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Résumé

La présence de nceuds a l'intérieur de la tige est une des caractéristiques internes ayant le
plus d'impact sur les propriétés mécaniques du bois. Il existe une grande quantité de
modeles décrivant I’impact de la croissance et des stratégies sylvicoles sur le
développement des branches et quelques modéles décrivant la géométrie des nceuds.
Cependant la difficulté a obtenir des données internes précises explique que trés peu
d’¢tudes se sont intéressées a modéliser les relations entre les caractéristiques
morphologiques des nceuds et les caractéristiques externes des branches et de I’arbre. La
présente recherche a pour objectif principal d’améliorer nos connaissances de la nature des
nceuds (fréquence, répartition, forme et taille) de maniére a les intégrer dans des modeles
de croissances des arbres.

Dans un premier volet, nous avons mis au point un mode¢le statique de la géométrie des
nceuds utilisant seulement 5 paramétres a partir d’une combinaison de deux €quations non
linéaires. La grande flexibilité de ces équations nous a permis de décrire des nceuds de
morphologies trés variables. Les parameétres obtenus ont ensuite été exprimés en fonction
de caractéristiques externes facilement mesurables, afin d’étre intégrables dans un modele
de croissance. Dans un second volet, nous avons analysé le ratio d’allocation de matiere
entre les nceuds et la tige au cours du développement de 1’arbre, puis €laboré un modele
linéaire mixte qui se veut dynamique dans le temps. Ce dernier décrit 1’évolution de la
morphologie d’un nceud en fonction de la croissance secondaire de la tige. Finalement, par
une méthode empirique basée sur deux filtres successifs tenant compte du diametre des
branches et de leur espacement, nous avons pu améliorer le positionnement des unités de
croissance le long de tiges d’épinette. Cette délimitation nous a permis de modéliser le
nombre de branches dans les unités de croissance ainsi que leurs positions autour et au
long du tronc. L’intégration de ces modeles de nceuds couplés a une distribution plus
réaliste des nceuds dans le tronc permettra de développer un simulateur de la croissance

des arbres capable de représenter la morphogénéese des nceuds a I’intérieur de la tige.












Abstract

The presence of knots is one of the internal characteristics with the greatest impact on the
mechanical properties of wood. Several models describe the impact of tree growth and of
silvicultural strategies on the development of branches but fewer models describe the
geometry of knots. However, the difficulties to obtain accurate internal data may explain
that very few studies have focused on modelling the relationship between the knot
morphology and tree and branch characteristics. The main objective of this study was to
improve our knowledge of knottiness (frequency, distribution, shape and size) for
integration into existing growth models.

In a first stage, we developed a static model of knot geometry using only 5 parameters
from a combination of two nonlinear equations. The flexibility of these equations allowed
us to describe a wide range of knot types. The parameters obtained were then modelled as
functions of measurable tree and branch characteristics, to facilitate the integration into a
growth model. In a second stage, we analysed the ratio of knot to stem allocation over the
tree development, and then developed a mixed effect model that was dynamic in time. The
latter describes the evolution of knot morphology as a function of the stem’s secondary
growth. Finally, through an empirical method based on two successive filters and using the
branches diameter and the distance between them, we were able to improve the
positioning of the growth units along black spruce stems. This allowed us to model the
number of branches within growth units and their positions along and around the stem.
The integration of these knot models coupled to a more realistic distribution of the knots
along the trunk will allow the development of a tree growth simulator capable to represent

the knot morphogenesis inside the stem.
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Avant-Propos

Ce document est présenté sous la forme d’une thése par article. Celle-ci a été congue selon
les criteres de présentation adoptés par le comité de programme de 2e¢ et 3e cycle en
sciences forestieres de 1’Université Laval. Les articles suivants, rédigés en langue anglaise,

sont inclus dans cet ouvrage.

Chapitre 1: E. Duchateau, F. Longuetaud, F. Mothe, C. Ung, D. Auty, and A. Achim
(2013) Modelling knot morphology as a function of external tree and branch attributes.
Can. J. For. Res. 43: 1-12

Chapitre 2: E. Duchateau, D. Auty, F. Mothe, F. Longuetaud, C. Ung and A. Achim
(2013) Modelling knot morphogenesis in trees. Sur le point d’étre soumis a Annals of
Botany.

Chapitre 3: E. Duchateau E, Auty D, Mothe F, Achim A (2013) Improving branch
distribution models in trees using X-ray computed tomogrpahy.

Une partie des résultats du chapitre 3 a été publié dans les travaux de la 7°™ conférence
sur les modeles structure-fonction des plantes en Finlande (Cf. Annexe). Le reste des

résultats sera soumis sous peu pour fin de publication dans la revue scientifique PeerJ.

En tant que candidat au doctorat et premier auteur de ces articles, j’ai effectué la revue de
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Longuetaud, Fédéric Mothe et David Auty ont aussi contribué significativement a
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Introduction

Le secteur forestier québécois a traversé une période difficile au cours de ces dernicres
années. D’une part, le ralentissement de I’économie américaine qui a directement affecté
I’économie canadienne et les industries du bois; d’autre part, les calculs de la possibilité
annuelle de coupe a rendement soutenu pour la période 2008-2013 qui ont été annoncés par
le Forestier en Chef et revus a la baisse. A I’échelle provinciale, cette refonte du calcul de
la possibilité forestiere a entrainé une diminution de 22 % par rapport a la période 2000-
2008 (Bureau du Forestier en chef 2006). Par conséquent, cela a entrainé aussi une
réduction des attributions de volume en provenance de la forét publique a 1’industrie qui ne
peut opérer a pleine capacité.

Historiquement, la stratégie provinciale pour faire face a cette situation a notamment vis¢
une réduction des colts d’opération des scieries afin qu’elles restent compétitives
(Ministere des ressources naturelles 1996) et une augmentation de la production foresticre.
Cette intensification est susceptible d’entrainer une baisse de la qualit¢ des productions
futures (Bruchert et al. 2000; Hein et al. 2007).

Cette situation porte donc a s’interroger sur les pratiques sylvicoles actuelles et sur la
nécessité d’avoir a disposition des modeles de croissance adaptés, couplés a des modeles
de qualité¢ du bois, de manic¢re a constituer un outil intéressant pour ¢tudier ’impact de
différents scénarios sylvicoles sur la productivité et la qualité. La poursuite des recherches
en sylviculture et I’amélioration des modeles actuels s’averent donc essentielles.

I serait notamment intéressant d’intensifier certaines pratiques de manicre a accélérer la
croissance des arbres, ce qui permettrait d’obtenir des révolutions de coupes plus courtes.
Or, de telles pratiques sylvicoles peuvent influencer significativement la fréquence, la taille
et I’angle des branches et donc la qualité du bois. En effet, I'utilisation de techniques
sylvicoles qui augmentent la croissance et la productivité provoque en contrepartie une
augmentation de la taille des branches (Perstorper et al. 1995; Viisdnen et al. 1989). Celle-
ci entraine alors directement une augmentation de la taille des nceuds qui peut entrainer une
diminution de la qualité des bois (Jighagen and Albrektson 1996; Makela et al. 2000;
Mikela et al. 1997; Viisédnen et al. 1989).



Le concept de qualité du bois est li¢ a la productivité forestiere, et une bonne connaissance
des facteurs influencant cette qualité permet d’orienter la sylviculture. Les propriétés
mécaniques du bois qui sont importantes pour l’utilisation du bois comme élément de
structure sont les propriétés ¢lastiques, qui indiquent la rigidité, et les propriétés de
résistance, qui reflétent la capacité portante du bois. Les propriétés ¢lastiques sont
exprimées généralement par le module d’élasticité (MOE). Plus un bois aura un MOE
¢levé, plus il sera rigide et aura une petite déformation sur la charge. Les propriétés de
résistance mécanique sont exprimées généralement par le module de rupture (MOR) qui
représente la charge maximale qu’une poutre peut supporter avant la rupture (Zink-Sharp
2003). 11 existe de nombreux facteurs qui peuvent affecter ces propriétés mécaniques.
Parmi les plus importants, on compte la densité du bois, les nceuds et le bois juvénile. Ces
trois facteurs ont été trés étudiés et peuvent étre chacun influencés par les pratiques
sylvicoles.

La densité du bois est la caractéristique qui a I’impact le plus significatif sur les propriétés
mécaniques (Zink-Sharp 2003). Cette propriété est en corrélation étroite avec les propriétés
de résistance du bois, ainsi qu'avec les caractéristiques d'usinage, de collage et de finition.
Il s’agit en fait d’une propriété complexe qui dépend d'un grand nombre de variables
anatomiques (Nylinder 1965).

Le bois ayant un pourcentage important de bois juvénile présente de faibles propriétés
mécaniques (Shi et al. 2005; Zobel and Van Buijtenen 1989; Zobel and Sprague 1998). 1l
est également caractérisé par un angle ¢levé des microfibrilles qui engendre une faible
stabilit¢ dimensionnelle et, ainsi, pose beaucoup de problémes a son utilisation comme
¢lément de structure ou a la fabrication des panneaux (Bao et al. 2001).

Les nceuds ont également un impact négatif sur la qualité du bois (Bowyer et al. 2007;
Jozsa and Middleton 1994; Zhang et al. 1998). Ils affectent les propriétés mécaniques du
bois parce qu’ils provoquent la discontinuité et la déviation du fil (Dinwoodie 2000). Cela
crée donc des zones de faiblesse ou sont concentrés les contraintes mécaniques (Bodig and
Jayne 1982), ce qui provoque des pertes de résistance pouvant aller jusqu’a 80 %
(American Society for Testing and Materials 1992). Les dimensions critiques des noeuds
varie avec la dimension de la piéce et avec la position du nceud dans la section de la piece

(Zhang et al. 1998). La grosseur des nceuds est donc un facteur qui affecte grandement la



résistance mécanique du bois (Tustin and Wilcox 1978), diminue le classement des poutres
de structure (Middleton et al. 1996) et des bois de menuiserie (Pellicane et al. 1987) et, par
conséquent, la valeur des produits de sciage (Zhang and Chauret 2001). Les nceuds
affectent aussi négativement d’autres propriétés du bois comme les qualités esthétiques et
I’usinabilité.

Actuellement, en Amérique du nord, les méthodes de classification visuelle du bois
d’ceuvre sont fortement utilisées. Ces méthodes sont basées sur la localisation et la
dimension des défauts dans la piéce. La fréquence, la taille et la distribution des nceuds
sont parmi les parametres les plus importants a étre considérés lors d’évaluations visuelles.
Pour le pin gris (Pinus banksiana Lamb.), si I’on ne tient pas compte des dommages
provoqués lors des opérations de sciage, les nceuds sont responsables d’environ 90 % des

défauts (Zhang et al. 2006).

Les nceuds sont 1’attachement interne des branches au tronc (Lemieux et al. 2001). Ils sont
donc directement liés a la branchaison et, a fortiori, aux conditions de croissance de
I’arbre, puisqu’ils sont affectés par la taille et I’angle des branches (Fisher and Honda
1979). 1l est donc fondamental de connaitre le développement des branches pour connaitre
la qualité des bois (Persson 1976) et prédire I’impact de la sylviculture sur les nceuds.

Les arbres sont soumis a de fortes compétitions pour I’acces a la lumiere et aux ressources
nutritives. Dés leur jeune age, ils sont en concurrence avec des especes annuelles souvent
trés compétitrices, puis avec des arbustes et d’autres arbres. Pour accéder a ces ressources,
I’arbre doit développer son tronc et son houppier; la structure de la branchaison a donc une
importance premiere pour les fonctions physiologiques (Fisher and Honda 1979; Horn
1971). Les dimensions du houppier sont considérées comme de bons indicateurs de la
vigueur de I’arbre et de la capacité photosynthétique de celui-ci, et donc de la qualité du
bois produit (Bravo et al. 2001). Ces dimensions sont en grande partie conditionnées par le
besoin d’accéder aux ressources lumineuses ainsi que par la compétition avec les arbres
voisins et entre les branches d’'un méme arbre (Franco 1986; Rouvinen and Kuuluvainen
1997). L architecture du houppier est donc I’expression d’un équilibre entre les processus
endogenes propre a I’espece et les contraintes exercées par 1’environnement (Barthelemy

and Caraglio 2007). Les branches sous le houppier ont été affectées par les conditions de



croissance passées, alors que celles dans le houppier ont un fort lien avec aux conditions
actuelles (Colin and Houllier 1991; Moberg 2000). Le diameétre des branches, leur angle
d’insertion, leur statut (vivant, mort), leur fréquence et leur orientation autour et le long du
tronc sont autant de parametres caractérisant la branchaison.

D’un point de vue biologique, 1’agencement des branches et de leurs ramifications via
I’é¢tude de la phyllotaxie est étudié depuis de trés nombreuses années (Jean 1994). Pont
(2001) a étudié I’agencement des branches de Pin de Monterey (Pinus radiata) dans le but
de faire apparaitre une séquence ontogénique de formation. De nombreuses études portant
notamment sur les arbres tropicaux se sont intéressées aux ramifications des branches et
aux structures adoptées pour optimiser 1’accés a la lumiére et limiter la compétition entre
les branches (Barthelemy and Caraglio 2007). La ramification des branches d’épinette
noire a également été étudiée par Bégin et Filion (1999) et par Laberge et al. (2001). On
constate souvent une certaine régularité dans les structures du monde végétal et parfois
animal. De nombreuses études ont d’ailleurs montré que ces structures posseédent des
propriétés mathématiques bien connues (Séquence de Fibonacci, Nombre d’Or...) (Bailly
2004; Boissiere 2003; Couder and Douady 2000; Pont 2001).

D’un point de vue forestier, si on souhaite améliorer la qualité des bois produits, il
convient de comprendre les mécanismes ayant une influence sur le développement de
I’arbre et de la branchaison et de décrire les schémas de développements existants. Ainsi,
en faisant varier I’espacement lors de la plantation ou lors d’éclaircie on a une influence
directe sur le développement du houppier. On permet aux arbres d’accéder a plus de
lumicre, favorisant ainsi leur développement dans le but de produire un bois de meilleure
qualité¢ (Grace et al. 1999; Hein 2008; Weiskittel et al. 2007; Zhang et al. 2006).
Cependant, en accélérant la croissance et la productivité, on peut provoquer en parallele
une augmentation de la taille des branches (Viisdnen et al. 1989). Le diamétre des
branches augmente avec I’augmentation de la longueur de la couronne et, par le méme fait,
de I’age des branches (Mikinen 1996). En maintenant une densité élevée des peuplements,
on peut donc limiter ’augmentation de la fréquence et de la taille des branches (Zhang and
Chauret 2001). On a également une forte corrélation positive entre le diameétre a 1,30 m
(DHP) et la taille des branches (Colin and Houllier 1991; Maguire 1994; Persson 1976). Le

diametre des branches augmente avec le DHP, qui lui augmente avec I’intensité des



éclaircies. Des études ont montré cette relation chez I’épinette noire (Zhang and Chauret
2001), I’épinette de Norvege (Picea abies) (Johansson 1993) et le pin gris (Buckman
1964). De méme, ’inclinaison des branches augmente avec 1’augmentation du diametre
des branches et est affectée par la compétition avec les arbres voisins qui augmente les
contacts entre branches (Deleuze et al. 1996). 1l s’avere donc essentiel d’avoir des modéles
précis pour prédire I’impact de décisions sylvicoles sur la branchaison et améliorer les
pratiques actuelles. La compréhension des régles de développement de I’évolution de la
branchaison permet de modéliser le développement de 1’arbre et de prédire d’éventuels
effets de pratiques sylvicoles sur celui-ci (Peltola et al. 2002; Zhang et al. 2006).

L’étude du développement des branches, notamment celles de 1% ordre directement
attachées au tronc, se fait de deux facons, soit par la distribution verticale le long de 1’arbre
et la distribution horizontale (circulaire) autour du tronc (Pont 2001). De nombreuses
approches ont été mises au point pour prédire la distribution verticale. Il existe des modéles
linéaires simples (Doruska and Burkhart 1994; Drolet et al. 1972; Lejeune 2004; Maguire
et al. 1994; Maguire et al. 1991), des modeles polynomiaux plus complexes (Bjorklund
1997; Colin and Houllier 1991; Maguire et al. 1999; Maguire 1994), des mod¢eles non
linéaires (Benjamin et al. 2007; Mikinen and Colin 1999), et des modeles mixtes non
linéaires (Garber and Maguire 2005; Garber and Maguire 2003). La distribution circulaire,
en revanche, a été beaucoup moins étudiée. Il existe donc peu de modeles visant a prédire
I’azimut des branches. Pourtant, il s’agit d’un paramétre important pour la simulation de la
qualité¢ du bois, puisqu’il détermine en partie la possibilit¢ d’optimiser le débitage en
fonction des caractéristiques internes de la tige (Lemieux et al. 2000; Tong et al. 2013).
De nombreuses études considérent que la répartition est uniforme autour du tronc
(Cochrane and Ford 1978). Doruska et Burkhart (1994) ont également montré, a I’aide de
statistiques circulaires que les branches du pin a encens (Pinus taeda L.) sont
uniformément distribuées. Grace et al. (1999), en revanche, ont montré qu’en tenant
compte du diametre des branches, la répartition n’est plus uniforme et que les plus grosses
branches se situent dans la direction nord. Lemieux et al. (2001) indiquent également que
pour I’épinette noire, la répartition en fréquence et en diametre des branches n’est pas
uniforme. Ces résultats sont appuyé€s par Benjamin et al. (2009) qui ont pu démontrer cette

tendance a 1’aide de statistiques circulaires. La principale raison a ce manque



d’information plus précise sur la répartition circulaire des branches provient de la difficulté
a obtenir une mesure précise de I’azimut. Ces modeles nécessitent des mesures précises des
angles des branches, or les mesures externes généralement utilisées sont souvent

imprécises (Duchateau et al. 2013c).

