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Résumé 
Les travaux de cette thèse portent sur la planification de la production multi-produits, 

multi-périodes avec des incertitudes de la qualité de la matière première et ,de la demande. 

Un modèle de programmation stochastique à deux étapes avec recours est tout d'abord 

proposé pour la prise en compte de la non-homogénéité d~ la _ matière première, et par 

conséquent, de l'aspect aléatoire des rendements de processus. Ces derniers sont modélisés 

sous fonne de scénarios décrits par une distribution de probabilité stationnaire. La 

méthodologie adoptée est basée sur la méthode d'approximation par moyenne 

d'échantillonnage. L'approche est appliquée pour planifier la production dans tine unité de 

sciage de bois et le modèle stochastique est validé par simulation de Monte Carlo. Les 

résultats numériques obtenus dans le cas d'une scierie de capacité moyenne montrent la 

viabilité de notre modèle stochastique, en comparaison au modèle équivalent déterministe. 

Ensuite, pour répondre aux préoccupations -du preneur de décision en matière de robustesse, 

nous proposons deuxmodèl.es d'optimisation robuste _ utilisant chacun une mesure de 

variabilité du niveau de service différente. Un cadre de décision est développé pour choisir 

parmi les deux modèles d'optimisation robuste, en tenant compte du niveau du risque jugé 

acceptable q"uand à la variabilité du niveau de service. La supériorité de l'approche 

d'optimisation robuste, par rapport à la programmation stochastique, est confirmée dans le 

cas d'une usine de sciage de bois. Finalement, nous proposons un modèle de 

programmation stochastique qui tient compte à la fois du caractère aléatoire de la demande 

- ,et du rendement. L'incertitude de la demande est modélisée par un processus stochastique 

dynamique qui est représenté par un arbre de scénarios. -Des scénarios de rendement sont 

ensuite 'intégrés dans cha-que nœud de l'arbre de scénarios de la demande, constituant ainsi 

.un arbre hybride de scénarios. -Nous proposons un -modèle de programmation stochastique 

multi-étapes -qui utilise un recours complet pour les scénarios de la demande .et un recours 

simple pour les scénarios du rendement. Ce modèle est également appliqué au cas industriel 

d'une scierie et les résultats numériques obtenus montrent la supériorité du modèle 

stochastique multi- étapes, ' en comparaison avec le modèle équivalent déterministe et le 

modèle stochastique à deux étapes. 



Abstract 
In this thesis, we study a multi-product, multi-period (MPMP) production planning problem 

with uncertainty in the quality of ra~ materials a~d consequently in processes yields, as 

weIl as uncertainty in products demands. We first consider the randomness of processes 

yields. "A two-stage stochastic pro gram with recourse is proposed to address the MPMP 

production planning problem with random yield. The random yields are modeled as 

scenarios with stationary probability distributions. The solution methodology is based on 

the sample average approximation " scheme. The propo~ed two-stage stochasti< model is 

applied as a novel approach for sawmiIl production planning. The stochastic sawmill 

production planning " model is vatidated through Monte Carlo simulation. The 

computation"al results for a medium capacity sawmill highlight the significance of using the 

stochastic model as a viable tool for production planning instead " of the deterministic 

model. Next, we study the robustness of customer service level in the MPMP production 

planning problem with random yield. Wepropose two robust optimization (RO) models 

with different service level variability measures. A decision framework is provided to select 

among the two RO models based on the decision maker's risk aversion level about the 

variability of service level for different yield scenarios. The superiority of robust 

optimization approach in generating more robust production plans, compared with 

stochastic programming, is confirmed through implemeiltation of the proposed RO models 

for a realistic scale sawmill. Finally, we study the random demand as another uncertain 

parameter, in addition to the random yield. Demand uncertainty is modeled as a dynamic 

stochastic data process during the planning horizon which is presented as a scenario tree. 

Yield scenarios are then integrated in each node of the demand scenario tree, constituting a 

hybrid scenario tree. Based on the hybrid scenario tree for the uncertain yield and demand, 

a multi;"sÜlge stochastic programming model is proposed which is full recourse for demand 

scenarios and simple recourse for yield scenarios. We conduct a case study with respect to a 

realistic-scale sawmill. Numerical results indicate that the solution to the multi-stage model 

is far superior to the solution to the mean-value deterministic and the two-stage stochastic 

models. 
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1.1. Introduction 

Production planning, i.e., deciding the optimal production level of products by different 

processes in order to maximize customer demand fulfillment in the presence of limited 

resources, plays an important role in operations management in manufacturinR. In the real 

world, there are many forms of uncertainty, presented by random events, that affects 

production processes. Ho (1989) categorizes them into two groups: , 1) environmental 

uncertainty and 2) system uncertainty. Environmental uncertainty includes uncertainties 

beyond the production process, such as raw material quality variations and dem~nd 

fluctuations. System uncertainty is related to uncertainties within the production process, 

such as production lead time uncertainty and random machines failures. Uncertainties make 

the outputs of the production process be different from the planned production quantities. 

As a consequent, the realized inventory or backorder sizes would be different from the 

planned quantities. 

Customer orientation is the center of attention in many manufacturing ynvironments, 

especially those who are active in international markets. Promising a high customer service 

level that maintains robust in the presence of un~ertainties is a crucial component of 

competitiveness in such markets. Due to the potential significance of uncertain parameters 

on the accuracy and robustness of production plans, appropriate mathematical 

programming models that accounts for the uncertainty are required. Such production 

planning models should be designed to allow the decision maker to adopt a production plan 

that can respond to uncertain events as they unfold during the time. Moreover, the proper 

types of adjustments (recou~se actions) that are available to the decision maker as a 

response to different scenarios of the uncertain parameters, should also be defined in these 

models. 

In 'this chapter, we first describe the problem we are addressing in this thesis. As sawmill 

production planning is considered as a case study, a brief description of sawmills processes 

and characteristics is also' presented. A comprehensive review of. literature on the existing 

approaches to address the production planning models with uncertain parameters, ' 

optimization models with random parameters, as weIl as the existing approaches for 
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sawmill production planning are provided in the following sections. The outline of the 

thesis is given at the end of this chapter. 

1.2. Problem description 

To qlotivate our research, consider a multi-period, multi-product (MPMP) production 

planning problem in a manufacturing environment with the following characteristics. A 

mix of products are ' produced simultaneously (co-production) through alternative processes, 

from several classes of raw materials. Raw materials classification is performed based on 

different characteristic attributes. Moreover, the raw materials in each class own non-

homogeneous and variable characteristics (as in the case where the raw materials are from 

natural resources). As a consequent, the quantity of products that can be produced by each 

process (process yield) becomes a random variable. Furthermore, the product demand 

during the planning horizon is also characterized as a random non-stationary event. In this 

production planning problem, in order to fulfill the products demands, we are looking for 

. the number of times each process should be run in each period, as weIl as the quantity of 

raw materials in each class that should be consumed by each process. The part of the 

'demand that cannot be fulfilled on time will be postponed to the following periodes) by 

considering a unit backorder cost. The 'objective is to minimize the raw material 

consumption cost, as weIl as products inventory and backorder costs, subject to machine 

capacities and materials inventory. 

The problem we are addressing can be considered as the combination of several classical 

production planning problems in the literature. Product mix problem and a special case of 

process selection problem (simultaneous production of multiple products by a single 

activity) (see Johnson and Montgomery (1974); Sipper et al. (1997») are its two main 

building blocks. Linear programming (LP) models are the traditional tools for addressing . 

such production planning problems. The random processes yields and products demands 

can be represented ,as the random coefficients of the constraints matrix and the random 

right-hand-side vector in such LP models, respectively. As the LP models include the 

assumption of deterministic parameters, they are not appropriate to generate robust 

production plans in the presence of random parameters. In other' words, if the production 

plan is determined by a LP model where the expected values of random yield and demand 
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a risk that the demand is not fulfiHed with the right products ' and the backorder size is 

increased. As a consequent, customer service , level, which is defined as the proportion of 

demand that can be fulfilled on time, will be decreased. Moreover, in service sensitive 

manufacturing environments, where the service level promised to the c.ustomer should be 

maintained as much as possible, determining a robust production plan with minimum 

backorder . size (service level) variability in the presence of random yield and demand is 

also very crucial. Finally, in a planning problem, where the uncertain parameters have a 

non-stationary behavior during the time (e.g . . random demand) the decisions should be 

conform to the availability of rando~ data during th~ time. 

'One of the applications of the problem we are addressing is sa\vmill production planning, 

while considering non-homogeneous characteristics of logs and uncertain lumber demand. 

As sawmill production planning is considered as the case study in this thesis, a brief 

description of sawmills processes and characteristics is presented in the following. 

Case study: Sawmill production planning 

There are a number of processes that occur at a sawmill: log sorting, sawing, drying, 

planing and grading (finishing). Raw materials in sawmills are the logs which are 

transported from different districts of forest after bucking the felled trees. The finished and 

graded lumbers (products) are then transported to the domestic and international markets. 

Figure 1.1 illustrates the typical processes. 

Figure i.l - Illustration ofsawmills proces.ses (after Ronnqvist, 2003) 
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As a case study in this thesis, we consider the sawing units in sawmills. In the sawing units, 

logs are classified according to sorne attributes namely: diameter class, species, length, 

taper, etc. Logs are broken . down into different dimensions of lumbers by means of 

different cutting patterns. See figure 1.2 for three different cutting patterns. Each cutting 

pattern is a combination of activities that are run on a set of machines. From each log, 

several pieces of sawn lumber (e.g. 2(in)x4(in)x8(ft),. 2(in)x4(in)xl0(ft), 

2(in)x 6(in) x 16(ft), ... ) are produced depending on the cutting pattern: The type of lumbers 

and their quantities produced by each cutting pattern depend on the quality of input logs. 

The characteristics of logs in each class are non-homogeneous and variable (in terms of 

.' diameter, number of knots, internaI defects, etc.) due to naturai and uncertain conditions 

that occur during the growth period of trees in the forest. . Regarding that in most of 

sawmills (namely, Quebec sawmills) the logs are not scanned through an X-ray scanner 

before planning, the exact quantity of lumbers that can be produced by each cutting pattern 

(process yield) cannot be determined in priori. 

Figure 1.2 - Cutting patterns in s'awmills 

Lumber demand in the market is another uncertain parameter which ~as a non-stationary 

behavior during the planning horizon. In the sawmill production planning problem, we are 

looking for the optimal combination of log classes and cutting patterns that best fit against 

lumber demanà. The objective is to minimize log consumption cost, as weIl as products 

inventory and backorder costs, regarding log inventory and machine capacities. Regarding ' 

that the lumber market is very competitive, the need for a robustproduction plan with 

maximum service ·level (minimum backorder size), as weil as minimum service level 

variability, in the presence ofuncertain yield and demand, is very crucial in sawmills. 
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.1.3. Literature review 

In this section, a review of the existing approaches in the literature to address production 

planning in the uncertain environments is p·rovided . . Moreover, a review of approaches to 

address optimization models with random parameters is also . presented. Finally, sawmill 

production planning approaches already proposed in the literature are reviewed. 

1.3.1. Literature review on production planning in the uncertain 
manufac'turing envi~onments . 

Mula et al. (2006) provided the existing approaches proposed in the literature (from 1983 to 

2004) to address different uncertain . production planning problems, including aggregate 

planning, hierarchical production planning, material requirement planning, etc. In this 

section, we focus on the existing literature on the production planning problems similar the 

problem we are addressing. 

Thompson and Davis (1990) proposed an integrated approach for modelinguncertainty in 

selling price, cost, demand, and capacity in aggregate production planning problems. 

Integrated modeling approach consists of a Monte Carlo simulation model randomly 

. sampling and obtaining numerical values for coefficients and bounds in a mathematical 

program. The optimal solution for the mathematical program is then determined via the 

optimization algorithms. This process is repeated until a very large number of mathematical 

·programs have been specified and solved. The resl!lting collection of optimal sol~tions is 

then statistically analyzed to construct empirical distributions describing global optimality. 

It would be worth mentioning that the integrated modeling approach is a "wait and see" 

solution for stochastic production planning, Le. thisapproach can solve the problem based 

on the realization of random parameters. 

Stochastic programming (Dantzig, 1955; Kall and Wallace, 1994; Birge and Louveaux 

1997; Kall and Mayer, 2005) has seen several successful applications in uncertain 

production planning. Escudero et al. (1993) proposed a multi-stage stochastic programming 

(MSP) model for addressing a multi-product, multi-period production planning problem 

with random demand. A scenario modeling method was proposed for solving the MSP 

model, where solutions are obtained for each scenario and then the individual scenario 
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solutions are aggregated to yield a non-anticipative or . implementable policy. Sox and 

M~ckstadt (1996) provided a ·. formulation and solution algorithm for the finite-horizon 

capacitated production planning problem with random demand for multiple products. Using 

Lagrangian relaxation, they developed a sub gradient optimization algorithm to solve the 

problem . . Bakir and Byme (1998) developed a two:..stage recourse stochastic· LP model to 

address a multi-product, multi-period production planning problem with stochastic demand. 

The normally distributèd stochastic demarid is approximated by a discrete distribution. Alfieri 

and Brandimarte (2005) reviewed multi-stage stochastic models applied in multi-period 

production and capacity planning in the manufactudng systems. Huang K. (2005) proposed 

multi-stage stochastic programming models for production and capacity planning. 

Brandimarte (2006) proposed a multi-stage programming approach for multi-item 

capacitated lot-sizing with uncertain demand. The uncertain demand was represented as a 

scenario tree. Khor et al. (2007) proposed a two-stage stochastic programming with fixed 

. recourse and robust optimization models for capacity expansion planning in petroleum 

refinery under uncertainty. The uncertain parameters are modeled via a set of sceriarios. 

Robust optimization (Mulvey et al., 1995) is another approach that has . been applied in 

several applications in uncertain production planning. Leung and Wu (2004) proposed a 

roQ·ust optimization modelfor stochastic aggregate production planning. Wu (2006) applied 

the robust optimization approach to . uncertain production loading problems with import 

quota limits under the global supply chain management environment. Leung et al. (2007) 

developed a robust optimization model to address a ' multi-site aggregate production 

planning problem with uncertain data. Stochastic parameters are m~deled by introducing 

different scenarios which are defined for different economical growth scenarios. 

In order to deal with planning problems which involve uncertain and fuzzy . data, fuzzy 

linear programming (Rommelfanger, 1996) is proposed. Wang and Fang (2001) proposed a· 

fuzzy linear programming model to address the aggregate production planning problem 

~ith multiple objectives, where the product price,workforce level, production capacity and 

market demand are uncertain and fuzzy in nature. Fuzzy parameters are modeled as fuzzy 

intervals in trapezoidal foon based on CUITent data. An interactive method is implemented 

to find a "compromise solution" which is satisfactory for managers. 
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In this thesis, the uncertain parameters in the manufacturing environment (Le. processes 

yields and products demands) are considered as -the random events. In the following, we 

focus on the existing approaches in the literature to address optimization models including 

random parameters in their coèfficient matrix and/or right-hand-side vector. 

1.3.2. Literature review on the optimization models including random 
parameters 

In order to deal with optimization problems involving random variables in their right-hand-

side, their technological coefficients, and/or their objectives coefficients, stochastic 

programming (Dantzig, 1955; KalI and Wallace, 1994; Birge and Louveaux 1997; Kall and 

Mayer, 2005), and robust optimization (Mulvey et al., 1995) were p~oposed. In the 

following, we discuss about the general characteristics of optimization models with random 

parameters and the difficulties to solve them. 

As we are addressing a multi-period production planning problem in this thesis, we begin 

by abstracting the statement of a multi-period LP model with random parameters: 

Minimize C1X1 +c2x2+ ... +cr xr ' 

Subjectto 

All ({)x1 

~1({)Xl +~2({)X2 

==bl ({), 

==b2 ({), 

Arl ({)x1 + ... + Arr ({)xr == br ({)'. 

Xl ~0'X2 ~O' ... 'Xr ~O~ 

(1.1) 

Let A({) == (All ({),···, Arr ({)) and b({) == (bl({), ... ,br ({)) denote the random technological 

coefficients and right-hand-side vector, respectively; and decision 

X == (xl' ... , xr ) ER ni X ••• x R"r corresponds to a setting of all the decision variables. Problem 

(1.1) can also be presented as follows .. . 



Chapter 1. Global introduction and literature review 

Minimize CT x, 

Subjectto 

A({)x =bT 
({), 

x~O, 

9 

(1.2) 

~here { denotes a random vector varying over a set 8 c]Rk . We assume that a family F of 

"events", i.e.~ subset of 8 corresponding to the random parameters in model (1.2) with the 

probability distribution Pare given. Furthermore, we assume that the probability 

distribution P is independent of x. However, problem (1.2) is not weIl defined, since the 

meaning of "minimize" 'as weil ' as the constraints are not clear at ail, if we think of taking a 

decision on x before knowing the realization of {. Therefore a revision of the modeling 

process is necessary, leading to various stochastié programming problems. 

If we present the stochastic constraint of (1.2) as' a constraint that holds with a certain 

probability (a ), a chance-constraint problem will be appeared bythis general form: 

Minimize CT x, 

Subjectto 

pr{A({)x ~bT ({)} ~ a, 

x~O. 

(1.3) 

Model (1.3) requin~s additional refinements of linearization or a nonlinear form to obtain 

the deterministic equivalent. Chance-constrained programs are among the most intractable 

in mathemati?al computation. In the case that only the right-hand-side vector is random, it 

can be solved usingnonlinear programming methods (KalI and Wallace, 1994). Bound 

approximation for probabilistic constraints (Birge and Louveaux, 1997) is another approach 

for solving these models, especially when the deterministic equivalence · for constraints can ' 

not be simply found. 

If we model the random parameters as discrete scenarios, then model (1.2) can ' be 

transformed into its deterministic equivalent which is an ordinary Iinear pro gram (LP) .. The 

deterministic equivalentof (1.2) can be introduced in various ways. Depending on how the 

random parameters are. modeled during the planning horizon and whether a risk measure is 
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included in the objective function, the resulting deterministic equivalent model will be the 

two-stage stochastic program with recourse, mu/ti-stage stochastic program with recourse, 

and robust optimization. 

In the following, we first discuss different approaçhes to model the random parameters in 

multi-period planning models; then we provide the general concepts as weIl às 

mathematical formulations of two-stage (static recourse model) and- mu/ti-stage (dynamic 

recourse model) stochastic programswith recourse, as weIl as robust optimization. 

1.3.2.1. Modeling the random parameters in multi-period planning models . 

As we mentioned before, in order to transfonn the optimization models with random 

parameters into a deterministic equiva/ent model, the underlying random data should be 

modeled as discrete ' scenarios. In multi-period planning problems, nindom data can be 

modeled either as a random variable with a stationary probability distribution, or as a non-

stationaryand dynamic data process . . 

Stationary random data 

Whenever the random data has a stationary behavior during the planning horizon and the 

uncertainty can be characterized by sorne noises, we model the random data as random 

variables with stationary probability distributions. In such cases, the random data are 

represented as a number ofscenarios with known probabilities. Scenarios can be defined as 

the atoms of the discrete probability distribution P that is used to approximate the 

underlying probability distribution Po" At the moment of decision making (period 0) no 

information on the random data is available; however at the beginning of the planning 

. horizon, one of the scenarios can take place. This approach for random data representation 

in stochastic models is illustrated in figure 1.3. As it canbe observed in figure 1.3, the 

scenarios do not depend on time periods and are defined for the whole planning horizon. 

As an example, of random parameters with a stationary behavior,we can Tefer to the quality 

of raw materials which would not change dramatically in different time periods if materials 

are supplied from the same source, during the planning horizon. It should be noted that the 

origin of scenarios can be very diversè; they can come from a truly discrete known 
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distribution, can be obtained in the course of discretization of a continuous known 

distribution (see for example Miller and Rice, 1983), or they can result from a preliminary 

analysis of the problem with probabilities of their occurrence that may reflect an ad hoc 

belief or a subjective opinion of an expert. A review of approaches for generating scenarios 

in stochastic models, based on the underlying random data is provided in Dupacova (1996). 

i----_+_s1 

_----+-S2 

~----+-S3 

~----+-S5' 

'I----_+_ S6 

)----~S7 

t = a t = 1, .. , T 

Figure 1.3 - ~cenarios in stochastic optimization models 

Dynamic random data 

Whenever the random data in different time periods are dependent or the random data 

during the planning horizon are characterized bycycles, trends or temporal patterns, they 

should be modeled as dynamic stochastic data. As an example of dynamic stochastic data 

we can refer to products demands which might be characterized by different patterns during 

the planning horizon. A computationally viable way of discretizing the underlying dynamic , 

stochastic data over time in a problem is scenario tree. An illustration of the scenario tree 

is provided in Figure 1.4. To represent the random data as a scenario tree, we .divide the 

planning horizons into sorne stages. Each stage denotes the stage of the timewhen new 

information on the random data is available to the decision maker. Thus, the stages . do not 

necessarilycbrrespond to time periods. They might include a ilumber of p'eriods in the 

planning horizon. A scenario tree consists of a number of nodes and arc~ at each stage. 

Each node n in the scenario tree represents a possible state of the world, associated with a 

set of data (stochastic demand, stochastic cost, etç.) in the corresponding stage. The root 

no de' of the tree represents the current state of the wbrld. The branches (arcs) in the 
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scenario tree denote the scenarios for the next stage. A probability is associated to each arc 

of the scenario tree wh'ich denotes the probability of the corresponding scenario to that arc. 

It should be noted that, the probability of each no~e in the scenario tree is computed as the 

product of probabilities of the arcs from the root node to that node. Furthermore, the sum of 

probabilities of hodes at each stage is equal to 1. A path from the root node to anode n 

describes' one realization of the stochastic process from the present time to the period where 

node n appears. A full evolvement of the stochastic process over the entire planning 

horizon, i.e., the path fro~ the root node to a leaf node, is called a scenario. In the scenario 

tree example of figure 1.4, we have 4 stages. Each node n in the tree has two branches ta 

.the next stage which denote two possible scenarios for the next stage, whell we are in stage 

n. 

8 S1 

9 S2 

11 . S4 

12 S5 

6 

13 S6 

15 S8 

Stage 1 Stage 2 Stage 3 Stage 4 

Figure 1.4 - A scenario tree for stochastic optimization problems with dynamic random data 

At each stage of the scenario tree, either a probability distribution corresponding · to the 

behavior ' of random parameters at that stage can be considered, which then can be ' 

discretized into a number of scenarios, or a number of subjective scenarios can be directly 

taken into account. A review of the approaches for generating the scenario trees for 

stochastic programs based on the underlying random data process is provided in Dupacoyâ 

et al. (2000). 
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In optimization models with more than one rartdom parameter (e.g. random yield, priee, 

demand, etc.), modeling the random data depend on wh ether the parameters are dependent 

, or independent. If the random , parameters are dependent and are of the same nature (e.g. 

demand and priee which both depend on market conditions), they can be simultaneously 

represented as a number of scenarios or a scenario tree, depending on their behavior over 

time. Otherwise, each random parameter should be modeled independently, and then the 

scenarios or scenario trees corresponding to each parameter should be integrated. 

