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Abstract

Purpose: A fluid-structure coupling partitioned scheme involving rigid bodies supported by spring-damper systems
is presented. This scheme can be used with already existing fluid flow solvers without the need to modify them.

Design/methodology/approach: The scheme is based on a modified Broyden method. It solves the equations of solid
body motion in which the external forces coming from the flow are provided by a segregated flow solver used as a
black box. The whole scheme is implicit.

Findings: The proposed partitioned method is stable even in the ultimate case of very strong fluid-solid interactions
involving a massless cylinder oscillating with no structural damping. The overhead associated with the coupling
scheme represents an execution time increase by a factor of about 2 to 5, depending on the context. The scheme also
has the advantage of being able to incorporate turbulence modeling directly through the flow solver. It has been tested
successfully with URANS simulations without wall law, thus involving thin high aspect-ratio cells near the wall.

Originality/value: Such problems are known to be very difficult to solve and previous studies usually rely on mono-
lithic approaches. To the authors’ knowledge, this is the first time a partitioned scheme is used to solve fluid-solid
interactions involving massless components.
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Paper type: Research paper.

1. Introduction

Fluid-Structure Interaction (FSI) problems are found in many fields of engineering and science. As a consequence,
the development of numerical algorithms to solve such kind of problems has been largely active in the last two decades.
The coupling algorithms found in literature are generally classified in two categories: loosely coupled schemes and
tightly coupled schemes.

Loosely coupled schemes advance the solution in time by solving the solid and fluid fields sequentially. It follows
that such schemes introduce some explicitness in the time integration scheme. For example, in the conventional
staggered coupling algorithm of Piperno et al. (1995), the solid displacement is advanced in time by using the explicit
fluid load from the previous time-step. Then, the geometry and the mesh of the fluid domain are updated, and the
fluid solution is calculated before proceeding to the next time-step. Farhat and Lesoinne (2000) proposed an improved
version of this algorithm that ensures second-order accuracy in time. A loosely coupled scheme can also be easily
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Nomenclature

a = discretization coefficient
b = discretization vector coefficient
ci = time scheme coefficient
d = displacement vector
(dx, dy) = displacement vector components
D = diameter of the cylinder
F = external fluid force vector
i = iteration index
I = identity matrix
J = Jacobian matrix
k = spring constant
k∗ = dimensionless spring constant
m = mass of the cylinder
m∗ = dimensionless mass of the cylinder
n = time index
R = residual vector
Re = Reynolds number
t = time
U∞ = freestream velocity
U∗ = normalized velocity
v = velocity vector
wi = weight used in the modified Broyden method
y+ = dimensionless wall distance
γ = structural damping
γ∗ = dimensionless structural damping
∆t = time-step
ζ = damping ratio
ν = kinematic viscosity
ρ = fluid density

implemented by using explicit integration schemes in both the fluid and the solid domain. This strategy is well suited
for compressible flows where the pressure or density equation can be marched in time (Persson et al., 2007) although
stability conditions on the time-step size may become restrictive, justifying the need for a so-called implicit-explicit
marching scheme (Froehle and Persson, 2014).

While loosely coupled schemes have been successfully applied to aeroelastic applications, they suffer from a
added-mass instability that occurs when large fluid-to-solid density ratios are involved (Förster et al., 2007; Causin
et al., 2005). In this context, tightly coupled algorithms, which can implement an implicit time marching scheme and
enforce continuity of velocity and stress at the fluid-solid interface, can be used to ensure stability. Tightly coupled
algorithms can be classified as either monolithic or partitioned schemes. Monolithic schemes consist in linearizing all
discrete field equations and assembling a single linear system that accounts for all unknowns of the problem. Outer-
iterations are needed only if the problem involves nonlinear equations. Monolithic schemes have been successfully
implemented in various finite-element framework where, traditionally, nonlinear problems are solved in a coupled
fashion (Hübner et al., 2004; Walhorn et al., 2005; Tezduyar et al., 2006; Hron and Turek, 2006). Such a monolithic
implementation specialized for the fluid-solid interaction involving a rigid body was proposed recently along with
the code verification that assesses the order of convergence of the method (Étienne and Pelletier, 2012; Yu et al.,
2015). A similar implementation involving space-time finite elements is also proposed by Prakash Singh et al. (2013).
On the other hand, partitioned schemes are based on the paradigm of using independent black-box solvers to manage
respectively the fluid and the solid fields, while providing the ability to achieve formal implicit time-marching schemes
by iterating between each solver at a given time. The partitioned approach has also been used in contexts that depart
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from traditional finite-volume and finite-element frameworks. Applications of the approach with immersed-boundary
methods (Bailoor et al., 2017) and smoothed profile method (Xie et al., 2017) has been successful. Although these
developments are promising, it is the ability of the partitioned approach to be used with traditional fully-featured
and well-tested tools that makes it attractive. However, even though the implicit partitioned approach is appealing,
the stability problems of the loosely coupled scheme eventually occur, even if a fixed-point iteration procedure is
used (Veilleux and Dumas, 2017). Recently, a coupling algorithm that introduces fictitious mass and damping in the
solid equations was proposed and appeared to provide an efficient strategy to solve strongly coupled cases (Baek and
Karniadakis, 2012; Deng et al., 2015).

