [(e) and (f)] LG, [(g) and (h)] OSLOM, and [(i) and (j)] GCE.
Real networks appears on the left-hand side [(a), (c), (e), (g), and
(i)] and we show a single realization of an equivalent SPA+ network
on the right-hand side [(b), (d), (f), (h), and (j)], see the caption of
Fig. 3 for the parameters. Black squares indicate missing data. Note
that, without the addition of the link creation mechanism of Sec. II,
the SPA model does not include any correlations, even when one
considers a given density function of community sizes (i.e., in SPA,
〈k(n,m)〉 = 〈k(n,1)〉 on average, for all n and m).
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FIG. 6. Dunbar’s number in empirical data. [(a)–(c)] Average number of connections 〈k(n)〉 for individuals within a community of size n.
[(d)–(f)] Average density 〈ρ(n)〉 = 〈k〉/(n − 1) of communities of size n. The networks are [(a) and (d)] arXiv, [(b) and (e)] Enron, and [(c)
and (f)] MathSciNet. A line 〈ρ(n)〉 ∝ n−1 is traced to guide the eye. The uncorrected estimates of r̂ (see Appendix B 3d) using the LSE are,
from bottom to top, (arXiv) r̂ = 2.18,2.61,2.89,5.20,5.99, (Enron) r̂ = 1.69,2.27,4.97,7.96, and (MathSci) r̂ = 0.77,1.33,1.47,2.68.

model reproduces this effect through age-memberships and
age-degree correlations. While the available data do not tell
whether these correlations are indeed age related, it is natural
to assume that authors or employees who have been active for
a longer time the arXiv or a company tend to have both more
social groups and more relations within them. To the best of
our knowledge, these correlations are not considered in other
growth models but naturally emerge here from our link creation
mechanism. In essence, this means that individuals acting as
hubs in the community structure (many memberships) tend to
act also as hubs within the structure of their communities.

These remarks bear some relation to the hub dichotomy,
first introduced in the literature of protein-protein interaction
networks [39–41], namely the distinction between date hubs
(nodes with many links in different communities) and party
hubs (nodes with many links from a given community). What
we see in social networks is that there also exists a different and
important class of hubs with many links from many different
communities. This stresses anew the importance of nodes that
act as social bridges by connecting different communities
[42,43]. While these hubs have long been recognized as
important [44], they are now also a focus of immunization
methods on networks [45,46].

D. Some implications of Dunbar’s number

In Sec. II C, we have discussed the theoretical relation
between our model for the internal structure of communities
and a cognitive limit in an individual’s social relationships
known as Dunbar’s number. In our model, this limit stems from

the ratio of effort put into building new connections ρr and in
increasing group size ρ�, which constraints the average internal
degree in large groups. In Fig. 6, we observe a similar behavior
in our social network data sets. The empirical results are also
compared with our model using the least-squares estimator
(see Appendix B for details).

In the context of overlapping communities, we wish to
emphasize three important caveats on the connection between
our work and recent studies on Dunbar’s number. First,
most work on bounds of active relationships in different
communities is concerned with nested social levels [47,48].
While our communities overlap, they are not in any way nested.
Second, on a related issue, if we wish to interpret different
communities as a node’s family, friends, or workplace, we
should allow nodes to have different involvement r in different
communities. Third, if on the other hand we wish to interpret
an entire network as one level of activity, Dunbar’s number
then implies a bound on a node’s total degree. While both
the internal average degree per community and the number
of communities per node are bounded, we have shown
strong correlations between these two quantities. Actually,
one can easily infer from the algorithmic description of the
model (see Sec. III C) that the average degree converges to
(1 − p)(1 + r)/q and is thus also bounded.

Finally, the observed plateau in internal degree implies a
vanishing average density 〈ρ(n)〉, i.e., fraction of potential
links that exist, for large communities. Regardless of the nature
of the network, of the community detection algorithm and of
the parameters (p,q,r), the simple existence of the plateau
implies that community density vanishes as 〈ρ(n)〉 ∼ n−1. This
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is obviously true in our model and observed for our data sets in
Fig. 6. Only the community structure of Enron as detected by
LG stands out from the prediction. Further empirical studies
would, however, be required to support this finding.