In the following, we provided the deterministic equiva/ents of stochastic optimizatio~ 

models with stationary and dynamic random data, including Iwo-stage stochastic program 

with recourse, robust optimization, and mu/ti-stage stochastic program with recourse. 

1.3.2.2. Two-stage stochastic program with recourse 

In two-stage stochastic programs with recourse, we assume that the random data has a 

stationary probability distribution during the time, as it is illustrated in figure 1.,3. The 

decision variables are explicitly classified according to whether they are implemented 

,before or after an outcome (scenario) of the random data is observed. In other words, we 

have a set of decisions to be taken without full information on the random parameters. 

These decisions are calledjirst-stage decisions, and are usually represented by a vector (x). 

Later, full , information is received on realizations (scenarios) of the random vector ~. 

Th~n,second-stage or recourse actions (y) are taken under the full insight on the random 

data. These second-stage decisions allow us ta model a response to each of the observed 

outcomes (scenarios) of the random variable, which constitutes our recourse. In general, 

this response will also depend upon the jirst-stage decisions. We also consider a unit 

penalty cost for the recourse actions. The objective of the two-stage stochastic model with 

recourse would be to minimize the jirst-stage cosLin addition to the expected second-stage 

(recourse) cost for ail the scenarios of random parameters. We assume that the original 

probability distribution , of ~ is ' approximated by a finite number of scenarios 

N 
{(s,pS),s = 1, ... ,N}, where pS denotes the probability of scenario s (LpS = 1). In 

s=l 

mathematical programmi~g terms, we define the two-stage stochastic linear program with 

recourse (2-stage SLP), corresponding to model (1.2), as follows: 
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2-stage SLP formulation 

N 

Minimize CT x + L p S d sT yS 

Subject to 
s=1 

AS x + 1f"y s = bsT
, 

x,yS ~ 0, 

s=l, ... ,N, 

s=l, ... ,N, 

14 

(1.4) 

(1.5) 

(1.6) 

where, W denotes the recourse matrix, d sT denotes the· vector of penalty cost of second

stage (recourse) yariables, AS, bsT , and yS denote the technological coefficients matrix, 

right-hand-side vector, and recourse action vector under scenario s, respectively. It wou Id 

be worth mentioning that the first-stage decision (x) cannot anticipate the scenarios of 

random parameters, and should be feasible for aIl scenarios. 

Solving methodsfor two-stage stochastic programs with recourse 

Model (1.4)-(1.6) can be solved by LP solvers, namely CPLEX. If a huge number of 

scenarios for the random parameters are taken into account, this model can become (very) 

large in scale; making it impossible to be solved by the existing LP solvers. Ho.wever, its 

particular block structure is amenable to specially designed · algorithms. Decomposition 

methodsincluding the L-shaped method (KalI and Wallace, 1994; Birge and Louveaux; 

1997; KalI and Mayer, 2005), and regularized decomposition method (Ruszczynski and 

Swietanowski, 1996) are among the exact methods to solve large scale two-stage stochastic 

models. The novel architectures of high performance computers and recent developments in 

parallel and distributed computing can be exploited when ~pplying the mentioned 

algorithms. 

In order · to solve two-stage stochastic programs with a huge number of scenarios that 

cannot be solved by the exact methods, due to the present computational capacities, 

approxitnate methods based on Monte-Carlo sampling have beeil proposed in the literature. 

Monte Carlo solution procedures can use "internai sampling" or "external sampling". The 

~'internal sampling" procedures include stochastic decomposition algorithm (Higle and Sen, 

~ 996) and. stochastic quasi-gradient algorithms (Ermoliev, 1983). In the "external 
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sampling" procedures, sampling is performed externat to (prior to) the solution procedure. 

The sarnple average approximation (SAA) scheme (cf. Shapiro and Hommem-de-Mello, 

1998; Mak et al., 1999) is an "external sampling" procedure. The SAA scheme is focused 

on taking a random sample of scenarios through ·Monte Carlo sampling scherne, instead of 

considering aIl the possible scenarios for random parameters. Thus, the original large scale 

stochastic program is approximated by one of a manageable size. Statistical confidence 

intervals can then be constructed to measure the quality of approximate solutions. Shapiro 

and Hornmern-de-Mello (2000) proved that under sorne mild regùlarity conditions, by 

increasing the sample size the optimal (approximate) solution of the SAA model converges 

with probability 1 to the optimal solution of the original two-stage stochastic model. 

1.3.2.3. Robust optimization 

As it was mentioned in 1.3.2.2, two-stage stochastic programming approach focuses on 

optimizing the expected performance (e.g. minimizing the expected co st) over a range of 

possible scenarios for the random parameters. We ~an expect that the system would behave · 

optimally in the mean sense if the stochastic . programming model solution was 

implemented. HoWever, the system might perform poorly at a particular realization of 

scenarios, such as the worst-case scenario. This means that the stochastic model cannot 

reflect · the variability of performances for each scenario realization and it can yield 

solutions that are not veryrobust. The robust optimization (RO) method developed by 

(Mulvey et al., 1995) is a special -class of two-stage stochastic programming. It extends . 

stochastic· programming with the introduction of higher moments of the objective function.-

In other words, traditional expected cost minimization objective is replaced by one that 

explicitly addresses cost variability and a series of solutions are generated that are 

progressively less sensitive to the scenarios of nlndom data. 

The optimal solution of model (1.4)-(1.6) will be robust with respect to optimality if it 

remains c.lose to optimal for any of the scenarios s. This is termed solution robustness. In 

other words, the solution robustness measures the variability of the recourse cost in a 2~ 

stage SLP model for any of the scenarios s. The solution isalso robust with respect to 

feasibility if it remains almo~t feasible for all scenarios. This is termed mode/robustness. 

The robust optimization (RO) framework introduced by (Mulvey et al., 1995) is a goal 
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programming approach to balance the tradeoffs between solution robustness and model 

robustness. Hence, the RO approach is to modify the objective function in 2-stage SLP as 

follows: 

Rohust optimization (RD) formulation 

N 
~,r.- •• T ~ sdsT s "( \ N) (~\ ~N) lVlznzm,zze c x+ ~p y +AO"' Y ,.~.,y +mp u , ... ,(.1 

, Subjectto 
s=\ 

AS x + Wys + tSS = bsT , 

x,yS ~ 0, 

N 

s=l, ... ,N, 

s=l, ... ,N, 

(1.7) 

(1.8) 

(l.9) 

The tenn (L pS d sT yS + ÂO"'(Y\ ... , yN)) in the objective function denotes the solution 
s=1 

robustness measure, where Â 2:: 0 is a goal programming weight and O"'(yl, ... ,yN) denotes 

the recourse cost variability measure. By changing ,Â, the relative importance of the 

. expectation and variability of the recourse cost in the objective function can be controlled. 

The last term in the objective function (p(tS) , ... ,tSN )) is the model robustness measure. 'It is 

a feasibility penalty function, which is used to penalize the violation of constraints (1.8) 

(denoted by gS) under sorne scenarios. (j) 2:: 0 is a goal programming weight which 

measures the relative importance of solution robustness and model robustness. In the 

following, the recourse cÇ>st variability measures, existing in the literature, are provided. 

, Variability measures in robust optimization (RD) models 

The classical approach to model the tradeoff between the expectation and the variability of 

the recourse cost in RD models is to use mean-variance model ofMarkowitz (1959). Mean-

variance measure has ~een implemented in many applications" namely capacity expansion ' 

of power systems (Malcolm ·and Zenios, 1994), stochastic logistic prqblems (Yu and Li, 

2000), stochastic aggregate production planning (Leung and Wu, 2004; Leung et al., 2007). 

However, there , are sorne , exceptions against using mean-variance in sorne applications: 

variance Is a symmetric risk measure, penalizing the cost bothabove an~ below the ' 

expected recourse cost,. equally. As 'in the case of production planning, it is more 

c 
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convenient to use an asymmetric risk measure that would penalize only costs above the 

expected value. Scenarios whose costs are below ~he expected recourse cost should not be 

penalized, as their occurre~ce leads to ' lower actual costs than the one expected. Shabbir 

and Shahinidis (1998) proposed to use upper partial mean of the recourse cost as the 

measure of variability in a ' robust optimization ·model for process planning under" 

uncertainty. The upper partial mean is defined as the partial expectation of costs above the 

expected value. In List et al. (2003) an upper partial moment (UPM) of order 1 (i.e . ., the 

partial expectation of costs above a threshold value) was used in a robust optimization 

model for fleet planning under uncertainty. Takriti and Shabbir (2004) used the upper 

partial moment of order 2 for robust optimization of two-stage stochastic models. 

Solving methodsfor rohust optimization (RO) models 

Robust optimization models with quadratic robustness terms can be solved by the CPLEX 

quadratic programming solver. In order tosolve robust optimization problem with a large 

number of scenarios, decomposition algorithms namely, a modified L-shape method ' 

(rakriti and Shabbir, 2004) or diagonal quadratic algor,ithm (DQA) (Berger et al., 1994) 

can be applied. When applying the mentioned algorithms, one can exploit the novel 

architectures of high performance computers and recent developments in parallel and 

distributed computing. 

1.3.2.4. Multi":stage stochastic program with recourse 

In a multi-period .production planning model with dynamic random parameters, the 

decision model should be designed to allow the user to adopt a decision policy that can 

respond to events as they unfold. The specific form of the decisions depends on 

assumptions conceming the information that is available to the decision maker, when (in 

time) is it available and what ~djustments (recourses) are available to the decision maker. 

The multi-stage stochastic programming (MSP) approach (Kall and Wallace, 1994; Birge 

and Louveaux 1997; Kall and Mayer, 2005) addresses multi~period optimization mod~ls 

with dynamic stochastic data during the time. It was demonstrated in.Escudero et al. (1993) 

that multi-stage stochastic programming models can be designed to model the information 

. availability, and thedecisions produced by these models are optimal withrespect to the 
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zero-regret criterion - that which could be achieved if the course of future events could be 

perfectly predicted. In multi-stage stochastic programming (MSP), a lot of emphasis is . 

plac'ed on the decision to be made today, given present resources, future uncertainties and 

possible recourse actions in the future. Multi-stage stochastic programming models with 

recourse extend the two-stage stochastic models by allowing revised decisions at each 

stage, based upon the uncertainty realized so far. The uncertainty is represented through a 

scenario tree (see figure 1.4) and an objective function is ch os en to represent the risk 

'associated with the sequence of decisions to be made and the whole problem is then solved 

as a large scale linear or quadratic program. In most situations, the .number of possible 

scenario~ is so great that it is impossible to model them explicitly. The success of multi-

stage stochastic programming depends on the extent to which a relatively simple scenario 

trèe can be constructed that captures the risk inherent in making one decisiontoday. In the 

. following, we provide the multi-stage programming formulation. 

·M ulti-stage stochastic program (MSP) formulation 

Consider · a multi-periodLP model with random parameters (model (1.1 )). In order to 

formulate the delerministic equivalenl of a multi~stage stochastic model (1.1), we assume . 

that the. random vector { is represented as a scenario Iree (see figure 1.4). Recall from 

1.3.2.1 that a scenario is defined as a path from the root node to each leaf in the scenario 

tree. Let the scenario s correspond to a single setting of aIl data in model (1.1), 

s = { ~t', hl: 1 =1, ... ,T ,1' =l, ... ,T}, 

and a decision x corresponds to a setting of aIl the decision variables 

Solving the' deterministic LP model (1.1) for a given scenario s of the data is equivalent to 

solving the following problem for a certain function: 

minf(x,s) over ail x, 

where ' 
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. {f c,x" if x satisfies ail constraints in (1.1), 
f(x,s)= 1=1 

+00, otherwise. 

The function J(., s) is called the essential objective function for the LP model (1.1). By 

setting its value to plus infini.ty for ail points that violate the constraints, we ensure that 

minimizers of J(.,s) will be feasible for the LP model (1.1). 

We next develop the stochastic model. Let us suppose that we are given a set S of scenarios 

on a scenario tree. We first, set a policy that makes different decisions under different 

scenarios. Mathematically, a policy Xthat assigns to each scenario' SES is a vector 

X(s) :=(X} (s), ... ,Xr(s» , 

where XI (s) denotes the decision to be made at stage t if encountered by scenario s. 

Decisions that depend on individual scenarios do not hedge against the possibility that the 

scenario may not occur, leaving one vulnerable to disastrousconsequences if sorne other 

scenario does happen. As we mentioned before, the decision process must confonn to the 

flow of available information, which basically means the decisions must be non-

anticipative (or implementable). A decision is sai,cl to be implementable if for every pair of 

scenarios s and s'. that are indistinguishable up to stage t then 

,(Xl (s), ... , X r (s)) = (Xi (s'), ... , Xr (s'). 

As the examples of indistinguishable scenarios, we can refer to scenarios 1, 2, 3, and 4 in 

node 2 at stage 2 of the scenario tree in figure 1.4. Itnplementability guaranties that policies 

do not depend oh information that . is not yet available., The multi-stage stochastic 

programming can be formulated as: 

min {L>' f(X(s),s) IX isan implementable POliCY}, 
. seS . 
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where pS denotes the probability of scenario s. There are two approaches to impose the 

non-anticipativity constraints in the multi-stage stochastic programs which lead to the split 

variable formulation and the compact formulation. 

Split variable formulation 

In the split variable formulation, we introduce a set of decision variables for each stage and 

each scenario, and then we enforce non-anticipativity constraints explicitly based on the 

shape of the scenario tree. Model (1.1) can be represented by the split variable formulation 

as follows: 

SES 

'Subjectto 

AlI (s)x l (s) 

~l (s)xl(s) + ~2 (s)x2 (s) 

XI(S) ~0,X2(S) ~O, ... ,xr(s) ~O,. 

non-anticipativity constraints 

Xl (s) = Xl (s'), 

x2 (s) = x2 (S'), 

xr(s) = xr(s'), 

=bl (s), 

=b2 (s), 

SES, 

SES, 

SES, 

S,S'E {S}l' 
S,S' E {S}2' 

S,S'E {s}r' 

(1.10) 

where {sL denotes the set of aIl indistinguishable scenarios at stage t of the scenario tree. 

It should be noted that, if the stages in the scenario tree do not correspond to time periods, 

the non-anticipativity constraints should be written for decision variables corresponding to 

aIl time periods at each stage. As it can be observed in model (1.10), the split variable 

formulation' increases the problem dimensions, significantly. 

, Compact formulation 

In the compact formulation, we associate decision variables to the 1J.0des of the scenario 

tree and build non-anticipativity in an implicit way. Moreover, the redundant variables and 
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constraints for partially identical scenarios are deleted. We also need the probability p( n) 

of getting to node n. 

To represent model (1.1) by the compact formulation, consider a scenario tree with 

t = l, ... , T stages, where the n?des for stage tare indexed by kt. There are Kt - Kt-l nodes 

indexed by kt = Kt-l + 1, ... , Kt for stage t (KI ~ 1); particularly, the KT - KT-I leaves 

indexed by kT correspond to scenarios. For example, in the scenario tree in figure 1.4, 

T=4, and there ar-e K2 - KI = 2_ nodes at stage 2, K3 - K2 = 4 at stage 3, and K4 - K3 = 8 

nodes at stage 4. Furtherrnore, k2 = 2,3, k3 = 4, ... ,7 ,. and k4 = 8, ... ,15. We also den ote the 

probability of node kt by Pk . Model (1.11) is the deterministic equivalent of multi-stage 
1 

stochastic model (1.1) represented by compact formulation, based on a given scenario tree. 

Subjectto 

AliX} 

Ak IXI + Ak 2Xk 
2 . 2 2 

::;:bl , 

=bk 2' 

(1.11) 

k2 =2, ... ,K2 , 

k3 =K2 + 1, ... , K3 , 

kT =KT-I + 1, ... ,KT, 

kt =kt-l +1, ... ,Kt, t =l, ... ,T. 

It should be noted that in I1)ulti -stage stochastic model (1.11), a( kJ denotes the immediate 

predecessor of node kt' · Ak t and bk denote the coefficient matrix and right-hand-side 
1 1 

vector values in node kt . at stage t, respectively. For example, in the scenario tree of figure 

1.4, a( 4) = 2. For each no de of the scenario tree at stage t, an entire set of decision 

variables corresponding to that stage is introduced; for instance the vector of the first-stage 

decision variables Xl corresponds to the root and sub-vectors xk of the tth stage decision 
( 

. variables are assigned to the node kt' respectively. At · each stage, the sub-vectors of 

decision variables exploit only the information that cornes from the previous stages 

--------~---------------- - - - -
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(preceding nodes of the tree) and the choice of decisions are based on the available and past 

information and at the same time allow for the continuation of the decision process at the 

subsequent stages. It can also be observed that the non-anticipativity constraints are implicit 

in this formulation. It should be noted that, if the stages in the scenario tree do not 

correspond to time periods, each constraint in model (1.11) should be repeated for aIl time 

periods at each stage. 

Solving methods for multi-stage stochastic programs (MSP) with recourse 

MuIti-stage stochastic programs are among the most intractable in numerical computations 

due to dimensionality and complexity , of their deterministic equivalent . models. Not only 

does the size of the problem grow as a quadr~tic function of the number of ~cenarios, but 

also the problem structure is difficult to take advantage. 

Split variable formulation of multi-stage stochastic models yields a sparsity structure that is 

weIl suited to the interior point algorithms. Altematively, it is possible to use a 

decomposition approach on the split variable forml;llation. If the implementability 

constraints are 'relaxed, by adding a penalty (possibly, nonlinear) term of these constraints 

to the objective function, the problem decomposes into several smaIler optimization 

problems. Several strategies have been published in the literature to solve large-scale multi- . 

stage stochastic ' models, such as the progressive hedging algorithm proposed by 

Rockafellar and Wets (1991 ), the augmented Lagrangian decomposition method of 

Ruszczynski (1989), and the 'decomposition methods (Mulvey and Ruszczyilski, 1995; Liu 

and Sun, 2004). 

Compact formulations are computationaIly cheaper than split variable formulations, when 

using for solving. by the Simplex methqdology in standard solvers. Moreover, the y lend 

themselves to generalizations of the L-shaped method such as nested Benders 

decomposition (Birge and Louveaux, 1997). 

1.3.3. Literature review on sàwmill production planning 

Among different approaches proposed in the literature for sawmiIl production planning, 

two of the most applied ones are reviewed in the following. The first approach is focused 
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on com~ined optimization type _solutions linked to real-time simulation sub-systems 

(Mendoza et al., 1991; Maness and Adams,- 1991; Mane~s and Norton, 2002). In this 

approach, the stochastic characteristics of logs are taken into account, by assuming that ail -

the input logs are scanned through an X-ray scanner, before planning. The model developed 

by (Mendoza et al., 1991), consists of a log inventory model with an optimization 

capability and a real-time process simulation model. The system works as follows: first, an 

_ optimization model determines the "best" log input mix to be -processed, in order to satisfy 

- the periodic lumber demande This log mix is optimized under constraints based on resource 

-capacities. Information on log input mix then becomes an input to the process simulation 

model to create production schedules. The sawmill process simulator receives, through its 

interface, the sawmill layout file and machine specifications, the CUITent product 

specifications and database file containing the log input schedule ge-nerated by the 

optimizer. The systems output include the simulated number and volume of logs processed 

(by species and grade), sawmill operating time, lumber output by species, grade and 

volume, etc. Maness and Norton (2002) developed an integrated multi-period production 

. planning model ~hich is the combination of an LP model and a log sawing optimizer 

(simulator). The LP acts -as a coordinating problem that allocates limited resources. A series 

of dynamic programming (DP) sub problems, titled in the literature as "log sawing 

optimization models" are used to generate activities (columns) for the coordinating LP 

based on ' the shadow prices for lumber products. The log sawing optimization model is a 

sawing algorithm for lumber grade, based on data collected from an X-ray scanner. The 

inputs to the model are a description of the logs and values, grade rules and dimensions of 

lumber products. The program processes each log, .determines the optimal sawing pattern 

based on value recovery, and calculates sawing time required per cube -meter of saw logs, 

the conversion volume of lumber products and the conversion volume of byproducts. 

Although the stochastic characteristics of logs are consid~red in this approach, it includes 

. the following limitations to be implemented in real capacity sawmills: logs, needed for the 

next planning horizon, are not always available in sawmills to be scanned before planning. 

Furthermore, to implement this method, the logs should be processed in production line in 

the same order they have been simulated, which is not an easy practice. Finally scanning 
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logs before planning is a time consuming p~ocess in high capacity sawmills, which delays 

-the ·planning process. 

In the second approach, the randomness of the processes yields as well as demand is 

simplified and tl)eir expected value is considered in a MPMP linear programming model 

(Gaudreault et al., 2004). However, as the randomness of yield and demand are not taken 

into account, the production plan proposed by this approach is not robust. Implementing 

such plans results usually extra inventory of products with lower quality and priee, while 

extra backorder of products with higher quality and priee. 

There are other works in the literature related to softwood lumber supply chain that are 

reviewed as follows. Vila (2006) proposed the mathematical programming models to 

design the production-distribution network for softwood lumber industry. The proposed 

generic model maps the industry manufacturing process onto potential production-

distribution facility locations and capacity options. Furthermore, a two-stage stochastic 

program withrecourse was proposed to find a robust design for the production-distribution 

network by taking into acco~nt three different market opportunities (spot markets, contracts 

and Vendor Managed Inventory (VMI) agreements), which improve the competitive 

position of the company or companies involved. 

In Frayret et al. (2007), a software architecture for development of 'an experimentation 

environment to design and test distributed advanced planning and scheduling systems in the 

forest products industry was proposed. This architecture enables combination of agent-

based technology and operations research-:baSed tools in order to first take advantage of the 

ability of agent technology to integrate distributed decision problems,and,second, to take 

advantage of the ability of operations research to develop and exploit specifie nonnative 

decision models . 

. Gaudreault et aL (2009) addressed distributed . operations planning a.nd scheduling in a 

softwood lumber supply chain, made of three planning units (sawing unit, drying unit and 

finishing unit). Each production unit is presented as an agent and a mathematical model is 

proposed for production planning or sc~edul!ng of each agent. Then, in order to coordinate 

the plans between the agents, different coordination mechanisms were proposed. Using 
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these developments, they showed how an agent-based simulation tool can be used to 

integrate planning models and evaluate different coordination mechanisms. 

1.4. Outline of the thesis 
The MPMP production planning problem, described in 1.2, is tirst studied by considering 

only the non-homogeneous characteristics of raw materials, and consequently random 

processes yields. Two-stage stochastic programming and robust optimization approaches 

are proposed to address the MPMP production planning problem with random yield. The 

random demand is then studied as another uncertain parameter in the problem. The MPMP 

production planning problem with uncertain yieldand demand is addressed by the multi-

stage'. stochastic programming approach .. This thesis includes three original contributions 

(presented as three articles), which are provided th~ough chapters II to IV as·follows. 

In chapter II, we study a multi-period, multi-product (MPMP) production planning problem 

in a manufacturing environment with non-homogeneous raw materials, and consequently 

random processes yields. A two-stage stochastic linear program with recourse is proposed 

to address the problem. The random yields are modeled as scenarios with stationary 

probability distributions during the planning horizon. The objective of the two-stage 

stochastic model is to find a production plan with the minimum expected inventory and 

backorder size for all yield scenarios. The two-stage stochastic model is solved by the 

sample average approximation (SAA) scheme. As a case study, we address the sawmill 

production planning problem by the proposed approach. Moreover, the · stochastic sawmill 

production planning model is validated through Monte Carlo simulation. The objective of 

simulation is to compare the realized backorder size after implementation of plans, as weil 

as the plan precision in the mean-value detenninistic and the stochastic models. 