En parallele a I’étude de la branchaison, de nombreuses recherches portent directement sur
la modélisation des nceuds. De la méme manicre que I’étude de la branchaison, 1’étude des
nceuds se fait sur plusieurs points : d’une part, la géométrie méme du nceud et, d’autre part,
la répartition de ces nceuds le long du tronc. Les nceuds ont normalement leur origine sur la
moelle de I’arbre et leur diametre augmente progressivement avec la distance radiale. La
collecte des données internes permet de décrire la forme d’un nceud et de modéliser cette
géométrie. Cette approche a subi des améliorations successives. Le modele initial
représentait le noeud comme un cone a axe droit perpendiculaire a la moelle (Richards et al.
1979). Cependant, comme le modele ne correspondant pas a la réalité, un angle
d’inclinaison fut ajouté. Le nceud est toujours représenté par un cone, mais le modele
utilise I’angle d’inclinaison de la branche pour décrire celui du nceud (Leban and
Duchanois 1990; Samson 1993a).

L’axe du nceud étant rarement linéaire, mais plutot courbe (Pietild 1989; Samson 1993a;
Shigo 1986), I’hypothése de 1’axe droit fut rapidement abandonnée. Cette courbure
s’explique par le fait que la branche fait au début de sa formation un angle positif par
rapport a 1’horizontal puis cet angle diminue progressivement avec 1’augmentation du
volume et de la masse de la de la branche au cours de sa croissance (Wilson and Archer
1979; Zimmerman and Brown 1971). Un mode¢le encore utilisé actuellement est représenté
par une juxtaposition continue de 3 zones, soit : un tronc de cone elliptique a axe défini par
une courbe cubique paramétrique de type Hermite, un tronc de cone elliptique a axe droit
et une moiti¢ d'ellipsoide de révolution symbolisant la fermeture d'un nceud mort (Samson
et al. 1996). Les équations du modele ont été modifiées et simplifiées par les travaux de
(Lemieux et al. 1997a, 2001). Ce modele permet de s'ajuster aux formes les plus courantes
de nceuds présentées dans la littérature.

La principale difficulté liée a 1’é¢tude des nceuds réside dans I’obtention des données

internes. En effet, contrairement aux données externes facilement mesurables, les données



internes sont difficilement accessibles. Habituellement, la description et 1’analyse des
caractéristiques internes des billons implique de procéder de manicre destructive,
notamment par une méthode manuelle qui consiste a découper précisément le nceud.
Harless et al. (1991) ont découpé leurs billons en rondelles sur lesquelles ils ont détouré les
défauts afin de simuler des sciages tenant compte de la position de ces derniers. Lemieux et
al. (1997a) ont utilisé des déroulages pour caractériser les nceuds dans des billons
d’Epinette de Norvége. La répartition des nceuds et de 1’aubier/duramen ont été analysés
dans des billons de pin maritime (Pinus pinaster) a partir de I’analyse de la surface de
planches (Pinto et al. 2003). On obtient alors un ensemble de paramétres (angles, statut...)
qui décrivent le nceud (Bjorklund and Petersson 1999; Trincado and Burkhart 2008). Ces
méthodes sont couteuses en temps et en main d’ceuvre, et le risque d’erreur est assez €levé.
De plus, ce type d’¢tude limite le nombre de nceuds a analyser par verticille, car de
nombreux nceuds sont trop proches 1’un de 1’autre pour tous étre découpés et analysés. Il
existe d’autres méthodes qualifiées de non destructives. Elles sont de plus en plus utilisées
car elles sont beaucoup plus efficaces et offrent un gain de précision et de temps important
(Moberg 2000). A 1’aide de balayeurs optiques qui numérisent la surface de la bille, des
scientifiques ont ¢laboré des modeles reliant la forme externe des billons a leurs
caractéristiques internes, de maniere a prédire la qualité interne a partir de mesures de la
surface externe. Cependant, les modeles actuels ne reflétent pas suffisamment bien la
réalité des défauts internes et le processus d’analyse peut étre long et donc difficilement
applicable pour le travail a la chaine de I’industrie qui utilise principalement ces scanners
pour des mesures de volumes et de défilement (Samson 1993b; Thomas et al. 2003; Zhang
and Que-Ju 2005).

Il existe également d’autres procédés qui en plus de I’information sur la forme externe des
billons peuvent accéder directement a leur structure interne. Les principaux sont les
tomographes a rayons X ou gamma et I’imagerie par résonance magnétique (IRM). Les
améliorations constantes des outils informatiques et des scanners permettent d’affiner de
plus en plus cette technique. La tomographie a rayons X est ’'une des plus utilisées. Il
s’agit d’une méthode permettant d'obtenir des images de coupes d’un objet de fagcon non
destructive. Les images sont reconstruites a partir de 1’atténuation de faisceaux de rayons X

lancés selon différentes orientations dans un plan de coupe passant au travers du volume



étudié. Le principe général de fonctionnement du scanner est d’effectuer de multiples
projections sous différents angles. A partir de I’information acquise lors des différentes
projections, il est possible de calculer les coefficients d’atténuation de chaque voxel
(désigne un pixel en 3D, contraction de « volumetric pixel ») traversé afin de reconstruire
une image de la section. Au final, cela permet une reconstruction de certaines propriétés de

l'intérieur de 1'objet scanné (Longuetaud et al. 2005).

La modélisation des nceuds a deux applications principales, I’une dédiée a I’impact des
décisions sylvicoles, ’autre dédiée a 1’amélioration des procédés de sciage. En effet, en
plus d’améliorer la qualit¢ des bois en évaluant a 1’avance I’impact des stratégies
sylvicoles a travers des modeles de croissance couplés a des modeles de qualité, il est
¢galement possible d’influencer cette qualité et de minimiser I’effet des nceuds au moment
de la transformation du bois. Il est nécessaire pour ce faire d’avoir une bonne connaissance
du profil géométrique et de la distribution spatiale des nceuds. Ce type d’étude est justifié
par une distribution souvent non uniforme des nceuds autour du tronc (Bjorklund and
Petersson 1999; Samson 1993a). Puisque la dimension critique des nceuds varie avec la
dimension de la piéce et avec la position du nceud dans la section de la piece, il y a
plusieurs facons de limiter 1’effet des nceuds sur le bois de structure; soit, entre autres, en
produisant des pi¢ces de grandes dimensions et en adaptant la technique du sciage a la
morphologie et a la répartition des nceuds (Zhang et al. 1998).

Un mode¢le de qualité intégrant une représentation de la géométrie des nceuds couplé a un
logiciel de sciage peut augmenter la qualité des produits transformés (Harless et al. 1991;
Hodges et al. 1990; Leban and Duchanois 1990). On peut également lier ce logiciel de
sciage a un logiciel de classement de qualité pour connaitre directement le classement des
produits finis (Steele et al. 1994). On constate dans une étude de Lemieux et al. (1997a)
qu'un sciage tenant compte de la position des nceuds permet une augmentation des
classements des poutres. Le développement de plus en plus important de la technologie des
scanners permet de mettre en application cette approche (Schajer and An 2012; Wagner et
al. 1989). Cela permet de détecter rapidement la localisation des défauts et de positionner
la bille pour limiter I’impact de ces défauts et, ainsi, augmenter la qualité. La précision

obtenue dépendra alors du scanner et du modele de simulation (Bhandarkar et al. 1999).



Notre étude porte sur deux especes parmi les plus importantes commercialement pour le
Québec : I’épinette noire et le pin gris (Ministere des ressources naturelles 1996). Ces deux
especes font partie du groupe SEPM (sapin, épinettes, pin gris et mélézes). Au Québec, les
foréts continues dominées par 1’épinette noire, appelées pessieres & mousses, couvrent 412
400 km* (MRN 2001). Le bois de 1’épinette noire a été utilisé principalement pour la
construction d’habitations et la fabrication de la pate et du papier. Ses longues fibres
permettent la fabrication de papiers minces tout en étant trés solides. Comme bois d’ceuvre,
sa trés grande résistance a la rupture en fait un des bois de structure des plus recherchés
dans la construction d’habitations en Amérique du Nord. Le pin gris est un conifére dont
l'aire de répartition couvre une grande partie du Canada. Il s’agit d’une essence indigene
résineuse disponible au Québec en abondance. Plus de 2,5 millions de métre cubes de bois
rond sont transformés chaque année dans la province (MRNF 2008). Sa croissance lente et
ses nceuds sains lui permettent d'étre valorisé aussi bien pour des usages structuraux que
pour des usages d'apparence. Le pin gris a aussi d'excellentes propriétés d'usinage et de
collage.

Le choix de ces deux especes, outre leur importance commerciale, est également motivé
par les nombreuses différences liées au développement de leur branchaison. En effet,
I’épinette noire est une espece tolérante a ’ombre et possede plutdt de petites branches,
nombreuses, de nombreuses branches d’inter-verticille et souvent présentes jusqu’a la base
du tronc. Le pin gris est une espece intolérante avec des branches généralement plus
grosses et s’¢laguant assez rapidement. Ces deux especes nous permettront de comparer et
d’adapter les modéles a des développements de branchaison contrastés.

Le présent projet vise a I’intégration de modeles précis de la géométrie des nceuds couplés
a une distribution plus réaliste de ces nceuds dans le tronc afin d’améliorer les simulateurs

de croissances d’arbres existants.












Chapitre 1: Modelling knot morphology as a function of
external tree and branch attributes

1.1. Résumé

Les modeles utilisés actuellement pour décrire la morphologie des nceuds sont
généralement basés sur des fonctions polynomiales dont les paramétres sont difficilement
interprétables. Ainsi, ils sont difficiles a intégrer dans les simulateurs de croissance en
raison de la difficulté a relier la forme des nceuds et les caractéristiques externes des
branches et des arbres. Des images de tomographie a rayons-X le long des tiges de 16 pins
gris (Pinus banksiana Lamb.) et de 32 épinettes noires (Picea mariana (Mill.) BSP) ont été
utilisées pour extraire, respectivement pour chaque espece, la forme 3D de 3450 et 11 276
nceuds. Dans un premier temps, nous avons utilis¢é une approche de modélisation non
linéaire basée sur une fonction de Weibull afin de décrire la géométrie de chaque nceud.
Des ¢équations distinctes ont été utilisées afin de décrire a la fois I'évolution de la courbure
et du diametre du nceud de la moelle a I'écorce. Cette combinaison de deux équations a
permis une représentation exacte de la forme du nceud en utilisant seulement cing
parametres. Dans un second temps, les parameétres obtenus pour chacun des nceuds ont été
extraits et modélisés en fonction des caractéristiques externes de la branche et de 1'arbre (p.
ex. le diamétre de la branche, 1'angle d'inclinaison, la position dans la tige, la hauteur et le
diametre de la tige). Lors de I'ajustement du modele a un jeu de données séparg, les résidus
de I'¢équation de courbure de I'épinette noire étaient inférieurs a 2,9 mm le long du profil de
nceud dans 75 % des cas. Cette valeur était de 2,8 mm pour les résidus de 1'équation du
diameétre. Chez le pin gris, ces valeurs étaient respectivement de 5,4 mm et 3,2 mm.
Globalement, l'aptitude a prédire les attributs des nceuds a partir des données externes de
branches et d'arbre offrent le potentiel d'améliorer la simulation des propriétés internes du

bois.
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1.2. Abstract

Existing models for describing knot morphology are typically based on polynomial
functions with parameters that are often not biologically interpretable. Hence, they are
difficult to integrate into tree growth simulators due to the limited possibilities for linking
knot shape to external branch and tree characteristics. X-ray computed tomography (CT)
images taken along the stems of 16 jack pine (Pinus banksiana Lamb.) trees and 32 black
spruce (Picea mariana (Mill.) B.S.P.) trees were used to extract the three-dimensional
shape of 3450 and 11 276 knots from each species, respectively. Using a nonlinear
approach, we firstly fitted a model of knot geometry adapted from a Weibull function.
Separate equations were used to describe both the curvature and the diameter of the knot
along its pith. Combining these two equations gave an accurate representation of knot
shape using only five parameters. Secondly, to facilitate the integration of the resulting
model into a tree growth simulator, we extracted the parameters obtained for each knot and
modelled them as functions of external branch and tree characteristics (e.g., branch
diameter, insertion angle, position in the stem, tree height, and stem diameter). When fitted
to a separate data set, the model residuals of the black spruce knot curvature equation were
less than 2.9 mm in any part of the knot profile for 75% of the observations. The
corresponding value from the diameter equation was 2.8 mm. In jack pine, these statistics
increased to 5.4 mm and 3.2 mm, respectively. Overall, the ability to predict knot attributes
from external tree- and branch-level variables has the potential to improve the simulation

of internal stem properties.

1.3. Introduction

The size and distribution of knots within trees are among the most important factors
affecting the quality of end-use products (Buksnowitz et al. 2010; Zink-Sharp 2003).
Mechanistically, they cause discontinuities and deviations of the grain (Dinwoodie 2000),
which create zones of weakness due to stress concentrations.

They also have a potential impact on the suitability of sawn boards for appearance-grade

products, where the presence of defects can affect value (Macdonald and Hubert 2002).
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For these reasons, silviculturists have tried to obtain a better understanding of the trade-
offs between radial growth rate and knot size (Hein et al. 2008; Weiskittel et al. 2007),
while wood scientists have investigated ways to optimize processing by taking into account
the location and size of knots during sawing (Lemieux et al. 2002; Moberg and Nordmark
2006).

In recent years there has been increasing interest in the development of computer-based
systems that are capable of simulating tree growth and structure, which can be used to
predict the effects of forest management decisions on wood end-use properties (Houllier et
al. 1995). This approach is useful for synthesizing the complex interactions between
silviculture (Auty et al. 2012; Mékinen 1999a; Mikinen 1999b) and wood properties
(Gardiner et al. 2011). An important component of such simulators is a module capable of
describing the distribution, size, and shape of knots within a tree.

As knots are the internal continuation of branches in the tree stem, previous modelling
efforts have mainly focused on describing external branch characteristics, which are easier
to measure. Colin and Houllier (1991) elaborated a branch analysis protocol that was
subsequently used and refined by several other studies (Auty et al. 2012; Mékinen and
Mikeld 2003). This approach consists of simulating the dynamic processes of tree and
branch growth through static (in time) measurements of the location and size of branches
on trees of different ages. The branching variables of interest can then be expressed as age-
or size-dependent functions at any position along the tree stem. Such an approach assumes
that knots can be represented by joining the portions of the branch included in the stem at
each successive year of growth. An advantage is that data acquisition is relatively simple
and can be accomplished with limited equipment. However, this simplicity comes at the
expense of reduced accuracy for certain measurements such as branch inclination or
azimuthal orientation around the stem. As long as the correspondence between simulated
and observed knot shapes remains largely unexplored, it is unlikely that we can
realistically simulate internal knot structure precisely from external branch models.
Another possible approach is to directly develop internal knot shape models (Samson et al.
1996; Trincado and Burkhart 2008). Fewer studies have used this approach due to the
difficulties of obtaining internal data using destructive methods. For example, Harless et al.

(1991) cut logs into transverse disks to reconstruct knot shape, while Lemieux et al.
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(1997b) used rotary cutting and Pinto et al. (2003) examined the surfaces of boards. More
recently, non-destructive techniques have been developed that can generate high resolution
data much more rapidly than destructive methods, e.g., infrared imaging, optical scanning,
computed tomography using X-rays or gamma rays, and magnetic resonance imaging
(MRI) (Longuetaud et al. 2012; Moberg 2001). Parallel developments in modelling
techniques have also led to a series of successive improvements in knot shape models. For
instance, early knot models represented the knot as a circular cone perpendicular to the
longitudinal axis of the stem (Richards et al. 1979). An angle of inclination was later added
(Leban and Duchanois 1990), although it was known that the axis of a knot is rarely
straight (Samson et al. 1996). At its initiation point, the angle of insertion of a knot relative
to the horizontal is generally positive (i.e., oriented upwards from the horizontal plane),
and the curvature is due to the gradual decrease of this angle over time. To account for this
phenomenon, Bjorklund (1997), Lemieux et al. (2001), and Moberg (2001) developed
segmented models in which each knot consists of two different zones: the sound knot
formed by the live branch, which is generally represented by a cone shape, and the loose
(or dead) knot, which is represented by a cylinder. These models are capable of describing
a wide variety of sizes and shapes, but the shape equations or the equations that identify
the location of cut points of the segmented models are generally based on polynomial
functions. This complicates the biological interpretation of the parameters and limits the
possibilities for linking knot shape to branch and tree characteristics (Pinheiro and Bates
2009).

This study used empirical data on knot shape and distribution in two commercially
important species in eastern Canada: black spruce (Picea mariana (Mill.) B.S.P.) and jack
pine (Pinus banksiana Lamb.). Although both species are highly valued for their lumber
sold in the same SPF (spruce—pine—fir) group on the North American market (McKenney
et al. 1992), they show contrasting knottiness patterns. Black spruce produces numerous
small branches that rapidly bend towards the ground as their diameter increases (Bégin and
Filion 1999), whereas jack pine produces fewer but larger branches that maintain a more
vertical orientation over a longer period of time (Plourde et al. 2009). In addition, black

spruce produces several nodal and internodal branches (Benjamin et al. 2009a), whereas
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jack pine produces fewer but larger nodal branches and only a limited number of internodal
branches (Beaulieu et al. 2011).

Our main objective was to develop equations that describe knot morphology in black
spruce and jack pine using a limited number of interpretable parameters. Specifically, we
aimed to develop models describing knot size and curvature that could be linked with the
characteristics of the tree and branch to which they are attached. Models are intended for
integration into a tree growth simulation system to quantify the effects of silvicultural

treatments on knot morphology and inform future forest management decisions.