This paper presents a fluid-solid coupling scheme based on Dirichlet-Neumann partitioning (i.e.: Dirichlet bound-
ary conditions on the fluid side of the interface and Neumann-like boundary conditions on the solid side) that uses
a finite-volume flow solver as a black box. In the present paper, the solid body is a rigid cylinder held by springs
and dampers undergoing free oscillations in a flow. The proposed implicit two-way partitioned coupling algorithm
is based on the modified Broyden method of Vanderbilt and Louie (1984). The resulting algorithm allows problems
involving very strong fluid-solid interactions to be addressed without needing to specify fictitious mass and damp-
ing. The scheme, which can be classified in the quasi-Newton family (Vierendeels, 2006; Vierendeels et al., 2007;
Degroote et al., 2009, 2010) is used with a segregated solution approach in the fluid solver, which, in turn, is both
widespread in numerous CFD codes and efficient for transient problems. The ability of the coupling scheme to address
strongly coupled FSI problems with a segregated CFD scheme allows an easy access to all features of the CFD solver
(such as turbulence models) without needing modification to the code. The scope of the paper is thus to assess the
performance of the proposed coupling scheme.

2. Governing equations and numerical methods

This work considers the interaction between a rigid cylinder mounted on two perpendicular spring-damper systems
and an incompressible Newtonian fluid flow (see Fig. 1). The fluid flow is governed by the incompressible Navier-
Stokes equations and the flow solver is based on the finite-volume method within the OpenFOAM library:

∇ · u = 0,
∂u
∂t

+ u · ∇u = −
1
ρ
∇p + ν∇2u,

where ρ is the fluid density, ν is the fluid kinematic viscosity, p is the pressure field, v is the velocity field. The
equations are implemented in an arbitrary Lagrangian-Eulerian formulation to account for the moving geometry. In
the flow solver, the fluid-solid coupling is taken into account through the boundary condition at the cylinder where
a standard moving-wall condition is used. This boundary condition provides the proper Dirichlet condition on the
velocity field by considering the displacement of the mesh nodes which, in turn, comes from the solid displacement
solution (d). On the other hand, the motion of the cylinder is governed by a harmonic oscillator, which is given by:

m
∂2d
∂t2 + γ

∂d
∂t

+ kd = F, (1)

where d is the displacement vector, m is the mass of the cylinder, γ is the structural damping, k is the spring constant,
and F is the external fluid force coming from the flow solver that takes into account pressure and shear stresses on
the whole cylinder wall. In order to provide more generality to the presented results, dimensionless parameters are
used. A dimensional analysis of the problem provides the following four dimensionless parameters: the Reynolds
number Re = U∞D/ν, the mass ratio m∗ = 4m/(πρD2), the dimensionless damping γ∗ = 2γ/(ρU∞D), and the
dimensionless stiffness k∗ = 2k/(ρU2

∞). Note that in most studies involving vortex-induced vibration of cylinders, the
dimensionless damping and the dimensionless stiffness are replaced by the reduced velocity and the damping ratio
which can respectively be recovered with U∗ =

√
2π3m∗/k∗ and ζ = γ∗/

√
2πk∗m∗ (among others: Williamson and

Govardhan (2004); Leontini et al. (2006)). Here, the former parameter set is preferred because it remains well definite
when the cylinder mass is set to zero as pointed out by Shiels et al. (2001).
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Figure 1: Problem setup: cylinder mounted on springs and dampers in a flow field.