In chapter III, we study the robustness of service level in a multi-period, multi-product -

(MPMP) production planning problem where the yields of processes are random variables 

due to non-homogeneousquality of raw materials. Two robust optimization models with 

different service level variability measures· are proposed. The · objective of robust 

optimization (RO) models is to find a ' production plan with the minimum expected 

inventory and backorder size as weil as minimum inventory and backorder size variability 
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(service level variability) for ail yield scenarios. A decision framework is also provided to 

select among the two RO models based on the tradeoff betWeet:t the expected 

backorder/inventory cost and the decision maker risk aversion level about the variability of 

customer service level. 

In chapter IV, we study a multi-product, multi-period (MPMP) production , planning 

problem with uncertainty in the quality of raw materials and consequently in processes 

yields, as weil as uncertainty in products demands. As demand and yield own different 

uncertain natures, they are modeled 'separately and then integrat~d. Demand uncertainty is 

considered as a dynamic stochastic data process du ring the planning 'horizon which is 

rriodeled as a scenario tree. The uncertain yield is modeled as scenarios with stationary 

probability distributions during the planning horizon. Yield scenarios are then integrated in 

each node of demand scenario tree, constituting a hybrid scenario tree. Based on the hybrid 

scenario tree for the uncertain yield and demand, a multi-stage stochastic programming 

(MSP) model is proposed which is full recourse for demand scenarios and simple recourse 

for yield scenarios., The objective of the multi-stage model is to find a production plan with 

minimum expected raw material consumption cost as weIl as expected product inventory 

and backorder costs, for aIl the demand and yield scenarios. We conduct a case study with 

respect to a realistic scale sawmill. 

We summarize the major contributions of the thesis in chapter V, along with a discussion 

of possible research perspectives. 

1.5. Conclusions ' 

In this chapter, we introduced theproblem we are ,addressing, as weB as an industrial 

application which is considered as a case study in this thesis. We also presented the ' 

literature review. Finally, the outline of thesis was provided . . The three following chapters 

present the three original contributions of the thesis. 
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A stochastic programming approach for production 
planning with uncertainty in the quality of raw 
'materials: A case in sawmills ' 

This chapter is dedicated to the article entitles "A stochastic programming approach for 

production planning w ith · uncertainty in the quality of raw materials: A case in sawmills". 

It has been submitted .to the Journal of Operations Research Society on March 2009. The 

titIes, figures and mathematical formulations have been revised to the keep . the coherence 
through the thesis. 
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2.1. Abstract 

Motivated by sawmill production planning, this paper investigates a multi-period, multi-

product (MPMP) production planning problem in a ~anufacturing environment with non-

homogeneous raw materials, and consequently random processes yields. A two-stage 

stochastic linear pro gram with recourse is proposed to address the problem. The random 

yields are modeled as scenarios with stationary probability distributions during the planning 

horizon. The ,solution methodol<?gy is based on the sample average approximation (SAA) 

scheme. The proposed two-stage stochastic model càn be considered as a novel approach 

for sawmill production planning. The stochastic sawmill production planning model is 

validated through Monte Carlo simulation. The objective of simulation is to compare the 

realized backorder size after implementation of plans, as well as the plan precision in the 

mean-value deterministic and the stochastic models. Through ' the simulation, the 

production plans proposed by the mentioned models are implemented virtually, by 

considering yield scenarios similar ' to those that might be realized during the plan 

implementation in real sawmills. The computational results for a real medium capacity 

sawmill highlight the significance of using the stochastic model as a viable tool for 

production planning instead of the mean-value detenninistic model, which is a traditional 

production planning tool in many sawmills. 

2.2. Introduction 

Most of the production environments are characterized by multiple types of uncertainties. 

When planned production quantities are released, the outputs are often variable. These 

uncertainties affect and complicate the production plan and control.. 

The goal of this work is to address a multi-p~riod, multi-product (MPMP) production 

planning problem in a manufacturing environment, where alternative processes can produce 

simultaneously multiple products with random yields. In other words, the quantities of 

products that can be produced by each process are random variables. Besides, the 

.' randomnes~ in processes yièlds arises from the random and non-homogeneous quality of 

raw materials. In this production planning problem, we ~re looking for the number of times 

each process · should be run, as well as the quantity of each class of raw material that should 
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be consumed by each process in each period in the planning horizon. The objective is to 

minimize products inventory/backorder and raw material costs, regarding fulfillment of 

products demands, machine capacity, and raw material inventory. This work is motivated 

by production planning for sawing units in sawmills. In sawmills, raw materials (logs) are 

classified based on sorne attributes namely: diameter class, species, length, taper, etc. Logs 

are broken down into different pieces of lumbers (products) by means of different cutting 

patterns. Moreover, different combinations of log classes and cutting patterns produce 

simultaneously different mix of products (lumbers). However, due to non-homogeneity in 

the quality of logs, each cutting pattern yields a rrandom quantity of corresponding products 

after processing a known quantity of each log class. Production planning in a sawing unit is 

to decide about the optimal quantity of log consumption from different classes and the 

selection of corresponding cutting patterns to fit against products demands. The part of the 

demand that cannot be fulfilled on time due to machine capacities, log inventory, and ' 

random yield will be postponed to the following periods by considering a backorder cost. 

The objective is to minimize log consumption cost, as weIl as products inventorylbackorder 

costs. We are studying a customer orientated manufacturing environment that wishes to 

fulfiIl the demand as much as possible. Regarding the potential significance of yield 

uncertainty on the production plan and consequently on the realized total backorder size, 

obtaining the plans with minimum total backorder size is an important goal of production 

planning in sawmills. 

This production planning problem can be considered as the combination of several classical 

production p1anning problems in the literature which have been modeled by linear 

programming (LP). The product mix problem and a special case of process selection 

problem (Johnson and Montgomery, 1974; Sipper and Bulfin, 1997) are the · two main 

building blocks of this problem . . However, the LP models include the assumption of 

deterministic parameters. It has been shown in the literature that failure to include 

uncertainty in optimization models can cause expensive, even disastrous consequences if 

the anticipated situation is not realized. In Gaudreault et al. (2004), a deterministic LP 

model was proposed for sawmill production planning by considering the expected values of 

random processes yields. The production plan proposed by the deterministic model results 

usuaIly extra inventory of products with lower quality and priee, while .backorder of 
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products with higher quality and price. Another approach for sawmill production planning 

is focused on combined optimization type solutions linked to ·real-time simulation sub 

systems (Mendoza et al., 1991; Maness and Adams, 1991; Maness and Norton, 2002). In 

this approach, the stoc~astic characteristics of logs are taken into account by assuming that 

ail the input logs are scanned through an X-ray scanner, before planning. Maness and 

Norton (2002) developed an integrated multi-period production planning model which is 

the combination of aLP model and a log sawing optimizer (simulator). The LP model acts 

as a coordinating model that allocates limited resources. A series of dynamic programming 

sub-problems, titled in the literature as "log sawing optimization models" are used . to 

generate activities (columns) for the coordinating LP based on the products' shadow prices. 

Although the stochastic characteristics of logs are considered in this approach, it includes 

the following limitations to be implemented in many sawmills: logs, needed for the next 

planning horizon, are not always available in sawmills to be scanned before planning. 

Furthermore, to implement this method, the logs should be processed in the production line 

in the same order they have been simulated, which is not an easy practice. Finally, scanning 

logs before planning is a time consuming process in high capacity sawmills, which delays 

the planning process. It has been shown in the literature (see for example KalI and Wallace, 

1994; Birge and Louveaux, 1997; KalI and Mayer, 2005) that in mathematical 

programming models which include random parameters in their right-hand-side and/or 

technological coefficients, the stochastic programming approach leads to higher quality 

solutions compared with the mean-value deterministic model. Most of the works in the 

literature on uncertainproduction planning are focused on considering random products 

demands. In Escudero et al. (1993), a muIti-stage stochastic programming approach was 

proposecl to address a MPMP production planning model with random demand. In Bakir 

and Byrne. (1998), demand uncertainty in a MPMP production planning model was studied. 

They developed a demand stochastic LP model based · on the two-stage deterministic 

equivalent problem. In Kazemi et al. (20~7), stochastic programming was proposed as one 

of possible methodologies to address sawmill production planning, while considering 

random characteristics of logs. 

In this paper, a two-stage stochastic program with recourse (Kali and Wallace, 1994; Birge 

and Louve~ux, 1997; KalI and Mayer, 2005) is proposed for MPMP production planning 
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while considering random characteristics of raw materials and consequently random 

. processes yields. As the proposed model is applied for sawmill production planning, we 

propose an approach to model the random processes yields in sawmills. Due to the 

astronomic number of scenarios for random yields in the two-stage stochastic model, a 

Monte Carlo sampling strategy, the sample average approximation (SAA) scheme (cf. 

Shapiro and Hommem-de-Mello, 1998, 2000; Mak et al., 1999) is implemented to solve the 

stochastic model. The confidence intervals on the optimality gap for the candidate solutions 

are constructed based on common random number (CRN) streams (Mak et al., 1999). We 

. also propose a validation approach to compare stochastic and deterministic sawmill ' 

production planning models plans, which is based on Monte Carlo simulation. More 

precisely, we sîmulate the implementation- of plans proposed by the stochastic and 

deterministic sawmill production planning models, by considering the yield scenarios that 

might be observed through plan implemeiltationin realistic scale sawmills. The objective is 

to compare the realized total backorder size, after implementation of the stochastic and 

deterministic models. Furthermore, the precision of plans, in terms of the gap between the 

planned and the realized total backorder size, for the stochastic and deterministic models 

are also compared. Our computational results involving one medium capacity sawmill, with 

different demand levels, indicate that the proposed stochastic -program.ming approach can 

be served as a viable tool for sawmill planning by considering the random characteristics of 

logs. 

The remainder of this paper is organized as follows. In the next section, sawmill processes 

and characteristics are introduced. In section 2.4, a theoretical framework for two-stage 

stochastic linear programming is provided;in section 2.5 we propose a two-stage stochastic 

linear program for MPMP production planning under uncertainty of processes yields. In 

section 2.6, the proposed approach formodeling random processes yields in sawmills is 

provided .. In section 2.7, we provide the solution methodology for the two-stage stochastic 

model. In section 2.8, -the propo~ed validation approach to compare the stochastic and 

deterministic sawmillproduction planning models is presented. In section 2.9, the' 

implementation results of the stochastic model and solution strategy for a realistic scale 

sawmill are presented. The results of comparison between the plans of stoch~stic and mean-
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value deterministic LP models, through Monte Carlo simulation, are also reported in this 

section. Our concludin~ remarks are given in section 2.10. 

2.3. Sawmill processes and characteristics 

There are a. number of processes that occur in. a sawmill: log sorting, sawing, drying, 

planing and grading (finishing). Raw materials in sawmills are the logs which are 

transported from different distdcts of forest after bucking the felled trees. The finished and 

graded lumbers (products) are then transported to the domestic and international markets. 

Figure 2.1 illustrates the typical proéesses. In this paper we focus on operational level 

production planning in the sawing units of sawmills. In the sawing units, logs are classified 

according to sorne attributes namely: diameter class, species, length, taper, etc. Logs are 

broken down into different dimensions of lumbers by means of different cutting patterns. 

See figure 2.2 for three different cutting pattems.Each cutting pattern is a 'combination of 

activities that are run on a set of machines. From each log; several pieces of sawn lumber 

(e.g. 2(in)x4(in)x8(ft), 2(in)x4(in)x 10(ft), 2(in)x6(in)x 16(ft), ... ) are produced 

depending on the cutting pattern. The lumber quality (grade) as weIl as its quantity yielded 

by each cutting pattern depends on the quality and characteristics of the input logs. Despite 

the classification of logs in sawmills, variety of characteristics might be observed in 

different logs in each class. In fact, natural variable conditions that occur during the growth 

period of trees make it impossible to anticipate the exact yields of a log. Moreover, as it is 

not possible in many sawmills to scan the logs before plànning, the'exact yields of cutting 

patterns for different log classes cannot be determined in priori. 

Figure·2.1 - Illustration of sawmills pro cesses (after R5nnqvist, 2003) 
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Figure 2.2 - Cutting patterns in sawmills 

2.4. A theoretical framework for two-stage stochastic LP 

This section gives a brief review on two-stage stochastic LP; for more details, the-reader is 

referred to KalI and Wallace (1994), B irge and Louveaux (1997) and KalI and Mayer 

(2005). When one or more of the parameters in a linear program is represented by a random 

variable, a stochastic linear program (SLP) results. Model (2.1)-(2.3) is an exarnple of a 

SLP. 

Minùnize , CT x 

Subjectto 

Ax == b, 

, T(~)x ~ hT (~), 

x~O, 

(2.1) 

(2.2) 

(2.3) 

where { is the vector of random parameters, T({) and h({) are randorn technological 

coefficient rnatrix and right-hand side vector, respectively. In the above model, constraints 

(2.2) and (2.3) represent the set of deterministic and stochastic constraints, respectively~ In 

two-stage stochastic models, we explicitly classify thedecision variables according to 

whether they are irnplemented befo,re or after an outcome of the random variables is 

observed. In other words, we have a set of decisions to be taken without full information on 

the random parameters. These decisions are called first-stage decisions, and are usually . 

represented by a vector (i). Later, full information is received on realizations (scenarios) of 

sorne random vector { . Then, second-stage or recourse actions (y) are taken. These second-

stage decisions allow us to model a response to each of the observed outcomes (scenarios) 

of the randorn variables, which constitutes our recourse. In general, this response will also 

depend upon the ftrst-stage decisions. In mathematical prograrnming terms, this defines the 

so-called two-stage stochastic pro gram with recourse of the forin: 
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Minimize CT x+ E{[Q(x,~)] (2.4) 

Subjectto 

Ax = b, (2.5) 
x20. 

vector of penalty cost of second-stage (recourse) variables, and ~{denotes mathematical 

expectation with respect to { . 

In the case of continuous distribution for random variables in mod~l (2.4)-(2.5), the 

calculation of the expected value E{[Q(x,ç)] requires the calculation of multiple integrals 

with respect to the measure describing the distribution of {. The computational effort 

increases with the dimension of the stochastic variables vector and this leads to tremendous 

amount of work. On the other hand, if { has a finite discrete distribution 

{({i ,pi), i = 1, ... , n}, then (2.4)-(2.5) can be trartsformed into its deterministic equivalent 

which is an ordinary tinear program as follows. 

n 

Minimize CT x+ LpiqiT(~)yi 
i=1 

Subjectto 

Ax=b, 
Wyi =h;T(~)-T;({)x, 

x~O. 

(2.6) 

i = 1, ... ,n, (2.7) 

Model (2.6)-(2.7) can be solved by the LP solvers. Although t~is model can become (very) 

large in scale, its particular block structure is amenable to specially designed algorithms . 

. Solution methods for large-scale two ... stage stochastic programs can be divided into two 

main categories: 1) exact methods including decomposition methods, nam~ly L-shaped 

method (Kali and Wallace, 1994; Birge and Louveaux, 1997; Kall and Mayer, 2005), and 

regularized decomposition method (Ruszczynski and Swietanowski, 1996) 2) approximate 

methods based on Monte Carlo sampling: sample average approximation (SAA) (cf. 
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Shapiro and Hommem-de-Mello, 1998, 2000; Mak et al., 1999), and stochastic 

decomposition method (Higle and Sen, 1996). 

2.5. Problem formulation by mathematical programming . 

In this section we tirst describe the deterministic linear program (LP) formulation for 

MPMP production planning considered in this paper~ Then we develop the proposed 

stochastic model to address the problem by considering the uncertainty of processes yields. 

2.5.1. The deterministic LP model for MPMP production planning 

Consider a production unit with a set of products P, a set of classes of raw materials C, a set 

of production processes A, a · set of resources (machines) R, and a planning horizon 

consisting of T periods. It should be noted that in sawmill production planning model, we 

define a process as a combination of a log class and a cutting pattern, for modeling 

simplicity. To state the deterministic linear programming model for this production 

planning problem, the following notations are used: 

2.5.1.1. Notations 

Indices 

p product 

/ period 

c raw material class 

a production process 

r resource (machine) 

Parame/ers · 

hpt inventory holding cost per unit of product p in period t 

bpi backorder cost per unit of product p in period t 

m et raw material cost per unit·of class c in period / 

IeO the inventory of raw material clas~ c at the beginning ofplanning horizon 

1 pO the inventory of product p at the beginning of planning horizon 

Set the quantity of mate~ial of class c supplied at the beginning of period t 
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d pt . demand of product p by the end of period t 

tPae the units of class c' raw material consumed by process a (consumption factor) 

Pap the units of product p produced by process a (yield of process a) 

tSar the capacity consumption of resource r by process a 

M rt the capacity of resource r in period t 

Decision variables 

X at the number of times each process a should be run in period t 

let inventory size of raw material of class c by the end of period t 

!pt inventory size of product p by the end of period t 

B pt backorder size of product p by the end of period t 

2.5.1.2. The LP model 

(2.8) 

Subject to 

t=I, ... ,T, CEe, (2.9) 

Ipt-Bpt =Ipt-I-Bpt_l+ LPapXat-dpp . t=2, ... ,T,pEP, 
aeA 

(2.10) 

Production capacity constraint 
Lt5arX at ~Mrn t=I, ... ,T, rER, 
aeA 

(2.11) 

Non-negativity of ail variables 
X at 2. O,Ict 2. 0,1 pt 2. 0, B pt 2. 0, t = 1, ... , T, pEP, C E C; a E A. (2.12) 

The objective function (2.8) is a linear cost minimization equation. It consists of total. 

inventory and backorder costs for aIl products and raw material cost for aIl èlasses in the 

planning horizon. Constraint (2.9) ensures that the total inventory of raw material of class c 
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at the end of period t is equal to its inventory in the previous period plus the quantity of 

material of class c supplied at the beginning ofthat period (sct ) minus its total consumption 

in that period. It should be noted that the total consumption of each class of raw material in 

each period is calculated by multiplying the material consumption factor of each process 

(l/lac ) by the number of times that process is executed in that period. Constraint (2.10) 

ensures that the ~um of inventory (or backorder) of product p at the end of period t is equal 

to its inventory (or backorder) in the previous period plus the total production of that 

product in that period, minus the product demand for that period. Total quantity of 

production for each product in each period is calculated as the sum of the quantities yielded 

by each of the corresponding processes considering the yield (Pap) of each process. 

Finally, constraint (2.11) requires that the total production does not exceed the available 

production capacity. In other words, the sum of capacity consumption of a machine r by 

corresponding processes in each period should n6t be greater than the capacity of that 

machine in that period. 

2.5.2. The two-stage stochastic model with recourse for MPMP 
production planning with random yield 

To include the random nature of processes yields in MPMP production planning, we 

expand the model (2.8)-(2.12) to a two-stage stochastic linear program with recourse. It is . 

assumed that the random processes yields are modeled as scenarios with known probability 

distributions. We represent the random yield vector by {, where {= {Pap 1 a E A, pEP} . 

We alsorepresent each realization (scenario) of random processes yields by Pap({). We 

den ote the total number of yield scenarios by N, and the probability of each scenario i by 

pi, respectively. It should be emphasized that the stages of the two-stage recourse problem 

do not refer to time periods. They correspond to steps in the decision making. In the first-

s~ge (planning stage), the decision maker does not have any information about the 

processes yields due to lack of complete information on the characteristic of raw materials. 

However, the production plan should be determined before the complete information is 

available. Thus the first-stage decision variable is the production plan. In the second stage 

(pl~n implementation stage) when the realized yields are available, basèd on the first-stage 

. décision, the recourse actions (inventory or backorder sizes) can be computed. The 
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objective of the two-stage stochastic program with recOUrse would be to minimize the 

material consumption cost, plus the expected inventory and backorder costs (recourse 

costs) for . aIl the yield scenarios. The resulting deterministic equivalent formulation for the 

two-stage stochastic model is as follows: 

Subject ta 

I CI = I cl - l +SCI - L f/lacXal' 
aEA 

t=I, ... ,T, CEe, 

I~t - B~, = I~/_l ~ B~/_l + L Pap({i)Xal -dpn t = 2, ... ,T, pEP, i = 1, ... , N, 

L barXal ~ M rt , 
aEA 

aEA 

l 
1=1,2, ... ,T, rER, 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

CEe, pEP, 1=1, ... ,T, aEA, i=l, ... ,N. (2.17)_ 

In the two-stage stochastic program (2.13)-(2.17), I~, and B~I denote the inventory and 

backorder sizes of product p in period 1 under yield scenario i, respectively. In this model 

there are lAI x T first-stage decisions, whereas there are 2 x Ipl x T x N second-stage 

decisions, where lAI, Ipl, and N denote the sizes , of process, prod~ct, and scenario sets, 

respectively. Thé first-stage decisions X al cannot anticipate the yield scenarios and must 

be feasible for ail scenarios. 

2.6. Modeling the random processes yields in sawmills 

To apply the proposed two-stage stochastic model ' (2.13)-(2.17) for sawmill production 

planning, as the first step, we should generate the scenarios for random processes yi~lds. A 

scenario for the yields of process (a) (combination of a log class (c) and a cutting pattern 

(s)) in a sawing unit is defined as possible quantities of lumbers that can be produced by 
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cutting pattern (s) after sawing each log of class (c). As an example of the uncertain yields 

in sawmills, consider the cutting pattern (s) that can produce 6 products (Pl, P2, P3 , P4, P5, 

P6) after sawing the logs of class (c). Table 2.1 represents four scenarios among aIl possible 

scenarios for the uncertain yields of this process. 

Table 2.1 - Scenarios for yields of a process in a sawing unit 
Products ~ Scenarios ----------

Pl P2 P3 P4 P5 P6 
100 

2 2 1 1 0 0 
300 
4 200 0 

In this work, we assume that aIl the logs that will be processed in the next planning horizon 

are supplied from the same discrete of forest. Hence, a stationary probability distribution 

can be considered for the quality of logs and uncertain processes yields during the planning 

horizon. In the following we explain how the scenarios for the yields of each process ·can be 

generated, and also how their probability distribution can be estimated. 

In realistic. scale sawmills, thousands of logs are sawn in each period in the planning 

horizon. The total production size, and consequently the inventory or backorder size of 

each product in each period, depend on the sum of yields of logs sawn in that period. Thus, 

we propose to consider the average yield of a number of logs in each log class as a scenario 

and to estimate the probability distribution for the average yields. Such scenarios with their 

probability distribution in sawmills can be determined as follows. 

1) Take a sample of logs in each log class (e.g., 3000) and let them be processed by 

each cutting pattern. Compute the average yield for the sample. 

2) Repeat step 1 for a number of replications (e.g., 30). 

3) By the Central Limit Theorem (CL T) in s41tistics, the average yield haS a normal 

distribution. Thus, based onthe average yields·computed for each replication in step 

2, estimate the mean and variance of -normal distribution corresponding to the 

average yield of each process. 

