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Abstract

In ice-covered polar lakes, a narrow ice-free moat opens up in spring or early summer, and then 

persists at the edge of the lake until complete ice loss or refreezing. In this study, we analyzed the 

horizontal gradients in Ward Hunt Lake, located in the High Arctic, and addressed the hypothesis 

that the transition from its nearshore open-water moat to offshore ice-covered waters is marked 

by discontinuous shifts in limnological properties. Consistent with this hypothesis, we observed 

an abrupt increase in below-ice concentrations of chlorophyll a beyond the ice margin, along with 

a sharp decrease in temperature and light availability and pronounced changes in benthic algal 

pigments and fatty acids. There were higher concentrations of rotifers and lower concentrations 

of viruses at the ice-free sampling sites, and contrasts in zooplankton fatty acid profiles that 

implied a greater importance of benthic phototrophs in their inshore diet. The observed patterns 

underscore the structuring role of ice cover in polar lakes. These ecosystems do not conform to 

the traditional definitions of littoral versus pelagic zones, but instead may have distinct moat, ice-

margin and ice-covered zones. This zonation is likely to weaken with ongoing climate change. 

Keywords: lake zonation, lake ice, food webs, microbial mats, underwater light
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Introduction

Lakes are sentinels of environmental change and integrate the conditions of their surrounding 

watersheds (Williamson et al. 2009). The shallow nearshore portion of a lake, the littoral zone, is 

the interface between water and land, and plays a key role in the whole lake ecosystem and its 

responses to change (Vander Zanden and Vadeboncoeur 2020). Dissolved and particulate nutrients 

enter the littoral zone by inflows from the watershed and influence primary production throughout 

the lake (Jones et al. 1998). In oligotrophic lakes, ecosystem productivity is the result of not only 

autochthonous processes but also heterotrophic production fuelled by allochthonous organic 

carbon entering the littoral zone from terrestrial sources (Ask et al. 2009). These inputs of detrital 

organic matter are a potential food source for zoobenthos (Solomon et al. 2011) and zooplankton 

(Rautio et al. 2011; Harfmann et al. 2019), and can stimulate bacterial production (Traving et al. 

2017). The presence of macrophytes along with associated periphyton supports a productive 

inshore benthic habitat, especially in oligotrophic lakes (Vadeboncoeur et al. 2008). However, the 

abundance and composition of the biota in the littoral zone can be seasonally influenced by 

changing inflow conditions, and by the combined mechanical effects of suspended particles, wave 

action and ice that alter near-shore sediments and vegetation (Strayer and Findlay 2010), thereby 

affecting the whole lake ecosystem.

A variety of definitions have been proposed to set the boundary between inshore (littoral) 

and offshore (pelagic or limnetic) zones of lakes, and these have differed among fields of study 

such as hydrology, biology and geomorphology. The littoral zone can be broadly defined as the 

region where land processes and the aquatic ecosystem influence one another (Strayer and Findlay 

2010), and more specifically as the area where at least 1% of incoming photosynthetically available 

radiation (PAR, 400-700 nm) reaches the bottom and allows macrophytes to grow (Peters and 
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Lodge 2009). In High Arctic and Antarctic lakes, however, vascular plants are absent, and hardy 

mosses and microbial biofilms are the only phototrophs colonizing the sediments of inshore waters 

(Sand-Jensen et al. 1999; Mohit et al. 2017). These shallow waters freeze to the sediments in winter, 

and the habitats are subject to the additional stress of scouring by ice movements during melt-out. 

Light availability in polar lakes is constrained more by ice cover and the extreme seasonality of 

solar variation rather than by the depth of the water column, further underscoring the difficulty of 

applying a temperate latitude definition of ‘littoral zone’ to high latitude aquatic ecosystems.

Arctic and Antarctic lakes are commonly covered by a thick ice cover that remains for most 

or even all of the year and that greatly reduces the annual input of light to the water column 

(Schindler et al. 1974). In early summer, the ice cover begins to melt at its edge, producing a narrow 

ice-free band of open water along the shore of the lake. This ‘moat’ region provides the only area 

of direct exchange with the atmosphere, allowing wind-induced turbulence, exposure to incident 

solar radiation and full gas exchange with the overlying air, along with input of water from the 

surrounding watershed (Priscu et al. 1996; Hall et al. 2017). Few studies, however, have examined 

these inshore features and processes in detail. The early inshore melting is driven by the higher 

input of solar energy per unit ice volume in these shallow depths, with positive feedback effects 

caused by the increasing amounts of resultant meltwater that heat up in the shallows. After the 

initial rapid melt-out towards deeper water, the central pan of floating ice may then rest in place 

for a long period of time, sometimes anchored on one side of the lake according to wind direction, 

and with a potentially strong influence on underwater light and photosynthesis (Belzile et al. 2001). 

In the present study, we focused on the inshore-offshore gradients in Ward Hunt Lake in the 

Canadian High Arctic. This far northern lake is covered by thick ice for at least 11 months of the 

year, and in many years by multi-year ice that persists throughout summer (Paquette et al. 2015). 
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In all years, even in the past when the lake was covered by 4-m thick perennial ice, a moat of open 

water has extended around more than half the shoreline, persisting for several weeks each summer 

(Paquette et al. 2015; Bégin et al. 2020). We sampled along transects from the lake-edge moat to 

sub-ice waters in the middle of the lake to address the hypothesis that there would be an inshore-

offshore discontinuity in limnological properties that is directly linked to the ice cover. This study 

is a contribution to the project ‘Terrestrial Multidisciplinary distributed Observatories for the Study 

of Arctic Connections’ (T-MOSAiC), which places emphasis on system-level properties, including 

connectivity, gradients and discontinuities (Vincent et al. 2019). 

Materials and methods

Study site

Ward Hunt Lake (83°05.226'N; 74°08.721'W; WGS84 map datum), is Canada’s 

northernmost lake and is covered by thick annual or multi-year ice. It is located on Ward Hunt 

Island, 6 km off the northern coast of Ellesmere Island (Nunavut, Canada; Supplementary Fig. S1), 

and has an area of 0.37 km2 and a maximum recorded depth of 9.7 m. The region is influenced by 

a polar desert climate with a mean annual air temperature of -16.7°C and a July average temperature 

of 1.7°C (2006-2018; CEN 2020). Ward Hunt Lake is mainly fed by meltwater from snow patches 

in its 1.82 km2 watershed, which flows into the lake via surface and subsurface water tracks 

(Paquette et al. 2020). The ice phenology and moat formation in Ward Hunt Lake were observed 

with time-lapse images captured by an automated camera on its western shore, at hourly intervals 

from 10:00 to 14:00 h each day. The camera was in function from 25 June to 31 October 2016, 

from 18 July to 7 November 2017 and from 25 May 2018 to 21 April 2019. The full dataset of 
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images and the details about the camera installation are archived in the Nordicana D data repository 

(NEIGE 2020). 

