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Résumé 
Ce travail présente un système de vision par ordinateur capable de faire un suivi du 

mouvement en 3D de la tête d’une personne dans le cadre de la conduite automobile. Ce 

système de vision par ordinateur a été conçu pour faire partie d'un système intégré 

d’analyse du comportement des conducteurs tout en remplaçant des équipements et des 

accessoires coûteux, qui sont utilisés pour faire le suivi du mouvement de la tête, mais sont 

souvent encombrants pour le conducteur. Le fonctionnement du système est divisé en 

quatre étapes : l'acquisition d'images, la détection de la tête, l’extraction des traits faciaux, 

la détection de ces traits faciaux et la reconstruction 3D des traits faciaux qui sont suivis. 

Premièrement, dans l'étape d'acquisition d'images, deux caméras monochromes 

synchronisées sont employées pour former un système stéréoscopique qui facilitera plus 

tard la reconstruction 3D de la tête. Deuxièmement, la tête du conducteur est détectée pour 

diminuer la dimension de l’espace de recherche. Troisièmement, après avoir obtenu une 

paire d’images de deux caméras, l'étape d'extraction des traits faciaux suit tout en 

combinant les algorithmes de traitement d'images et la géométrie épipolaire pour effectuer 

le suivi des traits faciaux qui, dans notre cas, sont les deux yeux et le bout du nez du 

conducteur. Quatrièmement, dans une étape de détection des traits faciaux, les résultats 2D 

du suivi sont consolidés par la combinaison d'algorithmes de réseau de neurones et la 

géométrie du visage humain dans le but de filtrer les mauvais résultats. Enfin, dans la 

dernière étape, le modèle 3D de la tête est reconstruit grâce aux résultats 2D du suivi et 

ceux du calibrage stéréoscopique des caméras. En outre, on détermine les mesures 3D selon 

les six axes de mouvement connus sous le nom de degrés de liberté de la tête (longitudinal, 

vertical, latéral, roulis, tangage et lacet). La validation des résultats est effectuée en 

exécutant nos algorithmes sur des vidéos préenregistrés des conducteurs utilisant un 

simulateur de conduite afin d'obtenir des mesures 3D avec notre système et par la suite, à 

les comparer et les valider plus tard avec des mesures 3D fournies par un dispositif pour le 

suivi de mouvement installé sur la tête du conducteur. 
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Abstract 
This work presents a computer vision module capable of tracking the head motion in 3D 

space for drivers. This computer vision module was designed to be part of an integrated 

system to analyze the behaviour of the drivers by replacing costly equipments and 

accessories that track the head of a driver but are often cumbersome for the user. The vision 

module operates in five stages: image acquisition, head detection, facial features extraction, 

facial features detection, and 3D reconstruction of the facial features that are being tracked. 

Firstly, in the image acquisition stage, two synchronized monochromatic cameras are used 

to set up a stereoscopic system that will later make the 3D reconstruction of the head 

simpler. Secondly the driver’s head is detected to reduce the size of the search space for 

finding facial features. Thirdly, after obtaining a pair of images from the two cameras, the 

facial features extraction stage follows by combining image processing algorithms and 

epipolar geometry to track the chosen features that, in our case, consist of the two eyes and 

the tip of the nose. Fourthly, in a detection stage, the 2D tracking results are consolidated 

by combining a neural network algorithm and the geometry of the human face to 

discriminate erroneous results. Finally, in the last stage, the 3D model of the head is 

reconstructed from the 2D tracking results (e.g. tracking performed in each image 

independently) and calibration of the stereo pair. In addition 3D measurements according to 

the six axes of motion known as degrees of freedom of the head (longitudinal, vertical and 

lateral, roll, pitch and yaw) are obtained. The validation of the results is carried out by 

running our algorithms on pre-recorded video sequences of drivers using a driving 

simulator in order to obtain 3D measurements to be compared later with the 3D 

measurements provided by a motion tracking device installed on the driver’s head. 
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CHAPTER 1: Introduction 

 

 

 

 

 

 

 

Car driving has become a daily routine for most people in our society. As the number of 

drivers and cars increases, people are very concerned with public safety issues. There are 

two categories of “at-risk” drivers as far as driving is concerned: young or inexperienced 

drivers and older drivers with decreasing abilities. Since driving constitutes an important 

activity for drivers, it is important to detect “at risk” drivers and to propose retraining 

programs in order to improve their driving skills. This can be achieved in three steps: 

retraining the driver, optimizing the driving environment and optimizing the vehicle [1]. 

Identifying “at risk” drivers and retraining them in a safe environment can be achieved by 

using a driving simulator. In addition, making the vehicles more intelligent can help older 

drivers in facing potentially dangerous manoeuvres.  
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1.1 Project context and challenges 
 
This project is part of a framework that is being developed by a multidisciplinary team in 

the context of a project called Cephalo-Ocular Behaviour and Visual Search Patterns of 

Drivers (COBVIS-D). The ultimate goal of COBVIS-D is to exploit driving simulators with 

realistic driving scenarios for evaluating the ability of elderly drivers and design 

experiments for retraining. The simulator uses a real automobile cockpit (Fig. 1.1, 1.2) with 

a steering wheel, a driver seat, rear view mirrors, brake and accelerator. A projector 

installed over the cockpit projects dynamic driving scenarios on a screen located in front of 

the driver and creates a reasonable level of immersion to the driver. Two devices are also 

used. A motion tracking device by Ascension Technology (Flock of Bird) is installed on the 

driver’s head. The second device is positioned in front of the driver for tracking his eyes 

(Applied Science Laboratories (ASL) R6-HS eye-tracker).  

 

Fig. 1. 1. Simulator cockpit with cameras, eye tracker and infrared source. 

These devices provide information on the position of the head and the gazing direction of 

the eyes and are used for analysing the driver’s cephalo-ocular behaviour (see Appendices 

A and B). The rationale for developing the computer vision-based solution proposed in this 

thesis is to provide a cost-effective software solution that can replace these costly devices 

(44,950 US $). The computer vision module uses two cameras for head and gaze tracking. 

A third monochromatic camera in the middle of the first two cameras is used for analysing 

the driver’s facial expressions. Placed in the middle, this camera has two advantages: the 

whole driver’s face is covered without needing the fusion of images from the first two 
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cameras to get full facial expression information. Furthermore, the facial expression 

analysis research can be done independently from this project. Infrared lighting is added to 

the setup in order to illuminate the drivers’ faces without blinding them. 

 

Fig. 1. 2. Cockpit Setup Diagram 
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1.2 Computer vision overview 
 
Computer vision is becoming more popular as the power of computers increases. This is 

confirmed by the fact that computer vision applications are not restricted to academic 

laboratories but can now be found in numerous industrial systems: industrial robot, 

autonomous vehicle, visual surveillance, information organization, industrial inspection, 

medical analysis, topographical modeling, and computer-human interaction to name a  

few [2].  

Most of the applications can be divided in two categories: image analysis/understanding 

applications which focus on still images and tracking applications for which a video 

sequence is also being analyzed for understanding its contents but for which motion is also 

of interest (e.g. the dynamic content of the sequence is equally relevant). The project 

discussed in this thesis belongs to the second category with a focus on object tracking and 

pose estimation (e.g. detecting the head of the driver in the simulator, tracking the head 

with respect to time, and estimating its position and orientation in Cartesian space). The 

following section presents an overview of the techniques that are commonly used for head 

tracking and pose estimation. 

1.3 Head Pose Tracking 
 
Various techniques have been proposed in the literature for head tracking and head pose 

estimation in video sequences. The systems developed from these techniques have a great 

range of applicability such as virtual reality, entertainment, physiological sciences studies, 

transportation, and computer-human interaction systems. 

The majority of head tracking systems can be classified in two categories: systems that rely 

mostly on hardware such as wearable devices carried on the subject’s head to help the 

tracking [12-15] and computer vision based systems exploiting off-the-shelf video cameras 

and image analysis software. [5-11]. Although the systems in the first category are usually 

very accurate, they are often cumbersome for the user and/or very expensive. It is expected 



 5

that a computer vision system made of off-the-shelf components will provide a cost-

efficient non-contact solution for estimating reliable head pose information. 

To describe the cephalo-ocular behaviour of drivers, the pose of the head in Cartesian space 

must be computed. The pose consists of the position (3 degrees-of-freedom) and orientation 

(three degrees-of-freedom) of an object in space. In computer vision, the use of two 

cameras observing an object from two different non-collinear vantage points (called a 

stereoscopic arrangement) allows to recover the three dimensional information required for 

pose estimation, provided that the images collected by the cameras are synchronized. Not 

all systems use stereo information and rather track the head in 2D [9-11].  

Other implementations use 3D models for the tracking [7-8]. However, since model-based 

systems are not as accurate as stereo systems, both approaches are sometimes combined.  

In [6], stereo was used with colour cameras. In the system presented in this thesis, only  

near-infrared monochromatic cameras were used because they are sensitive to the infrared 

illumination that does not blind drivers. Gorodnichy [5] used stereo combined with epipolar 

geometry for increasing tracking robustness but the automatic detection of facial features 

was not considered in his implementation. 

The system proposed in this thesis combines all the advantages enumerated above with the 

additional feature that it can be operated in real-time. As most computer vision systems, it 

consists of several processing stages: image acquisition, head detection, facial features 

detection and extraction using epipolar geometry, and finally, 3D reconstruction (for pose 

estimation) of the facial features that are being tracked (see Fig. 1.3). 

 

Fig. 1. 3. Processing steps of the proposed system for head pose estimation. 

This thesis consists of six chapters. Chapter 2 presents the image acquisition system that 

was briefly described in the preceding paragraphs. Chapter 3 describes the detection of the 

head in the images of the stereo pair in order to limit the search space that will be used for 

finding facial features. Chapter 4 and 5 cover Facial features detection and extraction 
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modules. Chapter 6 describes the procedure for the 3D reconstruction of the facial features 

and the filter used for accurate tracking. The results of experiments are presented and 

discussed in Chapter 7. Finally Chapter 8 provides an overview of the presented 

implementation and recommendations for future work. 

The main original contributions of the present research are: 1) the development of the 

software for head motion tracking in 3D space and eyes tracking, 2) the development of the 

Vertical Frequency Filter (VFF) which helps in providing a solution of the problem of eye 

tracking for people wearing glasses. 
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CHAPTER 2: Description of the Image Acquisition 
Module 

 

 

 

 

 

 
To establish a relationship between the scene and the computer system, image acquisition 

is needed to collect and store the data as images for a later analysis. 

2.1 Introduction 
Image acquisition is a common stage for all computer vision systems. Digital images are 

obtained by using devices such as digital cameras and scanners. The light scattered by a 

scene is collected by a discrete sensor as proposed by Lally as early as 1961 [3]. The 

resulting signal is sampled and stored in computer memory for a later use. In the system 

presented in this thesis, standard off-the-shelf digital video cameras are used since, with 

proper image processing software, they allow the capture of 3D information  on a scene, in 

our case, the driving simulator environment shown in Fig. 1.1. 