- ! 
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It should be noted that, the implementation of step 1 in this approach is very difficult in 

sawmills. In fact, the high production speed in the sawing units makes it almost impossible 
. : 

to track the logs through the line and to observe the result of sawing individual logs. As a 

more feasible alternative, we propose to use the set of yield scenarios generated by a log 

sawing simulator (Optitek). "Optitek" was developed by a research organization for 

Çanada's solid wood products industry (pP Innovation). It was developed based on the 

characteristics of a sample of logs in different log classes, as weIl as sawing rules available 

in Quebec sawmills. The inputs to this simulator include log class, cutting 'pattern, and the 

number of logs to be processed. The simulator considers the logs in the requested class with 

random physical and internai characteristics; afterwards it generates different quantity of 

lumbers (yields) for each log based on the sawing mies of the requested cutting pattern. 

Thus, in order to implement step 1 in the proposed scenario generation approach, a sample 

(e.g. 3000) of yields can be randomly selected among the set of scenarios already generated 

by Optitek, and the average yield for the sample can be ·computed. 

2.7. Solution strategy 

The two-stage stochastic model (2.13)-(2.17) can be solved by · the linear programming 

solvers, namely CPLEX solver. However, regarding the wide variety of characteristics in 

each . log class in sawmills, a huge number of scenarios for processes yields can be 

expected .. Thus, solving this model would be far beyond present computational capacities. 

We can however use Monte Carlo sampling techniques, which consider only randomly 

. selected subsets of the set {{l ,{2 , ... ,{N} to obtain approximate solutions. Monte Carlo 

solution procedures for solving stochastic programs can use "internai sampling" or 

"external sampling". The "internai sampling" procedures include sampling-based cutting 

plane methods (e.g., Higle and · Sen, 1996) and stochastic quasi-gradient algorithms (e.g., 

Ermoliev, 1998). In the "external sampling" procedures, sampling is performed external to 

(prior to) the solution procedure. The sample average approximation (SAA) scheme (cf. ' 

Shapiro and Hommem-de-Mello, 1998, 2000; Mak et aL, 1999), which is selected as the 

solution approach in this work, is an "externa'i sampling" procedure. In the following, the 

SAA scheme is described. 
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Sample average approximation (SAA) scheme 

In the SAA scheme, a random sample of n scenarios of the random vector { is generated 

N T . 

and the expectation L L LP;[hptI~, +bp,B~t] is approximated by the sample average 
;=1 peP t=l 

1 nT . . 

. function - L L L [hp(I~( + b p(B~/]. In other words, the "true" problem (2.13)-(2.17) is 
n ;=1 pEP 1=1 

approximated by the sample average approximation (SAA) problem (2.18). 

,.. . TIn T . . 

Minimize Z == LLLmc,ifJacXa, +-LLL[hp,I~, +bp,B~/] 
CEe 1=1 aEA n ;=1 pEP 1=1 

(2.18) 

Subject to 

Constraints (2.14)-(2.17). 

It can ·be shown that under mild regularity conditions, as the sample size n increases, the 

optimal solution vector Xn and optimal value Zn of the SAA problem (2.18) converge with 

probability one to their true counterparts, and moreover Xn converges to an optimal 

solution · of the true problem with probability approaching one exponentially fast (Shapiro 

, and Hommem-de-Mello, 1998 and 2000). This convergence analysis suggests that a fairly 

good approximate solution to the true problem (2.13)-(2.17) can be obtained by solving an 

SAA problem (2.18) with a mode st sample size~ The mentioned regularity conditions 

include: 1) the objective function of the stochastic model has finite mean and variance, 2) 

the independent identically distributed (i.i.d.) observations ofvector ~ can be generated, 3) 

instances of SAA problem can be solved for sufficiently large n to result "good" bounding 

information, and 4) the objective function of the stochastic model can be evaluated exactly 

for specific values of X at and realizations of vector {. It isevident that the mentioned 

regularity conditions are satisfied for our problem, ~specially due to considering a normal 

distribution for the random yields. 

In practice, the SAA scheme involve,s repeated solutions of the SAA problem (2.18) with 

independent samples. Statistical confidence intervals are then derived on the quality of the 

approximate solutions (Mak et al., 1999). According to the work of Mak et a~. (1999),an 

~------ -
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., obvious approach to test solution quality for a candidate solution (X) is to bound the 

optimality gap, defined as E{[f(X,{)] - z· using standard statistical procedures, where 

j(X,~) and z· are the true objective value for X and the true optimal solution to the 

problem (2.13)-(2.17), respectively, and E{[f(X, ~)] is the expected value of j(X,~). In 

our work, a sampling procedure based on common random numbers (CRN) is used to 

construct the optimality gap confidence interval, which provides significance variance . 

reduction over naive sampling, as shown in (Mak et al., 1999). This approach is described 

next. 

The SAA a/gorithm (with common random number streams) 

~tep 1- Generate ng independent identically distributed (i.i.d.) batches of samples each of 

size n from the distribution of ~, i.e., {~/'~j2""'~jn} for j=I, ... , ng. For each sample 

solve the corresponding SAA problem (2.18). Let Z~ and X ~, j =1, ... , ng , be the 

corresponding optimal objective value and an optimal solution, respectively. 

Step 2- Compute 

- 1 ~'" 
Znn =-~Z~, and 

, g ng j=l (2.19) 

(2.20) 

It is weil known that the expected value of Zn is less th an or equal to the optimal value z· 

of the true problem (see e.g., Maket al., 1999). Since Zn n is an unbiased estimator of , g 

E[Zn], we obtain that E[Zn,ng] ~ z· . Thus Zn,n
g 

provides a lower statistical bound for the 

optimal value z· of the true problem (2.13)-(2.17) and s~ is an estimate of the variance 
. npg 

of this estimator. 
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Step 3- Choose a candidate feasible solution X of the true problem, for example, a 

computed X~, by using a samp~e size (n') larger than used for lower bound estimation 

(n). Estimate the true objective function value j(X) for aIl batches of samples 

(j =1, ... , ng) as follows. 

(2.21) 

Step 4- Compute the observations of the optimality gap CI, for the candidate solution X 

for aH j =1, ... , ng as follows: 

It has been shown in Mak et al. (1999) that: . 

E[Jn(.X)-Zn] ~ E{[f(X,f)]-z' . . 
'------v-------

Gn 

(2.22) 

(2.23) 

where j(X,~) and z· are the true objective value for X and the true optimal solution to 

the problem (2.13)-(2.17), respectively, and (E{[j(X,~)]..;..z·) is the true optimality gap for 

the candidate solution X . We also have: 

where ai = var (In. 

Step 5- Compute the sample mean and sample variance for the optimality gap G~' as 

follows. 

(2.24) 
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(2.25) 

Step 6- Compute the approximate (l-a) ~level confidence interval for the optimality gap of 

In order to solve the SAA problem (2.18) for each of the ng batches of n randomly sampled 

scenarios, we propose either to solve directly its deterministic equivalent, or in. the cases 

where the number of scenarios is very large and the deterministic equivalent model cannot 

be solved in a reasonable amount of time, to tmplement the regularized decomposition 

method (Ruszczynski and Swietanowski, 1996) with la) trust region as it is used in 

Linderoth and Wright (2003) and Linderoth and Shapiro (2006). 

2.8. Validation of the stochastic sawmill production planning 
model by Monte Carlo simulation 

In this section, the proposed approach to validate the two-stage stochastic sawmill 

production planning model is described. To validate the stochastic model, we propose to 

compare the plans proposed by the stochastic and detenriinistic sawmill production 

"planning models. As we mentioned before, we assume that the company is very service 

sensitive, i.e., the realized total backorder size after implementation of production plan is 

more crucial th an the realized inventory size. Thus, the following key indicators of 

performance are considered to compare the deterministic and stochastic models: 

1) Backorder gap (BO gap): the gap between "the expected realized total backorder size 

of the deterministic and the stochastic models' plans, after implementing the plans 

proposed by the mentioned models~ 

2) Plan precision: the gap between the planned total backorder size determined by the 

production planning model and the expected realized total backorder size, after 

implementing the model's plan. This indicator evaluates also the extent to which the 
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yield scenarios considered in the stochastic model are close to the scenarios that can be 

observed in the real production process. 

In order to compute the expected total backorder size after implementing the plans, we 

propose to use Monte Carlo simulation. The main objective of this simulation is to 

implement the production plans virtually, by considering the yield scenarios that might be 

real~ed during the plan implementation in realistic scale sawmills. Hence, the following 

features are considered for the simulator: 

1) To get the production plans proposed by the deterministic and stochastic models as 

w,eIl as the products demand, as the inputs. 

2) Ta simulate the production 'plan implementation based on the received production 

planas follows: 

2.1) To determine a sample size equal to the numberof times each process should 

be run in each period (production plan). 

2.2) To generate randomly a sample of scenarios (with the size determined in 2.1) 

for the yields of each process, from 'the set of possible scenarios for the yield of that 

process. It should be mentioned that this step is equivalent ~o select a random 

sample of logs in each class to be sawn by each cutting pattern, while implementing 

the production plan in sawmills. 

3) To compute the total production size of each product at the end of that period, after 

simulating the plan implementation for each period (step 2). 

4) To compute thebackorder or inventory size of each product in each period based on , 

the total production size of that product (computed in step 3) and its demand for that 

period. 

Figure 2.3 illustrates the main features of the simulator which is designed to simulate the 

plans implementation in sawmills. 
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Produdion Plan: 
For ail processes: 1, .. , ,., 

(X(1), ... ,X(A)) 

Set of scenarios for the 
uncertain yields of 
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yields of process '1 f- sampling . 
1 

Scenarios for the uncertain ~ Monte C. aOO 
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Total backordef size per product per 
period 

Figure 2.3 - Simulation of the production plans implementation in a sawmill 

2.9. Computational results 

In this section, we de scribe the numerical experiments using the proposed two-stage 

stochastic model to address a medium capacity sawmill production planning problem. We 

tirst describe the characteristics of the test industrial problem and sorne implementation 

details; then, we comment on the quality of the stochastic model solutions determined by 

. the SAA scheme; finally, we compare the stochastic and' mean-value deterministic models' 

plans by the proposed Monte Carlo simulation approach (see section 2.8), for different 

demand levels. 

2.9.1. Data and implementation 

The proposed two-stage stochastic program with recourse in this paper is applied for a· 

prototype sawmill. The prototype sawmill is a typical medium c<:tpacity· softwood sawmill 

located in Quebec (Canada). The sawmill focuses on sawing high-grade products to the 

/ domestic markets as weil as export products to the .USA. It is assume~ that the input bucked 

logs into the sawing unit are categorized into 3' classes. 5 different cutting patterns are 

available. The sawing unit produces 27 products of custom sizes (e.g. 2(in)x4(in), 
\ , 

2(in)x6(in) lumb~rs) in four lengths. In other words, there are 15 processes; aIl can produce 

27 proQucts with random yields. We consider two bottleneck machines: Trimmer and Bull. 
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The planning horizon consists of 30 periods (days). Product demand in each period is ' 
. . 

assumed to be deterministic and is determined based on the received orders. Lumbers that 

remain from one period to the next are subject to a unit holding cost. . The unsatisfied 

demand is penalized by a unit backorder cost. We assume that the company is very service 

sensitive and wishes to fulfill customer demands on time' as much as possible. Hence, the 

inventory costs of products are considered much lower than their backorder costs. The 

inventory holding cost is computed by multiplying the interest rate (per period) by the 

luinber price; the lumber pr~ce is considered as the backorder cost. It would beworth 

mentioning that the data used in this example are based on the data gathered from different 

sa\\rmills in province of Quebec (Canada). As the list of custom sizes, machine parameters 

and priees are proprietary; they are not reported in this paper. 

Recall from section 2.7 that the SAA method caUs for the solution of ng instances of the 

approximating stochastic program (2.18), each . involving n sampled scenarios. Statistical 

validation of a candidate solution is then carried out by evaluating the objective function 

value usiilg thesame n sampled scenarios in each batch. In our implementation test, we 

used n=30 and 100; and ng ~ 30 . Our candidate solutions are comput~d by solving the ;SAA 

problem (2.18) with n' = 100 an<;l 150. To illustrate the complexity of solving (2.18) within 

the SA1\ scheme, we present the sizes of the deterministic equivalents of the SAA problems 

corresponding to different values of n in Table 2.2. 

Table 2.2 - Size of the deterministic equivalent of the SAA problem 
n Number of constraints N,umber of variables 
1 960 2160 

30 24450 49140 
100 81150 162540 
150 121650 243540 

The SAA scheme was implemented in OPL Studio 3.7.1. CPLEX 9 LP solver is used for 

solving the deterministic equivalents for different instances oJ SAA problems as well as for 

. calculating the true objective function value for the candidate solutions. The simulator is 

programmed ·in Java. AlI computations were .carried out on a Pentium(R) IV 1.8 GHz PC 

with 512 MB RAM running Windows XP. 
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2.9.2. QualitY of the stochastic solutions 

In this sec~ion; we present the results of applying the SAA scheme for our test problem and 

the evaluation of quality of candidate approximate solutions. Point estimates (see (2.19) 

and (2.20)) of the lower statistical bound for the optimal value of the stochastic problem are 

reported in table 2.3. They are computed based on 30 batches of sampled scenarios with 2 

different batch sizes. Table 2.4 displays the quality of 2 candidate solutions and contains 

the 95% confidence intervals on their optimality gaps based on CRN method (sèe section 

2.7). The candidate solutions X 100 ,X I50 for the RCN strategy are computed by solving the' 

~pproximating problem (2.18) that includes 100 and 150 scenarios. The CPU times for 

computing each candidate solution are also reported in table 2.4. 

Table 2.3 - Lower bound estimation results for the optimal valu~ ( ng = 30 batches) 
Batch size (n) 30 100 . 
Average (Zn,n

g
) 1,923,901 1,924,380 

SD (sz ) 4,730 4,068 
n,ng 

Table 2.4 - Optimality gaps for candidate solutions 
Candidate solution XlOO X 150 

Batch size{n) 30 100 
No. of batches ( ng) 30 30 

Point estimate (G ) 
ng 1710 918 

Error estimate (a = 95%) (ig) 737 284 
Confidence interval (95%) [0, 2447] [0, 1202] 
CPU time (minutes) 20 25 

As it can be observed fromTable 2.4, by increasing the sample size, the quality of 

approximate solutions improves and tighter confidence . intervals for the optimality gaps of 

candidate solutions are constructed. Finally we can conclude that, by considering a 

moderate number of scenarios (150 scenarios) among thepotenti~l enormous number of 

scenarios, "we obtain an approximate solution in a reasonable amount of timewith an 

optimality gap of [0, 1202] which is . about 0.006% of the lower boundof the real optimal 

value (seeTables 2.3). Thus, this solution can be accepted as a good approximation to the 

optimal solution of the original stochastic model (2.13)-(2.17). 
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2.9.3. Comparison between the stochastic and deterministic sawmill 
production' plannin'g models 

In this section, the results of comparison between the two-stage stochastic and mean-value 

detenninist ic sawmill production planning models, through Monte Carlo simulation (see 

, section 2 . 8)~ are provided. The comparison is carried out for the sawmill example described 

in 2.9.1. Four different demand levels (DI, D2, D3, D4) are considered, where D2=2x DI , 

D3=3 x DI , D4=4 x DI. For each . demand level, 60 demand scenarios are generated 

randomly which are distinguished by the distribution of total demand between different 

products. Hence, a total of 240 (4 x 60) test problems are solved by the deterministic and 

stochastic models. The simulation of implementing the production plans proposed by the 

detenninistic and the stochastic models is fUn for 1000 replications. The expected total 

backorder size computed in 1000 replications is used to compute the key indicators of 

perfonnances (see section 2.8) for the test problems. 

Table 2.5 includés the mean and standard deviation (SD) of the backorder gap (BO gap) as 

weIl as the plan precision computed for the 60 test proble'ms, corresponding to the 60 

demand scenarios, in each of the 4 demand levels. It would be worth nientioning that the 

values ofBO gap and plan precision presented in table 2.5 are computed as follows: 

Plan precision = 100x (BOsim - BOp'an )/ BOsim 

where 

BOD : The expected realized total backorder size of the detenninistic model after plan 

implementation (computed throughMonte Carlo simulation) 

BOs: The expected fealized total backorder size of the stochastic model after plan 

implementation (computed through Monte Carlo simulation) 

BOsim : The expected realized total backorder size after plan implementation (computed 

through Monte Carlo simulation) 

BOp/an: Total backorder size determined by the production planning model 
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To illustrate how the results in table 2.5 can be interpreted, the following examples are 

provided. The mean of BO gap for 60 demand scenarios in the demand level DI, which is 

determined as 75% in table 2.5 can be interpreted as follows: the expected total backorder 

size of stochastic model plan (computed through Monte Carlo simulation) is 75% smaller 

than the expected total backorder size of deterministic model plan (computed through 

Monte Carlo simulation). Thus, it can be concluded that the stochastic model outperforms 

the deterministic model in proposing the production plans with lower total ba.ckorder size. 

Table 2.5 - Comparison between the det~rministic and stochastic sawmill production planning models 

Dl 02 03 04 

BOgap Plan BOgap Plan BOgap Plan BOgap Plan 
Sawmill ~recision . ~recision ~recision Erecision 

. production 
3:: 3:: 3:: 3: 3:: 3: 3: 3: planning CI) CI) CI) CI) CI) 00 CI) CI) 
(b 0 (b 0 (b 0 (b 0 (b 0 (b 0 (b 0 (t) 0 model PJ PJ PJ § § PJ PJ § ::s 

~ 
::s ".-., ::s 

~ 
".-., ".-., ::s ".-., ::s 

~ 
".-., 

".-., ".-., '(ft .~ ".-., ~ ".-., 

~ 
".-., 

~ 
".-., ~ ~ ~ "--" ~ "--" "--" ~ ~ ~ ~ ~ ~ '(ft 

~ '-" 

Oeterministic 145 350 35 138 7 93 -13 40 
Two-stage 75 21 -40 19 58 33 -34 15 39 25 -26 16 31 21 -19 10 Stochastic 

The mean of plan precision for 60 demand scenarios in the demand level D3 in the 

stochastic model, which is indicated as -26%, can be interpreted as follows: The expected 

total backorder size of production plan proposed by the stochastic model (computed 

through Monte 'Carlo simulation) is 26% smaller than the expected total backorder size that 

was determined by this model. A positive value for plan precision indicates that the realized 

total backorder size through Monte Carlo simulation . is larger than the planned total 

backorder size, as in the case of the deterministic model for demand levels DI, D2 and D3. 

We next analyze the results provided in table 2.5 to compare the performance of the 

deterrninistic and the stochastic sawmill production planning models in terms of their 

expected total backorder size as weIl as their plan precision. Figure 2.4 compares the ' mean 

backorder gap (BO gap) between the ~tochastic and the deterministic models, for the four 

demand levels. As it can be observed in · table 2.5 and .figure 2.4, the production plan 

proposed by the stochastic model results smaller · expected total backorder size (after 

. implementing the plan) than the deterministic model plan, for the four demand levels. 

However, the gap between the expected total backorder size of stochastic model plan and 

- - - -------
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the detennin~stic model plan" decreases, as demand increases. This should make no surprise. 

As we men.tioned before, the sawmill example is a medium capacity sawmill where 

thousa~ds of logs are sawn in each period in the planning horizon. By the law of large 

numbers (LLN) in statistics, as demand increases, the average yield of each process in each 

period, observed through Monte Carlo sampling in "the plan implementation simulator, will 

be closer to its expected value, which is considered in the detenn"inistic model. 

70 

~ 60 
Q. 50 l'II 
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0 
al 

40 
c 30 cv 
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~ 20 
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Figure 2.4 - Mean backorder gap (BO gap) of the stochastic and deterministic sawmill production planning 
" models 

Figure 2.5 compares the mean of plan precision of the stochastic model and the 

determihistic model, for the four demand levels. As it can be observed in table 2.5 and 

figure 2.5, the precision of the production plan proposed by the stochastic model is higher 

than the determirtistic one, for the four demand levels. As the demand increases, the 

average yield, observedafter implementing the plan through Monte Carlo simulation, gets 

close to the average yield scenarios" considered in the stochastic modeL Rence the precision 

of plans of the stochastic model improves for the larger volumes of demand. For the lower 

demand levels, the stochastic model proposes relatively pessimistic plans. On the other 

hand, -the deterministic model provides the optimistic plans for demand levels Dl, D2 " and 

D3, since it does not take into account different scenarios for random yield. However, as 

the demand increases, the average yield of each processin each period, observed through 

Monte Carlo simulation, gets closer to its expected value which is used in the deterministic 

model. Thus, the precision of deterministic model plan increa~es, as the demand increases. 

------------ - ---------------------------------
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Figure 2.5 - Plan precision comparison of the detenninistic and stochastic sawmill production planning 

models 

Regarding to the above comparisons, it is clear that the two-stage stochastic model provides 

more realistic production plans . in sawmiIls, in terrns of the realized backorder size, th an the 

mean value deterrninisticmodel. The deterrninistic model provides optimistic plans, since it 

considers the deterrninistic yields ( expected values). As the stochastic model considers 

different scenarios for random yields and finds a production plan with minimum expected 

backorder and inventory size for aIl the yield scenarios, the production plans provided by 

this model are more realistic. 

2.10. Conclusions 

In this paper, we developed a two-stage stochastic programming model for MPMP 

production planning under the uIicertainty of processes ,yields. The proposed model was 

applied for sawrnill production planning by considering randoni characteristics of logs. The 

SAA method was implemented to solve the stochastic model which provided us an efficient . 

framework, for identifying and statistically testing a varièty of candidate production plans. 

We also proposed a validation approach to compare · the plans proposed by the stochastic 

anddeterrninistic sawmill production planning models, which is based on Monte Carlo 

simulation. We provided the empirical results for production planning in a medium 

capacity prototype sawmill and we identified the candidate plans in a reasonable amourit of 

time by solving the approximate SAAproblern.Furtherrnore, the confidence intervals for 

the optimality gap of candidate solutions were constructed by corn mon random number 

(CRN) streams. The comparison between the two-stage stochastic and deterministic 

sawrnill production planning models was carried out for 4 demand levels. Our results 

-- --- ------------ --~--~-----------------------------------------------------------------------------------------
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revealed that the production plans proposed by the stochastic model are more realistic than 

those obtained by traditional mean-value deterministic model. Although these results are 

found for sawmill production planning, the proposed approach in this work can be applied 

for production planning in other manufacturing environments where non-homogeneous and 

random characteristics of raw materials result in random yield. Future research will 

consider in the stochastic model the decision maker' s risk preferences towards the cost of 

different scenarios in addition to their expected cost. Furthermore, by considering also the 

products demands as random variables, more realistic production plans can be obtained. 
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Chapter 3 

Robust production planning in a manufacturing 
environment with random yield: A case in sawmill 
production planning 

The article entitled "Robust production planning in a manufacturing envi!"onment with 

random yield: A case in sawmill production planning' is included in this chapter. It has 

been accepted on March 2009 for publication in the "European Journal of Operational 

Research". The version presented in the thesis is identical to the final corrected version sent 

to the editor for publication. 
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3.1. Abstract 

This paper addresses ~ rnulti-period, multi-product sawmill production planning problern 

where the yields of processes are randorn variables due to the non-homogeneous quality of 

~aw rnaterials (logs). In order t6 determine the production plans with robust custorner 

service level, robust optirnization approach is applied. Two robust optimization models 

with different variability measures are proposed, which can be selected based on the 

tradeoff between the expected backorder/inventory cost and the decision maker risk 

aversion level about the variability of custo~er service level. The implernentation results of 

the proposed approach for a realistic-scale sawrnill example highlights the significance of 

using robust optimization in generating more robust production .plans in the uncertain 

environments compared with stochastic prograrnming. 