The solid equation of motion (Eq. (1)) is discretized in time using the same implicit second-order backward
differencing scheme as in the fluid discrete equations. By defining the velocity as v = ∂d/∂t, it is possible to form two
coupled first-order equations which can be reassembled after discretization to give the discrete solid equation in the
form of the following residual R:

R(dn+1) = adn+1 + b − Fn+1(dn+1) = 0, (2)

with:
a = mc2

1 + γc1 + k, (3)

b = (mc1c2 + γc2)dn + (mc1c3 + γc3)dn−1 + mc2vn + mc3vn−1. (4)

In the case where the time-step ∆t is kept constant, second-order backward differencing gives: c1 = 3/(2∆t), c2 =

−2/∆t, c3 = 1/(2∆t). The FSI coupling is taken into account on one hand, by considering the fluid force F as a source
term in the solid equation (this is analogous to a Neumann boundary condition that would be needed in the case of a
flexible solid, hence the Neumann-like designation used earlier), and, on the other hand, by applying the solid position
and velocity in the fluid solver as a Dirichlet boundary condition. At each time-step, the whole FSI problem comes
down to finding a vector d that satisfies Eq. (2). This is achieved by iterating both solvers in a fixed-point algorithm at
each time-step since both the force acting on the cylinder and its velocity are not known until the solution at a given
time has converged. The modified Broyden method described below is used to accelerate and stabilize this process.

In the special case where the structure would be moving along a single degree of freedom (e.g.: a cylinder under-
going transverse oscillation in a flow field while being retained in the flow direction), Eq. (2) would simply become
R(dy) = 0. Thus, for this simplified problem with a single degree-of-freedom, many classical methods for solving
nonlinear equations can be used rather easily. Among these methods, the secant method has been tested and proved
to be robust and efficient. Therefore, when more than a single degree of freedom is involved, the modified Broyden
method proposed by Vanderbilt and Louie (1984), which is an improved version of the original method proposed by
Broyden (1965), appears to be an interesting choice. Indeed, Broyden’s method and its derivatives do not require
the actual Jacobian matrix to be computed (either exactly or numerically) at every iteration, it simply updates it in a
way that does not require extensive calls of the flow solver, which is very analogous to the secant method in 1-DOF
problems. In the proposed algorithm, the initial Jacobian is approximated by a scaled identity matrix. In subsequent
steps, the Jacobian is updated using a modified Broyden formula. The whole FSI algorithm is presented below (Al-
gorithm 1) where the subscripts i represent the outer loop iteration index while the superscripts n represent the time
index.

The first step of the algorithm is a predictor step in which a second-order Adams-Bashforth is used to predict the
position of the solid body and the corresponding fluid fields. This step provides the first fluid-solid state used in the
coupling scheme. The second step is the first quasi-Newton step in which the Jacobian matrix is guessed. Vanderbilt
and Louie (1984) proposed to simply use the identity matrix I as an initial guess (this would correspond to −I in
the present formulation). However, doing so leads to divergence of the algorithm in the present context. Dividing
the identity matrix by the square of the weight w2 provides a mean to under-relax the solution of the displacement
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Algorithm 1 Fluid-solid coupling algorithm
1. First outer iteration (i = 1)

(a) Prediction of the solid position (second-order explicit Adams-Bashforth scheme):

dn+1
1 = dn + ∆t(3vn − vn−1)/2.

(b) Solution of the fluid flow to obtain Fn+1
1 using dn+1

1 and vn+1
1 as a Dirichlet boundary condition.

2. Second outer iteration (i = 2, if needed)
(a) Computation of the residual:

R2 = adn+1
1 + b − Fn+1

1 .

(b) Jacobian matrix initial guess:

J2 =

[
−1/w2

2 0
0 −1/w2

2

]
.

(c) Computation of the new solid position:

dn+1
2 = dn+1

1 − (J2)−1 · R2.

(d) Solution of the fluid flow to obtain Fn+1
2 using dn+1

2 and vn+1
2 as a Dirichlet boundary condition.

3. Subsequent outer iterations
(a) Computation of the residual:

Ri = adn+1
i−1 + b − Fn+1

i−1 .

(b) Update of the Jacobian matrix using the modified Broyden method:

δRi = Ri − Ri−1,

δdi−1 = di−1 − di−2,

Bi = w2
2I +

i∑
j=3

w2
j (δdi−1 ⊗ δdi−1) ,

Gi = w2
2J2 +

i∑
j=3

w2
j (δRi−1 ⊗ δdi−1) ,

Ji = Gi · B−1
i .

