
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2011-019 April 1, 2011

A Comparison of Autonomic Decision
Making Techniques
Martina Maggio, Henry Hoffmann, Marco D.
Santambrogio, Anant Agarwal, and Alberto Leva

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/4426519?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A Comparison of Autonomic Decision Making Techniques

Martina Maggio1,2, Henry Hoffmann2,
Marco D. Santambrogio1,2, Anant Agarwal2 and Alberto Leva1

1Dipartimento di Elettronica e Informazione
Politecnico di Milano, Italy

{maggio,santambr,leva}@elet.polimi.it

2Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology, Cambridge

{mmaggio,hank,santambr}@mit.edu, agarwal@csail.mit.edu

ABSTRACT
Autonomic computing systems are capable of adapting their
behavior and resources thousands of times a second to auto-
matically decide the best way to accomplish a given goal de-
spite changing environmental conditions and demands. Dif-
ferent decision mechanisms are considered in the literature,
but in the vast majority of the cases a single technique is
applied to a given instance of the problem. This paper pro-
poses a comparison of some state of the art approaches for
decision making, applied to a self-optimizing autonomic sys-
tem that allocates resources to a software application, which
provides direct performance feedback at runtime. The Ap-
plication Heartbeats framework is used to provide the sensor
data (feedback), and a variety of decision mechanisms, from
heuristics to control-theory and machine learning, are in-
vestigated. The results obtained with these solutions are
compared by means of case studies using standard bench-
marks.

Categories and Subject Descriptors
D.2.10 [Design]: Methodologies; F.1.1 [Models of Com-
putation]: Self-modifying machines; I.2.8 [Problem Solv-
ing, Control Methods, and Search]: Control theory,
Heuristic methods

General Terms
Algorithms, Design, Performance

Keywords
Decision mechanisms, Comparison, Design approaches

1. INTRODUCTION
Autonomic computing is a very promising research area

for confronting the complexity of modern computing sys-
tems. Autonomic systems manage themselves without hu-
man intervention, and their development involves a variety
of exciting challenges [16]. One of the most important of
these challenges is the establishment of systematic and re-
producible processes for the design of autonomic systems.

In the literature, the autonomic paradigm is characterized
by the presence of three distinct phases: sensing, deciding,

and acting. Notable examples of this division are the Mon-
itor, Analyze, Plan and Execute (MAPE) or Observe, De-
cide, Act (ODA) loops [1]. In both cases, the “decide”, or
equivalently the “analyze and plan”, phase is responsible for
providing and enforcing the desired properties of the self-
managing system. Thus, the design of the decision phase
is essential for obtaining the desired self-configuring, self-
healing, self-optimizing and self-protecting autonomic sys-
tem [17].

It has been noted that the design of closed-loop autonomic
systems shows impressive convergence with control engineer-
ing, which to date has been only marginally exploited in the
design of computing systems [13]. In fact, modern control
engineering may provide useful complements or alternatives
to the heuristic and machine-learning decision methods used
to date. In order to create systematic and reproducible pro-
cesses for decision making, it is important to understand
both the quantitative and qualitative differences between
techniques.

This paper begins an investigation comparing decision
making processes for self-optimizing autonomic computing
systems, covering heuristic, control, and machine learning
methods. In detail, the novel contributions of this paper
are:

• a discussion of literature techniques (heuristic, control-
theoretical and machine learning-based), analyzing their
properties and guarantees, both theoretically and in
practice;

• the proposal of a set of reference problems for compar-
ing the performance and applicability of the mentioned
solutions;

• the synthesis, development, implementation and test-
ing of said techniques in the mentioned framework;

• the application of the proposed solutions to some bench-
mark test cases, taken from the PARSEC suite [4], and
the presentation the results, both in detail for a sin-
gle benchmark and in an aggregate to summarize the
effects seen in multiple case studies.

Although autonomic systems based on the feedback con-
trol theory have been proposed [20], the corresponding en-
gineering tools and processes are far from fully exploited to

1

date. To give a brief example, controlling behavior of appli-
cations requires application-level sensors if we are to take full
advantage of control theory’s capabilities. Such a capability
complements typical analysis, providing, for example, online
time and convergence guarantees. A reason for the limited
use of control is that concepts like those just mentioned are
quite well assessed in the control engineering community,
yet it is not immediately obvious how to extend them to the
autonomic computing domain. Exploitation of a control-
theoretical framework requires a modeling phase involving
all system components prior to the algorithmic design of the
computing system.

Having a model of the system, in the control-theoretical
sense, means writing the equations that describe system be-
havior. In the case of autonomic computing systems, devel-
oping such a model may be difficult. In contrast, machine
learning techniques may require little to no explicit model-
ing because they capture complex relationships online, au-
tomatically learning the interactions between components
in a complex system. Thus, in practice, the best solutions
will probably combine techniques, enhancing feedback con-
trol solutions with machine learning mechanisms, and vice
versa.

The remainder of the paper is organized as follows. Sec-
tion 2 presents some of the achievable properties and moti-
vations for building a decision-making mechanism. Section
3 focuses on one of said properties, self-optimization, and
shows the techniques qualitatively compared for that chal-
lenge. In Section 4 the mentioned solutions are described in
detail, from the basic idea to the implementation, and some
experimental results are provided in Section 5. Finally, Sec-
tion 6 concludes the paper.

2. MOTIVATIONS
An autonomic computing system may be built with dif-

ferent goals, but its essence is self-management [17]. Four
main aspects of self-management emerge in the literature.

