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Abstract

This dissertation extends the classical inventory control model to address stochastic

inventory control problems raised in market-making and robust supply chains.

In the financial market, market-makers assume the role of a counterpart so tbat

investors can trade any fixed amounts of assets at quoted bid or ask prices at any

time. Market-makers )ellefit from the spread between the bid and ask prices. but

they have to carry inventories of assets which expose them to potential losses when

the market price moves in an undesirable direction. One approach to reduce the risk

associated with price uncertainty is to actively trade with other mlarket-imakers at the

price of losing potential spread gain.
WVe propose a dynamic programming model to determine the optimal active trad-

ing quantity., which mnaximnizes the imarket-imiaker's expected utility. For a single-asset

model. we show that a threshold inventory control policy is optimal with respect to

both an exponential utility criterion and a mean-variance tradeoff objective. Spe-

cial properties such as synmetry and monotonicity of the threshold levels are also

investigated. For a miultiple-asset model. the imean-variance analysis suggests that

there exists a connected no-trade region such that the imarket-illaker does not need

to actively trade with other market-makers if the inventory falls in the no-trade re-

gion. Outside the no-trade region. the optinal way to adjust inventory levels can be

obtained from the boundaries of the no-trade region. These properties of the optimal

policy lead to practically efficient algorithms to solve the problem.

The dissertation also considers the stochastic inventory control model in robust

supply chain systems. Traditional approaches in inventory control first estimate the

demand distribution among a predefined family of distributions based on data fitting

of historical demand observations, and then optimize the inventory control policy
using the estimated (listributions. which often leads to fragile solutions in case the

preselected fainily of distributions was inadequate. In this work. we propose a inill-

imax robust model that inltegrates data fitting and inventory optimization for the

single iteim multi-period periodic review stochastic lot-sizing problem. Unlike the

classical stochastic inventory models, where demand distribution is known, we as-



sume that histograms are part of the input. The robust model generalizes Bayesian
model, and it can be interpreted as ininunizing history dependent risk measures. We
prove that the optimal inventory control policies of the robust model share the same
structure as the traditional stochastic dynamic programming counterpart. In partic-
ular., we analyze the robust rnodels based on the chi-square goodness-of-fit test. If
demand samples are obtained from a known distribution, the robust model converges
to the stochastic model with true distribution under general conditions.

Thesis Supervisor: David Simchi-Levi
Title: Professor of Civil and Environmental Engineering
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Chapter 1

Introduction

In supply chain management. inventory refers to raw materials. work-in-process goods

and finished products wlich are held available ini stock and will be used to satisfy

production needs or customer demands in the future. Inventory enables businesses to

cover the needs for stock occurred during the manufacturing or delivery lead times. It

also provides a )uffer to protect against fluctuations in customer demands as well as

uncertainties in the supply process. These two aspects imply that inventory ensures

satisfying demand from customers or downstream production processes. In addition.,

it enables taking advantage of economies of scale in purchasing, production. trans-

portation and storage by ordering or producing more than immediate demands and

storing the rest as inventory. That is. inventory management strategies can also con-

tribute to reducing total supply chain costs. Indeed, according to the U.S. Census

Bureau [52]. nanufacturers' and trade inventories were estimated at 81.35 trillion in

April 2010. and this figure is 1.23 times the sales in that month.

Unfortunately, it is usually costly to hold inventory. This cost includes the op-

portunity cost associated with the capital invested in inventory, the cost of capital to

finance inventorv. warehousing cost, handling cost. costs associated with obsolescence

and shrinkage, and insurance and taxation. Atkinson 51 pointed out that the annual

inventory holding cost is approximately 15~35% of the goods' actual value.

Therefore, the key in inventory managelment is to achieve a tradeoff between the

benefits and the costs of holding inventory, which implies the need to have the right



amount of inventory at the right place and at the right time so as to balance system-

wide cost and the service level. The vast amount of money invested in inventory -

inventory holding cost is a significant percentage of the inventorv value - is critical

to the success of any business. Indeed, the success stories of giants such as Wal-

Mart. Dell or Amazon demonstrate the importance of effective inventory managenment

strategies.

The literature on inventory theory can be dated back to the beginning of last

century. It is widely believed that the first inventory model is the economic order

quantity (EOQ) model attributed to Harris [22]. The EOQ model assumes a constant

and deterministic demand, an d identifies a closed form solution which corresponds

to the optimal tradeoff between an inventory holding cost and a fixed ordering cost

representing economies of scale in ordering.

Wagner and Whitin [54] introduced the dynamic economic lot-size (DEL) model

which considers an inventory systei with deterministic time-varying demands over

a discrete finite planning horizon. The cost structure is similar to that in the EOQ

model and a shortest-path alguorithn is developed to solve the problem.

The seminal papers of Arrow et al. [3] and Dvoretzky et al. [16] explicitly model

stochastic demands using discrete-time dynamic programming formulations. Most

stochastic single-commodity single-location inventory models including those pro-

posed in this dissertation c-an be regarded as extensions of this fundamental iodel.

In particular, Scarf [4'7] studies a stochastic counterpart of the DEL model in Wagner

and Whitin [54]. He shows that an (s. S) policy is optimal by introducing and apply-

ing the notion of K-convexity. In such a policy. whenever the inventory level drops

below s, an order is placed to raise the inventory level to S. Otherwise, no action is

required.

Other influential research, especially those studying multiple-location inventory

models., include but not limited to Roundy [39] which develops a 98% optimal strategy

for the single warehouse multiple-retailer inventory system under assumptions similar

to the EOQ model, and Clark and Scarf [15] which establish the optimal policy for

a serial system with stochastic demands. Detailed surveys in inventory theory are



provided in Porteus [42], Sinichi-Levi et al. [49] and Zipkin [55].

In this dissertation, we extend the line of research in stochastic inventory control

started by Arrow et al. [3] and Dvoretzky et al. [16] to investigate inventory problems

associated with market-making in finance and robust systems in supply chains. Sim-

ilar to the early works, we adopt the discrete-tune dynanic programming framework

to formulate these problems. Our objective is to identify the structures of optimal

control policy in each case, and investigate properties of these policies so that efficient

algoritlins can be developed.

The thesis is organized as follows. Inventory management problems in market-

making are analyzed in Chapter 2. where we focus on a single asset with an expo-

nential utility objective function, Chapter 3, where we consider a single asset with

a mean-variance objective function, and Chapter 4, where the focus is on the mean-

variance analysis for multiple assets with correlated price mo vements. Chapter 5

considers the applications of inventory model in robust supply chains where the coi-

plete information about demand distributions, i.e., the cumulative distribution func-

tions of the demands, is unknown. We conclude the dissertation in Chapter 63 with a

discussion of possible directions for future research.

In the rest of this chapter., we introduce the background and motivation for this

research as well as our contribution in each area: market-making and robust supply

chains.

1.1 Market-Making

Investors trade foreign currencies, securities and other financial products frequently.

Unfortunately. there is no guarantee that every investor who wishes to buy (or sell)

a certain amount of asset will find a counterparty willing to sell (or buy) the same

amount at that time. This is exactly the objective of the so-called "nmarket-makers":

to facilitate the trading process for most financial products. That is, the market-

maker is ready to assume the role of a counterparty when one wishes to buy or sell

financial products. For example, each stock traded on the New York Stock Exchange



(NYSE) has a market-maker called "specialist", whose sole responsibility is to serve

as a market-maker for this particular stock.

Typically. market-nakers quote a pair of bid/ask prices to clients and have the

obligation to buy/sell at the quoted prices if their clients wish to deal at these prices.

Over time., market-makers buy at bid price and sell at ask price, which is higher than

the bid price at any given instant. Their objective is to profit from the "spread"

between bid and ask prices. not from price movements. In that regard. they are

different from ordinary investors, who seek to profit by betting on price moves.

Market-makers encounter difficulties when receiving consecutive trades in the same

direction. For example., suppose a foreign currency market-maker holds no foreign

currency initially and receives a series of sell orders afterwards (i.e., the clients sell

to the narket-maker), the market-maker's holding position becomes very large and

positive.' This is potentially very risky because if the foreign currency depreciates.

the market-maker will lose a considerable amount. For a risk-averse market-maker.

this is certainly undesirable. Thus. he cannot simply wait for the arrival of a client

(who wishes to buy the foreign currency from him) and sell to this client to bring his

holding position back to zero.

To reduce the risk and avoid such situations, the market-maker may consider

selling certain amount of the foreign currency to other market-makers to lower his

position instead of waiting for sell orders. This option is available when there are

multiple market-makers providing liquidity for the same asset, which is true for the

foreign currency markel and some stock markets. e.g.. National Association of Secu-

rities Dealers Automated Quotations (NASDAQ). Of course, when the market-maker

adjusts its position by selling to other market-makers, he becomes their client and

has to sell at others' bid prices. As a result. he forgoes the possibility of selling to his

own clients at the ask price and taking the spread. More importantly., when doing

an adjustment, the market-maker will sell at the other market-makers' bid prices and

'Although at the beginning of this chapter we define inventoiry in supply chains as physical
commodities held in stock. inventory also refers to the assets held or short sold by a financial
institute or an individual in finance. In this particular example, the foreign currencies held or short
sold by the market-maker can be regarded as inventory.



buy at the other narket-nakers' ask prices, thus is likely to encounter a loss. So

here we have a typical trade-off between profit and risk. Our goal in this research is

to apply dynamic programming techniqjues in order to investigate when and by how

much a market-maker should sacrifice profit to reduce risk.

The observation that market-makers may carry unwanted inventories has long

caught the attention of the research community, and most previous work investigates

how inventories influence the market-makers' behavior when quoting bid and ask

prices, in other words. it studies how to control inventory via pricing decisions. The

theoretical analysis in Ho and Stoll [241 shows that risk-averse market-makers will

actively induce movements toward a desirable inventory level by setting favorable

bid/ask prices. Stoikov and Saglam [50] considers a market-maker in both an option

and its underlying stock, and analyze the role of the derivatives of option price on

the bid/ask quotes of both the option and the stock.

Empirical studies suggest that the impact of inventory levels on pricing is rather

weak compared with the impact of other components such as asymmetric information

(c.f. Stoll [51], Madhavan and Smidt [33]. Foster and Vishwanathan (18], and Mad-

havan and Smidt [34]). In a later paper., Ho and Stoll [25] introduces a model that

includes both the ability to change the bid/ask prices as well as opportunities to trade

with other market-makers. The result suggests that trades among market-makers are

necessary under certain conditions. Unfortunately, their solution is for models with

only two periods.

A survey of US foreign exchange traders (c.f. Cheung and Chinn [13]) indicates

that the market norm is an important determinant of the bid-ask spread and only a

small proportion of bid-ask spreads differ from the conventional spread. Specifically,

only 2% of the respondents in that survey reported that inventory related factors

have an impact on their bid-ask spreads. This is because quoting volatile bid/ask

spread may damage the market-maker's reputation and drive away potential trading

opportunities. Also., many of the traders reported that they are reluctant to reveal

adverse positions by quoting non-conventional spread. Thus, this empirical study

implies that at least in the foreign exchange market., inventory is not managed by



quoting bid/ask prices. Rather, it is controlled by trading with other market-makers.

This is also supported by other evidence,. for example trading volume. Indeed. trading

volume is extremely high in the foreign exchange market and is believed to be a result

of market-makers passing unwanted inventory from one to another (c.f. Lyons [:32]).

Finally, the survey of Cheuncg and Chinn [131 also states that more than half of

respondents believe that large players dominate dollar-pound and dollar-Swiss franc

markets. Therefore. many small and medium-sized players have no market power,

i.e., they have no impact on future price movements when actively trading with other

market-mlakers.

Our study is motivated by a practical problem faced by a major investment bank.

Here we consider an electronic market-maker in the foreign exchange market which

serves small retail orders. Since the market-maker only captures a very small fraction

of the entire foreign exchalnge rnarket, it quotes the conventional spread and has no

market power. In this case, the primary decision the mlarket-inaker needs to make is

how much to trade with other narket-imakers in order to limit its market exposure.

Thus., our objective is to identify effective strategies for a imarket-iaker who does

not control prices and can merely adjust inventory through active trading. In this

sense., the market-making problem shares some important features with the classical

inventory control problem. W e need to determine the amount of assets to buy or

sell during market-iaking process. which is analogous to the ordering (uantity in

inventory control. Indeed, in our case, the risk induced by inventory is analogous

to the inventory holding cost. and the sacrificed spread profit due to active trading

plays a similar role to the linear ordering cost. The sacrificed spread profit is the

loss of spread encountered by a mlarket-maker who sells/buys a unit of inventory to

other iarket-makers (at their own prices) rather than holding that unit of inventory

and profiting from the spread in the future. Of course, there are somie important

differences: in the classical inventory control model. the order quantity niust be non-

negative and the unit inventory holding cost is deterministic. which as we shall see.,

are essentially different frorn the mlarket-mnaking situation.

To present our contribution, we need to define a 1hreshold policy. Such a policy



is defined by two parameters, an upper limit and a lower limit. Whenever the inven-

tory is higher (lower) than the upper (lower) limit. the market-maker will decrease

(increase) the inventory to the upper (lower) limit. Otherwise, i.e., when inventory

level is between the two limits, the imarket-maker will not change its position. Ve

call the region where the market-maker does not adjust its inventory, the "no-trade

region." When the inventory of the iarket-iaker falls in the no-trade region. the

market-maker will not actively trade with other market-makers, but will still accept

trades from its customers. Our contributions are summarized as follows.

When the market-maker nianlages a single asset. we propose dynamic programming

models for the narket-making inventory control problem, where an exponential utility

function or a mean-variance utility are used - utilities that have been applied to

model risk averse decision makers. Threshold policies are proved to be optimal for

both models, and the special properties of the threshold levels are also analyzed.

In particular, we identify conditions under which the threshold policy is symmetric,

investigate the risk neutral model. and establish various monotonicity properties of

the optimal threshold levels for the mean-variance analysis.

When the market-maker manages multiple assets simultaneously, we focus on the

dynamic programming formulation which optimizes the linear tradeoff of mean and

variance. The optimal policy shows that there exists a simply connected no-trade

region for each period and the optimal adjustment quantity is obtained directly from

the no-trade reg-ion. In addition, we identify conditions under which the the no-trade

region is symmetric with respect to 0.

Based on these structural properties of the optimal policy, we develop efficient

algorithmiis to solve the corresponding dynamic program wiose computational coi-

plexity is linear in the number of periods. Numerical results are also presented to

illustrate properties of the optimal policies.



1.2 Robust Stochastic Lot-Sizing

The stochastic lot-sizing model has been extensively studied in the inventory litera-

ture. Most of the research has focused on models with complete information about

the distribution of customer demand. However, in most real-world situations., the

demand distribution is not known; only historical data is available. A common ap-

proach is to hypothesize a family of demand distributions and then to estimate the

parameters specifying the distribution using the historical data. Once the probability

distribution has been identified, the inventory problem is solved following this esti-

mated distribution. This implies that the inventory policy is determined under the

assumption of a perfect demand distribution.

We consider a different approach recognizing that the estimated demand distri-

bution iay nut be accurate. We analyze the single-item stochastic finite-horizon

periodic review lot-sizing model, under the assumption that demand is subject to an

unknown distribut ion and only historical demand observations (given by histograms)

are available. Rather than first estimating the demand distribution and then op-

tinizing inventory decisions, as is the case in the classical approaches. we combine

these two steps to minimize the worst case expected cost over a set of all possible

distributions that satisfy a certain goodness-of-fit constraint. In this way, we combine

distribution fitting and inventory optinization, and characterize a robust inzentory

control policy based on the historical data.

The novelty of our approach is the starting point of histograms. All practitioners

in inventory control start with histograms and then they fit an underlying demand

distribution (e.g.. Crystal Ball from Decisioneering, Inc. allows selecting a distribution

family among several listed families). Finally, based on the fitted distribution. the

lot-sizing problem is solved.

The problem, of course, is that this distribution may not be the correct one.

For this purpose., we develop a. model that integrates both distribution fitting and

lot-sizing - we refer to this model as the robust lot-sizing model. This novel idea

of using histograms as a source of input and concurrently considering replenishment



quantities and distributions leads to interesting insights. For example, as in the

classical stochastic inventory setting., our results indicate that an (s. S) policy is

optimal for the robust model as well. We also discuss the inipact of the sample size

on model performance.

The main contributions of our work are as follows

1. W\e develop a robust minimax model that only requires historical data., and

allows correlated dernand. Note that most miniax models (see. e.g., Notzon

[38] and Ahmed et al. [1]) as well as Bayesian inventory models (e.g., updating

the demand distributions in the way provided in Igleliart [27]) in tie literature

could be interpreted as special cases of our framework.

2. The optimal policy of the robust model has the same structure as the corre-

sponding policy in the classical stochastic lot-sizing model. In particular,. the

optimal policy is a state-dependent base-stock policy for the multi-period in-

ventory problem without fixed procurement costs., and a state-dependent (S, S)

policy if the fixed procurement cost is considered.

3. To illustrate the general framework. we consider the special case when the set

of deniand distributions is directly related to the chi-square goodness-of-fit test.

This set can be defined by a set of second order cone constraints.

We also prove that the robust model converges to the stochastic model with true

demand distribution if samples are drawn from this distribution and sample size grows

to infinity. In particular. if the demand distributions are discrete, the robust nodel

converges to the stochastic model with the true demand distribution as the number

of independent samples drawn from the true distribution for each period tends to

infinity. Moreover, the rate of convergence is in the order of 1/V/k. where k is the

number of samples. Slightly weaker results are obtained for contimuous distributions.

The performance of the robust model is illustrated by means of computational

experiments. We argue that the robust model outperforms the traditional approach,

which optimizes the inventory decisions by using fitted distributions. We also provide



insights on the performance of the robust model with different parameters and sample

sizes.



Chapter 2

Single-Asset Market-Making with

Exponential Utility

As we mentioned in Chapter 1., the multi-period stochastic imventory control problem

has been extensively stu(ie(l since 1950's. see Zipkin [55] for a detailed review of risk-

neutral models. In the last two decades., a, number of papers have been devotedl to risk

aversion in inventory nanageient. Bouakiz and Sobel ['10] focuses on minimizing the

expected exponential utility of the linear ordering costs and inventory holding costs

incurred during a finite or infinite planning horizon, and proves that a base stock

policy is optimal. Chen et al. 11] considers risk-averse inventory (and pricing)

models where the utility functions are time-separable. They show that the structure

of the optimal policy is alnost identical to the structure of the optimal policy in the

risk-neutral counterpart. see also Simchi-Levi et al. [49].

In this chapter, we study the inventory problem in market-making introduced in

Section 1.1 under the assumption that the decision maker manages a single asset and

has an exponential utility function. WNe introduce the stochastic inputs and decision

variables for the market-making inventory control problem in Section 2.1. Section 2.2

presents the dynamic program which maximizing the exponential utility throughout

the planning horizon, and proves that a threshold poicv is optimal for the general

model. Furthermore, we discuss the special cases where the dimensions of the states

determining the threshold levels can be reduced in Section 2.3. and identify sufficient



conditions for the threshold policy to be symmetric in Section 2.4. Finally., Section

-. 5 concludes this chapter.

2.1 Formulation

In this chapter. we consider a time horizon of one day, which reflects the observation

that market-makers tend to "go home flat", i.e., market-makers prefer clearing then

inventory at the end of the trading day in order to avoid significant market price

movements overnight (c.f. Hasbrouck (23]). We divide the trading day into N discrete

small time intervals.

The sequence of events is as follows: At the beginning of period k, we observe the

current inventory level xk. tUnlike the classical inventory model, xk can be negative

as the market-maker can take a short position. Next, the bid and ask prices quoted

by the dominant player, pb and p are observed. After that, we adjust the inventory

by the amount qA, which is the decision variable. Note that p. represents the amount

the market-maker buys or sells (to other market-makers) at that period. We let

qk be positive if the market-maker buys q units of asset, and q. is negative if the

market-maker sells jqkl. The markel-maker, as a price follower, 1uote the same bid

and ask prices ph and p( as the dominant player. Clients arrive and they sell s. and

buy dk units of the asset to/from the market-maker. Obviously the inventory at the

beginning of period k + is xk+1 = x k + q - +

Similar to Stoikov and Saglam [50], we consider the dynamics of the mid price

k (p" k -Ip.)/ 2 k - ... N +1 . which is the average of the bid and ask prices. Let

the mid price at period k + 1, be Pk+1 = ph + 6k- can be dependent on the mid

price Pk. and we assume that ok conditional on Pk is independlent of (4 conditional

on pT for any k -f k. Note that a large family of stochastic processes satisfies this

assumption. For example, suppose that ph, follows a geometric random walk, i.e-

Pk-1 = pk exp(p - 6k) where p is the drift component and o. is i.i.d. distributed

for any k. It is straightforward that Pk = ph (exp(p + 6) - I) conditional on ph is

independlently distributed for any k. Of course, a random walk is also a special case



of the mid price model if we assume that ok is i.d.d. distributed for any k. Within

a day., the geometric random walk is almost the same as an ordinary random walk if

the price change at each stage is small (e" 1+ x if Ixz < 1).

We introduce another parameter ek to model the bid and ask prices. For any

period k, Ck is defined such that the bid and ask prices at period k for any market-

maker are p'= pA. - rA' and p" = pA + EA respectively. Note that eA. is the transaction

cost the client pays when he or she trade one unit of the asset with the market-

maker, or the transaction cost the market-makers pays when it trade one unit with

other market-makers to control its inventory. We also refer to eq as the transaction

cost in period k. For any period k, (k must be strictly positive so that the bid price

is always lower than the ask price. Simimlar to the price miovement ., we also assume

that Ck conditional omn Pk is independent for any k. For example, we can choose

. = Qk(pa.) + p. where 'A(pA.) is a given function and -A is an independent random

variable for any k. When &I = 0, Ck - 0A(p) becomes a constant once pk is known.,

e.g., cA can choose to be 0.01% of the mid price. Moreover, if all the foreign exchange

market-makers quote the conventional spread, then A = .A, is a constant equal to a

half of the conventional spread.

To model orders froim clients, we use the random variables SA, and dA. to denote the

amounts the clients buy from and sell to the market-maker in perio(d k respectively.

We also refer to Sk and d(. as the supply and demand from the clients respectively.,

since these aimounts increase or decrease our inventory levels. Both sAi and dA. should

be nonnegative, and sk and dk can be correlated for a given period k. For the time

being, we assume that sA. and dA. conditional on pA. are independent for each period

k. but we allow non-stationary dlistributions for sk and dk across different period k in

order to model the intraday pattern in the trading volume. e.g., the trading volume

is higher when the market opens or closes.

So far we have defined two randomn processes: (i) Pk anld 6k which jointly define

the bid and ask prices of the underlying asset and (ii) sE and dk to model the orders

from clients. These two processes can be dependent on each other in order to capture

the correlations between the trading volumes and price movements, i.e.. the four



random variables (k, 6ks d conditional on pk can be correlated for any given k.

For example. if we observe that the amount of sell orders sA, is significantly higher

than the amount of buy orders dk. we expect that the market price is more likely to

go down, i.e., the probability that 6k is negative should be higher than the case when

the reverse is true. In addition, all these random variables can also depend on pl. for

any k as we stated in their definition.

In any period k, the profit we obtain from the bid-ask spread by trading with our

clients is (dk + s06k. Note that we trade |qkI at the price quoted by other market-

makers, and hence the transaction cost is qkleh. In addition, the market-maker's

inventory is subject to the risk of price uncertainty, and hence it may incurred a

profit or loss of the amount (x.- + qA. - dk. + s5)1,. As a result, the one-period profit

at period k, k = 1, ..., N is

7k = (Xk + -k - s4 + Sk)k (dk + Sk - gqkj)(k.

To simplify the notation, let Lk -- x - qk be the inventory level after adjustment,

Sk= dA + s. and Zk =sk - dk.. Then

7A = (LA_ + Ak>k + (Sk - LA. - xje)E. (2.1)

Note that here we do not consider the fee the market-maker pays to short the asset.

This is because the fee is neglectable for liquid assets. e.g.., foreign currency. In

addition., the structure of our problem remains the same and the optinality of the

threshold policy still holds even if we consider a linear short fee.

We let 7N U(xN+1v -N+1) denote the profit or loss at end of the planning

horizon, where v(xN+1, dN+ 1 ) is a concave function with respect to XN+1. Note that

LN also depends on PN>+1 if t:N-+1 depends on PN+1. If the positions at the end of

the trading day can be clear at the mid price, or we mark to the mid price at the

end of the day, then 7rN+1 = 0. If the inventory position at the end of the day. xN-1

is cleared at the price quoted by other market-makers, the market-maker incurs a

salvage cost of rlN+1LXN+11L i.e.. TN+1 = -eN+1N+1-



We adopt two approaches to characterize the risk-averse attitude of the decision

maker: exponential utility function and mean-variance analysis. The objective func-

tions as well as the properties of the optimal control policies under the exponential

utility criterion are presented in the remaining part of this chapter., and we discuss

the corresponding results for the mean-variance analysis model in Chapter 3.

Before we end this section, we would like to point out that most of our results

are not restricted by the assumptions we present here. and the generalizations are

discussed in details in Section 3.7. For example, we can also allow auto-correlations

in the movements of prominent bid/ask prices as well as the client orders., i.e.., o,

k, 5kd Ck conditional on pk can be correlated across the period k. Furthermore. the

bid/ask spread a market-maker charges its clients can be different from the spread

charged by other market-makers. i.e.. the bid and ask prices quote by other market-

makers are p,- pm - q. and p" =P -i- e while the bid and ask prices we quote to

our clients are -=p - and p = Pk + (-.

2.2 Optimality of the Threshold Policy

Suppose that the market-maker has an exponential utility function U(w), i.e..

U() =- exp(-)7T). where p > 0 denote the risk-aversion parameter.

Note that large p implies higher risk aversion. Since the time horizon is one day, the

market-maker does not care how much profit a particular strategy generates in the

due process. Instead, lie only looks at the profit at the end of the day. We should

choose the amount qk to maximize the expected utility of the total profit generated

in the day, i.e.. the objective function is

max E [ exp -P Wk . (2.2)



Note that Bouakiz and Sobel [10] considers a similar objective function for the classical

inventory model. As a result. the corresponding Bellman equation is

Jk.(X., Pk, k.) = min E { Jlk1 (xhA + qK - dk + sK, pi + oK ei+1) p8, e.
qk)

for any k= 1.N, and JV+1(xN+1,pAN+1 (N+1) = exp(-pN+1). The state in

the dynamic programming model consists of Xk, pk and ek because we observe the

inventory position x1. as well as the bid and ask prices defined by Pk and e. before

we decide the adjustment quantity qk, which is our decision variable. Note that we

consider the expectation conditional on pk and ek because the distributions of 4o, 5 k

and AK depends Oil Pk and q..

Similar to (2.1), we define LA. = x + qA, Sk = k dK- Sk and Ak = sk - dk. Inserting

in (2.1), the Bellmnan's equation is reduced to

JA. (i,x 6K -I~ pm£ ((GLk 4- Ak) k-+(Sk L kX- k 1J A, A enmin E e

xJA.+ (Lk Ak , Pk-bokAek1) p. A}k, (2k

for all k = 1.. N.

Under the exponential utility objective function in (2.2), we obtain the following

optimal inventory control policy.

Theorem 2.1. The optlimal control policy for the dynamic programming m'odel in

(2.2) is as follows. For aniy period k, there exist threshold lerels, independent of the

iventory xA , A TI (A ,) and T1: (pA,. cK) where TA(p, eK) > T7 (pA. K) for any

given p, s'ch that the optimal order quantity q -A, (Pk (A 6k) -k If 3'k T(pk, (k)

(I= TK(pK, eK) -- X, if xrA. > TF(pK., -A) and qK = 0 otherwtiSc.

In other words, given the current mid price Pk and the half of the spread (-k., which

specify the miarket bid and ask prices, the optimal policy is to keep the inventory

level 3rk within a certain interval [T(p. "K) (Pk -k)]. When xk < T' (pK, eI) the

inventory level is too low and the mmarket-maker will lose a significant amount if

the market price increases. Therefore, it is willing to pay the transaction cost and



increase the inventory upto T7(p., EA). Similarly, if the inventory level is too high, i.e.,

16 > Tj(p, Ck), the market-maker should decrease its inventory to T"(p6 , ek) so as to

protect against the case that the market price decreases drastically. Otherwise, the

inventory is contained in the interval [T (p6 ), T (pA, ek)] and no action is required.

i.e., the market-maker only needs to accept the orders from its clients and carry the

inventory to the next period. We refer to the interval (AT.j i ). TT (p, 6-)] as the

nio-trade region, where it is optimal not to actively trade with other market-makers.

In the rest of this section, we prove Theorem 2.1 by induction on the number of

periods, k, and illustrate it using a numerical example.

Before we jump into the technical details of the proof of Theorem 2.1, let us first

introduce the following notation, which will be used in the remaining part of Chapters

2 and 3. Since the functions we consider here may not be differentiable everywhere,

e.g., the absolute value function., for any function f(x). we let f'(x) denote its left-

hand derivative, i.e..
. f(x) - f(x - d)

f ,() = hm
d.10 d

which always exists if f(x) is convex.

Futhermore, for a multivariate function f (x. 2 ... ,, ), we use ((, x, ... , X

to denote the left-hand derivative of f(x1. x2,..,,) with respect to the variable ri,

Another important property for convex functions is that we can interchange the

expectation and differentiatio)n operators. To be precise, suppose that f(x. y) is a

convex function with respect to x, Y is a random variable., and g(x) = Ef(xr Y)]

is well-defined. According to the monotone convergence theorem, we have g'(x)

E[ f(x, Y)], see also Bouakiz and Sobel [ 10).

To prove Theorem 2.1 by induction, we start by assuming that

(Al) JA+ 1(x, p. () is nonnegative for any x, p and e,

(A2) eLJ6 4 1 (L - A, p, e) is a convex function in L for any given a, A. p and 6.

We would like to show that (i) Theorem 2.1 is valid for period k and (ii) JA, (zk Pk, k)



also satisfies the induction assumptions (Al) and (A2). The proof is complete once

we establish that JN+ 1 (xN 1 ,pN+1. &N+1) has the properties (Al) and (A2).

Note that in the classical inventory problems. e.g., Scarf [47] and Bouakiz and

Sobel [10], the initial inventory position Xk clefines the constraint that the order

upto level is greater than x.., but it does not appear in the objective function of the

Bellman equation. However, in our Bellman equation (2.3), we cannot pull xA. out of

the objective function because it is included in an absolute value function.

Let us define the functions f0(LA..pA., -A) and f"(LpA. e ) as

f j ( Ls, pp, eC-p (=LE e A' k, sk +(g -k-Lk, je(k+ k kpk k +1 kk
fk (Lk, Pk. (k) - E 1pk-nk+(5+L)) k+1 (Lk + -A k Pk + (5k (k+ 1) Pk, ek

17A (Lk. Ak Ck) E £C e(L.~.O--S-L ))JA-- (Lk + .~ PA (-4-1 A1) Pk! (kA

(2.4)

It is easy to show that the Bellman equation (2.3) is equivalent to

A Imin min -fXkk k f(Lk p, .6, min e41kk'/, k,p P)))

=Min e" min fj(Lka,(k) ,eC min fT (L~k k .
L k ::>xK L k <-xk

(2.5)

After reformulating the Bellman equation, we decompose it into three sequential opti-

imization problems. The problems minmjh f(LA, PA, e,) and minL - (Lk, p, (-)

minimize a single variate function subject to a single constraint, whose structure is

the same as the optimization problemns in the classical inventory control models. How-

ever, we have another minimization operator which compares the optimal solution of

these two problems. In this sense, the problem in (2.5) is more challenging than those

in the classical inventory models.

For any given Pk and (, let T7(pk, -k) and Tr(p, 6k) be the global minimizers of

f1(L PA. -Ae) and fJ(LA. pA, EA.) respectively, i.e..