(c) Computation of the new solid position:

dn+1
i = dn+1

i−1 − (Ji)−1 · Ri.

(d) Solution of the fluid flow to obtain Fn+1
i using dn+1

i and vn+1
i as a Dirichlet boundary condition.

4. At convergence, increment time and return to step 1.

vector while remaining consistent with the algorithm formulation. In the present work, w2 = 0.005 and wi>2 = 1
are used. These choices are arbitrary and provide a mean to tune the algorithm as pointed out by Vanderbilt and
Louie (1984). Using a smaller weight on the initial Jacobian matrix, which is guessed, has the effect of reducing its
impact in further Jacobian matrix updates. Moreover, since w2

2 also acts as a relaxation factor for the displacement
vector solution, it has a stabilizing effect on the iterative process. A small relaxation factor can then be interpreted as
applying a small perturbation on the solution in order to estimate the Jacobian matrix afterward, which is common
practice in Newton-like algorithms. Except for the first time-step of a simulation, it is possible to use the Jacobian
matrix from the previous time-step as a good initial guess along with w2 = 1. This strategy, which is used here,
accelerates the convergence of the method since it allows at least one outer-iteration to be saved per time-step. Then,
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the corresponding fluid fields are obtained by calling the flow solver and the subsequent steps of the algorithm can be
carried out by updating the Jacobian matrix with the modified Broyden formulas (step 3).

Before presenting numerical results, it is worthwhile to highlight some remarks about the coupling algorithm.
Firstly, in the algorithm, the flow solver does not need to be modified. However, to fully implement the proposed
algorithm, the flow solver needs to be called more than once per time-step and it must be able to make the force on the
solid surface available to an external code. In commercial “black-box” solvers, this is often possible through so-called
user-defined functions. Moreover, Algorithm 1 has been arranged in a way where the flow solver is called at the end
of each outer-iteration. Thereafter, the fluid force on the body can be computed and used by the solid solver on the
next iteration. Calling the flow solver at the end of each outer-iteration allows the special treatments in the first two
outer iterations to be easily managed within the solid module by using conditional statements.

Secondly, while the convergence rate of the modified Broyden method is not quadratic, it is still superlinear. As the
results will show, the iterative process effectively takes only a few iterations to converge. Moreover, the fact that the
convergence is not purely quadratic opens the door to performing partial solution of the fluid solver at each iteration
without penalizing significantly the overall convergence rate, which reduces the computational effort at each outer
iteration.

Thirdly, the predictor step (step 1a in Algorithm 1) is critical in the present incompressible flow context. Indeed,
computing the first residual requires the fluid force acting on the body to be evaluated. The easiest way to do this is to
compute the force by calling the fluid solver first in the coupling loop. However, this assumes that the solid body did
not move since the last time-step which is, in a numerical perspective, equivalent to prescribing a sudden stop of the
structure. In an incompressible flow context where the pressure field is strongly reactive to such shocks (because of
the elliptic behavior of the pressure equation), this results in a force prediction that is, most of the time, very different
from the actual solution and, as such, the latter is a poor initial guess to be used in the iterative process. Therefore, the
prediction step is crucial for the convergence of the algorithm.

As a last remark, it was observed that, when the time-step is small enough, the predictor step produces a displace-
ment vector very close to the actual solution such that the first computed δd and δR are very small. In these cases,
the Jacobian matrix may become badly conditioned and the algorithm then becomes non-convergent. In the few cases
where this behavior occured, the algorithm did not diverge, but it was unable to reach the specified tolerances. A
simple cure was to either use a first-order predictor, which is less precise, or to reinitialize the Jacobian matrix (step
2) at each time-step.

