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Abstract

How do children learn their first words? Do they do it by gradually accumulating
information about the co-occurrence of words and their referents over time, or are
words learned via quick social inferences linking what speakers are looking at, pointing
to, and talking about? Both of these conceptions of early word learning are supported
by empirical data. This thesis presents a computational and theoretical framework
for unifying these two different ideas by suggesting that early word learning can best
be described as a process of joint inferences about speakers' referential intentions and
the meanings of words.

Chapter 1 describes previous empirical and computational research on "statisti-
cal learning"-the ability of learners to use distributional patterns in their language
input to learn about the elements and structure of language-and argues that cap-
turing this abifity requires models of learning that describe inferences over structured
representations, not just simple statistics. Chapter 2 argues that social signals of
speakers' intentions, even eye-gaze and pointing, are at best noisy markers of refer-
ence and that in order to take advantage of these signals fully, learners must integrate
information across time. Chapter 3 describes the kinds of inferences that learners can
make by assuming that speakers are informative with respect to their intended mean-
ing, introducing and testing a formalization of how Grice's pragmatic maxims can be
used for word learning. Chapter 4 presents a model of cross-situational intentional
word learning that both learns words and infers speakers' referential intentions from
labeled corpus data.

Thesis Supervisor: Edward Gibson
Title: Professor of Cognitive Sciences
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Chapter 1

The role of statistical inference in

early language acquisition

1.1 Introduction

How do children learn their native language? Over a handful of years, infants who

know almost nothing about any language become children who can express their

thoughts fluently in one language in particular. Though the broad developmental

course of language acquisition is well-established, there is virtually no consensus on the

psychological mechanisms by which the different aspects of language are acquired. Are

substantial aspects of linguistic structure innately given (Lenneberg, 1967; Chomsky,

1981; Pinker, 1995)? Or are infants endowed only with more general probabilistic

learning mechanisms that can be applied to a broad class of tasks (D. E. Rumelhart,

McClelland, & group, 1986; Elman et al., 1996)? Since the birth of the field of

language acquisition, the use of formal or computational tools to give a description of

the machinery necessary to acquire a language has been recognized as an important

strategy for answering these questions (Chomsky, 1975; Pinker, 1979).

In recent years, exciting empirical results on infant learning abilities (Saffran,

Aslin, & Newport, 1996; G. F. Marcus, Vijayan, Bandi Rao, & Vishton, 1999; G6mez,

2002; Gerken, Wilson, & Lewis, 2005) combined with promising computational results

(Goldwater, Griffiths, & Johnson, 2009; Goldsmith, 2001; Albright & Hayes, 2003;



Perfors, Tenenbaum, & Regier, 2006; Alishahi & Stevenson, 2008; Bannard, Lieven,

& Tomasello, 2009) have together suggested that probabilistic learning plays a large

part in language acquisition. It is now widely accepted that general probabilistic

learning mechanisms plays a large role in tasks like identifying the phonetic units of

a language or identifying words from fluent speech (e.g. Kuhl, 2000, 2004; Saffran,

Aslin, & Newport, 1996), but the nature of these mechanisms and their application to

more complex aspects of language learning is still controversial. Although statistical

mechanisms are acknowledged to play a part in word learning, they are often thought

of as only one "cue" to identifying word meanings (Waxman & Gelman, 2009). In

the acquisition of syntax, the ability of probabilistic mechanisms to identify language-

specific rules is even more controversial (Pinker, 1979; Wexler & Culicover, 1983).

Thus, despite the progress that has been made, many questions regarding the role of

probabilistic learning in language acquisition are still unanswered.

The goal of this review is to survey computational studies of early language ac-

quisition across the full range of acquisition challenges, from sound-category learning

to syntactic rule learning. We describe criteria for evaluating these models on their

adequacy as theories of language acquisition. Applying these criteria reveals that

there are considerable similarities between many of the most successful models across

a range of tasks. Probabilistic learning has often been characterized as implying

that learners compute and apply simple descriptive statistics like co-occurrence and

conditional probability. We find that simple statistics do not generalize well from

task to task. We argue instead that the most successful computational proposals

across tasks attempt to infer a parsimonious description of the data in a structured

representational vocabulary.



1.2 Criteria for assessing proposed learning mech-

anisms

How can we assess whether a hypothesized learning mechanism (LM) truly plays

a role for children in solving a particular challenge of language acquisition? This

same question was taken up by Pinker (Pinker, 1979), who proposed six empirical

conditions:

1. Learnability condition: LM must be able to acquire a language in the limit

2. Equipotentiality condition: LM must be able to learn any human language

3. Time condition: LM must be able to learn within the same amount of time as

the child

4. Input condition: LM must be able to learn given the same amount of input as

the child

5. Developmental condition: LM must make predictions about the intermediate

stages of learning

6. Cognitive condition: LM must be consistent with what is known about the

cognitive abilities of the child

Although these conditions provide a detailed specification for evaluating a potential

LM, they are difficult to evaluate.

If the time condition is distinct from the input condition, it is not clear how it

should be evaluated: The mapping between time and computation cycles in a serial

computer is not direct, and the mapping function is unknown. Likewise, although the

cognitive condition appears compelling, we know very little about the true compu-

tational abilities of children. If we were to take such a limitation seriously, then the

kinds of computations that go on at every level of processing during tasks like object

recognition or motor control would seem far out of reach of child learners (Pouget,

Dayan, & Zemel, 2000; Todorov, 2009). Applied indiscriminately, this condition runs



the risk of using researchers' intuitions to limit the kinds of LMs that we consider. If

those intuitions were incorrect, researchers would not even consider the appropriate

mechanism. Thus, although the time and cognitive conditions may have an eventual

theoretical purpose, they should not be included in any comparison of current models.

The other four conditions can easily be summarized: a LM should be able to suc-

ceed in learning the appropriate parts of any language given the amount of input that

children receive, and it should make the same mistakes along the way that children

make. We consolidate these conditions into two criteria (Frank, Goldwater, Griffiths,

& Tenenbaum, in press): sufficiency-learning the right thing from the data-and fi-

delity-making the same mistakes along the way. These conditions are easily mapped

onto empirical tests of a proposed LM that is instantiated in a computational model.

First, the model should converge to the right answer (whether it is an appropriate set

of phonetic categories, a correct set of word-object mappings, or a set of interpreta-

tions for sentences) given an appropriate sample of data-ideally from any one of a

number of languages. Second, the model should fit human performance across a wide

variety of experimental conditions, reproducing the different patterns of performance

shown by children at different ages when it is given corresponding amounts of input

data.

Models are often proposed to capture a single learning task that children face,

rather than to learn the entirety of a language. For example, a model of syntax ac-

quisition is usually assumed to receive as input utterances that are already segmented

into words (Bannard et al., 2009); a model of quantifier semantics is assumed to know

some lexical semantics already (Piantadosi, Goodman, Ellis, & Tenenbaum, 2008).

This decomposition of the learning task can be a useful tool-though it runs the risk

of failing to take advantage of possible synergies between tasks (we return to this

issue briefly at the end of the review)-but it can create situations where evaluating

the output of a model is difficult. When a model solves a task that is intermediate

along the way to a larger goal it may be difficult to evaluate a model on either of

the proposed criteria. How are researchers to know what kind of performance would

either be sufficient in the limit or faithful to human performance? The growing liter-



ature on artificial language learning tasks provides one partial solution to this issue,

allowing models to be tested on their fit to what learners can acquire from miniature

languages. Thus, we include in this review a brief discussion of relevant artificial

language results where appropriate.

1.3 Application of statistical inference to language

In the following sections, we will outline how the approach described above can be

applied to models across a variety of domains of language acquisition and summa-

rize the level of progress that has been achieved. A full review of progress in all

areas of modeling language acquisition would be prohibitively long, so the review is

necessarily highly selective. Wherever possible we have attempted to focus on those

proposals that show particular promise in learning from corpus data or matching

empirical work. We divide the broader task of language acquisition into a list of sub-

tasks, including sound category learning, word segmentation, word learning, word

class learning, morphology learning, and syntactic rule learning.

1.3.1 Sound category learning

A rich literature describes the progression of infants in learning the sound categories

of their native language. Although human infants (Eimas, Siqueland, Jusczyk, &

Vigorito, 1971) and other mammals (Kuhl & Miller, 1975) are sensitive to some of the

consonant distinctions across the world's languages due to basic properties of their

auditory system, as infants gain exposure to their native language, they gradually

acquire language specific vowel (Kuhl, Williams, Lacerda, Stevens, & Lindbloom,

1992) and consonant (Werker & Tees, 1984) distinctions that other animals do not

learn.

How do infants infer which particular sound contrasts are meaningful in their

native language? Experimental work provided the suggestion that they could induce

categories from the distribution of exemplars in acoustic space (Maye, Werker, &

Gerken, 2002). Maye, Werker, and Gerken presented infants with phonetic tokens



across a continuum and found that infants who heard unimodally-distributed stimuli

for a short familiarization did not discriminate exemplars at the endpoints of the

continuum, while those who heard bimodally-distributed exemplars did. Followup

work suggested that this same paradigm could be used to facilitate 8-month-olds'

discrimination of non-native contrasts (Maye, Weiss, & Aslin, 2008).

Recent computational modeling applies similar techniques for unsupervised cat-

egory induction to cross-linguistic speech-category learning (Vallabha, McClelland,

Pons, Werker, & Amano, 2007). This work suggests that by assuming some set of

categories that each produce a distribution of exemplars within an acoustic feature

space it is possible to work backwards and infer the particular categories present in

some input set.1 Feldman, Griffiths, and Morgan (N. Feldman, Griffiths, & Morgan,

2009a) have recently proposed a model of category learning that captures a large

number of experimental findings on the perception of variable acoustic stimuli (in-

cluding the "perceptual magnet effect" (Kuhl et al., 1992)). In addition, work by

McMurray and colleagues (McMurray, Aslin, & Toscano, 2009; Toscano & McMur-

ray, 2010) elaborates on the use of similar unsupervised mixture modeling techniques

to learn phonetic categories incrementally from data. Both of these approaches focus

on demonstrating both sufficiency-acquisition of correct, adult-like categories-and

fidelity-fit to human perception results.

In the domain of speech category learning it has long been known that infants

learn the structure of their native language from exposure to noisy phonetic tokens

(Werker & Tees, 1984), but current research is beginning to provide descriptions of

this process that map from observed input tokens to a category representation that

explains effects in speech perception. Although previously described as a "warping" of

the perceptual space (Kuhl, 2000), it now seems clear that the best-performing models

assume some discrete category structure that is being recovered from noisy input.

Rather than applying "simple statistics" to the input data, infants' categorization is

'There are important distinctions between the perception of consonants and vowels-e.g., conso-

nants are perceived categorically while vowels do show reduced discrimination at category boundaries

but are perceived continuously-but for the purpose of this review we focus on similarities between

the two.



best characterized as inference to a parsimonious set of explanatory variables.

1.3.2 Word segmentation

Although the boundaries between words are not marked by silences, there are a

variety of language-specific cues such as stress, allophonic variation, and phonotactic

constraints that are informative about where words begin and end (Jusczyk, 2000).

Since these cues vary between languages, one proposal for a language-general strategy

for segmentation is the use of statistical regularities in the occurrences of phoneme

or syllable strings to find consistent linguistic units (Harris, 1951; Saffran, Aslin, &

Newport, 1996; Saffran, Newport, & Aslin, 1996).

Work by Saffran, Aslin, and Newport (Saffran, Aslin, & Newport, 1996; Saffran,

Newport, & Aslin, 1996) suggested that infants and adults were able to identify fre-

quent sequences of syllables from streams of continuous, monotonic speech with no

prosodic cues. They proposed that learners might compute probabilities between

syllables and then look for dips in transition probability (TP) to signal word bound-

aries. Followup experiments by Aslin, Saffran, and Newport (R. N. Aslin, Saffran, &

Newport, 1998) provided support for that idea by showing that infants were able to

distinguish between statistically-coherent (high internal TP) sequences from incoher-

ent (low internal TP) sequences, even when they were balanced for frequency.

In recent years the literature on statistical segmentation and related paradigms has

blossomed, providing evidence that the same kind of segmentation is possible across a

wide variety of domains and modalities (Kirkham, Slemmer, & Johnson, 2002; Fiser

& Aslin, 2002; Saffran, Johnson, Aslin, & Newport, 1999; Conway & Christiansen,

2005) and that species as diverse as tamarin monkeys (Hauser, Newport, & Aslin,

2001) and rats (Toro & Trobalon, 2005) can succeed in similar tasks. Although many

of these experiments were interpreted in terms of the computation of TPs, there are a

range of computational proposals that explain segmentation performance, including

a heuristic, information-theoretic clustering model (Swingley, 2005); Bayesian lexical

models which look for a parsimonious lexicon that best explains the speech input

(Brent, 1999; Goldwater et al., 2009); and PARSER, a memory-based model that



sequentially incorporates chunks of input into a lexicon (Perruchet & Vinter, 1998,

2003). Assessments of the sufficiency of these models in learning from corpus data

have favored the Bayesian lexical models (Brent, 1999; Goldwater et al., 2009) over

transition probability-based approaches (Yang, 2004). Lexical approaches have also

been adopted in the computational linguistic literature as the state of the art in seg-

mentation across languages (e.g. Liang & Klein, 2009; M. H. Johnson & Goldwater,

2009).

Investigators have also begun to examine how empirical evidence from statistical

segmentation paradigms can decide between models of segmentation. Experiments in

the auditory domain (Giroux & Rey, 2009) and in the visual domain (Orbin, Fiser,

Aslin, & Lengyel, 2008) have both provided support for models of segmentation-

like PARSER or the Bayesian lexical models-that posit the learning of discrete

chunks (words in the auditory domain, objects in the visual) rather than transitions

between syllables. In addition, Frank, Goldwater, Griffiths, and Tenenbaum (Frank

et al., in press) assessed the fidelity of a variety of models to experimental data in

which systematic features of the speech input were varied (sentence length, number

of word types, number of word tokens). They found that while all current models

succeeded in learning the simple artificial languages, no models provided good fit

to data without the imposition of memory constraints that limited the amount of

data that was being considered. Supporting the importance of understanding the

role of memory in segmentation, other results suggest that learners may not store

the results of segmentation veridically, falsely interpolating memories that they have

heard novel items that share all of their individual transitions with a set of observed

items (Endress & Mehler, 2009).

Taken together, this work paints a picture of segmentation-like sound category

learning-as inference to a parsimonious set of items or categories. Again, simple

statistical approaches like transition probability do not seem to fit performance or

succeed in acquisition in the same way as more sophisticated models that assume

inference to a set of explanatory variables (lexical items, in this case, rather than

phonetic categories). One challenge for future work in this area is that unlike in



sound category learning, none of the models under consideration deal well with noise

or variability in exemplars, and none are incremental. A second challenge is the

integration of statistical models with other cues for segmentation. A rich body of

empirical work suggests not only that statistical information interacts with language-

specific acoustic cues like stress (E. Johnson & Jusczyk, 2001; Thiessen & Saffran,

2003), but also that these language-specific cues can be acquired from a remarkably

small amount of data (Thiessen & Saffran, 2007).

1.3.3 Word learning

Given the lexicalized form of many successful grammatical frameworks in both lin-

guistic syntax (e.g. Pollard & Sag, 1994; Steedman, 2000; Bresnan, 2001) and natural

language processing (e.g. Collins, 2003), the majority of language acquisition could

arguably be characterized as "word learning." Inferring the meanings of individual

lexical items-especially open-class words like nouns, adjectives, and verbs-is an im-

portant early challenge in language acquisition. One primary focus in this literature

is overcoming problems of referential indeterminacy (Quine, 1960): the fact that any

given use of a word in context, no matter how specific, can support many possible

interpretations.

Experimental and computational work has focused on overcoming one aspect of

this problem-figuring out which words in a sentence have which meanings-through

repeated observation of the co-occurrence of words and their meanings ("cross-situational

observation"). An early model by Siskind (Siskind, 1996) provided a compelling

demonstration that word meanings could be guessed by repeated observation and the

application of deductive principles. Although other authors had speculated about the

utility of cross-situational observation as a method for vocabulary acquisition (e.g.

Gleitman, 1990; Pinker, 1984), Siskind's model provided a first quantification of the

utility of this strategy. Work by Gleitman and colleagues persuasively argues that this

strategy is most appropriate for learning nouns and that learning relational terms like

verbs may require additional linguistic information (Gleitman, 1990; Gillette, Gleit-

man, Gleitman, & Lederer, 1999). Thus, although Siskind used his system to learn



even complex, relational meanings, the majority of the recent work in this area has

focused on learning concrete nouns.

Drawing on the competition-based lexical models of MacWhinney (MacWhinney,

1989), Regier (Regier, 2005) presented a connectionist, exemplar-based model that

learned mappings of words and objects that were presented via distributed, featural

representations. Though this model was not applied to learning words from anno-

tated corpus data, the general computational principles he incorporated allowed the

model to fit a number of results from the literature on early word learning. The con-

nectionist models of Li and colleagues are also related, though they primarily focus

on understanding the grouping dynamics of the growing vocabulary via the use of

self-organizing maps (Li & Farkas, 2002; Li, Zhao, & Whinney, 2007).

