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Abstract

A number of linear programming relaxations
have been proposed for finding most likely
settings of the variables (MAP) in large prob-
abilistic models. The relaxations are often
succinctly expressed in the dual and reduce
to different types of reparameterizations of
the original model. The dual objectives are
typically solved by performing local block co-
ordinate descent steps. In this work, we show
how to perform block coordinate descent on
spanning trees of the graphical model. We
also show how all of the earlier dual algo-
rithms are related to each other, giving trans-
formations from one type of reparameteriza-
tion to another while maintaining monotonic-
ity relative to a common objective function.
Finally, we quantify when the MAP solution
can and cannot be decoded directly from the
dual LP relaxation.

1 Introduction

Many important practical problems can be solved with
graphical models, such as clustering, molecular con-
formations, stereopsis, or haplotype inference. One of
the inference problems in these models is finding the
most likely setting of the variables (the MAP assign-
ment) given observed data. The complexity of finding
a MAP assignment in general depends on the tree-
width of the graph. Unfortunately, in many real prob-
lems such as stereopsis, the graph tree-width lies be-
yond the tractable range.

A common way to approximate the MAP problem is
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through the use of Linear Programming (LP) relax-
ations. In this case, the MAP problem is first cast
as an integer programming problem, and subsequently
relaxed to a linear program by removing the integer
constraints. Whenever the relaxed solution is integral
(corresponds to an assignment), it is guaranteed to
be the optimal solution. In special cases (e.g., ferro-
magnetic models and matching problems), the MAP
assignment can be found efficiently using LP relax-
ations, even for large tree-width graphs.

In recent years, a number of dual LP relaxation al-
gorithms have been proposed, and these have been
demonstrated to be useful tools for solving large MAP
problems (Kolmogorov, 2006; Werner, 2007; Glober-
son & Jaakkola, 2008; Komodakis & Paragios, 2008).
These algorithms can be understood as dual coordi-
nate descent steps, but operate in different duals of
the same pairwise LP relaxation. The dual coordinate
descent algorithms are designed from the point of view
of introducing local distributed operations. This is in-
deed often advantageous for large problems. However,
such operations may take a long time to converge even
if the model is exactly solvable, such as a tree. In this
paper, we show how the dual coordinate descent oper-
ations can be carried out for a tree in one block step.
The resulting block update takes linear time in the size
of the tree, and closely resembles max-product.

We place these dual algorithms under a common
framework so that they can be understood as opti-
mizing the same objective, and demonstrate how to
change from one representation to another in a mono-
tone fashion relative to the common objective. This
framework permits us to analyze and extend all the
methods together as a group. For example, the block
update can be used in combination with any of the spe-
cific dual algorithms through the transformations we
introduce. One of the key goals in introducing the new
framework is to facilitate the design of new algorithms
and modifications that can be used broadly across the
different dual formulations. We exemplify this by pro-
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viding a monotone version of the TRW algorithm that
makes use of the new tree-block update. Moreover, we
discuss parallel yet monotone update schemes for the
distributed coordinate descent steps.

Finally, the algorithms are only as good as their abil-
ity to reconstruct a MAP assignment (primal solution)
from the dual optimal solution. We provide condi-
tions for when the MAP assignment can and cannot
be found from the dual solutions. The analysis applies
to all of the dual algorithms.

2 MAP and its LP Relaxation

We consider the MAP problem for pairwise MRFs.
The model is given by a graph G = (V,E) with vertices
V and edges E. Each edge ij ∈ E is associated with
a potential function θij(xi, xj). The goal is to find an
assignment x = {xi}i∈V that maximizes

θ(x) =
∑
ij∈E

θij(xi, xj). (1)

For notational simplicity, we assume that single node
potentials are absorbed into the edge potentials.

A popular approximate solution to the MAP problem
is obtained by turning the integer programming prob-
lem into a simpler LP problem through a pairwise re-
laxation. For each edge and assignment to the vari-
ables on the edge we have the marginal µij(xi, xj) ≥ 0,
such that

∑
xi,xj

µij(xi, xj) = 1. The pairwise relax-
ation is given by

max
x

θ(x) ≤ max
µ∈ML

{ ∑
ij∈E

∑
xi,xj

θij(xi, xj)µij(xi, xj)
}

(2)

where the local marginal polytope ML enforces that
edge marginals are consistent with each other, i.e.∑

xi

µij(xi, xj) =
∑
xk

µjk(xj , xk) (3)

for all pairs of edges ij and jk with a common node j.
If the solution to the pairwise LP relaxation is integral
then it is a MAP solution, i.e., the inequality in Eq.
(2) is tight. Otherwise, the objective upper bounds
the value of the MAP. For binary MRFs, even when
only part of the solution is integral, a MAP solution
is guaranteed to exist that extends the partial integral
assignment.