T(PA: e (-= arg min f (LA,. ) and T (pA, A) arg min .f! ( LA, pa. A).
Lk woul like t eai te fo L k PA, A)

Wke would like to establish the following properties for the functions fA (Lkpk, (k) and



f,(LA!pA. P, e.) as well as the minimizers T (pte 6.) and Tk(pA. ,4).

Lemma 2.1. Sutppose that Jk+.1(xk+1. pk+1 Ek+1) satusfies the 7In(Achon asUinptions

(Al) and (A 2). Then (i ) f7 (LA. pk. ei) and fT(LA., pA,. eA) are convex fnrctions with

respect to Lk, and (ii) T'((Ek) K T(pkek) for any given pA and -i.

Proof. Let us consider these two functions

hI'(Lk, p4 k Ak, Pk k k k +) = e-p(+o)-eA)L. I k+1 ( Ak 14 pk + o k61)

hk(LLk, p, &k, APkk -, 6k+1) ~- e ((kk+(k)L:AI+ (L Ak, P+ , k+1)

According to (A2), h(Lk, Pk, (k, Ak, (k (k+1) and h 2(Lk, Pk, eA Ak- k, A, +1) are convex

in Lk.

If we rnultiply both functions by e-P(Akkk-1ke), we have

__. -')(LAkC1- -kI)k-s-h e)J~ L A.A-~.~
g (Lkp, 6k, -Sk Ak.e Ck+1) eP(sko±sCkeh](Lkp k ek. Ak. (5k, 1)

_ -((Lyk o+4+(Sk - Lk) jek I+ kp k k1

- )~.~(S--~ -) JA--iLA kPA- A., A,1)
gT k L , , sk, Sk, k, (5k +1 - R s+ "*h, ( Lk, p- PkF, Ak -,ok, 6k+t1)

e pA +Ls 1o+SL (a Lk+ Ok + k, Pk (5k Ck,k1-

Note that e P(Ak5k+Sk k ) does not depend on LA.. Hence, g1(LA, pj. eA. Sk, Ak. (4, ek.i)

and gk(L p P k-, 'ak , Ak 5k,' Ik+1) are convex functions with respect to LA.

By definition. we have

g (Lk.A,, EkSe~k~ e1 =A e 5A -21Ck~k g '(LA- pl, cA S,. A.. , () 1).

Since both functions are convex in LA, their left-hand derivatives with respect to LA.

exist. Therefore.

-l9; (LpA. pk, (ASk, 76-1) -- 2p ke-2-,L. Pk, -k! kA o -k+)

+ eLk P2k kA, k, Sk, k 6k+1 )-

gk(LA, pA, (k, 5k, A6 . 5k,- (k+1) is nonnegative since JA+1 (LA: + Ak, P -+ &o, k- -t1) is non-



negative by the assumption (Al). It follows directly that

(Lk p, ck., S, kk , 1) ep (Lk ( L
OLk OLk

According to (2.4), it is straightforward that

f7 (Lp. PA CA) = E [g (LA-, p]4.k Sk. kX +1) pA. A-A.]

f(Lk, -kp, - = E [g2 (Lk~p!, k, Sk, Ak ek+1) pk- 6k] -

Recall that both gj(LkpA, ek, Sk Ac, o9, ek.±) and gk(LApk, ek, Sk, Ak, 4, Ek+1) are

convex in Lk. Therefore. f7(Lk, pc. ek) and fl(Lk, p, ek) are also convex in Lk. which

implies that

L> ye ) = E & L LA. p(-e., S. c,6 ,ek1 pV. cl-) c C.

a L

e-2pe (LkE -,PA -(L k pS k Sk, k , pAk)e

OLA /

where the inequality is obtained from (2.6). Since e-2,JkLk > 0, it follows directly

that AL0 (Lk- Pk. C) < 0 if a (Lk. Pk e() < 0.

Consider any given pA: and q,. According to the convexity of j(LA, p-, 6k) in

LA. and the definition of Tk (pA.. eA.), we know that fr (LA., pA eA) < 0 for any LA.

.xT7(pc.,C)]. Consequently. L Ck) ( 0 for any Lk c (-c ,T(p ,ek)1,

i.e., f (LA.pA. k) is decreasing in Lk E (-ocTj}p1.k)]. Note that T<(pc.eA) K

T(pk, c() is the global minimizer of fl(Lc, pc, Ce) with given PA and (A., we obtain

that T j(pk, Ek) < TpA, A)

Next. we are going to show the optimal policy for period k under the assumptions

(Al) and (A2).

Proposition 2.1. Suppose that Jk.+1 +1 pk+1., Ek-+ sa1) sati.sjics thc i-d5uction ussup-

tions (A1) and (A2). Then, given pk and c, the optimal solution L* to the problcm



(2.3) is

T7(Pk., 6k) if Xk < T(pi. ek)

L*. = x if T(P p k) < x < Ti(pA, 6k ) (2-7)

T (pk, 6k) if Xk > T(pk 6k)

and the correspondling optimal value is

e-,(kfkl(T Pp -k).pk 6k) 'if X k < TA(pk 6k),

JA- (Xis k. Pk) 0 fA!, ( k k) A C") JkfX, Pk- - k)

P-'Zk f ) if xx > T2(p ) k .k T
f~~lb A2(T,'(P k 6k) P k. k) -k.> 7 1P.k

(2.8)

Proof. It is equivalent to show that the results defined in (2.7) and (2.8) hold for the

optimization problem in (2.5). Let us consider the following three cases.

* Suppose that xk < TApk, -k).

We proved in Lemma 2.1 that fj7(LA, Pk-, Ck) is convex in Lk. Therefore, for the

optimization p~robl~1em1 mnL 6 X f;>Lk, pA, (k), the optimal solution is T7(Pk, ek)

and the corresponding objective value is fj (T(pk, k), Pk 4).

Lemma 2.1 also shows that fA2(Lk,P k,( A) is a convex function with respect

to LA. and T(p, 6k) T 7>(pA., 6,e). As a result. for the optinization problem

minL,, fT(Lki Pk- k), the optimal solution is xk and the corresponding objec-

tive value is fT(xk, Pk-, (k).

The definition of f7(Lk, pA., 6k) and fk(LkpA, ek) in (2.4) suggests that

e-Prks"f 7 (xA, pakeC) =A- ek(x, PA- A)

Note that e-P'k t > 0 and f7 (x k- Pk. k) > fi (T (pk, ek), PAk ek) by the definition

of TJ (pk. Ek). It follows directly that

e h*kfi(T(pk (k CA() Pk, Ck) < e J ' fi!(x Pk, (k) = k6 f(xk.pA, ek),



i.e., the optimal solution to (2.5) is Tj(pp., eA,) and the value of JA.(XA., PA., e) is

e-PXkEkfl (T (p, 6k)-Pk, k).

* Suppose that T (Pk-, 6k) < 3 ; TA (pk, ek). The results of Lemma 2.1 show that

the optimal solution for both minLg y>, fk R (Lk, p 4, e ) and minL k- f (Lkpk , ek)

is yk. It follows immediately that the optimal solution to (2.5) is zk and the

corresponding value of JA(x, pA, (.) is e -,'kx fIx, pE, kk ) eI* kf (Lp. 6 A,)

* Suppose that Xk > T(pa, eA). The result can be established by an arguement

similar to that in the case Xo < T7 (pk, e). D

Note that LA. is defined as xj- +qA. Therefore, the optimal inventory control policy

shown in Proposition 2.1 is exactly the same as that in Theorem 2.1. However, in

order to complete the induction proof for Theorem 2.1, we need to show that the

value function J(Xk, Pk*, e6) satisfies the assumptions (Al) and (A2).

Proposition 2.2. Suppse> tha,0t Jk+1 (xk+1pk+1, -k+1) satisfies the induction (assuamp-

tions (A1) and (A2). Then (i) JA(X.p.e) is nonnegatite for any x, p and 6, (ii)

eaLJ (L -- A, p, e) is a con vex function in L for any g!iv'Ve1n a, A. p and a .

Proof. The part (i) of Proposition 2.2 follows from the definition of JA.(XA.P, t) in

(2.8). the definition of f (Lk, pA, (k) and f (Lk-pk, ek) in (2.4). the assumption (A1)

and the fact that the exponential function is nonnegative.

For the part (ii), given a, A. p and 6, let us consider the functions hI(L), h2 (L)

and h3 (L) such that

hi1(L) aL-pL+A ( .

h2 (L) =eLL- p > fl(L + A.p c) =, eL-r)L1g f (L p+ Ap, c)

hs(L) =P eaPp!a

Note that fi(T,(p, c), p. e) is a constant, and the exponential function is convex.

Therefore, hi(L) is convex in L. By the same argument, h3 (L) is also convex in L.



Next, we would like to prove that h2 (L) is convex. In this case,

h2~ o(L= )EL-p+[6 ,)f(L + A, p, )

=L e+-g~n e i- + ,!+ j,+ (5;,- Jk+1 (L -+- A 1Ak 1 + 5k, ek41) P . F

P, .

(2.9)

The assumption (A2) shows that

e(a-p-)L Jk1 -(L A , 6k p + e+1)

is convex in L. Since e"((a'104 +se' is independent of L.

P((a+Ak)oAk~s5,(a_ PA)LJ _+1 (L + A + Ak + k, (k+ 1)

is also convex in L. The definition of h2(L) in (2.9) immediately yields its convexity

in L.

Let us define h(L) = e"L JA(L + A, p, ). According to (2.8), we have

h(L) = e"JA(L +'A.pe)

hi (L) if L + A < T(p, e)

h,(L) if Tj(p,) < L -- A T (p),

h3(L) if L+A > T(pT (x ).

We would like to prove the convexity of h(L) by showing that its left-hand derivative

is non-decreasing, i.e., h'(L) < h'(L) for any L < L. It is sufficient to consiler tile

following five cases.

* Suppose that L -+ A < T (p, 6) and L + A < T (p, e). The definition of h(L) in

(2.10) implies that h'(L) - h'1 (L) and h'(L) = h'(L). We obtain h'(L) < h'(L)

since h'1 (L) h'(L) by the convexity of hI(L).

* Suppose that L-A < T (p. c) and T (p, ) < IAL K T7(p. 6). We have hi'(L) =

hl (L) by the definition of h(L) in (2.10). Moreover. since Tj, (p, ) - A < I the

AL. k+S) A(a-p )L (L + A - Ak -P -k , k p (,ke 1)

(2.10)

=E eag



right-hand derivative of h2 (L) at T, (p, ) - A is no greater than the left-hand

derivative of h9(L) at L (c.f. Artin [4]). i.e.,

h2(Tj (p. c) - A +d) - h-(T. (p.e) -A)
h-(L) h',(L) > hl

d10 d

(o -) )(ht)l; (p~c)-pAtfl("()~ .6=(a - p)(4-" - f (1(. 6), , ))

+. e T (p,(- - linA fj (T,7 (p, c) + d p.) - (Tj, (p., r) p, 6)
dju d

Given p and E, TA (p, () minimizes the function f1(LA, p c). Therefore. the right-

hand derivative of f (LA7. p, c) with respect to Lk is nonnegative at the point

T (p, c) i.e.

. fl(T (p, )+dp. ) - fj (T (p. )p., )
I > 0.

Since the exponential function is nonnegative, we obtain

h'(L) > (a - p.)e(4-Pt)fa(JL- p f (T (p, ),,)

The definition of h(L) in (2.10) and the convexity of h'1(L) also imply that

h'(L) = h'(L) < h'1 (T7(p, 6) - A) - (a - p&c(" 1 )T(TAPu fj(T 1
1p e),p, 6).

As a result. we have h'(L) < h'(L).

* Suppose T(p, e) < L + A < T (p, 6) and T7(p, e) < L + A < T(p., ). We can

prove h'(L) < h'(L) by the same argument as the first case.

* Suppose T,(p, E) < L + A 6 (p. 6) and L + A > T (p. E). According to the

definition of h(L) in (2.10) as well as the convexity of h,(L) and h 3(L). we

obtain

h'(L) h(L) < h'_,(T(p E) - A) (a - p)e ~p(T( p.(pP-p

+ e"+k'PA ( p . p, e
0 L k



and

h'(L) = h'(L) > h'(TA(p, ) - A)= (a + p ("+±3)Z()-p f( T1 (p, p),)p, e).

Note that T (p e) =arg minL,. f (LkA e). and hence

1 f2.

0Lk

Since the exponential function is nonnegative, we have h(T (p, ) -A)

h' (T (p. e) - A) and hence li'(L) < h'(L).

. Suppose L A > T 3(p, 6) and L + A > T3(p, r). Similar to the first case.

h'(L) < h'(L) can be proved by the definition of h(L) and the convexity of

h3 (L).

From the results of these cases, it follows directly that h'(L) is increasing in L and

so h(L) is a convex function with respect to L, which completes the proof of part

(ii). D

Lastly. we coniplete the proof of Theorem 2.1 by showing that the end of planning

horizon value function. -JN+1(tN+ 1 -PN+1, N+1) has the properties described in (Al)

and (A2).

Proof of Theorem 2.1. Consider period N + 1. By definition, we have

*J+1(iN+1--- 1--, e+1) = eXp)(-p7N+1) = exp(-pu(xN+1, -N+1)-

Obviously. JN+1 (XN +1' pN +1. N+1) is always nonnegative as the exponential func-

tion is nonnegative. i.e., it satisfies the induction assumption (Al).

For any given a, A, p. , let us define

h(L) = e"L Jk(L+ A. p c) = eL exp( fv(L + A. p, ()) = ex)(aL

Let u(L) = aL - pv(L -,A p. ). Obviously, ?t(L) is a convex function of L since p > 0



and v(xN+1 E-+1) is concave in xN+1. Consider any L 1. L2 and K E [0. 1]. According

to the convexity of u(L), we obtain

u(KL 1 + (1 - K)L2 ) < hu(L 1) - (1 - K)u(L,).

Therefore.

h(KLI + (1 - ,)L 2 ) = exp(u(KL1 + (1 - i,)L 2)) L exp(K'I(LI) + (1 - K)u(L ))

< t exp(u(L1I )) + (1 - ) exp(u(L 2 )) =h(L 1 ) (1 - K)h(L2),

where the first and second inequalities follow from the ionotonicity and convexity of

the exponential function respectively, and hence h(L) is a convex function of L, i.e..

JNv, +1(x+ 1 ,j pN+1, v+1) satisfies the property specified in the assumption (A2).

As a result, the properties (Al) and (A2) hold for JA+1(XN+1 -pA-+, N+J Coin-

bined with the results in Propositions 2.1 and 2.2., the theorem can be proven by

induction. D

Theorem 2.1 shows that we can obtain the optimal quantity to adjust the inven-

tory level once we know T(pA, cEA) and 'T(pA, E.). We effectively reduce one dimension

of the optimal solution since the values T(PA (E) and T/(pk, 6e) are independent of

xE. For any period k, given the function JA+1(zE-1, paEi. e1), we only need to (i)

compute Tk(Pk, E) and T (Pk, CE) which are the global minimizers of fj(L1 , pE, (k)

and f (LA, pa, A.), and (ii) compute JA (X., pE, ,6) using the closed form (2 .8). There-

fore, we only need to deal with three limensional functions in each period k. We

avoid "the curse of dimensionality" in the sense that the dimension of the functions

does not grow with the number of period. The computational load for each period is

the same, and hence the computational complexity is linear in the number of periods

N.

Next, we present an example which could be helpful to further understand the

key tradeoff in the market-making inventory control problem.

Example 2.1. Consider a numerical example with N = 100 periods. Suppose that



the distributions for 5., Ek, s, and dA are stationary for any k = 1. ..., N.

We consider the case that Sk and dk are either 0 or 1. They are independently

distributed and

P(Sk = 1) = P(s = 0) - P(dk = 1) = P(d1,  0) = 0.5.

i.e., the distribution for Si, and AA. is

P(Sk = 0. A1 = 0) = P(S = 1, L, = 1) P( 1 A-1,  -1)

= P(51= 2, A =' 0) = 0.25.

For the purpose of generality, we did not specify the unit of the demand and supply.,

e.g.. sk. and dA, can be either ) or 1 lot. i.e., 0 or 100. 000 units of base currency.

Note that the smallest commonly quoted change of exchangce rates, a percentage

in point (pip), is 10-4 for all major currencies except the Japanese yen. We restrict

the mid price PA to integral multiples of 10-. The support for (5k is defined to be

{down(p). 0. up(pk)} where

up(pA. ) - -down(pk) = [pA] x 10-4 . (2.11)

i.e., 10- 4pA rounded down to the closest integral multiple of 10-4. We suppose that

the price is more likely to move up if Ap - s1 - dl is negative, i.e., when more clients

buy from the market-maker, and vice versa. In particular. let

P(6, = up(pA.) AA- = -1) = 0.5

P(&: = A. - -1) - P(O. - down(p.) AA: - -1) - 0.25,

P(O = 0 A1  =0) = 0.5

P(g - down(pA.) A = 0) = P((5 -- up(p.) | A - 0) 0.2.

P(4 down(pA.) A. = 1) 0.5

PO. - 0 | A. - 1) = P( 5A - up(ph.) AA = 1) = 0.25.



We assume that the spread is a known function of the mid price plus a random

variable. In particular. let

EA. = $I(pA) + oA where oA(pA) = L0.5pkI x 10-4. (2.12)

i.e.. 0.5 x 10- 4p rounded down to the closest integral multiple of 10-, and ;e is a

random variable independent of pk, 4, sk and d. with the probability mass function

P( p = 10-) = P(A= 2 X 10- 4 ) = 0.5.

In addition, we set the risk aversion parameter p = 100 and consider two situations

for the profit or loss at end of the planning horizon: (i) rN+1 = r( N+1, 'N+

- J-N+1 I N+ i.e.. the inventory is cleared at the bid or ask price quoted by other

market-maker. (ii) N 1  N+1, +)1 0. i.e., the inventory is marked to the

market mid price.

Table 2.1: T7 (pk,.. () and T' (pA, Ek) for Example 2.1 with p = 100 and WA1=

-(N-1 XN+1

Pk 1-999 Pk 2.001
e-A =0.0001 ek = 0.0002 e, 0.0002 0.0003

k T7 Tj TT_ Ti T/ T TT
1 -4.72 3.59 -72.85 71.34 -4.59 1.77 -20.89 17.49

50 -4.11 4.01 -72.07 71.70 -3.61 2.70 -20.01 18.64
100 -1.00 1.00 -59.42 59.42 -1.00 1.00 -18.24 18.24

The threshold levels Tx(p,, e) and Tk(ph, k) for 7N+1 -FNr+1 XN+1 are shown

in Table 2.1 and Figure 2-1. We present the results when Pk = 1.999 or 2.001 for

any k = 1. 100. According to (2.12), #'(1.999) = 0 and #h( 2 .001) = 1 0. Hence.

k = 10- or 2 x. 104' when pa- =1.999 and i = 2 x 10' or 3 x 10- when pA= 2.001.

As shown in Figure 2-1, for any given pA and ek, the threshold levels T (p, A-) and

T (p, e-) are relatively stable with respect to k when k < 90. However, when k > 90.

T7 (p, 6I) is increasing in k while T(pA -. ) is decreasing in k. i.e., the no-trade region

decreases as k increases. This is because xN+1 is cleared at the cost of eN+1 at the end

of planning horizon. For any period k, the maximum cost associated with one unit of

on-hand inventory Xh is (A., because we always have the option to trade off this unit



Figure 2-1: T(p e ) and T (pk, ek) for Example 2.1 with p = 100 and lrN+1
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by paying the transaction cost e4. Note that our input parameters are stationary., and

hence period N + 1 has the highest cost associated with one unit of the inventory.

Moreover, this cost decreases as k decreases, because we have more opportunities to

trade off the inventory in later periods when we are further away from the end of

the planning horizon. As a result, we can afford to have more inventory for earlier

periods, which explains why the no-trade region deceases in k.

Also note that for the last period, T10 (1.999, 104) -1 and T' (1.999. 10--) =

1. Suppose that £io(2 = 2. Let us consider the following two options.

* We pay the 10- 4 transaction cost to sell one unit in period 100. After receiving

the demand and supply from the clients, we hold either zero or two units to the

end of planning horizon since both Sk and dk are either zero or one, and clear

these zero or two units at the transaction cost 6N+1 per unit.

" We do not actively trade with other market-makers in period 100. After receiv-



ing the demand and supply from the clients, the inventory position will be either

two or three units., and we clear these two or three units at the transaction cost

N+1i per unit.

Comparing these two options, the transaction cost for the first option is no greater

than that of the second period as N+1 > 10-4 as ploo = 1.999. The expected return

from price movements are the same since E[61 I pA = 1.999] = 0, but the first option

holds less inventory which implies lower risk. As a result., a risk-averse decision maker

will always choose the first option. Following this argument. we can establish that

T )0(1.999. 10- 4 ) 2 -1 and T 20(1.999. 10- 4) < 1. Note that this property does not

hold when pio - 1.999 and 100 2 x 10-4, since -N+1 < 2 x 10 4 and so we have

the incentive to hold the inventory in order to save the transaction cost. The case

when pi1u = 2.001 is the same and we omit the discussion here.

Table 2.2 and Figure 2-2 present the threshold levels when N+1 = 0. Contrary to

the situation with 7N+ 1 = -(N+1 XN .l when k > 90. the no-trade region expands

as k increases since T (pu, e.) decreases in k and T (pi, e.) increases in k. Under

the situation 7 T+1 0, the inventory is cleared for free at the end of the planning

horizon, and so we always have the incentive to hold the inventory towards the end of

the planning horizon to save the transaction cost. This incentive is stronger in later

periods since we bear the inventory risk caused by price uncertainty for fewer periods.

As a result, we would like to hold more inventory and have a larger no-trade region

as k increases. In addition, we have T juo(pioo, e 1 )) = -oc and T6o(pi0o, (iLo)

for both piu = 1.999 and pi10 = 2.001. It indicates that in the last period, the

transaction cost to trade off the inventory cannot be compensated by the reduction

in the inventory risk. Therefore., we simply hold the inventory for one more period

and clear it at zero cost at the end of the planning horizon.

If we compare the threshold levels for different 7N+l. the threshold levels are

very close for given Pk and (: when k < 50., c.f. Tables 2.1 and 2.2. The Bellman

equation (2.3) indicates that the impact of 7N+1 oil .JAk(xk, pk. ek) fades as k decreases,

and hence the values of T (pe, ke) and T(pp, tJa) are less affected by the end of the

planning horizon profit or loss WN+ for smaller k.



Table 2.2: T4(pk, 6k) and T (pki 6k) for Example 2.1 with p = 100 and WN+1 = 0

Pk 1.999 pk= 2.001

Ek = 0.0001 - 0-0002 k- 0-0002 Ck =- 00003
k T T T17 TI, T7 T T T
1 -4.74 3.56 -72.89 71.32 -4.65 1.71 -20.94 17.43

50 -4.40 4.19 -72.11 71.70 -3.69 2.62 -20.07 18.56
100 -Dc Dc -o oC -oc oC -Dc oc

Both Figures 2-1 and 2-2 show that given pk, T(pk, ek ) is higher for lower cA. while

T(pk, (c) is loxwer for lower ek, i.e., the no-trade region is smaller for lower Ck. The

market-making inventory control is to find a traodeoff between the transaction cost

and the inventory risk due to price movements. When the transaction cost., Ck is

lower., we could afford to trade with other market-makers inore frequently in order to

reduce the inventory risk. Consequently., we should have a smaller no-trade region.

Also note that the T(1.999.2 x 10-4) is significantly low (at most -59.42) and

TF(1.999. 2 x 10-) is significantly high (at least 59.42) for both definitions of wv+1 -

This is mainly because there exists a 0.5 probability that the transaction cost in the

next period k + 1 will drop to 10-, therefore we can save the expected transaction

cost by adopting a wider no-region in period k. If we odify the. example so that

- 10-4) - 0 an( = 2 x 10-4) - 1.1 we cannot save the transaction cost

by expecting the transaction cost to decrease. and the no-trade region for Pk - 1.999

and cq = 2 x 10- will shrink significantly, e.g., T/(1.999, 2 x 104) -5.96 and

TT(1.999,2 x' 10-) = 5.00 when we consider TN+ -Ev-1iN+ , and T7(1.999.2 x

10-1) - -5.94 and T (1.999, 2 x 10-i) = 5.05 when we have 7N+ 0.

Moreover, for both N+ 1 - -N+ I xN+i and -N+1 - 0, we have

T (1.999, ()(1.999) + 9.) < T7(2.001, #(c2.001)

T (1.999, Ok(1. 9 9 9 ) + ;c) > T7(2.001, d k(2 -001) + )

where ;p. =-10 or 2 x 10-4, c.f. Tables 2.1 and 2.2 as well as Figures 2-1 and

2-2. In other words, we choose smaller no-trade region when pA = 2.001 even though

'li this case, the threshold levels are independent of Ck, c-f. Corollary 2.1.



Figure 2-2: Tk (pk, E) and T (pk, 6k) for Example 2.1 with p = 100 and rrN+1 U
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it corresponds to higher transaction cost. According to (2.11), the support of 5 is

{0, ±2 x 10-4} when Pk = 2.001, and it is {0, ±i10-4} when pA = 1.999. Therefore.,

Pk = 2.001 implies higher risk in price movements, and so we need to trade with other

market-makers more frequently to reduce the risk, which implies a smaller no-trade

region.

2.3 Reduction of the State Space

In the Bellman equation (2.:3) and Theorem 2.1, the state for the dynamic program-

ming model is zA-, pA, and EA-. However, we can easily reduce the dimensions of the

state space by imposing minor assumptions on the random variables. The following

result can be established by the same proof as that for Theorem 2.1.

Corollary 2.1. If 6k, EV, Sk and Ak are independent of Pk for any k, then the state

of the Bellnan equation (2.3) is reduced to Xk and (k. Therefore, the functions Jk(-)



in (2.3), fkt.) and fk(.) in (2.4) only depend on xi and eA., and the threshold levels

T2(.) and Tj(.) in Theorem 2.1 only depend on ei.

If -i is a given function of p* Jor7 any k, i.e ei = &i(pi), then the state of the

Bellman equation (2.3) is reduced to Xi and pk. Therefore, the functions Ji( ) in

(2.3), f/(.) and fT(.) in (2.4) only depend on xi and pk, and the threshold levels

T (-) and T (-) in Theorem 2.1 only depend on pA..

If ea is a g-ien constant and 6, Si an d A are independent of pk for any k. then

the state of the Bellman equation (2.3) is reduced to xi. Therefore, the functions J(-)

in (2.3), fl(.) and fw(.) in (2.4) only depend on xk, and the threshold levels T (.)

and T(-) in Theorem .1 are reduced to constants for any k.

Let us consider an example where the threshold levels are independent of the

mid-price p,.

Example 2.2. In Example 2.1. we define the support 6 and c, as functions of pi

presented in (2.11) and (2.12). Now let us consider the same stochastic input in

Example 2.1 except that the functions up(pk)., down(pi) and O)k(pk) in (2.11) and

(2.12) are replaced by up(pi,) = -down(pk.) = 10-4 and QA(pA) = 0.

Lnder the assumptions. all the random variables 5k, ei, S and Ak are independent

of pk for any k. According to Corollary 2.1 the threshold levels only depend on qi, and

we denote them by T(eA) and Tk(eA). Again, let us consider N = 100 and p = 100.

The corresponding threshold levels for 7N+1 = -eN 1 xN 1J and wN+1 0 are shown

in Table 2.3 and Figure 2-3.

Table ).3: T1 (ei) and Ti(ei,) for Example 2.2 with p - 100

_N+1__ = -eN+1 XN+1 7N1 = 0

- 0.0001 Ck - 0.0002 C, - 0.0001 6k = 0.0002

k Ti TF Ti T| T| Ty Tk T'
1 -4.06 4.07 -71.77 71.79 -4.08 4.09 -71-78 71.78

50 -4.00 4.01 -71.77 71.78 -4.31 4.32 -71.78 71.79

100 -1.00 1.00 - 59.42 5 9.42 - o -o_ _o

The change in the threshold levels with respect to k in Table 2.3 and Figure 2-3

is the same as that in Example 2.1. In fact. for teo = 104 or 2 x 10-4, the values of



Figure 2-3: Tk(e.) and Tj(e) for Example 2.2 with p = 100
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T' 0(c100 ) and T 0 (6100) in Table 2.3 are the same as T o(pio cioo) and T 00(pioo 6100)

with Pio0 = 1.999 in Example 2.1 with the corresponding TN+1, because Example 2.1

specifies up(pk) = -down(p.) = 10- 4 and #k(pk) = 0 for any Pk < 2, and the relation

between 7rN+1 and PN+1 solely depends on the value of CN+1-

Similar to Example 2.1, we also observe that the no-trade region for any period k

shrinks as the spread decrease from Ek = 2 x 10- to Ek = 10-, since we can afford

to control our inventory in a tighter region with lower transaction cost.

Also note that T7(eA) -T(eA) for any k and 7rN+ 1 in Table 2.3. In our input,

the marginal distribution of the price movements is symmetric with respect to zero,

and the demand and supply from the clients have the same marginal distribution. In

other words, the marginal probability for the price to increase or decrease a certain

amount is the same, and the marginal probability for the clients to buy or sell a

certain amount is also the same. Hence, the risk associated with holding an inventory

of zk units measured by expected exponential utility is very close to that of -Xk

units. As a result, the threshold levels should have the similar absolute values. We

will formally prove the symmetry of the threshold levels. i.e., T'(ck) = -Thef) later



in Propositi-ion 2.3.

Next. we introduce an example where the threshold levels are independent of the

spread defined Iy q.A

Example 2.3. Similar to Example 2.2., we also consider a simplified case of Exanple

2.1. The stochastic input is the same as those in Example 2.1 except that (i) we let

up(p.) = -down(pA.) = 10-4 instead of the definitions in (2.11), and (ii) ;A is defined

to be a constant instead of random variable. Note that the condition (ii) is sufficient

for the threshold levels being indepedent of e.

We consider two cases PA - 10-4 and P= 2 x 10 respectively, and for each case

we let the end of the planning horizon profit or loss be either 7N+ - ~N

and WN+1 - 0. The threshold levels are denoted by T (pA,) and T (pA) since they are

independent of c- WVe display the results for *PA= 10~4 in Table 2.4 and Figure 2-4

and those for '-k 2 x 10-4 in Table 2.5 and Figure 2-5.

Table 2.4: T (Pk) and Tj(p' ) for Example 2.3 with A - 10~ and p 100

Table

N 1 - eN+IIN+1 X N1 0

pk = 1.999 pk - 2.001 Pk = 1.999 Pk - 2.001

k Ti T9 Ti T, T, Tn T7 T
1 -5.36 3.46 -6.16 4.82 -5.54 3.33 -6.43 4.66

50 -4.48 4.05 -5.41 5.19 -4.80 4.29 -6.96 6.61

100 -1.00 1.00 -1.00 1.00 -o c -o c

2.5: T' (PA) and T(pk.) for Example 2.3 with '. = 2 x10- and /

7,N+1 = -- N+ INV 1N+1 4 0

Pk = 1.999 Pk = 2.001 Pk = 1.999 PA = 2.001

k Tk T T T TI T T, T
1 -6.29 4.77 -6.78 5.49 -6.67 4.61 -7.23 5.47

50 -5.49 5.10 -6.00 6.00 -7.20 6.67 -9.417 9.07
100 -1.00 1.00 -1.00 1.00 -oc oc -c ox

= 100

The trend of threshold levels with respect to the period k is very similar to what

we observed in Examples 2.1 and 2.2. Moreover, we observe that the no-trade regions



Figure 2-4: T7(pA) and T(p) for Examiple 2.3 with 1P = i0- 4 and p = 100
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are increasing in both pA, and p. To be specific, the threshold levels have higher

absolute values when pk = 2.001 than when pk = 1.999 for both values of pp and both

definitions of riv+1, which is obvious from Figures 2-4 and 2-5. In the meantime, the

absolute values of threshold levels are higher when P = 2 x 10-4 than when ;k = 10-4

for both values of pk and both definitions of TNi+1 which can be observed by comparing

the numbers in Tables 2.4 and 2.5. The reason behind these two observations is that

higher values in pk or Yk are associated with higher value of (, i.e., it is more expensive

to trade with other market-makers to actively adjust the inventory. Therefore, the

market-maker will tend to actively trade less frequently. It results in a larger no-trade

region, which implies higher absolute values for the threshold levels for this particular

example.