V. CONCLUSION

We have introduced a simple model for the growth of a
community and focused on its connection with a model that
describes the growth of overlapping community structures
(SPA). In so doing, we have showed that the local model is
consistent with empirical observations (vanishing density and
varying heterogeneity in communities). We have then explored
a number of properties of the combined model (SPA+)
and investigated the same properties in empirical networks.
These properties came in three categories: global statistics
(distributions of sizes, memberships and degrees), correlations
between a node’s activities within communities and within the
overarching community structure, and the vanishing density
(as ∼ n−1) of large communities. In all cases, we have found
that SPA+ behaves much like its empirical counterpart. We
have also shown that our model is consistent with the theory
of Dunbar’s number, both within communities and at the level
of the complete network. The presentation of shortcomings
and successes of the SPA+ principle (in terms of predictive
value) shows the importance and the need for further study in
stochastic growth models.
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APPENDIX A: PELOTON DYNAMICS

This Appendix presents our preliminary analysis of the
results of Fig. 1 which are reminiscent of the peloton dynamics
studied in Ref. [17]. It is a finite-size effect related to the leaders
dynamics; groups of highly connected individuals result in a
clearly identifiable bulge in the degree distribution. Averaging
over multiple realizations of the growth of a community
leads to the creation of a peloton where one is significantly
more likely to find entities than predicted by the asymptotic
distribution. Because the same peloton evolves with growing
n, it is expected to retain its shape across a large range of
community sizes. The simplest scaling ansatz takes the form

pk(n; r) 
 k−α(r) G(k/nβ(r)) for n 	 1, (A1)

where G(x) is a universal function. The construction is clear:
k−α takes care of the power-law decreases and the scaled
variable k/nβ aligns all curves together. This exercise is carried
out in Fig. 7 for the case r = 49. The procedure is inspired by
Ref. [49] and is called quite appropriately data collapse.

FIG. 7. Scaling analysis of the internal degree distributions of
the model of Sec. II [numerical solutions of Eq. (3) with r = 49].
(a) The distributions pk(n; r) of Fig. 1(f) on a log-log scale for n =
1000,1300,1700,2000; (b) the scaled distributions pk(n; r) × kα(r)

with α(r) = 1.87; (c) the scaled distributions as a function of the
scaled variable k/nβ(r) with β(r) = 0.285.

Although we have not investigated the exact form of
G(x), its general behavior is characteristic of a number of
self-organized critical systems observed thus far (Ref. [49]):
A flat curve sharply rising to a well-defined maximum
followed by a rapid exponential decrease as a function of the
rescaled variable. The scaling information is captured by the
exponents α and β. They can be extracted numerically from the
positions kb(n; r) of the maxima of the bulges of the individual
probability distributions, together with the values of the
probabilities pkb

at these maxima [see Fig. 7(a)] and the scaling
ansatz of Eq. (A1). The search for the best scaling exponents
α(r) and β(r) is done separately under the assumption that
they are independent. This is coherent with our scaling ansatz.
In practice, one obtains α(r) from the asymptotic slope of
the distributions (i.e., the initial dependence on k before the
peloton) and β(r) from a power-law fit nβ(r) to kb(n; r) versus
n. Our initial findings, based only on two values of r , reveal
that the exponents have only a mild dependence on r and
in particular that β seems to be close to 0.3. In view of our
small data sets, it is not expected that the numerical values
of (α,β) = (1.87,0.285) used in Fig. 7 are the absolute best
scaling exponents. A complete analytical justification of our
scaling ansatz and a derivation of the expected values of
the exponents are still lacking. However, the mere existence
of a scaling behavior provides useful estimates of how the
degrees of the leaders scale with network size. This is a crucial
information when one is interested in the statistics of the
extremes, both in theory [50] and application [51]. This calls
for a more extensive study beyond the scope of the present
contribution.
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APPENDIX B: PARAMETER ESTIMATION

This Appendix presents our parameter estimation method.
The problem is simply stated: We are given an empirical
network of N nodes and an assignment of its nodes in
g overlapping communities. A number of statistics are
associated to the network-communities pair: the node mem-
bership distribution, the community size distribution, and the
internal degree distribution of each communities. Our task is
to identify the parameters (p,q,r,N,s) which will generate
synthetic network-communities pairs whose statistics are as
close as possible to the statistics of the empirical data set.
Because the final network size N and basic community
size s are both automatically determined by the empirical
data set, this amounts to identifying the optimal value of
three free parameters: p ∈ [0,1] (size of communities), q ∈
[0,1] (memberships of nodes), and r ∈ [0,∞) (density of
communities).