 8

This chapter is organized as follows: section 2.2 describes the basic concepts for image 

acquisition, section 2.3 presents the image acquisition analysis and finally section 2.4 

provides a summary of the chapter. 

2.2 Basic concepts for image acquisition 
 
Image processing depends on the quality of the images obtained at the acquisition stage [4]. 

Every loss of information at this stage is difficult to recover at later stages of the processing 

chain. To achieve good image acquisition performance, many concepts such as lighting 

control in the environment, spectral component selection, camera colour space selection, 

camera position with respect to the scene of interest, camera frame rate, and camera 

synchronization must be taken under consideration during system design. 

A robust image acquisition system should be able to adapt to a change in illumination as 

the human visual system does almost effortlessly. Robustness and adaptive behaviours 

allow the system to be dynamic and flexible at the cost of increased complexity. This 

complexity can be reduced considerably for a static environment for which lighting can be 

controlled by the user. 

The selection of the spectral band for acquiring the images is also of great importance in the 

design of a computer vision system. In our case, system design must take into account that 

the driving scenario is displayed to the user using a projector and that good immersion 

precludes the use of controlled lighting in the visible part of the spectrum since this would 

bleach the images projected on the screen and may even blind the user of the driving 

simulator. However, reliable detection of facial features used for tracking would greatly 

benefit from using a lighting system that provides a larger dynamic range in the acquired 

images. A compromise must thus be found between the quality of immersion and the 

reliability and robustness of the detection of the facial features used for tracking. 

In relation with controlled lighting (and spectral content), the sensitivity of the camera as 

well as the frame rate must be chosen so as to provide the best image possible for the 

application. 
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2.3 Image acquisition system analysis 
 
In this context, the simulator environment into which the driver is placed is illuminated 

with infrared illuminators, located sideways in front of the cockpit (see Fig. 1.3). Two 

synchronized monochromatic cameras without infrared cut-off filter are used to allow 

stereoscopic capture of facial features. As shown in Fig. 2.1, the cameras are sensitive in 

the near infrared region of the light spectrum, by using infrared illuminators with the 

wavelength of 840nm and 940 nm, and the power varying from 6W to 55W (see Appendix 

D), it is safe to illuminate the driver’s face and acquire good images of facial features 

without blinding him nor bleaching the images projected on the screen with the visible light 

as long as the infrared illuminators are placed at a distance where the driver does not feel 

the heat. This is made possible by the fact that human vision system presents a low 

sensitivity to infrared radiation while the monochromatic cameras used are sensitive to near 

infrared light spectrum. 

 

Fig. 2. 1 Camera filters 
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2.4 Summary 
 
This chapter has presented the main components of an affordable image acquisition system 

used to track the head pose of the drivers in 3D. The system uses two Prosilica CV640 

cameras as described in Appendix C. Through proper lighting control, the driver’s face is 

illuminated with infrared projectors. 
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CHAPTER 3: Head Detection 

 

 

 

To limit the search space that will be used for finding facial features, the head detection 

stage is needed. The detection will increase the video sequence processing speed and will 

eliminate potential noise similar to the facial features that are located outside of the area 

surrounding the head. 

3.1 Introduction 
Head detection is performed prior to the facial features detection and extraction. Once the 

head is detected, the localization of facial features is much easier because the head 

bounding box provides a space where the features are located.  

To achieve head detection, a sub stage of background subtraction is needed. After removing 

the background, the remaining foreground will be the silhouette of the driver containing the 

head at the extreme top position of the silhouette. 

This chapter is organized as follows: section 3.2 presents the literature review on 

background subtraction and head detection, section 3.3 presents the chosen concept and 

finally section 3.4 provides the summary. 
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3.2 Literature review 

3.2.1 Background subtraction 
Various techniques are used to implement background subtraction. These techniques can be 

applied to two different background categories: static and dynamic backgrounds [17]. For 

static backgrounds it is assumed that only the foreground changes, the background being 

stationary. For dynamic backgrounds, the background is more complex since the 

background and foreground can change at the same time. Examples of such dynamic 

backgrounds are the clouds in a scene or the movement of tree leaves because of the wind 

in an outdoors scene. In the context of the project we will be limited to the static 

backgrounds because the simulator is a stationary environment of the laboratory.  

In his thesis, Lemieux [18] has classified background subtraction techniques in three 

categories depending on the camera sensor used: 2D Background subtraction in visible 

light spectrum, 2D Background subtraction by using infrared thermography and 3D 

background subtraction by using depth mapping. 

3.2.1.1 Visible Light Spectrum 
 Various techniques have been used in visible light to subtract the background. Heikkila 

and Silven [19] used this model by marking the foreground pixel as in equation (3.1) 

τ>− .tt BI                          (3.1) 

where tI is the current pixel, tB the background pixel and τ the predefined threshold. The 

background is updated as in equation (3.2) 

ttt BIB )1(1 αα −+=+                (3.2) 

where α  is an importance coefficient over time. 

Pixels can be defined in various colour spaces. In RGB (Red, Green and Blue), the colour 

space mostly used in display devices, each image pixel is composed of red, green and blue 

colour components in an additive model. However the use of other colour spaces such as 
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HSV (Hue, Saturation and Value) or HSL (Hue, Saturation and Luminance) can be more 

advantageous because the hue is invariant to changes of illumination. 

Other techniques of background subtraction have been used but are not discussed in this 

thesis due to their complexity and computational load. Among these techniques are those 

which perform statistic modeling of every pixel. Others are inspired from the technique 

described above and are well described in [17]. 

3.2.1.2 Infrared Thermography 
Infrared Thermography is used to locate object by the amount of heat emission in other 

words their temperature. The local infrared emission from the surface is recorded by an 

infrared detector according to the Stefan-Boltzmann law [20]. The recorded image is 

presented in monochromatic space where this space can be mapped to various different 

colour maps to distinguish the objects as shown in Fig. 3.1. The background is subtracted 

by applying a threshold in the temperature image. This technique has many advantages: 

The image content is simplified which speeds up processing, it is invariant to the change of 

illumination and can be used in the dark. The cost of infrared cameras and difficulties for 

implementing them in an off-the-shelf system, however, precluded their use for this project. 

 

Fig. 3. 1 Infrared Thermography. 
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3.2.1.3 Disparity Maps 
This technique is used in stereoscopic systems where the background is detected by 

considering that the foreground has a different depth from the background. However the 

real time implementation requires special hardware such as multiple high resolution 

cameras, C40 DSP array and the real-time processor board [21]. 

3.2.2 Head detection 
Head detection techniques have been widely used in computer vision; these techniques 

include motion based methods [23], skin colour methods [27]  and head-shoulder contour 

[22] and other advanced methods such as cascade of boosted classifiers for general objects 

detection [24, 25]. As the system has to run in real time, some methods such as motion 

based techniques were excluded because the driver does not move very much and there is 

no significant movement to be detected. Skin colour methods have been also excluded 

because the system uses monochromatic camera. The remaining two were carefully studied 

in order to choose the method that can run in real time while providing good head detection 

performance. 

3.2.2.1 Cascade of boosted classifiers 
It consists of classifiers trained to detect object rapidly with high detection rates. These 

methods use an image representation called “Integral Image” to allow features called  

Haar-like features (Fig. 3.2), to be computed very quickly. The Integral image I also known 

as summed area tables is an intermediate representation for the image and contains the sum 

of grey scale pixel values of image N with height y and width x as presented in equation 

(3.3). 

( ) ( )∑∑
=′ =′

′′=
x

x

y

y

yxNyxI
0 0

,,                          (3.3) 

This representation helps to calculate sum, mean and standard deviation over arbitrary up-

right or rotated rectangular region of the image in constant time which makes possible to 

achieve a fast blurring or fast block correlation with variable window sizes [26]. This 

method uses simple classifiers in stages to discard bad region quickly and focus on 
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promising areas. The method provides an advantage of locating the head without requiring 

a background subtraction. 

 
a) 

 
b) 

 
c) 

Fig. 3. 2. Haar-like features a) Edge features b) Line features c) Center-surround features. 

3.2.2.2 Head-shoulders contour  
 This method relies on the fact that the car driver moves very little which helps to maintain 

the shape of the head-shoulder contours as presented in Fig. 3.3. A proper threshold is 

applied to isolate the head and shoulders and, finally, the head is located to the extreme top 

part of the head-shoulder silhouette [22] [28].  

3.3 Chosen approach  
 

Computational performance between the Cascade of boosted classifiers and the Head-

shoulders contour methods was the key factor in selecting the head detection algorithm for 

the simulator system. The head-shoulder contour method was chosen due to its good 

performance based on the processing time (Table 3.1). 
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As the head-shoulder contour method requires background subtraction, the decision to 

choose the best background subtraction method was simplified by the fact that the 

simulator is installed in a light-controlled environment; there was no need to use costly 

infrared cameras or complex disparity maps. Monochromatic cameras sensitive to near 

infrared light were used and a proper threshold was applied to grey images to isolate the 

foreground.  

Table 3. 1. Performance Comparison. 

Left image Right image Algorithm 
Processing time (ms) 

Our Head detection Algorithm 2.24 3.05 
Cascade of boosted classifiers 79.36 73.30 

 

The Head detection algorithm is described in a three-step process (appendix E): 

• Image thresholding and binarization (for both the left and right image). 

• Detection of the largest blob in the resulting binary image. 

• Assignment of a rectangle (defined as the “head bounding box”) to the top part of 

the largest blob. 
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a) b) 

c) d) 
Fig. 3. 3. Head detection using: a, b) Cascade of boosted classifiers and c,d) Head-shoulder 

contour. 

3.4 Summary 
This chapter has presented a very fast head detection algorithm adapted to the light 

controlled environment of the driving simulation. Since the head detection was not the 

focus of the project, additional work on background subtraction and head detection 

algorithms would be necessary in order to have the system evolve from the simulator 

environment to a real driving environment such as a car. The head detection algorithm has 

increased the video sequence processing speed and eliminated potential noise which 

consists of areas which may look like facial features but are located outside of the head. 
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CHAPTER 4: Eyes Detection  

 

 

 

Eye detection constitutes a processing stage that is performed prior to the facial features 

extraction. In this stage, regions of interest are obtained for further processing at the facial 

features extraction stage.  

4.1 Introduction 
 
To obtain the pose of the driver’s head in 3D space, reference landmarks on the head need 

to be tracked in image plane (2D) for being used later to recover 3D pose of the head. 

Facial features can be defined as very pronounced parts of the face. This includes the hair, 

forehead, eyebrow, eyes, iris, nose, cheek, mouth, lips, philtrum, teeth, skin and chin [30] 

as shown in Fig. 4.1. These natural facial features can be added to artificial features such as 

eye glasses. The objective will be to detect and extract the most invariant features in 

different poses of the driver’s head. 