Several models have also been applied to learning words from natural or naturalis-

tic data. Roy and Pentland (Roy & Pentland, 2002) created a system for manipulating

multi-modal input. Yu and colleagues (Yu, Ballard, & Aslin, 2005; Yu & Ballard,

2007) described a system based on a model of machine translation which learned map-

pings between words and objects (and was also applied to multimodal data processed

by computer vision and speech processing algoriths). Notably, Yu and Ballard (2007)

also took the step of integrating prosodic and social cues into their model, which they

found increased word-object mapping performance considerably. Fazly and colleagues

presented an incremental model of this process that they applied to a range of de-

velopmental results such as mutual exclusivity (Fazly, Alishahi, & Stevenson, 2008,

in press). Frank, Goodman, and Tenenbaum created a Bayesian model which jointly

solved two tasks: inferring what referent the speaker was talking about and learning

word-referent mappings (Frank, Goodman, & Tenenbaum, 2009). This model unified

the approaches of several previous systems, modeling competition-style inferences like

mutual exclusivity while also learning effectively from annotated corpus data. The

success of this system and others also suggests that integrating social aspects of word

learning with the machinery to make statistical inferences could have the potential

to account for a large variety of experimental data. Combined with the success of

models like Regier (2005)'s in fitting developmental data, the suggestion from this



literature is that findings like mutual exclusivity (E. M. Markman & Wachtel, 1988)

can be accounted for via a variety of statistical inference mechanisms.

In addition to this computational work, recent empirical investigations by Yu,

Vouloumanos, and colleagues (Yu & Ballard, 2007; L. Smith & Yu, 2008; Vouloumanos,

2008; Vouloumanos & Werker, 2009) have given evidence that both adults and young

children can use the same kind of cross-situational exposure to learn associations be-

tween words and their meanings. The current body of evidence with respect to these

tasks provides a proof-of-concept that learning is possible, though work is now emerg-

ing that also attempts to characterize the mechanisms underlying these inferences in

more detail (Yurovsky & Yu, 2008; Kachergis, Yu, & Shiffrin, 2009; Ichinco, Frank,

& Saxe, 2009). Analytical explorations have also provided some evidence for the vi-

ability of this type of strategy for acquiring large-scale lexicons (K. Smith, Smith, &

Blythe, in press). Thus, it seems possible that the kind of cross-situational learning

described by these computational models is not out of reach for human learners.

Despite the assumptions of the models discussed above, knowing the object that is

being talked about does not imply knowledge of the meaning of the word that is being

used. To take one of many examples, sub- and super-ordinate labels like "animal" or

"dalmation" can co-occur with more common, basic-level labels like "dog." Although

previous theories suggested that early word learners were constrained to consider only

basic-level categories as targets for mappings (E. Markman, 1991), recent work has

provided a theory for how learners could make principled statistical inferences about

what level of categorization a word refers to (Xu & Tenenbaum, 2007b).

Xu and Tenenbaum described a simple Bayesian model that relies on the notion

of a suspicious coincidence. The motivating intuition for this model is that single ex-

ample of a dalmation could be randomly chosen as an example of a dog, but choosing

three dalmations randomly would be a coincidence if they were being chosen from the

set of all possible dogs. Those same three examples would be much more likely to be

chosen as examples of the sub-ordinate category "dalmation." Xu and Tenenbaum

formalized this inference using the "size principle"-the idea that individual data-

points are probable under more specific hypotheses. Under this explanation, a very



general hypothesis like "animal" should be disfavored unless it is the only hypothesis

that fits.

One other suggestion for overcoming difficulties in word learning is the possibility

that learners build up expectations about the kinds of ways that labels relate to

concepts (L. Smith, 2000; L. Smith, Jones, Landau, Gershkoff-Stowe, & Samuelson,

2002). Children tend to use shape as the criterion for generalizing novel nouns (S.

Jones, Smith, & Landau, 1991). One possible hypothesis is that this "shape bias"

is innately given, but another possibility is that the shape bias is a higher-level bias

that is learned through experience. In support of this second hypothesis, Smith

and colleagues (L. Smith et al., 2002) trained children on novel categories that were

organized around shape and found that at the end of training not only were the

children able to use shape-based generalization in other novel categories, but their

noun vocabulary had also increased considerably with respect to controls who did

not receive the training. Both Bayesian (Kemp, Perfors, & Tenenbaum, 2007) and

connectionist models (Colunga & Smith, 2005) have been applied to these findings,

suggesting that "overhypotheses" -distributions on the hypotheses likely to be true

of a new set-like the shape bias can be learned quickly from data by learners with

the appropriate representational capacity.

Work on word learning that uses statistical principles to overcome problems of

generalization and referential indeterminacy has blossomed in the past decade. In-

creasingly, though, models of word learning have gone beyond simple associations

between words and referents-or even words and concepts-to include social (Frank,

Goodman, & Tenenbaum, 2009; Yu & Smith, 2007), prosodic (Yu & Smith, 2007),

and conceptual (Xu & Tenenbaum, 2007b) information. The success of models taking

these steps supports the view that statistical learning is not a separate associative

mechanism or cue. Instead, a framework that posits statistical inferences over the

available data for the purpose of inferring a discrete lexicon seems to provide better

fit to the broad, integrative inferences that children make in learning the meanings

of new words.



1.3.4 Word class learning

Although tremendous progress has been made in tasks from learning speech sounds

to learning words and morphology, progress at the highest levels of acquisition has

been somewhat slower. Understanding how the structure of natural languages can be

learned is the most difficult challenge for both theories of language acquisition and

for the applied fields of machine learning and natural language processing (NLP).

Nevertheless, there has been a considerable amount of progress in several impor-

tant sub-problems like syntactic category learning, morphology learning, and verb

argument-structure learning, and several recent systems show promise in more chal-

lenging fields, like learning grammars from un- or minimally-annotated input.

A first step in acquiring a grammar is the extraction of syntactic categories (e.g.

nonterminal categories in a context free grammar like noun and verb). Despite the

increasing emphasis on lexicalization in linguistics, NLP, and acquisition (Tomasello,

2003), syntactic categories of some kind are largely agreed to be useful abstractions

in characterizing the productivity of adult language. Evidence from adult language

processing paradigms like syntactic priming supports the psychological reality of such

categories (Bock, 1986) and recent evidence provides some support for this view in

early child language (Thothathiri & Snedeker, 2008).

In NLP, learning syntactic categories from supervised (hand-labeled) data is largely

considered a solved problem (Jurafsky, Martin, & Kehler, 2000; Manning & Schitze,

2000), with performance very high on most measures. However, unsupervised learning

of syntactic categories is not as simple. The output of such systems is a clustering of

words into categories, but evaluating these categories is non-trivial. Although there

have been a number of proposals for linking the gold-standard categories created

by annotators to the categories found by unsupervised systems, there is no reason

to assume that the output of such systems would be maximally correct if they did

precisely match human annotations. Because we do not know the precise form of

syntactic abstractions, we cannot say what the correct standard for the sufficiency of

such a system should be.



Nevertheless, following initial suggestions by Maratsos and Chalkley (Maratsos &

Chalkley, 1980), a number of systems have addressed the challenge of unsupervised

category induction using distributional information. For example, Redington and col-

leagues used a hierarchical clustering system that grouped words on the basis of their

distributional context and recovered clusters that shared strong qualitative similari-

ties with linguistic categorizations (Redington, Crater, & Finch, 1998). Other work

has suggested that a number of different strategies, including minimum-description

length clustering (Cartwright & Brent, 1997), clustering based on frequent contexts

(Mintz, Newport, & Bever, 2002; Mintz, 2003), and Bayesian approaches (Goldwa-

ter & Griffiths, 2007; Parisien, Fazly, & Stevenson, 2008) all show relatively simi-

lar performance (Goldwater, 2007), suggesting that-at least at the highest level of

granularity-word categories are relatively over-determined by the distributional data

and can be learned through a number of different strategies.

In contrast, human results on "unsupervised" syntactic category learning have

been mixed. Artificial language paradigms which should be amenable to simple dis-

tributional analyses have proven to be difficult for human learners. For example,

the classic "MN/PQ" paradigm asks learners to acquire an artificial language whose

sentences have either the form MN or PQ, where each letter represents an arbitrary

class of nonsense words or syllables. While this kind of learning is trivial for nearly

any statistical model that posits word classes (e.g. a hidden Markov model), human

learners tended to learn positional regularities (e.g. that M and P words came first in

the sentence) rather than the abstract relation between categories (K. Smith, 1966).

Braine (Braine, 1987) then showed evidence that distributional learning strategies

could succeed in this task, but only when they were supplemented by additional

referential or morpho-phonological information. More recently, studies that include

multiple distributional cues to category membership (e.g., a frame of two words rather

than a single word) have also been successful in allowing learning (Mintz, 2002), and

there is some evidence that languages that simply rule out the possibility of positional

regularities via optional words at the beginnings and ends of strings may allow for

learning (Reeder, Newport, & Aslin, 2009). In addition, Gerken (Gerken et al., 2005)



showed that 17-month-olds could learn a part of the Russian gender marking system,

though only when some portion of the training stimuli were double-marked. Recent

work by Frank and Gibson (Frank & Gibson, under review) suggests a reason for

these effects: that the pattern of failures in these experiments may be due to learn-

ers' memory limitations (and that adding coordinated cues may simply give extra

cues for encoding).

Although syntactic category acquisition has been a paradigm case for distribu-

tional learning (Maratsos & Chalkley, 1980), progress in this area has been hindered

by the fact that a gold standard for syntactic categories is necessarily theory-based

and cannot be uncontroversially derived from data. In addition, human experimental

data are equivocal about whether distributional category learning is easy for human

learners. One way in which distributional models can be evaluated more directly,

however, is through the use of syntactic categories as an intermediate representa-

tion in another task (ideally one that can be compared directly to an uncontroversial

gold standard). Thus, we suspect that further progress in this area will likely come

through the use of categories to learn words more effectively (Frank, Goodman, &

Tenenbaum, 2009), the use of semantic information to extract sub-classes of words

(Alishahi & Stevenson, 2008), or the joint induction of categories and rules over those

categories (Bannard et al., 2009).

1.3.5 Morphology learning

Morphological generalization has long been accepted as one of the methods for pro-

ductivity in natural languages (Berko, 1958). Even before artificial language exper-

iments demonstrated the plausibility of distributional learning strategies for aspects

of language acquisition, the suitability of distributional strategies for morphological

generalization was a topic of intense debate in studies of the English past tense.

Early investigations using neural network models suggested that regularities in the

frequencies of English verbs supported appropriate generalizations to novel forms

(D. Rumelhart & McClelland, 1986). This work came under heavy criticism for its

representational assumptions, generalization performance, and match to the empir-



ical data, however (Pinker & Prince, 1988). Following on that initial investigation,

Plunkett and Marchman investigated a broader range of connectionist systems for

learning past tense forms (Plunkett & Marchman, 1991, 1993, 1996), which again

elicited criticism for their match to empirical data (G. Marcus, 1995).

The controversy over the form of mental representations of past-tense morphology

has had several positive outcomes, though, including an increased focus on fidelity to

empirical data and a move towards the direct computational comparison of symbolic

and associative views. Work by Albright and Hayes (Albright & Hayes, 2003) com-

pared a rules-plus-exceptions model (Prasada & Pinker, 1993) to a purely analogical

model and to a model which used multiple stochastic rules of varying scopes. They

found that the multiple-rules approach provided a better account of human general-

izations in a nonce-word task than a pure similarity approach. This approach allowed

the generalization system to capture the widely-varying scope of different rules (from

non-generative exceptions like went to the fully general rules that allow for regular

inflection in novel forms like googled).

The unsupervised learning of morphological systems more generally has been a

topic of interest in NLP. Given the wide diversity in morphological marking in the

world's languages, computational systems for parsing in isolating languages like En-

glish will have only limited success when applied to morphologically-rich languages

like Turkish. Systems for the induction of a morphological grammar from text thus

play an important role the broader project of parsing text from these languages.

Minimum-description length (MDL) formalisms have been used successfully for the

induction of general morphological grammars (de Marcken, 1996). Goldsmith (Gold-

smith, 2001) described a model based on this principle which searched for suffix

morphology and identified linguistically-plausible analyses across a range of Euro-

pean languages. Unfortunately, although the MDL approach is highly general, full

search for solutions in this formalism is intractable and so implemented systems must

rely on a set of heuristics to find good descriptions.

Probabilistic systems using inference techniques such as Markov-chain Monte

Carlo offer a better alternative by allowing a full search of the posterior distribu-



tion over solutions. Recent work by Goldwater, Johnson, and colleagues (Goldwater,

Griffiths, & Johnson, 2006; M. Johnson, Griffiths, & Goldwater, 2007; M. Johnson,

2008a) has made use of non-parametric Bayesian techniques to model the different

processes underlying the generation of morphological rule types and the individual

word tokens observed in the input. This dissociation of types and tokens allows for

a more accurate analysis of the morphological rules that govern tokens. These new

techniques present the possibility of unifying earlier work on the past tense with the

broader project of learning morphology from un-annotated data (Frank, Ichinco, &

Tenenbaum, 2008; O'Donnell, Tenenbaum, & Goodman, 2009).

Thus, the pattern in morphology learning is similar to those in other fields of

acquisition. Initial computational work this area focused on simple, exemplar-based

models of learning and generalization that computed simple statistics over the re-

lations between datapoints. Issues with these strategies led more recent work to

move towards a probabilistic framework that attempts to infer a parsimonious set of

morphological descriptions within an expressive representational space (Albright &

Hayes, 2003; M. Johnson et al., 2007).

1.3.6 Syntactic rule learning

Although there is still much work to be done, extracting the elements of language-

phonemes, morphemes, words, and word categories-from distributional information

is now largely assumed to be possible using statistical models. From the perspec-

tive of cognitive modeling, the major open challenge in this field is linking these

statistical proposals to the abilities of human learners. Human learners have sharp

limitations on memory and computation that leading to characteristic errors that are

not always described by the current generation of models. In contrast, it is still un-

known whether the structural features of language can be learned in the same way, or

whether distributional learning mechanisms must be supplemented with other sources

of information. Our last section reviews some of the heterogeneous literature on the

learning of structured representations.

A large literature discusses the a priori possibility of a model that fulfills the



sufficiency criterion for natural language syntax without assuming a large amount of

structure. The original learnability results in this field were by Gold (E. Gold et al.,

1967), with further investigation by a number of others (Horning, 1969; J. Feldman,

1972) (reviewed in Nowak, Komarova, & Niyogi, 2002). Discussion of this large and

complex literature is outside of the scope of the current review. However, given the

importance of these arguments, we note that while the mathematical results are clear,

their applicability to the situation of children learning their native language is far from

obvious (MacWhinney, 2004; A. Clark & Lappin, 2010). To take one example, the

assumption of Gold's theorem is of an adversarial language teacher, who can withhold

crucial examples for an infinite amount of time in order to derail the process of

language acquisition. This assumption is strikingly different from the relationship that

is normally assumed to hold between children and their caregivers (A. Clark & Lappin,

2010). Even if parents do not explicitly teach their children, they are unlikely to be

adversarial in their use of syntax. More generally, the growth of systems for grammar

induction has been so rapid, and their relationship to the assumptions of traditional

"learnability in the limit" models is so complex, that we believe work on grammar

induction should not be discounted on the basis of theoretical arguments (c.f. Berwick

& Chomsky, 2009). If we accept the possibility of success, then the development of

novel techniques is important regardless of the sufficiency of the individual systems

that initially instantiate these techniques.

In this vein, one of the most compelling early demonstrations of the power of

statistical learning was by Elman (1990), who created a recurrent connectionist net-

work that learned regularities in sequential artificial language data by the errors it

made in predicting upcoming material. Although this network was only able to learn

from small languages, some work has attempted to translate these insights directly to

much larger-scale systems with mixed results (Rohde, 2002). Although connectionist

architectures have not generally proven efficient for large-scale language processing,

the interest provoked by this proof of concept was considerable.

Unsupervised grammar induction has been a topic of persistent interest in NLP

as well. Although the specific challenge of learning a set of correct rules from writ-



ten, adult corpora is not directly comparable to the task of syntactic rule learning

for children, this field still has the potential to contribute important insights. Early

experiments for learning context-free grammars (CFGs) from plain-text representa-

tions were not highly successful (Carroll & Charniak, 1992; Stolcke & Omohundro,

1994), underperforming simple baselines like purely right-branching structures (Klein

& Manning, 2005). More recent work has made use of related formalisms. Klein and

Manning (2005) explored a model which induced constituency relationships (clusters)

rather than dependencies between words and found increases over baseline. Clark and

colleagues (A. Clark & Eyraud, 2006, 2007) have introduced efficiently-learnable for-

malisms that cover a large subset of the CFGs. The ADIOS system is related to both

of these approaches via its clustering of related contexts; it uses a heuristic graph-

merging strategy to perform scalable inferences over relatively large corpora (Solan,

Horn, Ruppin, & Edelman, 2005). Taken together, these results suggest that it may

be possible to circumvent learnability-in-the-limit results via formalisms that do not

map directly to levels of the Chomsky hierarchy.

Recent work has attempted to unify insights from NLP with work on child lan-

guage acquisition. For example, Perfors et al. (2006) used a Bayesian model-

comparison approach to compare parsers of different formal expressivities on their

overall complexity and fit to data when trained on a corpus of child-directed speech.

They found that a CFG provided a smaller representation of the grammar than a

finite-state grammar while still parsing sentences appropriately, suggesting that even

a relatively small amount of input could allow a learner to conclude in favor of a more

expressive formalism like a CFG over a simple linear representation of syntax. Al-

though the Perfors system gave evidence in favor of such expressive representations,

progress in learning grammars directly from child-directed speech has been limited.