3 Dual LPs

In this section we introduce a common framework
for understanding several dual linear programs corre-
sponding to LP relaxations. All of the dual LPs that

we will discuss in Section 5 can be viewed as minimiz-
ing the pairwise functional

J(f) =
∑

i

max
xi

fi(xi) +
∑
ij∈E

max
xi,xj

fij(xi, xj) (4)

over possible decompositions of the original function to
single node fi(xi) and pairwise fij(xi, xj) potentials.
The necessary constraint on these potentials is that
they define sup-reparameterizations:

F (θ) =
{

f :
∀x,

∑
i fi(xi) +

∑
ij∈E fij(xi, xj)

≥
∑

ij∈E θij(xi, xj)

}
(5)

Without any other constraints on F (θ), the optimum
of this LP would give the MAP value, i.e.

max
x

θ(x) = min
f∈F (θ)

J(f). (6)

For example, one optimal solution f∗ ∈ F (θ) that at-
tains the MAP value is obtained from f∗ij(xi, xj) =
maxx\{xi,xj}

{ ∑
ij∈E θij(xi, xj)

}
/|E| and f∗i (xi) = 0.

The dual minf∈F (θ) J(f), used by Komodakis & Para-
gios (2008), has one constraint for every assignment
ensuring that the reparameterization’s value on x is
at least as large as θ(x). Not surprisingly, finding the
optimum of this LP is NP-hard.

The key to understanding the different LP formula-
tions are the additional constraints that are imposed
on F (θ). It can be shown that simply changing the in-
equality constraint in Eq. (5) to an equality constraint
would result in this being the dual of the pairwise re-
laxation. In the remainder of this section, we will spec-
ify three different but related constrained classes, each
of which corresponds to a (different) dual of the pair-
wise LP relaxation.

The first class is a simple reparameterization in terms
of single node potentials: FL(θ) is defined as{

f :
fi(xi) =

∑
j∈N(i) δji(xi),

fij(xi, xj) = θij(xi, xj)− δji(xi)− δij(xj),
for some {δji(xi)}

}
(7)

The single node “messages” δji(xi) are subtracted
from the edge terms and added to the node terms so
as to maintain a valid reparameterization:

∑
i fi(xi)+∑

ij∈E fij(xi, xj) =
∑

ij∈E θij(xi, xj) for all x.

It is straightforward to show that minf∈FL(θ) J(f) is
the dual of the pairwise LP relaxation given by Eq. (2)
and (3). FL(θ) is the same as the dual linear program
introduced by Schlesinger et al. in 1976 and optimized
by the max-sum diffusion algorithm (see Werner, 2007,
and references within).

We also introduce a restricted version of FL(θ) where
the single node potentials are identically zero: fi(xi) =
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1. Obtain max-marginals µ by running max-
product on fT = {fi(xi), fij(xi, xj) : ij ∈ T}.

2. Update the parameters for ij ∈ T as follows:

f
(t+1)
i (xi) =

1
n

log µi(xi)

f
(t+1)
ij (xi, xj) = log µij(xi, xj)−

nj→i

n
log µi(xi)

−ni→j

n
log µj(xj).

Figure 1: Max-Product Tree Block Update Alg.
n is the number of nodes in tree, and nj→i is the num-
ber of nodes in the subtree of node i with parent j.

∑
j∈N(i) δji(xi) = 0. This corresponds to an addi-

tional constraint on how δji(xi) can be chosen, i.e.,
they must sum to zero around each node. We call
this set of single node (zero) and pairwise potentials
FL,E(θ) as the objective only depends on the edges.
Clearly, FL,E(θ) ⊆ FL(θ). An algorithm similar to
max-sum diffusion can be given to optimize this rep-
resentation.

Finally, we introduce a complementary class where the
edge terms are zero and the fi(xi) are defined in terms
of constrained “messages” δji(xi) as follows:

FL,V (θ)=

{
f :

fi(xi) =
∑

j∈N(i) δji(xi)
fij(xi, xj) = 0
δji(xi) + δij(xj) ≥ θij(xi, xj)

}
(8)

It is easy to see that FL,V (θ) ⊆ F (θ). However, in gen-
eral, potentials in FL,V (θ) are not members of FL(θ).
Minimizing J(f) subject to f ∈ FL,V (θ) is the dual
formulation given by Komodakis & Paragios (2008),
and obtains the same value as the pairwise relaxation.
It is also closely related to the dual given by Glober-
son & Jaakkola (2008). We will make this precise in
Section 5.