3. Verification and validation

Verification and validation are performed by comparing the solution of a cylinder undergoing vortex-induced
vibration with the results of Yang et al. (2008) and Blackburn and Karniadakis (1993). The simulations are performed
with three levels of numerical resolution described in Table 1. The outer-loop iterations are run until the magnitude of
the residual equations (‖Ri‖) reaches a given tolerance. For the sake of the verification and validation, this tolerance is
set to 1×10−9, which was tested to be more than sufficient to prevent significant iteration errors in this case. Moreover,
trying to reduce the residuals further is hardly possible because the ratio δd/d often reaches machine precision. The
domain used, which is the same as Yang et al. (2008), as well as the coarse mesh are presented in Fig. 2. The left side
of the domain is an inlet boundary condition where the normal velocity is imposed as U∞ along with a zero normal
gradient for the pressure field. Top and bottom boundaries are assimilated as symmetry planes and a zero pressure
along with a zero normal velocity gradient are applied on the right boundary (outlet). The parameters defining the
problem are:

Re = 200, m∗ = 4/π, γ∗ = 2π/125, k∗ = 8π2/25.

The flow field is initialized with a potential flow solution around the cylinder that has been slightly moved to (0,
0.01D) with respect to the original position depicted in Fig. 2 such that the spring is initially stretched. This initial
offset acts as a perturbation that triggers the vortex street in a reproducible manner.

The trajectory of the cylinder for the last computed cycle is reported in Fig. 3. In this case, the motion of the
cylinder reaches a periodic regime after some time. The results clearly indicate that the solution is convergent with
respect to the numerical resolution and that the medium resolution is sufficient to capture the essential features of this
problem. Moreover, the agreement with the trajectory reported by Blackburn and Karniadakis (1993) is very good. A
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Table 1: Discretization used for the verification of the numerical method.
Coarse Medium Fine

Number of cells 15065 65065 269140
Time-step ∆t U∞/D 0.01 0.005 0.0025

slight offset of δdx/D = 0.002 has been applied in order to match the center of the trajectory obtained by Blackburn
and Karniadakis (1993) (Yang et al. (2008) used an offset of 0.0185).

Figure 2: Coarse polyhedral mesh and domain dimensions.

4. Results and discussion

4.1. Coupling scheme performance

In order to assess the performance of the coupling scheme, the same numerical simulation is performed, but this
time, the mass of the cylinder and the damping coefficient are both set to zero (m = 0, γ = 0). The dimensionless

7



-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0.6 0.61 0.62 0.63 0.64 0.65 0.66 0.67 0.68 0.69

d y
/D

dx/D

Ref. data
Coarse

Medium
Fine

Figure 3: Cylinder trajectory of the last computed oscillation cycle with Re = 200, m∗ = 4/π, γ∗ = 2π/125, k∗ = 8π2/25. Different mesh
resolutions are compared with the reference data of Blackburn and Karniadakis (1993).

parameters of the problem are then defined as:

Re = 200, m∗ = 0, γ∗ = 0, k∗ = 8π2/25.

This scenario represents the limit case of strong fluid-solid interactions as the position of the cylinder is directly and
solely governed by the fluid force (d = F/k). As such, the position of the cylinder must reach the equilibrium position
of the spring on an instantaneous basis, without any lag effect produced by either inertia or damping. The simulation
is performed with the medium resolution proposed in Table 1.

The cylinder trajectory obtained with this configuration is shown in Fig. 4. The results show that the motion of
the cylinder reaches a quasi-periodic state since slight trajectory fluctuations from one cycle to another remain after
tU∞/D = 500. The vorticity field corresponding to tU∞/D = 500 is presented in Fig. 5.
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Figure 4: Trajectory of the cylinder with Re = 200, m∗ = 0, γ∗ = 0, and k∗ = 8π2/25. The red circle indicates the last computed time, i.e.:
tU∞/D = 500.

In order to improve the numerical efficiency, the PIMPLE algorithm of the flow solver is tuned with the following
configuration: at each flow solver call, 2 inner iterations are performed in which 3 pressure correction steps are
used. It was found, by trial and error, that using more inner iterations does not improve the convergence rate of the
coupling scheme. Indeed, the latter reaches the convergence criteria generally after 5 outer iterations. On the other
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Figure 5: Vorticity field at tU∞/D = 500 with Re = 200, m∗ = 0, γ∗ = 0, and k∗ = 8π2/25.

hand, limiting the flow solver to only one inner iteration obviously makes each outer iteration faster, but the coupling
scheme requires more iterations to converge which, in this case, slowed down the whole procedure.