Applying insights from construction-based grammatical formalisms-which assume

that children's initial syntactic representations may be centered around individual

verbs rather than fully abstract grammars (Tomasello, 2003)-several recent systems

have been applied to children's productions (Borensztajn, Zuidema, & Bod, 2008;

Bannard et al., 2009). These systems have found evidence for the increasing abstrac-



tion of the units used in production, although they leave unanswered the question of

the representations underlying early syntactic abstraction in comprehension (Gertner,

Fisher, & Eisengart, 2006; Thothathiri & Snedeker, 2008; Arunachalam & Waxman,

in press).

In addition to creating systems that learn pure syntactic relationships, a number

of groups have attempted to model natural language syntax and semantics jointly.

Mooney and colleagues (Kate & Mooney, 2006; Wong & Mooney, 2007) have pre-

sented models based on discriminative learning techniques (e.g. support-vector ma-

chines) that attempt to learn parsers that directly translate natural language sen-

tences into database queries. Other work by Zettlemoyer, Collins, and colleagues

(Zettlemoyer & Collins, 2005, 2007, 2009) has made use of combinatorial categorical

grammar (Steedman, 2000), a linguistic framework by which word order and logical

forms are jointly derived from the same grammar. This group designed a series of

systems for learning CCG parsing systems that similarly identify the logical forms of

natural language sentences. Although these systems have not been applied to data

from acquisition (in large part due to the challenges of designing appropriate repre-

sentations for sentential meaning in unrestricted contexts), they show considerable

promise in unifying syntactic and semantic information in the service of sentence

interpretation.

Several psycholinguistically-inspired models have also attempted to link syntactic

and semantic information, though these models have typically been more limited

in the kinds of representations they posit. Early work on this topic was done by

Kawamoto and McClelland (1987) who used a supervised neural network to identify

the thematic roles associated with words in sentences. More recent work on this

topic has been inspired by systems for semantic-role labeling in NLP, using animacy,

sentence position, and the total number of nouns in a sentence to classify nouns as

agents or patients (Connor, Gertner, Fisher, & Roth, 2008, 2009). Incorporating

richer representations than the feature vectors in previous work, a system by Alishahi

and Stevenson (2008) learned verb classes and constructions from artificial corpora

consisting of utterances and their associated thematic role information. Mirroring the



development of children's productive use of verbs (Tomasello, 2003), they found that

constructions gradually emerged through the clustering of different frames for using

verbs. In addition, their model was able to simulate the generalization of novel verbs

across a variety of experimental conditions. This body of work raises the intriguing

possibility that children's early learning of language structure can be described better

via semantic acquisition rather than the acquisition of fully-general (or even, as in

(Borensztajn et al., 2008) and (Bannard et al., 2009), partially-specified) syntactic

rules.

The human literature on learning rule-based structures in artificial languages is

large and mixed, and unfortunately has made relatively little contact with the com-

putational literature on grammar induction. On the one hand, there is a large recent

literature on the ability of infants to learn identity-based regularities over short strings

(G. F. Marcus et al., 1999; Saffran, Pollak, Seibel, & Shkolnik, 2007; G. F. Marcus,

Fernandes, & Johnson, 2007; Frank, Slemmer, Marcus, & Johnson, 2009). Although

the representations necessary for success in these experiments are relatively impov-

erished, they nonetheless represent evidence that young children can make inferences

of the same type as those made by more sophisticated models of morphology and

grammar learning (Frank & Tenenbaum, under review).

On the other hand, there is an extensive literature on artificial grammar learning

(AGL); although the majority of this work has been carried out with adults (Reber,

1967), some has also been conducted with infants (G6mez & Gerken, 1999; Saffran et

al., 2008). The learning mechanisms underlying AGL have been studied for decades,

and a full discussion of this literature is beyond the scope of this review (for more

detailed discussion and an argument that statistical learning of the sort described

in the section on word segmentation and AGL are parallel tasks, see Perruchet

& Pacton, 2006). It is unknown whether the general mechanisms underlying AGL

are involved in linguistic rule learning, though this point has been heavily debated

(Lieberman, 2002). To date relatively few models of language acquisition have been

applied directly (but cf. Perruchet & Vinter, 1998, 2003), though there is a parallel

literature of models that apply only to AGL and not to language learning (Cleeremans



& Dienes, 2008). An important task for future research is the application of models

of language acquisition to AGL stimuli-a model that not only captured aspects of

natural language learning but also the idiosyncratic phenomena of AGL would be an

important advance in understanding the shared mechanisms of learning underlying

success in these tasks.

Although work in the unsupervised learning of language structure is still in its

infancy, there has nevertheless been a tremendous amount of progress in the last

ten years. Recent developments have suggested that moving away from grammatical

formalisms like CFGs to frameworks that fit natural language more closely can result

in impressive progress. Unfortunately, this work has not been as tightly connected

to children's language acquisition or to artificial language results as work on sound

category learning and word segmentation (with some exceptions (Bannard et al.,

2009; Alishahi & Stevenson, 2008)). Thus, an important goal for future work should

be the development of systems and experimental paradigms which allow direct links

between human data and the learning performance of models.

1.3.7 Synergies between tasks

Much of the work that we have described here is confined to a single task like word

segmentation or morphology learning. But there is no reason to believe that learners

perform only one task at a time. In fact, it is very likely that children are learning over

multiple timescales and across multiple tasks and representations. Our models, by

focusing on a single timescale or a single task, may miss important synergies between

tasks: opportunities where learning about one aspect of a problem may help in finding

the solution to another (M. Johnson, 2008b).

Although work of this type is still in its infancy, there is some evidence that syner-

gies in acquisition do exist. For example, N. Feldman, Griffiths, and Morgan (2009b)

created a model which both learns a set of lexical forms and learns speech categories.

They found that these two tasks informed one another, such that performance in

speech-category learning was considerably improved by the ability to leverage con-

trasting lexical contexts. Their work suggested that the space of English vowels



may not be learnable via pure distributional clustering alone (e.g. mixture models

like Toscano & McMurray, 2010), but instead may require this kind of joint lexicon

learning. A second example of using these kinds of synergies comes from B. Jones,

Johnson, and Frank (2010), who proposed a model that simultaneously segmented

words from unsegmented input and learned the correspondences between words and

objects. Compared with a text-only segmentation model, the joint model achieved

better segmentation performance on referential words due to the ability of the model

to cluster those words based on their common referents.

Different tasks also operate over different timescales. Recent work on word learn-

ing has used two tasks to inform each other: sentence interpretation-which happens

in the moment-by-moment of online interaction-and word-object mapping-which

involves the aggregation of information over many different interactions. Models of

word-object mapping that study the interplay between these two kinds of situations

(Frank, Goodman, & Tenenbaum, 2009; McMurray, Horst, & Samuelson, under re-

view) suggest that synergies between the two timescales allow for better word learning

and better fit to developmental phenomena such as the ability to use words for object

individuation (Xu, 2002) and the decrease in reaction times in spoken word recogni-

tion across development (Fernald, Pinto, Swingley, Weinbergy, & McRoberts, 1998).

Although relatively little work to date has examined synergies of these types, re-

search in this field is among the most important because it bridges across traditional

boundaries between tasks in acquisition. These synergies also provide a crucial ar-

gument against approaches that make use of simple descriptive statistics: model-free

statistics like co-occurrence are not able to capture how two independent tasks can

nevertheless mutually inform one another.

1.4 Conclusions: Word learning as a case study

We began by asking how children are able to learn the elements and structures of

their native language. There is now a substantial body of experimental and com-

putational evidence that statistical inference mechanisms play an important part in



Figure 1-1: The graphical model representing dependence relations in our framework
for language acquisition.

this process. Our review focused on the nature of the statistical inferences that best

describe different aspects of language acquisition. Across the spectrum of learning

tasks involved in language acquisition that we reviewed above, the models that per-

formed best at learning from corpus data (sufficiency) and fitting human performance

(fidelity) were not those that were framed in terms of simple distributional statistics.

Instead, models that framed the learning problem as induction of explanatory units

like words, morphemes, categories, or rules were more successful.

The goal of this thesis is to apply the view described above-language acquisition

as driven by statistical inference over structured representations that integrate mul-

tiple information sources-to the task of early word learning. Early word learning-

which we define as lexical acquisition during the period of word learning during which

the learner's production is still at the single word stage and vocabulary is still dom-

inated by nouns and social terms-is an important test case for our view because

it is both simple enough that we should be able to capture many of the important

phenomena and complex enough that it interacts with many other areas of cognition



including social cognition and conceptual development.

The schematic model that guides this view is shown in Figure 1-1. This model

describes a communicative view of language: that words are used to refer to aspects

of the physical context. This model thus sketches a view of word learning as "com-

municative inference": inferences about the meanings of words that make use of the

way words are used to convey meaning in context.

The specific assumptions of this proposal are as follows. We assume that knowl-

edge of language L, in this case a lexicon (a set of word-concept mappings), is built up

across experience with a variety of communicative situations. In each situation, there

is a context C that leads to the speaker forming some intention to communicate, with

an intended meaning I, and on the basis of that intention uttering some utterance

W and some non-linguistic, social signals S. Learners are assumed to observe a set

of communicative situations, each with some context, language, and non-linguistic

signals. Their challenge is to infer the two hidden variables L and I. The language

(the actual knowledge that the speakers have, not the learner's guess about it) is

assumed to be constant across time, while the speaker's intention is assumed to vary

from situation to situation. These two hidden variables represent two timescales that

are relevant for word learners (cf. McMurray, Horst, and Samuelson (McMurray et

al., under review) for a different take on this issue).

Across our investigations of different aspects of early word learning the contents of

these variables changes, but the general relationship between them that is pictured in

Figure 1-1 is assumed to remain constant. The chapters of this thesis address distinct

aspects of the difficult joint inference problem that the full model describes. Figure

1-2 shows graphically how the three substantive chapters of the thesis address the

relationships between different variables in the larger model.

Chapter 2 motivates this framework for studying early word learning by investi-

gating the relationship between physical context, intended referent, and caregivers'

social signals. We describe a corpus study of English-speaking mothers interacting

with children from six months to a year and a half old that investigates how well social

signals like eye-gaze and pointing can be used to predict a speaker's referent in a very
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Figure 1-2: Instances of the general model that correspond to each chapter of the
thesis.



restricted environment. We find that, even when there are only a small number of

possible referents to talk about, social signals are at best noisy indicators of mothers'

intentions. Thus, succeeding in making inferences about what is being talked about

with any degree of consistency will require aggregating information across multiple

referential episodes (as well as making use of linguistic context).

Chapter 3 investigates the kinds of complex inferences that are possible in our

framework during a single interaction. We use our framework of communicative

inferences to formalize what it would mean for a speaker to choose their message

informatively given a particular context. We then apply this formalization to the

problem of inferring the meaning of a novel adjective. Experiments with adults show

a quantitative match between the strength of inferences about adjective meaning

and the predictions of our model; an experiment with children suggests that they

are capable of making this kind of inference as well. This chapter articulates why we

describe our proposal as "communicative" rather than simply inferential: the kinds of

inferences that are possible based on knowing that another agent is taking an action

to communicate are much stronger than those that are possible when an action is

caused physically.

Chapter 4 describes a computational model of communicative word learning that

can be applied to both experimental and corpus data. We show that it outperforms

purely associative models in learning words from annotated corpora and demonstrate

how it predicts a range of results like mutual exclusivity and the use of labels for

object individuation.



Chapter 2

Contributions of social and

discourse information to the

determination of referencel

In this chapter, we describe a study that takes steps towards quantifying the infor-

mativeness of cues that signal speakers' chosen referent, including their eye-gaze, the

position of their hands, and the referents of their previous utterances. We present

results based on a hand-annotated corpus of 24 videos of child-caregiver play sessions

with children from 6 to 18 months old. Our analyses suggest that social cues must

be combined to be effective in guessing reference, and that assuming continuity of

reference-that the same referent is talked about over the course of an extended sec-

tion of discourse-may be an important step in aggregating information from social

cues over time. Within our broader communicative inference framework, Figure 2-1

shows the hypothesized relationships underlying this study: the dependence of com-

municative intentions I on context as well as the dependence of social cues S on those

intentions; this relationship is iterated over time, as indicated by the plate over all

three variables.

'Joint work with Anne Fernald. Parts of this chapter were published as Frank, M.C., Goodman,
N. D., Tenenbaum, J. B., and Fernald, A. (2009). Continuity of discourse provides information for
word learning. Proceedings of the 31st Annual Meeting of the Cognitive Science Society.



Figure 2-1: A graphical model showing the dependency relationships captured by the
study of social and discourse cues in Chapter 2.

2.1 Introduction

How do children learn the meanings of concrete, referential words? Divergent lines

of research have argued either that cross-situational associations between words and

their referents can reveal word meanings over time (Locke, 1847; Yu & Ballard, 2007;

L. Smith & Yu, 2008) or that ostensive social cues like eye-gaze and pointing can

uniquely determine the referent of a word during a single naming event (St. Augus-

tine, 397/1963; Carey, 1978; E. M. Markman & Wachtel, 1988; Markson & Bloom,

1997). Empirically, sometimes words are learned quickly from a few ostensive ex-

amples and retained effectively (Carey, 1978; Markson & Bloom, 1997). Sometimes

meanings may be inferred quickly but are lost just as quickly (Horst & Samuelson,

2008). And in other cases, words appear to be learned slowly via extensive, incre-

mental exposure (Yu & Ballard, 2007; L. Smith & Yu, 2008; Vouloumanos, 2008;

Vouloumanos & Werker, 2009).

Recent computational proposals have suggested both processes are at work and

that they interact with each other in productive ways (Yu & Smith, 2007; Frank,

Goodman, & Tenenbaum, 2009; McMurray et al., under review). One perspective on

these differing experimental results is that the presence of social information occa-



sionally serves to raise the salience of particular referents to such a degree that only

a small number of associations between word and referent are needed for learning

(Yu & Smith, 2007). A contrasting perspective suggests that rather than directly

raising the salience of word-object pairings, social information instead contributes to

the process of understanding speakers' intentions (Frank, Goodman, & Tenenbaum,

2009).

Crucial to both viewpoints is the assumption that social signals are truly infor-

mative about speakers' referential intentions. This chapter addresses this assumption

empirically, investigating the overall reliability of social cues as signals to reference

in child-directed speech. The method for our investigation is a corpus study. Quan-

tifying the information available from videotapes of caregiver-child interaction allows

us to analyze the learning environment directly. We measure the informativeness of

social cues to reference in a very simple, highly-constrained situation: a caregiver and

a child playing with pairs of toys. We hand-coded what the caregiver and child are

looking at, talking about, and pointing at; we also code, for each utterance, which

object in the immediate environment the caregiver is referring to (if any).

The first parts of this chapter describe our corpus, our coding methods, and the

results of our analyses of social cues. Our data suggest that either individually or

taken together, social cues are very noisy. Although they carry information about

caregivers' referents, even a learner who knew which social cues to attend to would

still only be able to guess the speakers' referent correctly a fraction of the time. This

result strongly suggests that learners aggregate information about reference across

time. In the second part of the chapter, we explore one way that learners might

compensate for the noisiness of referential cues: by assuming that reference is con-

tinuous and that what was being talked about is quite likely to be the same as what

was being talked about in the previous utterance. We provide some intuitions about

this assumption of referential continuity and show analyses that suggest that it is

a good assumption to make about child-directed speech. We conclude by using a

classification analysis to investigate how much information about speakers' referen-

tial intentions can jointly be extracted by combining information from social cues



with an assumption of discourse continuity. Taken together, these results provide

support for a view of early word learning as communicative or intentional inference:

the aggregation of information about reference from non-linguistic social cues and

from language in service of inferring word meanings.

2.2 Previous work

2.2.1 Social cues to reference

The general relationship between social cues and language development is well estab-

lished. A large body of work examines the efficacy of social cues for word learning

in restricted experimental situations (e.g. (Carey, 1978; Baldwin, 1993; Woodward,

Markman, & Fitzsimmons, 1994; Hollich, Hirsh-Pasek, & Golinkoff, 2000)), and it is

widely acknowledged that from around their first birthday or before, children can use

explicit, ostensive signals to learn the connection between a word and an object. In

addition, a wide variety of work has attempted to characterize the nature of caregiver-

child interactions and their links to language development (e.g. (Stern, 2002; Bruner,

1975; M. Carpenter, Nagell, Tomasello, Butterworth, & Moore, 1998)). For example,

work by Carpenter, Nagell, and Tomasello (M. Carpenter et al., 1998) investigated

the relationship between markers of joint attention and social cognition, finding that

infants who engaged in more joint attention communicated more, both linguistically

and gesturally.

If we consider longitudinal studies like those of Carpenter et al. to be the equiva-

lent of macro-economics-measurements of the relationships between global variables

in the environment-there has been comparatively little work on the micro-economics

of reference: which particular cues matter to determining reference in an interaction.

One recent computational study is relevant, however. Yu and Ballard (Yu & Smith,

2007) created a model of the unsupervised learning of word-object associations from

child-directed speech annotated with the objects that were present during each utter-

ance. They then used social cues like eye-gaze and prosodic cues like focus as markers



of which objects and which words were more salient; incorporating these cues to at-

tention into their model resulted in gains in word learning performance. This study

suggested that social cues were informative about reference, however it did not quan-

tify this relationship independently from the particular associative learning model

that was used. Our current work builds on this work by investigating the relationship

of individual social cues to the speakers' chosen referent.