This chapter is organized as follows: section 4.2 presents the literature review on eye 

detection techniques, section 4.3 presents the chosen approach and, finally, section 4.4 

provides the summary. 
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Hair

Forehead

Eye

Nose

Lips

Chin

Mouth

Cheak

Eyebrow

Philtrum  

Fig. 4. 1. Facial features. 

4.2 Literature review 

4.2.1 Facial features detection 
 
The head presents many facial features. However all of them are not good candidates for 

tracking. A good facial feature has to be visible and keep its shape during head motion or 

rotation. Gorodnichy [30] has examined the various facial features during head motion. He 

concluded that the nose is the only feature remaining clearly visible during head movement.  

It is well known that a plane is spanned by two linearly independent vectors [31]. At least 

three points are needed to find these two vectors as shown in Fig. 4.2. This applies to our 

project, as the objective is to track the driver’s head in 3D space. We thus need at least 

three facial features to determine the motion of the head in 3D space. As the nose tracking 

is mandatory, two other facial features need to be tracked to extract the two linearly 

independent vectors. Some facial features are too wide to provide a stable centroid. These 

features include the hair, the forehead, cheeks, skin and chin. Features like the mouth, lips 

and philtrum are often visible in head position and rotation poses, but do not keep their 
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shape and may change significantly when the driver is speaking or yawning. Among the 

remaining facial features of interest, the eyes are the best candidates because the iris is 

small and covered when eyes are blinking, teeth are also rarely visible and eyebrows may 

be absent especially for women wearing makeup. 

 
Fig. 4. 2. Plane passing through 3 points. 

4.2.2 Eyes detection 
 
Eyes detection has attracted a growing interest in research. This interest is explained by the 

use of eyes detection techniques in various applications such as human computer interfaces, 

in teleconferencing, virtual reality and other visual communication applications [32]. Eyes 

detection is also found in security applications such as surveillance face recognition and 

will be used more and more as security issues are increasing.  

Various methods to detect the human eyes in a digital picture have been used. Among 

these, we have chosen the most representative to show the state of art in this field. These 

methods include colour-based, neural networks and Filter-based approaches. 
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Colour-based approaches: There are several ways of using colour as a cue to help eyes 

detection. Among them, we can find the work of Rein-Lien [33] who has proposed the most 

popular technique found in this category which consists in selecting the proper colour space 

for achieving a good detection. He used colour-based approaches by compensating the 

lighting during the detection phase to eliminate problems due to the presence of complex 

background and variations in lighting conditions. This compensation was performed by 

normalizing the colour appearance and choosing the YCbCr color space. YCbCr is one of 

colour spaces used in video systems, where Y is the luma (brightness) component and Cb 

and Cr are the blue and red chrominance components [34]. The choice of the YCbCr colour 

space helped to process a skin independently of the luminance. As in YCbCr colour space 

high Cb and low Cr values are found around the eyes, eyes are easily detected. However 

YCbCr is not the only colour space used for eye detection. Other colour spaces such as 

RGB (Red Green Blue) and HSV (Hue Saturation Value) have been used [36].   

Feris [32] also used an approach which consists in generating a skin-colour distribution 

which is very common in colour-based approaches [36]. He chose to use a Gaussian 

distribution of skin-colour regions through supervised training. After thresholding and 

morphological closing followed by median filtering, facial features such as eyes were 

detected by template matching and other geometric constrains. Theses methods are mostly 

invariant to head rotation and can be used for real-time tracking. In this project, however, 

monochromatic images are used. 

Neural networks approaches: Neural networks or artificial neural networks are 

parametric techniques modeled after biological brain neurons, to approximate a vector 

function of some inputs with a series of layers [35]. Each layer has a weight matrix, a bias 

vector and an output vector.  

To use neural networks, images are divided in windows or grids with different sizes or 

scales depending on the application. Because illumination changes, the look of a face 

depends on the side that is illuminated. This illumination has to be removed before 

applying the neural networks. Rowley, Baluja and Kanade [37] used the neural network in 

two stages to locate face and eyes in front views with different rotations. The first stage was 

to estimate face orientation by using one neural network and the output had 36 units each 
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representing 10 degrees for a total of 360 degrees. In the second stage the rotation was 

corrected and a neural network with one output unit was used to determine whether or not 

there was a face as shown in Fig. 4.3.  

Fig. 4. 3. Face and eyes detection neural network architecture. 

 
Source: Baluja and Kanade [37]. 

 
Finally a mask icon showing two eyes as two circles and the face as a rectangle was 

superimposed on each window as shown in Fig. 4.4. 

Fig. 4. 4. Face and eyes detection neural network output. 

 
Source: Baluja and Kanade [37]. 
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Another reference in neural network for facial features detection was developed in the early 

90s by Debevec [38] who used the log-polar mapping function to generate the training set. 

Instead of using traditional neighbourhood sampling of features with a tiny rectilinear grid 

of points, he extracted a circle with a certain radius around the feature and represented it in 

log-polar mapping as shown in Fig. 4.5. 

 

Fig. 4. 5. a) Forward log-polar transformation b) Inverse log-polar transformation. 

 

The log-polar transformation emulates the human fovea vision and can be used for fast 

scale and rotation-invariant template matching. The output was formed with four neural 

network units representing the left eye, the right eye, the nose and the mouth. 

Though the techniques described above had a very high detection rate and were suitable for 

greyscale images, they were mostly used for frontal faces. They are time consuming due to 

the training step of the neural networks that requires a very large amount of faces. As the 

Cephalo-Ocular Behaviour System involves in multi-face views, more robust techniques 

are needed. 
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Filter-based approaches: Some authors such as Kawato [39] have used a novel method for 

eyes detection by first detecting a region between the eyes as shown in Fig 4.6. Because 

there is a periodicity around the circle between brighter regions and darker regions, running 

the filter on circled pixels around each image pixel, the regions corresponding to the area 

between the eyes are detected. The filter that is used is similar to the Discrete Fourier 

Transform (DFT) as shown in equation (4.1). 
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where ( )1,...,0 −= Nifi  are pixel values around a circle centred at (x, y). 

 

Fig. 4. 6. a) Circle with between eyes region as center. b) Grey level along the circle with 

between eyes region as center.  

 
After obtaining candidates for the area between the eyes, eyes templates are matched with 

regions around the candidates and eyes are located where the matching score is high. The 

processing speed during the Circle-Frequency filtering as shown in Fig. 4.7 depends on the 

size of the filtering window. The smaller is the window, the faster is the filter.   
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Fig. 4. 7. Circle Frequency filter eyes detection overview. 

 

Source: Kawato [40]. 
 

Other techniques such as Linear Spatial Filters commonly known as Template matching are 

widely used in computer vision [40]. Templates are images that contain common features 

for several objects of a given category, but sometimes different due to different 

illumination or unique object look. These approaches consist of locating the eye region 

roughly and matching candidate regions with templates. Candidates with a high matching 

score are kept. 

Appendix F presents the most frequently used correlation functions. These functions 

measure the similarity between images and normalization helps the matching process in 

being independent to brightness or contrast changes [41].  

Rough eye detection: This method is used as a first step and is followed by accurate 

methods. In colour and greyscale images, eyes are darker compared to the surrounding skin 

color, which makes image segmentation easy and fast to find. Some authors such as Peng et 

al. [46]  used this method to detect the eyes roughly and later detect accurately the centre of 

each eye with template matching methods. 
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4.3 Chosen approach 
The comparison presented in Table 4.1 between the different approaches reviewed above 

for eyes detection helps to eliminate the colour-based approaches because of the use of 

monochromatic cameras in the project. The neural network approach does not fit for real-

time tracking. Finally, the two remaining approaches, filter based approaches and Rough 

eye detection were tested to choose the one with optimal performance for our application. 

Table 4. 1. Eye Detection Methods. 

Technique Advantage Drawback 

Color 
-Color offers more information 
to explore 
-Fast in processing time 
compared to other techniques 

-Not applicable in greyscale images. 
-Difficulties in robust detection of 
skin colors with illumination changes 
 

Neural Network 
-Automatic learning 
-Simple coding 
-Fast if implemented carefully 

-Not invariant in most head position. 
-Exhaustive training set 
-Sometimes eyes are not well detected 
 

Filter  
-Invariant to most head 
position 
-Easy to use 
-Fast if small search window is 
used 

- Eyes are not detected to one pixel 
accuracy  
-Exhaustive in time if the search 
region is not chosen properly. 
.

Rough detection 
-Simple implementation 
-Very Fast in processing time 
compared to other techniques 
 

-Eyes are not detected to one pixel 
accuracy. 
-Needs extra methods to finish the 
detection job. 

4.3.1 Vertical Frequency Filter 
 
The test of the Circle-Frequency Filter developed by Kawato [39] on the driving video 

sequences did not provide good result. As the head was moving, for various subject the 

between eye region was not consistent. We suspect that the filter is very sensitive to the 

environment light setup; however, this work has been an inspiration in developing another 

means of filtering by taking into consideration the periodicity between dark eyebrows and 

eyes. There is a bright region between these two regions which allows the application of the 

filter (Equation 4.1) not on a circular path but rather on a vertical path as shown in Fig 4.8.  
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Fig. 4. 8. a) Vertical line through eye region. b) Grey level along the vertical through eye 

region. 

The algorithm was implemented in 4 steps: 

• Edge detection with the Sobel edge detector using only horizontal gradient. 

• Image thresholding to get horizontal edges. 

• Application of Vertical Frequency Filter. 

• Image thresholding and morphological dilation to get eyes candidates. 

The results such as those shown in Fig. 4.9 are very promising especially because the filter 

is invariant to the subject wearing glasses; however the vertical frequency filter is still 

under development, since all individuals do not always present significant features. 
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Fig. 4. 9. Vertical Frequency Filter result. 

4.3.2 Rough eye detection  
The rough eye detection approach was adopted for eyes detection. It has been found simple 

and very fast in terms of computational load. However this approach is not precise and may 

be corrupted by noise. An extra stage which will be discussed in the following chapter has 

been planned to improve results obtained at the rough eye detection stage.  

The potential eye candidates are detected as follows: 

• Image histogram equalization is performed to enhance image contrast. 

• Image thresholding and binarization of the equalized image. 

• Image segmentation in connected regions. 

• Regions discrimination according to their area size. 

• Average eye pattern matching for obtained regions. 

The average eye pattern was obtained by averaging several eye images with the same 

lighting conditions.  In our case, illumination does not have a significant impact since all 

matching methods that were used are normalized. Finally the resulting candidates are fed to 

the feature extraction stage in order to complete the eyes detection. 
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4.4 Summary 
In this chapter several approaches for eyes detection were analyzed and compared. A new 

method of eye detection using Vertical Frequency Filter was introduced but is reserved for 

future use when the tracking of subjects with additional facial features such as glasses will 

be needed. A rough eyes detection approach was proposed as a first stage that is performed 

before the algorithm for extracting facial features. This algorithm is described in the next 

chapter. The advantage of the rough detection approach is that it is suitable for real-time 

tracking. 
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CHAPTER 5: Facial Features Extraction  

 

 

The facial features extraction stage follows the eyes detection stage described in the 

previous chapter. This stage aims at eliminating bad eye candidates for the eyes that may 

result from the rough detection stage. Regions of interest obtained at the eyes detection 

stage are processed to obtain real facial features that include both eyes and the tip of nose.  