4 Tree Block Updates

Most coordinate-descent algorithms for solving the
dual LPs perform local operations on the messages,
updating edge reparameterizations or messages around
each node. This is advantageous for simplicity. How-
ever, even when the model is a tree, a large number of
local operations may be needed to reach a dual optimal
solution. In this section, we provide block update algo-
rithms for trees, analogous to exact collect-distribute
computation on a tree, but leading to a reparameteri-
zation rather than max-marginals.

In each step of the algorithm we isolate a tree out of
the current reparameterization objective and perform
a block update for this tree. Such a tree block update
can lead to faster convergence for appropriately chosen
trees, and may also help in decoding, as discussed in
Section 6.

We give two tree block update algorithms. The first al-
gorithm is shown in Figure 1. Consider any tree struc-
tured model specified by node parameters fi(xi), i ∈ T,
and edge parameters fij(xi, xj), ij ∈ T . This tree may
have been extracted from the current LP dual to per-
form a block update. The algorithm works by running
a forward and backward pass of max-product to com-
pute the max-marginals µij(xi, xj) = maxx\{i,j} Pr(x)
for the tree distribution

Pr(x) =
1

Z(fT )
exp

{ ∑
i∈T

fi(xi) +
∑
ij∈T

fij(xi, xj)
}

,

and then uses the max-marginals to construct a repa-
rameterization of the original tree model. After
each update, the constant c = log(Z(f (t)

T )/Z(f (t+1)
T ))

should be added to the dual objective. This can be
found by evaluating f

(t)
T (x)− f

(t+1)
T (x) for any assign-

ment x.

This approach uses only the standard max-product al-
gorithm to solve the LP relaxation. If applied, for ex-
ample, with stars around individual nodes rather than
spanning trees, this results in one of the simplest dual-
coordinate descent algorithms given to date. However,
since the tree block updates are used as part of the
overall dual LP algorithm, it is important to ensure
that the effect of the updates is distributed to subse-
quent operations as effectively as possible. We found
that by instead performing tree block updates directly
within the class of FL(θ) reparameterizations, we ob-
tain significantly faster running times.

The second block update algorithm, shown in Fig-
ure 2, finds a set of δji(xi) messages such that f

(t+1)
T ∈

FL(fT ), defined by the δji(xi), minimizes J(fT ). This
algorithm makes use of directed trees. We found that
choosing a random root works well. The first step is
to send max-product messages from the leaves to the
root. Then, on the downward pass, we do a series of
edge reparameterizations, constructing the δji(xi) to
ensure that each term in the objective is maximized
by the MAP assignment. (c = 0 for this algorithm.)
Proposition 4.1. The tree block procedures given in
Figures 1 and 2 attain the MAP value for a tree,

max
x

∑
i∈T

f
(t)
i (xi) +

∑
ij∈T

f
(t)
ij (xi, xj) = J(f (t+1)

T ) + c,

Proof. (Sketch). Max-product algorithm. First we
show this returns a reparameterization. Using the fact
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1. Select a root, and orient the edges away from it.

2. Evaluate max-marginal messages toward the
root (collect operation). For each j ∈ ch(i),

mj→i(xi) = max
xj

[
fij(xi, xj) + fj(xj)

+
∑

k∈ch(j)

mk→j(xj)
]
.

3. Reparameterize away from the root (distribute
operation). Set ñi = ni. For each j ∈ ch(i):

(a) Define m−j(xi) =
∑

k∈N(i)\j mk→i(xi).

(b) Set

δji(xi) = −nj

ñi

[
m−j(xi) + fi(xi)

]
+

ñi − nj

ñi
max

xj

[
fij(xi, xj) + fj(xj) + m−i(xj)

]
,

δij(xj) =
nj − ñi

ñi

[
m−i(xj) + fj(xi)

]
+

nj

ñi
max

xi

[
fij(xi, xj) + fi(xi) + m−j(xi)

]
.

(c) Re-define upward mj→i(xi) = δji(xi).
Define downward mi→j(xj) = δij(xj).
Change size of subtree: ñi = ñi − nj .

4. Update the parameters for ij ∈ T as follows:

f
(t+1)
i (xi) = fi(xi) +

∑
j∈N(i)

δji(xi)

f
(t+1)
ij (xi, xj) = fij(xi, xj)− δji(xi)− δij(xj).