2.2.2 Continuity in child-directed speech

Discourse structure has been well-studied in psycholinguistics (P. Carpenter, Miyake,

& Just, 1995; Graesser, Millis, & Zwaan, 1997; Wolf & Gibson, 2006), but the level

of description of discourse primitives has been much more detailed and abstract than

that which would be possible for a child learning the meanings of words. Instead of

describing continuity of topic-an abstract notion which may be hard to pin down for

the concrete, here-and-now interactions between parents and young children-here we

consider a version of "talking about the same topic" that may be more appropriate

to the situation early in language acquisition: talking about the same object. This

approach to discourse, which we call "continuity of reference" is more likely to capture

the kind of information available to even the youngest word learners (who have access

to social markers of reference but might not be able to track continuity linguistically).

For the rest of the paper, we will use the terms "continuity of reference" and "discourse

continuity" interchangeably.

It is widely acknowledged that speech to children is highly repetitive and includes

many partial repetitions of phrases and that these features may be useful to learners

(e.g. (Snow, 1972; Hoff-Ginsberg, 1986, 1990)). Despite this fact, research on word

learning has largely neglected the role of reference continuity as an information source

for learning words. For example, although a number of recent computational models

use cross-situational information about the co-occurrence of words and referents for

word learning, most of these models assume that utterances are sampled indepen-

dently from one another with respect to time, throwing away important information

about the order of utterances (Siskind, 1996; Yu & Ballard, 2007; Frank, Goodman,



& Tenenbaum, 2009).

One counterexample to this generalization comes from work by Roy (Roy & Pent-

land, 2002). Their CELL model searched for speech segments that correlated with

shapes in its visual input. In order to avoid learning spurious associations, they used

a recurrence filter to exclude pairings that were not repeated nearby one another

in the input. Although this strategy was included as a heuristic way of eliminating

the majority of the incoming sensory input (rather than via a model of discourse as

such), it serves the same purpose and effectively illustrates a mechanistic reason why

discourse continuity might be useful in learning.

Slightly further afield, variation sets (Harris, 1951; Kuntay & Slobin, 1996; On-

nis, Waterfall, & Edelman, 2008)-contrasts between temporally-contiguous sentences

with only small changes to their content that may allow learners to make comparisons

easily and extract relevant regularities-are a more specific idea than continuity, but

the two concepts are nonetheless related. In one investigation using artificial lan-

guage materials, Onnis et al. (Onnis et al., 2008) showed evidence that learning

word segmentation from continuous materials and learning a simple artificial gram-

mar were both facilitated by the presence of variation sets in the materials. Work

by Waterfall (Waterfall, 2006) found significant correlations between the use of vari-

ation sets centered around particular constructions by caregivers and the production

of those constructions by children, suggesting that concentrated exposure to a partic-

ular construction in an repeated, semantically-meaningful context can be important

in acquisition.

Thus, although as far as we know there have been no direct investigations of the

role of discourse or reference continuity in word learning, related work on repetition

and variation suggests that discourse continuity is likely both to be present in child-

directed speech and useful in vocabulary acquisition.



Figure 2-2: A sample frame from the FM corpus.

2.3 Corpus Materials

For our analyses, we chose our corpus based on two criteria. First, a potential corpus

needed to include video as well as audio so that we could accurately identify both the

speaker's referents and the other objects present in the physical context. Second, the

corpus needed to be collected in a restricted enough context that it would be possible

to code all of the objects that were present (so we could consider all of the alternative

possible referents for a word).

We selected a corpus which fulfilled these requirements: a set of videos of object-

centered play between English-monolingual, American mothers and children in their

homes, originally reported in (Fernald & Morikawa, 1993). The children in these

videos fell into three age groups: 6 months (N=8, 4 males), 11-14 months (N=8,

5 males), and 18-20 months (N=8, 4 males). All families were Caucasian. The

corpus was collected by a pair of female observers who made visits to the homes of

participants and audio- and video-recorded mother-child dyads as they played. After

an introductory period, sets of standardized toy pairs were introduced, including a

stuffed dog and pig, a wooden car and truck, and a brush and a box. The mother was

given each pair of toys for 3-5 minutes and asked to play "as she normally would."



Towards the end of the session, the experimenter asked the mother to hide several of

the objects and have the child search for them. Although the original study analyzed

only 5 minutes of data from each video (due to the particular aims of the study), we

used the full set of transcripts they produced, which included a considerably larger

amount of interaction in some cases, including a small amount of parenthetical speech

to the experimenter. Descriptive data for each mother-child dyad in the corpus are

given in Table 2.1, including gender, age, length of the recording, and a variety of

measures of the diversity of referents and utterances.



Table 2.1: Descriptive statistics

#

WordGroup Code
6 mos 31

32
33
35
36
38
39
40

12 mos 28
2
3
4
8
12
14
16

18 mos 17
18
26
29
22
19
20
21

Gender
M
F
M
F
F
M
F
M
M
M
M
M
F
F
M
F
F
M
F
M
M
F
F
M

Age
6
6
6
6
6
6
6
6
11
12
12
12
12

13.5
14
14
18
18
18
18
19
20
20
20

Utterances
58
66
155
197
232
189
178
397
457
216
240
327
297
428
184
546
351
276
455
352
451
244
360
382

Video len.
3:01
4:18
8:45
10:04
10:16
12:20
10:26
12:42
25:37
19:01
20:02
27:08
28:29
23:25
17:50
23:14
27:41
14:27
23:50
22:36
22:14
18:17
29:52
24:00

for each file in the FM corpus.
Objects Objects/utt. Word tokens

3 1.17 88
5 1.26 117
5 1.25 190
4 2.00 200
5 1.95 166
4 1.80 224
5 1.60 161
4 2.00 185
10 1.99 255
9 1.66 163
9 1.74 148
9 1.74 244
9 1.45 182
10 1.25 234
9 1.40 195
14 1.99 273
9 1.97 330
12 1.23 193
9 1.70 311
8 3.54 214
10 3.25 223
9 3.06 201
9 2.05 311
9 2.28 285

types/utt.
3.26
3.39
4.26
3.79
3.45
3.72
3.63
3.38
3.70
3.69
3.62
4.07
4.33
3.79
5.11
3.82
5.57
3.72
4.46
3.77
3.49
4.09
4.87
3.69



For each utterance we first coded the mid-sized objects present in the field of view

of the learner at the time of the utterance. A sample frame from the videos is shown

in Figure 2-2. The only object judged to be in the field of view of the child at the time

of the utterance most proximate to this frame was the dog. We also coded, for each

utterance, the object or objects in the context that were being looked at, held, and

pointed to by the mother. These cues were sparse: in many cases, no object was being

looked at, held, or pointed to and so these fields were marked 'none.' This method of

coding was chosen because it was practical for the large amount of video data we were

working with (a total of approximately 7.3 hours of video). One potential downside

of this coding method is that it does not make use of the temporal coordination

between, e.g., eye-gaze and language production (Griffin & Bock, 2000). The use of

eye-tracking during natural interaction is outside of the scope of the current study

and may prove difficult more generally (but c.f. (Merin, Young, Ozonoff, & Rogers,

2007) for an interesting approach to the problem). In addition, a child observing

a caregiver's eyes during natural interaction may be only slightly more accurate in

identifying the object of their eye-gaze than a third-person observer who can watch

the same video clip multiple times.

Though the data arguably are not a part of the same ideal observer analysis, we

also coded two other social cues: the object or objects that were being looked at

or held by the child. We use these data in the followup analyses we report on the

reliability of individual social cues and return to them in the discussion section.

We next coded the speaker's referential intention for each utterance. We opera-

tionalized referential intention as an intention to refer linguistically to an object. We

coded an utterance as referring to an object when the utterance contained the name

of the object or a pronoun or onomatopoeia referring to that object. For example,

in a sentence like "look at the doggie," the referential intention would clearly be to

talk about the dog. Likewise, in an utterance like "look at his eyes and ears," (where

the caregiver was pointing at the dog), the referential intention would also be the

dog-though the coder would need to check the videotape to determine the pronoun

reference. We did not mark the use of property terms like "red," super-/subordinate



terms like "animal" or "poodle," or part terms like "eye." Exclamations like "oh"

were not judged to be referential, even if they were directed at an object. Objects

that were not present were still judged to be part of a referential intention, e.g., "do

you like to read books" would be judged to have the intention book even if the child

could not see a book or a book was not present in the scene at all.

The end product of this coding effort was a corpus of approximately 7k utterances

and 28k words, for which each utterance was annotated with the objects present in

the field of view of the learner, the referential intention(s) of the speaker, and the

social cues given by the mother and child. The text and videos of this corpus are

available at http: //www. stanf ord. edu/~mcf rank/materials.

2.4 Social cues

The goal of the following analyses is to measure the efficacy of physical social cues

given by mothers in revealing what objects they were referring to. We first use

descriptive analyses to understand the basic distribution of social cues across objects

for children in the different age groups. We then examine the timecourse of these

cues.

2.4.1 Signal detection analyses

We first measured the independent reliability of each social cue. To perform this

analysis we examined the transcripts from each video separately. For each of the

three social cues we coded (mother's eye-gaze, hand position, and point) we calculated

three signal-detection measures: hits (e.g., pointing to an object and referring to it in

the same utterance), misses (e.g., not pointing to an object but referring to it), and

false alarms (pointing to an object but not referring to it). These measures assume

that each social cue is a noisy, binary signal, whose general informativeness relative

to the behavior of interest (reference) can be measured within the signal-detection

framework.

From these three measures, we calculated two standard scores for summarizing
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Figure 2-3: Boxplots showing precision and recall for social and discourse cues to
reference provided by each mother in our study. Boxes show median and 25th and
75th percentiles, whiskers show approximately 2.7 standard deviations, and dots show
outliers.

performance. The first was recall (hits / hits + misses) and the second was precision

(hits / hits + false alarms). Intuitively, recall measures the proportion of correct

references for which a particular cue to intention was present, while precision measures

the proportion of the time in which the cue was correct. These two measures can be

combined into FO, their harmonic mean, for easy comparison.

To see how this analysis operates in practice, imagine a corpus that consists of

only two scenarios. In the first, the mother looks at a toy, points to it, and says "you

see this?"; in the second, she looks at the child and picks up the toy, saying "isn't it

nice?" In this example, the toy is being referred to in both utterances (though both

times by pronouns). The mother's point correctly identifies her referent when it was

observed but was not present the second time the mother referred to the toy, giving

it a precision of 1.0 (1/1) but a recall of .5 (1/2), for an F-score of .667. In contrast,

the mother's look identified the toy in the first utterance but failed to identify the
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Figure 2-4: Fo (the harmonic mean of precision and recall) for each of three reference
cues plotted against individual infants' ages. Lines show the best-fitting linear model.

toy in the second utterance, giving it a precision of .5 (1/2) and a recall of .5 (1/2),

for an F-score of .5.

Precision and recall boxplots for each information source are plotted in Figure

2-3. Neither the position of caregivers' eyes (mean precision = .16, mean recall =

.27, mean FO = .20) nor their hands (precision = .39, recall = .30, FO = .32) were

particularly good cues to reference. In contrast, caregivers' pointing gestures were

low recall but high precision (precision = .77, recall = .08, FO = .15). Points were

relatively few and far between, even in the kind of context that would be most open

to ostenstive word teaching. But when they were present, points were very reliable

cues that a particular object was being talked about.2

Figure 2-4 shows the relationship of the child's age to the relative reliability of

information from the caregiver, plotting Fo by the age of individual infants. The

2Note that although pointing is more precise than other cues, mothers still point in ways that
selects objects other than those that are being named, e.g. "by the pumpkin! look, look!" (pointing
at a flashlight that was lost).
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reliability of caregivers' hands decreased significantly with age (r2 = .17, p = .05),

while the reliability of pointing and eye-gaze both tended to be higher for the mothers

of older children (r2 = .15, p = .07 and r 2 = .11, p = .12). These data suggest that

caregivers may trade off particular cues to reference: when children are old enough

to hold objects on their own reliably, caregivers are somewhat more likely to look at

objects rather than their child and to indicate their referential intention with a point.

What do caregivers look at and hold, if they are not looking at or holding the item

they are talking about? By and large mothers look at their children. Mothers in each

of the three groups (6, 12, and 18mos) were coded as looking at their children 79%,

67%, and 61% of the time, respectively. Even for the oldest group, mothers looked

at children the majority of the time, but this behavior did decrease significantly as

children got older (r2 = .27, p < .01). The contents of caregivers' hands also changed

considerably across ages (r 2 = .59, p < .0001). Caregivers of the youngest children



were generally holding something, while more than half the time (55%), the caregivers

of the oldest children were not holding anything. Both of these trends are plotted in

Figure 2-5.

Finally, in order to understand the relatively small amount of information con-

veyed by the caregivers' hands, we used the same signal-detection analyses to examine

the informativeness of the child's eyes and hands in revealing what the speaker was

talking about. Both of those markers of the child's attention had higher precision

and recall than the equivalent cue for the mother (these information sources are also

plotted in Figure 2-3); the position of the child's eyes was especially revealing (preci-

sion = .55, recall = .42, F = .47) but the hands were also a good cue (precision =

.35, recall = .36, F = .34). Neither of these cues was modulated by age (r 2 = .01 for

the child's eyes and r2 = .04 for the child's hands).

Taken together, these analyses suggest that no individual social cue was consistent

in revealing caregivers' intentions. Overall, a child attempting to figure out what her

mother was talking about would do best to focus on what she herself was holding

or looking at, rather than trying to interpret the same information from her mother.

Only in the relatively rare cases when caregivers pointed were their actions highly

informative about their referent.

2.4.2 Timecourse analyses

The goal of these analyses was to explore temporal dynamics in the use of particular

social cues. In particular, we were interested in whether some cues were used more

often at the beginning of talking about objects. For instance, one simple hypothesis

might be that caregivers use points to introduce objects into the discourse.

In order to test this question, we performed an analysis of the probability of using

each social cue over time. We performed the analysis as follows: we defined a "bout"

of references to a particular object to be at least three continuous references to an

object (results did not change significantly when we explored other reasonable values

for this number). Next, for each age group we aggregated all bouts of talking about

any object. We aligned each of these bouts so that they were numbered starting from
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best linear fit to these data are shown with a dashed line. Significant linear trends
are shown with a star. Each row of plots shows an age group and each column of
plots shows a particular social cue.

their first utterance and averaged the probability of each social cue for the object

that was being referred to. There were 89, 215, and 223 such bouts for the 6-, 12-,

and 18-month-olds, respectively. Since relatively few bouts lasted longer than 5 or 10

utterances, data were too sparse to calculate social cue probabilities accurately for

longer bouts. Therefore, we excluded bout lengths for which we had fewer than 20

bouts. Results are plotted in Figure 2-6, where each axis shows, for a particular cue

and age group, the probability of observing that cue at each point during a bout.

For each cue and age group we performed a simple linear regression. We found that

the probability of use for all cues stayed constant or decreased; no cues significantly

increased in frequency as a function of time as bouts continued. The probability of the

mother's eyes being on the object stayed relatively constant for all age groups except

18-month-olds, for whom it decreased slightly over time. The same result held true for

the mother's hands. Though the base rate of the mother pointing to the object was

low to begin with, the probability of a point decreased considerably for both the 6- and

12-month-olds as an object was talked about more. Interestingly, that generalization

did not hold for the 18-month-olds, at least in part because some mothers were using



points to pick out subordinate features of the objects. The probability of the child

looking at the object also decreased as the object was talked about more, perhaps

due to the increasing speed with which older children habituate (Hunter & Ames,

1988); this trend was significant for the two older age groups but trended in the same

direction for the younger children. Finally, the probability of the child's hands being

on the object that was being talked about stayed relatively constant.

This analysis suggests that the utilities of individual social cues often tend to

decrease over the course of an episode of talking about a particular object. Because

of this, identifying which object is being talked about may be easier to do early on

after it has been introduced. Thus, this section identified two challenges for learners

attempting to determine a caregiver's referent: first, that individual social actions do

not always transparently signal reference, and second, that signals of reference tend

to become sparser as an object has been talked about for longer. Our next set of

analyses examine whether aggregating information over time may allow learners to

overcome these issues.

2.5 Continuity information

Our next goal was to quantify the continuity of reference-the tendency of caregivers

to talk about a single object for multiple utterances in a row-and to test whether it

could be a source of information for predicting what objects were being referred to.

We first develop a visualization of reference in child-directed speech. We next show

some descriptive results about the magnitude and temporal dynamics of reference

continuity. We end by comparing reference continuity to the social cues examined

above using the same signal detection analyses.

2.5.1 Visualizing continuity of reference

The first step we took towards understanding the prevalence of discourse continuity

was to visualize the results of coding the speakers' referential intention. We introduce

what we call a "Gleitman plot": a visualization of a stretch of discourse based on
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Figure 2-7: Example Gleitman plot. Each row represents an object, each column
represents an utterance. A blue mark denotes that the object was present when the
utterance was uttered but not mentioned; a green mark denotes that the object was
mentioned but not present; and a red mark denotes that the object was present and
mentioned. The streaks of red indicate bouts of continuous utterances referring to a
particular object.

(1) what objects are present and (2) what objects are being referred to. Gleitman

(Gleitman, 1990) was concerned with the relationship between what is present in a

learner's experience and what is being talked about, hypothesizing that words like

verbs that are often used when their referents are not clearly picked out in the physical

context (and sometimes when their referents are not even present). Our visualiza-

tion attempts to make the relationship between reference and the physical context

transparent; a sample Gleitman plot for one file in our corpus is shown in Figure 2-7.