Physicochemical variables

In July 2015, four sites were sampled along three replicate transects that covered the inshore-

offshore gradient, extending out from the northwestern shore of the lake (Fig. 1). Samples from the 

inshore moat site (S1) were collected within 5 m of the shore. Samples from the ice-margin site 

(S2) were obtained in the open-water area within 2 m of the edge of the ice cover, which was 

located approximately 20 m from the shore. A sampling of the intermediate under-ice site (S3) was 

at a distance of about 100 m from the shore and corresponded to under-ice conditions 

approximately mid-distance between the deepest part of the lake and the shore. Samples at the 

central under-ice site (S4) were collected beneath the ice at this location of the greatest water 

column depth. Samples were collected between 14 and 21 July 2015. Oxygen, temperature, pH and 

conductivity profiles were measured using a DS5X (Hydrolab, Loveland, CO) and a 600QS probe 

(YSI, Yellow Springs, OH). 

Light profiles from 280 to 720 nm were measured in July 2016 with a RAMSES ACC 

UV/VIS hyperspectral irradiance sensor (TriOS, Germany) from the four sites as shown in Figure 

1. The diffuse attenuation coefficient (Kd) was calculated as:

 Kd=-ln(E2/E1)/(z2-z1) (1)

where E1 is the irradiance at the higher depth z1, and E2 is the irradiance at the lower depth 

z2. Comparisons were made between the surface waters at S1 and few centimetres below the ice 

(at around 2 m depth relative to the upper ice surface) in the central under-ice site (site S4). Lake 

Page 7 of 53 Arctic Science (Author?s Accepted Manuscript)

© The Author(s) or their Institution(s)



water was sampled through the ice in the intermediate and central sites with a 7-litre Limnos Water 

Sampler (Limnos, Poland) and directly at the surface from a boat for the ice margin and inshore 

moat sites. Microbial mat samples at S1 were collected by wading out from the shore, whereas 

those at S3 and S4 were collected with a Mini-Glew corer (Glew 1991). Microbial mats were not 

sampled at S2. 

Water for coloured dissolved organic matter (CDOM), dissolved organic carbon (DOC) and 

dissolved inorganic carbon (DIC) was collected in July 2017 and filtered through pre-rinsed 

cellulose acetate filters (0.2 µm porosity), then stored without headspace in tightly capped glass 

bottles at 4°C in the dark until analysis. DOC and DIC concentrations were measured with infrared 

detection in a total organic carbon analyzer (TOC-VCPH, Shimadzu, Japan) after catalytic 

combustion. The absorbance of CDOM (ACDOM()) was measured from 200 to 800 nm at 1 nm 

intervals with a Varian Cary 100 dual-beam spectrophotometer (Varian Inc., Canada). Following 

the protocol described by Helms et al. (2008), we conducted a null point correction by subtracting 

the mean ACDOM(λ) from 750 to 800 nm from the complete spectrum after the subtraction of the 

blank, and the values were converted to CDOM absorption (aCDOM()).

Water for spectral absorption measurements of suspended particles was collected at the 

surface in the inshore moat site (S1) and just below the ice in the central site (S4) and filtered 

through 25 mm GF/F filters that were preserved at -80°C until analysis. The optical density of the 

material collected on the filters was measured at wavelengths from 300 to 720 nm in a Varian Cary 

100 dual-beam spectrophotometer (Agilent, Santa Clara, California) equipped with an integrating 

sphere (Labsphere Inc., North Sutton, New Hampshire) . Filters were then treated with 65°C pure 

methanol to remove all pigments and determine non-algal particle absorption ( ; Kishino et al., 𝑎𝑁𝐴𝑃

1985; Mitchell et al., 2002). Total particulate absorption ( ) was calculated as: 𝑎𝑝
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 (2)𝑎𝑝 = [2.303 ∗ (𝑂𝐷𝑓𝑝 ― 𝑂𝐷𝑛𝑢𝑙𝑙)]/[ ∗
𝑉𝑓

𝐴𝑓]
where ODfp is the optical density of the sample between 250 and 750 nm, ODnull is the mean 

optical density of the blank filter between 750 and 800 nm,  is the path length amplification 

factor of the filter set to 2 (Bricaud and Stramski 1990; Roesler 1998), Vf is the filtered volume 

(m3) and Af is the filtration area (m2). The same equation was applied to aNAP and the values were 

non-linearly fitted to exclude traces of residual pigment absorption following Belzile et al. (2004) 

over the spectral range 380-730 nm, excluding the 400-480 and 620-710 nm ranges as in Babin et 

al. (2003). The total pigment absorption a was then calculated by subtracting non-algal 

absorption from the total particulate absorption (a = ap – aNAP).

Total nitrogen (TN) samples, collected in July 2015, were fixed with H2SO4 (final 

concentration 0.1%) and stored at 4°C until analysis. Back in the laboratory, the samples were 

treated by alkaline persulfate digestion and analyzed by sulfanilamide colorimetry after hydrazine 

reduction (Lachat autoanalyzer, QuikChem® Method 12-107-04-1-E).

Biological variables

Lake water samples were fixed with glutaraldehyde (final concentration of 1% for 

heterotrophic bacteria and picocyanobacteria, 0.5% for viruses) and stored at -80°C until analysis. 

Viruses and bacteria were stained with SYBR Green I dye (ThermoFisher Scientific, Waltham, 

MA) and their concentrations then measured in an Accuri C6 flow cytometer (BD Biosciences, San 

Jose, CA). Picocyanobacteria were detected and enumerated via their red autofluorescence 

(channel FL4) using an Epics Altra flow cytometer (Beckman Coulter, Indianapolis, IN).
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Water sampled for pigment analysis was filtered through 25 mm GF/F filters that were stored 

initially in the field at -20°C and then at -80°C until analysis. Microbial mats were also stored in 

the field at -20°C and then at -80°C until analysis. Pigments from the filters and the mats were 

extracted with methanol 95% and measured by high pressure liquid chromatography (HPLC) as in 

Bonilla et al. (2005). Four successive extractions were necessary to retrieve all the pigments from 

the microbial mats. Microbial mat samples contained abundant degraded chlorophylls and 

carotenoids. Unknown carotenoids were quantified using standard conversion factors from their 

closest relative according to their retention time and spectra. If the carotenoid was not closely 

related to a known standard, the ß,ß-carotene conversion factor was used, except for myxol-

glycosides, for which we used the myxoxanthophyll conversion factor. For unknown chlorophylls, 

the chlorophyll a (Chl a) conversion factor was used. 

Additional lake water samples were fixed with a mixture of glutaraldehyde and 

paraformaldehyde for protist identification as in Lovejoy et al. (1993). Heterotrophic and 

autotrophic protists were counted and identified in sedimentation chambers (Utermöhl 1958) with 

an epifluorescence microscope at 400X (Axiovert 10, Zeiss, Germany). Zooplankton samples were 

collected using a 21 cm diameter net (63 µm mesh), fixed with formaldehyde (final concentration 

4%) and then identified and counted by light microscopy at 100X magnification.

Seston samples for fatty acid profiling were collected from the surface of the inshore (S1) 

and central (S4) sites on 47-mm GF/F filters. Zooplankton samples were collected with a tow net 

(63 µm mesh) and also preserved on GF/F filters. Seston and zooplankton samples, along with 

mosses, microbial mats and chironomids, were kept frozen and freeze-dried. Fatty acids were 

extracted following a one-step transmethylation in methanol:toluene:acetyl chloride 

(4000:1000:125) at 90°C for 20 min, the fatty acid methyl esters (FAMEs) were then extracted 
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with water and hexane, and quantified by gas chromatography-mass spectrometry (GC-MS) as 

described in Schneider et al. (2017). Our analyses focused on the unsaturated fatty acids C16:1n-

7, C18:2n-6, C18:3n-3, C20:4n-6, C20:5n-3, C22:6n-3 and C24:1n-9 as phytoplankton biomarkers 

(Kelly and Scheibling 2012; Grosbois et al. 2017).