Figure 2: Sequential Tree Block Update Alg.
ch(i) denotes the children of i in the tree, and N(i) all
neighbors of i in the tree. Also, ni is the number of
nodes in the subtree rooted at i.

that (
∑

j∈N(i) nj→i − 1)/n = |N(i)| − 1, we get that

exp{
∑

i∈T f
(t+1)
i (xi) +

∑
ij∈T f

(t+1)
ij (xi, xj)} equals∏

ij∈T

µij(xi, xj)
∏
i∈T

µi(xi)1−|N(i)| (9)

which, by a special case of the junction-tree theorem,
can be shown to be proportional to Pr(x).

Let x∗ be the maximizing assignment of f
(t)
T (x).

Clearly x∗i is a maximizer of f
(t+1)
i (xi). We now

show that x∗i , x
∗
j also maximizes f

(t+1)
ij (xi, xj). Note

that f
(t+1)
ij (x∗i , x

∗
j ) = 0 since µij(x∗i , x

∗
j ) = µi(x∗i ) and

nj→i + ni→j = n. However, µij(xi, xj) ≤ µi(xi) for
any xi, xj , which implies that f

(t+1)
ij (xi, xj) ≤ 0.

Sequential algorithm. For a tree, the pairwise
LP relaxation is tight, so the dual optimal repa-
rameterization necessarily attains the MAP value.
Let δi = {δji(xi)}j∈N(i) denote the reparameteri-
zation around node i. We can write the objec-
tive as a function of the messages as J(f (t+1)

T ) =
J(δ1, . . . , δn). Set node 1 as the root. The collect
operation in the algorithm corresponds to evaluat-
ing minδ2,...,δn J(δ1, . . . , δn), which can be done re-
cursively and corresponds to evaluating max-marginal
messages. Note that the LP relaxation is also tight
for each subtree. δ1 is then solved exactly at the
root node via a series of edge reparameterizations.
In the distribute phase of the algorithm, we itera-
tively instantiate each reparameterization by minimiz-
ing minδi+1,...,δn

J(δ̂1, . . . , δ̂i−1, δi, δi+1, . . . , δn) with
respect to δi when δ̂1, . . . , δ̂i−1 are already fixed.

4.1 A Monotone Version of TRW

The tree-reweighted max-product algorithm (TRW)
(Wainwright et al., 2005) for MAP problems iteratively
combines inference operations carried out on trees of
the graph to solve the pairwise LP relaxation. In this
section, we show that by using the tree block updates,
the TRW algorithm becomes monotone in the dual LP.

Consider a collection of trees T of G, and a distribu-
tion over these trees given by ρ(T ). For example, we
could give equal weight to a few trees that together
cover all of the edges in the graph. The dual vari-
ables are parameter vectors θT (x) =

∑
i∈T θT

i (xi) +∑
ij∈T θT

ij(xi, xj) for each tree T . The TRW dual prob-
lem is to minimize

∑
T ρ(T ) maxx θT (x) subject to the

reparameterization constraint
∑

T ρ(T )θT (x) = θ(x).

The tree-based update algorithm for TRW given by
Wainwright et al. (2005) is shown below. ρij denotes
the probability that an edge ij ∈ E is part of a tree
drawn from the distribution ρ(T ).

1. For each tree T , set θT
i (xi) = θi(xi)/ρi and

θT
ij(xi, xj) = θij(xi, xj)/ρij .

2. Reparameterize each tree distribution. TRW does
this by computing max-marginals µ for Pr(x; θT )
using max-product, then setting

θ̂T
i (xi) = log µi(xi) (10)

θ̂T
ij(xi, xj) = log

µij(xi, xj)
µi(xi)µj(xj)

3. Average the solutions, and return to Step 1:

θ̂i(xi) =
∑

T :i∈T

ρ(T )θ̂T
i (xi) (11)

θ̂ij(xi, xj) =
∑

T :ij∈T

ρ(T )θ̂T
ij(xi, xj).
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Kolmogorov (2006) showed that TRW does not mono-
tonically solve the dual LP. However, if in Step 2 we re-
place max-product with either of our tree block update
algorithms (Figure 1 or 2) applied to θT , we obtain
a monotone algorithm. With the max-product tree
block update, the new algorithm looks nearly identical
to TRW. The following proposition shows that these
modified TRW steps are indeed valid and monotone
with respect to the common objective J(θ).

Proposition 4.2. Steps 1-3 described above, using
block tree updates, satisfy

J(θ) 1=
∑
T

ρ(T )J(θT ) ≥
∑
T

ρ(T ) max
x

θT (x)

2=
∑
T

ρ(T )J(θ̂T )
3
≥ J(θ̂) (12)

where θ̂ =
∑

T ρ(T )θ̂T ∈ FL(θ). Equality in Step
3 would correspond to achieving weak tree agreement
(shared maximizing assignment).