2.4 Symmetric Threshold Policy

Example 2.2 shows a case where the threshold levels. T(p(, hp) and Tk(pp, (h). have

very close absolute values. According to the proof of Theorem 2.1. these levels are

the global minimizer of the functions f(Lppp. e-) and f7(Lp, pp. ep) when given pk

and eA. Obviously, if these two functions satisfy t(LA.. pA, e) = f2(-LA, p, (k) for

any L, Pk and (:k, then the threshold levels. T k(pr, e) and T (pk. 60. have the same

absolute value., i.e., 'T (pA, .)= -Tk (pA, d). In this case, the threshold levels are

symmetric with respect to zero an(l we refer to it as the symmetric threshold policy.

To establish sufficient conditions for the symmetric threshold policy to be optimal,

we require that (i) 61,, e, SA and AA are independent of the price pA. for any k. and

(ii) the last period profit or loss fuention N+1 as well as the conditional distributions

of Ao and oA for any k are symmetric with respect to zero. Under these assumptions,

the risk associated with holding an inventory position is solely determined by the

absolute value of the inventory position., and hence the no-trade region as well as the

threshold levels should be symmetric with respect to zero.

Formally, we denote the cumulative distribution function of the random variable

oh conditional on Ak, Sk and eA as F, ss (Sb), and the cumulative distribution



function of the random variable Ak conditional on o, Sk and ek as FAiStk(Ak).

Let us consider the following assumptions.

(B1) 51, ., SA and A,, are independent of pA, for any k.

'(-XiN+1, (N+1) for any XN+1 and N--1, i.e., the function

7rN+1 = (XN+1., EN+I) is symmetric in XN+1 with respect to zero.

(B3) F s (3k) + Fska (-ok) 1 dFos s (S) for any k and 6K. i.e..

the conditional distribution of 6k is symmetric with respect to zero.

(B4) FsAhitSS,1(Ak) +F F S k bk ( Ak) = 1 + dFkIskSkCk(Ak) for any k and AK-

i.e.. the conditional distribution of AA, is symmetric with respect to zero.

The condition (B4) is equivalent to that sA and dA. have the same distribution

conditional on (k and e. Let FS isko. (Sk, dk) denote the cumulative distribution

function of the random variables sA and dA. conditional onl 5, and Ek.

Lemma 2.2. FaksA.) + F-s (-A.) 1 + dFkk (A,,.) for any k

and Ak if and only if F ~k lkI 4 (Sk! d) - F 1k IIk (dk, sk) for any k, Sk and dk.

Lenna 2.2 can be easily proved using SA = sk- dh and Ak = sk - d. as well

as the definition of cumulative distribution functi)n, and hence the proof is omitted

here.

Now let us prove the synnetry of the threshold level under the assumptions (B1),

(B2), (B3) and (B4).

Proposition 2.3. Under thlc conditions (B1), (B2),. (B3) and (B4), a symimctric

threshold policy is optimal for the problem in (2.2). In particular, JA (x, -k) =

Jk( -Xk,ek) and'T ((k) - -T7(e) for any k. xk and e.

Proof. According to Corollary 2.1. the condition (B1) implies that the functions Jk()

in (2.3), ft(-) and fj () in (2.4) only depend on 3,k and Ek, and the threshold levels

Tk)(-) and T (-) are functions of ek only.

(B2) 'V(xJN+41, IN+1



From the condition (B2) and the definition of JN+i(x+. EN+i), we obtain

- exp(-pU( XN+1 -)) = -N+1
XIN+1, N+

Now let us suppose that JA+1(xk+1 Ek+1) Jk+(-zA.1, eA.1) for any rA.-1 and eji.

The definition of f1 (Lk PA, Ck) in (2.4) shows that

f(L . e) £ [ePe Lk-k) (S-Lk) Jk +1 (L

Consider the condition (B4) that the conditional distribution of A. is synunetric,

which means we can flip the signs of Ak inside the expectation, i.e.,

fJ"(Lk- -ek) -- E eP((L-~ok+4Sk-L )(e A.

Note that JA+1 (Xk1 -k 1) = Jk+ (-Xk+-1- Ck+ b y assumption. We have

f (LA, 6k) = E e Jk+1 (-L, + k, CA-+1) t- .

The condition (B3), the symmetry of the conditional distribution of (
5 k ensures us to

flip the sign of (k inside the expectation, and hence

fk(L.. 6= E p
Lk -AAo)n+±(Sk-LAe ) k +j (-L + Ak., A+1) - fk-(-Lk Ek).

where the second inequality follows fron the definition of f'(Lk. (k) in (2.4). It follows

directly that Tj(eA) = -T(ek) for period k.

Let us consider JA(XA, -k). For any xA. C [0. T(6)], i.e.. -- k e [T(,). 01,

JA(xk. ( k -= ent fhxA. c-k) = e*A f;(xA, kk ) - J60.= Jk (-Xk (k)

where the first and last equalities follow from (2.8) and the second equality is obtained

since we have shown f (Lk, Ak) = fg--Lk, ek). Similarly, for A '> T ck), i.e.. -xk <

JN+1.(vN+, +) = eXp(-pU(xv4iN+, eN+1))



k7 (6,).

JA.(XA. C-~ efrkk 2 T( ) kA -I1kk'(T(t) A-e/2k/((cy()

-JA' 3XAk tA k)

where the first and last equalities follow from (2.8), the second equality is obtained

from T 7 (e) - -T((k), and the thir-l equality is due to the property that f k(Lk, e)

ff(-Lk, ek). These results show that the induction assumption holds for period k.,

i.e. J.(x, eA.) =J(-x,), which completes the proof. D

Next, we present an example for the symmetric threshold policy. It also illustrates

how the threshold levels change with respect to the risk aversion parameter p.

Example 2.4. Consider an example with N = 100 periods. Similar to Example

2.1, we assume that the distributions for the stochastic input are stationary and

independent across k. In addition, we let (k =1-4 for any k and suppose that (k,

s8A and dk are independently distributed with the probability mass functions

p(5, =_-10- 4) = P(k = 0) = P(Sk -10-) =

P(sk = 1) = P(sk = 0) - - and P(dk = 1) = P(dk = 0) =.

Note that EA is a constant and (k, s k and dk are independent of p. It follows from

Corollary 2.1 that the threshold levels are independent of both p and (k. and we

denote them by T7 and T[. Moreover, Proposition 2.3 shows that Tk7 -T.

Again, we consider two situations of x+1 ie., WN+1- -N+1 xN+1 and 7 N+1 -

0. For the risk aversion parameter p = 80. 90. 100, 110. 120, the corresponding thresh-

old levels T7 are shown in Table 2.6 and Figure 2-6. Note that the second row in

Table 2.6 represent the values of p, and the corresponding T7 are shown in the last

three rows for k = 1. 50 and 100.

It is easy to see that the threshold levels change as A increases in the same manner

as that in Examples 2.1, 2.2 and 2.3. Moreover, the threshold level TI decreases as p

increases. Note that a more risk-averse attitude is associated with a higher value in p.

A more risk-averse decision maker is willing to sacrifice more transaction cost in order



Table 2.6: Ty for Example 2.4

7N+1 =-E±1jXN+1I 7Niv+1 0
p 80 90 100 110 120 80 90 100 110 120
k T T ) T' T? T TT TT T T T7
1 4.69 4.47 4.28 4.12 4.00 4.68 4.48 4.30 4.14 4.01

50 4.73 4.46 4.24 4.07 4.00 5.07 4.75 4.49 4.29 4.11
100 1.00 1.00 1.00 1.00 1.00 oc OC OC 'oc oc

Figure 2-6: T for Example 2.4
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to protect against price uncertainty. Therefore, he or she will trade more frequently

with other market-maker to reduce the inventory risk caused by price movements,

and so the no-trade region will be smaller. Since Ti = -T 2 , it follows immediately

that TT is increasing in the risk aversion parameter p.

2.5 Extensions

This chapter investigates how to control the inventory position of a single asset in the

marketing-making process, where the exponential utility function is applied to model

3.

2



the risk-averse attitude of the decision maker. We prove that the optimal policy is

a threshold policy and denonstrate that the policy can be further simplified under

certain circumstances. In particular, we can reduce the dimensions of the states which

determine the threshold levels, and identify conditions under which the threshold

levels can be symmetric with respect to zero. The structural properties of the optimal

policy lead to a comiputationally efficient algorithm to compute the threshold levels,

which allows us to present numerical examples to illustrate the optimal policy.

As we mentioned in Section 2.1, the optimality of the threshold policy can be

extended to the following settings: (i) the price dynamics and the client order pro-

cesses are auto-correlated, and (ii) the spread the mlarket-maker quotes to his or her

clients are different from the spread he or she pays when actively trading with other

mnarket-mnakers. These extensions are discussed at the end of Chapter 3 (Section 3.7)

since the results are identical and the proofs are similar for exponential utility and

mean-variance models.



Chapter 3

Single-Asset Market-Making with

Mean-Variance Tradeoff

Chapter 2 studies the inventory control problem in market-making with an exponen-

tial utility objective function. Another common approach to nodel risk-aversion is

the mean-variance tradeoff. In this chapter., we adopt such an objective function for

the inventory problen presented in Section 2.1 of Chapter 2. The dynamic program-

ming formulation for the mean-variance analysis model is introduced in Section 3.1.

We present the optimal threshold policy in Section 3.2. and the properties of the

threshold levels are investigated in the following sections. In particular. Section 3.3

shows how to reduce the state space for the threshold levels under various condition,

Section 3.1 studies the risk-neutral model which is a special case of the mean-variance

model, and the symmetric and monotone properties of the threshold levels are iden-

tified in Section 3.5 and Section 3.6 respectively. Finally. Section 3.7 summarizes this

chapter and presents extensions of our results.

3.1 Mean-Variance Analysis

Assume that the utility function of the market-maker is a linear trade-off between

the expectation and the variance of the total profit. Adopting the notations used in



Section 2.1 of Chapter 2, the objective function is defined as

N

nax E { [/kpN, eA6] - A x Varu (xpA, e) +N WN+1j (:3.1)
.. k=

where the parameter A > 0 represents the decision maker's risk sensitivity. Obviously,

the decision maker is risk neutral when A = 0.

We consider the expectations and the variances conditional on p and (k because

the random variables in period k, i.e., 6., SA and AA. are correlated with pA. and qA,

and pA and Ck jointly determine the bid and ask prices in period k. which are observed

before we make the decision to actively trade q. units with other market-makers. Note

that .k is also observable before making the decision, but it is independent of other

random variables defining 7,k.

In addition, the profit and loss in period N + 1, 7N+1 = V(XN+I vN+1) is de-

fined to be a deterministic function of XN+1 and eN+,. and it follows directly that

E[wN-+1 EN+,1 =N-1 and ar(7N+1 cN+1) = 0. Also note that pN+1 can only affect

the value of N+1I through the correlation with CN+1, and so E [N+1 PN+1 , N--1

7N+1 and 'r(7NT+1JPNp+1: Ey+) = 0. That is why we have the term yN+1 in the

objective function (3.1).

It is well known that if the distribution of 7k conditional on PA and -k is a normal

distribution, the mean-variance analysis in (3.1) is equivalent to maximizing the suil

of exponential utilities in each period k. Also note that this objective function is

very similar to that in Stoikov and Saglam [50]. Moreover, the mean-variance type

objective is also commonly adopted in the optimal order execution literature, e.g.

Almgren and Chriss [2] and Engle and Ferstenberg [17).

Consider the expectation and variance of one-period profit hk conditional on the

price pA and the spread (k. Accordling to 71k defined in (2.1), it is straightforward to



obtain

E'wkipA.. EI| - LATS. p, 6A] - LA. - XAke +-- E ( +A SkE1 piA:-]

Var( wk pk -. ) = k LVar(ik p, 6k) + Var ( (5.k + Skek p, e )(3.

rC)2A A~l l._.61"]r,-,(3.1 2)

+ 2LA. (E(A WA-p , e] - E(oSjp, c-A]ELSOAsA~p. ]

+- 2LIA- (E' oASA- pa e(A] - E (Vnpy e]A A] E(Sk5A e]) ~ .

Let pA(pa, e-A) =EKIA t (pAI. ] p . (,.) = Var( 6jpe (-A-) and u/A-(pI ., p A-,) = I pA, 61i.) +

6kl'k(Pk, 6k) where

i , ( -) = 2 E(E Ak Ipk , ek] - E( 5 k pke E-6] ELkA k k]

V1 k (P Ek) = 2 E(k Skp, k ] - £k, eA IA-4I Ak] EA- ( ISkp (k)

(3.3)

Since the rest terms in E'wk pAN, (A-] and Vr(7kpAW en) are independent of the

decision variable LA = XA-1- +(Ac, the problem in (3.1) is reduced to

i N
nmin E ( AeT|L(P-- af -4p~n3-tnp~k))k+hgye)Lk

_k=1

- 71, ,

Note that the random variable Sk is no longer included in the optimization problem.

Accordingly, the Bellnan equation reads

Jk( -k , PAk -A-) = min in, { k L - I \+ (/Av-pk. - ) -6/1-(pk, (k)) Lk + A-- py, CA)-L

+E {JA±1(LA-+AA, pA +oeA+1)

(:3.4)

for any A- =1 N. and JN+1\l(N+1,PN-+1,QN+11

In the next four sections we establish the optinality of the threshold policy and

analyze properties of the optimal policy. Numerical examples are also presented to

illustrate the analytical results.

PA., 61' 1

7TN+ = -(XAN+1:- eN+1)



3.2 Optimality of the Threshold Policy

Let us define the following functions

fk( Lk, p, (k) -- (/lC(p. 6C) - lI'(p, C) Lk + (Pk CC)QL

+ E { Jk+1 Lk + Ak - +k6k, Ck+1) PC., Ck

fIj (LA., pA. ) = f(LC, A.pA .) +I- CA LA and f (LA. p)A7. q) fA.(LA,. PAk ) - ALA.

(3.5)

Fix pA and CA., let

T (pA, eA!) = arg nin f (LA:,C PA k),
Lk

TA (Pk, 60 = arg min f(,' Pk, - ),0

T (pAV A) arg min f(LA.. p ,EA.).
Lk

Again., the optiiality of the threshold policy is proved by induction on the number

of period k, and we suppose that JA,1(XA1, Pk+1) is convex with respect to XA1.

Similar to the Bellman equation with an exponential utility function in (2.3), the

inventory position XC is embedded in an absolute value function and it cannot be

separated from the objective function. In Chapter 2, we prove the optimal policy

by first analyzing the optimal LA in two cases, Lk -> XA and LA Xk, and then

comparing these two solution in order to decide whether to buy from or sell to other

market-nakers. In this proof, given xA. we first determine which direction to adjust

our inventory., i.e., whether the optimal Lk is greater than 'rk or less than xk.

Lemma 3.1. Suppose that Jk+1 (Xk--1, Pk+-1, ek+1) is convex with respect to xA,1m. Let

L* denote the optimal solution of LA in (3.4). For any given pC and CA, L < x if

Xk > 7 7 (Pk- Ck), and L' > Xk 4 Xk < T( pk )-

Proof. Consider the function fA.(LA, pA., CA) defined in (3.5). Since

.o (Ak ) = Var( A, (,' ) > 0.

we know that (A '(PA, CA) -- Pk(PCk k)) Lk + Aa" (PA, ()L' is convex in Lk. Notice



that E {J- 1 (LA. Ak, pA + (4. ek+1)} is also convex in LA. since J4 1(xAk1, pk--1, CA+1)

is convex in xkiI by assumption. and hence fk (L, -P - 6) is a convex function of Lk.

Recall that TO(pk. cC) is the global minimizer of fA(Lk,- PA, (k) for any given Lk and

Pk. Suppose that x 2 'T(p, e) and Lk > XA.. Consider the objective function of

(3.4). The convexity of fk(LA P, 6k) implies that fk(LA. Pk, Lk) f (X' -, Pk 6k). Also

note that the absolute value function is nonnegative, we obtain

(|LA. - x+ I fi (LA. PA, (k) fk (x, Pk .k)

and hence L* - xj. if xA. > T I(p-A. ek).

We can prove the other part of the proposition, L* xk if xk _< TJ](pA., ek), by the

same argument.

Lemma 3.1 shows that the market-iaker will not increase inventory (through

trading with other market-makers) when the inventory is greater than To (pk, 6k). and

will not decrease inventory when the inventory is less than TJ, (pA eA). With this

result. we can replace the absolute value function in the Bellman equation (3.4) by a

linear function, and hence we can pull the term xA. out of the objective function. The

following proposition shows that the threshold policy is optimal with the threshold

level Tj1(pk. (k) and TA(pk, 6k).

Proposition 3.1. Suppose that Jk+1 (k+1, Pk+1, ek+1) iS convex rith respect to x ±1.

Lct L' denote the optinal solut'ion of Lk in (3.4). For any Pk and Htre e6a sts

thresho1d le6vels Tk (PA- -iA) < T (pA. EA.) such that L = T (pA eA) if x Tk (pA A),

L =TiKp. 6k) if x1 > T(p 6 , 6k), and L = xk otheriaise.

Proof. Suppose that zk > Th(pi), Lemma 3.1 shows that

Jk(k, k A) = Minl {6(Axi - Lk) t fk(Lk, p eAk)} = ekxk + min fT(Lk. PC. ek). (3.6)
L~ k-1k L k k

Note that fA(Lk. Pk,() = fk(LkPk,(k) - CkLC is defined in (3.5). It is a convex

function of LA. because fA. (Lk., P., k ) is convex in LA..



Note that we have shown that f.(Lk pk, ek) is a convex function with a global

minimizer T'(pA. 6A) for any given pj and 1.. Since . > 0., for any fixed p. and

Ck, fl(Lk Pk, ek) achieves its global minimum at T' (P , e,) C T? (p1, e k). It follows

directly that L= T (pk, 6) if xA. > T(p. CA), and L* x' if T9 (pA| K xx T

Similarly, we can show that L= T (pA) if xk. < Tk (pA). and L* = xx if Tk(pA) <

k Tp where T7(pk) T -,

Proposition 3.1 implies that

-kxk + f Pxk p, (kA) - kx-Ak

Wkk - (T (p,- (k ), Pk-, k)k

if x T (pk, -k),

4- - (k)

if TJ (PA, A) ( < X < T'(pA, e-),

if Xk > TI(k. k-).

(3.7)

Next we complete the induction proof by showing the convexity of Jk(xk p, k ).

Proposition 3.2. If JA1+1 (Xk+1, Pk-1- e-+1) is convex in xx1 for any qiven cp,, then

-JA- (xk pA-A) is conv'ex i xA for any g'ive pC And eA.

Proof. Here we show that JA.(XA. , Pk, 6k-A) is convex and increasing in x k T9py, tA)

for any given PA- and eC-

Let us define

J(x7k, Pk k) = (-kXk + f(Xk -, Pk,k) = (Xk- Pk,- k)

J k(x, PA- ek ) = ek + fi (Tp , A-k k)- p, (k).

According to (3.7), we have

JA'(xA, - PA- -A-
J/(x PAh: (A-

J/(x pi- - (A-)

if TY(pA, (A) < Xk < T(pA.eA)

if xA > T (pA: ,6-A-).

For any given PA and Ck, J(xk, ik, ek) is increasing in [TJ(Pk, k), T(Pk, (k)] as

f X (LA, pA, A) is convex in Lk and has global minimum at TJk? (PA- 6A). -J (XA, Pk) - A is

also increasing as Ak > 0 andl f,(Tj(pk, (-A-), pA-- A) is a constant for fixed pk an( e-. We

JA(XA, t
, (-A) =



obtain that Jk (xi- ]A., ,) is increasing in [T (pA),h)- 00) since J (TP (PA, f-)., e ) =

J2(T (Pk,6)Ak-6).

Note that 0(Tg(p k p e ) K 0 as T(PA-, Ck) minimizes fA(L-P-, ,-A) with

given Pk and et ,l and hence

OXk(T
2
'(Pk. - k) Pk~ -k) = k-I~ T(Pk. - k) -Pk. 6 k) < 6 k= . A (TT~p- fk) P-. -Ak)

Besides. J/(,k -pk, e-) is a convex function in X- since fk(LA pk. -6) is convex in Lk,

and J(XA, p, f -) is a linear function with respect to x,,. It follows directly that

Jk (XA- Pk, f-A) s convex for xk E [(pk) 0 c

Similarly, we can show that JA (xk, PA C) is convex and decreasing in Xk < T . (p),

which completes the proof.

Obviously, ,fN+1(xN+1,pN+1: fN+1 N+1, fN+1) is a convex function with

respect to XN+1, since c(xN+,. 6N+i) is concave in xN+1 by definition. Therefore, we

establish the same optimal control policy as that ill Theorem 2.1:

Theorem 3.1. The optimtal control policy for the dynam'ic programming mode in

(3.1) is as follows. For any pe-iod k. there exist threshold leeis. independent of the

inve'n tory level x-, T (pl.. eA) and T 6(pj, fA) where T(pA, e) < Tj(p , f ), such that th-

optimal order quantity qi= TA (pA6) - XA if Xk < T(pA-f), q = T(Pk e) - Xk if

xk > T,(pk, ), and q - 0 otherwise.

Observe that the proof of this theorem is significantly simpler than Theorem 2.1,

the corresponding theorem for the exponential utility function. This is due to the fact

that in the current case, the objective function is a summation of convex functions

while in the former case, it is a multiplicative function of convex functions.

Ve use the stochastic input in Example 2.1 presented in Chapter 2 to illustrate

the threshold policy for the mean-varian(ce trade-off model ill Theoreml 3.1.

Example 3.1. Consider a probelm with N = 100 and A = 100. We assume that

the random variables (5k., sk, dk and fk follow the stationary distribution defined in

'Similar to Chapter 2. we use f'(x) and - (X1, x2,... .m) to denote the left-hand olerivatives of

the functions f(x) and g(x1, ,...,- x771) respectively.



Example 2.1. Analogous to Tables 2.1, 2.2 and Figures 2-1, 2-2 in Example 2.1, we

present the results with yN+1 = -N+1iXN+1I and 7N+1= 0 in Tables 3.1, 3.2 and

Figures 3-1, 3-2 respectively.

Table 3.1: T (pk. ek) and T (pk, ek) for Example 3.1 with A = 100 and 7 FN+1

-(N+1IXN+l1

pk = 1.999 Pk 2.001

Ek = 0.0001 Ek = 0.0002 EA. = 0.0002 E k = 0.0003

k TA T' T4 T1 T7 T" T4 T
1 -3.21 3.24 -40.21 40.21 -2.41 2.47 -10.21 10.21

50 -3.19 3.21 -40.21 40.21 -2.41 2.46 -10.21 10.21
100 -1.00 1.00 -40.00 40.00 -1.00 1.00 -10.00 10.00

Figure 3-1: T p 6k) and Tj(pk, k) for Example 3.1 with A 100 and -N4+1
6N+1 IXN+I
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Compared with the result in Example 2.1, the no-trade regions are smaller for

both definitions of 7FN+1. In particular, the no-trade regions when k = 100 and

7N+1 = 0 are finite in Table 3.2 whereas they are the entire real line in Table 2.2. This



property indicates that the mean-variance model with A = 100 is more conservative

than the corresponding exponential utility model with p = 100 for the random inputs

we choose. The rest observations are very similar to those in Example 2.1 and the

discussions are omitted here.

Table 3.2: TI(pk, Ek) and TI(pk, (k) for Example 3.1 with A - 100 and 7 N+ 0

Pk = 1-999 Pk = 2.001

Ek = 0.0001 6k = 0.0002 Ek = 0.0002 Ck = 0.0003
k T TT T T T Tk T
1 -3.21 3.24 -40.21 40.21 -2.41 2.47 -10.21 10.21

50 -3.24 3.26 -40.21 40.21 -2.42 2.47 -10.21 10.21
100 -80.00 80.00 -160.00 160.00 -40.00 40.00 -60.00 60.00

Figure 3-2: Tk(pk, C) and T?(pk, ek) for Example 3.1 with A = 100 and rN+1 0
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3.3 Reduction of the State Space

Similar to the analysis of the exponential utility function, we can also reduce the

dimensions of the state space in the dynamic progaram (3.1) by introducing indepen-

dence conditions on the random variables. Specifically,

Corollary 3.1. If o5, ek, S5k and - k are independient of p for any k, then the state

of the Bellman equation (3.4) is reduced to Xk and e. The refore. the functions Jk(.)

in (3.4), f7(-) and fl(.) in (3.5) only depend on xj, and eA-, and the threshold levels

TV(.) and T(.) in Theorem 3.1 only depend on e.

I e is a gien function of pA for any k, i.e., e = $N(pl), then the state of the

Bellman equation (3.4) is re(lced to xc and pk. Therefore, the functions JA(-) in

(3.4), fi(-) and f '(-) in (3.5) only depend on Xk and pA., and the threshold levels

T ( ) ndi ( ) in Theorem 3.1 only depend on pA.

e 1 is a given constant and 6k, Sk and Ak are independent ofpc for any k, then

the state of the Bellman equation (3.4) is reduced to xr. Therefore, the functions Jc(-)

in (3.4). f7(.) and f ( ) in (3.5) only depend on x4, and the threshold levels T.)

a'ndl Tj(-) in Theorem 3.1 are reduced to constants for any k.

We use the stochastic inputs in Examples 2.2 and 2.3 shown in Chapter 2 to

illustrate Corollary 3.1.

Example 3.2. For an example whose threshold level only depends on ec. we consider

the same stochastic input as Example 2.2 with N = 100 and A- = 100. Table 3.3 and

Figure 3-3 present the threshold levels for both TN+1 -= - VN+1jxN+1 and 7N+1 - C)

The observations from these results are very similar to those of Example 2.2,

except that the no-trade regions in Table 3.3 and Figure 3-3 are smaller compared

with their counterparts in Example 2.2. which agree with the observation we obtained

by comparing Examples 2.1 and 3.1: the mean-variance model with \ = 100 is more

conservative than the corresponding exponential utility model with p = 100.

We would like to point out that the threshold levels have very close absolute values.

i.e.. T (cc) -T(e). Similar to the exponential utility model, there also exist



Table 3.3: T,.(es) and T, (e) for Example 3.2 with A= 100

7N+1 = -EN1+1N+1j 7+1 = 0

Ek = 0.0001 Ck 0-0002 Ck 0-0001 Ck 0.0002
k T T' Ti T' Ti T _ T_ _ T_ _

1 -3.21 3.21 -40.21 40.21 -3.22 3.22 -40.21 40.21
50 -3.19 3.19 -40.21 40.21 -3.25 3.25 -40.21 40.21

100 -1.00 1.00 -40.00 40.00 -80.00 80.00 -160.00 160.00

Figure 3-3: T (ep) and T,(e-) for Example 3.2 with A = 100
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certain conditions under which the mean-variance tradeoff model returns symmetric

threshold levels, and we present the theoretical result in Proposition 3.3.

Example 3.3. Let us use the stochastic input defined in Example 2.3 to illustrate

the situation that the threshold levels are independent of Ek. Similar to Example 2.3,

we consider the cases pp = 10-4 and pA = 2 x 10- 4 respectively, and allow 7FN+1 to be

either -Ev+1IxN+1 or zero. The results for pO = 10- 4 (.pO. = 2 x 10-4, respectively)

are shown in Table 3.4 and Figure 3-4 (Table 3.5 and Figure 3-5, respectively).

We observe the same trend in threshold levels when the period k changes as in the

previous examples. Moreover, similar to Example 2.3, the absolute values of threshold

I I I 'd

. - ... ... . . r ,- .. .

L-



levels for Pk = 2.001 are higher than those for pk = 1.999, and the absolute values of

threshold levels for -. = 2 x 10-4 are higher than those for pk 10-. In general. the

no-trade regions are also smaller than the counterparts in Example 2.3, which agrees

with the observations from Examples 3.1 and 3.2.

Table 3.4: T I (pk) and T 1(pk) for Example 3.3 with )k =10-4 and A 100

7 N-1 ~6N+I1 N+1 N +1 0
Pk = 1.999 pk - 2.001 pk = 1.999 Pk 2.001

k T T1 T7 T' T T TT

1 -3.42 3.44 -4.43 4.47 -3.43 3.44 -4.44 4.47
50 -3. 42 3.43 -4.42 1.14 -3.45 3.15 -4.70 4.70

100 -1.00 1.00 -1.00 1.00 -80.00 80.00 -160.00 160.00

Table 3.5: T7(pk) and Tj(pk) for Example 3.3 with ;k = 2 x 10-4 and A 100

TN+1 -- N+1 N+1 TN1 - 0
PA = 1.999 PA = 2.001 p. - 1.999 P= 2.001

k T T T T7 T 77
1 -4.44 4.46 -5.10 5.13 -4.45 4.46 -5.19 5.20

50 -4.12 4.44 -5.02 5.00 -1.70 1.70 -5.96 5.96
100 -1.00 1.00 -1.00 1.00 -160.00 160.00 -240.00 240.00

3.4 Risk Neutral Model

A very interesting case for the mean-variance model in (3.1) is when A = 0, which

gives the risk neutral model. Let us start with the special case that FN+1 0.I- i-e

the inventory is marked to the market mid price at the end of the planning horizon.

Example 3.4. Consider the case when A = 0 and x-+ = 0 for the model (3.1).

Suppose that the function Jk1., (xk±1. Pk+I k-, .1) is linear in the inventory :'k+1 .

i.e..

Jk+1 (2Xk+1 I-Pk+ 1: (k+1 2 k+ 1 Ck+1I(Pk+ 1, (,k+ k') + 41 (Pk+1 I i Ek+ 1)



Figure 3-4: T7(pk) and T (pk) for Example 3.3 with ,k = 104 and A = 100
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Figure 3-5: T (pk) and T7(Pk) for Example 3.3 with Pk = 2 x 10- 4 and A 100
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where ak41 (p41,i ek+1) and *3 +1(Pk1. ek±1) are functions of Pk±1 and (k+1. Note that

JN+1(XN+1 ipN+1, EN+1) -TN+1 -

obviously satisfies this assumption.

Let us move on to period k. We have

f,(Lk, Pk, (k) = (-Pk (P k6 + E [ [-k+1(Pk + (k, k+1) Pk,k Lk

+ E IAka11 (P k + (k, 1) -+ -3k+1 (pk + 6k, k+1) pk, 6k]

and hence both f7(Lkpk, 6k) and fi(Lk-pk, 6k) are linear functions of Lk, which im-

plies T7 (PA. -k) and Tj (pA, ek) are either - c or + . In particular,

" If E ak+1(Pk + &- Ck+ 1) pk, ik > pp, Ek) + ek, then both fk(Lk,, pk , 6) and

f ( Lk Pk, k) are linearly increasing in Lk and hence T| (pk, 6k) = Tpa, ek) --

-DO. Moreover., Jk(Lk, p., q.) -oo. Note that lk(pk, Ck) = E[ kpk, ekl which

is the drift in the mid price. The intuition behind this result is that when we

have very large negative drift, we always have incentive to short the asset if we

are risk neutral.

* If E ak+1(pA + J~.+1 pA.,CA, < Mk(pk. (k) - (A, then both f7 (LA, pA- k) and

f1 '(Lk, pk, 6k) are decreasing. Therefore., Tj(pk, 6k) -- T (pk, 6k) = +oo, and we

have Jk.(Lk, Pk, ek,) = -oc. Similarly, this may happen when the drift in price,

sk(Pk, ek). is a large positive number. In this case, we would like to hold as

much asset as we can to gain the expected profit.