The FSI simulation is then compared with a fluid-only simulation in which the motion of the cylinder is prescribed
as dy = 0.5D cos(0.4πtU∞/D) where the frequency corresponds to a Strouhal number of 0.2. This simulation is thus
representative of the complexity of the fluid flow occurring in the FSI simulation. The configuration of the flow solver
is the same as in the FSI simulation except that the number of inner iterations is determined by the convergence
criteria and no outer iterations are required (i.e.: only one outer iteration is actually performed) since the flow solver
is not coupled with any external module. Both simulations number of iterations and execution times are compared
and reported in Table 2. It is observed that, even if the FSI simulation requires about 5 outer loops to converge (thus
5 fluid solver calls), the simulation time is only 2.13 times longer than the fluid-only simulation, thanks to the partial
solutions at each outer loop. Lastly, the fact that the relative time of the FSI simulation is larger than the ratio of
cumulative inner-loop iteration numbers (which is 1.43) is explained by intermediate mesh updates, FSI boundary
conditions calculations, the solid solution (which is negligible here), and any other operation done by the black-box
fluid solver between each call. Note that for cases with larger meshes, this difference is much less important (see
Table 3 in the next section).

Table 2: Comparison of the computational cost of the FSI simulation with the imposed solid motion CFD simulation.

Outer-loop
iterations

Inner-loop
iterations per time-step Relative execution time

FSI 4.99 9.99 2.13

Imposed
motion

1 7.00 1

4.2. A high Reynolds number case
The solution of a similar case with the same geometry, but with a higher Reynolds number is proposed. For this

cases, the dimensionless parameters are:

Re = 105, m∗ = 0, γ∗ = 0, k∗ = 8.

To account for the turbulent nature of this configuration, the k − ω SST turbulence model (Menter and Esch, 2001;
Menter et al., 2003) is used and the model is integrated up to the wall (thus, without a wall function). As such, an
unstructured quadrilateral mesh with y+ < 1 on the cylinder surface is used. A finer resolution is used to capture
the main structures in the flow (boundary layer and wake vortices). A close-up view of the mesh near the cylinder is
shown in Fig. 6. Here, a residual tolerance of 10−7 is used along with an adaptive time-stepping strategy. The time-
step is such that the local Courant number remains below 0.85 everywhere in the mesh. This case therefore provides
characteristics that are to be found in many engineering applications: an unstructured mesh (with 140 862 cells in
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this case), thin high-aspect-ratio cells near the wall such that y+ < 1, a wide spectrum of cell sizes, and a system of
equation that is stiffer than those related to laminar flows. These characteristics make this case a good candidate to
evaluate the applicability of the proposed algorithm to general CFD applications involving strong fluid-solid coupling.

Figure 6: Mesh and vorticity field near the cylinder at tU∞/D = 50 with Re = 105, m∗ = 0, γ∗ = 0, and k∗ = 8.

This time, at each call of the flow solver, stopping criteria based on relative residuals was used such that the
residuals of each equation drop at least three orders of magnitude. The PIMPLE algorithm is used with 2 pressure
correction steps along with solution under-relaxation. The relaxation factors are 0.65 for the momentum, k, and ω
equations and 0.85 for the pressure correction. This solver configuration is less aggressive than the one used for the
laminar cases above since the latter appeared to be unstable with the use of the turbulence model for this specific case.
Using this configuration, the outer loop converges in 5-6 outer iterations in which the fluid solver undergoes about 10
iterations per call. While these numbers allow good convergence of the algorithm, the overhead associated with the
fluid-solid coupling remains relatively high. Unfortunately, it was not possible to reduce the computational effort at
each outer iteration further without impairing the outer loop convergence rate significantly. Nevertheless, the method
proved to be stable and convergent even though the fluid-solid interaction is very strong.

The results of the turbulent case present a chaotic trajectory of the cylinder (Fig. 7). This is not surprising when
recalling that the laminar case with the massless cylinder also exhibits irregularities, although not as strong as the
turbulent case. Indeed, the different vortex scales found in the wake as well as their different frequencies certainly
contribute to this unstable behavior (Fig. 8). However, even though it is not the scope of the present paper to analyze
the physics at stake, it is worth pointing out that the interpretation of the instantaneous displacement curve is delicate
in the context of URANS flow modeling.

Here again, a simulation involving an imposed motion on the cylinder is used to establish the fluid solver settings
and to obtain a basis for comparison with the coupled simulation. The residual stopping criterion is now based on
the pressure equation, which is usually the last quantity to converge in the segregated algorithm. The actual value of
the pressure residual in the FSI simulation is not meaningful since the solid body moves between flow solver calls.
Therefore, its actual value lies somewhere between the initial and the final residual value of the last flow solver call.
In order to present a relatively fair comparison, the stopping criterion is thus set to 10−6. The summary of the solver
performances for both the FSI and flow-only simulations are shown in Table 3. In terms of execution time, the FSI
simulation is 4.64 times longer than the flow-only simulation.