Proof. The first equality J(θ) =
∑

T ρ(T )J(θT )
follows directly by substitution. Each J(θT ) ≥
maxx θT (x) since J(θT ), for θT ∈ FL(θT ), is a dual
LP relaxation and therefore its value upper bounds
the corresponding MAP value for the tree T with pa-
rameters θT . The pairwise LP relaxation is exact for
any tree and therefore the dual objective attains the
MAP value maxx θT (x) = minθ∈FL(θT ) J(θ) = J(θ̂T ).
J(θ) is a convex function as a point-wise maximum
of potentials and therefore the last inequality corre-
sponds to Jensen’s inequality. The Jensen’s inequality
is tight only if all the tree models being averaged have
at least one common maximizing local assignment for
each pairwise and single node potential terms. This
is weak tree agreement. The fact that θ̂ ∈ FL(θ) fol-
lows from Eq. (11) and because the block tree updates
return a θ̂T that is a reparameterization of θT .

A monotone version of the algorithm, known as TRW-
S, was introduced by Kolmogorov (2006). One key dif-
ference is that in Step 3, only one node or one edge is
averaged, and then max-product is run again on each
tree. TRW-S is monotone in

∑
T ρ(T ) maxx θT (x), but

may not be for J(θ), depending on the reparameter-
ization used. By using a slightly different weighting
scheme, the algorithm in Figure 1 can be used to give
an optimal reparameterization where one edge st has
θ̂T

st(xs, xt) = log µT
st(xs, xt) (analogously for one node).

Both TRW-S and this algorithm give the same solu-
tion for θ̂st(xs, xt). However, TRW-S would stop here,
while our algorithm also averages over the other edges,
obtaining a possibly larger (and never smaller) de-
crease in the dual objective. When the trees are mono-

tonic chains, Kolmogorov (2006) shows how TRW-S
can be implemented much more efficiently.

We observed empirically that using the tree block up-
date algorithms sequentially to solve FL(θ) converges
more quickly than using them in parallel and averag-
ing. However, the modified TRW algorithm is ideally
suited for parallel processing, allowing us in Step 2
to independently find the optimal reparameterizations
for each tree. By modifying the particular choice of
trees, reparameterizations, and averaging steps, this
framework could be used to derive various new paral-
lel coordinate descent algorithms.

5 Transformations

We now relate each of the dual LPs in a monotone
fashion, showing constructively that we can move from
one representation to another while not increasing the
common objective J(f). We already showed an exam-
ple of this in the previous section for the TRW dual.
One of our goals is to clarify the relationship between
the different dual formulations and algorithms. Some
algorithms, such as the tree block update presented in
Section 4, can be conveniently formulated for one of
the representations, but because of these results, are
applicable to the others as well. In addition, we could
smoothly transition between the different representa-
tions throughout the optimization of the dual.

These transformations are easiest to illustrate by re-
ferring to the messages δ = {δji(xi)} used in the def-
initions of each of the classes FL(θ), FL,E(θ), and
FL,V (θ). Recall that FL(θ) puts no constraints on the
messages δ, while FL,E requires that

∑
j∈N(i) δji(xi) =

0, and FL,V requires that δji(xi)+δij(xj) ≥ θij(xi, xj).

The same messages, when used to construct poten-
tials for two different classes (assuming the messages
satisfy the constraints for both of these classes), can
be used to identify members of both classes. How-
ever, the potentials will be different. For example,
fδ ∈ FL,V (θ) has pairwise terms identically zero, while
the pairwise terms of f ′δ ∈ FL(θ) are of the form
f ′ij(xi, xj) = θij(xi, xj)− δji(xi)− δij(xj).

The transformations are specified in the following
propositions, and are illustrated in Figure 3. The
transformations resemble the sequential updates found
in various message passing algorithms, but are gener-
ally weaker in terms of the effect on the objective. We
begin with a simple transformation that removes the
single node functions fi(xi).

Proposition 5.1. Consider any fδ ∈ FL(θ) with mes-
sages δji(xi). Then f ′δ′ ∈ FL,E(θ), defined by messages
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FL(θ)

FL,V (θ) FMPLP (θ)

FL,E(θ)P 5.1.

P 5.2.P 5.3.

P 5.4.

P 5.5.

P 5.2.

Figure 3: Monotone transformations between different
representations.