1.4. Materials and methods

1.4.1. Data collection

The trees were sampled from unmanaged stands in the boreal forest of Quebec, Canada. In
total, 32 jack pine trees were harvested in the Lac St-Jean region, and 64 black spruce trees
were taken from the North Shore region. To obtain a wide range of knot sizes and shapes,
we sampled trees along a chronosequence of stand ages over which we imposed a variation
in stand densities. The jack pine chronosequence was selected using forest fire maps from
the Quebec Ministry of Natural Resources. We chose a relatively small area where several
fires had occurred in consecutive decades. Two black spruce chronosequences were
sampled, one near the town of Baie-Comeau, hereafter referred to as South, and one 200
km further north (the North chronosequence). Further details of how these
chronosequences were established can be found in Bouchard et al. (2008). Four trees per
stand were randomly selected according their social status within the stand, i.e., one
dominant, two co-dominant, and one intermediate tree. The only exception was for the
oldest black spruce stands (>200 years since the last fire) where the stands had reached an
uneven-aged structure (Bouchard et al. 2008). In the latter case, tree selection was made to
obtain the largest possible range of tree ages. The jack pine trees ranged from 16 to 91

years of age, whereas the black spruce trees ranged from 9 to 208 years (Table 1-1).
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Table 1-1 Mean characteristics of the sample trees, branches, and knots in the data set.

Black spruce Jack pine

Mean Range Mean Range
Number of stands 16 8
Number of subject trees 64 32
Age of the trees (years) 83 9-208 50 16 -91
DBH (cm) 13.5 34-272 14.5 8.5-32.8
Height (m) 12.2 2.61-23.12 11.7 7.5 -20.85
Height of the base of the crown (m) 7.3 0-16.62 6.1 1.64 - 13.83
Number of measured branches 5114 1852
Number of measured knots 14343 3450
Knot diameter at bark 3.47 0.5-59 9.84 0.5-614
Maximum knot diameter 4.69 0.5-59 11 0.5-614
Knot inclination at bark 95 50 -155 100 46 - 156
Number of occluded branches 302 3538
Percentage of occluded branches (%) 0.09 0.23
Percentage of occluded branches (Diameter >=5mm) 0.05 0.02
Diameter at the extremity of the occluded knots (mm) 3.73 0.02 -13.35 0.70  0.01-21.73
Maximum knot diameter (mm) 5.94 0.03-16.73 227 0.01-21.73
Relative position along the stem 0.33 0.01-0.85 0.32 0.01-0.98

1.4.2. Tree and branch measurements

External branch measurements were obtained following the protocol established by Colin
and Houllier (1991), later refined by other researchers, including Mékinen and Colin
(1998), Kantola and Maékeld (2004), and Auty et al. (2011). Prior to felling, a line
indicating the north-facing part of the stem (azimuth = 0°) was marked with paint, and this
line was continued along the length of the stem after felling. The height to the base of the
live crown (HBLC, m), defined as the position of the lowest whorl containing at least one
live branch and with contiguous live whorls above it, total tree height (H, m), and the
height of the first live branch (HFLB, m) were then recorded. For each annual whorl
starting from the stem apex, we determined the number of live and dead branches and the
diameter of the stem at this position. Due to the large number of branches and the time

necessary to measure their characteristics, we did not make further measurements on
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internodal branches, while selecting every fourth whorl along the stem for the complete
measurements of nodal branches. Branch orientation around the stem (azimuth), angle of
insertion relative to the horizontal, vertical diameter, and status (live or dead) were
measured for each branch in the whorl. In the remaining annual whorls, only the largest
nodal branch was fully measured. A summary of the variables used in this study and their

abbreviations can be found in Table 1-2.

1.4.3. Knot measurements

After the field measurements were completed, two trees per stand were randomly selected
(i.e., 16 jack pine trees and 32 black spruce trees) and cut into successive 2.5 m logs. The
logs were cut so that they included the stem between stump level (0.1 m above ground
level) and the level at which stem diameter over bark was at least 9.1 cm (merchantable
height). The number of logs per tree varied between one for the youngest tree and seven
for the oldest. The logs were then transported to the Institut National de la Recherche
Scientifique in Québec City for X-ray computed tomography (CT) scanning using a
Somatom Sensation 64 (Siemens Medical Solutions USA, Inc.). This technique provided
direct access to the internal characteristics of scanned logs on the basis of density and
moisture content variations. Each log was scanned at 2 mm intervals along its longitudinal
axis with a 2 mm wide X-ray beam (120 kV, 50 mA) so that the scanned segments were
contiguous. The image reconstruction was performed with a pixel size of 0.35 mm x 0.35
mm. As the scanner can only process 2.1 m long pieces, the logs were scanned in two
passes.

We obtained an average of 1200 images per log, which were analyzed individually. To
perform this task, we used the ImageJ 1.44 freeware (Abramoff et al. 2004) with a Java
plug-in (Gourmand, version 1.01) developed at INRA, Nancy, France (Colin et al. 2010)
allowing the semimanual extraction of knot geometry. Each knot is attached directly to the
pith of the main stem, which is located manually on each image. Then, on several
successive images, two points on each side of the knot were added to delineate knot shape
from pith to the bark. Finally, a smoothing spline was fitted to these points and the plug-in
automatically measured the position and the geometry of each knot. Bild3D, another Java

program, was then used to reconstruct the three-dimensional (3D) shape of the stem and
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the position and 3D geometry of each knot using the rectangular Cartesian coordinate axes
X, y, and z (Figure 1-1). In total, we obtained the geometric profiles of 3450 knots for jack
pine and 11 276 knots for black spruce.

Table 1-2 Definitions and abbreviations of the variables used in this paper.

Description

Tree-level variable

H Total tree height (m)

HBLC  Height of the base of the crown (m)
HFLB Height of the first live branch (m)
DBH Diameter at breast height (cm)

HD H to DBH ratio (dimensionless)

Branch/knot-level variable

Tpark Angle of insertion relative of the horizontal (degrees)

Dy Diameter of the knot at stem bark/Diameter of the branch (without bark) at stem bark
" (mm)

Riax Stem radius at the knot position (mm)

Zy Distance between the vertical position of the knot at the pith and at the bark (mm)

7ol Relative position of the branch along the stem (dimensionless)

Model parameters

A, B,
C
E,F,G  Parameters of Eq. 3 (diameter)

Parameters of Eq. 2 (vertical position)
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Figure 1-1 Visualization of the knot information extracted from 2.5 m logs located at the
base of (A) a jack pine stem and (B) a black spruce stem. The three-dimensional
reconstruction of stem shape and of the geometry of each knot was done using the “Bil3D”
Java software.

1.5. Model development

1.5.1. Knot profiles

Previous studies by Samson (1993) and Lemieux et al. (1997a) reported some ovality in
knot cross sections in black spruce, with the vertical diameter approximately 10% to 15%

greater than the horizontal diameter. However, because external branch diameter was only
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recorded in the vertical direction, we chose to model the knot profile along the same axis.
Because it was not always possible to locate the pith, knot profiles were described relative
to their geometrical centre. In addition, as knot radial direction was generally constant,
only the dimensions in a two-dimensional (2D) plane were modelled. The z axis was
defined as the longitudinal axis of the main stem, and the x axis was oriented perpendicular
to the z axis along a plane formed by the azimuthal orientation of each knot. Fifty points
were extracted along the x axis of each knot to describe (i) the location along the z axis of
its geometrical centre, hereafter referred to as the vertical position, and (ii) knot diameter

(Figure 1-2).
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Figure 1-2 (A) Pith-to-bark vertical position of the geometrical center of the knot. (B)

Evolution of the knot diameter from pith to bark. (C) Reconstruction of knot profile from
pith to bark combining the position along the z axis and the diameter.
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1.5.2. Knot model formulation

Separate models were fitted to describe the evolution of both the diameter and the vertical
position of knots. As the profiles of the two curves were similar, they were both
represented by the same equation. We chose a nonlinear model based on a combination of
a Weibull equation (Zeide 1993) and a linear term, because it was flexible enough to

describe the wide variation in observed knot shapes:
_ﬁx ; )
[1] z=a><<1—e< (Rm“x'l) >+ u Xl (0< 1< Ryay)

where 1 is the position along the x axis (distance from the pith of the main stem) and Ryax
is the total length (mm) of the knot along the x axis. Our assumption was that when a knot
starts to grow, the rapid increase in branch diameter induces variation in the vertical
position that can be described by a curve. Approaching the bark, knot diameter increases
constantly but more slowly and with reduced branch curvature. This part of the equation
could be described by a straight line (z = a + p X 1), whereas the § parameter describes
the curvature of the knot nearer to the pith (Figure 1-3). The parameters a,  and p were
estimated empirically. In the remainder of the text, we refer to these parameters as A, B,
and C for the vertical position equation and E, F, and G for the diameter equation,

respectively.
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Figure 1-3 Illustration of the behaviour of the curve described by eq. 1and the impact of
parameters a,  and .

1.5.3. Modelling vertical position

The knot curvature equation must meet two conditions: (i) when 1 =0, z = 0, and (ii) when
1 = Rmax, Z = Zn, where Zy is the distance between the vertical position at the pith (Zpin)
and at the bark (Zpak), which was obtained from the CT images. The first condition is
imposed by the model and the second condition can be met when A = Zy — C X Rpax.

Therefore, the curvature equation can be expressed as follows:

[2] z=(Zy — C X Rpax) * <1 — e<_BX(Rm‘“"l)>> +Cx1
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1.5.4. Modelling knot diameter

Branch diameter tended to increase rapidly during the first few years of growth before a
gradual decline in growth rate was observed. In some instances, the maximum diameter
was reached before the bark, with a decrease in knot diameter after this point. Such cases
were represented in the model by a negative value for the G parameter. The knot diameter
model meets two conditions, i.e., when 1 = 0, z = 0, and when 1 = Ryax, Z = Dpak, Where
Dyark is the knot diameter at the bark. The first condition is imposed by the model, and the
second condition can be met when E = Dyp,x — G X Ryax. The diameter equation can

therefore be written as follows:

[3] z = (Dpark — G X Rppax ) * <1 - €<_FX(Rma"_l)>> + G xl

Due to the large variation in knot shapes, the parameters of eqs. [2] and [3] were linked to
external tree and branch variables in a two-stage process (Pinheiro and Bates 2009). The
first stage was to obtain estimates of the four model parameters for each knot separately,
and the second consisted of modelling these parameter estimates as functions of external

tree- and branch-level variables.

1.5.5. Stage 1: estimating individual knot parameters

Models were fitted to each knot independently using the “nls” function in the “nlme”
library of the R statistical programming environment (R Development Core Team 2012).
To determine appropriate starting values for each parameter and for each knot, the
diameter profile and the vertical position profile close to the bark were represented as
straight lines. The linear regression estimates of the points located within 5 cm of the bark
were then used to define the start values of parameters A and C and parameters E and G in
the vertical position and diameter profile models, respectively. Using the conditions
imposed on each model, parameter B was expressed as a function of parameters A and C,
and parameter F was expressed as a function of parameters E and G. This strategy allowed

us to obtain a high rate of convergence during parameter estimation (82.9% of jack pine
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knots and 88.2% of black spruce knots). Cases in which models failed to converge were
mainly due to occluded knots and other knots that had a vertical position curve or a
diameter curve very different to those that could be represented with the model (i.e.,
generally with an S shape). However, for a large majority of knots for which the models

converged, we obtained estimates of the parameters B, C, F, and G (Table 1-3).

Table 1-3 Mean and range of parameter estimates from stage 1 of the modelling process
and the Pearson's correlation coefficients between each parameter.

Black spruce Jack pine
Mean Range Mean Range
7y 4.64 -88 --120 14.89 -44 - -166
B 2.78 0-99.7 5.97 0-96.86
C 0.03 -1.43-742 0.14 -1.13-5.9
F 12.33 8.39.10” - 99.01 9.23 8.38.107-99.41
G -0.06 -2.11-2.11 -0.02 -1.59 - 0.81
Black spruce \ Jack pine

B C Zy F G
B - 0.20 0.02 0.04 0.09
C 0.18 - 0.73 -0.03 0.31
7y 0.07 0.59 - -0.04 0.28
F 0.01 -0.01 0.00 - 0.10
G 0.03 -0.02 0.10 0.09 -

1.5.6. Stage 2: modelling knot parameters as functions of external tree and branch

variables

The second stage of the modelling process was to relate the values of the estimates
obtained for each knot (B, C, F, and G) to external tree and branch variables. The value of
Zy, which is the (vertical) distance between Zpi and Zpak, was obtained directly from the
CT images. However, when working from external data, Zp,« was considered known, but
we needed to express Zy as a function of external tree and branch variables. Because the

objective of this stage is to enable the integration of the knot models with a tree growth

24



simulator, accurate measurements of external branch characteristics are desirable.
However, these measurements are subject to errors due to factors such as variable bark
thickness or branch accessibility. Furthermore, the presence of occluded knots and the fact
that only a subsample of branches was measured could cause problems when matching
knots to their corresponding branches. To limit problems associated with imprecision in
branch measurements and missing data, all occluded branches were omitted from the
analysis (Table 1-1). Furthermore, a close relationship was assumed between the knot
characteristics at the bark and the measurements on the corresponding branches. This was
verified using linear regression using the data from pairs of matching knots and branches.
To ensure continuity, the inclination of each knot close to the bark was required to be the
same as that of the corresponding branch. This was achieved by forcing the C parameter to
be equal to the inclination of the branch. In the case of knot and branch diameters, the
correspondence was already imposed by eq. [3]. The remaining parameters Zy, B, F, and G
were then estimated from branch and tree variables. Several predictor variables and their
interactions were screened, as long as the latter were logical and interpretable (Aiken and
West 1991). Due to the non-Gaussian distribution of parameters B and F, gamma
regression was used in their estimation (Prentice 1974). Because these two parameters
must be positive, a log-link was used. The link function provides the relationship between
the linear predictor and the mean of the distribution function. We estimated the values of
the parameters Zy and G for each knot using linear mixed-effects models with a random
tree effect (Pinheiro and Bates 2009). Model selection was based on Akaike's information
criterion (AIC) (Mazerolle 2006), and only significant parameters (p < 0.05) were retained
in the final models. Two sets of fit indices were also calculated for the chosen models. The
predicted values were estimated from the fixed-effects terms of each model in the first set
and from both the fixed and random effects in the second set (Gardiner et al. 2011).

Models were fitted to a calibration data set before being tested on a separate evaluation
data set (cf., Mikinen and Song 2002). For the black spruce knots, we used the South
chronosequence data (6841 knots) for model fitting and the North chronosequence data
(4435 knots) for model evaluation. Because the jack pine data came from a single
chronosequence, we randomly selected 770 knots (30% of the total) to evaluate the model

that was fitted to the 1796 remaining knots.
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1.6. Results

1.6.1. Stage 1

The accuracy of the models fitted to individual knots was assessed by comparing the
predicted values with the observed values extracted from the CT images. All curves were
relatively unbiased along the length of the pith to bark profiles, indicating that knot shape
was represented adequately by the equations. For knot vertical position (eq. [2]), the
absolute value of 75% of the residuals was less than 1.6 mm along the black spruce pith-to
bark profiles (2.19 mm for jack pine) and the absolute value of 95% of the residuals was
less than 2.7 mm (4.7 mm for jack pine) (Figure 1-4).

For knot diameter (eq. [3]), the absolute value of 75% of the residuals was less than 1.4
mm along the black spruce pith-to-bark profiles (1.4 mm for jack pine) and for 95% of the
residuals was less than 2.4 mm (2.9 mm for jack pine) (Figure 1-4). Several knots
decreased in diameter towards the periphery of the stem, which was indicated by negative
values obtained for parameter G. In 59% of black spruce knots and 46% of jack pine knots,

the diameter at bark was smaller than the maximum diameter along the knot profile.
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Figure 1-4 Distribution of the model residuals from stage 1 of the modelling process
(sorted by quantiles) along the relative position from pith to bark for A) vertical position in
black spruce knots, B) vertical position in jack pine, C) knot diameter in black spruce, and
D) knot diameter in jack pine.

1.6.2. Stage 2

The linear regressions applied to pairs of matching knot and branch diameter
measurements gave coefficients of 1.2 (R? = 0.92) for black spruce and 1.02 (R* = 0.95) for
jack pine. Given these strong correlations, the coefficients close to 1, and the fact that the

external branch measurements were inclusive of bark thickness, we considered the knot
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diameter at the bark to be a very close approximation of the external branch diameter. In
contrast, the correspondence between the inclination of the last 5 cm of each knot and the
measured branch inclination was very low, with an average error greater than 20°. The R*
of the linear regressions between the two measurements was only 0.1 for black spruce and
0.4 for jack pine. Consequently, the inclination of the knot near to the bark was assumed to
provide a closer approximation of the true branch insertion angle. For this reason and
considering the accuracy of the CT-derived data, the knot measurements at the bark were
used as predictor variables in subsequent analyses.

The selection of the final models showed that knot shape can be described using its
diameter (Dypak, mm) and inclination (Iyak, degrees) at the bark, stem radius (Rpax, mm),
and the relative position along the stem (Z,, dimensionless) (Table 1-4 and Table 1-5).
Knot shape was also related to tree-level variables such as height (H, m) and the height to
DBH ratio (HD, dimensionless). In both species, the R* values were high for Zy and, to a
lesser extent, for G but were much lower for the B and F parameters, which control
curvature of the vertical position and the knot diameter near the pith, respectively (Table
1-6). Even though the fit indices for the B and F models were low, the use of the gamma
distribution constrained these parameters to vary across the same biological range as the
real distribution. This was found to improve the residuals of the models compared with
linear mixed-effects models that assumed a normal distribution. Despite being retained in
the models on the basis of the AIC criterion, the proportion of the variation that could be

attributed to the tree level random effect was very low in all cases (Table 1-6).
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Table 1-4 Parameter estimates from stage 2 of the modelling process for black spruce.