Statistical analyses

One way ANOVAs and Tukey HSD tests were performed on limnological variables 

according to their position in the inshore-offshore gradient. Appropriate transformations were 

applied to respect normality and homogeneity of variances and p-values were adjusted with the 

Benjamini-Hochberg procedure. Cluster analyses were performed with Euclidian distances of the 

limnological variables and with Bray-Curtis distances of the protist and rotifer communities as well 

as the pigment assemblages of the water column and the benthic microbial mats. A principal 

coordinate analysis (PCoA) was performed with the Bray-Curtis distance of the selected fatty acids 

with the pcoa function of the ape package in R (Borcard et al. 2011).

Results

Moat dynamics

During our sampling in July 2015, the ice cover of Ward Hunt Lake had a mean thickness of 

196 cm in the intermediate under-ice site (S3) and 218 cm in the central under-ice site (S4), and 

the moat was approximately 20 m wide. In the warm summer of 2016, the ice in July was 180 cm 

thick at S4 and the moat was 30 m wide; in July 2017 the ice was 151 cm thick at S4 and the moat 

was 25 m wide, and in July 2018 it was 158 cm thick at S4 and the moat was 15 m wide. The first 
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set of camera images available on 25 June 2016 showed that the moat was already established by 

that date and continued to widen until the break-up of the ice over on 2 August, with complete loss 

of ice by 15 August and freeze-up in early September (Fig. 2a). In 2017, the first images were 

available on 18 July and showed a moat approximately 15 m wide that likely formed during June. 

As in 2016, freeze-up occurred in early September. In 2018, a full annual set of images was 

obtained that spanned the entire moat cycle. These show the onset of the moat on 28 June 2018, 

and its persistence for 67 days until freeze-up on 4 September 2018. The image archive highlights 

the large interannual variability in moat extent, from up to 25% of the lake surface in 2016 (before 

complete ice break-up), to 10% and 5% of the lake surface in 2017 and 2018, respectively (Fig. 2). 

Some of the images during the spring and fall period when the lake was completely ice-covered 

showed that the smooth moat ice was clear of snow, while snow covered the offshore lake ice 

(NEIGE 2020).

Physicochemical profiles

The vertical profiles of temperature, dissolved oxygen and conductivity showed pronounced 

changes along the inshore-offshore transect (Fig. 3). The shallow water column at S1 was fully 

mixed at 5.5°C, falling to 3.8°C in the surface waters at S2. At the ice-covered sites S3 and S4, a 

thin layer of cold meltwater below 1°C lay over the warmer water beneath (Fig. 3a), with the 

highest temperatures around 7.0°C, between 4 and 5 m in the water column. Oxygen concentrations 

were around 100% air equilibrium at S1, consistent with full exposure of the moat zone to wind-

induced mixing, while the below-ice sites S3 and S4 showed a highly stratified pattern with mid-

water column values up to 140% in the depth region 4 to 8 m (Fig. 3b). Specific conductivity values 

were low and homogenous at S1 (from 0.119 to 0.146 mS cm-1), while the offshore sites showed 
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pronounced water column gradients, rising from 0.040 mS cm-1 in the dilute meltwater beneath the 

ice to 0.309 mS cm-1 at the bottom of the water column (Fig. 3c). The marginal ice site S2 showed 

vertical gradients in temperature, oxygen and conductivity, but these were much less pronounced 

than at ice-covered sites S3 and S4. 

As expected, underwater light conditions varied greatly across the transect. At the ice-free 

site S1, 54.1% of the total incoming irradiance reached the bottom at 2 m depth, while at the ice-

covered site S4, only 26.5% entered the top of the water column immediately beneath the ice, 

falling to 5.5% at 9.4 m (Fig. 4). The ice cover allowed a slightly greater proportion of ultraviolet 

radiation (UVR; 33.3% penetration) compared to PAR (27.1%); UVR at 2 m depth in the inshore 

moat site S1 was 48.0% of incoming UVR, but undetectable at the bottom of the water column at 

S4. The downward irradiance spectra and the Kd at 2.0 m showed a similar pattern at S1 and S4, 

with the least attenuation between 400 and 600 nm (Fig. 4). The upward irradiance spectra were 

strikingly different between the two sites. Wavelengths between 600 and 700 nm were reflected by 

the bottom in the inshore moat site (S1) and upwelling irradiance values at 2 m were higher than 

the upwelling values at the surface (Fig. 4). In S4, upward spectral irradiance peaked at 573 nm 

just below the ice (2.0 m) and near the bottom at 9.1 m (Fig. 4). 

Maximal values of the diffuse extinction coefficient (Kd) were below 350 nm and over 

600 nm in both the inshore and the central sites (Fig. 4). Kd was lower for wavelengths above 

600 nm in the moat than in the under-ice zone. The apparent Kd of the ice (not corrected for 

reflection) increased toward longer wavelengths. The total Kd between 300 and 720 nm was 

0.31 m-1 for the 2 m water column at S1 falling to 0.20 m-1
 for the upper 2 m of the water column 

at S4, indicating 36% less attenuation by water under the ice. The ice cover had an apparent Kd of 

0.64 m-1 and the water column between 2 and 9.7 m had a Kd of 0.20 m-1. However, non-algal 
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particle and algal particle absorption values were lower inshore and CDOM absorption was almost 

identical in the two sites (Fig. 5a), suggesting that scattering affected the observed variations in 

light attenuation. Absorbance peaks at 439 nm and 674 nm associated with Chl a, and at 625 nm 

associated with phycocyanin, a characteristic cyanobacteria pigment, were more pronounced in the 

central site (S4). 

Inshore-offshore concentration gradients

Two patterns of change along the inshore-offshore transect were observed in the measured 

chemical and biological properties. The first pattern consisted of an abrupt drop at S2 in the ice 

margin site, where Chl a and phytoplankton were less concentrated and total nitrogen more 

concentrated (Fig. 6), and where DOC, bacteria, and mixotrophic protists tended to be less 

concentrated. The second pattern was a shift of concentrations between the ice-free moat zone (S1, 

S2) and the ice-covered zone (S3, S4). Lower concentrations of viruses and higher concentrations 

of rotifers were observed in the inshore and ice-margin sites as opposed to the intermediate and 

central sub-ice sites (Fig. 6e,k). 

Our survey of Ward Hunt Lake with an underwater Go-Pro video camera attached to the 

profiling probe in 2014 revealed an unexpectedly luxuriant community of cyanobacterial mats and 

mosses at the deepest site (9.7 m), and these mat communities had a higher taxonomic richness 

than in the moat zone mats (Mohit et al. 2017). The dominant moss species was identified as 

Drepanocladus brevifolius, and a continuous layer of chironomid tubes was also observed at S3 in 

the intermediate sub-ice site. Chironomid larvae were identified as Metriocnemus sp. and samples 

of the tubes averaged 1.5 cm length. Using this average as horizontal scale, we estimated a density 

of 14 000 tubes per m2 from a screenshot of the underwater video (Supplementary Fig. S2). We 
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also observed larvae and adults in the ice, and adults on the ice surface, indicating that individuals 

were swimming up from their tubes and migrating through fissures in the candled ice to the 

atmosphere to complete their life cycle (Supplementary Fig. S2f).