5.1 Introduction 
 
In the previous chapter, an approach for rough detection of the eyes was presented. Though 

this approach is not very precise, a more accurate approach leading to robust eyes detection 

is described in this chapter. Once the eyes are detected, the tip of the nose is localized 

afterwards in the region under the two eyes. 

This chapter is organized as follows: section 5.2 presents the literature review on the 

camera calibration and epipolar geometry for robust facial features extraction, section 5.3 

presents the application of the camera calibration and epipolar geometry in features 

extraction and finally section 5.4 provides the summary. 
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5.2 Literature review 
In the literature, the word detection is often used as a synonym for extraction [44]. Some 

authors, however, make a clear distinction between the two stages and suggest that feature 

extraction is needed when many feature candidates have been detected. There are many 

ways of discriminating bad candidates: Kawato [39] used a Circle-Frequency Filter to 

roughly detect the eye candidates and used a template matching approach as described 

above to extract the eyes. Other authors such as Murai [45] and Goronodnichy [30] have 

proposed stereo-matching as an operation to extract features. Most systems based on stereo-

matching use at least two calibrated cameras (advanced techniques may use only one 

camera and work with non-calibrated cameras) and use epipolar geometry as a tool for 

matching. As our system uses several cameras, a stereo approach was used to extract the 

facial features robustly. 

5.2.1 Camera Calibration 
Camera calibration allows establishing a relationship between a 3D world coordinate and 

camera coordinate called standard coordinate system of the camera. A 3D point 

( )ZYXX ,,=  is projected on the camera image plane at the point ( )yxx ,=  as shown in  

Fig. 5.1. 

 

Fig. 5. 1. World and camera coordinate systems. 
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The relationship between the object point ( )ZYX ,,  and its corresponding image point 

( )yx,  (both in orthonormal camera coordinates) is given by equations (5.1 and 5.2). 

ox
Z
Xx += α                                                                                    (5.1) 

oy
Z
Yy += β                                                                                      (5.2) 

where kf=α  and lf=β are the focal length expressed in units of horizontal and vertical 

pixels, f  is the focal length in millimetres, respectively k  and l  are the effective number 

of pixels per millimetre along the x and y axes, ( )oo yx ,  are the coordinates of the principal 

point, given by the intersection of the optical axis with the image plane [50]. 

Let [ ]TZYXX 1,,,= and [ ]Tyxx 1,,= be the homogenous coordinates of object point and its 

corresponding image, the relationship between the two is written as in (5.3). 
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where the scaling factor s  has value Z  

Parameters ox,,βα and oy  in matrix A do not depend on the position and orientation of the 

camera in space (e.g. the world coordinate system), and are thus called the intrinsic 

parameters. 

In the above equations, it is assumed that object coordinates are expressed in the coordinate 

system attached to the camera but, normally, object coordinates are expressed in a world 

coordinate system. The new relationship is presented in equation (5.4). 
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The 12 parameters in matrices R and t  define the position and orientation of the camera in 

space, and are thus called the extrinsic parameters and the matrix [ ]TRAP |=  is the 

projection matrix. 

Finally the objective of geometric camera calibration is to obtain a projector equation in the 

world coordinates system for any object point in image plane and to predict the image 

coordinates of a point projected on the image plane. To obtain intrinsic and extrinsic 

parameters, most calibration techniques establish correspondences between 3D points on a 

calibration target and their 2D projections on the image plane of the camera. 

5.2.2 Epipolar geometry 
 
Epipolar geometry defines a relationship between the camera image planes of a stereo rig 

composed of two pinhole cameras (Fig. 5.2). 

 
Fig. 5. 2. Epipolar line. 
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A 3D point X  in world coordinates is projected on both images image planes, to points 

Lx and Rx . Every point  Lx  in the left image plane has a conjugate point Rx  in the right 

image plane located on a line called epipolar line and all epipolar lines lying in one image 

plane pass through a common point Le or Re  depending on the image plane of reference. 

This common point is called epipole and is a projection of the optical centre of one camera 

on the image plane of the other camera [47]. 

To calculate epipolar lines some mathematical tools are needed. 3D points Lx and Rx in the 

left and right camera reference frames are related to each other respectively through the 

rigid transformation equation (Equation 5.5) and shown in Fig. 5.3 where R is the rotation 

matrix and t the translation matrix. 

TxRx RL +=                                              (5.5) 

The three vectors
→

LLxo , 
→

RRxo  and 
→

RLoo  lie in the same plane. It is well known that any vector 

resulting from the vector product of two set of vectors is geometrically perpendicular to the 

planed spanned by these two vectors. Furthermore the scalar product between any 

perpendicular vectors is zero. Therefore the vector ⎥⎦
⎤

⎢⎣
⎡ ⊗

→→

RRRL xooo  is perpendicular to the 

vector 
→

LLxo  as presented in equation (5.6). 
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RRRLLL xoooxo                                               (5.6) 

We can write this equation in the coordinate system associated to the first camera as 

( ) 0=⊗• RL xRTx                                                  (5.7) 

The development of equation (5.7) in matrix form is presented as. 
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 is called the essential matrix. 

The essential matrix maps a 3D point defined in  the first camera world reference of the 

stereo rig in the second camera world reference through an epipolar line. Lx belongs to the 

epipolar line RxE and Rx  belongs to the epipolar line L
T xE . 

Another matrix called fundamental matrix maps a 2D point defined in the first camera 

reference of a stereo rig into the second camera reference through an epipolar line as 

described in equation (5.9). 
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where LA and RA are respectively the intrinsic parameters matrices for the left and right 

cameras and F is the fundamental matrix. 
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Fig. 5. 3. Rigid motion transformation between two cameras. 

5.3 Facial features extraction discussion  

5.3.1 Eyes extraction 
When two stereo images of a driver are observed, only one eye can be easily detected by 

applying the image processing techniques described in chapter 4. Most of the time, the 

other eye is in contact with the background which makes segmentation difficult. To 

overcome the segmentation problem, a pair of camera was calibrated geometrically using 

the camera calibration toolbox developed by Bouguet [48] in MATLAB (Fig.5.4). After 

calibration, the epipolar geometry of the stereo pair described above can be exploited. 

Before using epipolar geometry, the rough eye detection approach was used to isolate eye 

regions that do not touch the background as shown is Fig. 5.5. For eye regions touching the 

background, an eye template built by averaging several human eyes regions was matched 

with image regions along the epipolar line from the bottom to the top until an image region 

that looks like a peninsula1 is detected. The matching score is high in this region because it 

is the location of the eye region that touches the background. 

_________ 
1. Peninsula: A piece of land almost completely surrounded by water.  
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Fig. 5. 4. Calibration results. 

 
 
The extraction procedure described above can be summarized in five steps: 

A corresponding epipolar line for every eye candidate in both images is obtained. 

• A candidate that matches a candidate in another image on the corresponding 

epipolar line is detected by using pattern matching, the template being an eye 

average image. 

• A test is performed to check if the found match is in the candidates set of the second 

image. 

• A test is performed to make sure that the candidate is not outside of the head 

bounding boxes in both images. 

• A validation is done on the results with a neural network using the distance 

information between the two eyes in every image (see next section). 
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Fig. 5. 5. Epipolar geometry in use. 

 

5.3.1 Eyes extraction validation with a neural network 
The chosen algorithms so far, combined with the epipolar geometry, help to track the eyes 

in 2D plane with a detection rate up to 90% whenever both eyes are visible in left and right 

video frame sequences of this project. Though this detection rate is very high the remaining 

10% of bad detection is enough to distort the 3D reconstruction discussed in the next 

chapter. To solve this problem, a multilayer perceptron described in Appendix G was used 

to improve detection achieved at previous stages and to validate the good detections. 

For all adult drivers sitting in the same car seat, head motion shares the same 3D space 

bounded by a virtual cube as shown in Fig. 5.6. As all adults have relatively the same 

distance between their eyes, it is easy to build vectors in the left image plane that have 

correspondences in the right image plane.  
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Fig. 5. 6. Driver’s head bounding cube. 

 

Training data were constructed by using four vector modulus in each camera frame as 

shown in Fig. 5.7, and the output 1 or 0 was assigned as a neural output to validate the 

detection result. 

 

Fig. 5. 7. Epipolar geometry in use. 

5.3.1 Nose tip extraction 
The nose has been presented by Goronodnichy [30] as the best facial feature to be tracked. 

He concluded that the human nose was the only facial feature clearly visible during head 

motions hence the interest of implementing a robust nose detection approach.  Researchers 

use different techniques to solve the problem, the most representative include template 

matching approaches and approaches based on nose photometric properties. 

Template matching approach: Goronodnichy showed that the intensity profile around the 

tip of the nose stays the same when the head rotates. He has proposed to track the tip of 
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nose by using a technique used in pattern recognition and machine learning called feature 

vector. A feature vector is an n-dimensional vector of numerical features that represent an 

object [44]. With the feature vector, a template is not only made of pixels but also contains 

other properties such as geometric properties of the feature. The algorithm proposed by 

Goronodnichy also relies on tracking results obtained in previous frames, before processing 

new frames for tracking. 

Nose photometric properties approach: This approach relies on the work of Gurbuz and 

Kawato [42]. It assumes that eyes have been detected correctly and that the tip of the nose 

is located in the highest intensity region within a search region estimated from the two eye 

positions. 

After successfully extracting two eyes from each image plane, the approach of nose 

extraction by using photometric properties can be implemented in simple steps: 

This technique has been chosen for the current use and has been implemented in the 

following steps: 

• Nose region histogram equalization. 

• Edge detection with Sobel edge detector using only horizontal gradient. 

• Image thresholding and morphological dilation to get connected horizontal edges. 

• Brightest point detection in the connected horizontal edge regions. 

After the detection of all facial features, the 3D reconstruction stage discussed in the 

next chapter can be implemented. 

5.4 Summary 
In this chapter we applied mathematical tools such as geometrical camera calibration and 

epipolar geometry to extract eyes and the tip of the nose from the image sequences. A 

neural network that led to a robust facial features detection and extraction system validated 

this extraction. 
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CHAPTER 6 :  3D Reconstruction  

 

 

 

The 3D reconstruction is the stage at which the position of a real 3D point observed by the 

stereo pair is recovered.  

6.1 Introduction 
The reconstruction of the head pose in 3D space is the main objective of this thesis. This 

reconstruction is possible when the geometric relationship between cameras in a stereo rig 

is known and when the projection of the same point on the head can be found in the left and 

right images. The geometric relationship between cameras was described in the previous 

chapter when the topic of camera calibration was discussed. As all facial features (eyes, tip 

of the nose) have been detected in both left and right images, the 3D reconstruction of a 

plane associated with the triangle formed by the features can be found by implementing a 

good 3D reconstruction technique. 