3.2. Introduction 

Pr?duction planning in many manufacturing environments is based on sorne parameters 

with uncertain values. U ncertainties might arise in product demand, yield of processes, etc. 

Thus, the robustnessof a · production plan, in term of fulfillment of product demand, is 

dependent on incorporating the uncertain parameters in production planning models. 

This study is concentrated on multi-period, multi-product (MPMP) production planning in 

the sawing units of sawmills, where possible combinations of log classes and cutting 

patterns produce simultaneously. different mix of lumbers. As logs are grown under 

uncertain natural circumstances, non-homogeneous and random characteristics (in terms of 

diameter, nurnber of knots, ~nternal defects, etc.) can be obse~ed in different logs in each 

class. Consequently, the processes yields (quantities of lumbers that can beproduced by 

each cutting pattern) are random variables. Lumber demand in each period is assumed as a 

deterministic parameter whichis determined based on the received orders. That is, we do 

not deal with "seasonality" or "trend-based" demand in this work. In the sawmill production 

planning 'problem, we are looking for the optimal combination of log classes and cutting 

. patterns that best (it against lumher demande The part of demand that cannot he fulfilled on 

time, due to machine capacities and/or un certain yield, will be postponed to the next period 

by considering a hackorder cost. The objective is to minimize products inventory and 

------ ------------ - --
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backorder costs and raw material consumption cost, regarding fulfiilment -of product 

demand, machine capacities, and raw material (log) inventory. The uncertainty in the yields 

of cutting patterns in sawmills can be represented as uncertain yield coefficients in the 

coefficients of constraints matrix. Regarding the potential significance of yield uncertainty 

on the production plan, and customer orientation which is at center of attention in the 

sawmills which are dependent on the export· markets, obtaining robust plans with minimum 

backorder size (service level) variability is an important . goal of production planning in 

sawmills. 

Sawmill production planning problem can be considered as the combination of several 

classical production planning problems in the lite rature which have been modeled by linear 

programming (LP). This problem was formulated by a deterministic LP model and was 

solved based on the average values for processes yields in- Gaudrault et al. (2004). 

However, if decisions are made based on the deterministic mode l, there is a risk that the 

demand might not he met with the right products. Consequently, this results in high 

inventory levels of products with low quality and priee, a~ weIl as extra levels ofhackorder 

of products with high quality and price (decreased customer service level). The other 

approach in the literature for sawmill production planning is focused on combined 

optimization type solutions linked to real-time simulation sub-systems (Maness and Norton, 

2002; Maness and Adams, 1991; Mendoza et al., 1991). In this approach, the stochastic 

characteristics of logs are taken into account by assuming that aIl the input logs are scanned 

through an X~ray scanner, before planning'. Maness and , Norton (20~2) developed an 

integrated multi-period production planning model which is the combination of an LP 

model and a log sawing optimizer (simulator). The LP model acts as a coordinating 

problem that allocates limited resources. The log sawing optimization models are used to 

generate columns for the coordinatingLP based on the products' shadow priees. Although 

the ~tochastic characteristics of logs are considered in this approach, it includes the 

following limitations: logs, needed for the ilext planning horizon, are not always available 

in sawmills to be scanned before planning. Furthermore, to implement this method, the logs 

should be processed in production line in the same order they have been simulated, which 

is not an easy practice. Finally scanning logs before planning is a time consuming process 

in the high capacity sawinills which delays the planning process. ' 
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There are several techniques to incorporate uncertainty in optimiz~tion models, including 

stochastic programming (Kall and Wallace, 1994; Birge and Louveaux, 1997; Kall and 

Mayer, 2005), and robust optimization (Mulvey et al., 1995). Bakir and Byme (1998) 

developed a stochastic LP model based on the two-stage deterministic equivalent problem 

to incorporate demand uncertainty in a multi-period multi-product (MPMP) production 

planning model. In Escudero et al. (1993) a multi-stage stochastic programming approach 

was proposed for solving a MPMP production planning model with random demande 

Kazemi et al. (2007b; 2008) proposed a two-stage stochastic model for sawmill production; 

it was shown in Kazemi et al. (2007b; 2008) that the production plans proposed by 

stochastic programming approach results a considerably lower expected inventory and 

backorder cost than the plans of the mean-value deterministic model. It is important to note 

that stochastic programming approach focuses on optimizing the expected performance 

(e.g., cost) over a range of possible scenarios for the random parameters. We can expect 

that the system would behave optimally in the mean sense. However, the system might 

perform poorly at a particular" realization of scenarios such as the worst-case scenario. More 

precisely, unacceptable inventory and backorder size might be observed for sorne scenarios 

when implementing the solution of two-stage stochastic model. To handle the tradeoff " 

associated with the expected cost " and its variability in stochastic programs, Mulvey et al. 

(1995) proposed the concept of robust optimization. Leung and Wu. (2004) proposed a 

robust optimization model for stochastic aggregate production planning. In Leung et al. 

(2007) a robust optimization model was developed to address a multi-site aggregate 

production planning problem in an uncertain environment. In Kazemi et al. (2007a) robust 

optirilization approach "was proposed as one of the potential methodologies to address 

MPMP production planning in a manufacturing environment with random yield. 

Inthis paper, a robust optimization (RG) approach is proposed for multi-period sawmill 

production planni~g while considering the random characteristics of raw materials (logs) 

and cC?nsequently random processes yields. The random yields are modeled as scenarios 

with -a stationary discrete probability distribution during thepl~nning horizon. W. e are 

" studying a service sensitive company that wants to establish a reputation for always " 

" meeting customer service level. We also define the customer service level as a proportion 

of the customer demand that can be fulfilled on time, and we use the expected backorder 
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size as a measure for evaluating the service level. Thus, the need for robustness has been 

mainly recognized in term of de~ermining a robust customer service level by minimizing 

the products backorder size variability in the presence of different scenarios for random 

. yields. The robustness in the products inventory size is also considered in this problem. 

Two alternative variability measures are used in the robust optimization model which can 

be selected depending on risk aversion level of decision maker about backorder/inventory 

size variability and the total cost. The proposed robust optimization (RO) approach is 

applied for a realistic-scale sawmill production planning example. The resulting large-scale 

quadratic programming models are solved by CPLEX lOin a reasonable amount of time. A 

comparison between the backorder/inventory size variability in the ' two-stage stochastic 

model and the two robust optimization models is provided~ Finally, . the tradeoff between 

the backorder/inventory size variability and the expected total cost in the two RO models is 

discussed and a decision framework to select among them isproposed. 

The main contributions of this paper can be summarized as follows. Applying robust 

optimization approach as a robust tool for sawmill production planning, regarding to the 

limitations ' of the existing approaches for sawmill produçtion planning; comparing the 

performance of two different robust optimization models in controlling the robustness of 

production plans through applying them for a prototype sawmill; proposing a framework 

. for selecting the most appropriate robust optimization model depending on the tisk 

preferences of the decision maker about service level robustness and total expected cost of 

plans. 

The rest ofthis paper is organized as follows. In section 3.3, sawmill processes and specifie 

characteristics are introduced. In section 3.4, the robust optimization formulation for two-

stage stochastic programs is provided. In section 3.5, the proposed robust optimization 

model for multi-period sawmill production planning is presented. In section 3.6, the 

scenario generation approach for random yields is described. In section 3.7, the 

computational results of implementing the 'proposed robust optimization models ' for a 

prototype sawmill are provided~ Our c.oncluding remarksare given in section 3.8. 
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3.3. Sawmill processes and specifie characteristics 

There are a number of processes that occur at a sawmill: log sorting, sawing, . drying, 

planing and grading (finishing). Raw materials in sawmills are the logs which are 

transported from different districts of forest after hucking the felled trees. The finished and 

graded lumbers (products) are then transported to the domestic and international markets. 

Figure 3.1 illustrates the typical processes. In this paper we focus on operational level 

production planning in the sawing units of sawmills. In the sawing units, logs are classified 

according to sorne attributes namely: diameter class, species, length, taper, etc. Logs are 

broken down into different di~ensions of lumbers by means of different cutting patterns . 

. See figure 3.2 for three different cutting patterns. Each cutting pattern is a combination of 

activities that are run on a set of machines. 'From each log, several pieces of sawn lumber 

(e.g. 2(in)x4(in)x8(ft), 2(in)x4(in)x 10(ft), 2(in) x 6(in) x 16(ft), ... ) are produced 

depending on the cutting pattern. The lumber quality (grade) as weIl asits quantity yielded 

hy each cutting pattern depends on the quality and characteristics of the input logs. Despite 

the classification of logs in sawmills, a variety of characteristics might be observed in 

different logs in each class. In fact, natural variable conditions that occur during the growth 

period of trees make it impossible to anticipate the exact yields ofa log. As it is not 

possible in many sawmills to scan the logs before planning, the exact yields of cutting 

patterns for different log classescannot he determined -in priori. 

Figure 3.1 - Illustration of sawmills processes (after Ronnqvist, 2003) 
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Figure 3.2 - Cutting patterns in a sawmill 

3.4. Robust optimization formulation for two-stage stochastic 
programs 

The robust optimization method developed by (Mulvey et al., ' 1995) extends stochastic 

programming by replacing traditional expected cost minimization objective by one that 

explicitly addresses cost variability. 

Consider the following LP model that includes random parameters: 

Minimize CT x 

Subject to 
Ax =,b, 

Bx~e, 

x~O, 

(3.1) 

(3.2) 
(3.3) 
(3.4) 

where x denotes the véctor of decision variables that should b~ determined under the 

uncertainty of model parameters. Band e represent the random technological coefficient 

matrix and the right-hand sicle vector, respectively. Assume a finite set of scenarios 

1 n = {1,2, ... ,S} to model the uncertain parameters; with each scenario S E'n we associate 

s 
the subset {ds, B S ,Cs, eS} and the probability of the scenario pS, ( L pS = 1). The standard 

s=1 

two-stage stochastic linearprogram is formulated as follows. 

Minimize CT x + L pS d sT jl 
sen 

Subject to 

Ax=b, 
BSx+Cs yS = eS, 

x,yS ~ 0, 
SEn, 
SEn, 

(3.5) 

(3.6) 
(3.7) 
(3.8) 
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where x denotes the vector of first-stage decision variables who se optimal value is not 

conditioned on the realization of ùncertain parameters, y S denotes the vector of second-

stage (recourse) decision variables, corresponding to scenario s, that are subject to 

adjustment once the uncertain parameters are observed. CS and dS denote the recourse 

matrix and the penalty recourse cost vector corresponding to scenario s, resp'ectively. The 

optimal solution of model (3.5)-(3.8) will be robust with respect to optimality if it remains 

close to optimal for any of the scenarios SEn. This is termed solution robustness. In other 

words, the solution robustness measures the variability of the recourse cost in model SP for 

any of the scenarios SEn. The solution is also robust with respect to feasibility if it 

remains almost feasible for aIl scenarios. This is terined model robustness. The · robust 

optimization (RO) framework introduced by Mulveyet al. (1995) is a goal programming 

approach to balance the tradeoffs between solution robustness and model robustness. 

Hence, the RO approach modifies the objective in SP as follows. 

RO: 

AI"·· T '" sdsT S '1 (1 S) ( ~l ~S) lvllnlmlZe C X + L..J P Y + /l,(J" Y , ... , y + mp u , ... , u 

Subjectto 
S En 

Ax=b, 

BS x + Cs yS + 8 s = eS , 

x,yS ~ 0, 

SEO, 

SEn. 

(3.9) 

.(3.10) 

(3.11) 

(3.12) 

Th~ term .( L pSdsT yS +Â,a-(yl, ... ,yS)) in the objective function denotes the solution 
sen 

robustness measure, where Â, ~ 0 is a goal programming weight and CT(yl, ... ,yS) denotes 

the recourse cost variability measure. By changing Â" the relative importance of , the 

expectation and variability of the recourse cost in the objective can be controlled. The last , 

term in the objective function p( 81 
, ••• ,8S

) is a feasibility penalty function, which is used to 

penalize the violation of constraints (3.11) (denoted by 6 S
) under sorne of the scenarios. m · 

is a goal programming weight. In the following, the recourse costvariability measures 

existing in the literature, as weIl as the measures that we use in this work, are presented. 
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3.4.1. Variability measures in robust optimization models 

The classical approach to model the tradeoff between the expectation and the variability in 

RO models is to use mean-variance model of Markowitz (1959) which has been 

implemented in many applications, namely capacity expansion of power systems (Malcolm 

and Zenios, 1994), stochastic logistic problems (Yu and Li , 2000), stochastic aggregate 

production planning (Leung and Wu., 2004; Leung et al., 2007). However, there are sorne 

exceptions against using mean-variance in. sorne applications: variance is a symmetric risk 

measure, penalizing equally the cost both above and below the expected recourse co st. As 

in the case of production planning it is more convenient to use an asyrnrnetric risk rneasure 

that would penalize only costs above the expected value. Shabbir and Shahinidis (1998) 

proposed to use the upper partial mean of the recourse cost as the measure of variability in 

a robust optimization model for processplanning under uncertainty. In List et al. (2003) an . 

upper partial moment (UPM) of order 1 was used in a robust optimization mode} for fleet 

planning under uncertainty. Takriti and Shabbir (2004) used the upper partial ·moment of 

order 2 for robust optimization of two~stage stochastic models . 

. 3.4.2. Proposed variability measures 

As we· have already mentioned, in the production planning problem that we are addressing, 

using the symmetric mean-variance tradeoff for ' recourse cost can generate solutions that 

are inefficient and which would not be considered by a rational manager. Regarding the 

proposed asymmetric variabilitymeasures in the literature and the recent developments in 

optimization solvers, namely CPLEX 10, which · have made it possible to solve large-scale 

. quadratic programs in a reasonable amount of time, we propqse two variability measures of 

recourse costs in this problem, namely the upper partial moment of order 2 · (UPM:..2), and 

the upper partial variance (UPV). 

3.4.2.1. Upper partial moment of order 2 (UPM-2) 

The upper partial moment oforder 2 (used also in Takriti and Shabbir, 2004) is defined as 

follows. 

(3.13) 
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where 

(3.14) 

and R* is the target recourse cost. For scenario s, ~:2 is the squared positive deviation of 

that scenario's recourse cost from the target recourse cost. In this way, ~~ is defined as the 

expectation of the squared positive deviations over aIl scenarios. 

3.4.2.2. Upper partial variance (UPV) 

. The upper partial variance is the quadratic version of upper partial mean (UPM) of Shabbir 

and Shahinidis (1998). It is defined as follows. 

(3.15) 

where 

(3.16) 

For scenario s, ~+2 is the squared positive deviation of that sce~ario's recourse cost from 

the expected recourse cost. In · this way, ~~ is defined as the expectation of the squared 

positive deviations. over an · scenarios. It should be mentioned that the advantage of UPV 

variability measure over the (UPM-2) is that UPV does not require a priori specification of 

a target recourse cost and therefore is more flexible. 

3.5. Robust optimization model ~or multi-period sawmill 
production planning . 

Consider a sawing unit with a set of products (lumbers) P, a set of classes of raw materials 

(logs) C, a set of production processes A, a set of machines R, a planning horizon 

. consisting of T periods, and a scenario set n = {1,2, ... ,N} for random processes yields. For 

modeling simplicity, we define a production process in a sawing unit as a possible 

éombination of a log class and a cutting pattern. The (first-stage) decision variable is the 
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number of times each process should be run in each period (production plan X at ) . This is 

. equivalent to finding log consumption of each log class as well cutting pattern selection for 

each log class in each period. The production plan X at cannot anticipate the yield scenarios 

and must be feasible for · all of the scenarios. Inventory (I~t) and backorder (B~t). size of 

each product in each period are the recourse decision variables that can be detennined 

based on the first-stage production plan and the realized scenarios for processes yields. To . 

state· the robust optimization model for this production planning problem, the following 

notations are used: 

3.5.1. Notations 

Indices 

p product (lumber) 

t period 

c raw material (log) class 

a production process (combination of a log class and a cutting pattern) 

r machine 

scenario 

Parameters 

hpt inventory holding cost per unit of product p in period t 

bpi backorder cost per unit of product p in period t 

me( raw materialcost per unit of class c in period t 

IeO the i~ventory of raw material class c at the beginning of planning horizon 

1 pO the inventory of product p at the beginning of planning horizon 

Sel the quantity of raw material of class c supplied at the beginning of period t 

dpI demand ofproductp by the end ofperiod t 

r/lae the units of class c raW material consumed by process a (consumption factor) 

P~p the units 9f product p produced by process a (yield of process a) fot scenario i 

pi the probability of scenario i 
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cSar the capacity consumption of resource r by process a 

M rt the capacity of resource r in period t 

N number of yield scenarios 

Â goal programming parameter (Â~ 0) 

R* target inventorylbackordercost 

Decision variables 

X at the number of times each process a should be run in period t 

let inventory size of raw material of class c by the end of period t 

l~t inventory size of product p by the end of period t for scenario i (recourse decision 

variable) 

B~t backorder size of product p by the end of period t for scenario i (recourse decision 

variable) 

~~ the variability measure of inventory and backorder cost for scenario i 

3.5.2. The robust optimization mode) 

TNT N 

Minimize Z = LLLmct~acXat + LLLPlhptl~t +bptB~/] +ÂLpi~~ 
cee t=1 aeA 

Subject to 

Material inventory constraint 

let = let-l + Set - L tPacXat' 
aEA 

Production capacity constraint 
L 8arX at S M ro 
aEA 

Product inventory constraint 

l~l - B~l = I po + L P~pXai -dpI' 
aEA 

i=1 peP 1=1 i=1 

t=I, ... ,T,cEC, 

t=1,2, ... ,T, rER, 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

t = 2, ... ,T, pEP, i = l, ... , N, 
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Recourse cost variability 
TNT 

~~ ~ LL(hp(I~( +bp(B~()- LLLpi'(hp(I~( +bp(B~/)' i = l, ... ,N, (RO-UPY) (3.21) 
peP 1=1 ;'=1 peP 1=1 

T . 

~~ ~ LL(hpII~t +bptB~J-R·, i=l, ... ,N, (RO-(UPM-2)) 
peP (=1 

Non-negativity of aU variables 
X at ~O, let ~O, I~t ~O, B~t ~O,ll~~O, CEe, pE P, t= l, ... ,T,aE A, 

i=l, ... ,N. (3.22) 

The objective function (3.17) is to minimize theraw material consumption cost, the 

expected inventory and backorder costs, in addition to inventory and backorder cost 

variability for aH yield scenarios in the planning horizon. The inventory and backorder 

costs are computed by multiplying the inventory and backorder unit cost by the inventory 

and backorder size, respectively. As it was mentioned in section 3.4, Â is a goal 

programining parameter that models the tradeoff between the expectation and variability of 

the recourse cost in the objective function. For Â = 0, model (3.17)-(3.22) would be the 

two-stage ~tochastic model in Kazemi et al. (2007b; 2008). Constraint (3.18) ensures that 

the total inventory of raw material of class c at the end of period t is equal to its inventory 

in the previous period plus the quantity of material of class c supplied at the beginning of 

that period (set) minus its total consumption in that periode It should be noted that the total 

consumption of each class of raw material in each period is calculated by multiplying 

material co~sumption factor of each process (tPae) by the number of times that process is 

executed in thatperiod. Constraint (3.19) requires that the total production do not exceed 

the available production capacity. In other words·,-thesum of capacity consumption of a 

. machine.r by the corresponding processes in each period should not be greater than the 

capacity of that machine in that periode Constraints (3.20) ensure that the sum of inventory 

(or backorder) of product p at the end of period t is equal to its inventory (or backorder) in 

. the · previous period plus the total production of that product in . that period, minus the 

product demand for that periode Total quantity of production for each product in each 

period is calculated as the sum of the quantities yielded by each . of the corresponding 

processes regarding the yield (Pap) of each process.Due to the randomness ofprocess 
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yields (Pap )' these constraints a~e defined for each scenario of the processes yields. 

Constraints (3.21) compute the inventory and backorder cost variability. for each scenario: 

Depending on the type of variability measure that is used in the RO model, the mentioned 

cost variability is defined as follows. In the RO-UPV model (see section 3.4) it is defined 

as the difference between the total inventory and backorder cost of each scenario and the 

expected inventory and backorder cost, while in the RO-(UPM-2) (see section 3.4) it 

denotes the difference between the total inventory and backorder cost of each scenario and 

a target inventory and backorder cost (R* ). Note that constraints (3.21) and the non-

negativity of ~~ together with the minimization in the objective function satisfy the 

definition of upper partial moment of order 2 ((3.13) and (3.14)) and upper partial variance 

((3.15) and (3.16)). 

3.6. Scenario generation 

In this section, we explain how the scenarios for random processes yields (p!p ) can be · 

generated in the RO model. We define a scenario in this model as the combinations ' of 

scenarios for yields of individual processes. We suppose _ that the yields of different 

processes are independent. Therefore, as the firsf step, aIl possible scenarios for yields of 

each process should be determined and then these scenarios should be aggregated to 

generate the scenarios for the ' RO model. This approach is illustrated in figure 3.3. A 

scenario for the yields of process (a) (coqibination of a log class (c) and a cutting pattern 

(s)) in a sawing unit is defined as possible quantities of lumbers that can be produced by 

cutting pattern (s) after sawing each log of class (c). As an example of the uncertain yields 

in sawmills,consider the cutting pattern (s) that can produce 6 products (PI, P2, P3, .P4, P5, 

P6) after sawing the logs of class (c). Table 3.1 represents four scenariosamong aIl possible 

scenari~s for the uncertain yield of this process. 
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Scenarios for 
yields of 

process #1 

Scenarios for 
yields of 

process #n 

Scenarios for 
yields of 

process #2 

Scenarios for 
yields of 

process #3 

n: number of individual processes 

Figure 3.3 - Scenario generation approachin the robust optimization model 

Table 3.1 - Scenarios for yields of a process in a sawing unit 
Products . Scenarios ----------

PI P2 P3 P4 P5 P6 
001 

2 211010 
3 1001 11 
4 2 0 0 0 1 

In this work, we assume that aIl the logs thatwill be processed in the next planning horizon 

are supplied from the same discrete of forest. Hence, a stationary probability distribution 

can be considered for the quality of logs and uncertain processes yields during the planning 

horizon. Regarding the limited volume of logs and dimensions of lumbers, we assume a 

discrete probability distribution for processes yields. Furthermore, due to the wide variety 

of characteristics in each log class a huge number of scenarios for processes yields can be 

expected. · The scenarips for processes yields with their probability distribut,ions in sawmills . 

can be determined as follows. 

(1) Take a sample of logs in each class (e.g. 300 logs) and let them to be processed by each 

cutting pattern. 

(2) Register the yield of the process (the corresponding products with their quantity) for 

each individuallog and consider the result as a scenario. 