" If Pk(PA.. 6k.) - Ck < E I[Ok +I (Pk H(k 6A.±)I A -. .6 < 11k (Pk (k.) H- 6k , we have

T7(pk, k) = -ox and Tj(pk. ek) =-+o since f(Lk, pk, ek) is decreasing while

f (Lk, Pk, Ck) is increasing. In this case, the no-trade region is the entire real

line, i.e., we just receive the orders from our clients and never trade actively

with other market-makers. This corresponds to the scenario that the gain in

the price drift cannot compensate for the transaction cost, and a risk neutral

decision maker will just keep the inventory.



At the same time, the corresponding value function is

1kA(A P Ek) = Ikk(XAk P, ) k kAk p Ak) +- Ak(PA., CA)

where

A- (PA, A.) = --pk(pA, (k) E [ok 1 (pk + k,- (+ Pk- (k

3k(Pk. (k) - E LaA +1(pA + Ik, Ak+1) + PT A -1 (P A - k+' 3 1) PA, (k] -

Obviously. JA(XA, PA. ek) is linear in xAo which satisfies the induction assumption.

As a result, as long as Jk(Jyk , Pk CA) is well defined, there is no need to actively

trade with other market-makers from period k to the end of planning horizon.

In fact. the results in Example 3.4 hold for any WN+ 1 linear in XN 1 1. For any

-N c(XN+1, eN+1) conCave in N+1, Jk(Jk, pk, ek) is well defined, i.e., Jk (Xk, Pk, Ek)

-ooC for given A'k, PA. and EA., if and only if (i) JA1 (LA - AA, pA + o , 1) > -o

for any given Xk.1., Pk+1 and eCk1. (ii) f7 (Lc-pk, Ck) is not decreasing in Lk. and (iii)

f (LA., pkA, c-A) is not increasing in Lk. The conditions (ii) and (iii) are equivalent to

-P(P ,k ) + 6k + lim
L k+x 4-

-p(pk, (k) - k+ lill
LTxL

. £ { Jc1
OLk

0E
a

(Lk + kpk +. (k -- ) Pk, k }
J+1 (Lk + , Apk + (5k, 6k-1) Pkc 6k

for any pA. and EA.. Moreover, the no-trade region has a lower bound. i.e.. T,'(pA. 6A.) E

(-c,+ ) if and only if the conditions (i), (ii), (iii) and

-p(pck)++-k lim
L -o o 
L

E Jk- 1 + (Lk
0 Lk

-Ak-pk -+ &- (k+1)

are satisfied. Similarly, the no-trade region has an upper b)ound, i.e., T (pk, CA) E

- +c .xoo) if and only if the conditions (i), (ii), (iii) and

hlm . {Jc-i (Lk -+1.k.kpA.+k (,ek+1)

> 0

< 0

Pk, Ek < 0

pki 6k > 0-p(pk, 6k)~~~(k +



are satisfied.

Next we present the results for the risk neutral model with the stochastic input

used in Examples 2.1 and 3.1.

Example 3.5. Consider the problem described in Example 2.1 and suppose that the

decision maker is risk-neutral. Note that Pk(pk, ek) = ELoA.pk, (k] 0. According to

Example 3.4, it is straightforward that Tj(pk, Ek) -- k and T(pk, Ek) = + for any

pA and e. if we let 7,N+1 =0. We will focus on the situation that N+ -EN+1 XN+ 1 -

We have T'(pe. cg) = -o and Tj(pk, Ek) = +oo when P -- 2 x 10-4, i.e., when

(i) P= 1.999 and L*= 2 x 10- and (ii) pk. 2.001 and q= 3 x 10-. For these

two cases, there exists a 0.5 probability that + will decrease to 10-4. i.e.. the

transaction cost in the next period may be reduced by 10'. Since the expectation of

the price movement is 0. there is no expected loss associated with holding inventory.

Therefore, the decision maker has no incentive to trade off the inventory in period k,

and hence the no-trade region is (-x,+oc).

The threshold levels when (i) Pk = 1.999 and EC =1-4 and (ii) p 2.001 and

eC = 2 x 10-4 are shown in Tabel 3.6 and Figure 3-6.

Table 3.6: TA(pk, E) and T (pk, eL) for Example 3.5

Pk = 1.999. EL = 0.0001 Pk - 2.001. tk = 0.0002
k Tk T Tk TZ
1 -37.00 35.00 -cc OC

50 -26.00 25.00 -xo
100 -1.00 1.00 -1.00 1.00

The threshold levels are always bounded for Pk = 1.999 and t-. = 10-4. However.,

Tk(2.001.2 x 10-1) and T (2.001, 2 x 10-4) are bounded only when k > 92. When

k > 92. for any k k1, ... N+ 1. the probability for pT < 2 given PA = 2.001 is very

low, which, according to the definition of ek in (2.12). implies that the probability for

the transaction cost to drop to 10-4 is low. Meanwhile, ifpA= 2.001 and E. - 2 x 10-4.

it is possible that e. where k = k+1, N+1, the transaction cost in any future period

k. may increase to 3 x 104. Therefore, when k > 92, p = 2.001 and E = 2 X 10 .

the decision maker has the incentive to actively trade with other market-makers in



Figure 3-6: Tk(p e-) and T 6p.kek) for Example 3.5
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period k. On the other hand, when k < 92, Pk = 2.001 and (k= 2 x 10-4. there may

exist some k E {k +1, .... N+ 1} that pi < 2 and pe =10-4, i.e., the transaction cost

may decrease to 10- 4 in some future period k., and hence the decision maker would

choose to hold the on-hand inventory in the hope to save the transaction cost.

In addition, we would like to point out that the no-trade region decrease as k

increases, which agrees with what we observed in previous examples when TN+1

-- N+1 IXN+1 I.

3.5 Symmetric Threshold Policy

The symmetric threshold policy is also optimal for certain special cases if we consider

the mean-variance tradeoff model in (3.1). Here we establish a result analogous

to Proposition 2.3 for the exponential utility model (2.2). Note that the threshold

policy characterized in Proposition 2.3 is symmetric with respect to zero. For the

mean-variance model, under slightly different conditions, we can generalize to the

case that the threshold levels are symmetric with respect to a known constant x, i.e.,

x - Tpy ( = T'(pk, Ek) - x for any k, Pk and ek.

In the Bellman equation (3.4), we take the expectation of JA.+1(Lk+1,pk+1. eA+1)

conditional on Pk and (k with respect to 6k, Ak and (k+1. Since ek+1 and Ak are

independent. it is sufficient to consider the distribution of A,. conditional oi 6k, PA

and e.. Let FA 161,4)k -k (Ak) denote the cumulative distribution function of the random

variable Ak conditional on Ok, Pk and (k.



For a given constant \, we consider the following assumptions.

(C1) U(x -+--v 1i. eN+1) U c(x - XN+1 I. N+ 1 ) for any 7iN+1 and eN+1, i.e., the function

U(XN+1 , N+1) is Synmmietric in TN+1 with respect to the point y.

(C2) 60l/(pk Ek) - Ik(p fk) - -Auc(p. ek) for any k and k.

(C'3) FIksk.kCk (Ak) ± F- ilIk,( (-Ak) = 1+ dFA-k Pk -(k (s) for any k and Ak, i.e

the conditional distribution of Ak is symmetric with respect to zero.

Proposition 3.3. Given a consta-nt x. jndr- the conditions in (C1), (C2) and (C3]).

a symntrtic th're shold policy is optimal for the problem 'in (3.1). In particular. J(x

'k, k kx) , ik, P k , C k ) and x - k, (dk) = T(pk, (k) - x for any k, Xk, Pk

and CA.

Proof. Consider the period N + 1. Since JN+1(xN+1, N, (N+1) ~ ( N+1. eN+1),

the first condition (C1) shows that

N1 XP1iN+1P-p+1: CN+1) +1( ~- -N+1, pN+1, CN+1)

for any X,1-I, PN+1I and ENT+1.

Let us assume that Jk 1 (N + k+1 + e-k+I1) = 1J(-I -\- k1, pk+1, fk+1) for any

Ve can prove the proposition by induction on the number ofk+ Ipk 1 and Ck1..

period k.

Consider the function fA(Lk,,P, ek) defined in (3.5).

that

fk (Lk, p = -2k)= o'pAx Ekk)Lk +- Ac7kp(Pk (k)L2

+ E { Jk:+ 1 (LA + k, - pk + 6k,

= /TI(pA,. )(LA - x) -6x (LA.,A _ ) k+ E { Jk-1 (Lk +t k, p

The condition (ii) implies

Ek-1-) ]pk:, Ek

k + (5k, Ek1) Pk, CA



Similar to the proof of Proposition 2.3, we have

fk (- - Lk, pk, ek)

= (Ak. A. )L - Axyo (pA CA') + E { JC±1 (x + Lk

= k(A EA)L - \x a (pe ) E { J (x - Lk -

A 2 (PA. 2 2CA.)L~ - A , E(pAA,,) + LA. -

= a (p , )L - Ax~ (pN, e ) E {JA7+1 (x - LA.+

= fk(x - L.pk. Ck)

where the second equality follows from the assumption

JA_+1 ( N - xA +1, pA+1, ]K i), and the third inequality can

(03).

AC, pC +4. on4'+) Pk, 6k

AK,p - 6 ,4 1+1) Pk-k

K, PA +k -4 A+ 1) PA, K

Jk+1(x + 1'k-1-k1 '1) =

be proven by the condition

According to the definition of fj(LP, ,') and f(Lkpk, eK) in (3.5),

f+ LA, p,.) =f(x + L , .. k) + Ek(X + Lk)

= fk(x - LAp. AK) -f(x( - LA)+ 2x

f - Lk PA, Ck) .)

Given Pk and 'n, T, (Pk, C) and T/(P, Ck) are global minimizers of fAJ (L., PC 6C) and

f',(LA, p A,), and it follows immediately that x - Tk.{(PA, ek) = T(pa, CA.) -

To conplete the induction proof., we still need to show that JA.(x + xA. -pA', CA)

JA( - xkLA , 6,k). Without loss of generality, we assume that k > 0. Note that the

proof of Lemma 3.1 shows that fA.(Lk, Pk, CA.) is convex in LA. and we have shown that

fk( x + LkpA.. 'Ek) = fA(x - LAP nA). Therefore, for any given pA. and c. the global

minimizer of fk (Lk, Pk, C) is , i.e., T(Pk, 6A) = x and hence TT(pC, 6C) > k. As a

result, we can consider the cases A. E [0, T(pk, EA) - X] and xA > T(pA, CA).

For any xA. E [0, (PA, CA) - \], the function JA(Xk, PA, Ck) defined (3.7) shows that

kx + xk Pk A kAx + (k k) +1k xk 1Ak Pk, k)

-fA(X - x, Pk, (k ) = fC(X - xk , Ck)

-(xA -x+ JA. (- - XA.PA. ,(A) JA(x -X pA.PA. A.



where the first and last equalities follow from (3.7). the second and the forth equalities

are innediate results of (3.5), and the third equality is obtained by the proven fact

j'k(N t Lk-Pk., (k) = fAk( - LkPk, (k).

Similarly, for Ihk > T (p. 6k) -- 

Jk( +- xkPkV ek) = ekix + xk) + fPkT -p, k ),P p k )
(3.8)

= "Nx -- x - TT(pk ))+ f+(TTpPk k)-I Pk p)k.

According to the result f -( + Lkp pe) - fp(x - L p, .) and ~ (pk ek) ~

T2(pA, eA) - we can show that

f '(Ti(pk,6p). ph, 6k) = f(x + (T (pk, 6p) - k), pk. CA) = fA(X - ( 7 (pT , Ek) - x), P 6k)

= fk(x - (x - T1(p, , p, k () = fk('T(pk. 1 p k)

and hence by (3.8),

JA(x + x.x-, ,Ck) = (k(x +XA - TI(p 0)+p)) ± (Tk(ph,e),p. ()

= (k(-x k + +7 (Pk, (k ) + fA(TA (pk., 6k)), P A, )

=-(x -Xt,) - f(Tk(pA.. ), p Pk 6) = JA(x - x, p Ak C-),

where the second equality is obtained from the symmetry of TA(pk, c) and T (p, 6k).

the third equality is due to the definition of j" (Lk, pk , CA.) in (3.5), and the last equality

follows from (3.7). D

We use the same stochastic input as in Example 2.4 presented in Chapter 2 to

illustrate the symmetric threshold policy in Proposition 3.3.

Example 3.6. Let us consider the stochastic input defined in Example 2.4. According

to Corollary 3.1 and Proposition 3.3, the threshold levels TI and Ti are independent

of both pA. and ek. and we have T = -Ti.

Table 3.7 and Figure 3-7 display the threshold levels Tj for \ = 80. 90. 100. 110.

120 when we consider N>+1 -CN+1IxNv+ or 7N+1 = 0. Let us coimpare the results

here with those for Example 2.4 shown in Table 2.6 and Figure 2-6. We observe that



T changes with respect to the period k in a manner similar to that of Example 2.4.

Another observation analogous to Example 2.4 is that T' deceases if the decision

maker tends to be more risk-averse, i.e., the value of the risk aversion parameter A

increases. Also note that the values of T2 in Table 3.7 are lower than those in Table

2.6, which means that the mean variance model with A = 80, 90, 100,110, 120 is more

conservative than the exponential model with p = 80, 90, 100. 110, 120.

Table 3.7: T' for Example 3.6

_ 7rN+1 = -EN+1XN+1I 7N+1 = 0

A 80 90 100 110 120 80 90 100 110 120

k T T T T T T3.1 T36 T34 T34 T3 .

1 3.64 3.49 3.34 3.22 3.11 3.64 3.49 3.34 3.22 3.12

50 3.67 3.49 3.33 3.20 3.09 3.68 3.51 3.37 3.24 3.13
100 1.00 1.00 1.00 1.00 1.00 93.75 83.33 75.00 68.18 62.50

Figure 3-7: T for Example 3.6
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3.6 Monotone Properties of the Threshold Levels

The numerical examples presented in the previous sections provide us lots of insights

about the monotonicity of the threshold levels with respect to different model param-

eters. In this section, we identify the sufficient conditions under which the monotone

properties of the threshold levels could be established analytically. In particular, we

are going to investigate monotonicity with respect to the risk aversion parameter A,

the bid/ask spread determined by (k. as well as the market mid price Pk.

3.6.1 Monotonicity with Respect to the Risk Aversion Pa-

rameter

As shown in Example 3.6, more risk averse market-makers, i.e., market-markers with

larger A. should be iore willing to sacrifice the transaction cost in order to reduce the

inventory risk, and hence they would like to choose a smaller no-trade region. Here

we identify certain sufficient conditions for this property to hold mathematically.

In particular, consider two risk aversion parameters A, and A, such that 0 <

A, < A.. Let Jk.i(Xk .pk, ek) denote the function Jk(x,pk Pk) defined in (3.4) with the

parameter Ai, = 1. 2.

Given two constant x1 and x2 we consider the following assumptions which are

analogous to the assumptions (Cl) and (C2).

(C1 ) JN+1 ,i(N+ 1 , pv+1 ., (N1) -vi(xN+1, _N+1) where Ui(Al i+-N'.+1., 6N+1) i(N.i

N - +1) for any i = 1.2. N.+1 and EN+1, i.e., the function i(;N+1 , N+1 is

symmetric in xN+1 with respect to the point xi. Moreover, we assume that

N1 (i + x. cN+1) > Ot(2 N &+1) (3.9)

for any x > 0.

(C2') Aglu.(pN, CA) - plk(pk) =0 -- 2Aj'i ('pk, C) for any k and e.

We also replace the assumption (C3) by a stronger assumption.



(C3 ) For any k, suppose that Ak conditional on -, pk and Ck is a continous ran-

dom1 variable with the probability density function f fk .. (Ak). Moreover,

sno, xf ( Ar.) = I Is . , (-Ak) and f, (Ar) > fs (AJ for any

k and 0 < AA: < A. i.e., the conditional density distribution fs a p (At) is

unfimodular and svmimletric with respect to zero. e.g.. AA, conditional on (V PA

and 6 k is subject to a uniform or normal distribution with zero expectation.

Proposition 3.4. For any 0 < A < A,,. let TA ' (Pk, 6k) and T,(ph k) denoate the

threshold levels in Theorem 3.1 corresponding to the risk (v.,ersion parameter Ai

1.2. Under the assu'mptions (Cl'), (C2') and (C3'), Ti, (pk, 6k)

Tk.(p2 (k) - T. (pk, ek) for any k, Pk and ek

Proof Consider the induction assumption

L Nhx 1 - p , k k+1.2 2 +) < 2 
0'k+1] Oxk+1

pk+ 1 , c--i _ k-) for any J, > 0.

To initiate an induction proof. we consider the period N -- 1 and show that

the function N+(xN+ 1 , N+) satisfies the induction RaSSumption. The definition

of JN+ 1,i(N+ p- 6N+) in condition (CI)) implies that

OI+1.i( -p~Il y iXd~)
(Xi (-) i, pN+1iatN yiel

and (3.9) in the condition (C1') immediatelv vields

(xi + X, pN+1, eN+1 x2 - pN+,v N+1) for any x
OIx+ c)N+1

> 0.

Suppose that the induction assumption holds for period k + 1, we are going to

show that T21(pk - (k6k) - (pk6k) for period k.

Let fj(Lk, Pk, e() denote the function f (Lk, P, -K) in (3.5) with the risk aversion

(3.10)

T (Pk-,Ck)>



parameter Ai, i = 1, 2, and hence

+ X,p., (Ak) = E x + x + AA.ph. +k Pk+1)k
OXk+1

Pk! }k
(3.11)

+ 2A1 o(pk., )X - 6k.