This chapter is organized as follows: section 6.2 presents the Literature review on different 

techniques used for 3D reconstruction, section 6.3 describes the head pose computation and 

finally, section 6.4 provides the summary. 
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6.2 Literature review 
Modeling a 3D scene from several images is known as 3D reconstruction. This field has 

received much interest in the computer vision community. As the cost of computers is 

dropping, many applications using 3D reconstruction are emerging. The number of 

publications in 3D computer vision, 3D medical imaging, satellite imaging, etc proves this. 

The problem of 3D reconstruction or triangulation problem is formulated as follows; A 3D 

point X  is projected at point Lx  and Rx in corresponding left and right image planes of a 

stereo pair. Suppose LP and RP are corresponding projections matrices used in the 

projection, two rays can be reconstructed from the corresponding projected points Lx  and 

Rx   to the initial 3D point X . In theory, the two lines should intersect perfectly in space but 

due to noise and other errors it is not the case. The following sections describe different 

approaches that have been proposed for 3D reconstruction. 

6.2.1 Mid-point triangulation 
This is the most intuitive method for 3D reconstruction but it is not optimal. Two rays 

corresponding to the projected points in both left and right image planes do not intersect at 

the original 3D point from which the images originated. There is always an error due to 

various factors such as digitizing error, sensor noise, matching errors, etc. To minimize the 

error, the 3D point is chosen to be located in halfway on a vector that is perpendicular to 

both rays as shown in Fig. 6.1. 

In the previous chapter it has been shown that the point X  in world coordinate system can 

be decomposed in two points [ ]LLLL ZYXX =  and [ ]RRRR ZYXX =  in 

corresponding left and right camera system coordinates, and these two points are related by 

the rigid transformation equation (6.1) 

TXRX RL +=                         (6.1) 

where R and T are respectively the rotation matrix and translation matrix of the frame 

transformation between the scene reference frame and the camera reference frame. 
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Fig. 6. 1. Mid-point triangulation. 

Let us consider the left camera coordinate system as the reference. LX  and RX  are 

respectively mapped on image planes at points [ ]1LLL yxx =  and [ ]1RRR yxx =  in 

homogeneous form through equations (6.2). 

( )⎪⎩

⎪
⎨
⎧

−=

=
− TxbRX

xaX

RR

LL

1                                              (6.2) 

where a and b are real numbers. 

A perpendicular vector pV  between LX  and RX  is given by the vector product of the two 

ray vectors as shown in equation (6.3). 

( )( )TTxRxcV RLp −−⊗= −1                                           (6.3) 

where c is a real number. 
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To find the 3 real numbers a, b and c, the equation to be solved is given in (6.4). 

( ) ( )( ) ( )
( ) ( ) ( )( ) TRTTxRxcxbRxa

TxbRTTxRxcxa

XVX

RLRL

RRLL

RpL

111

11

−−−

−−

−=−−⊗+−⇔

−=−−⊗+⇔

=+

               (6.4) 

Finally the mid-point is computed with 

pL VXX
2
1

+=                                                                               (6.5) 

As mentioned earlier, the use of the mid-point technique is not optimal according to Hartley 

[53]. The mid-point of the perpendicular vector does not provide any guarantee on the 

equality between two angles α  and β  as shown in Fig. 6.1. This angle equality is desirable 

for optimal triangulation. 

6.2.2 Linear triangulation 
This is the most common method for 3D reconstruction; the algorithm presented below has 

been implemented by Bouguet in his Camera Calibration Toolbox for MATLAB. 

  In the mid-point triangulation presented in the previous section, it has been shown that 

point X  in the world coordinate system can be expressed in two reference frames  

[ ]LLLL ZYXX =  and [ ]RRRR ZYXX =  (in corresponding left and right camera 

system coordinates), these two points are being related by the rigid transformation equation 

(6.1). 

Let [ ]1,,,,, RLRLRLRLRL yxZXx ==  be the coordinate vectors resulting from the 

perspective projections using the left and right projective matrices LP and RP  mentioned in 

section 6.2. 

Equation (6.1) can now be written in closed-form as in (6.6) and in matrix form as in (6.8). 

( ) TZxRZx RRLL +=                             (6.6) 
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TZxZxR LLRR =+−⇔                         (6.7) 

[ ] T
Z
Z

xxR
L

R
LR =⎥

⎦

⎤
⎢
⎣

⎡
−⇔                        (6.8) 

In this case the triangulation consists of obtaining LX  and RX from Lx  and Rx  as shown in 

Fig. 6.2.  

 

Fig. 6. 2. Linear triangulation. 

On way of solving the three equations above (6.8) in two unknowns ( LZ  and RZ ) is through 

a least-squares solution. Let [ ]LR xxRA −=  be a 3 x 2 matrix, the solution is presented in 

equation (6.9) by using a pseudo-inverse ( ) TT AAA 1− . 
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The expressions of LZ  and RZ are presented in equations (6.14 and 6.15) 
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where ...,...  is a the dot product operator1. Finally, the point X  in the world coordinate 

system is obtained by considering one of the two camera coordinate systems as a reference 

and using the results above for retrieving LX  and RX . 
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6.2.3 Bundle adjustment 
Bundle adjustment is the problem of refining a visual reconstruction to produce jointly 

optimal 3D structures and viewing parameters (camera pose and/or calibration) estimates 

[51].  This method searches for the optimal 3D point and the optimal projection matrices 

simultaneously, by minimizing the distance between observed points in the image planes 

and projected 3D scene points from the projection matrices as shown in equation (6.16).  

( )∑∑
= =

m

i

n

j
jiij XPxD

1 1
,min                                                                         6.16 

where x is the observed image point, P  the unknown projection matrix, X  the 3D 

reconstructed point and D  the Euclidian distance. To resolve this problem, many 

alternative optimization algorithms such as Levenberg-Marquardt’s Algorithm or Dog Leg 

Algorithm can be used [53]. 

 

Fig. 6. 3. Bundle adjustment technique. 
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6.3 Head pose generation 
 

Given the triangulation techniques used to reconstruct a 3D point from a pair of image 

points obtained from the respective left and right image planes of our stereo rig, it is 

possible to choose one technique that meets the need of a real-time and robust system. 

The comparison of the three techniques as presented in sections 6.2.1 to 6.2.3 and which is 

summarized in Table 6.1, reveals that bundle adjustment may not be fast enough due to the 

use of iterative algorithms. The mid-point and linear triangulation approaches are not 

optimal but are sufficient for our application. Due to the critics done by Hartley [53] on the 

mid-point approach, linear triangulation was chosen as the best technique for our system. 

Table 6. 1. 3D reconstruction methods. 

Technique Advantage Drawback 
Mid-point 

triangulation 

-Intuitive. 
-Simple coding. 
 
 

-Too many approximations so that it 
does not give optimal result. 
-Needs good projection matrices in 
order to provide better results. 

Linear 

triangulation 

-The most common 
triangulation method. 
-Simple coding. 
 

-Is not the most optimal either. 
-Needs good projection matrices in 
order to provide better results. 

Bundle 

adjustment 

-Corrects the projection 
matrices error. 
-Does not need very good 
projection matrices. 

-Uses iterative techniques, with a high 
computational load. 
-Needs more than two views to work 
optimally. 

 

After obtaining 3D points for the tip of nose, the left and right eyes using linear 

triangulation, a 3D OPENGL model of the head shown in Fig. 6.4, was used to show the 

orientation of the plane formed by two eyes and nose in space. 
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Fig. 6. 4. 3D model fitting. 

 

There are two desirable features for the generated 3D points along successive frames: the 

first is that the location of facial features obtained in one frame should help to locate the 

same facial features in successive frames. The second is that the transition from one point 

to another should be smooth.  

The first desirable feature was addressed by optimizing the system in order to avoid the 

search for facial features in each frame. The system runs in two modes. In the first mode, 

called “detection mode”, the head and all three facial features are detected as discussed in 

previous chapters. Then, once the first pose estimates become available, the second mode is 

initiated. In this mode the head detection stage is skipped by only using previous location 

of the eyes in both left and right frames to locate the new facial features position. This 

strategy is shown in Fig. 6.5. 



 50

 

Fig. 6. 5. System mode cycle. 

 

The second desirable feature of smooth and fluent transition between successive frames is 

discussed in Appendix H where a Kalman filter capable of estimating a good 3D point 

while minimizing the effect of the noise is discussed. 
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6.4 Summary 
In this chapter after comparing three approaches for 3D reconstruction by triangulation, a 

linear triangulation based approach was used to get the position of the facial features in 3D 

space. The Kalman filter was also used to smooth the transition of 3D points from 

successive video frames. All the choices made in this chapter are suitable for real-time 

tracking. 
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CHAPTER 7 : Experimental Results 

 

 

System performance consists of obtaining experimental results using the implemented 

system. At this stage, experimental results are evaluated in order to see how successful the 

system is, and how it can be compared to similar systems. 

7.1 Introduction 
The evaluation of the vision system that is being discussed in this thesis was carried out by 

creating a video database that meets the project needs. In the database that is still being 

populated, we chose 20 video sequences captured by our stereo rig. The database is very 

representative as shown in Fig. 7.1. It includes women, men, young, old, white and one 

black person. 

The system performance was evaluated stage by stage: In both head detection and facial 

features detection stages the evaluation is based on the percentage of correct detection rate 

(CDR) and false detection rate (FDR) when system parameters are changing. The CDR is 

the percentage of frames when the detection is performed as planned, and the FDR is the 

percentage of frames when the detection occurs in the wrong place. Both CDR and FDR 

are exclusive in our system.  
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a) b) 

  
c) d) 

  
e) f) 

  
g) h) 

  
i) j) 

Fig. 7. 1. Video Sequences Database, the number of frames in each video sequence is 

respectively: a) 366 b) 653 c) 380 d) 492 e) 645 f) 172 g) 735 h) 441) i) 491 j) 2005. 
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At the 3D reconstruction stage, measurements along the six axes of motion known as 

degrees of freedom of the head (longitudinal, vertical and lateral, roll, pitch and yaw) as 

presented in Appendix I and Fig. 7.2, are obtained and correlated with 3D measurements 

provided by a motion tracking device installed on the driver’s head. 

 
Fig. 7. 2. Degrees of freedom for the head. 

This chapter is organized as follows: section 7.2 presents the Head detection performance, 

section 7.3 describes the Facial features detection performance, section 7.4 presents the 3D 

reconstruction performance and finally, section 7.5 provides a summary of the results. 
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7.2 Head detection performance 
 

The head detection was the starting point of our algorithm for tracking the head in order to 

obtain the 3D pose. As our system stages are sequential, every stage is important and has to 

achieve a good performance otherwise it will affect the performance of following stages. A 

stage has a good performance if it has a high percentage of correct detection rate and a low 

percentage of false detection rate. Our head detection approach has a good performance as 

shown in Fig.7.3. It has an average correct detection rate of 99.91% and an average false 

detection rate of 0.09%. 
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Fig. 7. 3. Head detection performance. 