We can draw two anecdotal conclusions on the basis of viewing the Gleitman

plots for each file in the corpus. First, within the corpora we studied, mothers talk

primarily about objects that are present in the field of view of the children. This can

be seen by examining the small amount of green within the plots. The largest bout

of green is in the range around utterances 155 - 180, when the mother is playing

a hiding game with several of the toys. Unsurprisingly, for a word learner guessing

the meaning of a novel noun, the best guess will likely be that the word refers to an

object that is present (Pinker, 1989; Yu & Smith, 2007; Siskind, 1996). (Although

this generalization may be true for nouns, it is much less likely to be true for verbs,

as Gleitman (Gleitman, 1990) pointed out).

Second, we can see clear evidence of discourse continuity (again, defined as conti-

nuity of reference). For example, in Figure 2-7, rather than being distributed evenly

throughout the span of time when an object is present, references to an object are

.FA 1 11 J"Ma
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Figure 2-8: Probability of reference continuity for each child is shown with an "x"
Each point on the horizontal axis shows a child (in age order). Squares with with
error bars shows 95% confidence intervals for a permuted baseline.

"clumpy": they cluster together in bouts of reference to a single object followed by

a switch to a different object. This can be seen for example in the dog / pig por-

tion (first 45 utterances), where the mother alternates several times between the two

objects, talking about each for several utterances before switching.

2.5.2 Measuring reference continuity

In our visualizations, we observed clumps of references to a particular object rather

than a more uniform distribution of references over time. To quantify this trend,

we first defined a quantitative measure of reference continuity, PRC: the probability

of referring to a particular object, given that it was talked about in the previous

utterance.

We go into some detail about how this measure was calculated in order to be

clear about how we calculated our baseline measure, since an appropriate baseline



is crucial for determining whether PRc is greater than chance. For an object o, we

defined the reference function Rt(o) as a boolean function returning whether or not

that object was referred to at time t. We then defined PRC(o) (the probability of

reference continuity for a particular object):

S Rt(o)Rt_1 (o)

PRC(o) = t R(o) (2.1)

t

We calculated PRc(o) for each object for the times when it was present in the phys-

ical context. We then took an average of PRC(o) over all objects, weighted by the

frequency of each object, to produce an average value for each file.

We then estimated a baseline value for PRc via permutation analysis. Intuitively,

this analysis asks what a "chance" value for PRc would be if utterances were com-

pletely independent of one another. This analysis is important because the distribu-

tion of individual objects is very uneven in time and some objects are more likely to

be talked about than others.

We calculated this baseline value for each corpus file by recomputing PRc(o) for

1000 random permutations of the times at which each object was talked about.3 For

the Gleitman plots in Figure 2-7, this analysis would be represented by randomly

shuffling all the red and blue squares in each row so that the same overall set of

squares were red and blue but their ordering was different.

The results of this analysis are shown in Figure 2-8: the value of PRc for each child

is plotted along with the permutation baseline for that child. As predicted based on

the Gleitman plots, PRc was outside of the 95% confidence interval on chance for all

but 4 of the 24 files. A simple linear regression showed no relationship between PRc

and age (r 2 = 0.061, p = .25). Thus, it appears that reference is considerably more

continuous than would be expected by chance in child-directed play situations of the

type in our corpus: repeated reference was on average 1.85 times as likely as expected
3 Excluding utterances during which an object was not present was important in calculating an

accurate baseline; had we permuted all utterances, we would have artificially deflated the baseline
by spreading references to o across the entire file even when o was not present.
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Figure 2-9: (top) Probability of reference given that an object was referred to N
utterances ago, where n is plotted on the x axis. Dots show individual data points

(jittered to avoid overplotting). Datapoints represent individual dyads. (bottom)
Probability of reference given that an object is present and has been referred to m

times over the course of the interaction. Datapoints have been aggregated across

caregivers. For both plots, the red and green lines show the best two-parameter
exponential and power-law fit, respectively.

by chance. In the absence of other information about what was being talked about in

a particular situation, a good bet would be that moms in our corpus were still talking

about the same thing they were a moment ago.

2.5.3 Temporal properties of reference

We next examined two temporal properties of discourse. The first is how recently an

object has been talked about. This property can be thought of as a generalization

of the analysis above; the new analysis asks about the probability of an object being

talked about given that it was referred to some number of utterances ago. The second

is the novelty of an object in context, here represented by how many times an object



that is present in the context has been mentioned previously.

We conducted the first analysis simply by calculating a generalization of PRC for

each child-caregiver dyad. This new measure, P4C, gives the probability of an object

being referred to, given that it was referred to n utterances ago. Thus, PRC is the

same as PRc, and we calculate it via an aggregation across objects, as before:

SRt ( o) Rt _, (o)

Pic() Ro)(2.2)
PRCM ERt (o)

t

The result of this analysis are plotted in Figure 2-9, top. It is clear from this

visualization first that very recent utterances are disproportionately correlated with

the probability of referring again-this observation is captured by the previous anal-

ysis of discourse continuity. The influence of a particular object in discourse declines

slowly, however, and even 50 sentences later there is some residual increase in the

probability of talking about a particular object, given that it was talked about.

We attempted to quantify this pattern by fitting two functions to the resulting

data, an exponential and a power-law. Both functions were fit by adjusting two

parameters (intercept and decay) in order to minimize mean squared error. We

found that the power-law (MSE = 1.11) fit considerably better than the exponential

function (MSE = 1.66). This dynamic may be due to the more general phenomenon

of power-law decays in human memory (Anderson & Schooler, 1990).

An object's novelty, both in the context and to a particular speaker, provides an

additional factor governing how likely that speaker is to refer to an object. Intuitively,

an object that is newly introduced to the context of the learner or a particular speaker

is more likely to be talked about, and some empirical evidence suggests that children

may be able to make use of this information to learn new words. (Akhtar, Carpenter,

& Tomasello, 1996) found that two-year-olds were able to use the fact that an object

was new to the experimenter (even though the children themselves had already played

with it) to infer that the object was the experimenter's intended referent and hence

was named by the novel word the experimenter produced.



To quantify the effects of discourse novelty on the probability of talking about an

object, we calculated the probability that an object was being talked about (given

that it was present) for the number of utterances for which the object had been

present. We aggregated information as in the previous section (first across objects,

then across dyads). The results are plotted in Figure 2-9, bottom. In contrast to the

previous analysis, the resulting curve took longer to decay but had an overall lower

intercept and was better-described by an exponential function (MSE = 3.16) than

a power-law (MSE = 4.27), capturing the relatively steep drop-off in references to

individual objects after they had been in play for a while. 4 The curve was so shallow,

in fact, that it was fit almost as well by a linear function (MSE = 3.17); however,

extrapolating out to 200 sentences we found that the exponential fit better (MSE

5.44) than the linear function (MSE = 7.24).

2.5.4 Signal detection analysis

We conducted the same analysis for discourse continuity as cue to reference as we did

for each social cue, analyzing the precision, recall, and Fo of guessing that a particu-

lar utterance will refer to the same object that the utterance before did. Results are

plotted alongside social cues in Figure 2-3, since the measures of evaluation are iden-

tical. We found that discourse continuity had the highest average Fo-score of any cue

(precision = .57, recall = .54, FO = .55) and was not correlated with age (r 2 = 0.00,

p = .92). In other words, a learner with perfect information about previous referents

would do better guessing the current reference based on continuity than based on any

individual social cue.
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Figure 2-10: Classifier performance on those utterances for which there was an in-

tention to refer to an object plotted by cues used in classification. Error bars show

standard error of the mean across all children. "mot" = mother's social cues, "chi"

= child's social cues, and "disc" = discourse cues.

2.6 Joint classification analysis

The goal of our last analysis was to measure how well an observer could guess which

object a speaker was talking about, given the information available in the social and

discourse cues just discussed. The idea behind this analysis is to use a supervised

classification scheme to provide some measure of the total information available in

these cues.

In order to carry out our classification analysis, we used a Naive Bayes classifier

(Hastie, Tibshirani, & Friedman, 2001) to combine each of the cues in order to make a

judgment about what object was being talked about. We chose this classifier because

4 This second result deserves a caveat since the loose structure of the instructions to mothers

participating in the original (Fernald & Morikawa, 1993) study involved playing with several different

pairs of objects. Thus, a larger and more diverse sample of corpus material will be needed to test

the generality of this function.
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it has the advantage of being simple and computationally efficient; unlike logistic

regression it can classify datapoints across an arbitrary number of alternatives. Naive

Bayes makes the assumption that individual predictors are independent from one

another; the simplicity of the approach allows us to measure when this assumption is

violated by our data, however.

The classifier's task was to choose which of the m objects was being talked about

in each utterance, based on weighted evidence from each of the cues C. We used a

standard Naive Bayes formulation:

P(Om|C1, ... , Cn) p(Om) 7p(Ci IOm) (2.3)

where Om denotes the object being talked about in a particular utterance (or "none"),

Ci denotes a particular cue, and Z is a constant scaling factor. The Naive Bayes

classifier decomposes the posterior probability of an object into two terms: a prior

and a likelihood. The term p(Om) is the prior, denoting the baseline probability

(frequency) of a particular object being referred to; the term p(Ci I Om) is the likelihood

of the cue given that the object is being talked about.

Because each caregiver/child dyad was given a separate set of objects (and also

to ensure the generality of our results), we constructed a separate classifier for each

dyad. The classifiers were evaluated using a tenfold cross-validation scheme in order

to ensure that results were not due to overfitting. Results reported here are averaged

across all ten test sets.5

Figure 2-10 shows the results of this analysis. The baseline probability of reference

to an object (calculated as the proportion of utterances with a coded intention that

was not "none") was relatively low in all three groups (6-month-olds, .41; 12-month-

olds, .61; 18-month-olds, .52). We therefore report classification performance only for

those sentences which had a referential intention. We evaluate classifiers created by

fully crossing three sources of information: social cues exhibited by the mother-eyes,

hands, and pointing; markers of the child's attention-the child's eyes and hands; and

5We experimented with a simple logistic regression classifier as well as regression-classification

trees and found highly similar results for both alternative techniques.



discourse cues. All classifiers included baseline information about which objects were

present in the field of view of the child.

We next constructed a regression model to understand the contributions of the

different factors to classification accuracy. Classification accuracies were roughly nor-

mal in their distribution, so we constructed a multi-level linear model (Gelman &

Hill, 2006). The form of this model included a separate intercept for each subject

and age group as well as group-level effects of mother social cues, child social cues,

and discourse information and their interactions. We then evaluated statistical sig-

nificance using posterior simulation via Markov-chain Monte Carlo (Baayen, 2008).

Coefficient estimates and significance are given in Table 2.2. Since each predictor is

binary, coefficient weights are directly comparable.

We found highly significant and similar main effects of each of the three informa-

tion sources, indicating that each one was effective for classification. We also found

significant negative interactions between both mother and child predictors and child

and discourse predictors. These two interactions both had approximately half the

magnitude of the main effects, indicating that there was likely overlapping informa-

tion about reference between the different sets of cues (hence the gain from having

both was less than the gain expected from one plus the gain expected from the other).

In the case of the mother/child social cue interaction, it seems likely that this overlap

is due to cases of joint attention in which both participants are directly focused on a

single object. The interaction between the child's social cues and discourse markers is

less clear but may suggest that children's attention is "sticky," staying on the current

focus of conversation and switching more gradually than the mother's reference.

Coefficients for age (a subject-level predictor in this model) were # = .15 for 6-

month-olds, # = .27 for 12-month-olds, and / = .09 for 18-month-olds, indicating a

slightly U-shaped trend in classification accuracy. We believe that this trend likely

reflects the proportion of referential utterances (and hence the amount of data avail-

able to the classifier) as well as the diversity of the object set (which was greater for

the older groups).

Summarizing this analysis, social cues and discourse together represent overlap-



Table 2.2: Coefficient estimates and significance for regression model predicting clas-

sifier accuracy on the basis of social and discourse information.
Predictor Coefficient 95% CI p-value

mot 0.22 0.17 - 0.27 < 0.001

chi 0.25 0.20 - 0.30 < 0.001

disc 0.19 0.14 -0.24 < 0.001
mot:chi -0.12 -0.19 - -0.05 < 0.001

mot:disc -0.02 -0.09 - 0.06 0.89

chi:disc -0.11 -0.19 - -0.04 < 0.001
mot:chi:disc -0.02 -0.11 -0.09 0.33

ping sources of information for determining what is being talked about. Taken to-

gether, these information sources allow for making surprisingly good guesses about

the topic of an utterance without any additional linguistic information.

2.7 General Discussion

We began by asking whether social signals clearly indicated reference. We introduced

a corpus of videos of child-directed speech across a range of ages, which we annotated

with information about the objects visible to the child, the speakers' referential inten-

tions, and the various social interactions of the child and caregiver with the objects.

We found that, with the exception of pointing, social cues like eye-gaze and hand po-

sition were at best noisy indicators of referential intention, and that no individual cue

revealed the speaker's referent more than a small portion of the time. In contrast,

discourse continuity (assuming that the speaker was talking about the same thing

as in their previous utterance)-when available-provided more reliable information

about what was being talked about. A final set of simulations with a supervised

classifier suggested that, despite their overlap, aggregating information across these

information sources together provided the best estimate of referential intentions.

The current study is motivated by and provides support for the project of mod-

eling early word learning as a process of statistical inference about speakers' refer-

ential intentions (Frank, Goodman, & Tenenbaum, 2009). Since no individual cue



would consistently allow an observer of our corpus to infer what the speaker was

talking about, an efficient learner would combine social information sources and ag-

gregate this information over time using discourse cues. It remains an open question

whether children conform to this normative prediction, but our results suggest that

this strategy would be considerably more efficient than considering cues or utterances

independently.

The current study has a number of limitations in both the scope of the dataset

and the coding scheme. We address these in turn. First, our dataset was collected

in a single type of experimental situation, in which infants and caregivers interacted

over pairs of objects that were exchanged after short periods of time. This specificity

may limit the strength of the generalizations that we can make from our analysis.

Nevertheless, our measurements take a first step towards establishing norms which

can be compared to measurements in more naturalistic studies.

Second, in order to make the coding task tractable across the relatively large cor-

pus we used, it was important to break down the data at a relatively coarse temporal

granularity. As a consequence, although we attempted to capture any look made to

an object, our coding necessarily neglected some of the quick temporal dynamics of

caregivers' and children's eye-movements. We hope that future work will use techni-

cal advances such as head cameras and eye-tracking to make more direct estimates of

children's visual environment and the availability of social information from observed

eye-gaze (R. Aslin, 2009; Yoshida & Smith, 2008).

Third, we have spoken throughout our analyses as though complex physical ges-

tures can be individuated into discrete "cues" which can easily be associated with a

particular utterance. Again, this approximation will almost certainly miss nuances

of gestural communication (for example, anecdotally, caregivers in our sample often

moved the object they were holding and talking about more than one that they were

not talking about), but this approximation was necessary to code the volume of data

reported here. Technical advances such as motion capture or motion recognition

from computer vision may provide some traction on these questions (L. Smith, Yu,

& Pereira, in press).



Finally, we have equated an eye-movement by the caregiver (which may or may

not be visible to the child) with an eye-movement by the child (which controls what

is visible to him or her). From the perspective of the child, this equivalence is not

valid: the child's own eye-movements control what is being looked at, while the

adult's eye-movements constitute an ephemeral signal to another person's attention.

Nevertheless, in order to understand the relative validity of the child's own attention

compared with external social information, we believe it is important to include these

cues on the same footing as caregiver's cues.

An interesting possibility raised by our data is that the relative informativeness

of what the child looks at and touches with respect to what the caregiver is talking

about could provide support for the belief that words refer to the child's own inter-

ests rather than signaling the speaker's referential intentions (an egocentric theory

of reference) (Baron-Cohen, Baldwin, & Crowson, 1997; Hollich et al., 2000). On

this kind of account, a gradual shift from egocentric beliefs to speaker-centric beliefs

might be due to gradual changes in the data that children receive, such that only

over time do they disentangle their own attention from the following-in behavior of

their caregiver. This disentangling would be neither purely a consequence of internal

changes in the child nor external changes in caregiver input. Instead, the shift would

be due to a gradual change in the style of interaction between the two. While younger,

more passive infants often find their attention more closely aligned with that of their

caregiver-due at last in part to the following-in behavior we observed-more mobile,

more independent toddlers are likely to dissociate their own attention from that of

the caregiver more frequently, in turn creating the data that they need in order to

support a shift from egocentric to speaker-centric. One important prediction of this

account is that, since there is significant variation with culture and socioeconomic

status in the amount and kind of input that children receive from caregivers (Ochs,

1988; Huttenlocher, Haight, Bryk, Seltzer, & Lyons, 1991; Hart & Risley, 1995; Hur-

tado, Marchman, & Fernald, 2008), this variation should affect children's perspective

towards reference (as well as their vocabulary acquisition).

We believe that the results reported here constitute an important first step in



quantifying the relative contributions of social and discourse information to the de-

termination of reference. An account of the factors underlying the determination

of reference will be crucial in understanding the emergence of communicative lan-

guage. Understanding how children know what is being talked about is crucial to

understanding how children learn the meanings of words.



Chapter 3

Learning words by assuming that

speakers are informativel

Communicators do not always use language to code facts about the world directly.