Cluster analysis of all variables

According to the cluster analyses (Fig. 7), there was a clear distinction between the open-

water moat (S1 and S2) and offshore ice-covered (S3 and S4) zones. The intermediate and central 

sites (S3 and S4) generally clustered together, suggesting more homogenous conditions under the 

ice. The ice-margin site was distinct relative to the others according to the limnological parameters, 

algal pigments in the water column and rotifer assemblages (Fig. 7). 

According to their clustering, the nanoplankton communities observed by microscopy were 

less separated by sites than other groups. The inshore (S1) and intermediate (S3) sites were more 

similar to each other, with higher concentrations of Snowella sp., Micractinium sp., and 

Tabellaria sp. The central (S4) and ice-margin (S3) sites also showed similarities, with higher 

concentrations of Tetraedron sp. and Synura sp (Supplementary Table S1). 

An unusual feature of Ward Hunt Lake was that there was no evidence of crustacean 

zooplankton in any of our net samples, consistent with a previous mid-summer sampling of the 

lake (M. Rautio, unpublished observations). However, there were abundant rotifer populations, 

with 10 species (Supplementary Table S2), of which four dominated. The rotifer communities at 

S1 in the moat zone had a greater abundance of Ascomorpha sp. (237 ind. m-3), Asplanchna 

priodonta (128 ind. m-3), and Keratella hiemalis (116 ind. m-3
; Supplementary Table S2) relative 

to under the ice, while the ice margin S2 samples contained the highest concentrations of 

Rhinoglena sp. (260 ind m-3).
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The inshore moat site (S1) water column was characterized by the presence of a pigment 

similar to 4-ketomyxol 2’-fucoside, which is associated with cyanobacteria, notably 

Pseudanabaena and oscillatorians (Takaichi et al. 2005; Lionard et al. 2012). Pigment assemblages 

in the water column at the ice margin site S2 were characterized by twice the concentrations of 

diadinoxanthin, peridinin and unknown myxol-glycosides compared to the other sites 

(Supplementary Table S3). Diadinoxanthin is associated with diatoms, peridinin with 

dinoflagellates, and myxol-glycosides with cyanobacteria (Roy et al. 2011).

Pigments extracted from the benthic mats at S1 were distinct from benthic mat pigments in 

the ice-covered zone, with higher concentrations of scytonemin and reduced scytonemin, both 

signature pigments of UV-exposed cyanobacteria (Bonilla et al. 2005; Roy et al. 2011). The 

offshore benthic mats additionally contained bacteriochlorophyll c, which is generally associated 

with green sulfur bacteria that grow under anoxic conditions (Supplementary Table S4). 

Fatty acids

The highest total fatty acid (FA) concentrations were measured in the central site (S4) 

samples of seston and zooplankton (means of 479 and 290 µg/mg dry weight, respectively; Fig. 

8a; Supplementary Table S5). Microbial mats contained the lowest concentrations (mean 25 µg/mg 

dry weight), especially in the inshore (S1) and central (S4) sites. Inshore organisms contained more 

polyunsaturated fatty acids (PUFA) than in the ice-covered zone (sites S3 and S4; Fig. 8b-f), but 

the distribution differed statistically only for microbial mats; due to the small sample sizes, no 

statistical tests were done for the mosses or chironomids. According to the PCoA performed with 

fatty acid assemblages (Fig. 9), pelagic (seston) and benthic (microbial mats and mosses) food 

sources were different from each other but showed only slight differences between the central and 
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inshore moat sites. Seston fatty acid assemblages were characterized by higher concentrations of 

C22:6n-3 that is a bioindicator for phytoplankton (Kelly and Scheibling 2012). The distribution of 

the assemblages in the biplot suggests a strong differentiation in zooplankton diet between the ice-

free moat and under-ice zones (Fig. 8). The zooplankton fraction (>63 µm) from the central site 

(S4) shared a similar fatty acid profile to the seston, suggesting their main food source was located 

in the water column. Zooplankton from the inshore moat site (S1) contained higher concentrations 

of C16:1n-7, a bioindicator for diatoms but also for cyanobacteria (Taipale et al. 2015) that were 

both common in the microbial mats, suggesting their diet is from diverse benthic phototrophs in 

these mats. The fatty acid assemblages in Metriocnemus larvae were more heterogenous, but all 

were closely related to the microbial mats, indicating that these biofilms may provide food 

resources for these benthic consumers in the central as well as inshore sites. 

Discussion

Moat development

An ice-free peripheral moat is a common feature of Antarctic and Arctic waterbodies (Adams et 

al. 1989; Miller and Aiken 1996), and is a distinct within-lake environment that can persist for 

many weeks each summer. The formation of the moat is initially rapid as a result of higher solar 

fluxes per unit volume in the shallow ice-free zone, the positive feedback effect of the resultant 

meltwater, the arrival of inflows and additionally, as indicated here, by reduced snow cover and 

albedo. Our observations of less snow retention over the inshore ice-free zone are consistent with 

those of Adams et al. (1989), who attributed this to the wind removal of snow from smoother 

moat ice and the accumulation of snow on rougher, slightly higher, multi-year ice. 
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Once the moat of open water is formed, its area then remains more stable for a prolonged 

period (Welch 1973), with the thermal inertia of the thicker offshore ice and deeper water column 

acting as a brake on the subsequent rate of ice loss. As we observed, however, there can be large 

variations in moat extent among years. The width of the moat of Ward Hunt Lake as estimated by 

the automated camera images extended from less than 5% to 25% (in September 2018 and 

August 2016, respectively) of the total lake area. In 2015, the width was around 20 m, similar to 

the moat of Lake A on nearby Ellesmere Island as measured in 2007 (Tomkins et al. 2009). This 

moat extent is larger than in the perennially ice-capped lakes of the McMurdo Dry Valleys of 

Antarctica, where the summer moats account for around 3% of total lake area (Wharton et al. 

1986; Priscu et al. 1996). In these south polar lakes, as at Ward Hunt Lake, there can be large 

variations among years; for example, Lake Fryxell had up to 11% of open water in the 2013-2014 

summer, associated with higher air temperatures (Wayt et al. 2017). In the most extreme 

Antarctic lakes such as Lake Untersee, no moat has been observed and the lakes remain 

completely sealed throughout the year (Faucher et al. 2020).

Physicochemical variables

Given the high transparency of its waters, the entire expanse of Ward Hunt Lake might be 

considered as a “littoral zone” according to the definition of Peters and Lodge (2009), based on 

light penetration to at least 1% irradiance at the bottom. However, the distinct characteristics 

imposed by the presence of ice results in marked, discontinuous inshore-offshore differences, from 

the fully exposed moat zone to the shaded ice-covered zone. The horizontal extent of the inshore 

open-water zone is therefore a more meaningful descriptor of spatial differences in limnological 

Page 18 of 53Arctic Science (Author?s Accepted Manuscript)

© The Author(s) or their Institution(s)



properties of Arctic lakes that are ice-covered for most of the year than traditional definitions of 

the littoral zone.