4.3. A three-dimensional case

Lastly, a three-dimensional numerical simulation is performed in order to assess further the performance of the
FSI coupling scheme in a context of a complex fluid flow. For this simulation, the solid motion remains constrained
in the xy plane such that there is no motion in the span direction. The same fluid-solid coupling scheme is thus used.
Once again, a very strong fluid-solid interaction is considered. Though no turbulence modelling is used, a higher
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Figure 7: Trajectory of the cylinder with Re = 1 × 105, m∗ = 0, γ∗ = 0, and k∗ = 8. The red circle indicates the last computed time, i.e.:
tU∞/D = 50.

Figure 8: Vorticity field at tU∞/D = 50 with Re = 105, m∗ = 0, γ∗ = 0, and k∗ = 8.

Reynolds number of 1000 is employed in order to provide a flow with three-dimensional unstable structures. The
dimensionless parameters for this case are summarized as:

Re = 103, m∗ = 0, γ∗ = 0, k∗ = 8π2/25.

A three-dimensional polyhedral mesh adopting the same domain dimensions as the one described in Fig. 2 is now
used. The length of the domain in the span direction is 2D such that the resulting mesh is composed of 671 003
cells and symmetry boundary conditions are applied on both sides. The same time-stepping strategy is employed,
however, the time-step is now kept such as the Courant number remains below 0.5 for all cells. The simulation is
run until tU∞/D = 200 to ensure enough cycles and time-steps are carried out in order to compare results with the
imposed motion case. The final instantaneous vorticity field is presented in Fig. 9. In this case, the outer loop usually
converges in about 4 outer iterations in which the fluid solver undergoes about 4 iterations per call. Similarly to the
turbulent case, this configuration also displays a chaotic trajectory of the cylinder. This is mainly caused by three-
dimensional effects in the wake of the cylinder which are known to occur when the Reynolds numbers is higher than
about 200 (Singh and Mittal, 2005). Fig. 9 shows some of these three-dimensional vortex structures in the wake, and
demonstrates that the FSI coupling partitioned scheme proposed works as expected in a three-dimensional case.

Finally, Table 4 summarizes and compares the performances of the FSI coupling scheme with an imposed motion
simulation using the same three-dimensional mesh. The prescribed amplitude for the imposed motion is set a little
higher to account for greater amplitudes in the cylinder displacement with Re = 1000. The motion of the cylinder is
therefore governed by dy = 0.7D cos(0.4πtU∞/D) and the residual stopping criteria based on the pressure equation
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Table 3: Comparison of the computational cost of the k − ω SST FSI simulation with the imposed solid motion CFD simulation.

Outer-loop
iterations

Inner-loop
iterations per time-step Relative execution time

FSI 5.65 57.1 4.64

Imposed
motion

1 12.5 1

Figure 9: Vorticity field near the cylinder at tU∞/D = 200 with Re = 103, m∗ = 0, γ∗ = 0, and k∗ = 8π2/25.

stays at 10−6 in order to obtain a fair comparison. In this case, the ratio of execution time is 3.69, which is also
acceptable considering that m∗ = 0 and γ∗ = 0.

Table 4: Comparison of the computational cost of the three-dimensional FSI simulation with the imposed solid motion CFD simulation.

Outer-loop
iterations

Inner-loop
iterations per time-step Relative execution time

FSI 3.93 15.7 3.69

Imposed
motion

1 4.99 1

5. Concluding remarks

While strong fluid-solid interactions can be solved with a monolithic approach, the latter requires a fully-coupled
treatment of all equations that include the degrees of freedom of the fluid field equations (including the turbulence
model, if any), the solid equations, as well as moving mesh related degrees of freedom. In the context of transient
simulations, segregated algorithms based on projection methods are known to be very efficient. The proposed FSI
coupling scheme allows such algorithms to be used without excessive overhead while ensuring numerical stability.
Moreover, the reported computational time increases (by a factor of about 2 to 5, depending on the context) correspond
to the limit case where both the mass of the moving body and the structural damping are zero. For instance, increasing
the mass of the body has the effect of reducing the strength of the interaction which results in a faster convergence of
the scheme.