7.3 Facial features detection performance  
 
The algorithm used to detect facial features must maximize the percentage of correct 

detection rate and minimize the percentage of false detection. As this algorithm works in 

two stages as described in previous chapters and needs proper setting of various parameters 

to work, system performance is evaluated by changing only one parameter at a time. These 

parameters include parameter “tolerance” needed when results from previous frames are 

used in the remaining frames to choose a search region that is smaller than the head region.  
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The parameter “high in” is used for eyes region histogram equalization, the threshold 

parameter is used after eyes region histogram equalization is performed, parameter “high 

in” is used in nose region histogram equalization, finally two threshold parameters are used 

after normalized cross correlation and normalized coefficient correlation are performed as 

implemented in OPENCV.  

7.3.1 Effect of “Tolerance” parameter 
This parameter is used in the algorithm described in chapter 6. The position of detected 

facial features in previous video frames is used to build a more restrained region where to 

detect facial features in following frames, instead of detecting the whole driver’s head. This 

parameter consists of the number of frames during which estimation mode operates before 

changing to detection mode. 

By observing Fig. 7.4 and 7.5, we can conclude that, as the tolerance parameter increases, 

the detection rate drops slightly while the frame rate increases, which is the desired effect. 
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Fig. 7. 4. Effect of tolerance on detection rate. 
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Fig. 7. 5. Effect of tolerance on the frame rate. 

In Fig. 7.4 above, we notice a poor performance in detection rate of video sequences A and 

C and a very good frame rate performance for the same sequences. This is explained by the 

fact that subjects were wearing glasses. The detection of eye features for subject wearing 

glasses is not yet implemented. The frame rate is high because when facial features are not 

detected, the computation load is low. 

7.3.2 Effect of “high in” parameter in eyes region histogram equalization 
The algorithm used for histogram equalization is a clone of the function “imadjust” used in 

a numerical computing environment and programming language called MATLAB as 

described in equation (7.1).  

[ ] [ ]( )gammaouthighoutlowinhighinlowIimadjustJ ,__,__,=         (7.1) 

This function maps the values in image I  to new values in image J  such that values 

between parameters inlow _  and inhigh _  map to values between parameters 
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outlow _ and outhigh _ . Parameter gamma  specifies the shape of the curve describing the 

relationship between the values in I  and J . By default outlow _  and outhigh _ are set to 0 

and 1 respectively, to cover the whole greyscale range, inlow _ is set to 0 and gamma  to 1 

to allow linear mapping, the only variable is inhigh _ . 

By observing carefully the detection rate according to the change of the parameter 

inhigh _  as plotted in Fig. 7.6, we cannot infer any tendency; still it has been observed 

empirically the best range of the parameter inhigh _  is between 0.2 and 0.8 for most video 

sequences. 
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Fig. 7. 6. Effect of “High in” parameter on the detection rate. 
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7.3.3 Effect of threshold parameter after eye region histogram 
equalization 
 

The threshold parameter is used to roughly detect eyes features as described in chapter 5. 

During the thresholding operation, a binary image is obtained from a greyscale image by 

using the function cvThreshold from OPENCV. This binary image is a pre-processing 

phase to obtain features blobs. The plots in Fig 7.7 show that values lower than 200 are the 

best choice for thresholding. 
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Fig. 7. 7. Effect of threshold parameter on the detection rate. 
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7.3.3 Effect of “high in” parameter in nose region histogram equalization 
 

The parameter “high in” in nose region histogram equalization is similar to the parameter 

used in eyes region histogram equalization. Firstly, histogram equalization was performed 

for the whole subject image, after noticing that the function imadjust generates its best 

results when applied on small regions, we chose to perform the image histogram 

equalization in two separated small regions: the eye regions and the nose region. 

By observing the detection rate according to the change of the parameter inhigh _  as 

plotted in Fig. 7.8, we can infer that the best results are obtained above the value 0.5. 
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Fig. 7. 8. Effect of “High in” parameter on the detection rate. 
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7.3.4 Effect of threshold parameter after normalized cross correlation  
 
The threshold parameter after normalized cross correlation is used after eyes candidates are 

compared to an eye average template discussed in chapter 5, by using the function 

cvMatchTemplate from OPENCV, and a threshold is used to decide whether the 

comparison was a match or not.  

The plots in Fig 7.9 show that values before the maximum of the greyscale range 255 are 

the best. 
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Fig. 7. 9. Effect of threshold parameter after normalized cross correlation on the detection 

rate.  
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7.3.5 Effect of threshold parameter after normalized coefficient 
correlation  
 
The threshold parameter after normalized coefficient correlation is similar to the previous 

parameter except that a normalized coefficient correlation is used in function 

cvMatchTemplate from OPENCV. The best threshold value is selected just before the drop 

in the plot shown in Fig. 7.10. 
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Fig. 7. 10. Effect of threshold parameter after normalized coefficient correlation on the 

detection rate. 
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7.3.6 Discussion on parameters 
 
After analysing each system parameter plot presented above, we tried to combine system 

parameter values providing the highest detection rate in each plot, in order to build an 

optimal system with highest correct detection rate possible. However, the combination did 

not provide the highest detection rate expected as it is shown in the first row of Table 7.1. 

Table 7. 1. Overall performance. 
Video Sequence B D E F G H I J 
CDR from the 
combination of all 
parameter values that 
provide highest CDR 
in each plot 

81.32% 97.97% 95.66% 93.02% 52.65% 47.39% 0.00% 78.65%

CDR from parameter 
values that provide 
highest CDR in each 
plot 

88.36% 98.58% 95.66% 99.42% 56.05% 47.39% 99.08% 78.65%

 

The results presented in the second row of Table 7.1 were obtained from parameter values 

that provide highest correct detection rate in each plot. By observing carefully the table 

above, we notice that video sequences G and H had the least performance among others. A 

presumed explanation is the imprecision in the method called 8-points algorithm defended 

by Hartley [56], used to estimate the fundamental matrix. This algorithm needs enhanced 

and well scattered edges across the stereo images which is not the case in video sequences 

G and H, where subjects did not wear a motion tracking device like in other video 

sequences, to allow enough enhanced and well scatted edges used in fundamental matrix 

estimation. The other video sequences were taken after the calibration of the stereo rig was 

done, which helped to calculate the fundamental matrix directly from geometric calibration 

results. By excluding the two video sequences G and H with poor performance results, we 

achieve an average detection rate of 93%. 
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7.4 3D reconstruction performance 

7.4.1 Levenberg-Marquardt optimization  
The estimated pose obtained from the 3D reconstruction stage and the 3D measurements 

obtained from the head motion tracker mounted on driver’s head are not in the same 

coordinates system. Moreover position of this device changes from one driver to another. 

To compare these two measurements estimated pose from the 3D reconstruction stage have 

to be transposed to the head motion tracker device system coordinate. 

The transposition is performed by using optimal estimation of translation and rotation 

parameters obtained from Levenberg-Marquardt optimization algorithm described in 

Appendix J. The plot comparing both data is shown in Fig.7.11.  

 

 

Fig. 7. 11. 3D measurements comparison for Video Sequence J 
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By observing the plot above, we realize that the estimated position swings along the 

measured position in satisfactory manner, the worst error which is in X position plot, is 

only 20 mm. Still the position measurement is to be well tested for subjects’ head moving 

too much, because in the current project video database we did not have the opportunity to 

have such subjects. The estimated orientation is close to the measured orientation. The 

observed offset between estimated orientation and measured orientation is due to the delay 

in the response of the Kalman filter. 

7.4.2 Kalman filter  
Data obtained while tracking in computer vision is often noisy due to various reasons such 

as sensor noise or algorithms used for tracking. There is a need for filtering the raw results 

with, for instance, a Kalman filter.  

The Kalman filter used to estimate 3D points helps reduce the quadratic error or mean 

square error (MSE) between the measured and estimated 3D points of the facial features as 

shown in equation (7.1) .  

( )
2

1

ˆ1∑
=

−=
n

i
iin

MSE θθ                            (7.1) 

where n is the data size andθ̂  the estimation of the dataθ . 

Results presented in Table 7.2 show that for all video sequences tested, the Kalman filter 

always yield a smaller mean square error. 
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Table 7. 2. Mean Square Error between estimated pose with and without Kalman filter. 

Video Sequences MSE 

B D E F I J 
Without  Kalman 8.264 2.928 28.934 4.427 10.937 53.737X(mm) 
With Kalman 7.413 2.079 19.828 4.137 8.663 49.004
Without  Kalman 7.088 0.563 6.898 1.644 4.516 12.920Y(mm) 
With Kalman 6.642 0.334 5.499 1.074 3.004 11.985
Without  Kalman 15.247 0.811 19.989 5.026 13.563 75.700Z(mm) 
With Kalman 6.022 0.534 17.288 1.495 11.083 68.802
Without  Kalman 1.345 36.086 5.220 15.747 3.800 173.118Azimuth 

(degrees) With Kalman 1.279 15.628 3.844 5.998 1.797 105.015
Without  Kalman 3.884 8.457 19.221 21.129 6.549 51.444Elevation 

(degrees) With Kalman 1.849 4.384 7.298 6.795 2.211 36.462
Without  Kalman 23.309 13.821 39.124 8.036 9.101 115.121Roll 

(degrees) With Kalman 20.081 5.943 12.482 4.631 2.419 100.497
 

The Kalman filter not only minimizes the mean square error, it allows also a smooth 

transition between estimated 3D pose as shown in Fig. 7.2.  

 

Fig. 7. 12. a) Cockpit Setup Diagram3D points without Kalman filter   b) the same 3D 
points with Kalman filter. 
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7.5 Summary 
The evaluation of the system performance was presented in this chapter. The correct head 

detection rate and correct facial features detection rate show that the system discussed in 

this thesis is able to track the head motion in 3D space and in real-time when system 

parameters are set properly. Finally, the results obtained from the estimated pose are 

comparable to the data from the head motion tracker. 
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 Conclusion and Suggestions for Future Work 
A computer vision system for tracking the head pose in 3D was designed and implemented. 

As the system is part of an integrated system to analyze the behaviour of the drivers and 

could be expandable for a later use in other similar systems, a modular design was adopted 

by dividing the system into different modules. Four main modules were implemented: 

image acquisition, head detection, facial features extraction and detection, and the 3D 

reconstruction. 

An affordable image acquisition system using two Prosilica CV640 cameras was proposed, 

and infrared projectors were used to illuminate driver’s face without obscuring their view. 

The head detection module was implemented by taking advantage of the light-controlled 

environment. This helped to implement a simple yet very cost effective algorithm that 

contributed to increase video sequence processing speed and eliminated potential problems 

caused by areas that may look like facial features but are located outside of the head. 