In order to simplify the notation, let us define

Uk (X, I-+1 k+1 1 2 -+ x, Pk+I, Ck+I)
Ok+1

~~~ I + X , Pk+1: k+1)-
0,k+1

According to Proposition 3.3 and the assumptions (C1), (CT) and (C3*), it is staight-

forward that Jk+1i (x.k+1-i Pk+1, (k+1) is symmetric in Xk+i with resepet to the point .i

for i 1. 2, and hence

~-1  x, Pk+ 1 )k+1- xW - Pk+1 -, ek+l)
k+1 0k+1

if J. ici(xk +1 A,1 ) is differentiable with respect to xk+1 at the point xA.l = -,+

x, for i = 1, 2. Given Pk+i and Ekil Jk+i (Xk+-, Pk+1, Ek--1) is convex in Xk+1. which

implies the countability of the set that J+1,(x.k+1. Pk+1, tk+l) is not differentiable

in xk+1 (c.f. Roberts and Varberg [43]). Therefore. We have uk(Xpk+1-, ek+1)

7k( x, Pk+l, (kil) for any x and Pk+l at any x except for a countable set.

Let us consider the following function

ik4(x, Ph, 6k Ok, (k1) = EFu(x +- AA..,X p+ + 0k, CA1)|k, ek+1t p ,Pk,-k]

Note that Ak contional on pk is independent of 6A+1 conditional on pA+1= p - (+A.

The condition (C3) implies that

UIk(X. Ak, ] k -k, (-k+1 / Uk(X + Ak,Pk + k ,k+l 1) f skPkk (Ak)dAk

17) d(lA k..
-ikUk(A k.P - 6k-k- -fA0.K7pk Eh(A k

Ok(dxk



where the second equality is obtained by replacing x + A1 by A1 . Obviously, we have

k k(x p. (k,0(,ek+1) = Ilk .(Ak Pk + (5k, ek-I)fAk 14k kAs (A k - x)dik

+- u/ pk( ). + 5,6k1i)f 5  (A. - x .
Jd>2

If we replace A by -A. in the first integral and replace A 1)v AA in the second

integral, it follows that

U1(-sk Pk + 6k, CkL-1-1)f k C (-A 1. - XrdA k

Uk (Ak . Pk + k Ek-1 )fsbk .11- (Ak X) Ak-

Since u?(xP-, p, ., o1.) - -u-X Pk, ok, 6) at any x except for a countable set, we

obtain

.0 f - x)- - fk+.pk A k(-Ar - x)

uk (APk k-- (k+1 6k+1)(Ak-

According to the condition (C3*) the conditional distrilbution of Ak is syminetric,

which inplies fAk 14-Tk t (AL -- ) fAa (nA - xd ad f. (-AL - x)

f (Ak. + x). Note that Ak - x <A ± x| for any x > 0 and A. 0. and

lience the unirnodularity of fa (A) stated in the assuniption (C:<) shows that

fAkisk6p. k- (Ak - xc) - fak.is k-k A. - ) > 0. MVoreover, the induction assumption

in (3.110) implies that UL.(Ak, Pk - (V. e+1) > 0 for any A. > 0. Therefore, we obtain

Uk (J, Pk, -ek, 5k, ek+ 1) > 0 for any x > 0.

The first derivative of .fx. ]A. 6pe) in (3.11) suggests that

V f
OLL.

Vf71

OL1.

2(k - Aj)o1(pL, ekx7 + £ { uI k(x, P1, ek , i

< zn0

Ik (X , Pk,- 6k, , Ck-1) =

'11,kX-Pk, - k -(k, 6k --1 ) -

erw1)
pk, (k .



Note that A, < A, and o(pk, ek) - Var (6pk., Ek) > 0. It follows immediately that

(x2+ X-, PA, Ck) (x + x,pk, (k) > 0 for any x > 0.
0--LA. OLIA ( 3.12)

For contradiction, let us suppose that T i(pA, (k) - V1 < T(pk (k) - x2. Then

there exists some x such that U < T (pk, ed) - x1 < x < T,22 (pk, E) - 2. For

1, 2, Proposition 3.3 shows that the threshold level T (p , e ) > Ni corresponds

to the global minimizer of the convex function fl(x., pd, ed) for any given Pk and ed.

Therefore, x1+x > T I(p, e,) implies x , pA, q.) > 0, and

implies 2 (2 + xpA, (k) < 0, which contradicts (3.12). As a result. we proved

that T 1 (pd, e) - > Ti2 (p., (A) - x2, which yields T(P(pk, eA) - T k(Pk, e.) >

T%2(pk, 6k) - TY2(p., ek) by Proposition 3.3.

Next we complete the proof by showing that the induction assumption in (3.10)

also holds for period k. According to (3.7). we have

0 ,A (x , pP k ) =

if Xk K T7(pk.,k),

= (x k A) P - -

if T (p A, ).

if xj. > TV(PA.. 61,).

If 0 K x KT<(pk ) A2 < -T. ) - N1 we have

(x1+x.Pde -. (x +x PA., (E)
OX k~

= (x. v e)- (+ X2 Pk k) < 0.OLk Ak

where the inequality is yielded by (3.12).

Suppose that T 9 (pA. i-) - 2 < x T,1(pa, ) - x1 Since Jd(xj, pa e) is convex

in X.. L (x, p-P, k) is non-decreasing in XA.. According to (3.13). we know

Oi(x1 +x, Pkd.EA) Czk, e = 2 + xpEk ()OxK V.x

(:3.13)
(Jxk , Pk,(k)



where the equality follows from x + k2 > T i(pi., EA.) and (3.13).

If x > TA1(pA.. ) - >i 2 T,.(pk, () - V2, (3.13) shows that

k(x I + X, P -, k )= (x2 + ,pk, ek ) = ek.

Summerizing the three cases, we have (x1 x pa, . C) , (x2 + pa, CA)

for any x > 0, which completes the induction proof. D

Suppose that E[kjpA, q!] = E[AA.PA, (A] = 0 and the distribution of (5 conditional

on Pk and (k is independent of the conditional distribution of S and AA, which.

together with the assumption (C3'), are the sufficient conditions for pk(pk, 6A) 0

and vA(pA.., CA.) = 0 for any k and CA.. In this case. the increase in the risk aversion

parameter A is equivalent to increasing the conditional variance of (5k, i.e.. o (pA e.) =

V7ar(A jpA. CA). while keeping the value of the risk aversion parameter. Following the

proof of Proposition 3.4. we can establish the following mnonotonicity property with

respect to the conditional variance of os.

Corollary 3.2. Consider oAk., and 4V.2 such that Var((A.1| PkC) . Var(oA.2|pA,. ),

E5ktijPA. | k] = 0, and the distrib ution of oi conditional on Pk and ek is indeC pen dent

of the conditional distribution of SA' and Ak, for any k and 1 = 1. 2. Let TI(pA.e k)

and T(p., e) denote the threshold levls in Theorem .3.1 correspondling to the price

movements ok.i for an, k and i= 1. 2. Under the assumptions (C1). (C2) and (C3'),

T71 (pA. ,6A.) = -T 1 (PA. CA) _ TA (p. Ce=) =-Ti 9 (pA. CA) for (ny k, pA. and EA..

The more volatile the underlying asset price, the more risky to hold the inventory.

Therefore., with the same risk aversion parameter -\, the decision maker is more likely

to actively trade with other market-maker to control the inventory risk, i.e., the no-

trade region shrinks as the variance of the price movement o5 increases, which agrees

with Corollarv 3.2.



3.6.2 Monotonicity with Respect to the Spread

Examples 3.1 and 3.2 show that for any given period k and mid price Pk, the threshold

level TA(pk, -k) is lower while TT(pA -,(k) is higher for greater q.. The intuition behind

this property is clear. If the spread is high, the cost of adjusting inventory is high

and hence the market-maker will try to avoid trading by widening no-trade region.

Formally, we can prove the following ionotonicity property with respect to the spread

defined by 6k.

Proposition 3.5. If e. is independent of (n5, Skb and Ak in period k, then the thresh-

old level T7 (pl... e) 'in Th-oremn 3.1 is 'no'n-increasing i e if v>(pc.CA) > 0 'wh'ie

T/(p, 6k) i non-decreasing in Cc if ub(p;, ec) K 0, where v/(pc, e is defned in (3.3).

Proof. If Ek is independent of O3 , Sk and Ak, then yON(p, e), o(pk, Ek), u(pk ek,) and

V (p., eA) are also independent of 61.. To simplify the notation. we denote them using

p 0 (pk) k(pk), V (Pc) and v pk) respectively., and so ukP(p., 6) = U 1(Pk) + 6
ku (Pk).

When 6
k is independent of 6k and Ak, we also have

E { Jk+1 (LA. + AlpA. + 6A-, 1k,-1) p,eA = £ { JEA1 (LA. + A ,p- + k+1) P3k }

Therefore, the function f_(L -p, Ak) can be reduced to

fk(Lc, pk, Cc) -= (Pkl(APk) + (l/(p)) - pk(P) LA

A-L +E Jk+1 Lk +- Ak, Pk-oek+1) +6k

and hence

(Lk, Pck ) A(p ) + eAubpc)) - pc(Pc) +- 2A(kLk

+ E J,-1 (,L k Pk+-6ko,(:k+1.) 13k-ULL
The~a~ {eiitu nj-- (Lf tLI Pkp 6c A.)1 aIdf c}k.

The definition of fA(L., pk, CA) and f(Lc, pk, CA) in (3.5) inunediately shows that

(Lk p Pkk) ' (Lk.Pk')-|-ek and .' 1 (Lk.Pyck()= ' f.(Lk.,Pk)- Ck,0L. 0 LA. 0LA. OL



and it follows that

0 k (LA. Pk c(k) = AV (p) 1 and k(Lk.pk~eg)=Avkpk)--1.

-reasen din f2

Since A 2 , ( e) is mcreasmg in tk if u'pe) > 0, and Lj> (Lk~pA, 6k) is

decreasing in (--, if p () 0. -Note that Tk (Pk6, 6) and T (pr, -. ) correspond to global

minimizers of fl(Lk-pk, e6) and fl(Lk pk, e4). Following the argument in the proof

of Proposition 3.4. we can prove that T7 (pA., eA) is non-increasing in h* if v'(pA ) > 0.

and T (p., 6) is non-decreasing in 61. if vj (pA) < 0. E

Proposition 3.5 deals with the case that we increase the spread in period k while

keeping the spreads in the rest periods. Next we would like to investigate the case

when we shift the spreads upwards for all periods. For instance, in Example 3.3,

we consider both ;A =10- 4 and ;h - 2 x 1 which correspond to a parallel

shift in the spread. The computational results indicate that the lower limits T (P)

the upper limits Tr(p), repectively) have greater (smaller, respectively) values when

i= 4 than when PA= 2 x 10-4, which is analogous to the nonotonicity property

in Proposition 3.5.

Formally, let us consider the following assumptions.

(C4) The end of the planning horizon profit or loss function c(zN+ 1 , N+1) satisfies

- 6N+ < (N, <p1T+1 ) -- c (IN+1 PNI 1, e ek+1) < eA-
N+1 $xN+1

for any XN+ 1 . PN+1, e. and ek+1 > 0'

(C5) v'j(p4, k) =2 E(6 S|pIe 6k] - E[(5kpk ek]E(Sk.6k]) 0 for any k, pk. and

Proposition 3.6. For an'fy period k, cons(ider a rondom vai'able = + e6
A FAwhere

eA isa given1 constant anld eA > ei > 0. Let iT(PA. -) and T(pk.64) denote the

threshold levels in Theorem 2 where the spread in period k is defiiied by the rodom



variable k for any k. L'nder the conditions (C4) and ((5), TA(pk 6) > T(j , Cek)

and T (pj, ) < TT(pj. + e 6k) for any k, PA. and .

Proof Similar to Proposition 3.4, let J.( p '.) denote the function Jk(xk p-, 6k)

in (3.4) with the spread defined by the random variable 4k for period k. For the

induction proof on the number of period k, we consider the following assumption

- k+1 k- +L+. 1 + iJA-k-1, 6 + ek+1) < ek+1
tk+1 Ok+1

(:3.14)

for any xk+1, pk-1 and c.

Note that the definition of JN1(N+,+1, y N+1 ) and the assumption (C4) im-

plies

-N+1 _ s (N+1,- pN1.-I. -) - _ N+1- pN+1,_e

i.e., the induction assumption (3.14) holds for period N + 1.

Let us consider period k. Similarly, fk(Lk, Pk, A), f7(Lk, pk, k) and k (Lk, pk, A:)

are used to denote the functions fk(Lk. , p.k). fk(Lk, ]pk, (k) and fO(Lk.Pk, k) in (3.5)

with the spread defined by, the random variable Ek.

Since Tk =k ek, we have

I(k! () - E[ k | Pk, k 61= ]= E(ok | Pk =k + +k]

T (p., 6) =Var(i pjA 6A. = E) =Var( pA7. I =A . k 6 6k)

and

1k(pk-,e) = (p.,6) = 2 E' Ak |I Pk. = ] - E o C pk C = ]E kAK 6 k =])

=2(Ed k |I Pk = 4- ek] - E[k | Pk, Ek = +- eh]E[OknAk Pkhi. = e+ .k

eN +1I) < eN +1I ,



It follows immediately that

(Lk,
OLk

Pk, e + e ) = Au(pA, e) -- pA(pA, ) +V 2P'a (pPk. C)LA

£{k+1

=\luk(Pk, C) - /iA(p(, ) + 2 6Aop )Lk

(Lk AAPk k ,Ck-1) Pk.Ek

where the second equality is also obtained by k -=E Ck. Note that

0 k LA-k PA k) - A p, -) - 1Ik(Pk e) -+- A u(pk., E)Lk
OLk

+ -E , A. +6,p k .) p] A k = ( .

Therefore.

(Lk .P( ek - LAPk, + -ek)

E £1 -k J++1
= E U a+sap 96k1 a e x+1ke.)

According to the induction assumption (3.14)., it follows imnediately that

k -1 < (Lk,p P .
-OLk

OLC (LAi PA, f -- Ek) Ck+1 for any Lk Pk and .
OLk

(3.15)

As a result, the definition of f/ (L.k, p, eA) and f (Lk. PA, ek) in (3.5) and the assump-

tion that e--k > ek+1 implies that

(I Lk. + k - ) =

Pk, C) - k, (LPA. &
LA

O fk (L C)

dLk

< Ck+ - ek '-- 0

CA) OfA (A.A* )
0LA

ek - ek+1 0-

Of L ,. t -~- e-k) - e4'

- -(LA..PA - - F-) ~CA.

OLk

PA, (k = e}

Lk, -P, C) - L

OLk OLk

0,f I (LA.
L,



Following the arguement in the proof of Proposition 3.4., we can show that T7 (pk, 6) >

T pa, 0- eJ) and T(pA-, () < 77 (pA-, 6 + eA-) for any k, p- and 6.

Now let us consider

OL-( 'k~ -~k A)O'JA
(k p ( . 6k- -+ Ck).

dk

For any given pk and c. we have T7(P Cek) K T'(p, e) K T7(pk, &) 7(PA - ek),

and hence there exists five cases.

* If y K i7 (pA, e--- 6 -), we obtain from (3.13) that (a, A.pA.) -6 and

U.k/.
xk pk, ek + e k) = -e - ek, i.e..

0L A k OP kA C k

* Suppose that T (PA. -+ es) < i- < TV(p, E).

The proof of Theorem 3.1 shows that JA(XA, PA, 6 + ek) is convex in xA. and so

its first left-hand derivative with repect to Xk should be non-decreasing in oA,

which implies (x, Pk, (+ ek) C -e - ek by (3.13).

(A-p e) - -6. As a result, we obtain

OJ

o x , P

(3.13) also shows that

A J.
, V) - (xA., a, +I ek ) K-6 - ( -6 - eA-)=e.

Note that T7(pk, 6) = arg minA f (LkpA, 6k). and hence ok K T(pk, 6) implies

0 fi (Xk,,Pk.6) =o 0f, (k-,Pk. -)±
Ok OAk

' )k Jk< 0, i.e. k,pk: < ~- (<k pke)-
OLAk 0k

Nloreover, we have (xk, p7 , ] + eA) = (Lk. P, , C + ek) by (3.13). It follows
rtk tLk

directly that

Jk
(x.k~pk,

Oxxk
X) - (x k+pk e 6 +e >k) > (xirkpk. 6) - ( Pk, 6 +e k

Oxk OLk CLk

> -ek+1 > -e)k,



where the second inequality follows from (3.15) and the third equality is yielded

by Ck > Ck+1-

If T7(p,. ) < Xk < I(p, ), (3.13) shows that

o'h. (Xk, 
.-- -xA ,p.e) - (xA.Pk -( + Ce) (xk .pk,. e) -

dxA d Lk

The result in (3.15) as well as the assumption that e1 > elp1 imply that

OJA
-ek < -ek 1 < (xk~. k ) - -- (X k,-Pk - C ) < Ck+.1 < Ck.

0xA

If T (p., c) < xA. <1 (p, c. e). we can show

-e ----- (x , & - , O ,). p -,e+ eA.) en

UxA. OA

using an arguement similar to that of the second case when 6k(pA, F + ek) <

0 If XA. > T/(p. 2 C+ e), it follows immediately from (3.13) that

OJA 1. I - (E 4-A- CA) -i.
(xA PA. e) - (xA, pA, F + CA)e) = -ek.

As a result, we complete the proof by showing that the induction assumption (3.14)

holds for period k. L

3.6.3 Monotonicity with Respect to the Mid Price

Let us consider the following assumption.

(C6) For any period k, E = 0k(PA) + Pk where Ok(Pk) is a given function of pA and

1 k is a random variable independent of pk and pT for any k # k. In addition,

ok, Sk and A, are independent of pk for any k.

0 k ( X A ,. . P A .Ofk, E I-k.



.Tnder certain conditions, the monotonicity of the threshold levels with respect to the

spread 6k can be transformed into the mononiticity with respect to the mid price pk.

For example. Exanple 3.2 satisfies the condition (CS). and EA is non-decreasing

in pk by the definition of Q#k(pk) in (2.12). Figures 3-4 and 3-5 show that -T 2pi.)

and T (pk) are higher when pk = 2.001 compared with the case when ph = 1.999,

because the higher transaction cost, i.e.. ek caused by increase Pk prevent us from

trading frequently with other market-maker to control the inventory. This property

can be generalized to any 0 < pk.1 pk,2 under sone additional conditions.

Proposition 3.7. Suppose that (i) $ 1(p) is non-decreasirng in pp for any k, (ii)

0k+I(Pk,2 + ok) - (k+(pk.1 + 6k) is convex in 5k for any 0 < Pk,1 5 Pk,2 and k. and

(iii) 6k1pk.2) - Gk(Pk.1) Ms non-increasi'fng in for any 0 < pk,1 < Pk.2- Under the

conditlions (C4), (C5) and (C6). if E[41pg] = 0 for any ;p, then the threshold level

T (pp, (k) in Thteoremfli 3.1 is non-decreasing in P for any k and e.

Proof. The proof for Proposition 3.7 is very similar to that of Proposition 3.6. We

adopt an induction proof under the following induction assumption

I pk+1,1 (pk+1,1 k ) - ,A' k1+1.2, )k+1(pk+1,2) + 1,k

> k+1 ( pk+1,1i) -
0 k+1i ( pk+1,2)

(3.16)

for any 0 Pk+1, - pk+l,2 X k+1 and pk.

According to the condition (C4). the same argument in the proof of Proposition

3.6 shows that the induction assumption (3.16) is valid for period N -- 1., i.e., when

k N. Next, we are going to show that the monotonicity properties stated in

Proposition 3.7 holds when the period k- + 1 satisfies the assumption (3.16). Let us

consider any pp,1 and Pk,2 such that 0 < pk,1 < p<.2.

The condition (C6) states that (k = Q(pk)+1k, and 6k, Sk and Ak are independent

of pp for any k. According to the definitions of pk(ek), o((k) and lk(ek) as well as



the condition (C5). it is straightforward to show that

p 6p~k ) =E[(ok | A- pk6-(P-)+ -4 |= E ok L

o(pL, (k) -Va'r(o(k Pk, b&(Pk) + tk*) = 1arOk ;,"k)

uk(Pk eA*) =2 ( L\k I p, 6k(p) -P] - E (, pQk A,p(pA) k]

x ELoAk | Pk, ?L.(PL.) + ;k)

= 2 (E Ak]kl - E~IFkkLpEroCAAKkr1)

for aniy Pk and EA - Qk(Pk) + pk. Moreover, we have

Akp -P -- (5kk. 1 P, E ) L k Ak Pk 5k,

for any Lk, Pk and e = (k(Pk) + 'k.

Therefore. the definition of fA.(LA, pk* k) in (3.5) immediately shows that

JfkL
A k, k2 kp,)+y

ofk

( Dq,-1(LA. +4 Ak-pk,1+(5A,k+ I

OJk+1
EA.+1) - ( LA.

OSAk+1
+ A,, p,2 + b.V EA..l)

> £ {#E-1(PA,1 + 5) - Qk+1-- (PA,2 + o) P 01}

6k+ 1 (Pk1 + E(,kj-pk1) - Ok+1(Pk,-2 -E[,. ( -k]

=k d-1(pa,1)- 0k+1(PA,2) > d(Pk.1) - #k(PA,2),
(3.17)

where the first inequality follows from the induction assullption (3.16), the second

inequality is yielded by the Jensen's inequality and the assumption (ii) that k+-1(Pk,2+

) - 0 k+1 (P,1 + () is convex in o, for any 0 < pA,1 < pA.,2, the last equality is obtained

from the assumption that E(k IYk] = 0 for any ,p,. and the last inequality is due to the

assumption (iii) that (bk(Pk,2) - ek(ph,1) is non-increasing in k for any 0 < pL,1 < Pk,2.

E0l) k~ +I(Lk
07k+1

Ck 1) k

A}



Similar to the proof of Proposition 3.6., we obtain

p~k( pk.1-) + p- P ) -Df2 (Lk P.1, I
O LI,

- f L P 1, $kp,1) +±k)
OLk

'LA (LA,. pk,2 6k p.) + pk)
0- LA,

- (Lk, p4.2, &(pN,2) + '-k) + $k (Pk,2) - Ok (Pk.1)
fLk

> 0.

and hence T' (pk, 6k is non-decreasing in pk for period k.

Now let us complete the proof by showing that the induction assumption (3.16)

holds for period k, i.e.,

xk h, Pk. I(k(pk,+ - (Xk, pk.2 ,k (Pk.2) + )k) k(pk.i) - (k,2)

where 0 < Pk. I Pk,2. We can consider the two cases: TA (Pk, 1, ek) < (pX,2, ek) and

TA (p.1, - k) > T (Ph,2, ek). The proof is very similar to that in the proof of Proposition

3.6 and hence it is omitted here. E

Note that a large family of (A(pA.) satisfies the conditions stated in Proposition 3.7.

Suppose that #k+1(Pk+1) is differentiable and ('+1(Pk+1) is convex. Given ph,1 pL.2

let +h ( ) = 11(pk.2 +- (i - Ok (pi + 6J. For any 6, < o.,2, we have

9 (Jk,1) - 9k (6k,2) = k+1 (Pk,2 + 4,1) - Qk(Pk,1 + Ok,1 )

- +I-1(Ph .2 + oi,2) + $k ( pc1 + 6k,2) K (

since 6'(pk,1 Ok,2) - Ik+1(ph1 - )k.1) K / k1 (Pk,2 + k,2) - + 1(p1,2 +h. I,) by the

convexity of + 1 The increasing fist derivatie shows that k+1(Pk.2 + k) -

ek pk. 0 ) is convex in o, for any pA, p1,2. As a result., any linear, quadratic,

exponential and logarithmic function satisfies the condition (ii) in Propo )sition 3.7. In

addition, the condition (i) and (iii) are valid if Ok(pk) = ak#(ph) + /3 where 6(pj) is

a given increasing function and ( 1a - - N+1 > 0.



Furthermore, we call also achieve

(Je)k--1(p.1l + E[6. K|) - $k+1(pk,2 + EL[ko k1) &> c-+1(pP. 1) - k+l(pk,2)

in (3.17) if EFhjopk] > 0 and 4hk(pk) is convex in pk. Therefore, the condition

E[S16k ] - 0 in Proposition 3.7 can be replaced by the nonlegativity of Eonj-k]

and the convexity of k(pK) ill p".

Symnletrically., we obtain the sufficient )nditionls under which the threshold level

Tj (pk, ek) is decreasing with respect to price.

Corollary 3.3. Suppose that (i) pk(p)A) is a non-decreasing function of pl, for any k,

(i) k1(pk,2 + (5k) - 'OS1(pk,1 +o) is concave in 6ok for any 0 < p,1 < ph s and k.

and (iii) (k(pk.2) - Qk(pk.1) is non-increasing in k for any 0 < p.,1 < P1,2. Under the

conditions (C41), (C5) and (C6), if E [Y k] 0 for any ,p, then the threshold level

T7 (pk., ek) in Theorem 3.1 is non-increasing in pk for any k and ek.

If we combine the result in Proposition 3.3 with those in Proposition 3.7 and

Corollary 3.3. it immediately vields the following corollary.

Corollary 3.4. Consider the conditions in (C1-6). Sappose that (i) sk(Pk) is non-

decreasing in pk for any k, (ii) Gh+1(pk,2 +ok) - 4-1(pk, + ok) is either convex in oA

for ainy k or concvye in (5k for any k, and (iii) Q(pk2) -- k (pk,1) is non-increasing

in k for any 0 < P, < Ph.2. If E[4npg]= 0 for any 'k, then the threshold level

T7(p, ek ) in Theorem 3.1 is non-increasing in pi for any k and e, while T (p/, e )

is non-decreasing in pk for any k and e.

On the other hand, the monotonicity properties also holds when dlAl(pA) is non-

increasing in pk. In particular,

Corollary 3.5. Consider the conditions in (C4), (C5) and (C6), and stuppose that

(i) Qh(pk) is non-increasing in Pk for any . Qk(pg 2) -#(pP,1) is non-decreasing

in k for any 0 < pA.l < pI,2, and (iii) E[6j.pk| = 0 for any k and -h.

W1ith the additional condition (iv) Qk+1(p.2 a- o) - k.±1(pk.1 - 6) is concave in



6k for an7.y 0 < Pk.1 < Pk., and k, then the threshold level Ty(p.ek) in Therem 3.1 is

'non-m'n'reasing vn pA. for any k and( (A.

With the additional conditlion (i) pk+I(Pk,2 + 6k) - (b- 1 (Pk,1 + ok) is convex in (k

for any 0 < PkA : p . and k, then the threshold level Tj7(pr., ek) in Theorem 3.1 is

non-tdecreasing in pl. for any k and I.

With the additional conditions (C1 ), (C,) (C3) and either (iv) Or (v), then the

threshold level T2 (pR, ) in Theorem 3.1 is non-decreasin in pA. for any k and e,

while T (p, ek) is non-inreasi17 in p for any k Ind (.

Now consider the case that the spread ek is independent of pk for any k, i.e.,

Ok(Pk) = 0 for any k and Pk. Note Ok(Pk) = 0 for any k and Pk satisfies all the

conditions regariding to d,(pt) in Proposition 3.7 as well as Corollaries 3.3 and 3.5.

Therefore, the threshold levels must be both non-decreasing and non-increasing in pk,.

i.e., they are independent of Pk, which agrees with the result in Corollary 3.1.

3.7 Extentions

We analyze the optimal inventory control policy in single-asset market-making for

a mean-variance analysis model, which identifies the best trade-off between the in-

ventory risk associated with the price uncertainty and the potential loss of spread

corresponding to a change in market position because of unwanted inventory level.

The optimality of a threshold policy is established, where the threshold levels can be

computed using an algorithm linear in the number of periods. The symmetry and

monotonicity of the threshold levels are also investigated.

Although our analysis is based on the assumption that the stochastic inputs are

independent across different periods, the optimality of a threshold policy can be

extended to the case when the random variables are auto-correlated for both the

mean-variance tradeoff discussed in this chapter and the exponential utility model

analyzed in Chapter 2. Suppose that the price movements 6k, the orders from the

clients sk and dk as well as the spread q, are correlated across k. Let us define the

vector hk representing all realized information before we make our decision at period



k i.e.,

hk {pi. P , 61, e1. .- 6k, di..., d k1, Si, ...JS _1}

Following the proofs in Sections 2.2 and 3.1, it is straightforward to establish that a

history-dependent threshold policy is optimal, which means that the threshold levels

T (hk) and TF(hk) are functions of the history vector h.

In particular, suppose that there is a stochastic process IA, k = 1..., measuring

the market state., e.g., we may consider four states of market: (i) low volume low

volatility, (ii) low volume high volatility, (iii) high volume low volatility and (iv) high

volume high volatility. The process Ik is auto-correlated and the autocorrelation of

the stochastic inputs is solely determined by IA., i.e., k, Sk, d4 and (k conditional

on IA are independent in k. In this case, the threshold levels in each period k are

functions of Pk, -k and Ik, which can be denoted by T p (k, Ak) and T (pA e, I )

respectively.

We also mentioned in the end of Section 2.1 that we can allow the decision maker

to quote bid and ask prices different from the market leader, i.e.., the decision maker

trades actively with other market-makers based on the bid and ask prices p. = pA - EA

and p - pk + e, while the bid and ask prices the decision maker qJuotes to the

clients are # = p - and f) =P + j. wherec, s: and " are positive random

variables. Note that this modification preserves the convexity of the objective function

in the Bellman equation and hence the optimality of the threshold policy still holds

for both an exponential utility function and a mean-variance analysis model. The

threshold levels are T1k(pk, Ck) and T (pk, e) if the prices quoted to the clients p4 and

f) are observed after the decision maker actively trades with other niarket-makers.

Otherwise. -b and J" are observed before the active trading decision is made. and the

threshold levels are functions of Pk, ek, ? and F-.
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Chapter 4

Multiple-Asset Market-Making

with Mean-Variance Tradeoff

Chapter 3 considers the case that the market-maker only manages a single asset. In

practice., market-makers may deal with multiple assets whose prices are correlated.,

which requires a multiple-asset inventory model hedging the price movements of dif-

ferent assets. In this chapter. we propose a mean-variance model to address this

issue.

This chapter is organized as follows. First, we present a brief review of the related

literatures in Section 4.1. The dynamic programming formulation is introduced in

Section 4.2. In order to present the optimal policy for the multiple-asset model,

we start with the simplified single-period model in Section 4.3 where the planning

horizon only contains one period, and then in Section 4.4 we move onto the general

model with multiple periods in the planning horizon. Finally, some extensions of the

multiple-asset model are presented in Section 4.5.

4.1 Literature Review

One category of multiple-item inventory models in supply chain management is the

econonic warehouse lot scheduling problem (EWLSP). where the orders of different

items are scheduled to minimize the cost while satisfying the warehouse capacity



constraint. The strategic version of the EWLSP considers the warehouse capacity as

a decision variable and inimlinizes an objective function including a cost component

related to the warehouse capacity, e.g.. the cost to lease the warehouse. A massive

literature has been accumulated ever since Churchman et al. [14] introduced this

problem. Simchi-Levi et al. [49] provide a detailed review.

Another line of researches in multiple-item inventory models studies jointly replen-

ishinent inventory models which explores the economies of scale to jointly replenish

several items, ie.. it is possible to share the fixed ordering cost if a number of items

are replenished simultaneously. The joint replenishment inventory models with de-

terninistic demands usually adopt the EOQ assumptions for each item. and consider

a fixed ordering cost for each replenishment, which is independent of the number of

items ordered. Although the optimal solutions to these problems are very complex

and difficult to compute, various heuristics have been developed in the literature. As

for the joint replenishment inventory models with stochastic demands, a large num-

ber of works focus on the (S., c. s) policy, i.e., a replenishment is triggered when the

inventory position of item i drops below si to raise the inventory level of item i upto

Si, and any iteimi j whose inveitory position is below c is also ordered upto Sj. Goval

and Satir F21] review the related literature for both the deterministic and stochastic

models.

Recently, inventory models with substitutable products, especially those in the

EOQ or newsvendor settings, have attracted considerable attention. For example,

McGillivray and Silver 36] investigated the effects of substitutability for two prod-

ucts in the EOQ context, where substitution occurs when one product is out of stock.

Parlar and Goval [40] considered a single-period model with two substitutable prod-

ucts, where the substitution occurs with a constant probability if one product is in

shortage, and the revenue is not affected by the substitutioni. Bassok et al. [6] studied

a newsvendor problem with N substitutable products under a full downward substi-

tution rule, i.e. excess demand for product i can be satisfied using product j for any

j > i.

Note that the issues studied in multiple-item inventory models in supply chain



management, i.e.. shard warehouse capacity or fixed ordering cost as well as demand

substitutions., are not applicable in the inventory problem in multiple-asset market-

making. However, we still cannot decompose the multiple-asset market-making inven-

tory control problem into several single-asset problems because the price movements

of different assets are usually correlated. For example, if the price movements of two

asset i and j are negatively correlated, positive inventory positions in both assets

can hedge the price movements of these two assets to certain extent. The pioneer-

ing work by Markowitz [35] proposes the mean-variance model for portfolio selection

which determines which assets and how much of each asset to hold in the portfolio

in order to achieve a tradeoff b)etween expected return and risk in price uncertainty

under a budget constraint. The inventory control problei in multiple-asset market-

making also determines how much inventory to hold for each asset, and hence it can

be considered as an extension to the portfolio selection model in Markowitz [35].

4.2 Formulation

As in the single-asset model presented in Chapters 2 and 3. we consider a time horizon

of one day and divide it into N discrete small time intervals. Suppose that the market-

maker manages M1 assets. For any asset i. i =1, 3. the sequence of events is the

same as that in the single-asset model, and we use the following notations:

xki the inventory position of asset i at the beginning of period k

pc. the market mid price of asset i in period k

qe the amount of asset i the market-maker actively trades with other market-

makers for inventory control purpose

seAi the amount of asset i the clients sell to the market-naker in period k

d.i the amount of asset i the clients buy from the market-maker in period k.

To simplify the notation, we let Xk, Pk, qk, S. and dk denote the vectors consisting

of cj, pgA.,. qk,i sl,. and d'i respectively.

We introduce the random vector (5k [41,c ... , I Ju] to model the evolution of the

market mid price, and hence the mid price at period k + 1 is Pk+1 -- Pk + k- 6k are



assumed to be identical and independent random vectors in k,' but the components

in 5A. can be correlated. In addition, the market price process can be correlated with

the client orders. i.e., sk, d and 4k can be correlated. However, unlike the dynamics

of the mid price considered in Chapters 2 and 3., here we assume that 5k and pk are

independent for any k, i.e., the asset mid prices follow a random walk. The purpose of

this assumption is mainly to simplify the notation in the analysis - we will discuss in

Section 4.5 extensions to models where this assumption can be easily relaxed without

changing the structure of the optimal control policy. Also note that Madhavan and

Smidt [34] assumes the changes in price are independent and identical normal random

variables with mean 0. which is a special case of our price model.

Similar to the single-asset model in Chapters 2 and 3. the bid and ask prices at

period A for any market-maker are assumed to be Pk + ek and Pk - ek respectively.

Here ej is a nonnegative vector., and each of its component E,i denotes half of the

bid/ask spread for asset i. Again, we restrict Ck to be either a vector of constants

or a known funciton of the mid price Pk, i.e., k = 5k(p), in order to simplify the

notation, and the relaxation of this assumption is discussion in Section 4.5.

As for the client orders Sk and dk. we allow correlation within the vectors Sk and

dk. and the two vectors Sk and dk can also be correlated. That is, the amount of asset

i that the clients sell to / buy from the market maker at period k call be correlated

with the client orders of asset j. where j = 1I,. and it is possible for j = .

The vector [sA, dk] is supposed to be independent across the time period k, and we

also assume [sk, dk] independent of p . for any k. Note that the second assumption,

independence between [sk., dk] and Pk, is for the purpose to simplify the notation and

it call be easily relaxed (c.f. Section 4.5).

For any period k, the profit we obtain from the bid-ask spread is (dA. + SA.)Te.

Note that we trade |qkl at the price quoted by other market-makers, and hence the

transaction cost is |qk|Te. In addition. the miarket-iaker's inventory is subject to

the risk of price uncertainty, and hence he may incurred a profit or loss of the amount



(xA + q - d. +-4- s )TA. . As a result. the one-period profit in period k is

7k = (xk - q - d + Sk)' -+ (dk + Sk - qkfec. .1)

Similar to the single-asset model in Chapters 2 and 3., N+1 denote our profit or loss

at end of the planning horizon. We assume that

where v1(xT+1,j. v+1,j) is a concave function with respect to xIN+1 for any i =

1,..,M. Note that here we consider eN+ to be a contant or a known function of

pNT+1. Therefore, 7v+1 is well defined once xN+1 and pNv,+1 are given.

In this chapter, we focus on mean-variance analysis to cater for the risk-aversion in

market-making., i.e., a term of the profit variance is subtracted from the risk-neutral

objective function, and the resulted objective function is

nax E {E [wkIpA] - A x Var (7-Ipj) + 7N+ 1] , (4.3)

which is an immediate extension of the mean-variance objective function for the

single-asset model defined in (3.1). It is straight forward that the state variables are

the inventory position Xk and the market mid price pt, and the decision variable is

the quantity to adjust the inventory by active trading q..

Let us consider the expectation and variance of the one period profit Conditional

on the market mid price pk for any k = 1...,N. To simplify the notation., we define

SA = st + d.. A(. = Sk - d. and Eik to be the variance-covariance matrix of A..

Without loss of generality, we let the diagonal components of Zk be all ones., which

can be easily obtained by rescaling the units of the assets. According to (4.1), it is



easy to establish that

E(x. I pkJ (xj, + qA,)' E[ok] -|q i'en + EATSA] + E(S, ]TA.

Var(7k Xk, Pk) -- (x-d qk xk + qk) +Var(S6) 6 Var(Sk)Fk

+ 2(x - qA.) E[(6A - E[(o-)(SId) - El iA ] )]

+ 2 (x+r - E(k]) (Sk - E(.Sk])TeA.]

- 2E[(A"(S5o - E[L io -])(Sl - E(SA]')' A].

Note that the terms E[AA]+ E(Sk]TeA in E[WA.xx.. q and

Var( + JT 1 'r(Sje. + 2E(,ATSi - EA/io,])(SA - E[Sk])" ei.]

in Var(A I xA,, qA.) are independent of the state and decision variables. Therefore.

defining Lk = xk + qk and

-E[1 |+2/AE(&o - E(SA. ) 6(iA - EOATA] )]+ 2AE(8O - E [4|)(Sk - E(SA] Tk],

our objective function in (4.3) is equivalent to

' N

nmin E E{hLA.g -Lk +A, Lk +|ILk ,
L.. k=1

XA Te(} 7N+1 ] (4.4)

In the remaining part of this chapter, we first analyze properties of the optimal

solutions to (4.4) for the single-period model, i.e., when N = 1, and then extend the

results to the multiple-period model.

4.3 Single-Period Multiple-Asset Model

When N = 1 and _"N+1 = 0, the objective function in (4.4) is reduced to

min E ALTE+L L + IL - x .T
L I
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Since the absolute value functions are convex, it is equivalent to

min E ALTEL +ITL +zT] : z > L - x, z > x - L.
L,z .

(4.5)

Note that E is a variance-covariance matrix, and hence it is positive semi-definite.

Therefore, (4.5) is a convex quadratic optimization problem subject to linear con-

straint. It follows directly that the IKKT conditin is the sufficient and neessarv

condition for optimal sohitions. Let o and 3 denote the Lagrangian multipliers of the

constraints (4.5). The KKT condition reads

2AEL + +a - 3=0

6-a- =0

z>L-x

z > x - L

i(i (I - z - xi) = 0

Bi~j(L, + z- z') = 0

(4.6)

V i= 1..

Vi=1.,

a, J > 0.

Also note that z = L - xl in any

condition in (4.6) is equivalent to

optimal solution to (4.5), and therefore the KKT

2AEL -- = - 2a where

=0

ai e

0 < aK u K C

L,< x<

Li > , i

Lj = xi

for i = 1. .

Here c, is the ith component in the vector c. Let EV denote the ith row of the variance-

covariance matrix Z and -/ be the ith component in ,. It follows directly that the

optimal inventory control policy is as the follows.

Theorem 4.1. Under single-period Meanl-Va (Ir Fliance analyslis. there ex'ists a parallelo-

tropic no-trade region defined by R = {x : -E < Azx - < E} there c can be a