The patterns observed in Ward Hunt Lake underscore the importance of ice cover as the main 

driver of spatial variation, with the ice edge as the key determinant of horizontal structure. The 

physicochemical profiles under the ice varied little among sites (Fig. 3). The ice cover allowed 

inverse thermal stratification along with chemical stratification by preventing exposure to the 

atmosphere and wind-induced mixing. Ice has a low thermal conductivity, limits heat loss in the 

atmosphere and allows solar heating of the water column to temperatures well above those of the 

overlying air: Ward Hunt Lake had under-ice water temperatures up to 7°C, yet air temperatures 

averaged around 1.7°C in July (Bégin et al. 2020). This greenhouse effect has been modelled in 

other ice-covered lakes of the Arctic (Vincent et al. 2008) and Antarctica (Obryk et al. 2019). 

Complete loss of ice cover during warm summers allows mixing of the water column and 

ventillation of heat to the atmosphere, and water temperatures can then drop to near freezing 

(Schindler et al. 1974; Doran et al. 1996; Bégin et al. 2020). The vertical structure that was lost in 

Ward Hunt Lake in 2016 was reinstated in summer 2017 beneath the first-year ice cover, but with 

lower temperatures (Bégin et al. 2020). The presence of ice cover hence allows a stable and 

relatively warm environment to develop, which may stimulate primary production (Markager et al. 

1999) and microbial food web activity (Wrona et al. 2006). However, these effects may be offset 

by the influence of ice in reducing light availability, mixing and nutrient supply.

High concentrations of oxygen were recorded between 4 and 9 m, indicating net autotrophy 

in the water column. At the bottom of the central under-ice site (S4), the oxygen concentration was 

around equilibrium (Fig. 3), suggesting a balance between gain and loss processes. The bottom 

waters of Ward Hunt Lake are well oxygenated in July, but reach anoxia at the beginning of winter 
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that persists until spring (Bégin et al. 2020). In contrast, frequent mixing in the ice-free moat zone 

likely keeps the water and the microbial mats well oxygenated until freeze-up, which translates 

into a lower proportion of anaerobic bacteria (Mohit et al. 2017). Concentrations of oxygen above 

saturation (near 200% in Ward Hunt Lake) are well documented in ice-covered lakes of high 

latitudes (Wharton et al. 1993; Ludlam 1996). Wharton et al. (1993) suggested two main sources 

for high oxygen concentrations: oxygenic photosynthesis and oxygen exclusion from newly 

forming ice when water from inflowing streams freezes in contact with the bottom of the ice cover.

Vertical gradients in conductivity were steeper in the ice-covered sites (Fig. 3), probably due 

to the cold meltwater derived from the ice cover being less concentrated in ions, and remaining at 

the surface without mixing with the rest of the water column because of its greater buoyancy at 

near-zero temperatures (Bergmann and Welch 1985). Conductivity in the water column increased 

along the inshore-offshore gradient, possibly due to inputs from the sediments (including 

weathering of catchment mineral particles), from ions released by ice formation in the preceding 

fall and from microbial decomposition processes. The water tracks on the western shore of the 

watershed are the main source of freshwater for the lake (Paquette et al. 2017). As also seen in the 

present study, the ionic composition of freshwaters channelled through water tracks on the western 

slope of Ward Hunt Lake is dominated by bicarbonate and calcium (Paquette et al. 2020). The 

accumulation of ions in Ward Hunt Lake could further be accelerated by the absence of mixing of 

low-conductivity ice-melt water with the underlying water column before it reaches the outflow, 

as was observed in P&N Lake on the west coast of Hudson Bay (Bergmann and Welch 1985).

As the result of the ice cover, the moat and ice-covered zones differed markedly in terms of 

the quantity of solar energy reaching the top and bottom of their water columns (Fig. 4). In nearby 

Lake A, the Kd is in these wavelengths was up to 53% lower in snow-free ice than in water, but 
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43% higher in the PAR waveband (Belzile et al. 2001). The penetration of green light at the bottom 

of the moat and ice-covered zones (notably in the range of 500 to 575 nm) observed in Ward Hunt 

Lake is generally common in lakes since maximal absorption for Chl a is at 640 and 405 nm and 

for Chl b at 620 and 440 nm, with carotenoids and CDOM also absorbing light in blue-green 

wavelengths and water itself absorbing strongly at the red end of the spectrum (Wetzel 2001). 

There were pronounced differences in upward spectral irradiance between the moat and ice-

covered zones of the lake. In the upper waters of the central under-ice site (S4), the maximal 

irradiance was observed between 500 and 575 nm, as for downward irradiance (Fig. 4). At the 

bottom, there was a shift towards a maximum at 563 nm, which indicated a selective reflection of 

light from the bottom at green wavelengths, and selective absorption of light at higher and lower 

wavelengths by microbial mat pigments. In the inshore moat site (S1), upward irradiance at 

wavelengths above 570 nm was higher than upward irradiance at the surface (Fig. 4), which was 

likely due to pigments reflecting in the orange and red part of the spectra, and confering the colour 

of the mats (Supplementary Fig. S2b). The inshore mats had higher concentrations of 

cyanobacterial pigments including 4-ketomyxol 2’-fucoside, β,β-carotene, echinenone and the UV-

absorbing pigment scytonemin (Supplementary Table S4). High concentrations of carotenoids 

associated with cyanobacteria were previously observed in Ward Hunt Lake’s inshore microbial 

mats, and their taxonomic analysis indicated a high proportion of the scytonemin-rich genus 

Dichothrix (Villeneuve et al. 2001). This is also in accordance with observations from the mats in 

Lake Hoare, Antarctica, where cyanobacterial pigments associated with high carotenoid 

concentrations were mainly concentrated in moat mats (Hawes and Schwarz 1999). Moreover, the 

light reaching the bottom of the Ward Hunt Lake inshore moat site is reduced in wavelengths lower 

than 400 nm, probably as a result of absorption by CDOM (Fig. 5). The lake watershed is rich in 
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carbonates (Trettin 1991), and the resultant light coloured rocks confer a high reflecting potential 

to the rock-coated moat zone (Supplementary Fig. S2a; Wetzel 2001).

The UVR attenuation coefficients (Kd) at 320, 340 and 380 nm for the first 2 m at the surface 

of Ward Hunt Lake were respectively 0.60, 0.47 and 0.32 m-1 in the inshore moat site (S1) and 

0.63, 0.62 and 0.63 m-1 in the central site (S4; Fig. 4). These lie well below values recorded in the 

surface 5 m of the nearest lake, meromictic Lake A, located 20 km southwest of Ward Hunt Lake, 

where Kd was 1.65, 1.33, and 0.80 m-1 at the same wavelengths. These higher values at Lake A are 

likely due to higher CDOM absorbance, with its aCDOM values between 2 and 3 m-1 at 320 nm 

(Belzile et al. 2001) compared to our aCDOM observations of 0.69 m-1 in the moat and 0.78 m-1 in 

the central sites of Ward Hunt Lake. However, the Kd values for PAR (400-700 nm) in Ward Hunt 

Lake (0.314 and 0.209 m-1 for the surface waters of the inshore and central sites), and are similar 

to the value of 0.352 m-1 recorded in Lake A (Belzile et al. 2001). These Kd values are also within 

the range of other Arctic Lakes located on Cornwallis Island such as Meretta, Eleanor, and Char 

Lakes (0.24-0.39 m-1; Markager et al. 1999), and are similar to the values obtained in Lake Hoare 

and Lake Fryxell in the McMurdo Dry Valleys (0.197, 0.214 m-1 at the surface), but well above 

those in Lake Vanda and Lake Bonney, also in the McMurdo Dry Valleys, that contain <0.7 mg 

DOC L-1 and <0.1 µg Chl a L-1
 (Vincent et al. 1998). 