One could be tempted to fit these three free parameters
simultaneously, especially since the algorithm of Sec. III B
integrates the local growth model (parametrized by r) and
SPA (parametrized by p,q). Three observations indicate that
this is not necessary. First, it is clear that q only determines the
number of communities to which an average node belongs, a
quantity that has no bearing on the internal connectivity of a
community. We can therefore fit this parameter independently
of r . Second, the introduction of ε [see Eq. (20)] allows us to
treat p and r independently, even though both parameters are
related to the rate of growth of communities. That is, we can
always obtain a distribution of community sizes of exponent
γS(p,s) and simultaneously generate communities of average
asymptotic degree 〈k〉 = 2(1 + r). Only the value of ε—a
nonphysical parameter—changes from one set of parameters
to the other. Third, the coupling between p and q is already
understood: Changes in the value of p mostly affect the size
distribution, and changes in the value of q mostly affect the
membership distribution [16,17]. We use the word “mostly”
because these parameters are independent if s = 1 (always the
case in this study), but there exists a weak coupling if s > 1;
the interplay between the two parameters is then prescribed by
Eqs. (11) and (12). In what follows, we will explain how to fit
p, q, and r independently from one another, starting with p

and q. Note that all estimated values of the parameters will be
affixed with a caret: p̂, q̂, and r̂ .

1. Community structure estimators

The estimates p̂ and q̂ are obtained directly from the
memberships and size distributions of the empirical data.
We first assume that these distributions are pure power laws
and use a systematic method to extract their exponents by
likelihood maximization [36]. We then find a first set of
values for p̂0 and q̂0 by inverting Eqs. (11) and (12). Because
neither the empirical nor the modeled distribution are pure
power laws, these values act as first approximations; small
perturbations (� � 0.1) to p̂0 and q̂0 can increase the quality
of the fit. We select the estimates p̂ and q̂ that minimize
the difference between the CCDF of the empirical and the
simulated distributions.

2. Density estimators

There exist many methods to fit r to the empirical
data. We will focus on two simple ones. The first is a
straightforward least-squares estimator (LSE); it compares
the distance between the observed average degree 〈k(n)〉 in
groups of size n and the analytical prediction of Eq. (6) for
〈k(n; r)〉 = 2L(n; r)/n. By minimizing the distance over all
r , one obtains the estimate r̂ . The other method is a simple
likelihood maximization (MLE) which relies on the results
of the rate equations of Sec. II A, i.e., on the internal degree
distribution, parametrized by the community size n. Let {ki,�}
be the sequence of internal degrees of a real network, where
i refers to node i and � is the index of a community of node
i. Assuming uncorrelated communities, the log-likelihood L
that r was used to generate the sequence {ki,�} is then

L(r|{ki,�}) =
∑

�

∑
i∈�

log[p(ki,�|n�,r)], (B1)

where p(ki,�|n�,r) is the probability of finding a node of
degree ki,� in a community of size n�, if the growth ratio equals
r . This probability is obtained by integrating Eq. (3), with the
initial condition �p(t0) = (p0 = 0,p1 = 2/3,p2 = 1/3). We
select the estimate r̂ that maximizes Eq. (B1).

3. Bias of the density estimators

There exists three sources of bias for r̂: the distribution
of community sizes, the redundant memberships discussed in
Sec. III D, and the presence of overlap in empirical networks.
In this section, we delineate these effects and introduce a
simple correction mask that circumvents the bias. We use
the following procedure to quantify this bias: We construct
a number of SPA+ networks and obtain clean matrices of
internal degrees {ki,�}. By “clean,” we mean that we do not
collapse redundant memberships into single memberships (see
Sec. III D), and we do not take overlap into account. Then, we
gradually introduce effects which are present in real systems
and establish how each effect influences the estimate r̂ . The
numerical results of this investigation are displayed in Fig. 8
and Tables I and II.

a. Effect of community size

The estimators are first calibrated on pure internal struc-
tures [Figs. 8(a) and 8(b)]. In this regime, we do not transform
the matrices of internal degrees. It corresponds to the case
where communities are directly generated by the model
of Sec. II. The quality of the estimate r̂ depends on p,
through its effect on the distribution of community sizes.
As p increases, the inference task becomes harder, because
communities are smaller and mostly live in the fully connected
regime, where there are few discriminating features (large
ranges of r yield similar internal degree distributions). The
LSE performs best when p ≈ 0: SPA+ generates only a
few extremely large communities, and the internal degree
within these communities falls neatly on the plateau of 〈k(n)〉.
The MLE performs relatively well across a wide range of
values of p, but we nonetheless observe a positive bias when
0.05 < p < 0.75: For these values of p, SPA+ generates
many communities in the intermediate size range, where the
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FIG. 8. Accuracy of the least-squares [(a), (c), and (e)] and
maximum log-likelihood [(b), (d), and (f)] estimators of r , in small
networks generated by SPA+ with s = 1, N = 10 000, and r = 2.
Each sub-figures display the ratios of the estimates r̂ to the value
of r used to create the data, for all pairs of (p,q), in different test
cases (see text of Sec. B 3 d for details). The cases are as follows:
[(a) and (b)] estimators computed using the pure internal degree
distributions, [(c) and (d)] estimators computed using the collapsed
internal degree distributions, and [(e) and (f)] estimators computed
using the collapsed and overlapping internal degree distributions.
A perfect match is color coded in white, whereas under- (over-)
estimates appear in shades of blue (yellow). Numerical experiments
yield qualitatively similar figures for different values of N and r .
However, the magnitude of the bias is a function of N and of r (see
Tables I and II).