δ′ji(xi) = δji(xi)−
1

|N(i)|
∑

k∈N(i)

δki(xi) (13)

satisfies J(fδ) ≥ J(f ′δ′).

Proof. The constraint
∑

j∈N(i) δ′ji(xi) = 0 is satisfied.
The transformation is monotone because

J(fδ) =
∑

i

|N(i)|max
xi

fδ
i (xi)
|N(i)|

+
∑
ij∈E

max
xi,xj

fδ
ij(xi, xj)

≥
∑
ij∈E

max
xi,xj

{
fδ

i (xi)
|N(i)|

+
fδ

j (xj)
|N(j)|

+ fδ
ij(xi, xj)

}
= J(f ′δ′)

where we split up the node potentials, then combined
maximizations (monotonic by convexity of max).

We can also push all the information into the single
node terms, effectively removing the edge functions
fij(xi, xj), as shown below.
Proposition 5.2. Consider any fδ ∈ FL(θ) or fδ ∈
FL,E(θ) with messages δji(xi). Then f ′δ′ ∈ FL,V (θ),
defined by

δ′ji(xi) =
1
2
δji(xi) +

1
2

max
xj

{
θij(xi, xj)− δij(xj)

}
(14)

satisfies J(fδ) ≥ J(f ′δ′).

Proof. We first show that δ′ satisfies the constraint for
FL,V (θ). Since for any x̂j

δ′ji(xi) ≥
1
2
δji(xi) +

1
2
θij(xi, x̂j)−

1
2
δij(x̂j),

we get by summing that δ′ji(x̂i)+ δ′ij(x̂j) ≥ θij(x̂i, x̂j),
as desired. To show that J(fδ) ≥ J(f ′δ′), first define
gδ

i (xi) as∑
j∈N(i)

(
1
2

max
xj

{θij(xi, xj)− δij(xj)} −
1
2
δji(xi)

)
.

We then split the edge potential in two, giving

J(fδ) =
∑

i

max
xi

fδ
i (xi) +

∑
i

∑
j∈N(i)

1
2

max
xi,xj

fδ
ij(xi, xj)

≥
∑

i

max
xi

fδ
i (xi) +

∑
i

max
xi

gδ
i (xi)

≥
∑

i

max
xi

{
fδ

i (xi) + gδ
i (xi)

}
= J(fδ′).

Proposition 5.3. Consider any fδ ∈ FL,V (θ) with
messages δji(xi). Then f ′δ ∈ FL(θ) defined in terms of
the same messages δ, now also modifying edges, satis-
fies J(fδ) ≥ J(f ′δ).

Proof. The old messages must satisfy the constraint
for FL,V (θ), that θij(xi, xj) − δji(xi) − δij(xj) ≤ 0.
Thus, the new edge terms for f ′δ ∈ FL(θ) are all ≤ 0,
so maximizing over them only decreases the objective.
The node terms stay the same.

While the transformation given in Proposition 5.3 may
decrease the objective value, one can show that adding
a constant to each message, in particular δ′ij(xj) =

δij(xj) +
1
2

max
xi,xj

{θij(xi, xj)− δji(xi)− δij(xj)} , (15)

results in a f ′δ′ ∈ FL(θ) such that J(fδ) = J(f ′δ′). This
now gives an exact mapping from FL,V (θ), the dual
given by Komodakis & Paragios (2008), to FL(θ).

5.1 MPLP

A pairwise LP relaxation can also be obtained from the
point of view of enforcing consistency in a directional
manner, considering each edge in two different direc-
tions. The associated dual LP corresponds to dividing
each edge potential into the associated nodes (Glober-
son & Jaakkola, 2008). More precisely, the objective
is minf∈FMP LP (θ) J(f), where the class FMPLP (θ) is
given by{

f :
fi(xi) =

∑
j∈N(i) maxxj βji(xj , xi)

fij(xi, xj) = 0
βji(xj , xi) + βij(xi, xj) = θij(xi, xj)

}
(16)

where each edge potential θij(xi, xj) is divided into
βji(xj , xi) and βij(xi, xj) for nodes i and j, respec-
tively.

It is straightforward to show that fβ ∈ FMPLP (θ)
gives a valid sup-reparameterization similar to
FL,V (θ). The two formulations are indeed closely re-
lated. We show below how to move from one to the
other.

Proposition 5.4. Consider any fβ ∈ FMPLP (θ)
given by the dual variables βji(xj , xi). Then f ′δ ∈
FL,V (θ), defined by

δji(xi) = max
xj

βji(xj , xi) (17)

satisfies J(fβ) = J(f ′δ).