The higher Kd spectral values in the central site (S4) of Ward Hunt Lake for the UVR portion 

of the spectra are coherent with higher absorption by algal and non-algal particles (Fig. 5). In 2015, 

the central site contained lower concentrations of nanoplankton (S1; Supplementary Table S1). 

However, Chl a concentrations were higher in the central site compared to the inshore moat site, 

along with higher total pigment concentrations. Hence, cells could be less abundant but cellular 

pigment concentrations higher as a result of photoacclimation to the low light environment 
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(Thompson et al. 1991). Ice cover on the central site of Ward Hunt Lake was thinner at the moment 

of irradiance measurements in 2016 and optical measurements in 2017 (average of 180 and 151 

cm, respectively) compared to the inshore-offshore gradient sampling performed in 2015 (218 cm), 

and this may have contributed to some of the interannual differences in plankton and pigments. 

Inshore-offshore gradients

Limnological variables followed two distinct patterns along the inshore-offshore gradient: a 

pronounced change at the ice margin (S2) that contrasted with the three other sites, and contrasting 

conditions between the ice-free and ice-covered sites (S1 and S2 versus S3 and S4). These two 

patterns highlight the role of ice margin as a zone of disjunction in the surface limnological 

properties of the lake. According to the first pattern, there was a clear decrease in concentrations 

of DOC, Chl a and mixotrophic protists in the ice-margin site (Fig. 6b,d,i). The lower 

concentrations observed in the ice margin site could be the result of convective upwelling. Low-

density cold water released from the melting ice cover may circulate from under the ice towards 

the shore (Bochaton 2017). Given the homogenous physical conditions in the inshore moat site 

(S1), convective upwelling initiated by the warming of its water in the inshore site, as observed in 

Lake N2 in Alaska (Cortés and MacIntyre 2020), seems unlikely. Total nitrogen concentrations, 

contrary to most of the other variables, was higher at the ice margin (Fig. 6a), possibly as a result 

of dissolved and particulate N release from the melting ice face. However there were lower 

concentrations of DOC, bacteria, Chl a, autotrophic protists and pigments, suggesting lower 

primary production. 

The second observed pattern included the change of concentration in viruses and rotifers 

between the ice-covered and the ice-free zones (Fig. 6). Viruses had lower concentrations inshore 
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and in the ice margin, and their increase under the ice co-occurred with higher concentrations of 

DOC, Chl a and bacteria (Fig. 6b,d,g). Viruses have the potential to short-circuit the classical food 

web by attacking primary producers and releasing carbon that is only available to smaller 

organisms in the lower part of the food web (Wilhelm and Suttle 1999). The virus to bacteria ratio 

(VBR) ranged from 1.8 to 3.8, which is in the lower range of the Antarctic freshwater environments 

described by Säwström et al. (2007). Low VBRs suggest low bacterial mortality due to viral 

infection and is correlated with low bacterial abundance (Wommack and Colwell 2000; Yager et 

al. 2001). Lower concentrations of viruses in the ice-free zones could be attributable to their 

vulnerability to decay via sunlight (Suttle and Chen 1992). The pattern in rotifer communities was 

completely the opposite, where higher concentrations were observed in the moat zone (Fig. 6k) 

along with a higher abundance of picocyanobacteria and autotrophic protists (Fig. 6f,h). The central 

site (S4) was dominated by K. hiemalis that feeds preferentially on bacteria and detritus. The 

inshore moat site (S1) was dominated by high abundances of species that feed on larger particles 

such as Ascomorpha sp. that prefers dinoflagellates, Rhinoglena sp. that feeds on chrysophytes and 

A. priodonta that is predatory (Supplementary Table S2; Pourriot 1977).

Some variables did not clearly follow the two patterns depicted above. Autotrophic protists 

were higher in the inshore moat and dropped consistently in the ice margin to stay low under the 

ice (Fig. 6h). Higher concentrations of phototrophs are likely associated with higher light 

availability, and the drop at the ice margin could be related to higher grazer concentrations 

(heterotroph protists and rotifers; Fig. 6j,k). The most abundant rotifer in the ice-margin site, 

Rhinoglena sp., feeds on small unicellular algae and on detritus (Ruttner-Kolisko 1974). Higher 

concentrations of bacteria observed in the central site (S4) could be associated with a lower 

predation rate by heterotrophs or higher concentrations of DOC. However, genomic analyses of 
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the microbial mats from the moat zone at our site S1 detected heterotrophic ciliates as the dominant 

eukaryotes, suggesting high microbial food web activity (Mohit et al. 2017). 

Consistent with our hypothesis, there were clear discontinuities at the ice-margin site, 

indicating the decisive effect of ice cover in separating habitat properties between inshore and 

offshore parts of the lake. Lake ice margins have some characteristics in common with the edge of 

the sea ice in the Arctic Ocean, which is also undergoing transition from perennial to seasonal ice 

conditions associated with climate warming (Polyakov et al. 2012). The limnological variables at 

sites 3 and 4 of Ward Hunt Lake were closely similar, as was ice thickness. The ice-covered area 

of polar lakes thus has the potential to maintain a relatively uniform conditions, in contrast to the 

much more variable conditions of the moat zone. In the marginal ice zone of the Arctic Ocean, 

mismatches have been observed between phototrophs (ice algae and phytoplankton) and 

heterotrophs due to the earlier ice break up (Søreide et al. 2010). Such mismatches may also occur 

in Ward Hunt Lake where the phytoplankton phenology has been observed to change with complete 

loss of ice cover (Bégin et al. 2020). 

Cluster analysis of  the different biological variables confirmed the strong spatial differences. 

Rotifer communities clustered distinctly in the ice-free and ice-covered zones, and the communities 

of the inshore and ice-margin sites were in separate branches, while those in the central and 

intermediate sub-ice sites were merged (Fig. 7c). A clear distinction between fatty acid 

assemblages of zooplankton between open-water and ice-covered sites was also observed (Fig.9). 

Our results suggest that under the ice, zooplankton diet is more likely to be composed exclusively 

of seston, whereas in the inshore moat site microbial mats or epibionts associated with mosses, 

with their higher concentrations of PUFAs (Fig. 8), could contribute to a larger extent to 

zooplankton diet. Sea ice has been identified as a rich ecosystem where algae can contain higher 
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levels of fatty acids than phytoplankton with large proportions of PUFAs (Falk-Petersen et al. 

1998), but lake ice lacks the nutrient-rich brine channels of sea ice and would seem to provide a 

much less suitable habitat for algal growth. Little is known, however, about the biomass and 

productivity of ice-associated algae in lakes (Hampton et al. 2015).