In the present model, the solid body equations of motion are uncoupled linear equations. Therefore, the nonlin-
earity and the coupling terms (that are responsible for the off-diagonal terms in the Jacobian matrix) originate solely
from the flow. Future work will consider component-coupled nonlinear solid-body motion equations as well as appli-
cation to more complex flows. Application to cases involving more than two structural degrees of freedom will also
be considered.

12



References

Baek, H. and Karniadakis, G. E. (2012), ‘A convergence study of a new partitioned fluid-structure interaction algorithm based on fictitious mass
and damping’, Journal of Computational Physics 231, 629–652.

Bailoor, S., Annangi, A., Seo, J. H. and Bhardwaj, R. (2017), ‘Fluid–structure interaction solver for compressible flows with applications to blast
loading on thin elastic structures’, Applied Mathematical Modelling 52, 470 – 492.

Blackburn, H. and Karniadakis, G. (1993), Two-and three-dimensional simulations of vortex-induced vibration or a circular cylinder, in ‘The Third
International Offshore and Polar Engineering Conference, vol. 3’, Singapore.

Broyden, C. G. (1965), ‘A Class of Methods for Solving Nonlinear Simultaneous Equations’, Mathematics of Computation 19, 577–593.
Causin, P., Gerbeau, J. and Nobile, F. (2005), ‘Added-mass effect in the design of partitioned algorithms for fluid-structure problems’, Computer

Methods in Applied Mechanics and Engineering 194, 4506–4527.
Degroote, J., Bathe, J. and Vierendeels, J. (2009), ‘Performance of a new partitioned procedure versus a monolithic procedure in fluid-structure

interaction’, Computers and Structures 87, 793–801.
Degroote, J., Haelterman, R., Annerel, S., Bruggeman, P. and Vierendeels, J. (2010), ‘Performance of partitioned procedures in fluid–structure

interaction’, Computers and Structures 88(7–8), 446 – 457.
Deng, J., Teng, L., Pan, D. and Shao, X. (2015), ‘Inertial effects of the semi-passive flapping foil on its energy extraction efficiency’, Physics of

Fluids 27(5).
Étienne, S. and Pelletier, D. (2012), ‘The low Reynolds number limit of vortex-induced vibrations’, Journal of Fluids and Structures 31, 18–29.
Farhat, C. and Lesoinne, M. (2000), ‘Two efficient staggered algorithms for the serial and parallel solution of three-dimensional nonlinear transient

aeroelastic problems’, Computer Methods in Applied Mechanics and Engineering 182, 499–515.
Förster, C., Wall, W. and Ramm, E. (2007), ‘Artificial added mass instabilities in sequential staggered coupling of nonlinear structures and incom-

pressible viscous flows’, Computer Methods in Applied Mechanics and Engineering 196(7), 1278 – 1293.
Froehle, B. and Persson, P.-O. (2014), ‘A high-order discontinuous galerkin method for fluid–structure interaction with efficient implicit–explicit

time stepping’, Journal of Computational Physics 272, 455 – 470.
Hron, J. and Turek, S. (2006), A monolithic fem/multigrid solver for an ale formulation of fluid-structure interaction with applications in biome-

chanics, in H. Bungartz, M. Schäfer, T. Barth, M. Griebel, D. Keyes, R. Nieminen, D. Roose and T. Schlick, eds, ‘Fluid-Structure Interaction’,
Vol. 53 of Lecture Notes in Computational Science and Engineering, Springer Berlin Heidelberg, pp. 146–170.

Hübner, B., Walhorn, E. and Dinkler, D. (2004), ‘A monolithic approach to fluid-structure interaction using space-time finite elements’, Computer
Methods in Applied Mechanics and Engineering 193, 2087–2104.

Leontini, J., Thompson, M. and Hourigan, K. (2006), ‘The beginning of branching behaviour of vortex-induced vibration during two-dimensional
flow’, Journal of Fluids and Structures 22(6–7), 857 – 864.

Menter, F. and Esch, T. (2001), Elements of industrial heat transfer predictions, in ‘16th Brazilian Congress Of Mechanical Engineering’.
Menter, F. R., Kuntz, M. and Langtry, R. (2003), Ten Years of Industrial Experience with the SST Turbulence Model, in K. Hanjalić et al., eds,
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