7y B F G

Variables Estimate <+S.E Estimate =+S.E Estimate <+S.E Estimate +S.E
(Intercept) -1.0471  0.5231 1.1093  0.1632 -0.3469 0.0387
Dpark -0.1159  0.0364 0.0519  0.0211 0.1368  0.0292 0.0312 0.0022
Riax 0.0027  0.0012 0.0026  0.0019 0.0347  0.0011 0.0038 0.0003
Lyark 0.1683  0.3712 3.0465 0.2879 0.0528  0.2139 -0.1584 0.0159
Zrel 1.4382  0.2419 -1.1400  0.3455 1.5907  0.2861 0.1452 0.0080
HD 1.1428  0.6584 24758  0.1542 0.2627 0.0454
H -0.0031 0.0163 -0.0143  0.0082 -0.1142  0.0083 -0.0108 0.0013
Dpark X Rmax 0.0099  0.0003 -0.0010  0.0003 -0.0034  0.0003 -0.0004 0.0000
Dparie X Lyari 0.2204  0.0112 0.0537  0.0124

Lyark X Rimax 0.8028  0.0038 -0.0454  0.0044 0.0091  0.0031 0.0014 0.0002
H X Rpayx -0.0001 0.0000
Dpark X HD -0.6329  0.0460 -0.2031  0.0354 -0.0128 0.0024
Dperk X H 0.0223  0.0014 0.0141  0.0013 0.0010 0.0001
Zret X H -0.0629  0.0127 0.0593  0.0189 0.0636  0.0192

Zyey X HD -2.1148  0.4981

Lyare X HD 35130 0.4802

Lyarie X H -0.1733  0.0151

Note: See Table 1-2 for an explanation of abbreviations. The times sign (X) represents an interaction term.
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Table 1-5 Parameter estimates from stage 2 of the modelling process for jack pine.

Zy B F G
Variables Estimate +S.E Estimate +S.E Estimate +S.E Estimate +S.E
(Intercept) 13157  0.2713 1.7000  0.3094 -0.1993 0.0293
Dyark -0.3688  0.0572 0.0003  0.0094 0.0782  0.0184 0.0156 0.0009
Rinax -0.0384  0.0052 20.0110  0.0025 0.0284  0.0042 0.0014 0.0003
Ipart 02842 0.1515 25874 0.4941 23000  0.5739 -0.0375 0.0249
Zrel 1.0865  0.3955 16215 0.4716 0.0052  0.3941 0.1578 0.0091
HD 0.2464  0.1423 04251 02673 0.5904  0.1866 0.1516 0.0358
H -0.0142  0.0090 20.1178  0.0178 -0.0079 0.0008
Dyark X Rmax 0.0030  0.0004 0.0001  0.0001 -0.0006  0.0001 -0.0001 0.0000
Dyark X Ipark -0.0902  0.0274 0.0166  0.0059
Ipark X Rmax 0.8569  0.0082 -0.0186  0.0032 20.0131  0.0037
Ryax X HD -0.0008 0.0004
Dyarx % HD 03907  0.0642
H X Rmax 0.0028  0.0003 0.0003  0.0001 -0.0006  0.0002
H X Dyark 0.0085  0.0012 0.0002 0.0001
Zrey X HD -1.4898  0.4389 1.7747  0.5513
Ipark X H -0.0486  0.0269
Zre X H 0.0784  0.0235
Ipare X HD 21835 0.4647 -1.4080  0.5384 -0.0677 0.0310

Note: See Table 1-2 for an explanation of abbreviations. The times sign (%) represents an interaction term.

Table 1-6 Fit indices for the stage 2 models calculated from the fixed and random effects

(Parresol 2001).

7y B C F G
Black spruce models
Fixed effects 0.9286 0.0099 0.5198 0.0641 0.3499
Tree random effect 0.9299 0.3636
Jack pine models
Fixed effects 0.9291 0.0398 0.7071 0.0832 0.3248
Tree random effect 0.9296 0.3294
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1.6.3. Model evaluation

When fitted to the evaluation data sets, the models developed in stage 2 adequately
represented knot morphology. For knot vertical position (eq. [1[2]), the absolute value of
75% of the residuals was less than 2.9 mm along the full length of the pith-to-bark profiles
for black spruce (5.4 mm for jack pine) and less than 6.9 mm for 95% of the observations
(14.5 mm for jack pine) (Figure 1-5). Model accuracy was lowest near the pith of the main
stem, i.e., the point of origin of the knot. This result was expected, as the location of this
point was estimated from the known position of the knot at the bark and also because of
the low R? of the B parameter model. For the knot diameter model (eq. [3]), the absolute
value of 75% of the residuals was less than 2.8 mm along the black spruce pith-to bark
profiles (3.2 mm for jack pine) and less than 4.5 mm for 95% of the observations (5.1 mm
for jack pine) (Figure 1-5). Knot diameter close to the pith was slightly overestimated,

which was most likely attributable to the low R? of the F parameter model.
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Model residuals (mm)

1.6.4.
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Figure 1-5 Distribution of the model residuals from stage 2 of the modelling process
(sorted by quantiles) along the relative position from pith to bark for (A) vertical position
in black spruce knots, (B) vertical position in jack pine, (C) knot diameter in black spruce,
and (D) knot diameter in jack pine.

Simulations

To analyse the influence of external tree and branch parameters on knot shape, we created
a series of simulated knots using the model predictions (Figure 1-6). Firstly, parameters

were allowed to vary while all others were set to their mean values. We observed that the



youngest knots near the top of the tree, which are very likely to be alive, were almost linear
in shape, whereas knots further down the stem showed a higher degree of curvature. Close
to the pith, the inclination was steep and tended progressively towards a more horizontal
orientation (Figure 1-6). This variation in the inclination was predicted to be greater in
larger knots. Although this approach gave a visual representation of the effect of a selected
variable, it is potentially problematic as the variations in external parameters are, in reality,
not completely independent. This can lead to improbable scenarios in the simulations. For
example, 5 mm knots (Figure 1-6, 3A) located at the base of a mature tree were impossible

to simulate because eq. [2] gave negative values for knot diameter.
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Figure 1-6 Knot shape simulations for different branch diameter values (A, 5 mm; B, 10
mm; C, 15 mm; D, 20 mm) and different relative positions along the tree (1, 0.8; 2, 0.5; 3,
0.2) in black spruce, with all other parameters fixed at their overall mean values. The
shaded area represents the vertical diameter of the knot.
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Therefore, in a second simulation, knot shapes were simulated at three different positions
along the tree using the mean observed parameter estimates (i.e., those obtained in stage 1)
at these positions. This showed that knot angle tended to be steeper at a higher position
along the stem and that the conditions for a declining knot diameter towards the periphery

of the stem most commonly occurred in the lower stem (Figure 1-7).
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Figure 1-7 Effect of three different relative positions along the stem (1, 0.8; 2, 0.5; 3, 0.2)

on the black spruce knot shape, with all other parameters fixed at their mean values at each
position. The shaded area represents the vertical diameter of the knot.
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1.7. Discussion

The utilization of the CT scanning technology produced a large amount of data with very
high precision. However, there were some slight inaccuracies in the knot diameter
measurements close to the bark, thought to be due to the high moisture content of
sapwood, which made it difficult to differentiate between a knot and the surrounding
wood. Nevertheless, we consider this a minor limitation compared with the numerous
advantages of the method. In addition to the determination of the precise location of the
knot within the stem, CT scanning offers greater accuracy for the inclination, azimuth, and
to a lesser extent, diameter measurements compared with the laborious methods used to
measure external branch characteristics (Colin et al. 1993). Thus, the precision of our knot
simulation models is mainly limited by the capacity of existing growth models to provide
accurate input data.

A disadvantage of the two-stage modelling approach is that errors propagate from one
stage to the next. Although attempts were made to fit single-step models, the wide diversity
of knot shapes meant that the models did not converge. One advantage of our models is the
flexibility of the equations, which allow a representation of many possible knot shapes
using only five parameters. Previously published knot models were generally based on
polynomial equations or on segmented linear equations (Lemieux et al. 1997a), but such
models do not allow for the interpretation of the parameters. Trincado and Burkart (2008)
developed a system of equations for loblolly pine based on nonlinear functions, but these
models were developed for young trees in fast-growing plantations, which exhibit very
little knot curvature. However, the presence of mature trees in our data meant that knot
curvature had to be accounted for in the development of the models. The slight sigmoidal
trend in the residuals of the vertical position model (

Figure 1-4A and B) was due to some knots forming an S shape along their profile.
However, this small trend was present in only 25% of the residuals, and in any case, the
degree of curvature was small. For simplicity and model parsimony, therefore, this
tendency was ignored in the final choice of functional form.

The equations developed in this study were flexible enough to be fitted to two species with

contrasting branching patterns. In addition, we were able to link the parameters of the knot
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models to external branch and tree characteristics, which are themselves influenced by site
factors and local growing conditions. The integration of the developed models with a
growth model capable of simulating the impact of different silvicultural treatments on tree
and branch characteristics should therefore lead to a more accurate assessment of knot size
and distribution along the stem. Once achieved, links with a sawing simulator could help
improve the estimation of end-use properties and the value of wood products.

The high level of accuracy of the Zy and G parameter predictions was probably due to the
fact these parameters describe the part of the knot close to the bark, which is expected to be
more closely related to the external branch characteristics than the parts of the knot further
into the stem. Conversely, the external data were not as well related to the B and F
parameters, which describe how the curvature evolves along the pith-to-bark profile of
each knot. These parameters are likely to have been affected by the history of branch
growth, which was not accounted for in our models. Only current tree and branch
characteristics were used rather than repeated measurements through time. Further research
should focus on the development of dynamic models using data from stands with a known
history of natural disturbances and (or) silvicultural treatments.

Lemieux et al. (2001) had little success linking knot shape with external branch attributed
due to the large variation in knot shapes along the stem. One exception was external branch
diameter, which was found to be a good predictor of internal knot diameter. Our
simulations showed that for a given branch diameter, knot shape varies significantly as
functions of position along the stem and the inclination of knot near the bark. Using branch
diameter alone would have made it impossible to induce variability in our knot shape
simulations. The addition of inclination, knot length, relative position along the tree, total
height, and the height to DBH ratio allowed such variability. The knots near the top of the
tree, being attached to younger branches, were more likely to be live and growing, which
explains their steeper inclination angles. The effect of the height to diameter ratio suggests
that knot shape is not only modulated by the vigour of the branch, but also by the vigor and
social status of the tree within the stand.

A potential drawback of our study is that in some cases, it was possible for the knot
diameter model to predict negative values. However, this was a rare occurrence affecting

only 4% of the black spruce knots, mainly the smallest ones, and none of the jack pine
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knots. Further problems might arise due to the exclusion of occluded branches. However,
this was a necessary step as the purpose of the study was to link internal knot attributes
with their external characteristic. Although 23% of black spruce branches in this study
were occluded (and 9% of jack pine branches), these were also generally restricted to the
smaller branches, which have a limited impact on wood quality. In addition to the dynamic
nature of branch growth, future modelling efforts need to account for their mortality and
subsequent occlusion for a more accurate prediction of knot development over the life of
the tree.

A potentially significant disadvantage of this study is the inability to distinguish between
the sound and dead sections of individual knots. This is important because dead knots can
have a detrimental effect on end-use properties and therefore are an important wood
quality parameter (Vestol and Hoibo 2000). To account for the presence of dead knots,
previous models have considered the live portion of a knot as being conical in shape and
the dead portion as being cylindrical (Samson 1993a; Trincado and Burkhart 2008). This
implied that once the maximum diameter was reached, the branch died and the diameter
remained constant until self-pruning occurred. However, an analysis of our database
showed that around 50% of the knots, more commonly the smaller ones, showed a peak in
branch diameter along the pith-to-bark profile. Although it was not possible determine
precisely from the CT images whether sections of a knot were alive or dead, we
hypothesize that the point at which the maximum knot diameter is reached could
correspond to the boundary between the sound and dead segments. Our knot diameter
model (eq. [2]) was able to describe this peaking behaviour. One possible explanation for
the decline in knot diameter beyond this point is shrinkage associated with branch
mortality. Mékinen (1999a; 1999b) reported that, on average, Scots pine branches died 7
years after diameter growth ceased. Following branch death, the growing stem slowly
incorporates sections of the dead branches. Bark loss and gradual deterioration of the dead

branch might result in a decline in knot diameter.
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1.8. Conclusion

This study showed that it is possible to model knot shape accurately using a total of only
five parameters from a combination of two nonlinear equations. The advantage of using
our approach is its flexibility in describing a wide variety of knot shapes in two species
with very different branching patterns, while still providing interpretable parameters. These
parameters can, in turn, be modelled using a limited number of external branch and tree
variables. The fact that knot properties can be predicted from current external data and
without prior knowledge of the past tree and stand growth history allows for integration of

the models into tree growth simulators for the prediction of end-use properties.
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Chapitre 2: Annual development of knot morphology in
Picea mariana: a modelling approach

2.1. Résumé

Le développement d’un arbre est un processus dynamique dans le temps et celui-ci est
affecté par les contraintes liées a 1’arbre et a son environnement. Il existe de nombreux
modeles de la croissance annuelle de la tige des arbres. En revanche, I’intégration des
nceuds dans ces modéles est beaucoup plus difficile en raison de la difficulté a obtenir des
données internes, et en particulier a une échelle annuelle. La plupart des modeles existants
représentent la géométrie du nceud a un temps donné. L’utilisation d’images de
tomographie a rayons-X prises le long des tiges de 11 épinettes noires (Picea mariana
(Mill.) BSP) et couplé a une analyse des cernes avec le logiciel Windendro™ nous a
permis d’extraire la forme 3D et la position de 5377 nceuds, et ce, pour chaque année de
développement.

Cela nous a permis dans un premier temps d’analyser le ratio d’allocation de matiere entre
les nceuds et la tige au cours du développement de 1’arbre, puis de développer un modele
linéaire mixte qui se veut dynamique dans le temps et qui décrit I’évolution de la
morphologie d’un nceud (courbure et diametre) en fonction de la croissance secondaire de
la tige (largeurs de cernes) et d’autres caractéristiques externes de I’arbre (diametre a
hauteur de poitrine, hauteur, position dans 1’unité de croissance). Le modele de diamétre
est segmenté en trois parties continues représentant ’initiation du nceud, sa croissance et sa
mort. La courbure, étant influencée par le diameétre, n’a été segmentée en qu’en deux
parties représentant une phase ascendante suivie d’une phase descendante. Lors d’une
validation croisée de l'ajustement du modéle, les résidus de I'équation de courbure de
'épinette noire étaient inférieurs a 36.7 mm le long du profil de nceud dans 90 % des cas.
Cette valeur était de 9.7 mm pour les résidus de 1'équation du diametre. De maniere
générale, les modeles de courbure et de diametre se sont avérés non biaisés. Le modele
peut étre intégré a des simulateurs de croissance des arbres capables de prédire I'évolution
annuelle des largeurs de cernes, ce qui permettrait une représentation améliorée de la

structure interne de la tige.
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2.2. Abstract

Tree development is a dynamic process in time, which is affected by the constraints of the
tree and its environment. It exist many models of the annual tree growth. However, the
integration of knots in these models is complicated by the difficulties in obtaining internal
data, particularly at an annual level. Most existing knot models represent geometry at a
given time. The use of X-ray computed tomography images taken along the stem of 11
black spruce trees (Picea mariana (Mill.) BSP) coupled with a stem analysis using the
Windendro™ software allowed us to extract the three-dimensional shape and position of
5377 knots, for each year of development.

This allowed us first to analyze the ratio of knot to stem allocation during tree development
and then, to develop a linear mixed model which was dynamic in time. The model
describes the evolution of knot morphology (curvature and diameter) as a function of the
stem’s secondary growth (ring widths) and of other external tree characteristics (diameter
at breast height, height, position along the growth unit). The diameter model was
segmented into three contiguous parts representing the initiation of the knot, its growth and
its death. As it was influenced by diameter, the curvature model only had to be segmented
into 2 parts representing an upward phase followed by a downward phase. A cross-
validation exercise was run to evaluate the accuracy of the model. The model residuals of
the black spruce knot curvature equation were less than 36.7 mm in any part of the knot
profile for 90% of the observations. The corresponding value from the diameter equation
was 9.7 mm. Generally, the curvature and diameter models were found to be unbiased. The
model can be integrated into a tree growth simulator capable to predict the annual ring
width development, which would lead to an improved representation of the stem’s internal

structure.
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2.3. Introduction

Knots are formed when branches are incorporated into growing tree stems. They are
among the most important factors affecting the end-use characteristics of forest products
(Buksnowitz et al. 2010), affecting both visual and mechanical properties (Dinwoodie
2000), and consequently lumber value (Macdonald and Hubert 2002). For these reasons,
silviculturists are interested in understanding the trade-offs between stem radial growth
rate and branch size (Hein et al. 2008; Weiskittel et al. 2007), while wood scientists have
attempted to optimize lumber production by accounting for the location and size of knots
within a log (Lemieux et al. 2002; Moberg and Nordmark 2006).