A clear distinction according to the presence of the ice cover in Ward Hunt Lake was also 

observable in the limnological variables, pigments of the water column and PUFAs in chironomids 

(Fig. 7a,e, 8 and 9), underscoring the homogeneity of response of these variables under the ice 

cover. The clear pattern in pigments was not reflected in the cluster of protist communities, which 

included autotrophs, heterotrophs and mixotrophs (Fig. 7b), nor between under-ice and moat seston 

fatty acid assemblages. (Fig. 8). The central sub-ice site generally contained more heterotrophs 

than the inshore moat site S1, mainly small-sized (<5 µm) non-flagellated heterotrophs 

(Supplementary Table S1). The inshore site was characterized by the highest concentrations of 

autotrophs, likely due to light availability, especially diatoms, colonial cyanobacteria (Snowella 

sp.) and the chlorophyte Micractinium sp. Mixotroph protists were generally more abundant in the 

intermediate site, especially Dinobryon sp., Ochromonas sp. and Cryptomonas sp. Additional 

under-ice light measurements would help to determine if ice degradation in this site could have 

reduced light availability, as white ice attenuates more light than candled ice (Welch et al. 1987). 

Lower light availability could give a competitive advantage to mixotrophic species (Jones 2000).

Our discovery of abundant tubes in the benthos, most likely produced by chironomids, 

suggests a sustained presence of these dipterans in the Ward Hunt Lake ecosystem and their likely 

participation in food web dynamics. Their migration from the tubes in the benthos, swimming up 

through the water column and then passing through fissures in the candled ice, is consistent with 

previous observations in the Arctic (Oliver 1964). The tube concentrations measured here 
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(14 000 m-2) is at the upper range for lakes elsewhere, and likely results from numerous seasons of 

accumulation. Chironomid larvae have been observed in densities between 70 and 11 000 ind. m-2 

(Hölker et al. 2015), and in laboratory experiments, they can cover up to 48% of the surface of 

artificial substrates (Pringle 2004). Although we were able to collect only a small number of 

chironomid individuals, the fatty acid analyses indicated that there was considerable variability in 

chironomid diet among mats, plankton and mosses. Despite their lower fatty acid concentrations 

compared to seston, microbial mats and mosses may be a good food source as they have a high 

proportion of PUFAs, especially ω3 and ω6 in the inshore moat site, which was reflected in larvae 

(Figs. 8 and 9; Supplementary Fig. S3), and the benthic mats could also subsidize the central sub-

ice food web (Mariash et al. 2014). Chironomids display a remarkably large variety of modes of 

feeding, including by filtering, gathering, scraping, shredding, engulfing and piercing, and they are 

opportunistic in the type of prey they consume (Armitage et al. 2012). Food web analyses in 

Alaskan shallow lakes also suggested that chironomids may be closely linked to methane cycling, 

as their diet can be substantially composed of methanotrophic bacteria (Hershey et al. 2006). 

Methanotrophs could be a source of food for chironomids in Ward Hunt Lake as they are abundant 

in the central sub-ice mats (Mohit et al. 2017). Further analyses could be undertaken on samples 

from the lake using adducts of monounsaturated fatty acids specific to methanotrophic bacteria and 

mixing models adapted to fatty acid assemblages (Virtue et al. 1996; Galloway et al. 2014; Wauthy 

and Rautio 2020) to disentangle and quantify the contribution of food sources. 

One of the key aspects of the moat environment to examine in the future is its hydrodynamic 

regime. At the time of the first studies on Ward Hunt Lake, the 4-m thick lake ice had been found 

to extend to the lake floor, and it was assumed that the moat region along the western shore 

constituted the entire liquid water of the lake, with a short residence time before discharge at the 
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outlet (Villeneuve et al. 2001). Subsequent studies with Ground Penetrating Radar, revealed a large 

area of the lake that extended to depths well below 4 m, as well as a thinning of the ice cover 

(Paquette et al. 2015). The latter would have enhanced the potential exchange of moat water with 

the offshore waters beneath the ice, including via density flows from water tracks entering the 

moat. Nonetheless, the persistent thick ice likely acts as an impediment to offshore exchange, and 

the moat water would have a shorter residence time than the main body of the lake, contributing to 

the distinctive limnological characteristics observed here.

Conclusions

The abrupt inshore-offshore changes that we observed in many limnological properties at the 

ice margin of Ward Hunt Lake underscore the importance of ice cover in the regulation and 

stabilization of conditions in polar lake ecosystems. The position of the ice edge can be considered 

a line of demarcation defining the zone of sharp transition in light quantity and quality reaching 

the bottom of the lake, and in the stability of the water column. The definitions of littoral versus 

pelagic zones derived from temperate lake studies are less appropriate for polar lakes, where instead 

the moat, ice-margin and ice-covered waters can be distinguished as limnologically distinct zones. 

The ice edge shifts only slowly in position after the initial early season melting, but this is 

subject to climate-determined variations among years that in turn will influence the spatial 

organization of the lake, including its food webs. As atmospheric temperatures are increasing, the 

thickness, area and duration of the ice cover and the overlying snow depth on polar lakes are 

decreasing, including towards more frequent complete loss of ice. This will make the moat zone 

become a shorter-lived feature and may lessen the extent of inshore-offshore differences in the 

limnology of high latitude lakes.
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List of Figures 

Figure 1. Sampling along the inshore-offshore transect in Ward Hunt Lake. The black arrows 

show the sampling locations in the ice-free moat zone (S1, the inshore moat site; S2, the ice-

margin site) and in the ice-covered zone (S3, the intermediate sub-ice site; S4, the central sub-ice 

site). The red arrows represent the inshore-offshore transect.

Figure 2. Images of Ward Hunt Lake captured by an automated camera located on its western 

shore. The full record of images and video sequences is archived in NEIGE (2020). 

Figure 3. Profile gradients along the inshore-offshore transect of Ward Hunt Lake: a) 

temperature, b) specific conductivity and c) dissolved oxygen. Profiles were recorded on 13 July 

(c and d) and 19 July (a and b), 2015. Oxygen concentrations in the lake are expressed as % air-

equilibrium. S1 was the inshore moat site, S2 the ice margin site, S3 the intermediate sub-ice site, 

and S4 the central sub-ice site.

Figure 4. Irradiance profiles at the inshore moat site (S1, 15 July 2016) and the central under-ice 

site (S4, 14 July 2016) of Ward Hunt Lake. Total irradiance values are for downward irradiance 

integrated across wavebands, expressed as percent incident downward irradiance (note the 

logarithmic scale). Downward irradiance (DI) is expressed as percent of downward irradiance 

recorded just below the surface (JBS) of the open water at S1, or just below the ice (JBI) at S4; 

upward irradiance (UI) is expressed as percent upward irradiance at JBS (S1) or JBI (S4). The 

diffuse attenuation coefficients (Kd) are for the upper 2 m of the water column at each site, and 

for the ice-cover at S4, uncorrected for reflection. 
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Figure 5. Spectral absorption coefficients for Ward Hunt Lake water samples. The coefficients 

are for: a) CDOM, aCDOM(); b) non-algal particles, aNAP(); and c) algal particles, a(). The 

samples were from the upper water column at sites S1 and S4. The shading represents ±SE for 

triplicate samples.