The facial features module consists of a detection algorithm that was implemented to detect 

roughly the eyes location and use of camera calibration and epipolar geometry to extract all 

the facial features from the image sequences. This extraction was validated by a neural 

network that led to a robust system. 

Finally, a linear triangulation approach was implemented to achieve 3D reconstruction 

using all selected facial features. A Kalman filter was also used to smooth the transition of 

3D points from successive video frames. The system is suitable for real-time tracking. 

Future work will consist in extending the algorithms to drivers wearing glasses and 

reducing the maximum error for azimuth, pitch and roll in 3D estimates. We also intend to 

install the tracking system on board a real car. In this case, the Head Detection algorithm 

will need to be revisited in order to be able to cope with varying background conditions. 

Finally, the training of the neural network will be automated in order to facilitate 2D 

tracking whenever the cameras are moved.  
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Glossary of Abbreviations and Symbols 
 

2D  Two dimensions. 

3D  Three dimensions. 

ASL  Applied Science Laboratories. 

COBVIS-D   Cephalo-Ocular Behaviour and Visual Search Patterns of Drivers. 

DFT  Discrete Fourier Transform. 

FPS  Frames Per Second (Frame rate). 

HSL  Hue, Saturation and Luminance colors channels. 

HSV  Hue, Saturation and Value colour channels. 

MATLAB  Matrix Laboratory (a numerical computing environment and programming  
  language). 

MLP  Multi-Layer Perceptron. 

OPENCV  Open Computer Vision Library. 

OPENGL  Open Graphics Library. 

RGB  Red, Green and Blue colour channels. 

VFF  Vertical Frequency Filter. 
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Appendix A: Motion Tracking Device (Flock of Bird) 

 

Fig. A. 1. Motion Tracker. 

Table A. 1. Motion Tracker Specifications. 

Specifications Values 
Price $ 2,495 
Technical  
Tracking Range ±4’ (1.2m) ±10’ (3.05m) optional in any direction 
Angular Range ±180° Azimuth & Roll, ± 90° Elevation 
Static Accuracy Position: 0.07" (1.8mm) RMS 
Orientation Position: 0.07" (1.8mm) RMS 
Static Resolution Position: 0.02’ (0.5mm) @ 12" (30.5cm) 
Orientation 0.1° @ 12" (30.5cm) 
Update Rate Up to 144 measurements/second 
Outputs X,Y, Z positional coordinates and orientation angles, or rotation matrix 
Interface RS-232 with selectable baud rates to 115,200 
Format Binary 
Modes Point or Stream 
Physical  
Transmitter Mid-Range Transmitter: 9.6cm cube with 3.05M cable, or extended range
Transmitter option 30.5cm cube with 6.1m cable 
Sensor 25.4mm x 25.4mm x 20.3mm cube (or optional 3-button mouse) with 
 or 10.7M cable. Weight: 21 g (0.7 oz) without cable, 169 g (6.0 oz) 
Enclosure with 3.05M cable, 394 g (13.9 oz) with 10.7M cable. 
Power User provided or optional external plug-in: US/European version 
Environment Metal objects and stray magnetic fields in the operation volume will 
 degrade performance. 

Appendix B: Eye Tracking Device (ASL Model R6) 
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Fig. B. 1. Eye Tracker. 

 

Table B. 1. Eye Tracker specifications. 

Specifications Values 
Price $ 32,540 - $ 42,455 
Control Unit  
Dimensions (H/W/D) 3 in/9.75 in/10.25 in 
Weight 4.25 lbs 
Power 100-240 VAC, 25 watts 
Display 9 inch b&w monitors for eye and scene cameras 
Remote Optics  
Sampling and Output Rates 50 Hz or 60 Hz, 120 Hz, 240 Hz and 360 Hz (optional) 
Measurement principle pupil-corneal reflection 
System accuracy 0.5 degree visual angle 
Resolution 0.25 degree visual angle 
Head movement one square foot 
Max. distance optics to eye 40 in 
Visual range 50 degrees horizontally, 40 degrees vertically 
Dimensions (H/W/D) 4 in/5.5 in/6 in 
Weight 2.75 pounds 
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Appendix C: Camera (Prosilica CV640) 

 

Fig. C. 1. Camera Prosilica. 

 

Table C. 1. Camera Prosilica Specifications. 

Specifications Values 
Price $ 1,550 
Sensor Size (H x V) 659 x 494 pixels 
Sensor Format ½ inc 
Dynamic Range 65 dB (112 dB in EDR mode) 
Sensor Type Progressive Scan 
Exposure Type Snapshot shutter 
Pixel Size 9.9 x 9.9 um 
Frame Rate (8-bit raw) 120 fps (NI CVS) 100fps (MS Windows) – more with ROI 
Output Type IEEE 1394A 
DCAM Compliance IIDC 1.30 & 1.31 
Output Format 8 or 10 bits per pixel 
Synchronization External trigger and sync. 
Exposure Control Programmable -  10us to 5s 
Power 1.8 W     12VDC @ 150 mA 
Lens Mount C-mount 
Housing Size 79 x 51 x 38 (L x W x H in mm) 
Weight 220 g 
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Appendix D: Infrared Illuminators (CSI-IR) 

 

Fig. D. 2. Infrared Illuminators. 

 

Table D. 2. CSI-IR Infrared Illuminators Specifications. 

Specifications Values 
Price $ 286 
Distance 18m (60ft) – 200m(660ft) 
Illumination Method Special LED array 
Power 6W-55W, DC or AC input 
Lifespan 10,000 + hours 
Construction Extruded aluminium housing 
Weight 150g (33lbs)-1.3kg(2.8lbs) 
Wave length 850nm, 940nm 
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Appendix E: Head Detection Algorithm using Head-
Shoulder Contour method 

a) 
 

b) 

c) d) 

e) 
 

f) 

g) 
 

 
h) 

Fig. E. 1. a, b) Original frames c,d) Images thresholding and largest blob detection  

e,f) Head detection and g,h)Bounding box assignation to the head. 
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Appendix F: Template matching functions in Open 
Computer Vision Library (OPENCV) 

“Given a source image with pixels and a template with pixels, the resulting image has 
pixels, and the pixel value in each location (x,y) characterizes the similarity between the 
template and the image rectangle with the top-left corner at (x,y) and the right-bottom 
corner at (x + w - 1, y + h - 1)”.  
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a) Fig. F. 1. Matching Algorithms a) Square difference b) Normalized square 
difference c) Cross correlation  d) Normalized cross correlation e) Correlation 

coefficient f) Normalized correlation coefficient. 

where ( )yxI ,  is a value of image pixel and ( )yxT ,  a value of template pixel at location (x, 
y). 

where ( ) ( ) TyxTyxT −′′=′′ ,,
~

and  ( ) ( ) ( )yxIyyxxIyyxxI ,,,
~

−′+′+=′+′+ , and where 
T stands for the average value of pixels in the template raster and ( )yxI ,  stands for the 
average value of the pixels in the current window of the image. 
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Appendix G: Neural Network : Multilayer Perceptron 
 
The MLP is a parametric technique to approximate a vector function of some input with a 
series of layers [35]. 
Each layer has a weight matrix W, a bias vector b and an output vector a. The network 
proposed for the validation of 2D results is shown in Fig. G.1. It has R inputs in the first 
layer also called the input layer, 10 hidden neurons in a hidden layer and 1 neuron in an 
output layer. 

Fig. G. 1. Multilayer perceptron. 

 

Source: Parizeau [49]. 
 
The output equation (F.1) of every layer is described by: 

( )kkkkk baWfa += −1                      For Mk ...1=   (G.1) 
where M  is the number of layers. To approximate the function, the network needs to be 
trained in order to adjust its weights. The algorithm needed to do the adjustment is called 
Back propagation. At every training epoch an error vector ( )te  is obtained in equation 
(G.2). 
 

( ) ( ) ( )tatdte M−=                                                     (G.2) 
where ( )td  is desired output, the target in the other words. The performance is expressed 
by minimizing the estimated mean square error ( )xF̂  in equation (G.3). 

( ) ( ) ( )( )teteExF T=ˆ                                                     (G.3) 
where E  is the mathematical expectation and x combines both network weights and bias. 
Notice that it is easy to do all mathematics in the last layer where the target is given, the 
problem arises at the intermediate layers and thus the chain rule of derivate was needed to 
keep propagating the error [49]. 
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To optimize x we use the gradient descent algorithm described in the following equation 
(G.4). 

kkkk gxx η−=+1                                                            (G.4) 
where η  is the learning rate and g the current gradient.   
The gradient descent algorithm is too slow, a faster technique was needed. The Quasi-
Newton method was developed to solve the speed problem. Its basic step is presented in 
equation (G.5). 

kkkk gAxx 1
1

−
+ −=                                                                (G.5) 

where 1−
kA  is the Hessian Matrix (second derivates) of the performance index at the current 

values of the weights and biases. For our problem we chose the             
Levenberg-Marquardt algorithm that approximates the Hessian matrix H  and the gradient 
g as presented in equation (G.6) by using the Jacobian matrix J  that contains first 
derivates of the network errors e  with respect to the weights and biases.   
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The algorithms step update as presented in equation (G.7) becomes  
[ ] eJIJJxx TT

kk
1

1
−

+ +−= µ                                                (G.7) 
where µ is zero the algorithm becomes Newton’s method approximating Hessian matrix. 
When µ is large it becomes gradient descent method with small step size [51]. 
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Appendix H: Kalman filter  
The Kalman filter is defined as “a set of mathematical equations that provides an efficient 
computational (recursive) means to estimate the state of a process, in a way that minimizes 
the mean of the squared error” [54]. 
 
In any discrete time linear system subject to noise, a true state kx  of a process at time k that 
depends on the state 1−kx  at time (k-1) and the measurement kz of this true state kx  are 
related according to the linear stochastic difference equations in (H.1) and diagrammed in 
Fig. H.1. 
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++= −
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kkkkkk

vxHz
wuBxAx 1                                        (H.1) 

where  
 kA is the state transition n x n matrix applied to the previous state 1−kx  
 kB is the control-input n x 1 matrix applied to the control vector ku  
 kH is the measurement matrix which maps the true state space into the measured 

space. 
 kw and kv  are normally-distributed process and measurement noise, respectively 

with Q as process noise covariance matrix and R measurement noise covariance 
matrix. 

  
  

 
 

 
Fig. H. 1. Kalman filter state and measurement models. 

Unfortunately, this ideal model cannot be obtained due to the unknown noise sources kw  
and kv [55], hence the use of the estimated model in determining the system state and 
measurement as diagrammed in Fig. H.2.  
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Fig. H. 2. Comparison between ideal model and estimated model. 

 
In this estimates model, the absence of noise sources kw  and kv  is compensated by some 
equations series described in equation (H.2). 
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where  
 the original estimate of kx is now called −

kx̂  and is referred to as a priori estimate 
this a priori estimate is used to predict  an estimate for the output kẑ  

 the difference R is called measurement residual or innovation if it is zero the 
estimation is perfect. 