(3) Having observed aIl the scenarios; calculate their probabilities as their proportion in the 

population of scenarios. 
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It should be noted that the implementation of the above approach is very difficult in 

saWmills. In fact, the high production speed in the sawing unit makes it difficult to track the 

logs through the line· and to observe the result of sawing individual logs. In this paper we 

use yield scenarios generated by a log sawing simulator which will be discussed more in 

3.7.2. 

3.7. Computational results 

In this section, we de scribe the characteristics of the prototype sawmill, scenario generation 

approach for uncertain processes yields; and sorne irnplernentation details. We also provide 

the results of implementing the proposed robust optimization models for the sawmill 

example. We compare the recourse cost variability in the two RO .models and two-stage 

stochastic one. We also discuss about the perfonnance of the two robust optimization 

·m·odels in controlling backorder/inventory size variability and provide a framework to 

choose among them depending on the decision maker' s risk preference·. 

3.7.1. Example description 

A prototype sawmill is used to illustrate the use of the two robust optimization models. The 

prototype sawmill is a typical softwood sawmill located in Quebec (Canada). The sawmill 

focuses on sawing high-grade products to the domestic markets as weil as export products 

to the . USA. It is assumed that the input bucked logs into the _ sawing unit are categorized 

into 3· classes based on their two ends diameters. 5 different cutting patterns are available. 

The sawing unit produces27 products of custom sizes "( e.g. 2(in) x 4(in), 2(in) x 6(iri) 

lumbers) in four lengths. In other words, there are 15 processes ail can produce 27 products 

with random yields. We consider two bottleneck. machines: Trimmer and Bull. The 

planning horizon consists of 30 periods (days). Product demand in each period is assumed 

to be deterministic which is determined based on the received orders. Lumbers that remain 

. from one period to the next are subject to a unit holding cost. The unsatisfied demand is 

penalized by a unit backorder cost. We assume that the company is very service sensitive 

and wishes to fulfill customer demands on time. as much as possible. Hence, the inventory 

costs of products are. considered much lower than theit backorder costs. The inventory 

holding cost is computed by multiplying the interest rate (per period) by the lumber price; 
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the lumber price is co~sidered as the backorder co st. It would be worth mentioning that the 

data used in this example are based on the gathered data from different sawmills in Quebec 

province (Canada). As the list of custom sizes, machine parameters and prices are 

proprietary, they are not reported in this paper. 

3.7.2. Scenario generation for the uncertain processes yields 

In the prototype sawmill that we ~onsidered in this work, due to the lack of historical data 

on the yields of processes, the yield scenarios already generated by a log sawing simulator 

(Optitek) were used. "Optitek" was developed by a research company for Canada's solid 

wood products industry (Forintek Canada. Corp.). "Optitek" simulates the sawing process in 

the sawing units of Quebec sawmills. It was developed based on the characteristics of a 

sample of logs· in different log classes, as weIl as sawing rules available in Quebec 

sawmills. The inputs' to this simulator include log class, cutting pattern, and the number of 

logs to be processed. The simulator considers the logs in the requested class with random 

physical and internaI characteristics; afterwards it gen~rates different quantity of lumbers 

for each log· based on the sawing rules of the requested cutting pattern. The yielded lumbers 

of each log can then be considered as a scenario for the yields of the corresponding, process~ 

Recall from section 3.5 that a yield scenario in the RO model is· the combination of yield 

scenarios of ail the processes in the problem. In this example we have 15 processes, each 

can produce 27 products. Thus, the ROmodel (3.17)-(3.22) includes 405 (27 x 15) yield 

coefficients Pap' Ifwe assume that each yield coefficient can take 5 different values, the 

number of scenarios for random yields in the RO model can be estimated as 

5405 ~1.2xl0283 . As solving the tobust optimization model (3.17)-(3.22) for ail scenarios of 

random yields is far beyond present computational capacities, a random sample of such 

scenarios is considered. Thus, we generated 250 scenarios by Monte Carlo sampling among 

the scenarios generated by "Optitek" · for the same log classes and cutting patterns that we 

considered in this example. It should be noted that the same sample size for yield scenarios 

was. used "in a two-stage stochasticmodel for production planning in the same prototype · 

sawmill in Kazemi et al. (2007b; 2008). Based on the sample average approximation (SAA) 
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scheme which was applied in Kazemi et al. (2007b; 2008), by considering 250 scenarios a 

good approximate solution with an acceptable optimality gap can be obtained. 

3.7.3. Implementation details 

By considering 250 scenarios for processes' yields ln this example, the quadratic 

programming model (3.17)-(3.22) consists of 202900 constraints and 405790 decision 

variables. Both of the quadratic robustoptimization models (RO-UPV and RO-(UPM-2)) 

were solved by CPLEX 10 barrier solver and ail the calculations of the recourse co st 

variability for different values of goal programming parameter (À) as weIl as threshold 

values. (R*) were perfonned by the scripts in OPL Studio 5.1. AlI computations were 

carried out on a Pentium(R) IV 1.8 GHz PC with 512 MB RAM running Windows XP. 

3.7.4. Results ofrobust optimization approach for the sawmill example 

In this section, we report the results of the implementation of the two robust optimization 

models for the prototype sawmill described in 3.7.1. 

3.7.4.1. RO-(UPM-2) model resuIts 

Remember from section 3.4 that RO-(UPM-2) model requires a target recourse cost R* . It 

should be noted that the target cost can be detennined based on the desired service level. In 

this sawmill example, we provide the target cost as a percentage of the optimal expected 

backorder and inventory cost when À == 0 (the standard two-stage stochastic program). For 

example, thè expected backorder and inventory cost for . this prototype . sawmill, by 

considering 250 yield scenarios, without any penalty on recourse cost variability is 379367. 

As we mentioned before, a range of robust optimal solutions can begenerated in the robust 

model as we change the robustness parameter Â. This parameter reflects the decision . 

maker level of concem with exceeding the target cost for aIl scenarios of random yield. 

Table 3.2 presents the results of RO-(UPM-2) model for various R* - À combinations for 

the sawmill example . . 
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Table 3.2 - Results of RO-(UPM-2) model for the sawmill example - The values of Â are in multiples of 
10-5 • 

Raw Expected recourse Expected Expected Recourse CPU 
R· À material . (backorder/inventory) backorder inventory (backorder/inventory ) time 

cost cost cost cost co st variability (Li+ ) (min.) 
0 155473 379367 ·378560 807 3.3 
1 218392 343974 342942 1032 178009 4.5 
2 236984 340742 339662 1080 176136 4.5 

60% 5 259574 339013 337895 1118 175070 4.5 
10 275420 338259 337121 1138 174592 4.5 
20 285092 338041 336900 1141 174474 4.5 
1 210971 346041 345031 1009 137648 . 4.5 
2 228366 342169 341110 1059 135700 4.5 

80% 5 252038 339526 338420 1106 134252 4 .5 
10 269560 338756 337640 1116 133738 · 4.5 
20 280942 338406 337285. 1121 133533 4.5 

201327 349348 348369 979 98539 4.5 
2 219352 343931 342896 1035 96124 4.5 

100% 5 . 242070' 340381 339292 1089 94284 4.5 
10 258540 339528 338435 1093 93611 4.5 
20 272871 338812 337702 1110 93195 4.5 
1 191259 354018 353074 944 62844 4.5 
2 205886 348158 347165 993 60523 4.5 

1200/0 5 227558 342977 341925 1052 58490 4.5 
10 243688 340873 339787 1085 57644 4.5 
20 257247 340047 338962 1085 57145 4.5 
1 181544 359445 358536 951 42515 4.5 
2 194034 353158 . 352207 1007 41033 4.5 

140% 5 213167 346798 345790 1041 39364 4.5 
10 227432 344132 343091 1045 38532 4.5 
20 240147 342989 341944 951 38091 . 4.5 

When table 3.2 provides the value of 80% in column " R* ", the target co st is 379367 x 80% 

= 303494. In the second column in table 3.2 the values of À are provided in multiples of 

10-5 , since R* ==379367 and a quadratic variability measure is used in the RO-(UPM-2) 

model. The recoursecost variability measure in column 7 is presented as the square root of 

(3.13) used in RO-(UPM-2) model. The last column of tabl~ 3.2 includes CPU time ·(on 

minutes) for finding the optimal solution of RO-(UPM-2) model byCPLEX 10. As 

expected, for a given value of R*, increasil1.g À reduces the backorder/inventory cost (size) 

variability. Thus, ,we can expect more control 'on the exceeding of each scenario's 

backorder/inventory cost over the target cost (R*), as weIl as decreased expected backorder 

cost (size), although at the expense of increased raw materia-l cost and the expected 

. inventory cost (size). In other words, by enforcing the backorder/inventory cost variability 
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measure in the objective function of model (3.17)-(3.22) (see section 3.5), the production 

level and consequently raw material consumption is increased in order to minimize the 

exceeding of backorder/inventory cost of ail scenarios over the target cost. Furtherm,ore, the 

increased inventory cost (size) is also the result of increasing the production level and raw 

material consumption. Figure 3.4 illustrates better the tradeoff ' between the 

backorder/inventory cost variability and raw material cost for different values of Â for each 

R* . Figur~ 3.5 illustrates the tradeoff between the expected backorder and inventory cost 

by enforcing the robustness parameter'in RO-(UPM-2) model for R* = 100%. 

~ R· = 60% 

_ . R· = 80% 

R· =1 00"10 

~ R·=120% 
-If- R· =140% 

50000 100000 150000 200000 250000 300000 
Raw matarial 

cost 

Figure 3·.4 - Raw material cost and backorder/inventory cost variability tradeoff in RO-(UPM-2) model for 
different values of Â and R· 

• Â = 1 *10-5 

• À= 2*IO-s 

~ À = 5*10-s 

x À = lO*lO-s 

x Â= 20*1O-s 

336000 338000 340000 342000 34400C 346000 348000 . 35000C 

Expected backorder cost 

Figure 3.5 - T~adeoff between the expected backorder and inventory costs for different values of Â 

(R· = 100%) in RO-(UPM-2) model 

As it can be observed from the results presented in table 3.2, decreasing the target recourse 

cost R* in this example does not necessarily decrease the variability measure. This implies 

that the control on the exceedirtg of the backorder/inventory cost of scenarios over a target 

cost mig~t be limited depending on the yield scenarios, as weIl as problem constraints (i.e. 

raw material inventory and machine capacity constraints). 'In other words, by imposing a 
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target cost on the variability measure in the RO mode l, it might not be feasible to achieve a 

plan with small recourse cost variability. In this example, for the target costs R* below or 

equal to the two-stage stochastic model expected recourse cost, by·enforcing the value of Â 

the recourse cost variability can be decreased to a limited value. On the other hand, for 

higher values of R* (120% and 140%) more robust production plans with less variable 

backorder/inventorycost (size) can be achieved at the expense of lower service level 

(higher expected backorder size). 

From the above discussions, it can be concluded that, if the decision maker wishes to use 

RO-(UPM-2) model to obtain a robust production plan,- he/she should choose a value of Â 

which reflects his/her risk aversion about backorder/inventory cost (size) variability, as 

weil as increased raw material consumption and expected inventory co st (size). Moreover, 

it might not be feasible to achieve a completely robust production plan by considering any 

, desirable service level (target cost R*), depending on the yield scenarios and problem 

consttaints. 

3,.7.4.2. RO-(UPV) mode) results 

Table 3.3 presents the results of RO-(UPV) models, as weil as the two-stage stochastic LP ' 

for the sawmill example. In the second column in table 3.3, the values of Â are provided in 

multiples of 10-5 , since a quadratic variability measure is used in the RO-(UPV) modeI. 

The recourse cost variability measure in column 7 is presented as the square root of (3.15) , 

used in RO-(UPV) modeI. The last column of table 3.3 includes CPU time (in minutes) for 

finding the optimal solution of RO-(UPV) model by CPLEX 10. In the RO-(UPV) model, ' 

as it can be observed from table 3.3, by increasing the value of parameter À, the 

backorder/inventory co st variability decreases significantly, while the expected backorder 

cost is augmented considerably and the expected inventory cost and the raw material cost is 

decreased. In other words, by enforcing the backorder/inventory cost variability me as ure in 

the objective function of model (3.17)-(3.22) (see section 3.5), a higher expected 

backorder/inventory cost is , determined by the model , to minimize the exceeding of 

, backorder/inventory cost of ail scenarios over the expected backorder/inventory cost. Thus, 

the expected backorder sile is increased and tonsequently production level and raw 

~ I 
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material consumption are decreased. Furthermore, the decreased expected inventory cost is 

also the result of decreasing the production level and raw material consumption. 

Ta~le 3.3 - Results of RO-(UPV) model for the sawmill example - The values of Â are in multiples of 10-5 
• 

Raw Expected recourse Expected Expected Reeourse CPU 
À material (backorder/inventory ) backorder inventory (backorder /inventory) time 

cost cost cost co st cost variability (~+ ) (min.) 

0 155473 379367 378560 807 111627 3.3 
1 134286 537009 536298 711 50000 12 
2 137009 628833 628118 715 25000 12 
5 129062 751170 750492 678 10000 12 
10 118655 831630 831004 626 5000 12 
20 102452 923633 923089 544 2500 12 

Figure 3.6 illustrates the tradeoff between the backorder/inverttory cost variability and the 

expected backorder/inventory c9st in RO-(UPV) model. 

.SLP 
• À= 1-\0-5 
~ À = 2-10-5 

• À =5-10-
5 

X À = 10-10-5 

• À= 20-10-5 

200000 400000 600000 800000 1000000 
Expected backorder/inventory cost 

Figure 3.6 - Expected backorder/inventory cost and backorder/inventory costvariability tradeoff in RO-
(UPV) model for different values of À 

From the above discussions, it can be concluded that if the decision maker wishes to have a 

robust production plan by using RO-UPV model, he/she should choose a value of Â which 

reflects hislher risk aversion about backorder size variability as weIl as increased expected 

backorder cost (size). Since the customer service level is defined in this work as the 

proportion of customer demand that can be fulfilled, the increased expectedbackorder cost 

(size) leads to decreased customer service level. 

. It should be noted that, setting a value for À, and . R* in the above robust optimization 

models requires explicit managerial input regarding the degree of risk aversion· that is 

appropriate for a given si~uation. In practical sense, it is probably most effective to run the 
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model with a substantial range of À, andR* values, creating a set of solutions like the set 

graphed in table 3.2, and 3.3 and ,figures 3.4 and .3.6 and let the manager pick a desired 

solution from that set, rather than trying to specify t~e most appropriate value of À and R* 
a priori. 

3.7.4.3. Comparison between RO-(UPM-2) and RO-UPV models performances 

As the expected recourse cost is not limited by a target value in RO-UPV mode l, the 

backorder/inventory cast (size) variability can be controlled , as much as possible by 

increasing the value of À. On the other hand, in RO-(UPM-2) modet the control over 

recourse cast variability depends on the target cost (target service level), as weIl 'as yield 

scenarios and problem constraints. Figure 3.7 illustrates the difference between th~ 

robustness of optimal solutions in RO-(UPM-2) model and RO-UPV model for different 

values of R* and Â. In figure 3.7, as ' the target cost R* increases (the service level 

decreases) in RO-(UPM-2) model, the robustness of plans proposed by this model gets 

closer to those of RO-UPV model. However, the more robust solution of RO-UPV model 

might own larger expected backorder cost (size) (lower customer service level) compared 

to those of the RO-(UPM-2) model. The comparison between the ,total costs of both RO 

models is presented in figure 3.8. Finally, as it is shown in tables 3.2 and 3.3, the execution 

time of the RO-UPV model is àlso larger than that of the, RO-(UPM-2) one . 

... 
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~ R- = 14Q01o 
'-""RO-UPV 

Figure 3.7 - Comparison between the performance oftwo robust optimization models in controlling recourse 
cost variability 
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Figure 3.8 - Comparison between the total cos(resulted by two robust optimization models 

In a very service sensitive company that wants to establish a reputation for always meeting 

customer service level, the robust optimization formulation allows a decision maker to see 

' explicitly what possible tradeoffs between backorder/inventory cost (size) variability and 

the expected cost exists, and to choose a solution that i~ consistent wit~ hislher willingness ' 

to accept risk, In the sawmill example, the following decision framework can be proposed, 

If the decision maker prefers to determine a robust customer service level thatremains near . 

optimal as much as possible for all scenarios of random yield, he/she should select the 

solution ofR9-UPV model which rèsults in less backorder/inventory co st (size) variability, 

However, the solution of this model might result high expected backorder cost (size). which 

reduces customer service level. Thus, in the case of chooslng the RO-UPV model, a value 

of robustness 'term Â should ~e selected that reflects appropriately the tradeoff between the 

risk aversion level of the decision maker about the robustness of customer service level and 

the expected backorder cost (size).By choosing the smaller values of Â, lower expected 

backord~r size and consequently better service .Ievel can be promised to the customer while. 

this service level is not completely robust. On the other hand, larger values of Â result in 

promising a lower service level to the customer, which is considerably more robust. In a 

company where the variability of backorder size (customer service .level) is less crucial for 

the decision maker, the solution of RO-(UPM-2) can be selected which results an expected 

backorder size (service level) close toa tatgetone. However the desired robustness level of 

the plans might not be nec~ssarily achieved depending on the problem constraints and yield 

scenarios, In this case, Â should be selected that reflects appropriately the tradeoff between 
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the risk aversion level of the decision maker about the robustness of customer service level 

and raw material and expected inventory cost. 

3.8. Conclusions 

In this· paper, two robust optimization models with different variability measures were 

proposed to address multi-period sawmill production planning by con~idering the 

uncertainty in the quality of raw materials (logs). The computational results of addressing a 

prototype sawmill by this approach provided evidence supporting the advantages of robust 

optimization approach ln generating more robust production plans over the 2-stage 

stochastic programming approach. Furthermore, the tradeoff between the plan' s robustness 

(backorder/inventory cost (size) variability) , and raw material consumption and expected 

backorder/inventory cost (size) for . different values of robustness term was discussed for 

both models. The robust optimization models were co~pared in terms of their performance 

in controlling backorder size (customer service level) variability for aIl scenarios in 

addition to their total cost (raw material and the expected backorder/inventory cost). A 

decision framework was also proposed to select among two RO m~dels based on risk 

aversion level of the decision maker for the robustness of backorder size (customer service 

level) and the increased total cost. Although these results are found for sawmill production 

planning, the proposed approach in this work can be applied for production planning in 

other manufacturing environments where non-homogeneous and random characteristics of 

raw materials result in random yield. Future research .will consider also the products 

demands as random variables in order to obtain more realistic production plans. 
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Chapter 4 

A multi-stage stochastic programming approach for 
. production planning with uncertainty in quality of raw 
materials and demand 

The forth chapter consists the article entitled "A multi-stage stochastic programming 

approach for production planning with uncertainty in the quality of raw materials and 

demand' accepted on February 2009 by the "International Journal of Production 

Research" . The version presented here correspondsto the revised version sent to the editor. 
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4.1. Abstract 

Motivated by the challenges encountered in sawmill production planning, we study a ~ulti

product, multi-period prod~ction planning problem with uncertainty in the quality of raw 

materials and consequently in processes yields, as weIl as uncertainty in products dema~ds. 

As the demand and yield own different uncertain natures, they are modeled separately and 

then integrated. Demand uncertainty is considered as a dynamic stochastic data process 

during the planning horizon, which is modeled as a scenario tree. Each stage in the demand 

scenario tree corresponds to a cluster of time periods, for which the demarid has a stationary 

behavior. The uncèrtain yield is modeled as scenarios with stationary probability 

distributions during the planning horizon. Yield sèenarios are then integrated in each node 

of the demand scenario tree, constituting a hybrid sçenario tree. Based on the hybrid 

scenario tree for· the uncertain yield and demand, a multi-stage stochastic programming . 

(MSP) model is proposed which is full recourse for demand scenarios and simple recourse 

for yield scenarios. We conduct a case study with respect . to a reaJistic scale sawmill. 

Numetical results indicate that the solution to the multi-stage stochastic model is far 

superior to the optimal solution to the mean-value deterministic and the two~stage 

stochastic models. 

4.2. Introduction 

Production planning is a key area of operations management. The plans have to be 

· determined in the face of environmental and system uncertainties, namely uncertain 

products demands, processes yields, etc·. An important methodology for production 

planning is mathematical programming. Traditional mathematical prognimmingmodels for 

production planning are deterministic, and may result unsatisfactory production plans in the 

· presence of uncertainties. 

The goal of this work · is to. address a multi-period, multi-product (MPMP) production 

planning problem in a manufacturing environment where alternative processes produces 

· simultaneously multiple products from several classes of raw . materials. Besides, raw 

· materials own non-homogeneous and random characteristics (e.g. logs in sawmills, or crud 

oil in refineries). Thus, the quantities of products that can be produced by each process 
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(processes yields) are random variables. Moreover, the market demand for products is also 

uncertain and non-stationary during ~he planning horizon. The production planning problem 

we are studying includes deciding how many times each process should be run and which 

quantity of each class of raw materials should be consumed by each process in each period 

in the planning horizon. The objective is to minimize products inventorylbackorder and raw 

material consumption costs, regarding fulfillment of products demands, machine capacities, 

and raw material inventory. This work is motivated by production planning for sawing 

units in sawmills, where the processes yields are random variables due to non-homogeneity 

in the characteristics of logs, and lumber demand is also uncertain. 

A review of sorne of the existing literature of production planning under uncertainty is 

provided in .Mula et al. (2006). Stochastic programming (Dantzig, 1955;· KalI and Wallace, 

1994; Birge and Louveaux 1997; Kall and Mayer, 2005) and robust optimization (Mulvey 

et al., 1995) has se en several successful applications in production planning. In Escudero et 

al. (1993) a multi-stage stochastic programming approach was used for addressing a MPMP 

production planning model with random demande Bakir and Byme (1998) developed a 
stochastic LP model based on the two-stage deterministic equivalent problem to incorporate 

demand uncertainty in a multi-period multi-product (MPMP) production planning model. 

Huang K. (2005) proposed the multi-stage stochastic programming models fot production 

and capacity planning under uncertainty. Alfieri and Brandimarte (2005) reviewed the 

multi-stage stochastic models applied in multi-period production and capacity planning in 

the manufacturing systems. Brandimarte (2006) proposed a multi ~stage stochastic 

programming approach for multi-item capacitated lot-sizing with uncertain , demande 

Kazemi et al. (2007)proposed a two-stage stochastic model for addressing MPMP 

production planningwith uncertain yield. Khor et al. (2007) proposed a two-stage 

stochastic programming model as weil as robust optimization models for capacity 

. expansIon planning in .petroleum refinery under uncertainty. Leung and Wu (2004) 

proposed a robust optimization model for stochastic aggregate production planning. Wu 

(2006) ~pplied the robust optimization approach to uncertain production loading problems 

. ·with import quota limits under the global· supply chain management environment. In Leung 

et al. (2007) a robust optimization model was developed to address a multi-site aggregate 

production planning problem in an uncertain environment. Kazemi et al. (2009) proposed 

~~I 
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. two robust optimization models with different recourse cost variability measures to address 

MPMP production planning with uncertain yield. 