given vector or a given function with respect to the market price p.
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Outside the no-trade region, the intventory is adjusted to the boundary of the no-

trade region. Let L* denote the optimal adjusted inventory level. For any asset i,

i= 1,..., M, the optimal adjusted inve ry lev L satisfies the following condtons:

xi > Lcif2~L 7 i, xi < L* iff'2A~iL* + 7/ = -6.

For each asset i, Theorem 4.1 indicates that the no-trade region is defined by an

upper limit 2AZix + 7,/= ei and an lower limit 2ZA~ix + -7 = -e. These two limits

are parallel straight lines. Consider any two assets i. j where i # j. We can fix the

components in x except for xi and x1 , and focus on the (xi, xj) plane. Let pij denote

the correlation coefficient between (5i and oY. Since we choose the units of assets so

that the variances of 6 and o5 are both ones, the limits defining the no-trade region

on the (xi, xi) plane is parrelel to the line

2Axi + 2NAyr = 0, which is equivalent to xi = -py.

If we interpret the limits of x on the (xi, x1 ) plane as funcitons in xj. the slope of

the limits is alway flatter than the 45 line as |pl ; 1.

In addition. when the inventory position is not contained in the no-trade region,

Theorem 4.1 implies that the optimal solution only allows two types of inventory

adjustment: for any asset i, i = 1, ... , Al,

" increase the inventory of asset i to hit the lower limit of asset i on the boundary

of no-trade region

" decrease the inventory of asset i to hit the upper limit of asset i on the boundary

of no-trade region.

Obviously, the optimal policy is reduced to a threshold policy if we only have

one asset in the portfolio. Theorem 4.1 with two assets is illustrated in Figure 4-1.

The thin solid lines and the dash lines correspond to the limits for asset i and j
respectively. Hence, the no-trade region., which corresponds to the intersection of the

area between asset 's limits and asset j's limits, is the parallelogram defined by the

four vertices y1, Y2, y3 and y 4 . The area outside the no-trade region is divided into 8
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Figure 4-1: Illustration of Optimal Solution for Single-Period Model

2REx + y, C,

Area 3 Area 5

-----------

No-Trade Region

Area 4

Area 1

Area 6

subareas by the bold lines. The adjustment of inventory is indicated by the arrows.

More specifically,

* if the inventory is in Area 1 (Area 2, resp.), the inventory of asset i is decreased

(increased, resp.) and the inventory of asset j is unchanged so that the inventory

after adjustment lies on the straight line between yi and Y2 (y3 and y 4 , resp.)

e if the inventory is in Area 3 (Area 4, resp.), the inventory of asset j is decreased

(increased, resp.) and the inventory of asset i is unchanged so that the inventory

after adjustment lies on the straight line between yi and y 4 (y2 and y3, resp.)

* if the inventory is in Area 5 (Area 6, 7, 8 resp.), the inventory of both assets

are modified so that the inventory after adjustment is y- (y2, y3, y4 , resp.).
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4.4 Multiple-Period Multiple-Asset Model

When N > 1, we define J (xk, P) to be the optimal mean-variance value when the

initial inventory at period k is xA., the price at period k is pi and we act optimally

from period k onwards., i.e..

Jk(xk, pe) mini {E[L {ALIElLl + JL1 +-L - xi} }
.l=k

It follows directly that the dynamic programming model in (4.4) has the following

Bellnan's equation

JA(x.. pA.) = min ALT kLA +yLa La - xA| 6A +7k (L1  + P

(4.7)

where k= 1, ...N, and JN+1(XV+1, PN+1) -FN+1. Note that we assume that

JV+(xN+1, PN+1N) 0 in this section. However. all the results can be

established for WN+ defined in (4.2) where '(zxN+, eN+1i) is concave in xzy for

any 1..

In this part., we establish the structural property of optimal solutions by induction.

The induction assumptions and proofs are presented after we discuss the optinial

policy.

First, let us consider the notations used to characterize the optimal inventory

control policy. We use Xz,i, o5,i, eki and -lk.i to denote the elements corresponding to

asset i in the vectors Xk, 4, q. and 7k. The row in Ek corresponding to asset i is

denoted by Eki. Let pAj,ij denote the correlation coefficient between ?ki and okj for

any two assets I. j where i / j. Moreover, we let Vi.Jk(x. p) -- 0Jk(x, p)/Ok,i and

VJA.(x, p) be the vector consisting of ViJA(x, p).

The following theorem presents the optimal policy for the multiple-period model.

Theorem 4.2. Under mean-variance analysis, for any k= 1.N, there exists a
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connected no-trade regio'i without h oles deptned by the following inequality

R = {x : -ek < 2 AZxxk 1- k+ E [V Jk+1 (Xk - Ak. Pc +4)] < e}

6where c can be a given ector or a given function ttith respect to the market price

Pk.

Outside the no-trade region, the inventory is adjusted to the boundary of the no-

trade region. Let L* denote the optimal adjusted inventory leel. Far any asset i.,

i= 1..., M1l, the optimal adjusted inventory leveel L' satisfies the followin@g conditionls:

SXki > L* if 2\ZA.E.L. + * c + E[Vi Ja,1 (L*+ A- P + ()] = ek,i,

e a; < L*s iff 2/A EL* + 77, EViJ +1(L+ A, pc + )] = -..

Similar to the single-period model. again we can consider the no-trade region as

imposing an upper limit

max {kJ.i : '2,A\cxk +-±ti - E[V7IJh+1 (Xk + An, Pk -+ oS) =I '., given 1 ,.j V j - i

and an lower init

min Xa.i : 2AEIxA + k, + E(ViJc+1 (x, + Ak Pk + ()] = -ej,, given xakj Vj / i}

for the inventory of asset i. Outside the no-trade region, we trade actively to adjust

our inventory. The optimal adjustment is the same as the single-period model: for

any asset i. i = 1.. ll

* increase the inventory of asset i to hit the lower limit of asset i on the boundary

of no-trade region

" decrease the inventory of asset i to hit the upper limit of asset i on the boundary

of no-trade region.

Note that for the single-period model, the upper and lower limits of each asset are

hyperplanes, which does not hold for the multiple-period model. To characterize the
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properties of the limits in the multi-period model, we focus on the (xh,., xk,) plane

for any assets i and j by fixing the inventory level of the rest assets in the portfolio.

Proposition 4.1. Co'nside'r any pair of asset i and j, i -f J. For any inv'etntory level

of the assets other than (5sset i and j. the upper and lowe11r limits of asset i on the

(xj.i. Axk ) plane are functions in xAj de noted by t(xAp) and1 l(xA>j.

If pkji >_ 0., u(xrA ) and l(xA.1 ) are continuous non-increasing functions. For any

c > 0, u(xk) + c > u(xt. - c) and l(xkj) + c > l(xk. - c).

If PA-. < 0, 'ux(.XA >) and l(X 1 ) are continuous non-decreasing functions. For any

c > 0. u(xx,5) c > u rx~ - c) and lr 1. ) + c > u +rc~ + c).

Note that the relationship between u (xA ), I (xkj) and u (xj -+ c), 1(xkj + c) essen-

tially says that u(xri) and l(xrAt) are flatter than the 450 line. Also, when p,. = 0.

the limits are both monotone non-increasing and non-decreasing. which implies that

they are constants. i.e. the no-trade region on the (xA, .j ) plane (if exists) is a

rectangle. This property agrees with the single-asset result, which implies that the

no-trade region is a hyperrectangle if the price movements of all assets in the portfolio

are independent.

Again. Theorem 4.2 implies that the optimal policy is reduced to a threshold

policy when the narket-maker only manages a single asset since a connected region

in one demention is an interval. Figure 4-2 illustrates Theorem 4.2 and Proposition

4.1 when the market price movements of these two assets are positively correlated.

Similar to Figure 4-1, the thin solid lines and the dash lines correspond to the limits

for asset i and j respectively., and the no-trade region is the shaded area with corner

Points Y1, Y2, y 3 and y 4 . The area outside the no-trade region is divided into 8

subareas by the bold lines. The adjustment of inventory is indicated by the arrows.

More specifically,

e if the inventory is in Area 1 (Area 2., resp.), the inventory of asset i is decreased

(increased, resp.) and the inventory of asset j is unchanged so that the inventory

after adjustment lies on the section of the upper limit of asset i between y1 and

Y2 (the lower limit of asset i between y3 and y 4 . resp.)
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Figure 4-2: Illustration of Optimal Solution for Multiple-Period Model
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e if the inventory is in Area 3 (Area 4, resp.), the inventory of asset j is decreased

(increased, resp.) and the inventory of asset i is unchanged so that the inventory

after adjustment lies on the upper limit of asset j between yi and y4 (the lower

limit of asset j between Y2 and y3 , resp.)

e if the inventory is in Area 5 (Area 6, 7, 8 resp.), the inventory of both assets

are modified so that the inventory after ajustment is y1 (Y2, y3 , y4, resp.).

In order to prove Theorem 4.2 and Proposition 4.1, we consider the following

induction assumptions.

Assumption 4.1. The function JA(xA, pA.) is convex and continuously differentiable

in Xk.

Assumption 4.2. For any asset i, V7iJk(xk, Pk) is monotone non-decreasing in Xk,j

for any asset j such that p.,ij > 0, and it is monotone non-increasing in xz, for any

asset j such that PAi*j < 0.
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Assumption 4.3. Consider any asset Ii 1. A and c > 0.

For any asset j such that pa.ij ;> 0, ViJk(xk, pk) < ViJk(xcpk)

1,' + c, = xAj - c and the rest components in x' are the same as

For any asset j such that piyj < 0, ViJA(xj, pc) VJ(x". pk)

zk.i + c, - = Xklj + C and the rest components in x. are the same as

where xzi -

those in xA..

where =

those in Xk.

Note that J1 (XN+I, PN--I) = 0 satisfies all induction assumptions. It is sufficient

to i) prove that Theorem 4.2 and Proposition 4.1 for period k when they are true

for period k +- 1 and the induction assumptions hold for period k -- 1, and ii) prove

Jk(Xk. Pk) satisfies the induction assumptions.

First. let us prove Theorem 4.2 for period k assuming that Assumption 4.1 and

4.2 hold for period k + 1.

Proof of Theorem 4.2. Assumption 4.1 implies that E[Ji+1(x'-a+AA., pA.+4A)] is convex

ill Xk. According to the monotone convergence theorem, we have

0
E[JI+(xk + Ak, Pk + - 5)] = E[ViJ+1(xk -+ A, Pk + 60)

for any i = 1, ..., M. Therefore, E[J.+1(xk + Ak Pk-Ok)] is continuously differentiable

in xk. Applying the same argument as in the single-period model to the Bellinan's

equation in (4.7). we obtain the inequalities defining the no-trade region Rk as well

as the optimal rules to adjust the inventory outside the no-trade region.

To simplify the notation, let us define

f;(xA.) = 2AZA..xA_ +Yi + E[ViJk+1 (Xk I A.! Pk + 6k)).

Assumption 4.1 implies that ViJk. 1 (Xk + Ak., Pk + (5) is non-decreasing in X.i. As-

sumption 4.2 assumes that ViJ, 1 (Xd + Ad., P + Ok) is monotone in any ze.X where

j # I. Note that o. are iid randon vectors and hence p.ij = p.+igJ for any i,j.

Therefore, E-kiX has the same monotonicity in X.j as ViJd.1 (Xk + Ak, Pk + k).,

where j =,.A. It follows directly that f(x) is also monotone ill zk) for any

j =1,. .M
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Also note that RA. {xl : -ci < f(xi,) < Vi, Vi 1.... M}. Since f;(xA.) is

monotone in Ixk for any i, j = 1, . Rk is connected without holes. [-

Next., we prove that Proposition 4.1 holds for period k under Assumption 4.1., 4.2

and 4.3.

Proof of Proposition . 1. Here we assume that pkgi > 0 and consider the npper limit.

The results for the lower limit when pk ij > 0 as well as the case when p)k.ij 0 follow

from the same argument.

Let Xk.,_j denote the inventory level of the assets other than asset i and j. The

upper limit can be defined as

u(kJ) =- max {xk.j : f,(xk) = 6p given zk,7 and xl _ .

It follows directly that u (zij) is continuous as fi(Xk) is continuous by Assumption

4.1.

To prove the monotonicity of u(xz ,), let us consider xr <. xJ. Let x' be the

vector such that the ith component is tt(xj), the jth component is X) and the rest

components are set to x,_ij. According to the definition of u(x j), we know that

fi(x') = e(i. Let x 2 denote the vector such that the jth component is x2 and the rest

components are equal to that of x t . The proof of Theorem 4.2 indicates that f,(xA.)

1s non-decreasing in z . Therefore, we have fi(x2 ) > f(x') = . Note that we

also prove that fi(xk) is non-decreasing in ki in the proof of Theorem 4.2. It follows

directly that Lt(x)) > u(j)) i.e.. u(zA.) is nonl-mcreasmlg ill X.

Let X. be the vector such that the ith component is h(zA.), the jth component is

Xkj and the rest components are equal to xA._ij. For any c > 0, define x such that

the ith component is a,(Xk)+c. the jth component is Xk. - c and the rest elements

are Xk._i. Assuiption 4.3 implies that

E[ViJk+1 (Xk. + AApA. +- oP)] + EVi1 Jk+.1 (x" - Ak, Pk + (k0-
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Also note that

ZkjiXk - kix - u(xk.) + pkijx.d - (u'tz.) + c) - p~ij(xj -c) = (pI - 1)c 0.

It follows directly that fi(xh.) < fi(xl). Note that fj(xc) - s,. by definition. Since

fi(xk) is non-decreasing in xk.,. We have u (xk.) -c + u(xkg - c). C

To complete the induction proof, it remains to show that the function Jk.(xk, Pk)

satisfies all the induction assumptions.

Proposition 4.2. Suppose that Jk+1(Xk+, p..k+1) has all the properties spec'fied ini.

Assumption 4.1, 4.2 and 4.3, then JA(xk, pc) also satisfies Assaniption 4.1, 4.2 and

4.3.

Proof. To prove the convexity of Jkxk pc), let us consider any x1 , x 2 and K E (0, 1).

Let x = x (1 - K)X2. Given the market price p-, suppose that L' and L2 are

optimal solutions to the optimization problem in (4.7) corresponding to x' and x 2

respectively., i.e..

J1 (x, pj) = \L L + -LI - xI TeCA - E[J,+1 (L'i A pI +c)]
+ Ak Pk 6k)(4.8)

.Jk (X), pI ) = AL-/ L 2  
2 r E[.Jk+1 (L2 + k, Pk + 6k)].

Let L = KL' + (1 - K)L'. It follows directly from the definition of Jk(x, p) that

JA(x, pp) < ALT EAL + -AL +|L - x|Te,. + E[J,.+1 (L + AA. pA + oj)].

Note that for each asset i. we have

L- xi = (AL' + (1 x + + (1 -) L7 - x

and hence

L - xj K < L' - xl Tej + (1 - K) L2 - X 2 1TEA.

Also note that E,' is positive semi-definite and Jk+I (xk+1, Pk+1) is convex in Xk. Ac-
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cording to (4.8) and (4.9). we have

J(x pX - ik K .J(x p/) + ( - )Jk(X', pk)0

and hence Jk(Xk, Pk) is convex ill Xk.

To prove the differentiability of JA(xA, pA.)., let us focus on the two-dimensional

plane (I,-., -',) by fixing the inventory of the assets other than asset i and j. Accord-

ing to the definition of the first derivative, it is straightforward to obtain ViJ.(xk., Pk)

in Figure 4-2.

e ViJ.(xk, PA) = -ckti if xA, is in Area 2. 7 and 8.

VJik(xA, pk) = 0 if Xk is in Area 1, 5 and 6.

ViJk(xk. P)= fi(xk) if Xk is in the no-trade region.

* For an xi. in Area 3, define x- such that x" = c and o,,=

for any m # j. If x is also in Area 3., then ViJ,(, p) = 7i Jk(xc, Pk). In

other words, for any two points in Area 3, if they only differ in the component

corresponding to asset j, they have the same first derivative of JA(XA. Pk) with

respect to the inventory of asset i.

" Similarly. for any Xk in Area 4, define x( such that x' Xk+ and x.,=

for any n i. If x is also in Area 4. then ViJ(x., pc) = ViJc(x., Pk)

Since fi(xc) is continuous, it follows directly that Jk(xk, Pk) is continuously differen-

tiable with respect to XUi on the plane (zc.i, 1k. ). Similar results can be obtained

for the case when the plane (xA-,., z ) does not intersect with the no-trade region.

Because this property holds for any asset i and j. we conclude that Jk(Xk, Pk) is

continuously differentiable in XA.

Note that we establish the monotonicity of f (xk) in the proof of Theorem 4.2.

Assumption 4.2 can be verified using the properties of V/JA.(xc. pA) in the previous

part to prove continuous differentiability as well as the inequalities to define the no-

trade region.
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Now let us prove the validity of Assumption 4.3. We consider Pk,ij > 0 and

restrict to the case illustrated in Figure 4-2. For any xA, and c. we define x- such that

. = xx-- = Xkjj- c and the rest elements in x' are the same as those in Xk.

Assumption 4.3 holds as long as we can prove that ViJA' (xk, pt.) < VJs. (x., pA,) for

any c > 0.

* If Xk is in Area 2, 7 and 8,'ViJh(xk, pk) = -eC, which is the minimum value of

Jh(xh, ph'), andli hence ViJ .(x, Pk) < ViJk(x", Pk) for any c > 0.

* If xk is in Area 1. 5 and 6.Proposition 4.1 implies that x- is also in Area 1.

5. and 6 for any c > 0. Therefore, VIJ(x p.P) VJh(x. ph) =e'.j for any

c> 0.

* If Xk is in Area 4. Proposition 4.1 shows x must be in Area 4 or Area 6. It is

sufficient to consider the case that x is also in Area 4 as ViJk(X', Pk) achieves

its maximum in Area 6. Consider x'. such that x' = 'zk - c and x' =

for any m # j. We know that ViJ.(xk, Ph) - V1iJ(x',. Pk) ViJ(x2, Ph)

where the equality follows from the results when proving the differentiability of

Jk(xk, Pk). and the inequality is obtained from the convexity of .J(xk. Pk).

o If xA. is in the no-trade region, we know that x' must be in Area 1, 4. 6 or

the no-tradc region by Proposition 4.1. Again. it is sufficient to consider that

x4 is also in the no-trade region. In this case, ViJ.(xh, ph) fi(x.) and

ViJ'(x4. p1) = f.(x). Similar to the arguement in the proof of Proposition

4.1. we can show that f7(xk) . f7(), and hence VjJ(xh, pd) VJ(x. pd).

* If Xh is in Area 3., similarly, it is sufficient to show ViJ (xh, Pk) K VJ(x4, Pk)

if x is also in Area 3. which can be proved by an argument similar to that in

Area 4.

The other situations, i.e.. when pA,ij < 0 or the (Xzk, .zy) plane does not inter-

sect with the no-trade region. can be proved following the same argument, and this

completes the proof. D
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4.4.1 Symmetric Optimal Control Policy

In the single-asset model, we identified the conditions under which the threshold

levels are symmetric. For the multiple-asset model., we can also show that the no-

trade region is synnnetric with respect to 0. i.e.. x is in the no-trade region if and

only if -x is in the no-trade region, under the following condition:

(D1) The market price movements are independent of the order arrivals. i.e., [, dA.]

and ok are independent for any k = 1, .N.

(D2) The market price process is a symmetric random walk, i.e., P(6A,, < vi Vi =

1,.,) P(Shg > -ri Vi 1.,) for any [v?11, E and k

1,.,N.

(D3) The buy and sell orders fron the clients are subject to the same distribution, i.e..

P(, i Vi ,.. M)= P(di 7i Vi = 1. ) for any [i ..... ,11 E R 1

and k 1.N.

Proposition 4.3. Under assumptions (D1). (D2) and (D3), for both single-perod

and multiple-period models, the no-trade region is symmtrcic with respect to 0 and so

is the optimal control policy.

Proof. Note that a = 0 for any k = 1, .N under assumptions (D1), (D2) and (D3).

It follows imnmediately that tie single-period model has a symmetric no-trade region

and a symmetric optimal policy.

For the imultiple-period imodel. we prove the proposition under the induction as-

sumption that Jk(xk, P) is symmetric in Xk with respect to 0. i.e., .Jk(x, Pk)

Jk(-xh, p). JN+1(XN+1i p+ 1 )= 0 obviously satisfies the induction assunptionl.

Suppose that Jk+1 (x-+1, Pk+i) = Jk+1 (-xk+.1 Pk+1) for any Xk.i and Pk--m. The

assumptions (D1), (D2) and (D3) specify that /-\A and o5k are independent random

vectors and their distributions are symmetric with respect to 0. According to The-

oreim 4.2. the no-trade region Rk is symmetric with respect to 0. The synnetry

of the optimal control policy as well as the function Jl(xlmp) can be established

straightforwardly, which completes the induction proof. D
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4.4.2 Numerical Results

Theorem 4.2 also suggests an efficient algorithm to compute the optimal solutions.

Suppose that we are given Jj.+1(x.+1. pA+1) and VJk+1(xk+1. pk+1). Theorem 4.2

shows that the no-trade region of period k can be obtained from VJ+1 (Xk+1, Pk+1).

Outside the no-trade region of period k, the optimal adjusted inventory can also be

obtained directly, and hence we can compute the value function of period k from

the value function of period k + 1, i.e.. JA' (XA, PA) froi J 1 (Xk1, Pk+1). To calcu-

late VJA.(xA.., p, besides the numerical methods, we can also utilize the property of

VJ(xk, Pk) discussed in the proof of Proposition 4.2. It is straightforward that the

computational complexity of this approach is linear in the number of periods N. In

fact., according to Theorem 4.2 and the proof of Proposition 4.2, we only need the

values of Jk+1 (Xk+1. Pk+1) and V 1 Jk+1 (Xk+1, Pk+1) within the no-trade region of period

k + 1 to compute JA (xl.. pA) and V JA (xA., pA.).

In the remaining part of this section, the algorithm is implemented for a 6-period

problem with two assets., which helps us to further understand the properties of the

no-trade region.

We assume that the independence and symmetry assumptions hold for this exam-

ple and the input parameters are stationary throughout the whole planning horizon.

The difference between sell and buy orders from the clients, A. has a uniform distri-

bution among the vertices of the {-1, 1} square. i.e..

P A =P A =P A=

TP- 1

-- 1 -) 4

The correlation coefficient between the market price movements of these two assets
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Figure 4-3: Illustration of Optimal Solution for Multiple-Period Model

Period 1 No-Trade Region

1 1

-2 0 2

Period 4 No-Trade Region
2

1 1

-1

-2
2 0 2

Period 2 No-Trade Region

-2 0 2

Period 5 No-Trade Region

0

-2 0
12 0

-22

Period 3 No-Trade Region
L

1

-2 0 2

Period 6 No-Trade Region
4

0 %

-2

-4
-4 -2 0 2 4

is set to 1/4, and hence the variance-covariance matrix of the price movements is

4

The vector d determiningc the bid/ask spread is independent of the market price, and

we let Ei = 3 and E. = 2., which correspond to half of the spread for asset 1 and 2

respectively. Moreover, the risk aversion parameter is set to A = 1/2.

Suppose that we can clear our inventory at the end of the planning horizon with-

out additional cost, i.e.. clear the position at the market price. It implies that

JN+1(XN+ 1 PN+ 1) = 0. The no-trade regions for period 1 to 6 are shown in Fig-

ure 4-3. The no-trade region in period k is the area defined by the intersections of 4

lines in the corresponding sub-figure. There are three important observations here.

* The no-trade region for period 6 is significantly larger than those of the previous

periods, which is analogous to the observations in the examples of Chapters 2

and 3 when we mark to the market mid price at the end of the planning horizon.

Note that the axes are from -4 to 4 in the sub-figure corresponding to period
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6 while those for the rest periods are from -2 to 2. Here we do not have

transaction cost at the end of planning horizon. In period 6, we only need

to hold the inventory for one more period and clear it without incurring any

spread loss. Therefore., the optimal policy would actively trade less frequently

and result in a larger no-trade region.

" In general, the no-trade region is longer along the horizontal axis corresponding

to asset I and narrower along the vertical axis corresponding to asset 2. Note

that the spread of asset 1 is higher than that of asset 2, i.e., the transaction

cost is higher to actively adjust the inventory of asset 1. Therefore, we adjust

the inventory of asset I less frequently and hence the no-trade region is slightly

wider along that direction.

" The no-trade region has greater area in the 2nd and 4th quadrants than the

1st and 3rd quadrants. The 1st and 3rd quadrants correspond to the portfolios

with two assets having positions with the same sign while the 2nd and 4th

quadrants correspond to the portfolios with positions having opposite signs.

Therefore, this property implies that we trade the )ort.foli(os with positions in

the same sign more frequently. Note that the price movements of the two assets

are positively correlated in this example. As a result., a portfolio with positions

in the same sign implies higher risk compared with a portfolio with the same

absolute positions but in opposite signs. which explains why we actively adjust

portfolios having positions with the same sign more frequently.

Similar to the examples in Chapters 2 and 3. we also consider the case that the

inventory at the end of the planning horizon is cleared at the bid/ask price quoted by

other market-makers, i.e.. JN+1 (XN+l, PN+1' C+1 XN+1 . The corresponding no-

trade regions are shown in Figure 4-4. Note that the last two observations for Figure

4-3 are also applicable to the no-trade regions for period 1 to 5. The no-trade region

for period 6 is the {-1, I} square corresponding to the support of A. To understand

this property, let us investigate a simple example. Suppose that we have 2 units of

asset 1 at the beginning of period 6. Consider the following two options.
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Figure 4-4: Illustration
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Option 1. We actively sell 1 unit in period 6. After receiving the orders from the

clients, our inventory is 0 or 2 units. We hold () or 2 units for 1 period and clear

the inventory at the end of the planning horizon.

Option 2. We do not adjust inventory actively in period 6. After observing the

orders from the clients, our inventory is 1 or 3 units., which is held for 1 period.

We (lear 1 or 3 units at the end of the planning horizon.

These two options have the same transaction cost, but option 1 holds less inventory.

Therefore, a risk-averse decision maker would always go for option 1. The same

argument also applies to asset 2. and hence the no-trade region should be contained

in the {-1. 1} square. MXoreover, our risk aversion parameter \ - 0.5 is not very

conservative, so the no-trade region for this example is the {-1, 1} square. Notice

that this argument is very similar to how we explain T' o(1.999, 10-4) = -1 and

) T (1.999. 10- 4 ) - I in Example 2.1 of Chapter 2.
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4.5 Extensions

In this chapter, we analyzed the multiple-asset inventory model in market-making

under the assumption that the market-maker is risk averse. The optimal policy is

fully characterized and can be computed efficiently. We show that the no-trade region

Rk depends on the market mid price PA if the spread determined by q, is a function

of Pk. Otherwise, i.e., when ek is a vector of constants, the no-trade region in period

k is the same for any realized market mid price Pk.

As we pointed out in Section 4.2., the optimal policy characterized by Theorem

4.2 and Proposition 4.1 is valid under more general assumptions.

* The random walk assumption of the market mid price can be relaxed. We can

assume that the price movement o5 depends on the market mid price Pk, and

6k conditional on pb is independent in k. As we mentioned in Section 2.1, the

geometric random walk is a special case of this price dynamics. Under these

assumptions, Theorem 4.2 characterizes the optimal control policy where the

no-trade region Rb relies on the realized market mid price Pk for any period

k. In addition, Proposition 4.1 also holds if the correlation coefficient of oj,ilpk
and oV4j pb las the samie sign for any pair of assets i and j, for any period k

and any market price pk.

" We can allow the spread in any period k to be a random vector correlated with

other stochastic inputs. i.e.., 6 is a randoi vector correlated with Pk, o4, sb and

dk. As long as 64. conditional on pA is independent across the period k. e.g.

ek =k(p) kT + - where Ob(Pk) is a givn function and '-k is a random vector

independent in k, the optimal policy described in Theorem 4.2 and Proposition

4.1 still holds except that the no-trade region Rb is determined by the realization

of both the mid price and the spread in period k, i.e., p. and 6..

* Suppose that the orders from the clients are correlated with the market mid

price, i.e., [sA,. dA] and pb are correlated. If [sA., db] conditional on pA, are in-

dependent in k., we have the same optimal policy as that in Theorem 4.2 and
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Proposition 4.1. Notice that under the correlations between (Sk, d.] and pk, the

no-trade region depends on Pk even if e is a constant vector for any k.

Similar to the single-asset model, if we consider auto-correlated stochastic random

inputs, then Theorem 4.2 holds with the no-trade region Rk depending on all realized

information before we make our decision in period k, i.e., the vector

hk {pi, ... , P i C, .. ., ,di, ... , dk 1 , si .., Sk_11

In order to obtain Proposition 4.1, we also need the assumption that the correlation

coefficients of S 1. h1. and o.j h . have the same sign for any pair of assets i and J, for

any period k and any history h1 .

Finally, the optimal policy is the same if the decision maker quotes bid and ask

prices different from the prices at which he or she trades with other market-makers.
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Chapter 5

Robust Stochastic Lot-Sizing by

Means of Histograms

Recall the discussion in Section 1.2 that most inventory model relies on the com-

plete distribution functions of demands, which are usually not available in practice.

Therefore, in this chapter, we investigate how to find a robust solution to the classical

inventory model of Scarf [47] when only historical data is available and the demand

distribution functions are not explicitly given.

This chapter is organized as follows. The literature related to robust inventory

control is briefly reviewed in Section 5.1. In Section 5.2 we describe our robust model,

which incorporates historical data and present the optimality equation in a compact

form. The structure of the optimal policies is characterized in Section 5.3. Section

5.4 considers a special case with robustness defined by the chi-square goodness-of-fit

test. WNe also discuss selected convergence results for the chi-square test based models

in the same section. The computational results are presented in Section 5.5. Finally,

additional extensions are presented in Section 5.6.

5.1 Literature Review

The notion of robust inventory control is not new in the literature. The earliest

work in minimax inventory control is attributed to Scarf [46]. where minimization
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of the maximum expected cost of the newsvendor model over all distributions with

a given mean and variance is considered. Gallego and Moon [19] present another

proof of Scarf's result and consider various extension of the model. The recent work

by Natarajan et al. [37] extends the result of Scarf [46] by considering the set of

distributions with a given mean, variance and senivariance information. Perakis and

Roels [41] minimize the maximum regret of the newsvendor model over a convex set of

distributions with certain moments and shape. Notzon [38] considers a multiple period

model where the demand in each period is assumed to be independent. The demand

distribution function is anlbiguous, but it is within a specified class of distribution

functions. The minimax control policy minimizes the maximum expected cost. The

optimality of (s, S) policy is proved. In addition, Gallego et al. [20] propose the

minimax finite-horizon inventory models where the set of distributions is defined

by linear constraints, and solve the optimization problems by a sequence of linear

programs.

Bertsimas and Thiele [7] analyze distribut ion-free inventory problems., in which

demand in each period is assumed to be a random variable that takes values in a

given range. The demand is assumned to be a random variable controlled only by two

values: the lower and upper estimators. To capture the trade-off between robustness

and optimnality, a parameter is defined to control the budgets of uncertainty at every

time period. They show that for a variety of problems, the structures of the optimal

policy remain the same as in the associated model with complete information about

the distribution of customer demand. A related model from the base stock perspective

is analyzed in Bienstock and Ozbay [8].

See and Sim [48] consider a factor-based demand model with given mean, support,

and deviation measures. To obtain tractable replenishment policies, the worst case

expected cost among all distributions satisfying the demand model is minimized by

solving a second order cone optimization pro)blelm.

Ahmed et al. [1] propose an inventory control model which minimizes a coherent

risk measure instead of the overall cost function. They show that risk aversion treated

in the form of coherence risk measures is equivalent to the minimnax formulations, and



it is proved that the optimal policies conserve the properties of the stochastic dynamic

programming counterparts. They do not consider demand dependent evolutions.

Liyanage and Shanthikumar [301 first provide concrete examples in a single period

(newsvendor) setting., which illustrate that separating distribution estimation and

inventory optimization, as done in the classical approach, nay lead to suboptinal

solutions. They propose the use of operational statistics where it is assuned that

the demand distribution function belongs to a specific (predetermined) family and

estimate the (single) parameter of the family within an inventory optimization model.

In addition, selected recent papers also consider lost-sale inventory problems with

censored demand data, i.e., the observed historical demand data excludes the lost-

sale information as the lost sales are not observable. Huh and Rusmevichientong [261

propose nonparametric adaptive policies to solve this problem and provide a bound

for the asymptotic performance, which interestingly is the same as the converenge

rate of our model under discrete distributions.

The niodels by Notzon [38] and Alined et al. [1] do not take historical data into

account, and they predefine the class of distribution functions. The robust optimiza-

tion approaches from Bertsimlas and Thiele [7] as well as See and Sim [48] do not

use any historical data except to determine the support. expectation and deviation

measures. On the other hand, Liyanage and Shanthikumnar ['30] use historical data

but predetermine the family of distributions. In fact, they consider only distribu-

tions characterized by a single unknown parameter. This is the only work besides the

one proposed in this chapter that concurrently optimizes the expected cost and the

distribution or the parameter to determining the demand distribution. Our research

combines both strategies by integrating distribution fitting with robust optimization.

Specifically, we consider the set of demand distributions that satisfy a certain data

fitting criterion with respect to historical data and characterize an optimal policy

that minimizes the maximuml expected cost.
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5.2 Formulation of Robust Stochastic Lot-Sizing

The classical multi-period inventory problem considers a finite planning horizon of