Proof. The objectives are the same because fβ
i (xi) =

fδ
i (xi). Also, the constraint is satisfied, since δji(x̂i)+

δij(x̂j) ≥ βji(x̂j , x̂i) + βij(x̂i, x̂j) = θij(x̂i, x̂j).
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Proposition 5.5. Consider any fδ ∈ FL,V (θ) given
by the dual variables δji(xi). Then fβ ∈ FMPLP (θ),
defined by

βji(xj , xi) = θij(xi, xj)− δij(xj) (18)
βij(xi, xj) = δij(xj) (19)

satisfies J(fδ) ≥ J(fβ).

Proof. For any fδ ∈ FL,V (θ), δji(xi) + δij(xj)
≥ θij(xi, xj). Given our definition of βji(xj , xi),
δji(xi) ≥ maxxj βji(xj , xi). Also, δij(xj) ≥
maxxi

βij(xi, xj) trivially. Therefore, for all i and xi,∑
j∈N(i) δji(xi) ≥

∑
j∈N(i) maxxj

βji(xj , xi).

6 Decodability

If the pairwise LP relaxation has a unique optimal
solution and it is the MAP assignment, we could find
it simply by solving the primal linear program. We use
dual algorithms for reasons of efficiency. However, the
dual solution is only useful if it helps us find the MAP
assignment. In this section, we characterize when it is
possible to decode the MAP assignment from the dual
solution, using the common framework given by the
dual minf∈FL(θ) J(f). By using the transformations
of the previous section, these results can be shown to
apply to all of the algorithms discussed in this paper.

Duality in linear programming specifies complemen-
tary slackness conditions that every primal and dual
optimal solution must satisfy. In particular, it can be
shown that for any optimal µ∗ for the pairwise LP re-
laxation given in Eqs. (2) and (3) and any optimal f∗

for the dual minf∈FL(θ) J(f),

µ∗i (x̂i) > 0 ⇒ f∗i (x̂i) = max
xi

f∗i (xi), (20)

µ∗ij(x̂i, x̂j) > 0 ⇒ f∗ij(x̂i, x̂j) = max
xi,xj

f∗ij(xi, xj).

We will use these complementary slackness conditions
to give conditions under which we can recover the
MAP assignment from the dual optimal solution.

Definition 6.1. We say that f ∈ FL(θ) locally sup-
ports x∗ if fij(x∗i , x

∗
j ) ≥ fij(xi, xj) for all ij ∈ E,

xi, xj, and fi(x∗i ) ≥ fi(xi) for all i ∈ V, xi.

Our claims refer to the pairwise LP relaxation being
tight for some θ. By this, we mean that the dual value
minf∈FL(θ) J(f) = J(f∗) equals the MAP value. As a
result, each MAP assignment (there can be more than
one) represents a primal optimal solution. In addition,
there may be fractional solutions that are also primal
optimal, i.e., attain the MAP value.

Lemma 6.2. When the pairwise LP relaxation is
tight, every optimal f∗ ∈ FL(θ) locally supports every

MAP assignment x∗. Conversely, if any dual feasible
f ∈ FL(θ) supports an assignment x∗, then f is opti-
mal, the LP is tight, and x∗ is a MAP assignment.

Proof. The lemma is a simple consequence of com-
plementary slackness. To show the first part, ap-
ply Eq. (20) to each MAP assignment x∗. Since
µ∗ij(x

∗
i , x

∗
j ) = 1 for the corresponding primal solution,

x∗i , x
∗
j must maximize f∗ij(xi, xj). The second part fol-

lows from the fact any primal solution that f ∈ FL(θ)
supports attains the same value.

Lemma 6.2 is closely related to decodability results for
convex max-product BP (Weiss et al., 2007). The be-
liefs at the fixed-points of convex max-product BP can
be shown to give a dual feasible (not necessarily opti-
mal) f ∈ FL(θ) with the property that, if the beliefs
support an assignment, f does too. Thus, this must
be a MAP assignment. Our result also characterizes
when it is possible to find the MAP assignment with
convex max-product BP by looking for supporting as-
signments: only when the LP relaxation is tight.

The search for a locally supporting assignment may be
formulated as a satisfiability problem, satisfiable only
when the LP is tight. If the variables are binary, the
corresponding 2SAT problem can be solved in linear
time (Johnson, 2008). However, when some variables
are non-binary, finding a satisfying assignment may be
intractable. We now look at a setting where reading
off the solution from f∗ is indeed straightforward.