Adopting a two-stage approach in the uncertain multi-period production planning literature 

(see e.g. Bakir and Byme, 1998; Kazemi et al., 2007, 2008, 2009; Khor et al., 2007) cannot 

model the dynamic decision process in such problems. In a two-stage approach, the plan for 

the entire multi-period planning horizon is determined before the uncertainty is realized, 

and only a limited number of recourse actions can be taken afterwards. In contrast, a multi-

stage approach allows the revision of the planning decisions as more information regarding 

the uncertainties is revealed. Consequently, the multi-stage model is a better 

characterization of the dynamic planning process, and provides more tlexibility than does 

the two-stage model. 

In the existing contributions in the literature for production planning wîth uncertainty, 

either one uncertain parameter (e.g. either demand or yield) was taken into account 

(Escudero et al., 1993; Bakir and Byme, 1998; Brandimarte, 2006; Kazemi et al., 2007, 

2008, 2009) or one set of scenarios or a scenario tree is considered for all the uncertain 

parameters simultaneously (Leung and Wu, 2004; Huang K., 2005; Wu, 2006; Leung et al. 

2007; Khor et al., 2007). However, when the uncertain parameters own different dynamics 

and behavior over time and each might need different sorts of recourse actions, it is more 

realistic to model them separately and then integrate them to be used in the stochastic 

programming models. 

In this paper, we propo~e a multi-stage stochastic program for MPMP production planning 

with uneertain yield and demand. As demand uncertainty originates from market conditions 

and yield uricertainty is due to non-homogeneity in the quality of ~aw materials, they are 

modeled separately and independently. We assume that the uncertain demand evolves as a 

. discrete time stochastic process rluring the · planning horizon with a finite support. This 

information structuré can be interpreted as ·a scenario tree. Each stage in a demand scenario 

tree corresponds to ·a cluster of time periods. It is supposed that the demand has a stationary 

behavior during the periods at each stage. The uncertain yields are modeled as scenarios 

with stationary probability distributions during the planning horizon. Finally, the yield 

scenarios ar~ integrated into the demand scenario tree, forming a hybrid scenario tree with 
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two types of branches in each node. Depending on the availability of information on the 

. uncertain parameters at the beginning of each stag·e in the scenario tree, different recourse 

actions are defined for them in the multi-stage stochastic model. We suppose that at the 

beginning of each stage in the demand scenario tree, the decision maker has a perfect 

insight on the demand scenario for that stage. Thus, the production plan can be adjusted for 

demand scenarios (full recourse). On the other hand, as yield scenarios are revealed after 

the plan implementation, the production plan is constant for yield scenarios (simple 

recourse). The goal of the multi-stage stochastic model is to determine an implementable 

plan for production that takes into account the possible demand and yield scenarios, 

provides for recourse actions in the futu~e, and minimizes the expected costs of raw 

material consumption, holding inventory, and backorder. It should be noted that the multi-. 

stage stochastic model is represented as compact formulation (see for example Alfieri and 

Brandimarte, 2005) based on the scenarios of the hybrid scenario tree, in order to · have a 

deterministic equivalent model of manageable size that can be solved by CPLEX. The 

proposed approach is applied for sawmill production planning under the uncertainty in raw 

material (log) quality and product (lumber) démand. Regarding the large dimensionality of 

the resulting deterministic equivalent model for a realistic scale sawmill, based on the 

experts' insight on the lumber market, the periods in the planning horizon are clustered into 

three stages. As a result, the original multi-stage model is approximated by a 4-stage one. 

N.umerical results indicate that the solution to the multi-stage model is far superior to the 

optimal solution of the mean-value deterministic and the . two-stage stochastic models. 

Furthermore, it is shown that the significance of usiI1g multi~stage stochastic programming 

is increased as the variability of random tlemand is augmented in the scenario tree. 

The remainder of this paper is organized as follows. In the . next section, a theoretical 

framework for multi-stage stochastic programming (MSP) is provided. In section 4.4, we 

.provide a multi-s~age stochastic linear pro gram for MPMP production planning with 

random yield and demande In section 4.5, we describe one of the applications of this 

problem which is sawmill production planning under the uncertainty in raw material (log) 

. quality and product (lumber) demande In section 4.6, the implementation results of the 

multi-stage stochastic model for a prototype realistic scale sawmill are presented. Our 

concluding remarks are given in section 4.7. 
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4.3. Muiti-stage stochastic p~ogramming 

In a problem where time and .uncertainty play an important role, the decision model should 

be designed to allow the user to adopt a decision policy that can respond to events as they 

unfold. The specific form of the decisions depends on the assumptions conceming the 

information that is available to the decision maker, when (in time) is it available and what 

adjustments (recourses) areavailable to the decision maker. Multi-stage stochastic 

programming (MSP) approach (KalI and Wallace, 1994; Birge, and Louveaux 1997; KalI 

and Mayer, 2005) was proposed to address multi-period optimization models with dynamic 

stochastic data during the time. In multï-stage stochastic programming (MSP) a lot of 

emphasis is placed on the decision to be made today, given present resources, future 

uncertainties and possible recourse actions in the future. The uncertainty is represented 

through a scenario tree and an objective function is chosen to represent the risk associated 

with the sequence of decisions to be made and the who le problem is then solved as a large , 

scale line~r or quadratic program. In the following, we tirst review the characteristics of 

scenario trees, and then we provide a general formulation for multi-stage stochastic 

programming. 

4.3.1. Scenario tree 

A scenario tree is a computationally viable way of discretizing · the underlyingdynamic 

stochastic· data over time in a problem. An illustration of a scenario tree isprovided in 

Figure 4.1. In a scenario tree, each stage denotes the stage of the time when new 

information is available to the decision maker. Thus, the stages do not necessarily 

correspond to time periods. They might include anumber of periods in the planning . 

horizon. A scenario tree· consists· of a number of nodes and arcs at each stage. Each node n 

in the scenario tree representsa possible state of the world (scenario), assoc~ated with a set 

of data . (stochastic d~mand, stochastic cost, etc.) in the cOITesponding stage. The root node 

of the tree represents the CUITent state of the world. The branches (arcs) in the scenario tree 

denote . the scenarios for the next stage. A probability is associated to each arc of the 

. scenario tree which denotes the probability of the corresponding scenario to that arc. It 

should be noted that, the probability of each node in the scenario tree is computed as the 

product of probabilities of the arcs from the root node to that node. Furthermore, the sum of 
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probabilities of the nodes at each stage is equal to 1. A path from the root node to anode n 

describes one realization of the stochastic process from the present time to the period where 

no de n appears. A full evolvement of the stochastic process over the entire planning 

horizon, i.e., the path from the -root node to a leaf node, is called a scenario. In the s<?enario 

tree example of figure 4. 1, we have 4 stages. Each node n in the tree has two branches to 

the next stage which denote two possible scenarios for the next stage, when we are at stage 

. n. Consequently, we have 8 scenarios by the end of stage 4. A review of the approaches for 

generating the scenario trees for multi-stage stochastic programs, based on the underlying 

random data processes is provided in (Dupacova et al., 2000). 

e S1 

9 S2 

11 S4 

12 S5 

6 

13 S6 

15 se 

Stage 1 Stage 2 Stage 3 Stage "4 

Figure 4.1 - Scenario tree for multi-stage stochastic programming 

4.3.2. Multi-stage stochastic programming models 

We begin by abstracting the statement of a multi-period deterministic LP model: 

Minimize CIXI +C2X2+ ••• +CT XT , (4.1) 

Subjecito 
AIIXI ==hI , 

~IXI +~2X2 ==h2, 

- -- --------
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Let the scenario S correspond to a single setting of aIl data in this problem, 

S = { Cl' hl ' ~l,:l =1, ... ,T ,l' =l, ... ,T}, 

and a decision x corresponds to a setting of ail the decision variables 

Solving the detenninistic LP model (4.1) for a given setting s of the data is equivalent to 

solving the following problem for a certain function: 

min f(x, s) over aIl x, 

. where 

, li: C,Xp if x satisfies ail constraints in (4.1), 
f(x,s)= 1= 1 

+00, otherwise. 

We next develop the stochastic model. Let us suppose that we are given a set S of 

scenarios. The decision-maker wishes to set a policy that makes different decisions under 

different scenarios. Mathematically, a policy X that assigns to each scenario SES is a 

vector X(s) :=(XI(s), ... ,XT(s)), where Xt(s) denotes the decision to be made at stage 1 if 

encountered by scenario s. Decisions that depend on the individual scenarios do not hedge 

against the possibility that the scenario may not occur, leaving one vulnerable to disastrous 

consequences if sorne · other scenario does happen. In other words, our decision process 

must conform to the flow of available information, which. basically means the decisions 

must be non-anticipative (or implementable). A decision is said to be implementable if for 

every pair of scenarios s and s' that are indistinguishable up to stage t, 

(Xl (s), ... , X t (s)) = (Xl (s'), ... , X t (s')) . 

. As examples ofindistinguishable scenarios, we can refer to scenarios 1, 2, 3, 4 in no de 2, at 

stage 2 of scenario tree in figure 4.1. Implementability guaranties that policies do not 
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depend on information that is not yet available. The multi-stage stochastic programming 

can be formulated as: 

min {~p' f(X(s), s) 1 X is an imPlementablepolicy}, 

where pS denotes the probability of scenario s. There are two approaches to impose the 

non-anticipativity constraints in the mtilti-stage stochastic programs which lead to split 

variable formulation and compact formulation. 

4.3.2.1. Split variable formulation 

In the split variable formulation, we introduce a set of decision variables for each stage and 

each scenario, and then we enforce non-anticipativity constraints explicitly based on the 

shape of scenario tree. Although this representation increases the problem dimensions, it 

yields a sparsity structure that is weIl suited to the interior point algorithms. Altematively, 

it is possible to use a decomposition approach on the splitting variables formulation. 

Several strategies have been published in the literature for solving large-scale multi-stage 

stochastic programs (Ruszczynski 1989; Rockafellar and Wets 1991; Mulvey and 

Ruszczynski 1995; Liu and Sun 2004). 

4.3.2.2. Compact formulation 

In the compact formulation, we associate decision variables to the nodes of scenario tree . 

and build non-anticipativity in an implicit way. In other words, the variables such as X(s) 

for X(s) = X(s') are replaced in the model by one single variable, and redundant 

constraints for partially identical scenarios are deleted. Compact formulations are 

computationally cheaper when using for solving by the Sirriplexmethodology in standard 

solvers. 

4.4. Model development 

In this section, we tirst present a deterministic mathematical formulation for the problem 

under .consideration. Then, we provide the multi-stage stochastic formulation to address the 

problem byconsidering the uncertain processes yields and products demands. 
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4.4.1. A deterministic model for mu_lti-product, multi-period production 
planning 

Consider a production unit with a set of products P, a set of classes of raw materials C, _ a set 

of production processes A, a set of machines R, and a planning horizon consisting of T 

periods. To . state the deterministic linear programming model for this problem, the 

following notations are used: 

4.4.-1.1. Notations 

.Indicés 

p product 

t period 

c raw material class 

a production process 

r machine 

Parameters 

hpt inventory holding cost per unit ofproduct p in period t 

bpi backorder cost per unit of product p in period t 

m et raw materi~l cost per unit of class c in period t 

IeO the inven~ory of raw material class c at the beginning of planning horizon 

1 pO the inventory of product p at the beginning of planning horizon 

Set the quantity of material of class c supplied at the beginning of period t 

d pt demand of product p by the end of period t 

(lae the units of class c raw material consumed by process a (consumption factor) 

Pap the units of product p produced by process a (yield of process a) 

Oar the capacity consumption of machiner by process a 

M rt the capacity of machine r in period t 
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Decision variables 

X al the number oftimes each process a should be run in period 1 

Ict inventory size of raw material of class C by the end of period 1 

1 pt inventory size of product p by the end of period 1 

B pt backorder size of product p by the end of period 1 

4.4.1.2 .. The deterministic LP model 

T T 

Minimize Z == LL(hp,lpl + bpIBp, ) + LLLmC/~acXa' 
peP 1=1 cee 1=1 aeA 

Subjecllo 

ICI == IC,_I + SCI - L f/lacXal' 
aeA 

L <5ar X at ~ Mrl' 
aEA 

1 == l,.~. ,T, CE C, · 

1 == 2, ... , T, pEP, 

1 == 1; ... , T, r E R, 

1 == 1, ... ,T, pEP, CE C, aE .A. 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

The objective function (4.2) minimizes total 'inventory and backorder costs for all products 

and raw material cost for aIl classes in the planning horizon. Constraint (4.3) ensures that 

the total inventory of raw material of class c at the end of period t is equal to its inventory 

. in the previous period plus the quantity of material of class c supplied at the beginning of 

that periode Sct ) minus its total consumption in that period.Constraint (4.4) ensures that the 

sum of inventory (or backorder) of product p at the end of period 1 is equal to its inventory 

(or backorder) in the previous period plus the total pro~uction of that product in that period, 

minus the product demand for that period. Total quantity of production for each product in 

each period is calculated as the sum of the quantities yielded by each of the corresponding 
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processes, regarding the yield (Pap) of each process. Finally, constraint (4.5) requires that 

the total production do not exceed the available production capacity. 

4.4.2. Moiti-stage stochastic programming extension 

In this section, we first describe our proposed approach to model the uncertain yield and 

demand, and then provide the production planning formulation by multi-stage stochastic 

programming. 

4.4.2.1. Modeling the uncertain yield and demand 

We assume that the uncertain demand evolves as a discrete time stochastic process during 

the planning horizon with a firiite support. This information structure can be interpreted as a 

scenario tree (see figure 4.1 in section 4.3). The nodes at stage t of the tree constitute the 

states (scenarios) of demand that can be distinguished by information available up to stage 

t. For each stage a limited number of demand scenarios are taken into account (e.g., high, 

average, low). In order to define the scenarios · for each stage, we can either use the 

traditional approach of making distributional assumptions, estimating th,e parameters . from 

historical data, or use sorne scenarios proposed by experts. In order to keep the resulting 

multi-stage stochastic model within a manageable size, we assume that the planning 

horizon is clustered into N stages, where each stage includes a number of periods. In other 

words, it is supposed that the uncert~in demand is stationary during the time periods in each 

stage. For example, if the demand scenario for the first period at stage n is high, it remains 

the same (high) for the remainder of periods in stage n; however the demand scenario might 

change (e.g., to low) for the first period in the nextstage (n+ 1). It should be noted that, the 

number of periods that can be considered at each stage. depends on the behavior of demand 

in the industry, which can be determined based on the expert's insight on the market. 

On the other hand, we assume that the rawmaterials are supplied from the same supply 

.' source during the planning horizon! Th~s, it is supposed that the uncertain yield has a 

-stationary probability distribution. The probability distrib.ution of the random yield is 

.··estimated based on historical data in industry. A number of scenarios are taken in to 

account for yields by discritization of the original probability distribution. Regarding . the 
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stationary distribution of yield, only one of the scenarios can take place during. the planning 

horizon. 

In order to have a single stochastic production planning model that considers uncertain 

yield and demand, yield scenarios are integrated with the demand scenario tree, forming a 

hybrid scenario tre~. An example of a four-stage hybrid scenario tree is depicted in figure 

4.2, where full line branches denote demand scenarios while dashed line branches denote 

yield scenarios. At each node of the tree, which denotes one demand scenario for the 

corresponding stage, different yield scenarios can take place (3 scenarios in the example of 

figure 4.2). However, regarding the stationary behavior of uncertain yield, only one of the 

. yield scenarios can be observed during the planning horizon. Thus, the total number of 

scenarios in the hybrid scenario tree can be computed as the number of leaves in demand 

scenario tree by the number of yield scenarios (in tt~e example of figure 4.2, this number is 

equal to 24). 

-- /~ 
.... :..- 15 -.. 

' ....... 
Stage1 ,Stage2 Stage 3 Stage4 

Figure 4.2 - A hybrid scenario tree for uncertain demand and yield 

4.4.2.2. Multi-stage stochastic program for ~MPMP production planning with 
uncertain yield and demand 

Let us now formulate the problem as a multi-stage stochastic (MSP) model based on the 

hybrid scenario tree for the uncertain yield and demand. The decision (control) variable of 
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deterministic model (4.2)-(4.6) is production plan Xat • The inventory and backorder 

variables 1 pt and BpI are the consequences ( state variables) of the plan. In this problem, we 

assume that the decision maker can adjust the production plan X at for different demand 

scenarios at each stage of the demand scenario tree. In other words, it is supposed that at 

the · start of the tirst period of each stage, enough information is available to the decision 

maker to know which demand scenario is in force for that stage. Thus he/she can select 

properly among the plans proposed by the MSP model for different scenarios. The multi-

stage stochastic model is full recourse with respect to demand scenarios. As we use 

compact formulation to represent the problem, the decision variables X at are defined for 

each node of the demand scenario tree. · On the other hand, as the quality of materials is not 

known before being processed, the yield scenarios can only be revealed after 

implementation of the production plan. Thus, ..: the production plan for each node of the 

demand scenario tree should" be fixed for aIl the yield scenarios. In other words, the model 

becomes simple recourse with respect to yield scenarios. It is evident that the inventory and 

backorder sizes of products in each period (/~t(n) and B~t(n)), which are the state 

variables, depend on the demand scenarios as weIl as yield scenarios, thus they are indexed 

for yield scenarios as well as demand nodes. Regarding the above discussions, the 

following· notations in addition to those provided in 4.4.1.1 are used in the multi-stage 

stochastic model. The compact formulation of the multi-stage stochastic model follows the 

notations. 

4.4.2.2.1. Notations 

Indices 

Tree scenario tree . 

. S number of scenarios for random yields. 

scenario of random yield. 

n, m node of the scenario tree. 

a( n) ancestor of node n in the scenario tree. 

tn set oftime periods corresponding to no de n in the scenario tree. 
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Paramelers 

d pt (n) demand of product p by the end of period 1 at node n of the scenario tree. 

pen) probability ofnode n of the scenario tree. 

pi probability of scenario i for random yield. 

Decision variables 

Xat(n) the number ofiimes each process a should be run in period 1 at node n of the 

scenario tree. 

let (n) inventory size of raw materiaI of class c by the end of period t at node n of the 

scenario tree. 

l~t(n) inventory size ofproductp by the end ofperiod t for scenario i ofrandom yield at 

node n of the scenario tree. 

B~t(n) backorder size ofproductp by the end ofperiod t for scenario i ofrandom yield at 

node n of the scenario tree. 

4.4.2.2.2. Multi-stage stochastic model (compactformulation) 

MinimizeZ== l p(n)(IIImctl/JacXat(n))+ 
nETree tEtn CEe aEA 

s l p(n)(I pi (I l (hptl~t (n) + bptB~t (n)))) (4.7) 
nE Tree i==l IE/n pEP 

Subjectto 

let (n) == ICI-1 (m) + Sel - l l/JacXat(n), 
aEA 

m =={a(n), 
n, 

l tSarxat·(n) ~ Mn' 
aEA 

nE Tree, tEtn,rER, 

I~t(n)-B~/(n) == I~t-l(m)-B~t~l(m) + l P~pXat(n)-dpt(n), 
aEA 

nE Tree, tE ln' pEP, i = 1, ... , S, 

m =={a(n), 
n, 

l-IE ln' . 

l-l~ln' 

(4.8) 

(4.9) 

(4.10) 
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Xat(n) ~ 0, let(n) ~ 0, l~t(n) ~ 0, B~t(n) ~ 0, nE Tree, tE 'n, CE C, pEP, a E A, 

i=I, ... ,S. (4.11) 

The first tenn of the objective function (4.7) accounts for the expected material cost for 

demand nodes of the scenario tree. The second term is the expected inventory and 

backorder costs for demand nodes and yield scenarios. In model (4.7)-(4.11), the decision " 

variables are indexed for each node, as weIl as for each time period, since the stages do not 

correspond to time periods~ As it was mentioned in 4.4.2.1, each node at a stage includes a 

set of periods which is denoted by t n. In this mode l, there are coupling variables between 

different stages and these are the ending inventory and backorder variables at the end of 

" each stage. As it can be observed in this modei, two different node indices (n, m) are used 

for inventory/backordervariables in the tnventory balance constraints ((4.8) and (4.10)). 

More precisely, for the first period at each stage, the inventory or backorder is computed by 

considering the inventory or backorder of the last period corresponding to its immediate 

predecessor node, while for the res( of the periods at that stage, the inventory/backorder 

size of previous period corresponding to the same node are taken into account. 

- 4.5. Case study: sawmill production planning 

In this section, we introduce one of the applications of the general problem already 

described in this paper, which is sawmill production planning. There are a number of 

processes that occur at a sawmiIl:" log" sorting, sawing, qrying, planing and grading 

(finishing). Raw materials in sawmills are the logs which "are transported from different 

districts offorest after bucking the feHed trees. The finished and graded lumbers (products) 

are then transported to the domestic and international markets. Figure 4.3 ilh.lstrates the 

typical processes. As a case study, we consider the sawing units in sawmills. In the sawing 

units, logs are classified according to sorne attributes narnely: diameter class, species, 

length, taper, etc. Logs are broken down into different dimensions of lurnbers by means of 

different cutting patterns. See figure 4.4 for three different cutting" patterns. Each cutting 

pattern is a combination of activities that are run on a set of machines. From each log, 

several pieces ofsawn lumber (e.g. 2(in)x4(in)x8(ft), 2(in)x4(in)x 10(ft), ... ) are "produced 

depending on the cutting pattern. The lumber quality (grade). as weIl a~ the quantity yielded 
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by each cutting pattern depend on the quality and characteristics of the input Jogs. Despite 

the classification of logs in sawmiIls, variety of characteristics might be observed in 

different logs in each class. In fact, due to natural variable conditions that occur during the 

growth period of trees, non-homogeneous and random characteristics (in tenns of diameter, 

number of knots, internaI defects, etc.) can be observed in different logs in each class, make 

it impossible to anticipate the exact yield of a log. 

Figure 4.3 - Illustration of sawmills processes (after Ronnqvist, 20.03) 

Figure 4.4 - Cutting patterns in a sawmill 

As itis not possible in· many sawmills to scan the logs before planning, the exact yields of 

cutting patterns for different log classes cannot be detennined in priori. As an exampleof 

the uncertain yields in sawmiIls, consider the cutting pattern (s) that can produce 6 products 

(pI, P2, P3, P4, P5, P6) after sawing the logs of class (c). Table 4.1represents four 

scenarios among aIl possible scenarios for the un certain yields of this process. 

Table 4.1 - Scenarios for yields of a process in a sawing unit 
Products Scenarios -----------

PI P2 P3 p4 P5 P6 
1 . 0 101 1 

2 2 1 101 0 
3 1 0 0 1 · 1 
4 2 .0 0 0 
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Uncertainty in the market demand for different lumbers is another important parameter that 

should be taken into account in sawmill production planning. We focus on operational level 

production planning in a sawing unit. The decision variables include the optimal quantity of 

log consumption from different classes and selection of best cutting patterns for each log 

class in each period of the planning horizon, in order to fulfill the demande The objective is 

to minimize log consumption cost, as weIl as prbducts inventory and backorder costs. 

Regarding the potential significance of yield and demand uncertainty on the production 

plan, and customer orientation which is at center of attention in the sawmills that are 

dependent on export markets, obtaining production plans with minimum expected 

backorder size is an important goal of production planning in sawmills. 