T periods. For each period t = 1..., T, let Dt be a random variable representing

demand in that period. The sequence of events is as follows. At the beginning of

each period t, the decision maker reviews the inventory level xt, and places an order

for qt (possibly zero) units. Since lead time is assumed to be zero, this order arrives

inmediately and hence increases the inventory level up to yt, where yt = xt +qI,. After

observing demand Dt, the net inventory at the beginning of period t - 1 is reduced

to xt+1 Yt - Dt.

The procurement cost in each period t = 1,., T - 1 includes two components,

a fixed procurement cost K if qt > 0., and a unit procurement cost ct for each unit

ordered. Inventory holding cost is charged at a rate of ht for any unit of excess

inventory at the end of period t, and a unit back-order cost bt is incurred for any

unit of unsatisfied demand. We assume that all shortages are backloggooed. Thus. the

total cost for period t given the inventory levels before and after ordering (x, and yt

respectively) as well as demand Dt in that period is

Ct xt. yt. D) = K31(yt - xt) + ct(yt - xt) + ht yt - D) + bt Yt - (5.1)

for any t = 1. ..., T, where x+t= max(x., 0), x = max(-x, 0), I(x) = 1 if x > 0 and

:(x) = 0 otherwise.

In the standard dynamic programming formulation, we consider Vt(xt) for any

t = 1.... T. which denotes the optimal expected cost over horizon [t, T], given that

the inventory level at the beginning of period t is x> and an optimal policy is adopted

over horizon [t, T]. We assume +I 1(xT+1) = 0. Let 0 E [0. 1] be the discount rate.

The optimality equation reads

Vxt) = in E C fxtit. Di) + OE [V+1 (yt - Dt)] t = 1. T. (5.2)

Note that the distribution of Dt, t 1.T is required to solve this dynamic pro-
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graminming formulation.

In practice, the demand distribution is not known. Rather. an inventory manager

has at her disposal only historical data. Depending on the realized past demand in

the planning horizon, the manager may choose different aggregations of historical

data to forecast the demand distribution. For example.

" the demand data of the last n, observations are considered. which is analogous

to the moving average forecast, or

* the realized demand in periods 1 to t - 1 is accounted for when forecasting the

demand in period t.

Historical observations are often aggregated. Let [Dtg, Dt.+ 1) denote the ith pos-

sible range of the demand in period t (all observations within a given range are

indistinguishable), and let the vector dt = [d, dt_1] denote the realized demand in

periods 1 to t - 1., where dr, 1. t - 1 corresponds to the realized demand in

period 7. The number of observations that fall within [Dt.1. Dt a4) is a function of the

realized demand dt and is denoted by Ntg(dt). Finally, we define nt(dt) = X N>j(dt).

which corresponds to the total number of available observations under the realized

demand dt.

Hypothetically we can think of Nt.?(dt) as forming a histogram with respect to

unknown distribution Dt. The bins are [Dtj Dtl.,+ 1) and the number of values falling

within the ith bin is NAt(dt). In practice., the decision maker observes only these

histograms. i.e.. the historical samples.

We assume that Dtj = 0 and Dej.jt+1 = +oo, where Mb corresponds to the number

of bins in the histogram for time period t. Let Pt, = P bt (E [Di. Dt, +,)) be the

probability that demand in period I falls in the interval [Di,. Dt.1-1 ) under the fitted

distribution. Clearly, nt(dt)t, is the expected number of observations that fall in

this interval according to the fitted distribution.

The classical approach to identify the best distribution representing the observed

data is to use a goodness-of-fit test. The objective is to fit a distribution that "closely"

follows the observed data. Under this criterion. there should be a set of distributions
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depending on dt, which satisfy the given goodness-of-fit test. We denote this set by

Pt(dt). Throughout this paper, we assume that 'Pt(d) is compact for any t and d.

As defined in the dynamic programming field, a decision rule it at time t is a

function of inventory xt, which decides the ordering quantity at time t given x, i.e.,

yt = pt(xt). We formally state our problem in the context of a two-player game.,

which is also presented in Iyengar [28]. The first player chooses the decision rule pt

at time t and pays the cost. The second player chooses a distribution of D in Pt(dt)

after observing the order quantity, and receives a reward equal to the cost paid by

the first player. Therefore, the second player may select a different distribution for

different xt and pt. Given decision rule It, the set of all distributions player two could

choose is

QA" = {P(xt, t(xt)) E Pt(dt) over all xt. dt.

In (,0/t we merely express that for each xt, pt, dt., we might have a. different distribu-

tion. Moreover, a policy T is defined as the decision rule to be used at every period,

i.e., 7 - (pi,..,). A policy w also yields a set of distributions Q which can be

used by the second player or adversary, where

71 = Q"_ x .. X -x T (5.3)

As the second player will maximize her reward, given policy -r, inventory xt. and

realized demand dt, the cost paid by player one from period t to T is

V17(.xt. dt) = max EQDf Q0 t( .T T. /1 T(J") D T ) + 0 T-i1 -
t
ll&T+1(XT+1.- dT- -)j

where CT (x7, pr(xr) , DT denotes the total cost incurred in period r defined in (5.1).,

and VWei1(x 7, 1. dT+1) is the terminal cost. Also note that Q defines the distributions

D, r= t...T. Unless stated otherwise, we assume that Vr+1( ) =. We also have

x 1 p(,x) - Dr and d,+i d, Dr
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Since the first player will choose a policy that minimizes the cost, the optimal

cost from period t to T given inventory rt at time t., and the realized demand d, from

period I to t - 1, is

T

('t, dt) = min max EQ, L - + - 1(1r41, dT4-1)1
Q 7-=t

(5.4)

for t = 1... T. Note that the model iminimizes the maximum expected cost aris-

ing from any distribution in the set 'Pt(dt). which is known as the minimax robust

approach. We next state an optimality equation., which is essential to establish the

optimal control policies.

Proposition 5.1. The optinality equation of the robust model is

U(x! d) = t min Pti (Ct' (zt, d+ y, i) + (yt - DtI [dt, Dt ])

(5.5)

for t 1.T, where Pt(dt) s the set of distributions satisffyiny the goodncss-of-flt

condition at period t, and Ct(x yt. DtL) is defined by (5.1).

Proof It follows from Theorem 2.1 in Iyengar [28] when Pt(dt) is arbitrary. If 'Pt(dt)

is convex, the proposition can also be proved by the Von Neumann's minimax theorem

(see., e.g.., Von Neumann [53]). E

An immediate observation from Proposition 5.1 is that we minimize the worst

case expected cost over a set of distributions. Therefore. our robust stochastic model

may not be as conservative as the classical minimax models, where the worst case

is defined by the realized demand instead of distribution. e.g., the minimax model

discussed in Section 2.4 of Notzon [38].

Note that the Bayesian inventory models assume a prior demand distribution, and

the posterior distribution at time t is obtained by updating the prior distribuition using

dt, e.g., Iglelhart [27] updates the demand distribution belonging to the exponential

and range families after observing realized demand information. Our model only

requires the set of distributions P(dt) to be a function of the realized demand dt.
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Therefore, we can define it as a singleton updated by a Bayesian rule. In this case,

the robust minmax model is reduced to a Bayesian inventory model, which indicates

that the Bayesian models are special cases of our miimax model.

Proposition 5.1 also gives us an interpretation of the robust model from a risk

measure perspective when set Pt(dt) is convex. Ahmed et al. [1] establish the corre-

spondence between coherent risk measures and minimax models over convex sets of

distributions. From this perspective, our minimax robust model essentially minimizes

a coherent risk measure with respect to the total cost. If we consider Pt(di) = Pt for

any de and t, then our minimax robust model (5.5) minimizes a coherent risk measure

in any period t and it reduces to the model considered in Ahmed et al. [1]. In the case

when the set of distributions in our mimmax model depends on demand realization

dt, our robust model is to minimize a coherent risk measure in every period t. The

risk measure we consider in period t is updated by the realized demand in previous

periods. Intuitively, if the decision maker lost a significant amount in the previous

period, he or she would tend to be more risk-averse in subsequent periods. Therefore,

it is reasonable to adjust the risk measure based on the realized demand information

dt.

5.3 Properties of Optimal Policies

In this section we study optimal policies of the general robust stochastic model (5.5).

Notzon [38] and Ahmed et al. [1] show the optimality of (s. S) policy when the

set of distributions in the minimax model is independent of the realized demand dt

(Ahmed et al. [1] also assumes the set of distributions is convex). Here we extend

the optimality of (s, S) policy to the more general model in (5.5).

We assume that the reader is familiar with standard concepts in inventory theory

such as K-convexity and (s. S) policies (see, e.g., Zipkin [55] and Porteus [42]).

Let us define

U(y., d) = ht (yt - Dt,)+ + bt (yt - D,-& + 1 (yt - Dli,, [dt. Dt~j]) (5.6)
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which corresponds to the expected cost incurred from period t to T if the inventory

level after receiving the order in period t is yt and the demand in period t is Dt..

Consider the function

f(y, d) = max UI(y, d)Pi.1
PEP(d)

Since optimality of the (s, S) policy follows directly from K-convexity, first we are

going to establish that the function f(y, d) is K-convex in y.

Lemma 5.1. If U(y, d) is I-convex in y for any gi'en d, then f(y. d) is a K-convex

function in y for any given d.

Proof. Consider the function

g(IU, d) =max UTP
PEP(d)

Note that f (y. d) = g(U(y. d). d).

We first show that g(U, d) is an increasing function of U for any given d. Suppose

that U1 < U) and g(U 1 . d) UTP*. Since P* > 0.

g(U1, d) = UfP* < UfP < g(U 2,. d).

Consider now the value of g(U + Ke)., where e is the vector with all entries of 1.

Let P* denote the maximizer of g(U + Ke, d). We have

g(U + Ke. d) = (U + Ke)TP* = UTP* + KeP* < g(U. d) -+ K. (5.7)

where the last inequality follows from g(U., d) 2 UTP* and eTP* - P* = 1 as P*

defines a distribution.

For any y 1 < Y2 and A E 0 1]., since U"(y, d) is K-convex in y for any given d, we

have

< (1 - A)U1 (yi, d) + A Ui(Y 2 , d) +, AIK.

'Note that here we drop subscript t in order to simplify the notation.
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As g(U, d) is increasing in U.,

g(U((1 - A)y1 + Ay2, d), d) <g((1 - A)U(y 1 . d) + AU(y 2., d) + AKe, d).

It is straightforward to show that g(U., d) is a convex function of U, as it is the

maximum of linear functions of U. Therefore.

A)g(U(yi. d). d)+-Ag(U(y2. d)+Ke, d).

According to (5.7) we have

g(U(y2 , d) + Ke, d) g(U(y 2, d). d) + K.

As a result, it follows

g(U((1 - A)yi + Ay2, d). d) < (1 - A)g(U(y 1. d), d) + \fg(U(y 2. d), d) - AK.

and therefore f(y, d) = g (U(y, d), d) is a K-convex function in y.

Base on this property., we show the K-convexity of the cost-to-go functions.

Proposition 5.2. If V,1(xt+,. dt±1) is a K-convex function in. xt+l for any fixed

dt,1, the cost-to-go function V'i (xt, dt) is a K-cnvex function in x- for any /ixcd dt,

and for any t = 1. T.

Proof The proposition is trivially true for t = T + 1. Suppose that the proposition

holds for period t + 1, and consider period 1.

To simplify the notation, let us define

f tyt. dt) = cty + max > Pt. [ht (yt - Di -)* bt (yt - Di )
PtO -Pt(dt) 

5d8)
+0Vt+1 (yt - Dtl,,, [dt, Dt~j])] .
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Therefore, the optimality equation in (5.5) is equal to

V(xt, dt) - -ctxt + Min {K7(yt - xt) -- ft(yt, d)}.

According to Lemma 5.1, if V+ 1(xt+1, dt±,) is K-convex in xt, ft(yt, dt) is K-

convex in yt. Let St(dt) be a global minimizer of ft(yt, dt) for any given dt. Moreover,

let, s,(dt) be the smallest element of the set {st(dt) I st(dt) < St(dt), ft(st, dt)

ft(St. dt) -- K}. According to the properties of K-convex functions (see., e.g.., Zipkin

[55] and Porteus [42]), we have

d K - c +xt ± ft(St(dt), dt) if xt < st(dt),
V1rt(xrt, dt)=

-CtXt + ft (t, dt) otherwise.

K-convexity of V(xt. dt) follows from K-convexity of ft(yt, dt). E

From the structure of Vt+1(.), we can derive an optimal policy.

Theorem 5.1. A state dependent (s. S) policy is optimal for the robunst stochastic

model. More preciselyi, for any t and dt, there exists St(dt) and st(dt) such that

St(dt) -xt unils are ordered in period . if xt st(dt) and no order is placed otherwise.

Proof. The structure of the policy follows directly from the proof of Proposition 5.2

and general theory of K-convexity (see. e.g.., Zipkin [55] and Porteus [42]). D

If there is no fixed cost. then VI( xt, dt) is convex in xt for any t. Therefore. a state

dependent base-stock policy is optimal., and the base-stock level given the realized

demand dit is St(dt).

A drawback from the practical point of view is the fact that st and St depend on dt.

We next characterize a special case when this is circumvented. Suppose that dt and dt

denlote two different demand realizations from period I to t - 1. Let us assume that if

demand realizations in periods I to t-1 are dt or d', then the same demand realization

in period t to T generates the same histogram in any period t, ..., T. Then vectors

dt and d' correspond to the same (s. S) levels. To formalize this property, let st(dt)

and St(dt) (respectively st(d') and St(d')) denote the (s, S) levels corresponding to
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history dt (respectively d'). For any T > t, let the vector [dt, dt. dei. . dr_1 denote

the realized demand up to period T - 1 where the demands from periods 1 to t - 1

are atggregated in vector d, and the realized demand in periods t to r - 1 is labeled

by dt, d, ... , d,-,1 respectively.

Proposition 5.3. Let Vr+1(Xr+1,dT+1) = r+1(3r+1,dI+, ) for any XT+1, dr+1,

d+1,, and consider any 7= t,...,T. Suppose that realiations dt and d' give the

same number of samples in interval [ D7,r 1 ) for any i as long as the realiZed

demna'nd ii periods t to T - 1 is the same, i.e.,

Nl(d,. [dt,. dt+1. .. , d,_1]) j([d't, dt 1, d1. d7-1])

for iany i and any rcalization d, dt+1 ,. . -1 ] of [D-1 D+1.D... _. Then we have

st(d) - st(d'), St(dt) = St(d'). and V)(x, dt) = V)(z 1 , d') for any Xt.

Proof. Consider period T. According to the assumption stated, NT.(dT) -- NT.(d)

for any i, and hence we have n(dT) = rIT(dT) and PT(dT) = PT(dT). By assumption

on V1+r(-), we obtain ST(d'r) = sT(d') and SI-(dr) = ST(d+) from Theorem 5.2.

Moreover, the result Tr(XT., dT) = Vr(XT, d') follows from (5.5).

Suppose that the proposition is true for any period T > t, which implies that

Vt+(xt,-I. [dt, Dci]) = ,-I(Xt+1, ['d. Dt,]) for any .vt+I and i. Moreover, we have

Nt. (dt) N 1j(d') for any i. which implies nt(d) = nt(d') and Pt(dt) =Pt(d').

According to Theorem 5.2 and (5.5), the results hold for period t. D

Suppose that we use the same bin intervals [Dt.j, Di+,1) for any period t in the

planning horizon. Furthermore, let us assume that we update the histogram in time

period t only based on the realized deniand in periods I to t -1, or, for example, given

a fixed n, we update the histogram in time period t only based on realized demand in

time periods t -n through t - 1. Observe that these two scenarios do not allow any

forecasting based on the just realized demand. From Proposition 5.3, it now follows

that the nuniber of different (s, S) levels at time t cannot exceed the number of bins

to the power of t. This observation substantially reduces the computational burden.
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5.4 Robust Models Based on Chi-Square Test

The most widely used goodness-of-fit test is the chi-square test (see. e.g., Chernoff

and Lehmann [12]) with the statistical test

(NX 6(d ) - nt(d )2 < t T.
11t(dte)Pt,.i /t

where parameter x7 controls how close the observed sample data is to the estimated

expected number of observations according to the fitted distribution (Pta)i- .

More specifically, suppose that k is the number of bins, c is the number of esti-

mated parameters for the fitted distribution (e.g.. c = 2 for normal distributions due

to the mean and variance), and consider the null hypothesis HO that the observations

are independent randon samples drawn from the fitted distribution. Chernoff and

Lehmann [12] show that if HO is true, the test statistic converges to a distribution

function that lies between the distribution functions of chi-square distributions with

k-I and k-c-I degrees of freedom. Let a denote the significance level, and consider

x such that F( _ 1.1 ) = 1- a where F(x) is the distribution function of the

chi-square distribution with k - 1 degrees of freedom. It is often reconnended that

we reject the null hypothesis at the significance level o if the test statistic is greater

than \ __ (see, e.g., Law and Kelton [29]). In our context, k = Mt and a, whose

interpretation is as above, is given by the decision maker.

Since Pt_. should define a probability distribution, we have E Pt.; = I and Pth- > 0.

Let P, denote the vector of (Pt )j. The set of distributions that satisfy the chi-square

test is

(Ni j(de) - np(di)Pi )2 < .Th

P,(dt) - Pt A1Pt = b Z <(dt) PP>0 (5.9)
nij(dt)Pt ~ t09

for any t = 1, ... , T. The linear constraints AtPt = bt capture at least the fact that

E Pt.i - 1. They can also be used to model more complicated properties of the

distribution set. such as constraints on the expected value, any moment or desired

percentiles of the distributions. It is straightforward to establish the compactness of
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Pt(dt).

We next give an alternative optiniality equation that exploits the structure of

(5.9). \Ve first provide an alternative characterization of Pt(dt). We assume that

every norm is the Euclidean norm.

Lemma 5.2. The set of de-mand distributions 'Pt(de) defined in (5.9) is equivalent to

the projection of the set

Qt) AtPt = bt, N t(d)2Qtji -- nt(dt)2 < nt(dt)\jt

on the space of Pt.

Proof. Since Ej Pt, = I and E, N(dt) = nt(dt)., we have

=5 Nt I (dt)2_
nt(d,)Pt

Ntl(dt)2

nt(dt)P,

- 5 2NI (dt) + Ent(d)Pt,

- nt(dt).

As xJ and nt(d) are finite, we have Pt, > 0 for any i. Therefore,

N t. t (d t) 2- nt(dt) < x ;
nt(dt)Ptik

is equivalent to

Nt,i(dt)2 Qt , - nt(dt)2 < nt(dt) x K Qt.j.
tIPt. i-

Pti. Qti > 0.

Obviously, the constraints - < Qt, and Pt. > 0 are equivalent toPt, tj>0ar qiaett

Qti]
>- 0.
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Note that the eigenvalues of the matrix

Pt.1 + Q ± (Pr, - Qi) 2Y2 4

therefore the positive sernidefinite constraint is equivalent to

Pt, + Qt, )(Pt. -Qt,)2 44> 0

which proves the proposition. L

Lemma 5.2 shows that the set Pt(dt) can be defined by a set of linear and second

order cone constraints (see., e.g., Lobo et al. [31]). Note that the second order

cone constraints are a special class of positive semidefinite constraints and they have

better conputational properties than general positive semidefinite constraints. This

alternative definition of the set Pt(dt) also suggests a compact optinality equation.

Proposition 5.4. The optim(ality equation of the robust stochastic tmodel (5.5) is

equivlentto

I(xt.,dt) in1
ytUt.pt.ut,At

KI(yt - xt) +ct(yt - xt) -- pbt - 2( tivslt.,(dt)

pt - r t Atlj - ]t< pT - Uti -I-

Ut, > ht (yt - Dth) + &V41(yt - Di, (dt. Dt])

UtT1 > bt ( y

Yt > Xt,

(5.10)

for any t = 1. .... T.

Note that this is not the standard optimality equation since /t+1 () is present in
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constraints and not the objective function. We use it later to obtain computationally

tractable control policies.

Proof. The optimality equation defined in (5.5) is equivalent to

V(xt, d) min
t rt ,Ut

S.t.

K i(yt - Xt) + ct(yt - art) + max P,it, ,
Pt EPtd)

U t, > h (yt - Dti) + OV't+1(yt - D [dt. Dt,i])

U., T bt (yt - Dt ) + Vt+1(yt - D di., Dj)

According to Lemma 5.2. the maximization problem maxp, -rPt) ,

second order cone problem and hence it is equivalent to its Lagrangian

minl p Tb - 2 ut, N ,i(dt) + At (?t(dt)2 + nt(d)lt)
p,ut, j

pt - Ut.,;At.1 - At
S. t. < p7' - UtIAt,, + At for ever

for every 'i

for every i.

(5.11)

Pt,i~ti is the

dual

(5.12)

y t,

where Ata denotes the ith row of matrix At (see. e.g., Lobo et al. [31]).

Note that (5.10) is obtained by replacing the maximization problem in (5.11) by

(5.12). Therefore. the proposition is equivalent to proving that problem (5.10) is

equivalent to problem (5.11). Let z* and z" denote the optimal values of problems

(5.11) and (5.10), respectively.

We first show that z* > z 4. Let y*, U* and P* denote an optimal solution for

problem (5.11). Problem muaxptsp-(dt) Z, P ha s a finite optimal value if we set

Ut., to U*i. Therefore, there exists an optimal solution p*, u*, and A* for its dual.

problem (5.12), and the corresponding optimal value is z - K]I(y* - xt) - ct(y* - at).

Obviously y*. U*. p*, u*, and A* is a feasible solution to (5.10) with the objective

value z*, and therefore we have ;> z.

It remains to show z* < z'. Let y*, U*, p*, u* and A* be an optimal solution

for problem (5.10). Problem (5.12) with Uti = U*, has a finite optimal value, and

therefore the problem naxp,-p,,(d) Es PtLU* has an optimal solution P* with the

optimal cost 4- K]I(y* - -t) -ct(y* -xt). Since y*. U*, and P* give a feasible solution
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to problem (5.11) and the corresponding objective value is z. we have z*<.

5.4.1 Computation of (s, S) Levels

Next we g-ive a computational approach to compute st(dt) and St(dt).

Theorem 5.2. Let St(dt) be an optimal solution to the miization problem

min
ytUt pt .utt

CL] -yI p/b - 2 u3,iit~I,i(dt ) + A (nt(dj )2 nt(dt ))

s.t. Pt At.i - Ut.1 - A t < pTAt,, U. + A

ULti > ht (yt - D 1 ) +- OV1(yt - Dt*, [dt, Di])

U. ; li bt (Dt.i - yt) +V OV--i(yt - Dti, [dt, Dtj])

for every I

for every i

for every i.

and let st(dt) be the smallest element of the set

{st(dt) I st(dt) < St(dt). ft(st. dt) = ft(S, dt) + K}.

where ftyt. dt) is defined by (5.8).

A state dependent (s. S) policy is optimal for the robust stochastic 'model (5.5)

with Pt(d) defined by (5.9), and the (s,S) leIlcis arie given by st(d ) and St(dt)

respectivcely. If there is no fired cost, a state dependent base-stock policy is optin al,

and the base-stock level given the realized deina ad dt is St(d).

Proof. The minimization problem to calculate St(di) follows from the alternative

optimiality equation (5.10). D

Consider the models where the historical data used for period t is independent

of the realized demand from periods 1 to t - 1. i.e.. the number of observations Nt,

in the ith bin and the total number of available observations nt are constant for any

realized demand dt. Therefore. the set of distributions that satisfy the chi-square test
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is defined by

Pt Pt AtPt = b, (; -. Pt > 0 t = . T.

In this case, the optimality equation of the robust model is reduced to

V(xt) = min max
Yt !Xt Pt &'P {~zPti (cIxt, yt, D1g) + 01 7,/-i (yt - Dt.)) } t 1.T.

(5.14)

where Pt and C,(xt. yt, Dt.) are defined by (5.13) and (5.1) respectively.

Alternatively, it can be written as

+-iA, (nt + n xA, )

pf -_( UtjA,, - At 7 ,s.t. < p7 - UL7At, + At

Ut[i 2 ht (yt - Dt, ) + 0+1(yt - D )

>tt > bt (Dte - yt) + 0+1-(yt - Dt.j)

Yt > xt!

for every i

for every i

for every i

(5.15)

for any t = 1, ..., T.

The corresponding optimal (,s, S) policy levels are also independent of the realized

demand dt.

Theorem 5.3. The (s, S) policy is optimal for the robust stochastic model (5.14). In

particular, let St be the optimal soluttion to the iniization problem

min Ct
ys,Ut,pt.ut,At

S. t.

yt +it t

tpAt.
2 t

2 uto ~ I- s+A (n7+n-x-

Uts At
L . 1

< pfA.,

Ut> > h (y, - Dt ) + 01/(yt - Dt)

Ult 2 b (Dtei - Yt) + 0%+ 1 (yt - Dtj)

- Ut + At for every i

for every i

for every i,
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V (x t) = min.
yt,.Ut pt ut.At
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and let st be the smallest ele'ment of the set

{st st K St. ft(st)= ft(St) + K}

where

ft ( y) = ct yt + nax Pti (ht ( yt - Dti)' + bt ( yt - Dtia|- + ,Vt+1yt - Dtri)]

The policy is to order St - xt liits in period t if xt < st, and no order 'is placed

othelis,1eP.

Without fixed procure ment cost, a basestock policy is optimal. that is. St - xt units

are ordered in period t if xt < St, and no order is placed otherwise.

5.4.2 Convergence of Robust Models Based on Chi-Square

Test

Up to this point we assumed that the bins are given. In this part we shed light

on the robust models based on the chi-square test with varying number of bins and

their sizes. In particular. we explore the case when the number of samples increases

and accordingly the bin sizes tend to 0. The nlain results concern with such a case

when N2 also coiverges to 0. We show that the cost-to-go function of the robust

model converges to the cost-toc-go function of the nominal distribution under mild

technical assumptions. In a special case we are able to establish a rate of convergence

result. The convergence studv does not only provide the asymptotic performance of

the robust model when the sample size approaches infinitely, but also indicates to

select small bins and A,2 values in the presence of a significant number of samples.

In this part our starting point is that the demand random variables D1 , D9. .. , DT

are subject to some multivariate distribution. Although the distribution may not be

known. we assume that histograms pertaining to the robust model are obtained from

samples from these distributions. We study the behavior of cost-to-go functions as

the number of samples increases.
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Let d =[ 1 ,. ., _1, and let F (D -- dt) denote the conditional cumula-
tive distribution function of demand D1 given realized demand dt from periods 1 to

t - 1. Assuming that the conditional distribution function is known for each t and dt,

we can solve the corresponding dynamic programming problem, and obtain V (xt., dt)

for each period t.,

VU(x 1 , d i) mi (Ct (xt, y tDt) +Vt+1t--D,[dt, Dt])) dFt(Dt d1 =d),
yIt>Xt Dt 

where t - 1, ... T.

We investigate how accurately the value functions V(xt, dt) of our robust model

approximate the true cost-to-go function V(xt, d1 ) if histograms are based on samples.

We start by analyzing the convergence of the robust model as converges to

0. Let V (rt. dt) denote the cost-to-go function of the stochastic model with the

distribution defined by

P ( r D d ,) =) T t. T. (5.16)
n/r'(dt)

Formally.

Vt(xt, dt) = win Nt(dt ) (Ct(x, yt, Dtj) + 't+1 (yt - D. 1 ., [d, Dt ] )'iYetx n -C t(dt)

for any t= 1, ... , T.

Proposition 5.5. If V+(-) = Y-1(+) then for any xt, d, and t, we havc

lim V'(xt1 dt) -V(xt dt).

Proof The proposition clearly holds for t = T + 1. Suppose that it holds for any T

such that r > t. To simplify notation., let

UtI(xt. yt) = Ct(xt, y, D1 ) + Vt+ ((yt - Dt.j)+, [dt, Dtj]) (5.17)
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and therefore

V (xt, dt) = min max
yjt;>xt Pt --Pt(dt)

Pti U (It, y)

According to the definition of 'Pt(dt) in (5.9). we have

Pt(dt) c Pt
(NTt (dt) - nt(d)P. 7)

2  
2

<t ki for

Let P and Pt.1 correspond to the solutions of = , i.e..ft Pt,

N (d)Pt7 i(dt.) = - 7t~
nV. (dt)

N (dt)Ptlj~dtl) =
n' (dt)

2ot(dt) 2nj(de)

xVt 4N (de)xy +(x - )2

2nt(dt) 2nt(dt)

It follows directly that

t(dt) C 5t(dt) {Pt(dt) _PEt(dt) < Pt < Ptj (dt) for every }

Therefore we obtain

ve(xt yt )o

max
P t X(d)

P,,j dt)Ut.1 (xt, yt) +

Pt, iUt.i(xt yt)

E Ptj. 1(d )Utl., (Xt. yt).

i:vIt (x,.yt )>

Minimizing both sides over {xt t > xt} yields

,(xt,. de) = nin inax

< min YS -X i :U i(xt!)0

{Pt,i (xtt y4t)

Pt. (d)Ui(r. yt) +
i:[Ut"(V 1t>0 ) d)O ~ 1 t
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Let y* > xt be a minimizer of Vt(xt, dt). Then

U(xt, dt) < I:
i:Ut,i(xt y) b e

Taking the limit on both sides yields

Vr>t

+ t (dt)Ut.(xt, y*)
i:U-,t,i (:Ityt) >0

Note that
Nti( d tlim Pty(dt) = lim Ptj (d) -

x - x?--) o nt (dt)

and by the induction assumption

lim U y)= C1(, y*, Dt1 ) + 01 ((y* - D + [d, DJ) .

By the definition of y*

< U(zt, dt).

1,im -,(xtdt)t
X2 -o,

Vr-t

Since the distribution defined by (5.16) is in Pt(dt), it is easy to verify that

1(x t. dt) < 1(3t. dt). Therefore, we have

lim >t(t, d )
N -O.Vr>t

= l(zt , dt).

Now suppose that for each period t., we have a sequence of samples. For any

k =1 2.... we have the set of in available samples for period t.,

d = d .. d .
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The samples are drawn from the distribution Dt conditioned on realized demand dt.

Therefore, given realized demand dt from periods I to t - 1. and the kth sample set

d' for period 1, we can construct a histogram such that the total number of samples

selected in the histogram is n'(dt), the boundary of bins are {D .. D k and

the number of samples falling in the ith bin [Di, D 1) is denoted by N\k(dt). This

histogram naturally defines an empirical distribution with the conditional cumulative

distribution function F,' (D at = dt) defined )y

i*(Dt)

F/ (D at - dt) = N)(d,),

where i* = i*(Dt) is such that DLi < Dt < D k

Note that the kth set of samples d", t 1,. T. also defines a robust model

Vk(xt, dt) based on the just described parameters nt(dt) and N'(dt). In the remain-

der of this section we analyze under what conditions V(xt., dt) converge to t(xt., di),

which denotes the cost-to-go function of the stochastic model with respect to true dis-

tributions. We always assume that the distribution of Dt has finite support [0. D"]

for any t. and r41(-) = Vr 1(-) = Vr+1(-). We first study the case with general

distributions, and we derive stronger results when the distributions are discrete.

General Distributions

Ve first show convergence under general distributions. We only need the distribution

functions of samples to converge pointwise to the distribution function of the true

distribution and k 2 0.

Proposition 5.6. Suppose that for any dt and t we have

lim FtA Dt at = dt0 Ft Dt at = dti

for etvery Dt. If there is no fixed procurement cost, the'n

limn lm Vk(x dt) = V(xt, dt).
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Furthermnore. the convergence is uniform wuith respect to k.

In the proof, we need some concepts from measure theory and a known result.

A sequence of measures Ik converge to a measure p, 'e akly if f fclyI j felp

for every continuous bounded function f. A sequence of measures Ilk converge to a

measure p setwise if lk(B) ) p(B) for every measura)le set B.

It is well known that convergence in distribution does not imply setwise conver-

gence of the underlying probability measures. Indeed, convergence in distribution is

equivalent to weak convergence. It is not difficult to see that setwise convergence

implies weak convergence.

The following result can be found in Royden [45], page 232.

Proposition 5.7. Let p1, be a seque nce of measures converging seti'se to a measure

[. Let {f}k {g}k be two sequences of measurable functions contierginq pointwise

to f and g respectively. Furthcrm ore, let fk| < Y for ertery k and limlk f gkcl =

fgdp < cc. Then

lijn fkdIp = fcip.

Next, we will give the proof for Proposition 5.6.

Proof of Proposition 5.6. Let UA(xt, dt) denote the cost-to-go function of the stochas-

tic model with respect to the empirical distribution Fl (D = d, for any 7 > t.

As shown in Proposition 5.5 we have

hlm V dt) = E ,(z, . d)
0.'>t N

tmin )C,(z, ytDt)+t9 (yt - D dtDt]) cF, (Dt a, d .

Therefore., it is sufficient to show that

lim #(, d) = V(xt, dt).
k 1
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Let us fix ro. Then under an optimal policy the inventory is always within

T T~

XUZD max m~~faxI
xO - D DT .

T=1 T=1

(5.19)

Therefore we can assume that yt and xt = yt - Dt are always within this range for

any t. It is easy to show by induction that V.,(xt. dt) < M1(xo) < c, where M(xo)

is a constant depending only on *zo.

Note that as VT+ (.) = Ir (-) - VT+ (.), the proposition holds for period T + 1.

Suppose that for any T > t. E7(xr, dT) - VT(xT, dT) pointwise.

Let

ff(xt, ytI dt) =

ft(,xt, yt, dt) =
.. /o

Ct(xt, yt., Dt) + Hv; (yt - D , [dt, Dt])) dF (Dt at = dt)

(Ct(xt. Ut. Dt) + Vt+ 1(yt - Dt. [dtDt])) dFt (D at= dt)

(5.20)

Note that If (xt. dt) - minYt >-t ff (xt, yt, dt) and ,t(xt, dt) - minI u1.a ft(xt, yt. dt).

Let ph be the Lebesgue-Stieltjes measure based on Ft' (- at = d) and we

define similarly p,' with respect to Ft (. at = dt By assumption, F,/ converge

pointwise to Ft at any point. It is now easy to see that as a result pt. converge

setwise to p.

Let now gt k(Dt) Af(zo), i.e., a sequence of constant functions, and

fJt (Dt ) - Yt I (yt - Dt, [ dt Dt]).

By definition we have Let also gt(Dt) = M(o).

gt,k converge pointwise to gt and by the induction assumption ft "'(Dt) converge

pointwise to j " (D,) defined by f"t '(Dt) - ±t+1(t - Dt. [d,. Dt]).

Furthermore. f gt,_d,, = 1(xIO) f gdp'd,. Thus we can apply Proposition 5.7,

2y d([a. b]) = F (b '1t

seltation theoren.

- Ff Qa d1 = dt and then pd, is extended by the R.iesz repre-
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which implies

lim 1-D"X

D' ax

t+1(yt - De, dt., Dt])dFt (D at = dt

Note that this holds at every y, and dt.

Since setwise convergence implies weak convergence and since C!f(xt yt, Dt) is con-

tinuous and bounded, by weak convergence we obtain

-D ax
= d) = /0

Dmax

lim
k--x- 0

Therefore, we have

hl ff (zt, yt , de) = ft(xt, yt, di).k -oov

Note that if finite convex functions fk(x) - f(x) pointwise, then fk(x) - f(x)

uniformly on each compact subset of the domain (see, e.g., Rockafellar [44]). Since

there are no fixed costs., both f/(xt, yt de) and ft(xt, dt) are convex in both x,

and yt. Therefore, given d, Jf(zt, Yt, dt) ft(xt., yt, dt) pointwise implies that

f, (x, , d ) ft (xt, yt., d) uniformly.

Let y<(xt, dt) and y*(xt, d) denote the minnzers of 1j(zt, dt) and V(zt, dt),

respectively. Clearly,

1 k ( d)t, -t f (It. yt ( )t, dt), dt) and t(t. dt) = ft (xt, y (xt di), dt).

According to uniformi convergence, for any 6 > 0. there exists a positive integer

K such that

f(xt, yt. dt) - ft(t. ty, dt) <

for any zr, yt, and k > K. Therefore,

ft(xt, y (xt, di), de) - x < fJ(xt, y (xt, di), dt) = V-k(t,).
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Note that f1(x1 , y'(xt. dt), dt) > ft(xt, y*(xt. dt), dt) =V,(. d1) and therefore we

have

i(xt,. dt) - C = ft(xf (xt, dt), dt) - , < 1 (xt, dt).

Also note that

and

f/(xt, y(xt., dt), dt) < ft(xt, y*(xt. dt), dt) + - Vt(xt, dt) + c.

Thus

As a result, for any xt and k > K, we have

Y|(xt d- --i (xt, dt ) < C,

i.e.. V'k(xt, dt) -p 1e(xt. dt) uniformly for any given d1 , which completes the induction

step. E

If Ft is continuous. then the following result is obtained.

Corollary 5.1. If Fk:

dt and t, and Ft 1(. d

at = d) convewrg 1in d'stribution to Ft (. 1 = d ) for any