Figure 6. Limnological gradients along the inshore-offshore transect in Ward Hunt Lake, July 

2015. Values are means and SE for triplicates; different letters represent significant differences 

between the sites according to a Tukey HSD multiple comparison following a significant 

ANOVA. Results of the ANOVA comparisons of sites: a) Total nitrogen: F3,8 = 5.75, P = 0.047; 

b) Dissolved organic carbon (DOC): F3,8 = 4.57, P = 0.060; c) Dissolved inorganic carbon (DIC): 

F3,8 = 3.26, P = 0.098; d) Chlorophyll a: F3,7 = 6.62, P = 0.047; e) Viruses: F3,8 = 5.87; P = 0.047; 

f) Picocyanobacteria: F3,8 = 1.39, P = 0.315; g) Bacteria: F3,8 = 5.06, P = 0.054; h) Phytoplankton: 

F3,8 = 6.166, P = 0.047; i) Mixotrophic protists: F3,8 = 3.58, P = 0.091; j) Heterotrophic protists: 

F3,8 = 1.97, P = 0.218; k) Rotifers: F3,8 = 58.28, P < 0.001. 

Figure 7. Cluster analysis of limnological variables, biological communities and pigments along 

the inshore-offshore transect in Ward Hunt Lake, July 2015. Dendrograms represent Ward 

clustering performed on the following distance matrices: standardized Euclidian distances for 

limnological variables and Bray-Curtis distances for nanoplankton, rotifers and pigment 

assemblages. Points filled with gray denote sites covered by ice.

Figure 8. Fatty acid methyl esters (FAME) in samples from Ward Hunt Lake at the inshore moat 

(S1, in white), intermediate under-ice (S3, in grey) and central under-ice (S4, in black) sites: a) 

total FAME concentration in µg/mg dry weight; proportion of polyunsaturated fatty acids 

(PUFA) in b) microbial mats, c) mosses, d) chironomid larvae, e) seston, and f) zooplankton, 
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expressed as percent of total FAME in their respective zones. Values are means for triplicates 

with SE, except for inshore mats and chironomids (n=2) and central chironomid larvae (n=1). 

Results of the ANOVA comparisons of total FAME: in food web compartments in panel a) 

F4,22=5.75, P=0.02; in mats in panel b) F2,6=16.85, P=0.003; in seston in panel e) F1,5=2.77, 

P=0.16; and in zooplankton in panel f) F1,5=2.65, P=0.20. Chironomid larvae were not tested due 

to insufficient numbers of samples. 

Figure 9. Principal coordinate analysis (PCoA) of fatty acids in the Ward Hunt Lake food web. 

Samples were from the inshore moat (S1), intermediate under-ice (S3) and central under-ice (S4) 

sites. Arrows represent the contribution of the five most influential fatty acids for the distribution 

of samples. *Length of the C16:1n-7 arrow was divided by 3.
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Figure 1. Sampling along the inshore-offshore transect in Ward Hunt Lake. The black arrows show the 
sampling locations in the ice-free moat zone (S1, the inshore moat site; S2, the ice-margin site) and in the 
ice-covered zone (S3, the intermediate sub-ice site; S4, the central sub-ice site). The red arrows represent 

the inshore-offshore transect. 
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Figure 2. Images of Ward Hunt Lake captured by an automated camera located on its western shore. The 
full record of images and video sequences is archived in NEIGE (2020). 
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Figure 3. Profile gradients along the inshore-offshore transect of Ward Hunt Lake: a) temperature, b) 
specific conductivity and c) dissolved oxygen. Profiles were recorded on 13 July (c and d) and 19 July (a and 
b), 2015. Oxygen concentrations in the lake are expressed as % air-equilibrium. S1 was the inshore moat 

site, S2 the ice margin site, S3 the intermediate sub-ice site, and S4 the central sub-ice site. 
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Figure 4. Irradiance profiles at the inshore moat site (S1, 15 July 2016) and the central under-ice site (S4, 
14 July 2016) of Ward Hunt Lake. Total irradiance values are for downward irradiance integrated across 
wavebands, expressed as percent incident downward irradiance (note the logarithmic scale). Downward 

irradiance (DI) is expressed as percent of downward irradiance recorded just below the surface (JBS) of the 
open water at S1, or just below the ice (JBI) at S4; upward irradiance (UI) is expressed as percent upward 

irradiance at JBS (S1) or JBI (S4). The diffuse attenuation coefficients (Kd) are for the upper 2 m of the 
water column at each site, and for the ice-cover at S4, uncorrected for reflection. 
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Figure 5. Spectral absorption coefficients for Ward Hunt Lake water samples. The coefficients are for: a) 
CDOM, aCDOM(λ); b) non-algal particles, aNAP(λ); and c) algal particles, aφ(λ). The samples were from the 

upper water column at sites S1 and S4. The shading represents ±SE for triplicate samples. 

740x1270mm (72 x 72 DPI) 

Page 49 of 53 Arctic Science (Author?s Accepted Manuscript)

© The Author(s) or their Institution(s)



 

Figure 6. Limnological gradients along the inshore-offshore transect in Ward Hunt Lake, July 2015. Values 
are means and SE for triplicates; different letters represent significant differences between the sites 
according to a Tukey HSD multiple comparison following a significant ANOVA. Results of the ANOVA 

comparisons of sites: a) Total nitrogen: F3,8 = 5.75, P = 0.047; b) Dissolved organic carbon (DOC): F3,8 = 
4.57, P = 0.060; c) Dissolved inorganic carbon (DIC): F3,8 = 3.26, P = 0.098; d) Chlorophyll a: F3,7 = 6.62, 

P = 0.047; e) Viruses: F3,8 = 5.87; P = 0.047; f) Picocyanobacteria: F3,8 = 1.39, P = 0.315; g) Bacteria: 
F3,8 = 5.06, P = 0.054; h) Phytoplankton: F3,8 = 6.166, P = 0.047; i) Mixotrophic protists: F3,8 = 3.58, P = 

0.091; j) Heterotrophic protists: F3,8 = 1.97, P = 0.218; k) Rotifers: F3,8 = 58.28, P < 0.001. 
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Figure 7. Cluster analysis of limnological variables, biological communities and pigments along the inshore-
offshore transect in Ward Hunt Lake, July 2015. Dendrograms represent Ward clustering performed on the 

following distance matrices: standardized Euclidian distances for limnological variables and Bray-Curtis 
distances for nanoplankton, rotifers and pigment assemblages. Points filled with gray denote sites covered 

by ice. 
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Figure 8. Fatty acid methyl esters (FAME) in samples from Ward Hunt Lake at the inshore moat (S1, in 
white), intermediate under-ice (S3, in grey) and central under-ice (S4, in black) sites: a) total FAME 

concentration in µg/mg dry weight; proportion of polyunsaturated fatty acids (PUFA) in b) microbial mats, c) 
mosses, d) chironomid larvae, e) seston, and f) zooplankton, expressed as percent of total FAME in their 

respective zones. Values are means for triplicates with SE, except for inshore mats and chironomids (n=2) 
and central chironomid larvae (n=1). Results of the ANOVA comparisons of total FAME: in food web 

compartments in panel a) F4,22=5.75, P=0.02; in mats in panel b) F2,6=16.85, P=0.003; in seston in panel 
e) F1,5=2.77, P=0.16; and in zooplankton in panel f) F1,5=2.65, P=0.20. Chironomid larvae were not tested 

due to insufficient numbers of samples. 
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Figure 9. Principal coordinate analysis (PCoA) of fatty acids in the Ward Hunt Lake food web. Samples were 
from the inshore moat (S1), intermediate under-ice (S3) and central under-ice (S4) sites. Arrows represent 

the contribution of the five most influential fatty acids for the distribution of samples. *Length of the 
C16:1n-7 arrow was divided by 3. 
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