Early studies of knot development used time-consuming destructive methods, which
tended to limit sample size (Harless et al. 1991; Lemieux et al. 1997b). In early models,
knots were represented as a circular cone perpendicular to the longitudinal axis of the stem
(Richards et al. 1979). An angle of inclination was later added, and further refinements led
to the mathematical representation of knot curvature using segmented or polynomial
equations (Leban and Duchanois 1990; Lemieux et al. 2001; Samson et al. 1996).
However, complex knot models have rarely been integrated into computer-based systems
capable of simulating tree growth and structure (Houllier et al. 1995; Mékeld 2002;
Perttunen et al. 1996). Duchateau et al. (2013c) developed a nonlinear model capable of
representing a wide variety of knot shapes using external tree and branch characteristics,
which can be integrated into a growth simulator. However, as this model provides a static
representation of knot shape at a given point in time, it cannot take into account the full
history of tree growth. There is, therefore, a need for models of knot morphogenesis that
are capable of synthesizing the complex spatiotemporal interactions between a tree and its
environment. For this purpose, functional-structural plant models (de Reffye et al. 1997)
offer an interesting development framework, since they are dedicated to linking growth-
driven processes with plant morphogenesis (Fourcaud et al. 2008).

Tree and branch ontogeny can be studied by conducting long-term experiments (Pretzsch
2005), but repeated observations are time-consuming and costly. To overcome this
problem, Colin and Houllier (1991) elaborated a branch analysis protocol that has been
subsequently applied and refined by several other authors (e.g. Achim et al. 2006; Mékinen
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and Mékeld 2003; Weiskittel et al. 2007). The approach consists of simulating the dynamic
processes of tree and branch growth through field measurements of the location and size of
branches on trees of different ages. However, the simplicity of the approach comes at the
expense of reduced accuracy for some attribute measurements, such as branch inclination
or azimuthal orientation around the stem (Duchateau et al. 2013b). In addition, the
resulting models cannot be truly dynamic since they are not parameterized using repeated
measures on the same trees over time.

More recently, non-destructive techniques capable of rapidly generating high-resolution
data have been developed, such as infrared imaging, optical scanning, computed
tomography (CT) using X-rays or gamma rays, and magnetic resonance imaging (MRI)
(Longuetaud et al. 2012; Moberg 2001). These innovations have enabled the parallel
development of an alternative modelling approach that focuses on reconstructing the
internal history of stem and knot growth. Using data acquired by CT and optical scanning,
the aim of this study was to relate knot morphogenesis to the secondary growth of the main
stem in black spruce (Picea mariana), a dominant species in the North American boreal
forest. Specific objectives were therefore 1) to examine variation in the ratio of knot to
stem allocation over time and 2) to derive empirical relationships describing the evolution
of knot morphology as a function of secondary stem growth. Our intention was to describe
these relationships in a way that facilitates integration of the models in FSPMs (de Reftye
et al. 1997).

2.4. Materials and methods

2.4.1. Tree and knot measurements

A sample of 10 trees was collected from unmanaged stands in the North-Shore region of
Québec, Canada. The selected stands covered a wide range of ages and stem densities,
which induced some variation in terms of branch and knot development (Table 2-1). After
felling, each tree was cut into 2.5 m logs, for a total of 41 logs. One-cm-thick discs were
taken at the base and the top of each log. The sample material was then transported to the
Institut National de la Recherche Scientifique in Québec City for CT scanning using a

Somatom Sensation 64 (Siemens Medical Solutions USA, Inc.)
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Figure 2-1A).This technique provided direct access to the internal characteristics of the
scanned logs on the basis of wood density and moisture content variations. Each log was
scanned at 2 mm intervals along the longitudinal axis with a 2-mm-wide X-ray beam (120
kV-50 mA), so that the scanned segments were contiguous. A notch was made using a
chainsaw to indicate the north direction (azimuth = 0°) at the base of each log. This
allowed for consistent image alignment to obtain accurate azimuthal information along the
stem. Knot geometry was extracted using the ImageJ 1.44 free software (Abramoft et al.
2004), with a Java plug-in ('Gourmand', version 1.01) developed at INRA, Nancy, France
(Longuetaud et al. 2012). Each knot was attached directly to the pith of the main stem,

which was located manually on each image (
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Figure 2-1B). Knot shape was then delineated from pith to bark on successive images.
Following this step, the3D shape was reconstructed by fitting nonlinear equations
describing the evolution along the radial profile of both the curvature (i.e. the vertical

position of the central axis of the knot relative to its insertion point at the pith) and the

diameter of each knot. Duchateau et al. (2013c) provided full details of the method.

Figure 2-1 A) CT Scanning a 2.5 m log using a Somatom Sensation 64, B) Extraction of
the position and diameter of each knot profile on CT scanning images using the Imagel
Java plug-in 'Gourmand'.
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Table 2-1 Mean characteristics of the 10 sample trees in the dataset.

Min Max Mean SD
Age of the trees (years) 29 152 100 32
DBH (cm) 8 224 17.2 4.48
Height (m) 6.3 20.8 15.3 4.1
Knot diameter at bark (mm) 0.1 45.9 8.69 5.66
Maximum knot diameter (mm) 0.1 47 9.02 5.62
Relative position along the stem 0.01 0.93 0.39 0.23
Number of annual rings along the knot 6 140 60 27
Annual ring width (mm) 0.007 4.875 0.96 0.54

2.4.2. Annual ring data reconstruction

Annual ring data were not easily obtainable from the CT images, except close to the pith,
due to factors such as narrow rings and the higher moisture content of the sapwood (Fig.2-
1B). Therefore, each disc was optically scanned and annual ring boundaries were
delineated with a semi-automatic image analysis algorithm (WinDENDRO™; Régent
Instruments, Québec, 2005). Then, annual radial increments were calculated in the four
cardinal directions. To link rings between two successive discs, all the ring-width series
were cross-dated with the help of ‘pointer years’ (Guay et al. 1992). In total, 57 discs were
analysed to reconstruct 41 logs containing the geometric profiles of 5377 knots.

To link the annual knot geometry to the annual radial stem increments, it was necessary to
reconstruct the ring widths at the position of each knot. We used the discs taken from the
end of each log (Figure 2-2A) and linked the rings dating from the same year of growth.
This way, the radial growth of the stem was retraced from pith to bark in the four main
cardinal directions. In each direction, a linear interpolation between the ring width values
measured at the top and at the bottom of the log was used to estimate the ring widths at any

longitudinal position along the log (Figure 2-2B). For the rings close to the pith on the
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lower disc that were not present on the upper disc, the mean value of the coefficient of
interpolation of the first five rings present on both discs was used as a good approximation.
Because of ring deformity and deviations around the knots (Figure 2-3A), it was
impossible to obtain precise annual ring data at the exact location of each knot. Therefore,
annual ring increments were calculated using a linear interpolation between the two series
of ring widths along the measured radii on each side of the knot (Figure 2-2C). This way,
we obtained a vector of ring width values along the radial profile of each knot. Because the
knot data obtained from the CT images gave us the precise radius of the stem at this
location, a correction factor was applied to ensure that the end of the knot at the bark
matched the position of last annual ring. For each knot, the observed stem radius was
compared to the value estimated by linear interpolation and the percentage difference
between these two values was applied as a correction factor for each annual ring width

along the knot.

Figure 2-2 A) Annual ring width reconstruction process using two discs, B) interpolation
of the rings between the two discs to reconstruct the log and C) selection of the two
cardinal directions bordering the knot to reconstruct the ring widths along the knot profile.
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2.4.3. Annual knot data

Knot geometry was characterized by the vertical position (Z) and diameter (D). The
nonlinear equation used to reconstruct this knot geometry was a function of the position
along the stem radius (Duchateau et al. 2013c). Therefore, using the position along the
stem radius of each ring (Figure 2-3B), we were able to estimate the diameter (D;) and the
vertical position (Z;) of the knot at ring t and, in turn, the annual increments in knot
diameter (ADy) and vertical position (AZ;). Values of Z; were obtained by locating the
intersection of the geometrical center of the knot with the limits of the stem’s annual rings.
The Dy values correspond to the diameter of the knot perpendicular to the knot axis at each
intersection point (Figure 2-3C). A full list of the variables and abbreviations used in this

study is presented in Table 2-2.
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Figure 2-3 A) Example of ring width deformations around a knot, B) Description of the
knot contour using the knot shape model of Duchateau et al. (2013¢) and C) extraction of
the annual knot data.

To examine the ratio of knot to stem allocation over time, we compared the annual basal
area increments of the stem with those of the knots at the stem surface. For a given year of
growth, the basal area (at 1.3 m) increment of the stem was first calculated. Then, the sum
of all knot increments was calculated and the process was repeated for every year of

growth for which we had complete annual growth along the stem (corresponding to the age

47



of the tree when it reached the height of the top log). Knots with a constant or decreasing

diameter were considered dead and were therefore omitted from the analysis.

2.4.4. Knot model development

A statistical modelling approach was used to describe the temporal evolution of knot shape
using annual ring- and tree-level characteristics as independent variables. The covariates
were selected after calculating the variance inflation factors (VIF) for all potential
explanatory variables, to address any potential multicollinearity issues. Variables that were
highly correlated (VIF>4) were excluded from the models (O’brien 2007). Because of a
high degree of collinearity between successive years, AD; and AZ; were selected as
explanatory variables rather than the direct values of D; and Z;. In addition, since knot
shape did not exhibit large annual variability, knot characteristics at time t-1 were used as
independent variables to predict knot data at time t.

To account for the hierarchical structure of the data, we fitted linear mixed-effects models
with tree, log and individual knot random effects (Pinheiro and Bates 2009). This was done
using the nlme library of the R statistical programming environment (R Core Team 2013).
Because heteroscedasticity (non-constant error variance) was detected in the plots of the
model residuals, a power variance function of the annual ring number from the pith of the
main stem was added to account for this. A continuous first-order auto-regressive term was
added to account for any remaining autocorrelation between successive measurements.
Model selection was based on Akaike’s information criterion (AIC) (Akaike 1974).

The final model used both the diameter and the annual radial increment of the stem at the
location of the knot as predictor variables. To analyse the influence of the tree- and ring-
level parameters on knot shape, we created a series of simulated knots using the model
predictions. The first simulation tested the influence of the knot position along the tree
stem (Hy), holding all other parameters at their mean values. We then examined the
influence of various stem growth patterns by varying annual ring increments and again
keeping the other parameters constant. A third simulation tested the influence of the
relative position of the knot within the annual growth unit. Duchateau et al. (2013b)

described the method used to identify the limits of each annual growth unit along the stem.

48



Table 2-2 Definitions and abbreviations of the variables used in this paper

Description

Tree-level variables

DBH;
Age
Hy

GUpos
GUlen

Ring-level variables

Diameter of the tree at breast height at time t (mm)

Age of the tree at the time of knot initiation

Position of the initiation point of the knot along the stem (ground level = 0) (m)
Relative position of the knot initiation point along the annual growth unit
(varies from 0 to 1)

Length of the annual growth unit (m)

RN
RW,
RWisum

Knot variables

Annual ring number from the pith of the main stem
Annual ring width at time t (mm)

Sum of successive ring widths from the pith to the position at the time t (mm)

AD,
AD,,
Dy
Dy
AZ,
AZ,,

Annual increment of the knot diameter from time t-1 to t (mm)

Annual increment of the knot diameter from time t-2 to t-1 (mm)

Predicted knot diameter at time t (mm)

Predicted knot diameter at time t-1 (mm)

Annual increment of the vertical position of the knot from time t-1 to t (mm)

Annual increment of the vertical position of the knot from time t-2 to t-1 (mm)
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2.5. Results

2.5.1. Knot growth in relation to stem growth

150 -

100 4

Total knot area (cm?)

50

0 50 100 150 200
Stembasal area (cm?)

Figure 2-4 Evolution of total knot area at bark versus stem basal area at breast height (1.3
m) for each tree
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Figure 2-5 Simultaneous evolution of annual basal area increment for the trees (at 1.3 m)
and the total knot area at bark. Note that different scales were used in each graph
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Initially, total knot area increased rapidly in relation to stem basal area, before slowing
down (Figure 2-4). The average ratio of knot to stem area was about 0.7, although there
was substantial variation between trees. Annual growth increment was also highly variable
between individual trees, suggesting that knot development could not be modelled using
simple allometric functions of stem growth (Figure 2-5). In some cases, however, changes
in stem area increments lagged behind increases or decreases in knot area increments
(Figure 2-5A, B, C, E). In addition, some trees tended to favor stem development (Figure
2-5C, F, G), while others favored knot development (Figure 2-5A, D). In other trees, the
relationship between the two variables was more balanced (Fig. 2-51, J). In any case, for a
given stem basal area increment, there was a large variation in knot area increment. We
therefore determined that it was not possible to include allometric rules of knot versus stem

area in the subsequent development of the overall knot model.

2.5.2. Models of knot development

An initial attempt was made to fit a single model describing both diameter and vertical
position, and thereby reconstruct the entire knot in a single step. However, since knot
diameter was strongly underestimated in the single model, we decomposed knot shape into

separate models for diameter and vertical position.

52



s
>

Quantiles
@ 5
®
® %

=
wn

Diameter increment (mm)
o u—y
n o

o
e

0 25 50 75 100

Quantiles

Vertical position increment (mm)

0 25 50 75 100
Annual ring number

Figure 2-6 Distributions of A) annual diameter increment (AD;) values and B) annual
vertical position increments (AZ;) as functions of the annual ring number from the stem’s
pith. The grey line indicates the median of all observations for a given ring number.
Contours provide the distribution quantiles around the median

Values of AD; typically increased rapidly close to the pith before declining. On average,
the increment was largest in the first four years, before gradually decreasing until around
year 25 (Figure 2-6A). These patterns of variation suggested that the knot diameter model
could be separated into three sections. Firstly, the initiation phase was defined as the first
four years of knot development, where the diameter increment was generally greatest.
Because AD; values did not follow a Gaussian distribution, D; was modelled directly in this
section. The second section corresponded to the remaining part of the active growth phase

up to ring 25, where the increments were positive, but typically lower than in the first
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section. The final section of the model represented the portion of the knot where variation
in diameter increment was small. Table 2-3 shows the parameter estimates of the fixed
effects for each section of the model. The annual diameter increment was influenced by the
position of the knot along the stem (Hy, m) as well as its relative position within an annual
growth unit (GU,s). In addition, AD; was found to be related to the DBH of the stem in the
year of knot formation (DBH;, m) and to ring characteristics of the main stem, such as
annual ring width (RW;, mm) and the distance from the pith (RW,m, mm). To evaluate
model accuracy, knots were reconstructed using data estimated in the previous year as
input (ADy.;, D), and compared to the observed knot shape. Plots of the model residuals
(observed minus predicted values) showed that, on average, knot diameter was slightly
underestimated in the middle section of the knot profiles, but overall the model was
unbiased (Figure 2-7A). The absolute value of 50% of the residuals was less than 2.6 mm
along the pith-to-bark profiles and the absolute value of 90% of the residuals was less than

9.7 mm.

Table 2-3 Fixed effects parameter estimates and standard errors for each section of the
knot diameter model. Section 1: knot initiation (years 1 to 4), Section 2: growth phase
(years 5 to 25), Section 3: stabilisation and death (years 26 and over). Fixed effects terms
are additive and X represents an interaction term. Abbreviations: see Table 2-2

Section 1 Section 2 Section 3

Variable Estimate S.E P-value Estimate S.E  P-value Estimate S.E P-value
(Intercept) 0.0106  0.0010 <0.0001
ADy, 0.7862 0.0017 <0.0001 0.9183  0.0013 <0.0001
Dy 0.6827  0.0094 <0.0001 -0.0312  0.0004 <0.0001 -0.0009  0.0000 <0.0001
GUpos 0.4153  0.0223 <0.0001 0.0172  0.0028 <0.0001 0.0053  0.0003 <0.0001
RWium 0.0419  0.0060 <0.0001 0.0030 0.0001 <0.0001 0.0001  0.0000 0.0203
RW; 0.4225  0.0149 <0.0001 0.0473 0.0011 <0.0001 -0.0085  0.0005 <0.0001
DBH; -0.0028  0.0005 <0.0001 -0.0008 0.0000 <0.0001 -0.0001  0.0000 <0.0001
H, 0.0108  0.0045 0.0171 0.0003  0.0001 <0.0001
Dy x GUp 0.0834  0.0102 <0.0001 0.0146  0.0004 <0.0001

RWum x RW, -0.0269  0.0026 <0.0001 -0.0006  0.0000 <0.0001 0.0001  0.0000 <0.0001
AD¢ 1 X Dyy -0.0044  0.0003 <0.0001 0.0029  0.0002 <0.0001
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The average annual variation of AZ; was typically greater than zero until ring 40. Beyond

this point the vertical position stabilized, before decreasing after ring 60 (Figure 2-6B).

The knot vertical position profile was therefore separated into two sections delineated at

ring number 50. The predictor variables were the same as for the diameter increment

model, with the addition of D;. The parameter estimates for the vertical position model are

given in Table 2-4. Knots were again simulated using the predicted data from the previous

year as input (Z1). The model remained unbiased along the knot profile up to ring 75, with

a slight overestimation beyond this point (Figure 2-7B). The absolute value of 50% of the

residuals was less than 11.9 mm along the entire pith-to-bark profiles, while the absolute

value of 90% of the residuals was less than 36.7 mm.