Definition 6.3. We say that f ∈ FL(θ) is node locally
decodable to x∗ if fi(x∗i ) > fi(xi) for all i, xi 6= x∗i .

The definition for edge local decodability is analogous.
If solving the dual problem results in a locally decod-
able solution, then we can easily construct the MAP
assignment from each node or edge (cf. Lemma 6.2).
However, in many cases this cannot happen.

Lemma 6.4. A dual optimal f∗ ∈ FL(θ) can be node
or edge locally decodable only if the MAP assignment
is unique and the pairwise LP is tight.

Proof. Either node or edge local decodability suffices
to uniquely determine a supporting assignment. If any
dual feasible f ∈ FL(θ) supports an assignment, then
the assignment attains the dual value, thus the LP
must be tight. When the LP is tight, the optimal f∗

has to support all the MAP assignments by Lemma
6.2. Thus f∗ can be locally decodable only if the MAP
assignment is unique.

But, how can we find a locally decodable solution when
one exists? If the MAP assignment x∗ is unique, then
evaluating max-marginals is one way to get a locally
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decodable solution f∗ ∈ F (θ). Under some conditions,
this holds for a dual optimal f∗ ∈ FL(θ) as well.

Theorem 6.5. Assume the MAP assignment x∗ is
unique. Then,

1. if the pairwise LP is tight and has a unique solu-
tion, there exists f∗ ∈ FL(θ) that is locally decod-
able to x∗.

2. for a tree structured model, the tree block updates
given in Section 4 construct f∗ ∈ FL(θ) which is
node locally decodable.

Proof. (Sketch). The first claim follows from strict
complementary slackness (Vanderbei, 2007). We can
always find a primal-dual pair (µ∗, f∗) that satisfies
the implication in Eq. (20) both ways. Since µ∗ is
unique, it corresponds to the unique MAP assignment
x∗, and the strict complementary slackness guarantees
that f∗ ∈ FL(θ) is locally decodable.

The second claim trivially holds for the max-product
tree block update since each f

(t+1)
i (xi) is given by the

single node max-marginals and MAP is unique.

We now show the second claim for the sequential algo-
rithm. Assume without loss of generality that the node
potentials fi(xi) = 0. The block tree update contracts
a tree into an edge by propagating max-marginals to-
wards edge ij. Let θ̂ij(xi, xj) be

∑
k∈N(i)\j mk→i(xi)+

fij(xi, xj) +
∑

k∈N(j)\i mk→j(xj). Since the MAP as-

signment is unique, θ̂ij(xi, xj) must have the unique
maximizer x∗i , x

∗
j . The edge reparameterization sets

δij(xj) and δji(xi) so that the updated single node
term θ̂i(xi) =

∑
k∈N(i)\j mk→i(xi) + δji(xi) ∝

maxxj
θ̂ij(xi, xj). Thus, θ̂i(xi) uniquely decodes to x∗i .

Next we show that the subtrees associated with i and j,
after setting δji(xi) and δij(xj), also uniquely decode
to x∗. The subtree rooted at i has a max-marginal of
θ̂i(xi) for node i. Thus, the MAP assignment for this
subtree must have xi = x∗i . The remaining variables’
maximizers are independent of how we set δji(xi) once
the assignment to xi is fixed, and so must also be max-
imized at x∗. We can now apply this argument recur-
sively. After the last edge incident on node i is up-
dated, θ̂i(xi) equals f

(t+1)
i (xi), maximized at x∗i .

A slightly different tree block update constructs a solu-
tion that is edge locally decodable. The above theorem
shows that we can efficiently construct locally decod-
able dual solutions for trees. This could also be useful
for non-tree models if repeated applications of the tree
block updates move towards solutions that are locally
decodable. An interesting open problem is to design
algorithms that are guaranteed to return a solution
that is locally decodable, for general graphs.

7 Conclusion

We have placed several dual formulations of the pair-
wise LP relaxation for MAP under a unified functional
view. As a result, algorithms for these can be under-
stood as optimizing a common objective, and analyzed
theoretically as a group.

There are a number of immediate generalizations of
this work. For example, the generalization to non-
pairwise models is straightforward. Also, if the pair-
wise LP relaxation is not tight, we may wish to include
higher-order cluster consistency constraints. The func-
tional characterization can be extended to this setting,
with similar equivalence transformations as presented
here. The tree-block update scheme would then be
given for hyper-trees.

Cycles are typically difficult to fully optimize using
local block coordinate-descent algorithms. We believe
that efficient block updates, similar to those given in
this paper, can be derived directly for cycles instead
of trees. Finally, much of our work here contributes to
inference problems involving marginals as well.
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