Different approaches have heen already proposed in the literature to address sawmill 

production planning. The first approach is focused on combined optimization type solutions 

linked to .real-time simulation sub-systems (Mendoza et al., 1991; Maness and Adams, 

1991; Maness and Norton, 2002). In this approach, the stochastic characteristics of logs are 

taken into account by assuming that aIl the input logs are scanned through an X -ray scanner 

before planning. Maness and Norton (2002) developed an integrated multi-period 

production planning model, which is the combination of an LP model and a log sawing 

optimizer (simulator). The LP model acts as a coordinating prohlem that allocates limited 

resources. The log sawing optimization models are used to generate columns for the 

coordinating LP based on the products' shadow prices. Although the stochastic 

characteristics of logs are considered in this approach, it includes the following limitations 

to he implemented: logs needed for the next planning horizon are not always available in 

the sawmill to he scanned before planning. Furthermore, to implementthis method, the logs 

should be processed in production line in the same order they have heen simulated, which 

is not an easy practice. Finally scanning logs before planning is a time consuming process 

in high capacity sawmills, which delays the planning process. In the· second approach, the 

randomness of the processes yields as well as demand is simplified and their expected 

value is considered in a MPMP linear programming model (Gaudreault et al., 2004). 

However, the production plans ' issued by these models result usually in extra inventory of 

products with lower quality and price, while . backorder of products with higher ql:lality and 

. priee. In Kazemi et al. (2008) a two-~tage stochastic program with recourse is proposed to . 
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address sawrnill production planning by considering the random yield. The solutions of 

stochastic model are considerably superior to those of deterministic model in terms of the 

expected inventory and backorder costs. Among different contributions in the literature for 

sawmill production · planning, we did not succeed to tind any contribution . that considers 

simultaneously the random demand and yield. In the next section, computational results of 

iniplementing the proposed multi-stage stochastic program for a realistic scale sawmill 

example are provided. 

4.6. Computational results 

In this section, we report on the computational experiments with the proposed multi-stage 

stochastic programming approach for a realistic scale sawmill. The objective of our 

experiments is to investigate the quality of production plans suggested by multi-stage 

stochastic programming comparing to those of deterministic LP, and two-stage stochastic 

programming. The multi-stage stochastic model is also compared to the models which take 

into account either the random demand or the random yield. Finally, we compute the value 

of multi-stage stochastic programming (vMSP) for this example. In the following, we tirst 

describe our experimental environment and then report on the experimental results in the 

light of the mentioned objectives. 

4.6.1. Experimental environ ment . 

A prototype sawmill is selected to illustrate the application of the multi-stage stochasti~ 

model. The prototype sawmill is a typical medium . capacity softwood sawmill located in 

Quebec (Canada). The sawmill focuses on sawing high-grade products to the domestic 

markets as weIl as export products to the USA. It is assumed that the input bucked logs into 

the sawing unit are categorized into 3 classes. 5 different cutting patterns are available. The 

sawing unit produces 27 products ofcustom sizes (e.g. 2(in)x 4(in), 2(in)x6(in) lumbers) in 

four lengths. In other words, there are 15 processes that can produce 27 products with 

random yields. We consider two bottleneck machines: Trimmer and Bull. The ·planning 

horizon consists of 30 periods (days). It would be worth mentioning that the data used in 

this example are ~ased on the gathered data from different sawmills in Quebec (Canada). 

As the list of custom sizes, machine parameters and prices · are proprietary, they are not 
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. reported in this paper. The hybrid scenario tree for uncertain · demand and yield in this 

example is generated as follows. 

Demand Scenario tree 

Due to the lack of complete hi.storical data on products demands in this example, we used 

the existing historical data as well as the insightS of the experts on the lumber market to 

estimate the demand scenario tree. At each stage of the scenario tree, except stage 1, based 

on the historical data for products demands (per product,per clay) in Quebec sawmiIls, we 

estimate a normal distribution. The normal distribution is then approximated by a 3 point 

discrete distribution (high, averag~, and /ow demand) by using the Gaussian quadrature 

method (Miller and Rice, 1983). Since considering each time period as a stage leads ·to an 

extremely large scenario tree, we need to approximate the scenario tree by something more 

manageable. In our computational experiment, we supposed that the demand for the next 10 

days has a stationary behavior, which is a realistic assumption in the lumber market. Thus, 

we clustered the 30~periods planning horizon into 3 stages and hence the multi-stage 

decision process is approximated by a 4-stage one. The tirst stage consists of time period 

zero (present time), the second-stageincludes periods 1-10, etc. Moreover, based on the 

experts' insight, we suppose that the demands for aIl products are perfectly correlated and 

aIl products have the same behavior at each stage of the scenario tree, white each product 

has its own daily demand (normal) distribution. In other words, if at stage t, the market 

condition is good, the demand scenario for aIl products can be expected to be high. The 

mentioned approximations results a scenario tree with 27 demand scenarios and 40 nodes. 

In the following, we illustrate how the demarid scenarios corresponding to different nodes 

of the demand scenario tree are generated. We start with the second stage and the no de 

which denotes the high scenario for demand~Based on the 3 point approximation 

corresponding to the Qormal distribution of each pro,duct for period l, we select the high 

scenario for that product; and then we repeat the same procedure' for aIl productsand for the 

. rest ?f the periods (2-10) at that stage. Then we go to the other nodes (corresponding to 

average and /ow demand) and we repeat the same procedure, using the average and /ow 

scenarios for the demand of each product per day. At the next stage we start with the first 

. period and we · repeat the above procedure for aIl the nodes and the periods at that stage. 
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. In this experiment, we consider three different normal distributions for the demand o~ each 

product (per period) with the same mean but different standard deviations (5% mean, 20% 

mean, and 30% mean). Thus, three demand trees (DTl, DT2, DT3) and a total of 3 test 

problems are considered. 

Yield Scenarios 

As we mentioned in section 4.3, at each node of demand scenario ' tree a number of yield 

scenarios are taken into account. It would be worth mentioI\ing that, we define a scenario 

for the yields of each process in a sawing unit as the average yields of a sa~ple of logs (e.g. 

3000 logs) corresponding to that ·process. By the central limit theorem (CL T), the average 

yields have a nonnal distribution. Thus, based on the historical data in Quebec sawmills for 

the processes yields, the nonnai distributions were estimated for the random yields. The 

normal distribution corresponding to the yield of each process was then approximated by 

three scenarios, by using Gaussian quadrature method '(Miller and Rice, 1983). As the 

randomness of processes yields is the result of non-homogeneity in quality of logs, we 

consider three scenarios for yield of each log class. As we considered 3 classes of logs in 

this example, the total number of yield scenarios is equal to 33 = 27 . It should be rioteq. that 

the same yield scenarios are considered in the three test problems. 

The above scenario ge~eration approach for uncertain demand and yield in this sawmill 

production planning example results ahybrid scenario tree similar to the one in figure 4.2 

with 40 nodes, 'whereeach node includes 3 ' branches as demandscenarios and 27 branches 

as yield scenarios. The total number of scenarios at the end of s1a;ge 4 is equal to 

27x27=729. The compact multi-stage stochastic model(4.7)-(4.11) for this sawmill 

example is a linear programming (LP) model with nearly 600,000 decision variables and 

300,000 constraints. 

CPLEX 10 and OPL 5.1 are used to solve the linear program (4.7)-(4.11) and to perform 

further analysis on the solutions of the test problems. AlI numerical experiments are 

conducted on an AMD Athlon™ 64x2 dual core processor 3800+,2.01 GHz, 3.00 GB of 

RAM, running ·Microsoft Wind'ows Serv~r 2003, standard t?dition .. 
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4.6.2. _Quality of multi~stage stochastic model solution 

In this section, for the three test problems mentioned in 4.6.1, we compare the solution of 

4-stage stochastic programming ' model to those of a 3-stage, and 2-stage stochastic 

programming model as weIl as mean-value deterministic model. The 4-stage stochastic 

programming model with random yield and demand is also compared to the ~odels which 

take into account either the random demand or the random yield. It should be noted that in 

the 3-stage model, the 30 periods planning horizon is clustered into 2 stages, each includes 

15 periods. In other words, in order to reduce the size of the multi-stage model, ·it was 

supposed that the random demand has a stationary behavior during 15 days. The 2-stage 

stochastic model corresponds to considering a static probability distribution for the ' 

uncertain demand during the planning horizon. , In table 4.2 the solutions of mentioned 

models for the three test problems are compared with respect to the expected total cost, the 

expected material consumption cost, as weIl as the expected inventory and backorder costs. 

It should be noted that the expected inventorylbackorder costs of 3-stage, 2-stage', and 

mean-value deterministic models are computed by setting the production plan variables 

(Xat ) in the 4-stage stochastic model (4.7)-(4.11) a~ the optimal production plan (X;t) 

proposed by the mentioned models. In other. words, the expected inventorylbackorder costs 

of production plans proposed by the 3-stage, 2-stage and deterministic model are computed 

for the hybrid 4-stage scenario tree correspond,ing to the uncertain yield and demand in 

each test problem. The "relative gap (%)". columns in table 2 include the relative gap 

, between the cost of the 3-s,tage, 2rstage and the deterministic models by the cost of 4-stage 

mode l, which are provided as the percentages. For example, as presented ' in table 4.2, the 

expected backorder/inventory cost of the plan proposed by the 2-stage model is 33% higher 

than that of the 4-stage model, in the test case DT1. 
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Table 4.2 - Cost comEarison of different Eroduction Elanning models 

Demand Production Expected Relative Expected Expected Relative ' CPU 

tree planning total cost gap (%) material inventory /backorder gap (%) time 
model cost costs {minutes} 

4-Stage SLP 1957950 1737500 220450 29 
3-Stage SLP 1973563 0.8 1746415 227148 3 6 

DTl 2-Stage SLP 2118125 7.5 1788142 329983 33 2 
Mean-value 
deterministic 2129030 8 1751675 377355 41 0 

LP 
4-Stage SLP 2028777 1749677 2i9100 29 

. 3-Stage SLP 2038543 0.5 1756840. 281763 0.9 6 

DT2 2-Stage SLP 2391261 15 1889265 501996 44 2 
Mean-value 
deterministic 2432717 16 1751675 681042 59 0 

LP 
4-Stage SLP 2163458 1766387 397071 29 
3-Stage SLP 2206165 2 1763839 442326 10 6 

DT3 2-Stage SLP 
Mean-value 

2836707 24 2,025122 811585 51 2 

deterministic 3095556 30 1751675 1343881 70 0 
LP 

As it can be observed in table 4.2, in aIl the tree test problems the solution of the 4-stage 

stochastic modelis significantly superior to those of the detenninistic model. Furthermore, 

if the uncertain demand is considered as a random variable with a static probability 

distribution during the planning horizon (as in the two-stage stochastic programming 

model), the expected materialcost as weIl as the expected inventorylbackorder costs of the 

production plan are considerably higher than those of the multi-stage stochastic model' s 

plan. FinaIly, by clustering the planning horizon into two stages (as in 3-stage stochastic 

programming model) the expected inventorylbackorder costs of the plan is higher than 

those of 4-stage 'stochastic model. The last column of table 2 indicates that the high q~ality 

of multi-stage stochastic model requires higher computational time compared to those of 

the deterministic and two-stage ones. Figures 4.5 and 4.6 illustrate better the comparison 

between the total expected cost as weIl as expected inventorylbackorder costs of different 

models for the three test problems which are distinguished by the variability of demand at 

each stage. As the variability of demand increases at each stage, the difference between the 

expected cost of the multi-stage stochastic model's plan and the deterministic and two-

stage stochastic models' plans increases. In otherwords, the significance of using a multi-

stage programming model instead of a two-stage or a deterministic model is increased as 
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the variability of demand increases at each stage of the -scenario tree. It would be worth 

mentioning that by increasing ~he number of stages in the demand scenario tree, which is 

equivalent to reducing the number of periods ai each stage, the uncertain behavior of 

demand can be captured more precisely. Thus, a production plan with lower expected cost 

can be obtained. However, as the difference between the expected cost of the 4-stage and 3-

stage models in not very significant in the three test problems (see figures 4.5 and 4.6), we 

did not consider more stages in the scenario trees in the test problems. 

1 
(deterministic model) 

Number of stages 

4 

Figure 4.5 - Expected total cost comparison of different production planning models 

-OT1 
-- OT2 
-6- OT3 

o 2 5 
(deterministic model) 

Number of stages 

Figure 4.6 - Expected i~ventory/backorder costs comparison' of different production planning models 

In table 4.3, we compare the costs of the sawmill production planning model with random 

yield and demand (model 1) to a model with random ' demand and de~erministic yield 

(model 2) and 'the other one with randa"m yield and deterministic demand (model 3). As in 

this experiment, we modeled the random demand as a scenario tree and the random yield as 

a set of scenarios, model 1 corresponds to the 4~stage ' stochastic model with' the hybr,id 

demand/yield scenario tree, ,model 2 corresponds to a 4-s~ge stochastic model with a 

demand scenario tree, and model 3 corresponds to a two-stage stochastic model with a set 
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of yield scenarios. The "relative gap (%)" column in table tree includes the relative 

difference between the cost of models 2 and 3 by model 1 . . 

Table 4.3 - Cost comQarison of the Qroduction Qlanning models with different uncertain Q~rameters 

Demand Expected \ Relative Expected Relative 
tree Uncertain parameters total cost gap (%) inventory Ibackorder gap (%) costs 

Random demand and yield 1957950 220450 
DTl {model 12 

Random demand {model22 2002777 2 269741 18 
Random ~ield {model 32 2063061 5 323320 32 

Random demand and yield 2028777 279100 
DT2 {model 1} 

Random demand {model 2} 2059657 1.5 315341 11.5 
Random ~ield {model3} 2309588 12 569847 51 

Random demand and yield 2163458 397071 
DT3 {model 12 

Random demand {model22 2185069 1 424004 6 
Random ~ield {model32 2810012 23 1070271 62 

As it can be observed in table 4.3 and figure 4.7, failing to take into account either the 

random yield or random demand in the sawmill production planning example leads to the 

production plans with increased costs. Moreover, as the random demand has a · non 

stationary and dynamic behavior during the planning horizon, considering it as a 

deterministic parameter effects more significantlyon the production plan's cost than the 

random yield which owns a stationary behavior. Finally, as the variability of demand 

increases in the demand scenario tree, the significance of considering the random demand 

in the production planning model is increased. 
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Figure 4.7 - The expected backorder/inventory cost comparison of models 2 and 3 with model 1 
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4.6.3. Value of multi-stage stochastic programming 

As it was mentioned in section 4.4, we considered the production plan (Xat ) as full 

recourse with respect to demand scenarios. In other words, \ye assumed a flexible 

production plan that can be adjusted based on the demand scenarios, at different stages. 

However, in sorne manufacturing environments the production plan is not flexible and 

should be fixed at the beginning of planning horizon. Thus, a simple recourse multi-stage 

stochastic model should be used to detennine the plan. In this section, we compare the 

solutions of multi-stage stochastic programs with full re'c~urse and simple recourse, for the 

three test problems. In table 4.4, it can .easily be verified that in aIl the test problems the 

total cost of full recourse problem is smaller than that of the simple recourse problem. This 

should come as no surprise, since the multi-stage model with full recourse offers more 

flexibility in the. production plan decisions with respect to the uncertain states of demand. 

We denote the ,optimal objective values corresponding to full recourse andsimp~e recourse 

multi-stage stochastic programs by V
FR

, and V
SR

, respectively. The value of multi-stage 

stochastic programrriing (VMSP) is defined as follows (Huang and Shabbir, 2005; Huang 

2005): VMSP = V SR 
_V

FR 
• 

Table 4.4 - Value of multi-stage stochastic programming in the three test problems 
Demand tree 4-stage stochastic model Objective function value VMSP 

Full recourse 1957950 DT1 79195 
Simple recourse 1973563 

Full recourse 2028777 
Simple recourse 2037145 

DT2 174076 

Full recourse 2163458 
Simple recourse ' 2202853 

300000 DT3 

Value of multi-stage stochastic programming (VMSP) indicates the value of allowing the 

production plan . to be adjusted for different scenarios at each sta~e of decision process 

instead of fixing its value at the beginning of planning horizon. Figure 4.8 compares the 

. VMSP of the three test problems with different variability levels in demand. As it can be 

observed in figure 4.8, the value of multi-stage stochastic solution increases with the 

variability of demand. In' other .words, as the variability of demand increases at each stage, 

considering a full recourse multi-stage stochastic model becomes more significant. 
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a OT1 OT2 
Oemand tree 

OT3 

Figure 4.8 - VMSP comparison of different test problems with different demand variability 

4.7. Conclusions 

In this paper, we addressed a multi-period, multi-product (MPMP) production planning 

problem under uncertainty in products demands and processes yields. We proposed a multi-

. stage. stochastic model to address the problem. The uncertain demand was modeled as a 

dynamic stochastic process presented as a scenario tree. The uncertain yield was modeled 

as a static random variable with a stationary probability distribution during the planning 

horizon. We integrated the uncertain yield and demand into a hybrid scenario tree. The 

proposed approach · was applied for sawmill production planning under the ' uncertainty in 

raw material (log) quality and product (lumber) demande We presented the computational 

results using a realistic' scale prototype sawmill. Our numerical results indic<:lted that the 

quality of the 4-stage stochastic model solutions is significantly higher than those of the 

mean-value deterministic and twb-stage stochastic models. Moreover, it was shown that as 

the variability of demand is. augmentedat each stage of the scenario tree, the significance of 

using 'the multi-stage stochastic programming approach is increased. As further extensions 

of this work, we can consider seasonal demand and different trends at each stag~ of the 

demand scenario tree. Moreover, the proposed approach can be applied for production 

planning in other manufacturing environments . with uncertain demand and non-

homogeneous and random characteristics of raw materials which results the random 

processes yields. 
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In this thesis, we investigated a multi-period, multi-product (MPMP) production planning 

problem with uncertain yield and demand. We focused on a manufacturing environment 

where multiple alternative processes produces simultaneously a mix of products (co-

production) from several classes of raw materials. The uncertain yield originates from the 

ilon-homogeneous and random characteristics of raw materials. Our motivatiori to address 

this problem was sawmill production planning, while considering random characteristics of 

logs as well as uncertain lumber demand. The existing approaches in the literature for 

sawmill production planning, either simplify the uncertainty in problem parameters, by 

considering their expected values, or own the limitations to be implemented in sawmills. 

Regarding the results that we obtained through the case studies, we believe the approaches 

proposed in this thesis can be considered as novel and viable tools for sawmill production 

planning. We can expect that the proposed stochastic sawmill production planning models 

result more realistic and more robust plans compared .with the traditional deterministic 

model. 

In the tirst and second articles of the thesis, we addressed the MPMP production planning 

problem by considering the uncertainty in processes yields. In the third article, we 

considered the uncertainty in products demands and processes yields, simultaneously. The 

contributions of the three articles in the thesis can be summarized as follows: 

In the tirst article, we proposed a two-stage stochastic pro gram with recourse to address the 

MPMP problem by considering the yield uncertainty. We modeled the uncertain yields as 

scenarios with stationary probability distributions during the planning horizon. The 

proposed two-stage stochastic model was applied for sawmill production planning, which 

can be considered as a novel approach for this probl~m. We al,so proposed' a Monte-Carlo 

simulation approach to compare the stochastic sawmill production planning model with the 

deterministic one, by considering yield scenarios similar to those that might he observed 

during the production process in real sawmills. The simulation results for a real medium 

capacity sawmill confirmed that the proposed two-stage stochastic model can he considered 

as a more realistic tool for sawmill production planning, . since it proposes a plan with 

considerahly lower backorder size (higher customer service level), in the presence of 

different yield scenarios, than the mean-value deterministic model. 
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In the second article, we proposed two robust optimization (RO) models in order to 

minimize the risk behind the customer service level variability in the presence of different 

random yield scenarios, in the MPMP production planning problem. The backorder size 

was considered as a measure of service level. The two robust optimization models are 

. distinguished by their service level variability measures. A decision framework was 

provided to select among the two RO models based on the tradeoff between the expected 

backorder/inventory size and the decision maker' s risk aversion level about the variability 

of customer service level. The results of comparison between the robust optimization model 

and the two-stage stochastic model (proposed in article 1) in a prototype sawmill, 

confirmed the superiority of robust optimization approach in generating production plans 

with more robust (less variable) backorder size (service level) in the presence of different 

yield scenarios. 

In the third article, we proposed a multi-stage stochastic programming (MSP) model to 

address the multi-product, multi-period (MPMP) production planning problem with 

uncertain yield and demande As demand and yield are independent and own different 

uncertain natures, they were modeled separately and then integrated. Oemand uncertainty 

was considered as a dynamic stochastic data process during the planning horizon, which 

was modeled as a scenario tree. Yield scenarios were then integrated in each node of the 

demand scenario tree, constituting a hybrid scenario tree. For each uncertain' parameter, 

different types of recourse actions were defined in the multi-stage stochastic programming 

(MSP) model. We conducted a case study with respect to a medium capacity sawmill. 

Numerical results indicated that the plan proposed by the multi-stage model owns' 

considerably lower expected raw material consumption cost as well as expected product 

inventory and backorder costs than the mean-value deterministic and the two-stage 

stochastic models. 

Future work 

The study reported here is a ' first step leading to a series of applications in different 

manufacturing environments, where the throughputs of the processes are uncertain due to 

uncertainty of their inputs. As an example, we can refer to industries where raw materials 

are of natural resources and their exact chara~teristics cannot be measured in priori. erude 



Chapter 5. General conclusion 118 

oil refineries, meat & agricultural products industries, and stonecutting industry can be 

categorized in this group. Recycling industry is another example where the throughputs of 

processes are uncertain due to the lack of.complete information on the state of the recycled 

items in priori. 

The uncertain parameters studied in the thesis are among the environmental uncertainties. 

Material cost is another environmental uncertainty that can be taken into account. 

Moreover, most of the manufacturing environments are influenced by several system 

uncertainties, namely, machine failures. Thus, taking into account such uncertainties in 

addition to yield and demand uncertainty in production planning models, leads to more 

realistic production plans. 

In this study, we compared the stochastic and deterministic models in a static fashion, i.e. 

with a finite time window. However, in practice a rolling horizon is used for production 

planning. Therefore, it is of interest to study the performance of stochastic programming 

models under a rolling horizon approach. 

In chapter IV, we represented the uncertain demand and yield as a limited size scenario tree 

and a limited number of stationary scenarios, respectively . . Our objective was to have a 

multi-stage stochastic model of manageable size that can be solved by CPLEX solvers. 

However, a limited size scenario tree, or a limited number of scenarios is only able to 

. model uncertainty quite roughly. It would be interesting to consider larger number of 

scenarios for uncertain yield and demand in order to model the uncertainties more 

precisely. In order to solve the resulted large-scale multi-stage stochastic models, the 

decomposition algorithms which are also amenable to parallel computation can be applied. 

In this study, we modeled the uncertain yield as a static random· variable with a stationary 

probability distribution during the planning horizon~ As we are addressing a multi-period 

production planning problem, modeling the uncertain yield as a dynamic data process can 

increase the precision of plans, although at the expense of increasing the dimensionality of 

the stochastic mode!. Further research can also be focused on studying different techniques, 

namely, different sampling techniques, ·to model more precisely the uncertainties based ·on 

the available data processes. 