Table 2-4 Fixed effects parameter estimates and standard errors for each section of the
knot vertical position model. Section 1: typically upward (years 0 to 50), Section 2:
typically downward (years 51 and over). Fixed effects terms are additive and X represents
an interaction term. Abbreviations: see Table 2-2

Section 1 Section 2

Variables Estimate S.E  P-value Estimate S.E  P-value
(Intercept) -0.1443 0.0049  <0.0001

D, 0.0014 0.0003  <0.0001 -0.0001 0.0000 <0.0001
RW sum 0.0019 0.0000  <0.0001 0.0001 0.0000  0.0020
AZ,, 0.8411 0.0009  <0.0001 0.9651 0.0008  <0.0001
RW, 0.0944 0.0008  <0.0001 -0.0031 0.0010  0.0018
GUpos 0.0755 0.0021  <0.0001

GUjen 0.0016  0.0009  0.0667
DBH; 0.0001 0.0000 0.0118 0.0001 0.0000  0.0360
Hy 0.0025 0.0005  <0.0001 0.0001 0.0001 0.0501
D;x RWum -0.0001 0.0000  <0.0001

RW gum x RW, -0.0014 0.0000  <0.0001 -0.0001 0.0000  0.0001
Dy x GUjpes -0.0084 0.0004  <0.0001
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Figure 2-7 Distribution of the model residuals (sorted by quantiles) along the evolution of
the ring number for A) knot diameter and B) knot vertical position. The grey line indicates
the median of all observations for a given ring number. Contours provide the distribution
around the median.

2.5.3. Simulations

The simulations indicated a relationship between the location of the knot along the stem
and knot inclination, which increased towards the stem apex. In addition, knot diameter
increment close to the pith was greater in the upper stem (Figure 2-8). Faster growth was
associated with an excurrent (i.e. upwards) branch habit, while slower growth showed the

opposite trend (Figure 2-9). This remained the case even for a scenario where initial
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growth was slow but later increased. The model was also able to describe the variations in
the knot profile from the base to the top of an annual growth unit, with knots located nearer

the top having a larger diameter and a more upright orientation (Figure 2-10).

A)

B)

C)

Figure 2-8 Effect of three different relative positions along the tree stem (A, 0.7; B, 0.4; C,
0.1) on the knot shape, with all other parameters held to their mean values. The

segmentation on the knot profile corresponds to the annual growth rings of the main stem.
The values 0.7, 0.4 and 0.1 indicate 70%, 40% and 10% of the tree height.
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Figure 2-9 Simulated knots showing the effect of different growth patterns with age. A)
Decreasing ring width, B) constant ring width and C) increasing ring width with small
variations. All other parameters were held at their mean values. The segmentation on the
knot profile corresponds to the annual growth increments of the main stem.
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Figure 2-10 Simulated knots showing the effect of the relative position within an annual
growth unit (A, 0.9; B, 0.45; C, 0.1) on knot shape. All other parameters were held to their
mean values. The segmentation on the knot profile corresponds to the annual growth
increments of the main stem. The values 0.9, 0.45 and 0.1 indicate 90%, 45% and 10% of
the annual growth unit.

2.6. Discussion

This study provided new knowledge of the simultaneous annual development of knots and
tree stems. We observed large variation in the knot area at the stem surface, even between
trees with a similar stem basal area. This was surprising, as we expected knot growth to be
closely linked with stem basal area increments. Although they were correlated to some
extent, there were important variations around the general relationship. This could be a
reflection of the limited pool of photosynthates available for tree growth. Since annual
biomass production must be allocated to the needles, branches, reproductive organs, roots
and stem (Kellomiki et al. 1999; de Reffye et al. 1997), a higher annual allocation to one
component may affect the allocation to other parts of the tree. In a given year, it is
therefore possible that a higher allocation to the stem might affect the allocation to
branches. Over a period of years, this could affect crown size and in turn the overall
production of photosynthates. This may explain the asynchronous growth patterns in
Figure 2-5. However, more data will be necessary to fully understand these allometric
relationships and include them in models of knot development.

Reconstructions of annual growth using stem taper equations (Garber and Maguire 2003;
Mikeld 2002; Sharma and Zhang 2004) are commonly used to create ‘maps’ of the internal
structure of tree stems (Courbet and Houllier 2002; Ikonen et al. 2008; Pinto et al. 2003).
However, to our knowledge very few studies have considered the behaviour of growth
rings around knots (Pellicane and Franco 1994). In this study, the linear interpolation of
annual ring width variation along the stems was a simplification, since in reality growth
rings deviate around knots. However, because it was impossible to obtain exact
information for each knot, this simplification proved to be the most efficient method of
automating the analysis for a large number of observations. Although the use of the CT

scanning technology produced a large amount of high-precision data, the extraction of the
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diameter and position information for each knot had to be performed manually. This
process resulted in some local deformations that did not reflect the true shape of the knots.
For this reason, we chose to reproduce knot shape using the nonlinear equations developed
by Duchateau et al. (2013c), which can reproduce a wide variety of shapes while
maintaining smooth knot profiles.

Even though annual rings can be partially observed on CT images (

Figure 2—1B)_,_ there are no precise methods for detecting them. Jaeger et al. (1999) and
Longuetaud et al. (2005) developed algorithms to automatically extract growth information
from CT images. However, they had limited success since the algorithms could not detect
growth rings inside knot boundaries or in the sapwood. Our results indicate that knot
development was most strongly related to stem increments during the first 25 years of tree
growth, by which time knots had typically reached their maximum diameter. The
automatic detection of annual rings close to the pith of the main stem could therefore lead
to further improvements in knot development models.

Previous studies developed segmented models in which each knot consisted of two
different zones (Bjorklund 1997; Lemieux et al. 2001; Moberg 2001). The live section of
the knot was represented by a cone and the dead portion by a cylinder, to reflect the
cessation of growth. In this study, however, a decline in knot diameter was frequently
observed (nearly 40% of cases), presumably as a result of branch deterioration after death.
This trend was therefore explicitly included in the knot diameter model. In addition, the

inclusion of the diameter and vertical position increments of the previous year as predictor
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variables allowed for smooth transitions between the knot sections, and hence more
realistic knot shapes.

The simulations under different growth patterns also produced plausible variation in knot
shape along the stem and within annual growth units. The inclusion of annual growth unit
information allowed the aggregation of nodal and internodal branches in the same model.
These are separated in most branch distribution models (Auty et al. 2012; Colin and
Houllier 1992; Maguire et al. 1994), since nodal branches tend to grow faster and live
longer than internodal branches (Doruska and Burkhart 1994; Moberg 2001). However,
analysis of the CT images showed no clear separation between these two groups
(Duchateau et al. 2013b). Generally, knot diameter tended to increase progressively from
the base to the top of the growth unit, which facilitated the development of a continuous
model for all branches.

Simulations also showed that young branches had a typically excurrent habit, but over time
the angle progressively decreased until they were oriented downwards. Since branch
diameter and branch length are closely correlated (Kenk and Unfried 1980), larger
branches generate increased bending moments at the point of intersection with the stem.
The influence of snow can amplify this lever effect in boreal forest species such as black
spruce (Bégin and Filion 1999). Accordingly, gravitropism has been proposed as a possible
explanation for the decurrent growth of large branches (Yamamoto et al. 2002). However,
there could also be an effect of vigour, since our simulations suggested that large, vigorous
branches tend to have an excurrent habit.

The analysis of the residuals showed that the models were relatively unbiased and
generally accurate. To improve accuracy even further, the annual increment model could
be linked with a knot mortality model, enabling greater precision in the separation of live
and dead knots. However, in this study it was not possible to precisely delineate the
boundary between live and dead portions of the knots from the CT images. A further
refinement would be the addition of a self-pruning model, so that occluded knots can be
represented in the simulations. This might also prevent the simulation of unusual knot
profiles, such as that shown in Figure 2-9C. This simulation represented a hypothetical
case where stem growth was very slow for the first 20 years, before increasing. While such

growth conditions could be generated when the canopy is opened suddenly as a result of
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natural disturbances, in reality these branches may die before the end of the simulation
period.

The use of CT scanning technology enabled the reconstruction of the simultaneous annual
development of knots and tree stems. Although no consistent allometric pattern was found,
we were able to produce a dynamic model of knot development as a function of stem radial
increments and external tree characteristics. The model has the potential to improve the
representation of the internal structure of woody stems in functional-structural models of

tree development.
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Chapitre 3: Modelling knot distribution in trees using the
CT-scanning technology

3.1. Résumé

La modélisation de la croissance des plantes est un domaine de la recherche trés important
qui a connu un intérét croissant ces derniéres années grace au développement de systémes
informatiques capable d’intégrer ensemble différents modéles biologiques. Cependant, la
plupart des données utilisées pour paramétrer ces modeles sont basées sur des mesures
externes qui peuvent étre imprécises, notamment dans la description spatiale de la
branchaison. Dans les arbres, cela peut induire une sous-estimation du nombre d’unités de
croissance ainsi que des erreurs dans la position et la distribution de ces unités le long de la
tige. Des images de tomographie a rayons-X prises le long des tiges de 33 épinettes noires
(Picea mariana (Mill.) BSP) ont été utilisées pour extraire la forme 3D et la position de 23
040 nceuds. A 1’aide de ces données précises, nous avons mis au point une méthode
empirique basée sur deux filtres successifs pour améliorer le positionnement des unités de
croissance et corriger I’importante sous-estimation du nombre d’unités observées lors des
mesures externes. La sélection des pseudo-verticilles de branches dont la surface basale
¢était supérieure au 75¢me percentile, puis une distance minimale de 0.075 m entre chaque
unité¢ de croissance nous a donné le nombre d’unités le plus proche de la réalité. Une fois
les unités de croissance décrites, nous avons ¢laboré une simulation de la distribution des
branches le long de ces unités. Le nombre de branches et leurs positions selon leurs
diametres ont été modélisés principalement en fonction de la longueur de 1'unité de
croissance et de sa position dans la tige. A 1’aide de statistiques circulaires et du test de
Rayleigh, la distribution des branches a été modélisée autour du tronc. La plus grosse
branche de chaque unité suivait une distribution de Von Mises avec une orientation
préférentielle au sud-sud-ouest (213°). L’angle entre la 15 et les 2™ et 3™ plus grosses
branches suivait une distribution bimodale. La distribution de ’ensemble des branches
restantes peut étre considérée comme uniforme. Cette analyse a été rendue possible grace
notamment a la précision obtenue en utilisant la tomographie. Elle permet une amélioration

significative des modeles de branchaison de 1’épinette noire.
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3.2. Abstract

Plant growth modelling is an important field of research and in recent years there has been
an increasing interest in the development of computer-based systems capable of integrating
different biological models. However, most of the data used to parameterize the existing
models are based on external measurements, which can be imprecise, especially in the
spatial representation of the branching. In trees, this can induce an important
underestimation of the number of growth units and lead to errors with regards to their
location and their distribution along the stem. X-ray computed tomography (CT) images
taken along the stems of 33 black spruce (Picea mariana (Mill.) B.S.P.) trees were used to
extract the three-dimensional shape and the position of 23040 knots. With these accurate
data, we developed an empirical method based on two successive filters to select the best
position of the GU limits and correct the important under-estimation observed with the
external measurements. The selection of branch pseudo-whorls with a basal area greater
than the 75th percentile and a minimum distance between two units of 0.075 m gave the
number of growth units closest to the reality. Once the limits of the growth units were
located, we analysed the distribution of branches along these units. The number of
branches and their positions according to their diameters were modeled mainly as a
function of the length of the growth unit and its position along the stem. Using circular
statistics and Rayleigh’s test, the distribution of branches was modeled around the stem.
The biggest branch of each growth unit followed a Von Mises distribution with a
preferential orientation towards a south-southwesterly direction (213°). The angle between
the 1* and the 2™ and 3™ largest branches followed a bimodal distribution, while the
remaining branches showed a uniform distribution. This analysis was made possible by the
accuracy of the data obtained by X-ray tomography. It led to a significant improvement of

branch distribution models for black spruce.

3.3. Introduction

Plant growth modelling is a very important field of research and in recent years there has

been an increasing interest in the development of computer-based systems that can

64



integrate both functional and structural aspects. Most relationships between the
architectural development of the tree crown, stem growth and internal wood properties
have an ecophysiological and/or biomechanical basis (Fourcaud et al. 2008). However, the
interactions between plant functions, organogenesis and the environment are complex, and
very few models have successfully integrated all aspects (Mathieu et al. 2009). To meet
different objectives, plant organisation may be read at different scales, but in order to
represent processes with accuracy, it is necessary to study the organization of plant
components, their dynamic development and their three-dimensional distributions.

In trees, there is evidence that structure is influenced by the need to optimize the
exploitation of resources (Barthelemy and Caraglio 2007). The fact that resources are not
distributed equally in all directions and vary over time can lead to a non-homogenous
structure of the wood characteristics (density, MOE, microfibril angle, etc.) (Xu and
Harrington 1998) and of the branches (Pont 2001). In temperate regions, tree development
occurs in an annual cycle and the elongation of a shoot in one year is called a growth unit
(GU). This is an important component of existing models of branch distribution in trees
(Achim et al. 2006; Auty et al. 2012; Colin and Houllier 1991). Development may vary
between successive GUs along the main stem (Auty et al. 2012; Ikonen et al. 2008) as well
as within a GU 1i.e. along and around the axis of the stem in a given GU (Benjamin et al.
2009a; King 1998). Integrating such variations in branch distribution models would allow

representing the non-homogeneity of the final tree structure.

Most of the data used to parameterize the existing branch distribution models in trees are
based on external measurements (Auty et al. 2012; Mékinen and Mékeld 2003). An
advantage of this approach is that data acquisition is relatively simple and can be
accomplished with limited equipment (Colin and Houllier 1991). However, this simplicity
comes at the expense of a reduced accuracy for certain measurements, such as branch
inclination or azimuthal orientation around the stem (Duchateau et al. 2013c¢).

In addition, branch distribution models can be static (Auty et al. 2012) or dynamic in time
(Weiskittel et al. 2007). A fully dynamic approach generally requires expensive and time
consuming experiments where repeated measurements of tree and branch characteristics

are obtained (DeBell et al. 2004). This explains why most studies have used a pseudo-
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dynamic approach, which consists of simulating the dynamic processes of tree or branch
growth through static measurements on trees of different ages (Achim et al. 2006; Colin
and Houllier 1991; Mathieu et al. 2009). More recently, non-destructive techniques, such
as infrared imaging, optical scanning, computed tomography using X-rays or gamma rays,
and magnetic resonance imaging (MRI) (Longuetaud et al. 2012; Moberg 2001), have been
developed that can generate high resolution data much more rapidly than destructive
methods. These techniques can be used to reconstruct the internal history of stem and
branch growth (Duchateau et al. 2013a). The annual secondary growth can be partially
observed on CT images through the identification of annual rings, but methods to precisely
detect these rings limits, and hence the limits of the GU, are still under development
(Longuetaud et al. 2005). This task is made particularly challenging in the sapwood, where
the presence of water in fresh-cut trees decreases the contrast between early- and latewood.
However, one aspect where CT scanning can provide precise information is in the
distribution of branches (or knots) along the stem, from their origin at the stem’s pith to
their position at the bark (Duchateau et al. 2013a; Duchateau et al. 2013c).

Black spruce (Picea mariana (Mill.) BSP) is the dominant coniferous species in the North
American boreal region. Itcovers a large geographical area with a wide range of climatic
conditions (Gamache and Payette 2004). It is also one of the most important commercial
species in eastern Canada (McKenney et al. 1992). Its architecture follows Rauh’s model
and has monopodial, orthotropic axes with rhythmic growth (Bégin and Filion 1999).
However, its survival in a wide range of climates (including extreme conditions at the limit
of the tree line) is facilitated by a high reiterative capacity, which characterises its
ontogenic development. This implies a strong capacity of duplicating a vegetative structure
through a possible dedifferentiation of the axes and a large number of dormant buds at the
bottom of the GUs (Bégin and Filion 1999). In addition, it is a long-lived species with a
typical life expectancy of 200 years in large parts of the boreal forest (Farrar 1996) and up
to 500 years at the tree line. These characteristics of the species imply that 1) the branches
and knots are abundant in mature trees and 2) it is difficult to identify growth units along
the stem, and hence the distribution of the branches along and around them. Our aim for

this study was to develop a method to locate growth units along the stem and to describe
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the distribution of knots within these units in black spruce, using data extracted by X-ray

tomography.

3.4. Materials and methods

3.4.1. Plant material

The objective of the sampling was to obtain a wide range of tree and branch development
stages, so samples were selected trees along two chronosequence of stand ages, one near
the town of Baie-Comeau, Qc, Canada, and one 200 km further north. A total of 33 black
spruce trees ranging from 9 to 208 years in age were sampled from unmanaged stands.
Each chronosequence was composed of eight sampling sites selected across a range of time
since the last stand initiating fire. Two trees per stand were selected randomly according
their social status within the stand i.e. one dominant and one co-dominant tree. The only
exception was for the oldest stands (> 200 years since the last fire), which had reached an
uneven-aged structure (Bouchard et al. 2008). In these cases the selection was based on
tree ages using cores samples, a young and an older tree having grown in different
competitive environments. At first, external branch and tree measurements were made
following the protocol established by Colin and Houllier (1991), later refined by Auty et al.
(2012). Prior to felling, a line indicating the north-facing part of the stem (azimuth = 0°)
was marked with paint, and this line was continued along the length of the stem after
felling. Total tree height (H, m) and diameter at breast height (dbh, cm) were then
measured. The positions of the GUs were determined visually, by looking at bark scars in
the youngest parts of the tree or otherwise considering that the biggest branches were at the
top of the GU (Colin and Houllier 1992). For each annual growth unit starting from the
stem’s apex, we determined the number of live and dead branches, the position along the
stem and the diameter of the stem at the base of the GU. The branch characteristics were
also recorded (diameter, inclination and azimuth).