Instead, speakers and listeners rely on shared assumptions to allow them to commu-

nicate more efficiently than if every assumption were made explicit. If word learners

take these implicit, shared assumptions into account, they should be able to make bet-

ter guesses about what words mean than if they simply assume that language codes

true facts about the world. In this chapter, we formalize the Gricean assumption

that speakers choose their words in order to be informative about a target meaning,

given some referential context. We show that this assumption leads to a derivation of

the size principle-a statistical principle that, when applied to the current situation,

implies that descriptions should be maximally unique relative to the context. Exper-

iments with adults and children demonstrate that the word learning inferences are

well fit by the assumption of informative communication. This work takes a first step

towards formalizing the pragmatic assumptions necessary for effective communication

in under-constrained, real-world situations.

A schematic of the inference investigated in this chapter is represented in Figure

'Joint work with Noah D. Goodman, Avril Kenney, and Joshua B. Tenenbaum. Parts of this

chapter were published as Prank, M.C., Goodman, N. D., Lai, P., and Tenenbaum, J. B. (2009).

Informative communication in word production and word learning. Proceedings of the 31st Annual

Meeting of the Cognitive Science Society.



Figure 3-1: A graphical model showing the dependency relationships captured by the
Informative Communication model in Chapter 3.

3-1: all the components are present-lexicon L, context C, communicative intention

I, words W, and social cues S-but inferences are made over only a single set of

observations, rather than being repeated over time. Chapter 4 gives a special case of

this framework that can aggregate information about word meanings across multiple

observations.

3.1 Introduction

Imagine you are meeting with an interior decorator to decide on the details of a

renovation. He pulls out several swatches of carpet which differ only in their texture.

You indicate that you like one of them, and he says "oh, yes, that one is daxy." It

seems instantly apparent that the novel word "daxy" refers to the specific texture of

that particular swatch of carpet. A priori, "daxy" could have referred to any other

aspect as well (including its size, color, or shape). But the only feature that would

have been informative or useful for the decorator to name-given the contrast with

the other swatches-was the carpet's texture.

In order to explain inferences of this type, philosophers and linguistics have sug-

gested that language relies on shared assumptions about the nature of the commu-



nicative task. Grice (Grice, 1975) proposed that speakers follow (and are assumed by

comprehenders to follow) a set of conversational maxims. In turn, if listeners assume

that speakers are acting in accordance with these maxims, that gives them extra in-

formation to make inferences about speakers' intended meanings. For instance, we

assume in this example that the decorator is following the Maxim of Quantity-"Be

informative"-and therefore is using a descriptive adjective that appropriately picks

the particular swatch out from its context. This adjective must then describe the

carpet's texture, so we are justified in assuming that is the meaning of "daxy."

Other theories of communication also provide related tools for explaining this type

of inference. For example, Sperber and Wilson (Sperber & Wilson, 1986) have sug-

gested that there is a shared "Principle of Relevance" which underlies communication.

On their account, the key part of this interaction is the shared knowledge between

decorator and client that texture is the most relevant feature of the context; otherwise

the inference is largely the same. In what follows we use the original Gricean language

because it is simplest and best known, but our ideas do not depend specifically on

Grice's formulation.

Positing shared assumptions between communicators allows for stronger inferences

than are possible from pure physical causality. If our carpet sample (but not the

others) had been exposed to sunlight and we observed that it had changed color, we

would not be justified in concluding that this happened because of its texture unless

others had also been exposed but had not changed. Although being called "daxy" and

changing color are equivalent in some sense-both involve an event happening to one

item in a set and not the others-the inferences licensed by a communicator choosing

to say a particular word (and not others) are much stronger than those licensed by a

physical event happening to it by chance without any rational agent causing it.

Could children be making the same kinds of inferences when they are learning

the meanings of words as we made in learning the meaning of "daxy"? If so, this

sort of inference is one tool by which children could eliminate some of the referential

uncertainty inherent in learning a new word, whether the word is a property term

or the name for an action or object (Quine, 1960; Gleitman, 1990). Many general



theories of language acquisition assume that children bring some knowledge of the

pragmatics of human communication to bear on the task of word learning (Bloom,

2002; E. Clark, 2003; Tomasello, 2003), but evidence on children's use of Gricean

maxims is mixed.

Most accounts suggest that children younger than around five years have difficulty

reasoning about the beliefs, knowledge, and perspective of others in communicative

contexts (Glucksberg, Krauss, & Weisberg, 1966), though after this age they appear

to be able to do so (Nadig & Sedivy, 2002). Gricean reasoning also has not been

observed for children younger than four years, and only inconsistently before the age

of six. For example, Conti and Camras (Conti & Camras, 1984) tested children on

whether they could identify a maxim-violating ending to a story, and found that

while four-year-olds could not do so, six- and eight-year-olds were able to succeed

in this task. However, recent evidence from Eskritt et al. (Eskritt, Whalen, &

Lee, 2008) showed that 4-year-olds could choose a puppet who followed the Maxim

of Quantity over one who did not but 3-year-olds were not able to. In the same

vein, children do not seem to be able to compute scalar implicatures (one possible

example of a Gricean implicature, though cf. (Chierchia, Crain, Guasti, Gualmini,

& Meroni, 2001; Gualmini, Crain, Meroni, Chierchia, & Guasti, 2001; Guasti et al.,

2005)) until quite late (Noveck, 2001), although accounts differ on the age at which

they first succeed (Papafragou & Musolino, 2003; Guasti et al., 2005). Thus, evidence

largely suggests that children younger than four-who are likely to need sophisticated

pragmatic inferences to infer word meanings-are the ones who are least able to make

them.

Although evidence about sophisticated Gricean reasoning is mixed, infants still

show impressive pragmatic abilities in the service of word learning. To take several

influential examples, Akhtar and Tomasello (Akhtar et al., 1996) showed that two-

year-olds could use the fact that an object was new to an experimenter to infer the

meaning of a novel word that experimenter used. Baldwin (Baldwin, 1993) found

that 18-month-olds were able to map a novel word to a referent that was hidden

but signaled by the caregiver's attention to its location. In the most surprising re-



cent demonstration of such abilities, Southgate, Chevallier, and Csibra (Southgate,

Chevallier, & Csibra, 2010) showed that 17-month-olds were able to use knowledge

about a speaker's false belief to map a novel name to an object, based on the speakers'

naming of the location where she thought it was, not the location where it actually

was.

In addition, recent evidence suggests that infants and young children have so-

phisticated statistical and inferential abilities at their disposal. These abilities are

manifest in both word segmentation (Saffran, Aslin, & Newport, 1996; R. N. Aslin et

al., 1998) (often referred to as "statistical learning") and word learning (Xu & Tenen-

baum, 2007b, 2007a; L. Smith & Yu, 2008), as well as in more general reasoning

about the world (Xu & Garcia, 2008; Xu & Denison, 2009). In one example of this

kind of statistical inference, Xu and Tenenbaum (Xu & Tenenbaum, 2007b) showed

that three- and four-year-old children were able to use the "suspicious coincidence"

of seeing several examples of a word that were all from the same subordinate-level

of a category (e.g. three Dalmatians) to infer that the novel word referred not just

to dogs but to Dalmatians in particular. They argued that a Bayesian formulation

of this idea of a coincidence would allow learners to choose the appropriate level

of categorization for a new word with only a few positive examples. The particular

mechanism for this inference was strong sampling (Tenenbaum & Griffiths, 2001): the

idea that examples of a particular category are drawn at random from the members

of that category. The assumption of strong sampling led to the size principle, that

the probability of a particular example given a category was inversely proportional to

the generality (size) of that category. In other words, although seeing three Dalma-

tians as examples of a word "dax" would be logically consistent with the hypothesis

that "dax" picked out all dogs, those three examples would be far more likely if the

category were Dalmatians.

Returning to the example we began with, it is still unknown whether young word

learners are able to use the pragmatics of a particular context to learn the meanings

of words, inferring for example that "daxy" refers to a texture because of the contrast

between the texture of the named object and that of other objects. The goal of this



chapter is to investigate this question. We do so by introducing a computational

framework that describes this inferential situation in terms of Gricean inferences

about the speakers' intentions. Though this framework could be applied to a number

of situations in language production and comprehension, we introduce it in the context

of word learning. The key assumption of our framework is that both listeners and

speakers assume that communications are informative given the context.

Although the basis of our framework is general, making predictions within it

requires a model of the space of possible meanings and how they map to natural

language expressions. Thus, in order to make a first test of our framework, we study

simple games that are similar to the "language games" proposed by Wittgenstein

(Wittgenstein, 1953). In the games we study, the shared task of communicators is to

identify an object from a set using one or a few words. This very restricted task allows

us to define the possible meanings that communicators entertain, in turn allowing us

to define an intuitive mapping between words and meanings: that a word stands for

the subset of the context it picks out (its extension). Although these simplifications

bring our tasks further away from natural language use, they also allow us to derive

strong quantitative predictions from our framework.

We first show how, in these simple language games, our framework derives the

size principle (Xu & Tenenbaum, 2007b; Tenenbaum & Griffiths, 2001). Then in

Experiment 1, we test whether adults make inferences that are quantitatively con-

gruent with the size principle when they are presented with contextual word-learning

inferences like the interior-decorator example above. In Experiment 2, we show that

three-year-olds also succeed in making such inferences in a version of the same task.

3.2 Modeling Informative Communication

Consider the context in Figure 3-2, representing the context in a language game.

Imagine an English speaker in this game who is told to use a single word to point

out the polka-dot square. Intuitively, she is likely to refer to the polka-dots since it

would not be clear which object she was talking about if she talked about the shape



**

Figure 3-2: An example context: a polka-dot square, a striped square, and two striped
circles. The dotted line shows the object the speaker intends to talk about.

of the object. Working from this intuition, a language learner-who knew that the

speaker was pointing out the polka-dot square (perhaps because of some non-linguistic

marker of intention, like a point or an eye-movement)--could make a very informed

guess about the meaning of a novel word that she used to refer to that object. (This

example is exactly parallel to the interior decorator example with which we began).

The intuition that a speaker would be likely to use the descriptor "polka-dot" to

talk about the polka-dot square can be stated in terms of the assumption that speakers

are choosing their words to best inform listeners of their intentions. If speakers did

not try to communicate informatively, they would not necessarily choose labels that

distinguished their intended referent from other possible objects. For example, in our

game, an uninformative speaker-who nevertheless still respected the truth conditions

of the language-might just as well have chosen to talk about the shape of the object

as its pattern; correspondingly, a learner who did not assume an informative speaker

would not be able to infer what the word they used meant.

We formalize these intuitions through an inferential model of language within

this restricted world. We model the speaker as selecting speech acts in order to be

informative, and derive predictions both for speakers and for learners who assume

this about speakers. 2

We assume that there is a fixed context C, consisting of some set of objects oi...om.

Both the speaker's intended meaning and the learner's guess about the speaker's

intended meaning are probability distributions over C-that is, a meaning assigns

a probability to each object in C. In the context of the simple language games
2One case which we do not treat here is the case of a teacher who is searching for the best

example of a word to show a learner. This case is discussed in detail in (Shafto & Goodman, 2008),
and we believe the current framework is compatible with their analysis.



we explored in Experiments 1 and 2, meanings simply carry information about which

object in the physical context is the intended referent; however, the setup of the model

does not change in the case that the context is non-physical (e.g., a set of possible

propositions that could be communicated by the speaker). For us, intended meanings

will be delta distributions picking out the speaker's intended referent precisely, but

the same model will naturally handle vague intended meanings (which might arise,

for instance, from incomplete knowledge).

We then assume there is a vocabulary V {wi, ..., w,} that is known to the

speaker. Each word in V is a Boolean function over objects, indicating whether the

word applies to that object. Thus the extension of word w in context C is the set

of objects {o e Clw(o) = 1} that the word applies to. We denote by |w| the size of

a word's extension. We define the extensional meaning of w in context C to be the

distribution: { ~Lif w (o) 1
,&C (0) = (3.1)

0 otherwise

In this framework, a word is a function that can be applied to the objects in the

context; a word's extension is the subset of objects in the context for which the

function returns true.

3.2.1 Rational speaker

We assume that speakers act rationally according to Bayesian decision theory by

choosing a word to (soft-)maximize their utility:

P(wIMs, C) oc eau(w;Ms,c) (3.2)

where Ms is their intended meaning and U is a utility function. For the purpose of

the present games, we assume that only a single word is uttered; however, this frame-

work can be modified to evaluate conjunctions of words as well. The decision noise

parameter a measures the speaker's deviation from optimal. For all computations in



the current chapter we set a = 1, which recovers the standard Luce choice rule (Luce,

1963).

The speaker's goal is to choose the word which is most informative about Ms. The

Kullback-Leibler divergence between two distributions X and Y, written DKL(XI Y),

is the expected amount of information about X that is not contained in Y (Cover

& Thomas, 2006). We formalize the goal of "informativeness" by assuming that the

speaker's utility increases as the KL divergence between Ms and the literal meaning

of the chosen word decreases:

U(w; Ms, C) = --DKL (Ms| I ic) + F (3.3)

where F represents other factors (such as utterance complexity) which affect the

speaker's utility. For all simulations in the current paper, we set F = 0.

Combining Equations 3.2 and 3.3 and dropping F and a, we have

e-DKL(MsIIc)
P(wIMs, C) =I(3.4)

w EV

which simplifies greatly in the language games we treat here. The speaker's intended

meaning is a single object os (the value of Ms is 1 for os, 0 for all other objects).

Thus:

DKL(MsI|Izc) =MoM(0 l (o)
OcC wc o (3.5)

= -log(i c(os)).

Substituting Equation 3.5 into Equation 3.4 gives:

P(wIMs, C) = . (3.6)
c zT (os)

w'EV



By Equation 3.1:

P(wIMs, C) oc i 1 (3.7)
0 otherwise.

Thus, given the set of simplifying assumptions we have made, the very abstract goal

of "being informative" reduces to a simple formulation: choose words which pick

out relatively smaller sections of the context. This recovers the "size principle" of

Tenenbaum and Griffiths (Tenenbaum & Griffiths, 2001). This principle has more

recently been rederived by Navarro and Perfors (Navarro & Perfors, 2009). Our work

here can be thought of as a third derivation of the size principle-based on premises

about the communicative task, rather than about the structure of generalization-

that licenses its application to the kinds of cases that we have treated here.

3.2.2 Rational word learner

A Bayesian learner equipped with the theory of informative speakers captured in

Equation 3.7 can use the knowledge that speakers are informative to learn words

in an unknown language. A real language learner often has uncertainty about both

the speaker's meaning, MS, and the lexicon, L, the mappings between words and

meanings (Frank, Goodman, & Tenenbaum, 2009). Although our framework can be

extended to this case, we focus here on the case that we treat in our experiments:

the learner knows Ms and the possible set of meanings that words could map to and

has only to infer facts about L.

By Bayes' rule:

P(Llw, Ms, C) oc P(wIL, Ms, C)P(L) (3.8)

For simplicity, let us assume that the object has two truth-functional features fi and

f2, that there are two words in the language wi and w2 , that there are only two

possible lexicons Li = {wifi, w 2=f 2} and L 2 {wi=f 2, W2=fi}, and that there is



a uniform prior on vocabularies. Then:

P(wiIL1, Ms, C)
P(L1|wi, Ms, C) = P(wij L1 , Ms, C) + P(wiIL 2 , MS, C) (3.9)

|Ifil-
Ifi- 1 +|f2|~ 1'

where If I indicates the number of objects with feature f (substituting Equation 3.7

for the second step).

Returning to the example in Figure 3-2, imagine that the speaker points to the

polka-dot square and says "feppy" (a novel word w that you have never heard before).

We used Equation 3.9 to calculate the probability that learners judge that w means

polka-dot as opposed to square:

P(w-fiMsC) Ipolka-dot|-1
Ipolka-dot|-1 + |squarel-1

1 2
1 -

+ 1 3

Thus, our prediction is that learners should be around 67% confident that "feppy"

means polka-dot.

3.3 Experiment 1

Our first experiment tested the hypothesis that word learners' inferences conform

to the informativeness framework described above. We asked adults for quantitative

judgments about the meanings of novel words in situations like Figure 3-2. In order to

gather data across a large number of conditions (including many different predicates

and many different arrangements of objects and features), we made use of Amazon

Mechanical Turk (www. mturk. com), an online crowd-sourcing tool. Mechanical Turk

allows users to post small jobs to be performed quickly and anonymously by workers

(users around the world) for a small amount of compensation. In order to elicit a
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continuous, quantitative judgment, we posted many displays of the same type as

Figure 3-2, and for each one asked participants to bet on whether a novel adjective

referred to one or the other property of the object with the box around it. (This

betting measure gives us an estimate of speakers' subjective probability, rather than

a purely qualitative judgment.)

3.3.1 Materials and Methods

Participants

We posted 1500 separate trials. We excluded individual trials on the basis of a

manipulation check (described below) as well as if their answers did not add up to

100 or if they failed to complete the questionnaire fully. The final sample consisted

of 1271 trials, contributed by 221 unique individuals. The majority of workers (173)

performed only a single trial, but a small number of workers performed many more.

Stimuli and Procedure

Each Mechanical Turk job consisted of a single web page displaying a set of objects

(as in Figure 3-2). For each set, each object was assigned a color (red/blue/green),

a shape (circle/square/cloud), and a texture (solid/polka-dot/striped) feature. Two

feature dimensions of interest were chosen to vary across the set, while the third was

held constant. Objects were chosen such that the target object with the box around

it was assigned to share its feature along each of the varying dimensions with 0, 1, 2,

or 3 of the other objects.