mean-field description of the local model is known to be
numerically inaccurate (see Fig. 1). We also note that there
is a noticeable variation of the ratio r̂/r for fixed values of
p in the case of the LSE. This variation is due to changes in
the maximum community size: If q is large, then the network
quickly reaches the target number of nodes, and the largest
communities fall in the linear regime of 〈k(n)〉.

b. Effect of redundant memberships

The next case of interest is that of the collapsed internal
structures [Figs. 8(c) and 8(d)]. It is obtained by merging
redundant memberships into single entities and then removing
the resulting self-loops and parallel links (see Sec. III D). As
a result of this procedure, communities that contain redundant
copies of a same node decrease both in size and number of
links. This leads to denser communities on average. These
effects are only significant at very low values of p and q,
i.e., for parameters that yield highly redundant communities.

TABLE I. Mean relative bias r̂/r in networks of N = 5 000 nodes.

Case LSE MLE

r 2 4 8 2 4 8

Pure 0.75 0.78 0.84 1.01 0.99 1.01
Collapsed 0.80 0.81 0.86 1.09 1.05 1.05
Collapsed and overlappinga 2.02 1.50 1.23 1.11 1.03 1.05

aWe excluded some points from the average 〈r̂/r〉, because the
estimates r̂ lied outside of the search ranges r̂ ∈ [0,50] (LSE)
r̂ ∈ [0,12] (MLE) for r = 4 and r = 8. The excluded points are (LSE)
those who satisfy p + q < 0.15 [a small lower right triangle in the
(p,q) space] and (MLE) those who satisfy p < 0.2 or q < 0.2 [left
or bottom edge in the (p,q) space].

Redundant memberships have been shown to account for
a vanishingly small fraction of all memberships when the
number of communities is large [17]. However, our numerical
experiments show that, for the LSE, the effects of this source
of bias do not decrease with system size for extreme values
of (p,q)—in fact, they increase slightly (see Tables I and
II). This is because the effect of redundant memberships
is more prominent in large communities (the most valuable
communities for estimating r̂), which are more frequent when
the network is larger.

c. Effect of overlap

A significant bias is introduced when one does not assign
links to specific communities. This is what we call the
collapsed and overlapping structures, where links increase
the density of all the communities to which they belong rather
than a single one. This final case encompasses all the biases
and makes use of the information that should be recovered by
means of a perfect community detection algorithm. As shown
by our results, the bias is more pronounced in the significantly
overlapping regime p < q, where communities grow slower
than the node reservoir. Again, our numerical experiment show
that the effects of this source of bias increase slightly with
community size (see Tables I and II).

d. Bias removal mask

Since most overlapping community detection algorithms
do not explicitly assign links, we are often placed in the
“collapsed and overlapping” case. We use the following
modeling procedure to account for the bias: (i) obtain the
parameters (p̂,q̂) that best model the community structure,
(ii) compute an initial estimate r̂0 of the strength of the

TABLE II. Mean relative bias r̂/r in networks of N = 10 000
nodes.

Case LSE MLE

r 2 4 8 2 4 8

Pure 0.77 0.80 0.85 1.01 0.99 1.00
Collapsed 0.82 0.83 0.88 1.09 1.06 1.04
Collapsed and overlappinga 2.30 1.65 1.32 1.12 1.05 1.04

aSee note a of Table I.
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internal connectivity of communities, and (iii) finally obtain
a corrected estimate r̂ , as r̂ = r̂0/M(p̂,q̂; N ). The correction
M(p̂,q̂; N ) is the value of the bias removal mask for networks
of N nodes at point (p̂,q̂). Since the mask depends on the
network size N (see Tables I and II), it is computed for each
network separately. In practice, we obtain M(p̂,q̂; N ) by first
generating a number of SPA+ networks of N nodes with fixed
parameters (p̂,q̂,r = rM ). We have found that the final results

are almost independent on the precise value of rM ; we have
used rM = 2 but rM = r̂0 is an equally good choice. We then
extract r̂M from the collapsed and overlapping communities
(averaged over the number of SPA+ networks realizations)
and take M(p̂,q̂; N ) = r̂M/rM . This bias removal mask
allows us to generate networks with mean internal degrees on
a 〈k(n)〉 curve that resemble the empirical data. We use the
MLE because it is more stable with respect to changes in rM .
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