Then, knowing the potential imprecision of the external measurements and the consequent
difficulty to find the GU limits, X-ray tomography technology was used to obtain more

accurate information, which provided a complete description of the GUs including
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occluded knots. After the field measurements were completed, trees were cut into
successive 2.5 m logs. Logs were cut so that they included the stem between stump level
(0.1 m above ground level) and the level where stem diameter over bark was at least 9.1
cm (merchantable height). For a subsample of 41 logs, we took discs at each ends. Before
cross-cutting the stem, longitudinal marks were made with a chainsaw, spanning on both
sides of the cuts. Since these marks were visible on the CT-Images, it was possible to
precisely orientate the images for all logs within the same tree. The number of logs per tree
varied between one for the youngest tree and seven for the oldest. Logs were transported to
the Institut National de la Recherche Scientifique in Quebec City for X-ray computed
tomography (CT) scanning using a Somatom Sensation 64 (Siemens Medical Solutions
USA, Inc.). Each of the 107 logs obtained were scanned at 2 mm intervals along its
longitudinal axis with a 2-mm-wide X-ray beam, so that the scanned segments were
contiguous. In total, we obtained the internal profiles of 23 040 branches (Figure 3-1). To
perform the reconstruction of the knot profile, we used the ImagelJ 1.44 freeware
(Abramoff et al. 2004), with a Java plug-in (‘Gourmand’, version 1.01) developed at
INRA, Nancy, France (Colin et al. 2010) which allow the semi-manual extraction of knot
geometry. Another Java program, ‘Bild3D’ was then used to reconstruct the 3D shape of
the stem, and the position and 3D geometry of each knot using the rectangular Cartesian

coordinate axes x,y,z (For more details about the method, see Duchateau et al. 2013c).

Figure 3-1 A) CT Visualisation of the internal part of the branches from the CT images
and B) three-dimensional reconstruction of stem shape and of the geometry of each knot
using the “Bil3D” Java software
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3.4.2. Data analysis

3.4.2.1. Growth unit selection

The selection of the GU limits with the external measurements is generally based on
branch diameter, since nodal branches located at the top of the GU are usually bigger than
internodal branches. However, in the case of the black spruce trees, the number of
branches per GU can be really high and there is no clear difference in the diameter ranges
of nodal and internodal branches. In the youngest part of the tree, the presence of scars on
the bark can be used as a good indicator of the GU limits, but these scars disappear after a
few years. In addition, in the lower part of the stem several branches can have died, broken
and been occluded. To verify the accuracy of GU limits selected using external
measurements, we used the discs taken between each log to deduce the number of GUs in
every 2.5 m log. Since there is a difference of one ring between two annual growth units in
a tree stem, we could compare the number of rings at each end of the log and obtain the
exact number of GUs within a log.

Different knot parameters at bark were then tested to find the locations of the GU limits.
Knot diameter was first considered, but due to the large number of branches with similar
diameters, it proved impossible to precisely discriminate the limits. We hence developed a
method based on two filters to select the best position of the GU limits using the basal area
of branches. Since we had the internal information, it was possible to determine where
each branch was initiated (Colin et al. 2010). Despite the fact that it was possible to have
big branches at any location along a GU, we expected that they should be concentrated at it
top i.e. at the location of the pseudo-whorl (Moberg and Nordmark 2006). Therefore, when
branches appeared to on the CT images as being initiated at the same position along the
stem’s pith, we summed the branch basal areas. This provided a series of peaks in basal
area which could potentially represent the location of pseudo-whorls (Figure 3-2). We
applied different thresholds to select potential GU limits. Then, minimum distance
thresholds were also tested to make sure that GUs of plausible lengths were identified. If
the distance between two potential GU limits was under this threshold, we only kept the

limit positioned the highest along the tree.
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We adjusted these thresholds to our subsample of 44 logs for which we had a disc at each
extremity. The final selection was made according to the combination of thresholds that
provided the smallest overall bias when compared with the number of GUs in each log
measured from growth rings. Once the best combination was established, we applied this

empirical method to our complete set of sample logs.
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Figure 3-2 Distribution of branch basal area along a stem

3.4.2.2. Distribution and status of branches within a growth unit

To simulate the development of knots on an entire tree, we firstly needed to predict the
number of branches in each GU. In the northern spruce species, the buds can be pre-

formed or neo-formed (Colombo 1986). Since we did not have the information on the

70



needles, we tested two empirical predictors i.e. the length of the GU in the previous year
and the current one using a Poisson regression. The position along the stem and the DBH
of the tree were also added as covariates in the statistical analysis.

Secondly, we studied the position of the branches on the GU. Most branch distribution
models separate nodal from internodal branches (Colin and Houllier 1991; Weiskittel et al.
2007), as the latter are typically much smaller, have a shorter lifetime and exert a much
smaller influence on plant development and on wood properties. However, unlike for other
species, it was difficult to clearly delineate nodal and internodal branches in black spruce.
Each branch was thus ordered by diameter ranks, as proposed by Benjamin et al. (2009b)
and their relative vertical positions were calculated. Then, a stochastic distribution was
simulated to obtain a realistic positioning of the branches along the stem according to their
rank. We analysed the location of four of the biggest branches in each GU to determine a
section at the top of the growth unit that could be considered as the nodal zone for the
purposes of our following analyses.

Finally, we studied the position of the branches around the longitudinal axis of the stem.
For this purpose, we had to use statistical methods capable of taking into account the
circular distribution of the branches around the stem. We used the ‘CircStats’ package
(version 0.2-4) in the R statistical programming environment (version 2.15.1) (R
Development Core Team 2012). The distribution of branch azimuths at the tree or at the
GU level was characterised by two parameters. A circular mean, which is a resultant vector
direction for all the data, and a resultant vector length, which describes the dispersion
around this mean. The larger the value of this vector, the more concentrated are the data
around the mean direction (Jammalamadaka and Sengupta 2001). We used Rayleigh’s test
to determine if a distribution was significantly different to a uniform (random) distribution
(Batschelet 1981). We studied the distribution of the biggest branches both at the tree and
the GU levels, and attempted to generate datasets with the same distributions. For this
purpose, the von Mises distribution was used as it provides a continuous probability
distribution around the circle (also known as the circular normal distribution) (Best and
Fisher 1979). This distribution is characterized by two parameters, the mean azimuth
(mean) and a parameter (k) describing the concentration of the data around the mean

azimuth. The closer k is to zero, the more concentrated are the data around the mean. To
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refine the branch model and adjust the simulation for each tree, we analysed the
distribution at the tree and at the GU levels and tested for the influence of tree
characteristics on both.

We then supposed that the branches located in the same GU can have an influence on each
other, and that this influence increases with the diameter of the branch and with the
proximity between them. This analysis was only performed on the biggest three branches
in each GU. The angles between the first and the second and between the first and the third
branches were calculated. An attempt was made to model their distributions as functions of
GU or tree characteristics.

In order to obtain realistic simulations, it was necessary to integrate branch mortality and
self-pruning models. Each knot profile was reconstituted year by year using the method
developed by Duchateau et al. (2013a), so that annual knot diameter increments were
obtained. Once this increment became equal to or smaller than zero, we considered that the
branch was dead. Once the branch was classified as dead, we calculated the probability that
it remained present or that it was self-pruned. This way, both the mortality and the self-
pruning models gave an annual time series of probabilities. The time series were generated
using generalized mixed models (GLMM) (Koper and Manseau 2009). The status of the
branch was treated as an annually-assessed binary variable. A logit-link function with a
binomial distribution was used to model the probability that a branch remained alive first,

and then pruned.

3.5. Results

3.5.1. Growth unit selection

We observed that the external measurement induced an important underestimation of the
total number of GUs in logs. On average, we missed 2.4 GUs per 2.5m log (15% of the
GUs) and the standard deviation was equal to 3.7 (Figure 3-3A).
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Figure 3-3 Comparison between real (measured using growth rings) and A) external
estimations of the number of GUs and B) the estimations from the CT images

Results from the CT data revealed that any peaks greater than the 75™ percentile on the
branch basal area graphs (see Figure 3-2) was could be considered as a potential GU limit
(Figure 3-4A). Then, a minimum distance equal to 0.075 m gave the number of GUs
closest to the reality (Figure 3-4B, Table 3-1). The standard deviation was still rather high
(2.8), but the mean value of the residuals approached 0 (0.195).

Table 3-1 Selection of the best thresholds to improve the identification of GU limits

50™ percentile 75™ percentile 90™ percentile
Distance
selection Mean sd Mean sd Mean Sd
(m)
0.02 -22.09 5.15 -9.59 5.10 1.37 3.84
0.06 -0.49 4.14 -1.56 2.67 3.19 3.30
0.075 3.34 4.14 0.19 2.82 3.44 3.33
0.01 9.5 2.59 2.54 3.56 4.05 3.28
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Figure 3-4 Distribution of the branch basal areas along the stem from data extracted using
the ImageJ Java plug-in ‘Gourmand; A) selection of the biggest branch basal areas as a
potential GU limit; B) selection of the different growth unit using our two filters method

There was no significant effect of tree age on the difference between the number of GUs
measured using ring counts and that obtained by applying the filters. However, we
observed a marginally significant negative influence of the position along the tree (p =
0.06). This suggested that the farther from the top of the tree, the more we tended to
overestimate the number of GUs.

In order to study the branch distribution in the remaining parts of this study, the thresholds
for GU identification were applied to the complete CT scanning dataset. To avoid
obtaining incomplete GUs due to the sampling of discs, it was decided to suppress GUs

located at the extremities of each log. In total, we retained 1171 GUs (Table 3-2).

Table 3-2 Mean characteristics of the GUs estimated from the internal dataset

Percentile
Mean 0% 25% 50% 75% 100%
Number of GUs per log 13 8 11.5 13 15 18
Number of branches per GU 19 2 11.5 16 24 58
Length of the GU (m) 0.196 0.076 0.136 0.178 0.240 0.614
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3.5.2. Distribution of branches within growth units

3.5.2.1. Number of branches per growth unit

The number of branches (NBR) produced on a GU was found to be highly correlated to the
length of this GU (GUje,) (Figure 3-5). However, there was no correlation with the length
of the GU from the previous year. The interaction between GUje, and the height of the GU
(GUp, m) also had a significant effect (See Eq. 1 & Table 3-3). The R? of the full model
was 0.8 (0.6 for the fixed effects only).

[1] NBR = al + a2 X GUj,p, + a3 X GUp, + a4 X (GU,pp, X GUy) + Stree

Number of branches
30
|

0.0 0.1 0.2 0.‘3 04 0.5
Length of the growth unit (m)

Figure 3-5 Relation between the number of branches per growth unit and its length. The
red line represents the relationship
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Table 3-3 Parameter estimates for the model predicting the number of branches per GU
(See eq.1). X represents an interaction term

Variables Estimate S.E P.value
Intercept 2.24844 1.00403 0.0254
GUpen 76.98217 3.13821 <0.0001
GU, -0.06696 0.10727 0.5326
GUjop X GUy, 2.09422 0.43074 <0.0001

3.5.2.2. Branch rank distribution along the GU

As expected due to our GU selection thresholds, most of the biggest branches were located
close to the top of each GU (Figure 3-6). The relative position along the GU (P,¢) of the
branches according to their rank can be described by a power function P,,; = a X? where
a=1andb = —0.26 and X the rank of the branch. This function described 26% of the
variance in branch positions in the entire dataset. However, the distribution could not be
considered as normal around the mean predicted positions for each rank (Figure 3-6). We
observed an asymmetry (skewness) of the distributions, which varied with the rank. This
skewness was modelled using an exponential function:

2] Voow = 2 + 2.9 exp( ~37%%)

where X 1s the diameter rank of the branch. In order to have a more realistic distribution,
we simulated a stochastic distribution for each rank using P, as the mean of this

distribution, and Yg.w as the skewness. Since the standard deviation of the prediction was

rather constant among ranks, we used the mean value of 0.17 in the simulations.
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Figure 3-6 Relative position of the branches along the GU according to their diameter
rank. Horizontal lines on the boxplots indicate the 25™, 50™ and 75 percentiles. The ends
of the vertical bars indicate the 5™ and 95™ percentiles, while dots represent individual
observations.

When cumulating the percentage of presence of each branch rank and as a function of the
position along the GU, it was observed that from a relative position of 0.6 from the base of
the GU, we generally had at least 3 of the four biggest branches (91% of the branches of
rank n°1, 88% of the n°2, 81% of the n°3 and 75% of the n°4). For the remaining analyses

we considered that all the branches located on the upper 40% of the GU as nodal branches.

3.5.2.3. Circular distribution

The analysis of all the azimuths of all branches (n = 20,562) showed that their overall
distribution at the tree level was uniform (Figure 3-7A). However, when considering only
the biggest branch of each GU, we observed a preferential orientation towards 213° (Figure
3-7B). This was not the case of the biggest branch of the tree, which showed no significant
preferential orientation (Figure 3-7C).
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Figure 3-7 Distribution of the branches around the stem by diameter (in blue) and by
number (in red) for A) all branches in the dataset, B) the biggest branch per GU and C) the
biggest branch per tree

The distribution of the biggest branch per GU was non-uniform (alpha = 0.05) for 22 trees
out of a total of 33. The Von Mises distribution used to simulate the position of the biggest
branch in each GU had a mean azimuth equal to 213° (SD=5°) and a mean concentration
parameter of 0.47 (SD=0.045). After testing for the influence of the age of the tree, the
total height, the diameter at breast height and the influence of the between-tree
competition, it appeared that no significant relationships could enable predictions of these
values for each separate tree.

The distribution of all branches in a GU could be considered as uniform (Figure 3-7A),
suggested that it could be simulated using a uniform circular distribution. However, we
observed that the angles between the biggest branch and the next two in diameter ranking
were very variable but usually larger than 40° (Figure 3-8). Only 8% of the branches
ranked 1 and 2 were separated by less than 40°, and 15% for the branches ranked 1 and 3.

With a completely random distribution, this percentage would be around 23%.
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Figure 3-8 Absolute value of the angles measured per pseudo-whorl between A) the 1*
and the 2" biggest branches and B) the 1* and the 3™ biggest. The red line represents the
simulated distribution

The angle between the 1% and the 2 biggest branches tended to follow a bimodal
distribution with a first peak around 76° and a second around 155°. Also, the first peak was
the most important (Figure 3-8A). The distribution can be simulated by a combination of
two von Mises distributions with mean values at 76° (SD=1°) and 155° (SD=0.8°) and
concentration parameters of 3.98 (SD=0.17) and 17.4 (SD=1.43), respectively. The angle
between the 1% and the 3™ biggest branches also followed a bimodal distribution with a
first peak around 65° and a second around 145°. The first peak was also the most
important (Figure 3-8B). Again, the distribution can be simulated by a combination of two
von Mises distributions. Mean values were at 65° (SD=1°) and 145° (SD=1°) and
concentration parameters at 4.84 (SD=0.22) and 8.19 (SD=0.53), respectively. In these two
cases, we could not find any branch characteristics that could help predict whether the
angle was located in one peak or the other.

The angles are represented here in absolute value, so the real value can vary between -180°
and +180°. After verification, no patterns were found to indicate if the angle was going to
be positive or negative. However, we observed that in 60% of cases, when the angle
between branches 1 and 2 was oriented in one direction, the angle between branches 1 and

3 was oriented in the other direction.
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3.5.2.4. Mortality and self-pruning models

The probability (Py,) that a branch had died was related to the age (Age;) and diameter of
the branch (Dy), the relative position of the branch on the growth unit (Py), the growth unit
length (GUj,), height along the tree (GUy), radial distance to the stem’s pith (RWg,) and
the diameter at breast height of the tree (DBH) (See Eq. 3 & Table 3-4).

Pm

[3] 1n( )=b1+b2*Aget+b3*Prel+b4*GUlen+b5*Dt+b6*RWSum+

b7 x DBH + b8 * GUp, + 6_tree

1-Pp

Table 3-4 : Parameter estimates for the model predicting the annual probability for a
branch to remain alive (0: dead; 1: live) (See eq.3)

Variables Estimate S.E P.value
Intercept 3.2064 0.2818 <0.0001
Age; 0.0033 0.0005 <0.0001
Pre; 0.1081 0.0144 <0.0001
GUpen -0.7667 0.0442 <0.0001
D, 0.1019 0.0017 <0.0001
RWeum -0.0187 0.0005 <0.0001
DBH -0.0468 0.0005 <0.0001
GU, 0.0393 0.0016 <0.0001

Once the branch had died, it could remain present in the next annual ring (1) or be absent
(0, self-pruned). The probability (Py,) that a branch remained present was related to the
time since the branch had died (Ty,), the branch diameter at death (D), the relative
position on the GU (P,) and the height on the tree (GUy,) (See Eq. 4 & Table 3-5).

[4] 1n(PS—”) = b1+ b2 % Ty + b3 * Py + b4 % Dy, + b5 % GU, + 5_tree

1-Psp
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Table 3-5 : Parameter estimates for the model predicting the annual probability for a
branch remain present if dead (1: present; 2: self-pruned) (See eq.4)

Variables Estimate S.E P.value
Intercept -4.0743 0.2460 <0.0001
T 0.0491 0.0022 <0.0001
Pre; -0.4951 0.1009 <0.0001
D, 0.0577 0.0185 0.0018
GU, 0.1341 0.0091 <0.0001

3.6. Discussion

The objective of this study was to refine branch models by adding development functions
that initiate branches at plausible positions within a GU. These improvements come with a
need for accurate measurements. To obtain branch angles with external measurements, the
stem is generally segmented into different circular sections (Colin and Houllier 1991;
Moberg 1999). This only provides of rough estimate of the azimuth direction. In addition,
measurements in the field can be complicated by the limited accessibility to a proportion of
the branches once the tree is felled. The utilization of the CT scanning technology helped
obtain a very accurate description of the branches distribution along and around the tree. In
addition, it allowed to consider the past branch development through the visualisation of
the occluded branches.