The manipulation of interest was the number of objects that shared features with

the target object. For instance, in Figure 3-2, only the target object is polka-dot

while the target object and one other are square. We denote this trial type as a 1/2

trial. Trials were chosen so that they would be uniformly distributed over the 10

possible combinations of shared features (1/1; 1/2; 1/3; 1/4; 2/2; 2/3; 2/4; 3/3; 3/4;

4/4). All other aspects of trials (including position and features of all objects) were

randomized. (Note that e.g. 2/1 trials are impossible because the feature that applies



to fewer objects is always the preferred one).

To make sure that participants were inspecting the objects (rather than simply

responding at random), we included a manipulation check (Oppenheimer, Meyvis, &

Davidenko, 2009): we asked them to report the number of objects with each of the

two features of the target in the dimension of interest (e.g., How many objects are

polka-dot? How many objects are square?).

Participants were then instructed that someone speaking a foreign language used

a word to refer to the object with the box around it and were asked to guess whether

the word referred to one feature or the other of the target object (e.g., square or

polka-dot). They were told that their guess would take the form of a bet and that

they should allocate $100 between the two possible meanings for the word.

3.3.2 Results and Discussion

Since we randomized the dimensions used in each trial, we averaged across this aspect

of the data and considered only the distribution of bets relative to the number of

objects with each of the two possible features. We plot the histogram of responses

for each condition in Figure 3-3, with mean performance for each condition plotted

against model predictions in the inset figure.

When there were equal numbers of objects with each feature (e.g., two polka-

dot and two square objects) -represented by the diagonal in Figure 3-3-mean bets

were very close to $50, reflecting equal probability. In contrast, in the case shown

in Figure 3-2, there is only one object in the more informative category (polka-dot)

but there are two in the less informative category (square). Our informativeness

model predicted an average bet of $67 in this condition, very close to the average

bet of $65.9. More generally, the relationship between the values predicted by the

informative communication model and the experimentally determined means was high

(r 2 = .92, p < 10-6). Thus, in their inferences about the meanings of novel words,

participants' mean judgments conformed quite precisely to the predictions of our

model.

These results are not unique to participants on Mechanical Turk: we replicated



this study with two different populations with entirely different stimuli. The first

replication was with a sample of 700 MIT undergraduates who were asked to complete

three trials via email, reported in (Frank, Goodman, Lai, & Tenenbaum, 2009); stimuli

in that study again varied on shape, texture, and color. The second study included

a sample of 100 MIT undergraduates and community members. They were asked

to complete a paper-and-pencil study, also including three trials, while visiting the

lab for unrelated research; stimuli in that study were a set of cartoon insects that

varied on properties like what kind of tail they had or what shape their head was.

The fit between the model and participants' average performance across conditions

in these two studies was r 2 = .86 and r 2 = .79, respectively. These converging

results suggest that results were not obtained as a consequence of the population

being tested, the fact that some individuals completed many trials, or the method of

online presentation.

3.4 Experiment 2

In our second experiment, we asked whether children would also be able to make use

of the informativeness of features to learn the meanings of novel adjectives. Because

of known biases in children's word learning (Landau, Smith, & Jones, 1988; Bartlett,

1978), we chose to vary stimuli on two dimensions: texture and pattern. We created

sets of real objects that had a novel texture and a novel pattern (an example trial is

shown in Figure 3-4). We showed the children two objects that shared one feature

but differed on the other and, indicating one of the objects, told the child that it was

"feppy." To determine which meaning had been inferred for the novel word, we then

showed the child a new pair of objects, one of which had the feature that had been

unique to the "feppy" object, and the other of which had the feature that the "feppy"

object had shared with the other object" and asked them which one of these two new

objects was also "feppy." If children were able to use information from the context

to identify which property was being talked about, this would provide evidence for

the claim that they assume speakers are informative in choosing which label to apply



Training set

"This one is feppy." "Can you tell me
which one of these is

feppy?"

Figure 3-4: Stimuli for a trial in Experiment 2. The predicted answer is the test
item on the right, because it shares a texture (cork) with only the indicated train-
ing example, while the left test item shares the squiggle feature with both training
examples.

to an object. Further, this evidence would support the use of the assumption of

informativeness to learn which property a novel adjective maps to.

3.4.1 Methods

Participants

Sixteen children between three and four years old (mean age = 3;7.6) took part in

the informativeness condition and a separate group of 16 3-4 year olds (mean age =

3;4.23) took part in the baseline condition. All participants were recruited during a

visit the Boston Children's museum.

Test set



Stimuli

Pilot testing revealed that children's judgments were very sensitive to the particular

texture and pattern that were being used, so we created a large set of stimuli and

used Amazon's Mechanical Turk online service to collect norming data about which

property of an object was more likely to be referred to by a novel adjective. We then

constructed the stimuli for use with children by choosing two base object shape and

assigning each a pair of novel properties that were relatively close in the proportion of

the time they were chosen as the meaning of a novel adjective. The first base object

was popsicle sticks and the second was wooden dowels (example stimuli are pictured

in Figure 3-4).

Procedure

Each child completed two trials. In the Informativeness condition, the experimenter

presented the child with a set of two objects on a cardboard tray in each trial. The

experimenter then picked up one object and told the child that "This object is feppy

[/ziffy]." The experimenter then hid the first two objects and put out two more on

the tray and asked the child which one they thought was feppy/zipfy. All trials were

videotaped for offline coding. Across trials we counterbalanced which object was

named with which label, which property was most informative, which side the named

object was on, and which side the correct answer was on. The Baseline condition

was identical to the Informativeness condition except that only one object (the target

object) was presented in the first set of objects.

3.4.2 Results and Discussion

Figure 3-5 shows the percentage of children that picked each feature, both when it

was most informative and in the Baseline condition. For both objects, both features

were chosen more often by children in the Informativeness condition than in the

Baseline condition. The baseline across all four items was necessarily .5, thus we used

a binomial test to test whether children picked the more informative feature more
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Figure 3-5: Percentage of children's judgments in Experiment 2, plotted by base
object and feature. Light gray bars show proportion of baseline judgments that a
novel name applied to a particular feature; dark gray bars show judgments that the
name applied to the same feature after the object was named in a context where that
feature was informative.

often than chance (25/32 trials, p = .0001).

3.5 General Discussion

A model of language as a code for facts does not account for the rich interpretations

that language users are able to extract from limited data. Instead, research on lan-

guage use (Grice, 1975; Sperber & Wilson, 1986) posits that speakers and listeners

share assumptions about the nature of the communicative task that allow meanings

to be inferred even in the presence of ambiguous or limited data. In our work here, we

investigated the implications of this research for language acquisition. We began by

asking whether children are able to use the assumption that speakers act rationally to
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convey their intended meaning-equivalent to Grice's maximum of informativeness-

to learn the meanings of novel words in ambiguous contexts. We showed that, in

restricted referential worlds, the assumption of informativeness derives the "size prin-

ciple," a generalization which describes children's behavior in word learning (Xu &

Tenenbaum, 2007b). We then showed empirical evidence that adults' quantitative

judgments matched the predictions of this framework and that three-year-olds were

able to succeed in learning a novel adjective in a comparable situation. These results

provide support for the suggestion that word learners may make inferences about

the meanings of words based on the underlying assumption that speakers are acting

rationally.

The work we presented here is related to formal work on human communication in

a number of different traditions. Early work by Rosenberg and Cohen (Rosenberg &

Cohen, 1964, 1966) described a similar formalism, which they used for disambiguating

synonym pairs, though they did not apply their framework to word learning. Our work

is also related to game-theoretic approaches to pragmatics from linguistics (Benz,

Jdger, & Van Rooij, 2005), though it differs from these approaches in that it does not

rely on complex, recursive computations but instead on a simple formulation that can

be computed whenever the space of meanings and mappings to linguistic expressions

is known. Finally, in natural language processing, researchers in the field of referring

expression generation (Reiter & Dale, 1997; Dale & Reiter, 1995) have described

a similar approach to deriving Gricean maxims from assumptions about speakers'

rationality. The convergence of interest in this general topic across widely-varying

fields suggests a need for a formal framework for human communication that goes

beyond information theory to incorporate insights from the study of pragmatics.

Our work here takes a first step towards this goal. Rather than providing a

well-worked out model of a broad range of tasks, we view our contribution instead

as describing a framework for adding pragmatic inferences to systems of meanings.

In order to calculate inferences in this framework, it is necessary to have a model

of the space of possible meanings and their mappings to linguistic forms. While

we used very simple examples of each of these in our experiments, in principle our



framework could be applied to a propositional model of semantics in combination with

a grammar for creating sentences that express those propositions. More generally,

with definitions of a meaning space and linguistic mapping, our framework can be

used to make predictions in a wide variety of situations, ranging from simple non-

linguistic communication experiments to complex cases like scalar implicature and

anaphora resolution. Our hope is that future work will make use of this framework

to address a broad range of questions in language use and language learning.



Chapter 4

Using speakers' referential

intentions to model early

cross-situational word learning

Word learning presents a "chicken-and-egg" inference challenge. If a child could un-

derstand speakers' utterances, it would be easy to learn the meanings of individual

words; and once a child knows what many words mean, it is easy to infer speakers'

intended meanings. To the beginning learner, however, both individual word mean-

ings and speakers' intentions are mysterious. We describe a Bayesian model that

solves these two inference problems in parallel, rather than learning exclusively from

the inferred meanings of utterances or relying only on cross-situational word-meaning

associations. Our model infers pairings between words and object concepts from

CHILDES data with high precision. Our model also explains a variety of behavioral

phenomena from the word learning literature, as the result of making probabilistic

inferences about speakers' intentions. These phenomena include mutual exclusivity,

one-trial learning, cross-situational learning, the role of words in object individuation,

and the use of inferred intentions to disambiguate reference.

'Published as Frank, M. C., Goodman, N. D., and Tenenbaum, J. B. (2009). Psychological
Science, 20, 578-585.



4.1 Introduction

When children learn their first words, they face a challenging joint inference problem:

they are both trying to infer what meaning a speaker is attempting to communicate

at the moment a sentence is uttered and trying to learn the more stable mappings

between words and referents that constitute the lexicon of their language. With either

of these pieces of information, their task becomes considerably easier. Knowing the

meanings of some words, a child can often figure out what a speaker is talking about;

on the other hand, inferring the meaning of the speaker's utterance allows the child

to work backwards and learn basic-level object names with relative ease. However,

for a learner without either of these pieces of information, word learning is a hard

computational problem. Following Quine's metaphor, a word learner is climbing the

inside of a chimney, "supporting himself against each side by pressure against the

others" (Quine, 1960).

Many accounts of word learning focus primarily on one aspect of this problem.

Social theories suggest that learners rely on a rich understanding of the goals and in-

tentions of speakers and assume that-at least in the case of object nouns-once the

child understands what is being talked about, the mappings between words and ref-

erents are relatively easy to learn (St. Augustine, 397/1963; Baldwin, 1993; Bloom,

2002; Tomasello, 2003). These theories must assume some mechanism for making

mappings, but this mechanism is often taken to be deterministic and its details are

rarely specified. In contrast, cross-situational accounts of word learning take advan-

tage of the fact that words often refer to the immediate environment of the speaker,

allowing learners to build a lexicon based on consistent associations between words

and their referents (Locke, 1847; Siskind, 1996; L. Smith, 2000; Yu & Ballard, 2007).

Computational models of word learning have primarily followed the second, cross-

situational strategy. Models using connectionist (Plunkett, Sinha, Moller, & Strandsby,

1992), deductive (Siskind, 1996), competition-based (Regier, 2005), and probabilistic

methods (Yu & Smith, 2007) have had significant successes in accounting for many

phenomena in word-learning. However, speakers often talk about objects that are not



visible and actions that are not in progress at the moment of speech (Gleitman, 1990),

adding noise to the correlations between words and objects. Thus, cross-situational

and associative theories often appeal to external social cues like eye-gaze (L. Smith,

2000; Yu & Smith, 2007), but they are used as markers of salience (the "warm glow"

of attention), rather than as evidence about internal states of the speaker as in social

theories.

More generally, cross-situational theories address only one part of the learners'

task-they are able to learn words, but they do not use the words that speakers utter

to infer the speakers' intended meanings. By focusing only on the long-term map-

pings between items in the lexicon and referents in the world, purely cross-situational

models treat the complex and variable communicative intentions of speakers as noise

to be averaged out via repeated observations or minimized via the use of attentional

cues, rather than as an important aspect of communication to be used in the learning

task.

Here we present a Bayesian model that captures both aspects of the word learn-

ing task: it simultaneously infers what speakers are attempting to communicate and

learns a lexicon. We first present the structure of the model and show that it obtains

competitive results in learning from corpus data. We then show how the probabilistic

structure of the model allows it to predict experimental results such as mutual exclu-

sivity, one-trial word learning, and rapid cross-situational learning, while its explicit

representation of intention allows it to predict results on object individuation and the

use of intentional cues.

4.2 Model design

Our model consists of a set of variables representing the word learning task and a set of

probabilistic dependencies linking these variables in accordance with our assumptions

about the task (Figure 4-1). The variables represent the lexicon of the language

being learned, the referential intentions of the speaker, the words she utters, and the

learner's physical context at the time of the utterance. We define the relationships



Figure 4-1: The graphical model representing dependence relations in our model. C,
I, and W represent the objects present in the context C (we note this variable as 0 in

the rest of the chapter to emphasize that it only represents objects), the objects that

the speaker intends to refer to, and the words that the speaker utters, respectively.

These variables are related within each situation s (shown by the plate under these

variables), and the words that the speaker utters are additionally determined by the
lexicon of their language, L, which does not change from situation to situation (and

hence lies outside of the plate).



between these variables via two assumptions. First, what speakers intend to say is a

function of the physical world around them. Second, the words that speakers utter

is a function of what they intend to say and how those intentions can be translated

into the language they are speaking. With these assumptions and an observed corpus

of situations-utterances and their physical context-our model can work backwards

using Bayesian inference to find the most likely lexicon.

Though the speaker's intentions could in principle be very complex, we limit

ourselves here to the task of learning names for objects. Thus, we represent the

physical context of an utterance as the set of objects present during the utterance,

the speaker's referential intention as the object or objects she intends to refer to,

and the lexicon as a set of mappings between words and objects. We also assume

that objects are identified as instances of basic-level object categories, putting aside

the challenge of identifying the particular aspect of an object being named (Xu &

Tenenbaum, 2007b).

Formally, our model defines a probability distribution over unobserved lexicons L

and the observed corpus C of situations. Our goal is to infer the lexicon with the

highest posterior probability. We find this posterior probability using Bayes' rule:

P(LIC) c P(CIL)P(L) (4.1)

Bayes' rule factors the posterior probability of a lexicon given the corpus into two

terms, the likelihood of the corpus given the lexicon and the prior over lexicons. We

chose a parsimony prior, making lexicons exponentially less probable as they include

more word-object pairings: P(L) oc e-!LI. The choice of this simple prior puts most

of the work of the model in the likelihood term P(CIL), which captures the learner's

assumptions about the structure of the learning task.

This term can be written as a product over situations of the probability of the

components of the corpus (the words W, objects O, and speaker's intentions I, for

each situation s), given the lexicon:



P(CIL) = 7 P(W, Os, Is|L). (4.2)
sec

We can now use our assumptions about the structure of the task to factor Equation

2. First, W and 0 are conditionally independent given I (as shown in Figure 4-1).

Thus we can rewrite the right-hand side as a product of P(W I, L), the probability

of the words given the speaker's referential intentions and the lexicon, and P(I|O8 ),

the probability of the speaker's intentions given the physical context. Second, since

we cannot directly observe the speaker's referential intention, we sum over all possible

values of I under the constraint that Is C O, that is, that the relevant subset of

possible intentions are those that refer to a subset of the objects in the physical

context. Since speakers often refer to objects outside of the physical context, I can

be empty (c.f. (Gleitman, 1990)). We rewrite Equation 2 as

P(C|L) = j ( P(Wg|I8 , L) -P(Is IOs) (4.3)
sec ICO,

For simplicity (and since we have no information about I. other than the words

that are uttered) we set P(1,|O) oc 1 so that all possible intentions are equally likely.

To complete our definition of the model, we define the term P(W I, L) by as-

suming that the words {w1 ...w} in W, are generated independently (ignoring any

syntax), and that there can be two possible causes for uttering a word. A word is

either uttered referentially-in order to refer to an object in the speaker's intention

set-or non-referentially. The probability of a word being uttered if it is used ref-

erentially (PR) is the probability that it will be chosen from the lexicon to refer to

any of the intended referents. The probability of a word being uttered if it is used

non-referentially (PNR) is just the probability that it will be picked from the lexicon

at random, independent of the speakers' referential intention. Verbs, adjectives, and

function words are generated non-referentially as well as object nouns for which the

relevant object is not currently present. The parameter -y represents the probability

that a word is used referentially in any given context. Thus, we have



P(W|Is, L) = [- -E 1PR(wo, L) + (1 - y) -PNR(WIL)] (4.4)
wEI, oEIs

The probability of a word being used referentially for an object, PR(w lo, L), is the

probability that the word is chosen uniformly from the set of words linked to that

object in the lexicon. If there are, for example, two words linked to an object in the

lexicon, each word has a probability of 0.5 to be used to refer to that object; if a

word is not linked to an object, its referential probability for that object is 0. The

non-referential probability of a word being used is the probability of a word being

picked from the full set of words observed in the corpus with probability proportional

to 1 if it is not in the lexicon and to r otherwise. Thus, if K < 1, it is less likely

(but not impossible) that a word which is already in the lexicon will be uttered in a

context in which the speaker does not use it referentially.