The quantity kK  called kalman gain is used to refine the estimate. 
Finally, the kalman filtering is achieved in two phases: predict phase and correct phase as 
shown in Fig. H.3 where the covariance error kP  is used to compute the kalman gain.  
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Fig. H. 3. Kalman filter phases. 

 
 
A computer vision library called OPENCV was used below for the implementation of the 
kalman filter. 
 
typedef struct CvKalman 
{ 
    int MP;                       // number of measurement vector dimensions 
    int DP;                       // number of state vector dimensions 
    int CP;                       // number of control vector dimensions 
    CvMat* state_pre;             // predicted state (x'(k)): x(k)=A*x(k-1)+B*u(k)  
    CvMat* state_post;            // corrected state (x(k)) : x(k)=x'(k)+K(k)*(z(k)-H*x'(k)) 
    CvMat* transition_matrix;     // state transition matrix (A) 
    CvMat* control_matrix;        // control matrix (B)  
                                  // (it is not used if there is no control) 
    CvMat* measurement_matrix;    // measurement matrix (H)  
    CvMat* process_noise_cov;     // process noise covariance matrix (Q) 
    CvMat* measurement_noise_cov; // measurement noise covariance matrix (R) 
    CvMat* error_cov_pre;         // priori error estimate covariance matrix (P'(k)):  
                                  // P'(k)=A*P(k-1)*At + Q) 
    CvMat* gain;                  // Kalman gain matrix (K(k)):  
                                  // K(k)=P'(k)*Ht*inv(H*P'(k)*Ht+R) 
    CvMat* error_cov_post;        // posteriori error estimate covariance matrix (P(k)):  
                                  // P(k)=(I-K(k)*H)*P'(k)  
} 
CvKalman; 
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const int ELEMENTS_NBR =  3;      // The 3D points has three coordinates x, y and z      
 
// Kalman filter main struct initialization 
CvKalman* lpKalmanFilter = cvCreateKalman( ELEMENTS_NBR, ELEMENTS_NBR, 0 );  
 
// Matrix for measurements for a 3D point 
CvMat*   lpMeasurement  = cvCreateMat( ELEMENTS_NBR, 1, CV_32FC1 );        
 
//Initialization of the kalman matrices 
cvSetIdentity(lpKalmanFilter->transition_matrix,     cvRealScalar(1));     // Matrix A 
cvSetIdentity(lpKalmanFilter->measurement_matrix,    cvRealScalar(1));     // Matrix H 
cvSetIdentity(lpKalmanFilter->process_noise_cov,     cvRealScalar(0.125));    // Matrix Q 
cvSetIdentity(lpKalmanFilter->measurement_noise_cov, cvRealScalar(102.4));    // Matrix R 
cvSetIdentity(lpKalmanFilter->error_cov_post,        cvRealScalar(1));     // Matrix P 
 
// initial state initialization 
lpKalmanFilter->state_post->data.fl[0] = 0;        // x 
lpKalmanFilter->state_post->data.fl[1] = 0;        // y 
lpKalmanFilter->state_post->data.fl[2] = 0;        // z 
 
//Function to predict a filtered point for each video frame 
CvPoint3D64f PointPrediction(CvPoint3D64f measuredPoint) { 
 CvPoint3D64f lpredictedPoint; 
  
 //measured point 
 lpMeasurement->data.fl[0] = measuredPoint.x;       // x 
 lpMeasurement->data.fl[1] = measuredPoint.y;       // y 
 lpMeasurement->data.fl[2] = measuredPoint.z;       // z 
 
 // Necessary to first predict and then update estimates, Predict next value 
        // Function updates kalman->state_pre which is next predicted  
        cvKalmanPredict(lpKalmanFilter,0); 
 
        // Function updates internal matrices 
        // Function updates kalman->state_post which is corrected 
        cvKalmanCorrect(lpKalmanFilter,lpMeasurement); 
 
 lpredictedPoint.x = lpKalmanFilter->state_post->data.fl[0];     // x 
 lpredictedPoint.y = lpKalmanFilter->state_post->data.fl[1];     // y 
 lpredictedPoint.z = lpKalmanFilter->state_post->data.fl[2];     // z 
  
 return lpredictedPoint; 

} 
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Appendix I: Motion Tracker 3D Measurements Example 

Table I. 1. Motion Tracker 3D Measurements Example. 

Frames X Y Z Azimuth Elevation Roll 

1 37.138 6.251 16.520 -5.603 -69.212 43.856 
3 37.149 6.240 16.543 -5.603 -69.322 43.834 
4 37.160 6.240 16.543 -5.515 -69.300 43.768 
5 37.171 6.229 16.554 -5.559 -69.388 43.790 
6 37.182 6.240 16.554 -5.515 -69.432 43.790 
7 37.182 6.240 16.587 -5.603 -69.542 43.834 
8 37.193 6.251 16.576 -5.493 -69.586 43.725 
9 37.216 6.240 16.587 -5.471 -69.630 43.703 
10 37.227 6.240 16.599 -5.493 -69.740 43.725 
11 37.238 6.240 16.610 -5.581 -69.805 43.768 
12 37.260 6.251 16.621 -5.537 -69.871 43.746 
13 37.272 6.240 16.632 -5.581 -69.871 43.790 
14 37.283 6.251 16.621 -5.515 -69.937 43.725 
15 37.294 6.262 16.632 -5.449 -69.981 43.703 
16 37.327 6.251 16.632 -5.493 -70.069 43.703 
17 37.338 6.240 16.643 -5.581 -70.113 43.768 
18 37.338 6.251 16.677 -5.537 -70.223 43.746 
19 37.361 6.251 16.677 -5.493 -70.245 43.681 
20 37.361 6.251 16.699 -5.471 -70.333 43.681 
21 37.383 6.240 16.688 -5.471 -70.311 43.615 
22 37.383 6.262 16.699 -5.383 -70.377 43.571 
23 37.405 6.262 16.699 -5.383 -70.377 43.571 
24 37.405 6.251 16.699 -5.405 -70.399 43.549 
25 37.394 6.262 16.710 -5.383 -70.399 43.549 
26 37.394 6.251 16.710 -5.427 -70.399 43.549 
27 37.394 6.251 16.710 -5.383 -70.399 43.527 
28 37.394 6.240 16.699 -5.405 -70.377 43.527 
29 37.394 6.240 16.699 -5.405 -70.377 43.527 
30 37.394 6.240 16.699 -5.405 -70.377 43.549 
31 37.394 6.251 16.699 -5.383 -70.355 43.527 
32 37.383 6.240 16.699 -5.339 -70.333 43.505 
33 37.372 6.240 16.666 -5.317 -70.201 43.439 
34 37.338 6.206 16.654 -5.339 -70.091 43.439 
35 37.327 6.206 16.643 -5.317 -70.003 43.395 
36 37.283 6.184 16.632 -5.317 -69.871 43.395 
37 37.249 6.184 16.610 -5.207 -69.761 43.285 
38 37.249 6.184 16.599 -5.229 -69.696 43.307 
39 37.238 6.184 16.576 -5.163 -69.630 43.219 
40 37.227 6.184 16.565 -5.032 -69.564 43.109 
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Appendix J: Levenberg-Marquardt Algorithm 
 
Levenberg-Marquardt algorithm is an iterative algorithm used for curve fitting. The 
algorithm minimizes the sum of the squares of the deviations as presented in equation (J.1) 
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ii pxfypS                                 (J.1) 

where  
p is the vector of parameters to be determined  
f is the fitting function 
n is the data size 

ix  is the data to be fitted to iy  so that ( ) ii ypxf =|  
Let J be the Jacobian of ( )pxf | , for every iteration step the parameter vector p  is 
updated as in equation (J.2) 

qpp +=                                                           (J.2) 
 

and q is computed by linearization approximation of equation (J.3) 
( ) ( ) Jqpfqpf +≈+                                          (J.3) 

 

When the equation (J.1) is at the minimum, the gradient ( )[ ] 0| 2
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qpxf ,then, by using 

the approximation presented in (J.3), q  can be obtained from the equations (J.4) 
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where I is the identity matrix and the positiveλ is the dumping factor, the more is λ  the 
Levenberg-Marquardt algorithm will behave like the steepest descent process. On the other 
hand, the smaller λ is, the more the Levenberg-Marquardt algorithm will behave like the 
Gauss-Newton process. 


	HEAD MOTION TRACKING IN 3D SPACE FOR DRIVERS
	Résumé
	Abstract
	Acknowledgement
	1.1 Project context and challenges
	1.2 Computer vision overview
	1.3 Head Pose Tracking

	CHAPTER 2: Description of the Image Acquisition Module
	2.1 Introduction
	2.2 Basic concepts for image acquisition
	2.3 Image acquisition system analysis
	2.4 Summary

	CHAPTER 3: Head Detection
	3.1 Introduction
	3.2 Literature review
	3.2.1 Background subtraction
	3.2.1.1 Visible Light Spectrum
	3.2.1.2 Infrared Thermography

	3.2.1.3 Disparity Maps
	3.2.2 Head detection
	3.2.2.1 Cascade of boosted classifiers
	3.2.2.2 Head-shoulders contour


	3.3 Chosen approach
	3.4 Summary

	CHAPTER 4: Eyes Detection
	4.1 Introduction
	4.2 Literature review
	4.2.1 Facial features detection
	4.2.2 Eyes detection

	4.3 Chosen approach
	4.3.1 Vertical Frequency Filter
	4.3.2 Rough eye detection

	4.4 Summary

	CHAPTER 5: Facial Features Extraction
	5.1 Introduction
	5.2 Literature review
	5.2.1 Camera Calibration
	5.2.2 Epipolar geometry

	5.3 Facial features extraction discussion
	5.3.1 Eyes extraction
	5.3.1 Eyes extraction validation with a neural network
	5.3.1 Nose tip extraction

	5.4 Summary

	CHAPTER 6 :  3D Reconstruction
	6.1 Introduction
	6.2 Literature review
	6.2.1 Mid-point triangulation
	6.2.2 Linear triangulation
	6.2.3 Bundle adjustment

	6.3 Head pose generation
	6.4 Summary

	CHAPTER 7 : Experimental Results
	7.2 Head detection performance
	7.3 Facial features detection performance
	7.3.1 Effect of “Tolerance” parameter
	7.3.2 Effect of “high in” parameter in eyes region histogram
	7.3.3 Effect of threshold parameter after eye region histogr
	7.3.3 Effect of “high in” parameter in nose region histogram
	7.3.4 Effect of threshold parameter after normalized cross c
	7.3.5 Effect of threshold parameter after normalized coeffic
	7.3.6 Discussion on parameters

	7.4 3D reconstruction performance
	7.4.1 Levenberg-Marquardt optimization
	7.4.2 Kalman filter

	7.5 Summary

	Values