The GU information (length, number of branches) is one of the most important parameters
in tree growth and branch development models. We observed an important underestimation
of the number of GU with the usual external method. The GU length is also one of the
most important parameters used to predict the number of branches per GU (Mékinen and
Hein 2006). We noticed an important bias in the GU estimation made from external and,
knowing the importance of this information in the development of such models, it seems
necessary to take account this information in future studies. Errors appeared both for young
and for old trees, and we found that the age of the tree was not significantly linked to the

magnitude of such errors in our dataset. However, there was a higher under-estimation at
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higher positions along the stem, which was unexpected. Indeed, the presence of several
self-pruned branches at the base of the tree suggested that the opposite result would occur.
A possible explanation is that in the higher parts of the stem, there were several branches
with varied diameters, whereas towards the base of the tree, the only branches still alive
were the biggest ones, or if all the branches were occluded, the scar of the biggest ones
were still visible. Longuetaud et al. (2005) used CT images and elaborated an approach to
locate the pseudo-whorls based on the analysis of the variation of density due to knots.
Knots are characterized by high wood density values and they tend to concentrate in
pseudo-whorl sections. However, this approach tended to overestimate the number of GUs
and had to be coupled with external optical measurements to improve the GU selection.
The two filters we applied here were chosen for their simplicity. It allowed eliminating the
bias associated with the external measurements. However, our subsample size was rather
small (44 2.5m-logs) and a larger, independent dataset should be used to confirm or refine
the filters.

The model of the number of branches per GU showed that this variable was mainly
dependent on the length of that GU (Harmer 1992; Mikinen and Colin 1999). Since a
proportion of the branches are known to be preformed in black spruce (Bégin and Filion
1999), we expected a significant correlation with the GU information of the previous year.
This absence of correlation could indicate that we did not find the real GU limits in several
cases. Alternatively, it could be that if the buds were formed during the previous year, their
future development the next year (i.e. the observable knots) was influenced by the current
annual resources of the tree or its position on the GU (Harmer 1991; Sabatier and
Barthelemy 1999).

The longitudinal distribution of the branches along a GU was very variable. However, we
observed on average that the diameter of the branch (sorted by rank) increases with the
position on the GU. In some cases, we noticed that some of the biggest branches can be
located in any part of the GU. This might induce errors in our GU selection. This
heterogeneity could be due to the high capacity of dedifferentiation of the axes and of a
large number of dormant buds at the bottom of the GUs (Bégin and Filion 1999).The
simulated stochastic distribution reproduces the heterogeneity in the branch positioning

along a growth unit. This simulation is mainly dependent on the branch rank, since the
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addition of tree or branch parameters did not help refine the predictions. Branch location is
probably strongly influenced by factors such as competition between trees, between
branches on the same trees and by other local effects affecting the branch morphogenesis.

Harless et al. (1991) suggested that sawing patterns affect the lumber grade output. The
development of simulators allowed to predict the wood value and to optimize different
sawing patterns (Lemieux et al. 2000; Steele et al. 1994). These simulations needed to use
a realistic distribution of branches to be realistic. To complete the description of the
distribution of branches within a GU, it was necessary to integrate the circular distribution.
Most of the existing branch distribution models considered that the distribution is uniform
and the angle between branches depends mainly on the number of branches per whorl
(Doruska and Burkhart 1994). In black spruce trees, the branches are not distributed in
clearly defined pseudo-whorls. Rayleigh’s test of uniformity has provided evidence that, in
many cases, one can assume that branches are uniformly distributed around the stem.
However, we noticed a non-uniform distribution when looking at the biggest branches of
each GU. These large branches generally have a larger leaf area, an important light and
snow interception so they are of importance for the biological functions of the plant
(Hedstrom and Pomeroy 1998). They are also important for wood quality considerations
(Buksnowitz et al. 2010). The south—southwesterly direction (213°) was the preferential
orientation, which is similar to what was found by Benjamin et al. (2009). This might
reflect a preferential allocation to branches that are in a position where they can capture
more sunlight. It proved difficult to predict the azimuth of each branches in a GU, but by
focusing on the biggest branch per GU, we can first use a random von Mises distribution to
approximate the observed distribution. Then, the azimuth of the 2" and the 3™ biggest
branches was found to follow bimodal distributions, which can easily be parameterized.
Competition for resources is thought to occur not only between, but also within trees, as a
mean to avoid the self-shading and optimize the utilization of the space (Deleuze et al.
1996, Newton and Jolliffe 1998; Sumida et al. 2002). It therefore appears logical that two
big branches would typically not grow very close to each other (Osada 2002). This
apparent repulsion to limit inter-branch competition should be included in branch
distribution models, especially for those used for wood quality simulations as it could

provide new insights on the potential gains associated with the optimal log position at
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sawing (Lemieux et al. 2000). However, we could not find any influence of the tree or the
GU characteristics on the parameters of the distribution. As our dataset was of a limited

size, further analyses should be conducted on this topic.

3.7. Conclusion

This study showed that there was an important bias in the estimation of GU limits using the
external branch characteristics of mature black spruce trees. This bias could be
substantially reduced using two thresholds based on the basal area of pseudo-whorls and
on the distance between GUs, which were obtained through CT scanning. Using improved
GU selection, we developed a model of the number and the distribution of branches within
each GU. The intra-tree and inter-tree variability made it difficult to model the longitudinal
and the circular distribution of the branches. However, it was possible to simulate a
realistic distribution of the branches around and along the stem, according their diameter
ranks. The angles between the three biggest branches of each GU followed bimodal
distributions, a fact which suggests that structural rules are involved in branch and knot
development. These can have some impact on tree development, but also on the potential
to optimise wood processing according to internal tree characteristics. This analysis was
made possible by the accuracy obtained using X-ray tomography. The rules we described

in this study can be integrated into tree growth and sawing simulators.
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Conclusions et perspectives

L’objectif principal de ce travail était d’améliorer les modeles de nceuds pour deux especes
canadiennes, soit 1’épinette noire et le pin gris. Cette amélioration passait, d’une part, par
un modele de la géométrie des nceuds et, d’autre part, par une meilleure description des
distributions de ces nceuds dans I’arbre. L’analyse des données a été réalisée a partir
d’images tomographiques. Cette méthode non destructive nous a permis de visualiser en
3D et de manicre précise I’ensemble des nceuds a I’intérieur des billes, et ce, pour un temps
d’analyse raisonnable; I’analyse se faisant actuellement de maniére semi-manuelle (Colin
et al. 2010). Cependant 1’amélioration constante des outils d’analyses en fait un outil trés
performant et précis de plus en plus utilisé dans 1’analyse des caractéristiques internes des

billes (Longuetaud et al. 2012).

Le premier apport de ce travail a été la mise au point de deux modeles décrivant la
géométrie des nceuds. Ces modeles utilisent une approche différente mais ont chacun

vocation a étre intégrés dans des simulateurs de croissance.

Le modéle élaboré au chapitre 1 est statique dans le temps. A partir de cinq paramétres et
de deux équations non linéaires, il est possible de reconstruire la courbure et le diameétre
d’un nceud et de décrire une grande diversité de formes (Fig. C-1). Les caractéristiques
externes de 1’arbre et de la branche attachée au nceud modélisé servent de variables
explicatives. Ce modéle s’insere donc dans une simulation capable de faire croitre un arbre

et de décrire la taille et la position de ses branches.
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Figure C-4 Illustration de la flexibilité du modele de noeud développé dans le chapitre

Cependant, ces simulations sont limitées. En effet, ces modeles sont généralement ajustés a
partir de données externes qui peuvent étre imprécises, notamment pour les données de
branches (azimut, inclinaison) (Duchateau et al. 2013c). Cela limite également la précision

des distributions de branches ainsi que des unités de croissance (Duchateau et al. 2013b).

Le mode¢le ¢laboré dans le chapitre 2 présente une alternative a 1’utilisation de ces données
externes en se basant uniquement sur la croissance secondaire de la tige. La courbure et le
diameétre du nceud sont donc influencés par le développement annuel de I’arbre. Cela nous
a aussi permis d’analyser I’allocation de matieres entre le tronc et les nceuds. Ce modele se
veut dynamique dans le temps et utilise principalement les données de croissance internes
a I’arbre (largeurs de cernes) comme variables explicatives. Ces données sont plus précises
et généralement disponibles dans les modeles de croissance existants. Cependant, si les
données des largeurs de cernes sont disponibles a 1’échelle de I’arbre, peu d’information

est disponible sur leur comportement a proximité du nceud et sur la jonction entre ces deux
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organes. L’augmentation future de la précision des données internes devrait permettre de

combler ce manque.

Avec ces deux modeles, nous sommes donc capables de représenter de maniere précise la
forme tridimensionnelle d’un nceud (Fig. C-2) et d’intégrer ces modéles dans des
simulateurs de croissance. Cependant, afin d’étre un outil pertinent permettant de
comprendre le développement de I’arbre, le simulateur de croissance doit, en plus
d’intégrer un modele de la géométrie du nceud, étre en mesure de simuler une distribution

réaliste de ceux-ci dans la tige.
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Figure C-5 Simulation tridimensionnelle de la géométrie d’un nceud obtenue par la
combinaison d’un modéle de 1’évolution de la courbure et du diamétre

Le second apport de ce travail a donc été I’amélioration des connaissances de la
distribution des branches autour et le long du tronc, de manicre a obtenir des simulations
plus réalistes. Les données issues du tomographes a rayons-X nous ont permis d’obtenir
une cartographie précise de I’ensemble des branches dans le tronc. Nous avons ainsi
ameélioré la détection et le positionnement des unités de croissance dans I’épinette noire.
D’un point de vue biologique, la délimitation des unités de croissance représente 1’un des
parameétres fondamentaux de la croissance et de la structure des gymnospermes. La grande

variabilité¢ intra- et inter- arbre rend cependant difficile la détection de régles
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architecturales de développement chez 1’épinette noire. Nous avons donc di décrire les
distributions des branches selon leurs diameétres afin d’obtenir une représentation réaliste

de la branchaison.

L’amalgame de tous les modeles présentés dans les trois chapitre de cette thése nous
permet de simuler le développement de la structure interne des nceuds d’une épinette noire
a partir uniquement de son historique de croissance radiale et en hauteur. Un exemple pour
une bille sélectionnée au hasard parmi nos échantillons est illustré a la Fig. C-3. Les
résultats sont encourageants, puisque le degré de réalisme dépasse largement tout ce qui
était disponible auparavant. Toutefois, cette simulation met en lumiére les ajustements qui
permettront de compléter le développement du simulateur. Il sera notamment nécessaire
d’affiner encore les paramétres stochastiques définissants le positionnement des branches
le long de I’arbre a ’intérieur des unités de croissance afin d’éviter 1’absence de branches

dans la partie inférieur de ces unités (Figure C-3).

En plus des applications pratiques reliées a la simulation de la qualité du bois, ce volet de
I’étude a permis de faire quelques avancées dans des aspects plus fondamentaux reliés aux
interactions entre branches d’un méme arbre. Les angles entre les branches d’une méme
unité de croissance peuvent ainsi étre modélisés par une distribution bimodale. L’obtention
de données de croissance annuelle nous a également permis d’étudier le ratio d’allocation
de matiere entre les noeuds et la tige au cours du développement de I’arbre et la présence de

relation allométrique.

Notre échantillonnage s’étant fait en forét naturelle, on ne peut affirmer avoir mis au point
un outil permettant de prédire I’influence de traitements sylvicoles sur le développement de
la nodosité des tiges. Pour ce faire, il sera nécessaire de calibrer nos modéles sur des arbres
ayant subi ces traitements. La grande flexibilit¢ des équations et leur ajustement sur deux
essences ayant une branchaison treés différentes devrait permettre de s’adapter a de
nombreuses autres espeéces résineuses. Les principes de base du systéme de simulation
¢tant déja en place, il suffira de mener des études de calibration dans de nouvelles

conditions.
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Figure C-6 Comparaison entre A) une bille réelle et B) Simulation d’une bille simulée a
partir du modele de nceud développé dans le chapitre 2 et des distributions de branches
décrites dans le chapitre 3.
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Highlights: The use of external measurements to describe the distribution of branches on
tree stems can induce imprecision and bias in estimates of both the number of annual
growth units and the azimuthal distribution of branches. The scanning of logs using X-ray
computed tomography yielded knot data that enabled more accurate identification of the
limits of each growth unit. Such information, in conjunction with current models of tree
architecture, can be incorporated into functional-structural models describing relationships

between tree morphology and biological processes.

Keywords: X-ray computed tomography, tree architecture, black spruce, branch distribution

Introduction

Computer-based systems capable of simulating the 3D structure of plants, their metabolic
processes and environmental interactions are increasingly being developed to increase our
understanding of how plant architecture and biological processes interact (Fourcaud et al.
2008). In trees, such functional-structural models can be useful tools for understanding and
predicting important wood quality attributes such as branch morphology and distribution.
An underlying principle of these models is that plant structure can be described in terms of
a hierarchical system of replicating ‘architectural units’ (Barthélémy et al. 1989). In
temperate tree species, the ‘growth unit’ (GU) i.e. the annual elongation of the terminal
shoot from the apical meristem (De Reffye et al. 1995), is the single most important
component of existing branch distribution models (e.g. Colin and Houllier 1991). Such

models are normally parameterized using data from external measurements. This has the
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advantage that data collection is relatively straightforward and can be accomplished with
limited equipment. However, this simplicity may come at the expense of accuracy for
certain measurements, such as branch inclination and azimuthal orientation. More recently,
X-ray computed tomography techniques have been developed that can generate high-
precision internal information, which could lead to improved model accuracy. Black
spruce (Picea mariana (Mill.) BSP) is the dominant conifer in the North American boreal
forest. It develops according to Rauh’s model of monopodial, rhythmic growth and attains
its final developmental stage after 10-15 years (Bégin and Filion 1999). After this, the
basic structure of first and second order axes (trunk and branches, respectively) and third
and fourth order axes (twigs) is duplicated through a process known as reiteration. The
high reiterative capacity of black spruce accounts for its characteristically high phenotypic
plasticity. This leads to a complex and apparently disorganised branching structure that
complicates the development of functional-structural models, since the precise delineation
of annual growth units can be difficult. The objectives of this study were: 1) to develop a
method based on selective filters to locate annual growth units on black spruce logs using
data derived from X-ray computed tomography and 2) to examine the distribution of

branches around black spruce stems at the stem and growth unit levels.

Materials and methods

Measurements were taken on 33 black spruce trees from unmanaged stands in Québec,
Canada. First, branch and tree characteristics were recorded following the protocol
established by Colin and Houllier (1991). Sample trees were then cut into successive 2.5 m
logs for X-ray scanning. Each of the resulting 107 logs were scanned at 2 mm intervals
along the longitudinal axis with a 2-mm-wide X-ray beam, so that the scanned segments
were contiguous. This provided accurate internal profiles for 23,040 knots (Duchateau et
al. 2013c). The total number of growth units in each 2.5-m section was determined from
the difference in the number of annual growth rings between discs cut from each end of the
log. However, the precise limits of each annual shoot were difficult to determine, even
using the X-ray data (Figure A-4). We developed an empirical method based on two filters
to select the most likely location of the limits of each GU, which should correspond to the

location of nodal branches produced from subterminal buds. First, the basal area of each
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branch (i.e. cross-sectional surface at the bark) was calculated and summed when branches
originated from the same point at the stem’s pith. We then applied a series of thresholds to
select basal area peaks along the main stem. Secondly, we tested thresholds of minimum
GU lengths, as some of the identified peaks occurred in close proximity, presumably as a
result of reiteration (Bégin and Filion 1999). Once each GU was located, we analyzed the
circular branch distribution at the scale of both the tree and the growth unit. This was
carried out using circular statistics and a Rayleigh test (Jammalamadaka and Sengupta

2001).

Results and Discussion

The number of GUs along the stem was significantly underestimated when only external
branch measurements were used. On average, the underestimation was 2.4 GUs per 2.5-m
log (SD=3.7), or around 15% of the total. For a mature tree, this would represent
approximately 16 GUs, which is unsatisfactory for the development of accurate models.
One possible explanation is that black spruce contains a relatively large number of
branches along each growth unit, but the diameter ranges of nodal (terminal) and
internodal (median) branches overlap, so the delineation of GUs based on branch basal

area might be problematic.
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ImagelJ Java plug-in ‘Gourmand’. separate growth units using our two-filter
method.
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For the identification of GUs using internal data, best results were obtained when 1) a GU
limit was placed when the sum of branch basal areas initiating from the same point was
above the 75th percentile for all branch initiation points within the log and 2) the next limit
was located at a minimum distance of 7.5 cm along the main stem (Figure A-5). The
utilization of the CT images coupled with this two-step method allowed us to significantly
increase the accuracy of GU identification. The resulting mean bias in the number of GUs
per log approached 0 (0.195). This represented a significant improvement compared to
external assessment, although some variation remained (SD=2.8). The ability to identify
branch initiation points at the pith of the main stem therefore allowed us to differentiate

between nodal and internodal branches more accurately.

Figure A-6 Distribution of branches around the stem by diameter (in red) and by number
(in blue) for A) all branches, B) the largest diameter branch per GU and C) the largest
diameter branch per tree.

Once we had obtained the best GU selection, we studied the circular distribution of the
branches at the tree and the GU levels. For all branches on one tree, the distribution was
uniform (Figure A-6A). However, the largest branch per GU had a preferential orientation
of 194° (SD = 65°) and the distribution was non-uniform for 18 out of 33 sample trees
(Figure A-6B). The largest diameter branch in each tree had a similar mean orientation of
200° (Figure A-6C). Future work will focus on 1) the influence of inter-tree competition on

branch distribution around the stem, 2) testing the applicability of the two-filter method to
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other species and growing conditions, and 3) increasing data processing speed using

automated knot detection and measurement algorithms (Longuetaud et al. 2012).
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