In the simulations below, we employ stochastic search methods using simulated

tempering (Marinari & Parisi, 1992) to find the lexicon with the maximum a posteriori

probability given an observed corpus. In our online supplementary materials we

provide code, corpora, and details of our search methods and simulations.

4.3 Corpus evaluation

4.3.1 Corpus

We coded two video files of 10 minutes each from the Rollins section of CHILDES

(me06 and di03) (MacWhinney, 2000) in which two preverbal infants and their moth-

ers played with a set of toys. Each line of the transcripts was annotated with a list

of all midsize objects judged visible to the infant.2

2These videos are the same as those used by Yu and Ballard (2007); the annotations are our

own.



4.3.2 Alternative models

For comparison, we implemented several other models of cross-situational word learn-

ing using co-occurrence frequency, conditional probability, and point-wise mutual in-

formation. We also implemented IBM Machine Translation Model I (Brown, Pietra,

Pietra, & Mercer, 1993), the statistical machine translation model used by (Yu &

Smith, 2007). We used the translation model to compute association probabilities

both for objects given words (as in (Yu & Smith, 2007)) and words given objects.

4.3.3 Evaluation

We evaluated all models both on the accuracy of the lexicons they learned and on their

inferences regarding the speakers' intent. Each of the comparison models produced a

single summary statistic linking words and objects (e.g., association probability). We

thresholded this statistic to find the lexicon maximizing the model's possible F-score. 3

We then used each model to make guesses about the speaker's intended referents for

each utterance. For our model, we chose the intention with the highest posterior

probability given the best lexicon; for the comparison models, we assumed that the

intended referents were those objects for which the matching words in the best lex-

icon had been uttered. We computed scores relative to a gold-standard lexicon and

set of intents, both created by a human coder. The gold-standard lexicon incorpo-

rated all standard word-object pairings (for a lamb toy, "lamb"), plurals ("lambs"),

and babytalk ("lambie"); the gold-standard intent contained the human coder's best

judgment of which objects in the visual context were being referred to in each of the

speaker's utterance.

4.3.4 Results

The Bayesian model substantially outperformed the comparison models, especially

with respect to the lexicons the model learned (Tables 4.1, 4.2 and 4.3). This advan-
3F-score is the harmonic mean of precision (proportion of the lexicon that was correct) and recall

(proportion of total correct pairings included in the lexicon).



Table 4.1: Precision, recall, and F-score of the best lexicon found by
run on the annotated data from CHILDES.

each model when

Model Precision Recall F-score

Association frequency .06 .26 .10
Conditional probability (object word) .07 .21 .10
Conditional probability (wordlobject) .07 .32 .11
Mutual information .06 .47 .11
Translation model (objectlword) .07 .32 .12

Translation model (wordlobject) .15 .38 .22

Intentional model .67 .47 .55
Intentional model (one parameter) .57 .38 .46

Table 4.2: Precision, recall, and
model, using the lexicons scored

F-score for the
in Table 4.1.

referential intentions found by each

Model Precision Recall F-score
Association frequency .27 .81 .40
Conditional probability (object word) .59 .36 .45
Conditional probability (wordlobject) .32 .79 .46
Mutual information .36 .37 .37
Translation model (objectlword) .57 .41 .48
Translation model (wordlobject) .40 .57 .47
Intentional model .83 .45 .58
Intentional model (one parameter) .77 .36 .50



Table 4.3: The best lexicon found by the intentional model.

Word Object
bear bear
bigbird bird
bird duck
birdie duck
book book
bottle bear
bunnies bunny
bunnyrabbit bunny
hand hand
hat hat
hiphop mirror
kittycat kitty
lamb lamb
laugh cow
meow baby
mhmm hand
mirror mirror
moocow cow
oink pig
on ring

pig pig
put ring
ring ring
sheep sheep



tage was robust across systematic variation of the model's three free parameters (a,

the strength of the prior on lexicon size; y, the proportion of words that are used refer-

entially; and K, the probability of a word in the lexicon being used non-referentially).

In addition, the advantage remained when K and -y were set to their maximum a

posteriori values (the empirical Bayes estimate, see (Carlin & Louis, 1997)), reducing

the number of free parameters to one-the same number as the baseline models.

Both the simple statistical models and the translation model found a large number

of spurious lexical items; the best lexicons found by these models were considerably

larger than the best lexicon found by our model.4 The high precision of the lexicon

found by our model was likely due to two factors. First, the distinction between

referential and non-referential words allowed our model to exclude words from the

lexicon which were used without a consistent referent. Second, the ability of the

model to infer an empty intention allowed it to discount utterances in which no

object in the immediate context was being talked about.

4.4 Prediction of Experimental Results

As a consequence of its structure, our model exhibits a graded preference for cer-

tain kinds of lexicons and utterance interpretations. First, lexicons should be sparse

because the simplicity prior we impose biases the model against adding word-object

mappings that do not increase the likelihood of the data. Second, one-to-one lexicons

tend to be preferred, if they are consistent with the observed data, because having

multiple words that can refer to an object reduces the probability of any single word

being used consistently to refer to that object. Finally, the model prefers that people

have intentions to talk about the objects that are present, since words that are gen-

erated referentially from an intention to talk about an object have higher likelihood

than words that are generated non-referentially at random from the entire vocabu-

4The performance we report for the translation model is considerably lower than that reported

by (Yu & Smith, 2007). Several factors may have contributed to this difference: the speech tran-

scripts used in our study were taken from CHILDES, while those in the Yu and Ballard study were

automatically extracted; our corpus coding may have included different objects in each situation;

and our gold-standard lexicon differed from Yu and Ballard's.



lary of the language. These three preferences allow the model predict a number of

empirical results in early word learning.

4.4.1 Rapid cross-situational word learning

Recent work has provided strong evidence that both adults and children are able to

learn associations between words and objects even in the absence of individually un-

ambiguous trials (L. Smith & Yu, 2008; Vouloumanos, 2008; Vouloumanos & Werker,

2009; Yu & Ballard, 2007). Because the statistics in these experiments so sharply fa-

vor the correct lexicon, our model and all of the comparison models successfully found

the correct word-object pairings with perfect precision and recall when presented with

the artificial lexicons from (Yu & Ballard, 2007). Thus, these experiments are not

strongly diagnostic among competing models.

4.4.2 Mutual exclusivity

In classic demonstrations of mutual exclusivity, a child is presented with two objects,

one familiar and one novel. The experimenter asks "Can you hand me the dax?" and

the child hands over the novel object, indicating that she has correctly inferred that

the novel name refers to it (Golinkoff, Hirsh-Pasek, Bailey, & Wenger, 1992; E. M.

Markman & Wachtel, 1988). Markman and colleagues (E. Markman, 1991; E. M.

Markman & Wachtel, 1988; E. Markman, Wasow, & Hansen, 2003) have suggested

that children possess a principle of mutual exclusivity which leads them to prefer

lexicons with only one label for each object. Other researchers have suggested alter-

nate explanations, including more limited principles that are learned with experience

(Golinkoff, Mervis, & Hirsh-Pasek, 1994; Mervis & Bertrand, 1994) or more general

pragmatic principles (E. Clark, 1988, 2003).

Without building in an explicit assumption of mutual-exclusivity, our model shows

a soft preference for one-to-one mappings. We tested our model in the classic mu-

tual exclusivity paradigm (E. M. Markman & Wachtel, 1988) and found it correctly

inferred that the novel word mapped to the novel object. We scored four possible
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bird
"dax" 

dax

Prior Corpus Expt. Posterior Prior Corpus Expt. Posterior

"dax" - bird

dax

Prior Corpus Expt. Posterior Prior Corpus Expt. Posterior

Figure 4-2: Schematic depiction of possible hypotheses in a mutual exclusivity ex-
periment. If the experimenter utters the novel word "dax" in the presence of a novel
object (a DAX) and a known object (a BIRD), the learner can decide the word refers
to both, one or the other, or neither. Each panel represents one of these options,
with a line between a word and an object signifying that the link is represented in the
lexicon. The corpus likelihood, the likelihood of the experimental situation, the prior
probability of the lexicon, and the posterior (total) probability, normalized across the
four lexicons, are shown for each hypothesis.
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lexicons (Figure 4-2) on our original CHILDES corpus extended with a mutual exclu-

sivity scenario (the word "dax" is uttered in the presence of a BIRD toy and a novel

object DAX). Lexicons where "dax" was mapped to the familiar object BIRD (Figure

4-2, part C, part D) were unlikely with respect to the original corpus because each

sentence where the word "bird" was uttered became less likely due to the unrealized

possibility of hearing "dax" as well. Learning no new words (part A) was favored by

the prior because it involved no growth in the size of the lexicon, but received low

likelihood on the experimental scenario (since the word "dax" was not in the lexicon).

Overall, our model preferred the correct lexicon (part B).

This result is not unique to our model: the basic finding of mutual exclusivity

is captured by many of the baseline models we tested. In the example above, the

conditional probability of the word "dax" given seeing a BIRD is quite low, while the

probability of the word "bird" given the object BIRD is still very high. Combined

with the demonstration that adults and infants are able to use some sort of statistical

information in cross-situational learning tasks (L. Smith & Yu, 2008; Vouloumanos,

2008; Vouloumanos & Werker, 2009; Yu & Ballard, 2007), the success of our model

and others suggests that it is not necessary to posit domain-specific principles to

account for findings of mutual exclusivity.

4.4.3 One-trial learning

Another classic result in the literature on word learning is the ability of children to

learn a new word from only one or a small number of incidental exposures (Carey,

1978; Markson & Bloom, 1997). Our model and the comparison models predict

that there are some situations which-in conjunction with the learner's previous

experiences-can provide sufficient evidence for a word's referents to be inferred after

a single exposure; in fact, the mutual exclusivity experiment described above provides

one such situation. We next turn to a set of experiments which to the best of our

knowledge cannot be captured by the comparison models.
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Xu (2002), Experiment 1 Intentional model predictions

Figure 4-3: Infant data from Xu (2002)'s Experiment 1 on the use of labels to in-
dividuate objects along with model surprisal (negative log probability) in the four
conditions of Xu's experiment. Our model predicts the results of infants in these
studies, mirroring the interaction in looking times between the number of objects
seen and number of labels heard.

4.4.4 Object individuation

Even before their first birthday, infants are able to use the presence of words to help

individuate objects (Booth & Waxman, 2002; Waxman & Booth, 2003; Waxman &

Markow, 1995; Xu, 2002). In one experiment (Xu, 2002), infants saw first a duck and

then a ball emerge and then retreat behind a screen. Infants in the two-word condition

heard "look, a duck" and then "look a ball" while infants in the one-word condition

heard "look, a toy" twice. At test, the screen dropped, revealing either one or two

objects. Infants in the one-word conditioned looked longer at two objects (indicating

that they expected only one object), while infants in the two-word condition instead

looked slightly longer at the single object (indicating that they expected two objects

and were surprised that one had disappeared).

Why would hearing two different labels allow infants to make the inference that

two different objects were behind the screen? Perhaps infants' assumptions about

how words are normally used allows them to infer what state of the world (one
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object or two) would be most likely to make a speaker utter the labels they heard.

Since our model prefers lexicons with more one-to-one mappings and lexicons which

interpret the corpus as having more referential words, the best interpretation of Xu's

two-word condition in our model is that each word is mapped to a different object

and that both words are being used referentially. Under this interpretation there

must be two different objects behind the screen, so that the two words can be used

referentially to refer to each of them. Likewise, in the one-word condition, the most

likely interpretation is that the one word refers to one object and that it is being used

referentially for that object-thus, there is likely only one object behind the screen.

To simulate the Xu paradigm formally in our model, we created sets of situations

corresponding to the stimuli from the two experimental conditions. For each set,

we created two construals: one in which there were two objects (though they were

seen one at a time) and one in which there was only one object. To simulate the

infant's uncertainty about the meanings of the word or words in the experiment, we

evaluated each construal for all possible lexicons. We then compared the surprisal of

the model-a quantity that has been shown to map model probability to reaction time

data (Levy, 2008)-for the two construals of each experimental condition (e.g., two

words, one object vs. two words, two objects). This comparison can be interpreted as

measuring, for a learner with no knowledge of what the words mean, how much more

surprising it would be to find one object as opposed to two behind the screen. We

found a cross-over interaction-higher surprisal when the number of words did not

match the number of objects-mirroring the results found by (Xu, 2002) (shown in

Figure 4-3). Thus, the model was able to use its assumptions about how words work

to make inferences about the states of the world that caused a speaker to produce

those words.

4.4.5 Intention-reading

(Baldwin, 1993) conducted an experiment in which 19-month-old toddlers were shown

two opaque containers, each containing a different novel toy. The experimenter opened

one container, named the toy inside without showing the child the contents of the
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container, gave the child the toy from the second container to play with, and then

finally gave the child the first (labelled) object. Despite the greater temporal conti-

guity between the label and the second toy, the children showed evidence of learning

that the label corresponded to the first toy. Baldwin interpreted these results as

evidence that the children used the experimenter's referential intention as their pre-

ferred guide to the meaning of the novel label. Our model, built around inferring the

speaker's intended referents, can capture this interpretation directly. To illustrate,

we constructed a situation with two novel objects and a single novel word. While we

previously treated the speaker's intention as a hidden variable, to model Baldwin's

task we now gave the model additional information that the speaker intended to refer

to the first novel object. The model then highly prefers the correct pairing.

This result should not be surprising, as we have directly incorporated the ref-

erential intention of the speaker into our simulation. But a model which does not

incorporate a representation of referential intent will be unable to predict Baldwin's

results. Models which rely directly on perceptual salience do not capture this re-

sult since the object which must be more salient for the correct mapping to occur is

actually out of sight when it is being labeled.

4.5 General Discussion

We have presented a Bayesian model which unifies cross-situational statistical ap-

proaches and intentional approaches to word learning. The model performs well in

learning words from a natural corpus and also predicts a variety of behavioral phenom-

ena from the word-learning literature. Previous evaluations of word-learning models

have focused on either their behavioral coverage (Regier, 2005) or their objective cor-

pus performance (Yu & Smith, 2007), but to our knowledge this represents the first

systematic attempt to evaluate models on both criteria.

Our model operates at the "computational theory" level of explanation (Marr,

1982). It describes explicitly the structure of a learner's assumptions in terms of re-

lationships between observed and unobserved variables. Thus, in defining our model,
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we make no claims about the nature of the mechanisms that might instantiate these

relationships in the human brain. This kind of ideal-observer analysis is only one

part of a full account of early word learning, and many other computational models

can provide insights into different aspects of this process (Colunga & Smith, 2005; K.

Gold & Scassellati, 2007; Li et al., 2007; Regier, 2005).

The success of our model supports the hypothesis that specialized principles may

not be necessary to explain many of the smart inferences that young children are

able to make in learning words. Instead, in some cases, a representation of speakers'

intentions may suffice. Our model is only a first step in this direction, but we hope

that our work here will inspire future modelers to use intentional inference to unite

the rich variety of information available to young word learners.
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Chapter 5

Conclusions

This thesis proposed a general perspective on the role of statistical inference in lan-

guage acquisition-that many aspects of language acquisition can be described as

statistical inference within a generative model structured around the communicative

use of language-and then attempted to formulate and test some aspects of this

perspective in the domain of word learning. Chapter 2 presented a corpus study of

child-directed speech suggesting that social signals like eye-gaze and pointing do not

always cue reference correctly. These data lent support to a view in which learners

aggregate information about word meanings over time by guessing speakers' inten-

tions rather than by computing associative statistics. Chapter 3 described a model

of learning words by assuming that speakers were following the Gricean maxim of

informativeness and showed that this model predicted both adults' and children's

judgments about novel word meanings. Chapter 4 described a more complex com-

putational model that jointly learned words and made guesses about referential in-

tentions. Taken together, these results provide evidence in favor of a view of early

word learning as a process of "communicative inference": using facts about the way

language is used in context to help infer the meanings of words.

Nevertheless, the studies described here are only the first steps in the work neces-

sary to formulate such a view and provide strong evidence that it captures a mean-

ingful amount of the phenomena in children's early word learning. A crucial challenge

comes in demonstrating that this computational-level theory (Marr, 1982) can nev-
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ertheless describe not only what children should learn from the input (sufficiency)

but also what they do learn (fidelity). Evidence for this claim will come from the

application of our models and those that follow them to modeling a wide range of

empirical results. We have already begun this work through a series of studies on

the phenomenon of mutual exclusivity (Ichinco et al., 2009), but a proof of concept

that our model is capable of the same performance as human learners should also be

accompanied by evidence that our model fits the failures as well as the successes of

children in these and other paradigms.

In addition, the model described in Chapter 4 is still a fragment of the full frame-

work that we sketched in Chapter 1, even for learning words for basic-level object

categories. Extending this model to take into account social cues and discourse con-

tinuity, as suggested in Chapter 2, is an important outstanding technical challenge.

Once the scope of the model is extended beyond the basic-level, there are many other

important challenges, including adding a more expressive space of possible concep-

tual mappings and using the machinery described in (Xu & Tenenbaum, 2007b) and

Chapter 3 to narrow this space. Another set of possible extensions come from the

composition of our word learning model with models of other aspects language learn-

ing, such as word segmentation (B. Jones et al., 2010) and syntactic category learning.

The probabilistic framework within which our models are formulated provides an im-

portant benefit in that they can be composed with a wide variety of other models.

Our hope is that future work by ourselves and others can formulate models of word

learning that go beyond the level of learning names for objects and address some of

the fundamental questions that remain in understanding children's ability to acquire

a lexicon.
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