d1 ) is continuous for any dt and t, then

lim lim V (xt-, dT) = V,(xt, dt).
kO. x V0Trt

Proof. The definition of convergence in (listribution implies that Ff (- at
verge to F

by assumption F,

pointwise to Ft (-

is continuous. Since

= d) is continuous, it follows that Ef ( d1 = dt ) converge

dt ) and thus we can apply Proposition 5.6. E

Now suppose that the demand distributions for each time period are independent,

and let F1(Dt) denote the cumulative distribution function of Dt. Let {dtj, d 2 , ...}
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denote a sequence of random samples drawn from the true distribution Dt. We can

define the kth sample set for period t as d4 = {dt,1 .... dt,j}. Consider the robust

model independent of realized demand. The histogram for time period t is based on

d' with the bins' boundaries being all distinct elements in this set. The corresponding

empirical distribution is defined by

Ft (Dt) - x dtj : dXI < Dj 1 ..., k}

Let V(x ) denote the cost-to-function of the robust imodel defined by the histogram

based on the kth sample set, and let V1(xt) denote the cost-to-go function correspond-

ing to the stochastic model given distribution functions F(Dt).

Corollary 5.2. If Ft is continuous and there is no fixed procurrement cost, then

lim lim V(xt) = V(xt) a.s.

Proof. As k -), the Glivenko-Cantelli theorem (see, e.g., Billingsley [9]) shows

that F,"(Dt) converges to Ft(Dt) uniformly a.s. at every point Dt where Ft(Dt) is

continuous. The result follows immediately from Corollary 5.1. D

Discrete Distributions

Under the setting of Proposition 5.6. consider the case of Dt being subject to a discrete

distribution with finite support {D. 1, . Dt, t } C [0. DI""], and let

P (b = DtI cit = dt = p) (dt).

Without loss of generality, we let this finite support be the boundaries of the bins for

all the histograms associated with time period t. A result similar to Proposition 5.6 is

next proved for the robust stochastic model with both fixed and variable procurement

cost.

Proposition 5.8. Suppose that for any de, i and t, N\(de)/n"(de) converge to
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ptj(dt). Then 'with fixed and variable procurecntent cost, we haue

lim lim Vt (xt, d ) = Vt(xt, dt).
k-o y-oVr;>t

Proof. Consider ff (x t . yt, dt) and ft(xt, yt, dt) defined in (5.20). Following the proof of

Proposition 5.6, it is sufficient to show that ftk(xt. yt, dt) ft(xt. yt, dt) uniformly for

any fixed dt. under the induction assumption that i/(oa, d,) - P (x-, dT) uniformly

for any given d, and T > t.

As k -ox Nf-(dt)/nt(dt) pt.(dt) uniformly with respect to i (note that there

are only finitely many is). That is., for any e > 0. there exists a positive integer K1

such that
N't (dt)
ng (dt)

Iri(dt) < C

for any i and k > K1.

The induction assumption implies that for any e > 0., there exists a positive integer

K, such that

t (xm+i. dt+ ) - 1t+i(xt+1. d1ti) < e

for any t+1 and k > K2 .

Consider k > max{ K 1. K 2}. Given dt, for any x, and yt we have

f (xt, yt. dt) - ftxt, ty, dt)

t (d )

i1 n ( e
ht - Dt i ) + bt(yt - DtY'- 0 + I (yt - D , D i |)

pZtj(dt) (ht(y, - D, )
i=1

(ht(yt - Dt,1)+

+0
n4"(dt)

+ bt(y, - Di)-- +- 0 I (yt - D , [dt. Dt, ]))

-t.(dt)

According to (5.19), 1ht(yt - Dtg) + + bt(yt - D 1)- < -M'(xo) < oc where M'(xo) is
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a constant depending on the initial inventory zo. Also note that

jz (dt)/ni(dt) - pt. (dt) < e,

and hence

(ht(yt - Dt )+ +- bt(, - Dt ;)- - pAli (d')
=1 A

Alt

< M'(Xo)

= M1,M'(zo)6.

Since yt and Dtj are bounded again by (5.19), V (xt+1, dsi) < MI(o)

note that

pt~j(dt) = 1,
i 11

E41 (xt+1, dt+1) - t+1 (xt+1., dt+ 1) < C.

N (dt) /nA (dt) - ptli(dt)

Ne obtain

(1(yj - D,. [dt. Dti])

Alt

< M(o +

Dtj, [dt, Dt~j]) n (de)
nk (dt)

- pt,.(dt)?t+ Dtj, [d D ])

- ptlj~df)

V (y

e = (MtM(xo) + 1).

As a result.,

f(xt., yt. dt) - ft(xt., yt. dt) K Mt M'(xo) + (AIM(xo) + 1)k,

and hence ft(xt, yt, dt) converge uniformly to f(xt , yt, dt).
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So far we assumed that xJ converges to zero. Next we establish a convergence

result for any fixed x2. We must require that the number of samples goes to infinity.

Proposition 5.9. Suppose that for any d , i and t, N" (dt)/n4(dt) converge to

ptj(dt), and that the number of samples nk(dt) conc'rges to infinity. Then, for any

fixed , 2 and with fixed and var'iable proc urem ent cost we have

hlm 7 '((14, dt) = Ilt(xt, d,).

Proof. Since V (-) = Vr+1 K). the proposition holds for period T + 1. Suppose that

for any T > t, V'(,, d,) - .(x,. d,) uniformly for any fixed d,. Consider period t.

According to the definition of the distribution set Pf(dt) for A.," (xt. di), similarly

to the proof of Proposition 5.5., we have

k , -k -k= pt k( < P f
Pt"(dt,) c- P,(dt) = tP (d,) < P GPdj for every i*

where

Pk (dt.-n(d) - (d )

-k (dt)
-(d) (dt)

Ptl~dt -_ITn (dA)

(5.21)

x 4Nid~ +9 x2)2

2n k (dt) 2n k (dt)

2 4N t,(dt,), (t )
+ - t + "(

2nte n~

Consider VI(xt, dt) as defined in Propositions 5.6 and .5.8, which denotes the cost-

to-go function of the stochastic model under the empirical distribution. Note that

Yk (xt, dt) V (xt,. dt)., and hence

lim 9,k(xt, d ) < lim Vrt(xt, dt ).

Proposition 5.8 shows that limk-.c 9 7xt, dt) = 1t(x, dt) whenever (dt) (dt)
rtldt)

and we obtain

Ilt(xrt, dt) < lim t ~Xt, dt)

k-o

Also note that N,(dt)/,n(dt) - pt.i(de) and + -+ 0 as
2K dt) 2K t) )a



k -+ cx. Therefore.

lim j P(dt) = limi Pt'. (dt,) = pt, (dt).

Following the same argument as in the proof of Proposition (5.5), it is easy to see

that

which completes the proof.

Now consider the setting of Corollary 5.2, where the demand distributions are

assumed to be independent, and the kth sample set is defined to be the first k elements

in a sequence of independent random samples drawn from the true distribution. Using

Proposition 5.8, we can obtain a result analogous to Corollary 5.2. We also establish

the rate of convergence.

Corollary 5.3. With fixed and variable procuremcnt cost, iwe have lim V tk(xt)

I7(xt,) a.s., and the rate of convergence is O(1/v).

Proof. The convergence follows from the Glivenko-Cantelli theorem (c.f. Billingsley

[9]) and Proposition 5.9.

Since IV,'1() = r+1 (*), the rate of convergence holds for time period T + 1.

Suppose that it holds for any time period r > t.

Consider the set of distributions P defined for the robust niodel V f(xt). The

definition in (5.9) shows that

,P D {Pt AtP, = bt,
N - kPt, i) 2

k Pt.,
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(Th - kPt )2

The inequality K I '-t is equivalent to

2k

Nk x2|M
k 2k

Therefore, the rate at which Pf shrinks to the single point

Pt = Pt, I
k

... Pt, Mt
k

is O(1/vk). According to the law of large numbers, Nf,/k converge to pt =

P(-, = D,.) exponentially (see, e.g., Billingsley [9]). As a result., for sufficiently

large k, PtA contains vector pt a.s.. and hence V1(xt) _ VA(2:) a.s.

As shown in (5.18),

V;(Xt) , (xt) K UT(jy*) + E a.s..

where (T(xt, y') is defined in the same way as (5.17)j and i* denotes an optimal

solution to V,(xt).

Note that

lim Un ,y)=Ct,xt, y*, Dts) + Of',41(y*- i *
k -

The rate of convergence of ULf(,xt, y*) is determined by the convergence rate of I(-)

and hence it is in the order of 0(1/ v).

:. a -k i 1), -k
According to the definition of P nd P in both and P convergre

to pt.j at the convergence rate of 0(1/ k). since NfG/k converge to pt> exponentially.
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Finally, note that

Vt(xt) = lim Pp UA(xt, y*) + Pt Y(xt, *)
k o

i: (x t ty *)<0 i:U (x t y*);> 0

We conclude that the rate of convergence of (xt) is in the order of O(1/,Vk). D

5.5 Computational Results

In this section., we describe computational experiments and present numerical results

to support the effectiveness of the minimax robust model based on the chi-square test.

As we have mentioned in the previous sections, the traditional approach is to fit the

historical data with a distribution and then apply stochastic inventory optimization

using the fitted distribution. The main objective of our experiments is to compare

performances of this separated approach and the studied minimax robust model with

respect to optimality and robustness. At the same time, we would like to assess

sensitivitv of the robust model to the choices of the bin sizes and ' parameters., and

provide an empirical approach to choose these values.

We consider inventory control problems without fixed ordering costs. Following

the notation in the previous sections, we let T denote the planning horizon and ct,

ht. bt denote the variable order cost, unit inventory holding cost., and backorder cost

for any period t, t = 1, ..., T., respectively. The demand distributions for any period t

are assumed to be i.i.d. In the robust model, we restrict ourselve to the case of equal

bin sizes and these, together with y2, are the same for every period in the planning

horizon. To simplify the notation, pair ( x2) denotes the choice of the bin size and

\2 in the robust model, where the first parameter 6 denotes the bin size.

The procedure of the computational experiments is as follows.

Step 1. Suppose that the underlying demand distribution has support {., 1,., D}.

WVe randomly generate a distribution among all distributions whose support is
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a subset of {0. 1. D}. In particular, we pick distribution

-P(Dt )-_ _

pi~~~ = P=5 =0

for any i 0, 1 .D, where Uj for all i are i.i.d. random variables uniformly

distributed in the interval [0, 1]. We refer to the distribution p = {pi} as the

true distribution.

Step 2. Generate n random samples according to the true distribution selected in

Step 1.

Step 3. Fit the samples obtained in Step 2 using Crystal Ball and then choose the

1 best fitted distributions according to the x2 goodness-of-fit statistic.

Step 4. Solve the standard stochastic inventory control problem with distributions

generated in Steps I and 3.

Step 5. Solve the robust inventory control model using a set of bin-size and x

combinations.

Step 6. Evaluate the total expected cost with respect to the true distribition p cor-

responding to the policies of the stochastic models and robust models computed

in Steps 4 and 5. We use this step to investigate the optimality of the robust

nmodels.

Step 7. The n samples generated in Step 2 define the empirical distribution p such

that

pi -
the number of times value i appears in the n samples

for any i = 0, 1,.., D. Let 6 = p - p. W-e generate mii randorn permutations

of vector J and denote the jth permutation of the coordinates by S3. Vector

P- = & + o1 also defines a distribution.3 Note that p is equal to p if o5-= 6,

i.e., when 65 is not permuted.

'If W- contains any negative component, we set -- to be the positive part of n3 plus a random

perrnutation of its negative part, and we repeat this process until p' > 0.
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For each distribution defined by vector nJ, we can evaluate the corresponding

cost for each policy computed in Steps 4 and 5. Therefore, we obtain t costs

for each policy and we report the conditional value-at-risk 4 (CVaR) at the 5%4

level of the m costs for each policy. The purpose of this step is to understand

the robustness of different approaches.

Let us consider a 10-period problem. The support for the demand distribution is

assumed to be the set {0, 1, ..., 29}, i.e., D = 29. The cost parameters et, ht and bt are

generated independently according to the uniform distributions within the intervals

[12,15]. [2. 5] and [22, 25], respectively. Following the computational procedure., we

first draw n = 20 samples from the selected true distribution. Fitting the samples

using Crystal Ball, the three best fitted distributions according to the chi-square

values are negative binomial, Poisson, and beta. The true distribution p, sample

frequency P and the three distributions are displayed in Figure 5-1.

Figure 5-1: True Distribution, Frequency and Fitted Distributions with 20 Samples
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Demand

In Steps 4 and 5 of our procedure, we compute the base stock levels corresponding

to different models: the stochastic model using the true distribution, the stochastic

model using the three best fitted distributions, and robust models with different bin-

size and x,2 value combinations. In particular, the following set of bin-size and \2

value combinations are considered: (3, 1), (3. 3), (3, 5), (5, 1), (5, 3), (5, 5).

As stated in our analysis, the robust model picks the demand distribution based

on the on-hand inventory after the order is received, i.e., the order-up-to level yt.
4 Given random variable X, the conditional value-at-risk at a quantile-level q is defined as

E[XIX < p] where p is defined by P(X < t) = q.
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Although we use the same histogram in each period, the demand distribution returned

by the robust model depends also on t. We use the robust model with the bin-size/)2

value (3. 3) to illustrate these properties.

In Figures 5-2 and 5-3, and Table 5.1, we use a simple representative sample of

cost parameters. Figure 5-2 shows the robust distributions for the last period t = 10

and the first period t = 1 when the inventory levels after receiving the order yt are 0

and 20 respectively. For both periods, the distributions returned by the robust model

for yt = 20 have lower probabilities in the region 15 to 26 than those for yt = 0. The

intuition behind this observation is that the robust model picks a demand distribution

maximizing the expected cost. For any possible value of the demand, we incur a

certain cost corresponding to Utj(yt, dt) defined in (5.6). Therefore, the robust model

chooses a lower probability for demand values with lower costs. Value yt = 20 is very

close to the demand when the demand falls in the region 15 to 26. The amount we

over- or under-order is low and hence the corresponding over- or under-order cost is

also low.5 Therefore, the corresponding costs associated with the demand values are

lower than the costs corresponding to other demand values. As a result, the robust

model assigns lower probabilities in these regions compared with the case when yt 0.

Figure 5-2: Demand Distributions Returned by the Robust Model with Bin Size = 3

and x2 = 3
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Demand

If we compare the robust distributions when yt = 20 for period 10 and period 1,

we observe that the probability for period 10 is higher for small demand values. This

*In this section. the over-order (under-order., respectively) cost includes not only the inventory

holding cost ht (backorder cost be, respectively) incurred in period t, but also the impact of over-order

(under-order, respectively) in period t based on the cost-to-go function V 1 (-).
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call also be explained by the tradeoff between the over- and under-order costs. In the

last period., the over-order cost is cio+ ho and the under-order cost is bio since we set

V+1(*) = 0. For any earlier period t < 10, the over-order costs are significantly lower

as we can carry the inventory to the next period and save the order cost ct, but the

under-order cost is bt + ct+l since we not only pay the backorder cost but also procure

the product in period t + I to satisfy the unmet demand in period t. When yt = 20.,

we pay the over-order costs when the demands are low (e.g., in the region 0 to 11).

and the under-order costs are incurred when the demand are high (e.g., in the region

21 to 26). As the over-order costs are higher and the under-order costs are lower in

the last period, it implies that the ratio between the costs for low demands and the

costs for high demands is greater in period 10 than period 1. This is the reason why

the robust model assigns higher probabilities for low demands in period 10.

Oil the other hand, the robust distributions when yi = 0 are almost the same for

the two periods with t = 10 and t = 1. In this case, we only have the under-order

cost no matter if the demand is higli or low. Although the under-order cost is higher

in period 1 than period 10. the ratios between the costs for low and high demands

are alnost the same for period 1 and 10. Therefore, the worst case distributions are

similar for these two periods.

The basestock levels computed in Steps 4 and 5 are displayed in Figure 5-3. For

any of the stochastic or robust models, the basestock level for period 10 is significantly

lower than the remaining periods. As explained before, this is caused by the fact that

the overorder cost is much higher while the underorder cost is lower in period 10

because of W-1 (.) = 0., and thus we should order less in that period. In addition.,

the basestock level for period 4 is slightly lower for most of the models since period 4

has the highest order and inventory holling cost while its backorder cost is relatively

low.

For the three robust models with the bin-size 3, the basestock levels are lionde-

creasing with respect to the 2 value. since the sets of distributions are inclusion-wise

increasing ill the 2 value. Ill our instances, the backorder cost is much higler than the

inventory holding cost. Intuitively, the worst case distribution should assign higher
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Figure 5-3: Basestock Levels Computed Using Different Models
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probabilities for high demand values. Therefore, the larger the x2 value is, the higher

the probabilities for high demand values in the worst case distribution, and hence

we should order more to minimize the worst case expected cost. As a result, the

basestock levels are higher for the robust models with greater -2 values. However, if

we set the bin-size to 5 for the robust models, the basestock levels are the same when

the x2 values are equal to 1, 3 and 5. This observation indicates that the basestock

levels are less sensitive to the x2 values when we have larger bins.

We use Steps 6 and 7 to understand the performance of different models. The

results are summarized in Table 5.1. The first four columns correspond to the results

for the stochastic models using true distribution p and the three best fitted distri-

butions, respectively. The next four columns show the results for the robust models.

Note that the last column corresponds to the robust models with bin-size 5 and x2

values 1, 3 and 5. These three robust models have the same performance for this

example as they have the same basestock levels. We show the expected cost for dif-

ferent models with respect to the true distribution in the first line, which corresponds

to the output of Step 6. In the second line, we report the output of Step 7, i.e., the

CVaR at 5% level for the costs of n = 1000 distributions generated by p plus random

permutations of p - n. For the purpose of comparison, the numbers in Table 5.1 are

calculated by subtracting the cycle stock order cost, i.e., (T ct z p from
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the original cost or CVaR, and normalizing with respect to that of the stochastic

model using true distribution.

Table 5.1: Performance of Different Models for the Instance in Figure 5-1

Stochastic Models Robust Models
True Best 2nd Best 3rd Best (5, 1 or
Dist Fit Fit Fit (3. 1) (3, 3) (3, 5) 3 or 5)

Cost 1 1.0595 1.1834 1.0582 1.0415 1.0211 1.0249 1.1511
CVaR 1 1.0486 1.1802 1.0511 1.0356 0.9774 0.9739 1.1662

Obviously, the stochastic model using the true distribution gives the lowest ex-

pected cost. The output of Step 7, CVaR, also indicates that this model is robust with

respect to perturbations in the input distribution as it has the third lowest CVaR.

which is only 2.61% higher than the lowest CVaR.

For the three stochastic models using fitted distributions, the models using the 1st

and 3rd best fitted distributions have a very similar performance. The best-fit case

has the best performance among the fitted stochastic models as its CVaR is 0. 2 5

better than the 3rd best-fit stochastic model and the cost is only 0.13% higher than

that. The performance of the model using the 2nd best distribution is much worse

compared with the other two. Its cost and CVaR values are at lest 12% higher than

the remaining two models.

The three robust models with bin-size 3 outperform all of the stochastic models

using fitted distributions in terms of both optinality (cost) and robustness (CVaR).

The robust models with bin-size 5 also have better values of the cost and CNaR than

the stochastic model using the 2nd best fitted distribution. In particular, the robust

models with bin-size/ 2 value combinations of (3, 3) and (3, 5) are significantly better

than the stochastic models using fitted distributions. They reduce the cost by more

than 3% and CVaR by more than 7% when comparing with the fitted stochastic

models. Among the robust models we prefer the model with bin-size/x 2 value com-

bination (3, 3), since it improves the cost by 0.38% at the price of a 0.35% increase

in CVaR.

Next we repeated the experiment from Step 1 to Step 7 for 10 times, i.e., each
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time with a different true distribution, demand data and cost parameters. Table

5.2 shows the average and standard deviation of the cost and CVaR values for the

10 data samples for the stochastic model using the true distribution, the stochastic

model using the best fitted distribution as well as the 6 robust models already consid-

ered. All robust models have lower average and standard deviation of cost and CVaR

compared with the stochastic model using the best fitted distribution. In terms of

both optimality (cost) and robustness (CVaR). the performance of our robust models

is better on average (smaller average) and more stable (smaller standard deviation)

than the stochastic model using the best fitted distribution.

Table 5.2: Performance of Different Models in 10 Instances

Stochastic
Models Robust Models

True Best
Dist Fit (3, 1) (3, 3) (3. 5) (5, 1) (5, 3) (5. 5)

Cost Ave. 1 1.0902 1.0412 1.0361 1.0499 1.0725 1.0597 1.0570
Cost Stdev. 0 0.0893 0.0210 0.0302 0.0330 0.0736 0.0511 0.0519
CVaR Ave. 1 1.0894 1.0014 0.9745 0.9746 1.0648 1.0281 1.0212
CVaR Stdev. 0 0.1142 0.0507 0.0327 0.0355 0.0917 0.0639 0.0618

The robust models with bin-size 3 have lower values of average and standard

deviation of both measures than the robust models with bin-size 5. Moreover, the

robust models with higher N2 values, e.g.. when x is set to 3 or 5. have lower CVaR

than those with x2 values set to 1. This observation agrees with our understanding

that increasing x2 values can improve the robustness of the models. However, it may

also affect the cost of the models. e.g., the average cost for the (3, 5) robust model is

0.8% higher than that of the (3. 1) robust model.

The robust model with bin-size 3 and x2 value 3 has the lowest average cost,

lowest CVaR, and lowest standard deviation of CVaR among all robust models, and

its standard deviation of the cost is the second lowest. This agrees with our suggestion

drawn from Figure 5-1: the robust model with bin-size/ 2 value combination (3. 3)

should be the best among the robust models.

Figure 5-4 shows the cost and CVaR values for the stochastic model using the best
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fitted distribution and the (3, 3) robust model in each of the 10 instances. The cost

values of the (3, 3) robust model are at least 7.5% lower than the stochastic model

with the best fitted distribution for instances 5, 8, 9 and 10. The improvement in

instances 9 and 10 even exceeds 20%. The cost values of instances 2 and 3 are almost

the same for both models. Instance 7 is the only case where the cost of the robust

model is more than 2% (2.04% to be exact) higher than the cost of the stochastic

model.

Figure 5-4: The Stochastic Model Using Best Fitted Distribution vs. the Robust
Model with Parameters (3, 3) for 10 Instances
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The values of CVaR for the robust model are less than one for 7 out of the 10

instances, they are very close to one (at most 0.04% higher than one) for the other

2 instances, and the largest value is 1.0150. On the other hand, the values of CVaR

for the stochastic model with the best fitted distribution is less than one only for 3

instances and the largest value is 1.2923. We conclude that the (3, 3) robust model is

much more robust compared with the stochastic model using the true distribution.

In order to understand the sensitivity of different models with respect to the

number of samples drawi from the true distribution, we ran 10 additional experiments

in which we generate n = 40 samples from the true distribution in Step 2.

Table 5.3 summarizes the main statistics of the stochastic model using the best

fitted distribution and our robust models. Similar to the result in Table 5.2 where we

have 20 samples from the true distribution, all of the robust models outperform the

stochastic model with the best fitted distribution in both the average and standard

deviation of the two measures.
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Table 5.3: Performance of Different Models for 10 Instances and 40 Samples

Stochastic
Models Robust Models

True Best
Dist Fit (3, 1) (3, 3) (3, 5) (5. 1) (5. 3) (5. 5)

Cost Ave. 1 1.0749 1.0278 1.0223 1.0364 1.0457 1.0317 1.0304
Cost Stdev. 0 0.0500 0.0232 0.0262 0.0346 0.0353 0.0297 0.0297
CVaR Ave. 1 1.0820 1.0141 0.9901 0.9832 1.0539 1.0167 1.0091
CVaR Stdev. 0 0.0765 0.0406 0.0268 0.0217 0.0433 0.0167 0.0127

As expected, the average cost of all robust models and the best fit stochastic model

improves when the sample size increases from 20 to 40. The robust models with bin

size 5 have a slightly greater improvement than the remaining models. For the other

three statistics, we also observe improvements for the stochastic model using the best

fitted distribution as well as the robust models with bin-size 5 when the sample size

is increased to 40. Again, the robust models with bin-size 5 show slightly better

improvements in these statistics.

If we compare the robust models with different bin sizes, those with bin-size 3

still perform better than those with bin-size 5. However., comparel with the case of

20 samples., the differences are slightly smaller for all statistics, which suggests that

the robust models with bin-size 5 improve faster as tihe sample size increases. Similar

to the experiments with 20 samples, the increase in x2 values also helps to improve

the robustness of the models, which is measured by CVaR. The improvements in

robustness as y- values increase are more significant for 40-sample experiments than

those with 20 samples. In addition. the increased N- may also increase the cost, e.g.,

the average cost increases from 1.0278 to 1.0364 if we increase the x2 value from I to

5 for the robust models with bin-size 3.

The robust model with parameters (3, 3) has the lowest average cost., the second

lowest average CVaR and the second lowest standard deviation of the cost. Besides,

its standard deviation of CVaR is less than 3%. We still consider it as the most

efficient model among all the robust models and the stochastic model using the best

fitted distribution.
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To summarize the numerical results, the computational experiments show that the

robust models outperforml the stochastic models using fitted distributions in ternis

of both optimality and robustness. The robust models with a lower bin size perform

better than those with a larger bin size, but an increase in sample size may decrease

the difference in performance caused by the choice of the bin size. In addition, a

higher V2 value helps to increase the robustness but it may sacrifice the cost of the

robust models.

5.6 Extensions

In this chapter, we propose a robust stochastic model for the multi-period lot siz-

ing problem., in which the demand distribution is unknown and the only available

information is historical data. The convergence results for the chi-square test based

models suggest that the solutions to the robust approach are very close to the opti-

mal stochastic programming solutions when the sample size is sufficiently large. This

robust fraiework based on historical data can be extended to many more general

finite-horizon dynamic programming problems. and the convergence properties can

also be extended to more general problems.

Although we consider back-order models, most of our results can be extended

to lost sales models if the historical data also reflect the amount of lost sales. In

particular, for lost-sales models with only linear procurement cost and under the

same technical assumptions, the optimal policy under the robust model is a state-

dependent base-stock policy.
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Chapter 6

Conclusions

This dissertation considers two applications of inventory control models, which are

both forinulated as discrete-time finitc-horizon dynamic programs. We analyze the

Bellman equations of the dynamic programnming formulation. fully characterize the

optimal control policies, and investigate various properties of these policies. The two

applications naturally partition the dissertation into two parts.

In the first part, the inventory control problem in market-making is analyzed,

where the decision maker, i.e., the market-maker., controls the inventory in order to

limit the exposure to market price movements at the risk of losing possible gain of the

bid/ask spread. We prove that a threshold policy is optimal for risk-averse inventory

control in market-making when considering a single asset, and we establish sufficient

conditions for the threshold levels being symmetric or monotone.

For the market-making problem with multiple assets, the optimal policy shows

that there exists a simple connected no-trade region. which is proved to be synnetric

under certain conditions. The boundaries of the no-trade region also determine the

optimal quantity to actively trade with other market makers if the inventory position

falls outside the no-trade region. The optimal policies lead to efficient algorithms

to solve the dynamic programming problems. and the computational conplexity is

linear in the number of periods. The structural results of the optimal policy provide

insights to significantly reduce the search region if the niarket-makers would like to

identify an inventory control strategy by simulation or backtesting.
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Of course, important limitations of our model exist. For example., we assume that

the decision maker is a small player in the market., which rneans that the decision

maker follows the bid and ask prices quoted by the market leader, and its actions

to trade with its clients or other market-makers have no impact on the future price

movements. In the case that the decision maker is a market leader, it can determine

the bid and ask prices as well as the amount of active trades with other market-

makers., and it needs to take into account their impact on the price movements. For

these big players in the market, we need to optimize the pricing and inventory decision

simultaneously. This type of results also benefits the small players as it quantifies the

loss of efficiency of being the price follower. The joint pricing and inventory problem

for big players are left for future research.

In the second part., we return to the single-item single-location inventory problem

in supply chain management., where the assumptions are the same as the classical

inventory control model except that the future demands are specified by historical

data instead of cumulative distribution functions. We propose a minimax model

which optimizes the worst-case expected total cost over a set of demand distributions

defined by the historical data. We show that the corresponding optimal control policy

is the same as the stochastic counterpart in the inventory control literature, i.e., a

basestock policy is optimal if there is no fixed ordering cost and an (s. S) policy

is optimal when a fixed ordering cost is considered. One way to construct the set

of demand distribution using historical data is to consider the test statistics in data

fitting. In particular, we present how to define the set using x test and prove that the

minimax robust model converges to the stochastic model as the number of available

data points goes to infinity. The computational procedure adopted in Section 5.5 also

serves as an empirical approach to determine the parameters such as the bin sizes

and x2 values in the robust model.

In Section 5.6, we mentioned that most results for back-order models can be

extended to lost-sale models. Note that this is under the assumption that we have

historical demand data which also includes lost sales. However, in practice., lost sales

may not be observable and we only know the amount sold during a period, i.e., the
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available historical data is sales data instead of demand data which consists of both

sales and lost sales. Therefore, future research could study the lost sales models with

historical sales data.

Moreover, incomplete distribution information is not unique to the stochastic

inventory control problem. Many problems in supply chain management,. such as

network design. production sourcing, and process flexibility, to name a few, require

stochastic input data, i.e., information on the distribution of various parameters, such

as demand, lead time. vield and etc. Unfortunatelv. much like the inventory control

problem analyzed in this dissertation, in most cases., only historical data is available.

Therefore, the idea to integrate inventory optimization with data fitting presented in

this dissertation can be extended to other supply chain problems, where we choose

the supply chain decision by optimizing the worst-case expected cost or profit over a

set of distributions generated by the available data. The structure of the correspond-

ing minimax or maximin models may vary from problem to problem and thus require

carefully applying various optimization techniques besides dynamic programming.

Also note that the minimax inventory control iodel proposed in Chapter 5 re-

turns not only the optimal robust inventory policy but also the demand (istribitions

corresponding to the worst-case scenario associated with this policy. An interesting

question is whether it is possible extend this approach to demand forecasting, which

provides an indispensable input to supply chain models. Although most forecasting

tools are based on the point-of-sale data, store shipment information is also available

in the retail industry, and it is usually more accurate and reliable than the point-of-

sale data. In this case., shipment data corresponds to the quantity ordered for each

item in each period, which is determined by the inventory control policy. Our robust

inventory model takes historical data as input and returns demand distribution and

inventory policy as output, i.e., it establishes a relationship among historical data.,

demand distribution and inventory control policy. Therefore, this approach may help

to develop forecasting models utilizing shipment data.
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