Self-configuration: A self-configuring system is able to
configure itself according to high-level policies and objec-
tives, thereby improving its effectiveness [31]. One of the
most important goals of self-configuration is the ability of a
system to reconfigure itself online, seamlessly incorporating
new components while existing ones adapt to these new fea-
tures. Self-configuration is beyond the scope of this work, in
that it involves the way the system is designed, while here
the focus is on how the system decides the actions to take.

Self-protection: A self-protecting system is capable of de-
fending itself from malicious attacks or cascading failures.
Self-protection is potentially related to the decision making
process, albeit the main issue is the attack detection mech-
anism. Machine learning techniques are often used to build
intrusion detection systems: reviewing the matter is impos-
sible here due to space limitations, the interested reader can
refer to the recent survey [29]. In this context, some con-
trol strategies were proven useful in building a system that
autonomously controls a worm spread [10].

Self-healing: A self-healing system detects, diagnoses, and
repairs localized problems resulting from bugs or failures in
software and hardware. The problem detection is usually
considered part of sensing, and although including the “cor-
rect” sensors may be difficult, this does not affect decision

making. Breitgand et al. proposed a method for automatic
computation and adaptation of performance thresholds for
system components to detect failures [7], in a view to im-
proving the detection efficacy.

Indeed, the diagnosis and reaction mechanism is an im-
portant part of the decision and plan phase of the loop. A
notable example is described in [9], where the authors as-
sume that the failure has already been detected by the un-
derlying system and use aggressive logging to trace request
paths through the entire system, recording the components
used by each request. Using machine learning algorithms
(decision trees) and querying a database that contains data
on many independent requests, the authors simultaneously
examine many potential causes. Another work exploiting
machine learning for self-healing is [11], where a solution is
proposed to increase the throughput of TCP over wireless
links, i.e.,to distinguish between different classes of failures
so as to prevent the system from reducing its rate when
the packet loss is due to a link error. Supervised machine
learning techniques are used to automatically derive a clas-
sification model for loss causes. Each observation is an in-
put/output pair where the inputs are variables describing
the state of the network when a loss occurs and the output
is a label to denote a loss due to a congestion or due to a
link error. The paper presents a comparison of different ma-
chine learning techniques (decision trees, neural networks,
k-th nearest neighbor) and shows possible machine learning
approaches to the diagnose of the network problems.

The two examples just mentioned show how machine learn-
ing techniques were proven useful in the classification of fail-
ures. It is unlikely that heuristic and/or control-theoretical
approaches can be as effective for this classification problem.
In fact, to the best of the authors’ knowledge, there is no
documented research on the matter.

Self-optimization: A self-optimizing system is capable of
monitoring and tuning itself according to performance anal-
ysis. Performance-based tuning strategies play a key role in
the autonomic computing systems definition and are strictly
related to the decision making process. An autonomic com-
puting system is supposed to seek ways to improve its oper-
ation, identifying and seizing opportunities to be more effi-
cient in performance or cost.

The focus of this paper is the comparison of different tech-
niques to design a self-optimizing system, covering heuris-
tic, machine learning and control-theoretical approaches. A
representative problem will be used as a reference example.
The goal is to manage the performance of software appli-
cations which have been instrumented to emit their perfor-
mance level via the Application Heartbeat framework [14].
By making calls to the Heartbeat API, applications signal
“heartbeats”at some important places in the code (for exam-
ple, a video encoder may emit a heartbeat for every encoded
frame). Additional functions in the Heartbeat interface al-
low applications to specify their goals in terms of a desired
heart rate. The decision making process should assign oper-
ating system resources to each instrumented application in
order for the application to match the specified performance
level, i.e., as envisioned and discussed in [2].

3. DESIGN FOR SELF-OPTIMIZATION
Several techniques have been used to synthesize decision

mechanisms for self-optimizing computing systems. As a

2

notable example, [25] addresses the problem of how to ap-
ply a genetic algorithm. The case study proposed therein is
the dynamic reconfiguration of an overlay network for dis-
tributing data to a collection of remote data mirrors. The
developed algorithm is able to balance the competing goals
of minimizing costs and maximizing data reliability and net-
work performance.

In this work, we detail a single problem, whose generality
allows us to draw some considerations about the decision
making processes for self-optimizing systems. Suppose we
want to build a self-optimizing operating system, and one of
its tasks is the assignment of resources to running applica-
tions. Notice that the word resources may assume different
meanings. In a single device, an application may receive
computational units or memory, while in a cloud infrastruc-
ture, a resource can be a server devoted to responding to
some requests. Each manageable resource is a touchpoint in
the sense of [1]. Some proposals to address the management
of a single resource have been published in the literature;
however, proposals to manage multiple interacting resources
are more rare. Intuitively, the number of ways the system
capabilities can be assigned to different applications grows
exponentially with the number of resources under control.
Moreover, the optimal allocation of one resource type de-
pends in part on the allocated amounts of other resources,
requiring coordination.

In [5], Bitirgen et al. periodically redistribute shared sys-
tem resources between applications at fixed decision-making
intervals, allowing the system to respond to dynamic changes.
Their infrastructure is based on an Artificial Neural Network
that learns to approximate the application performance from
sensor data. Their neural network takes inputs from the sys-
tem (amount of cache space, off-chip bandwidth, and power
budget allocated to the application). In addition, the neu-
ral network is given nine attributes describing recent pro-
gram behavior and current cache state (number of reads
and misses, and so on). The network is implemented in a
separate hardware layer, to reduce its overhead. Training
data can be gathered online, allowing an accurate model
even when the operating conditions are changing.

3.1 Techniques
This section presents an overview of some common tech-

niques for making decisions in a self-optimizing system.

Heuristic solutions start from a guess about application
needs and adjust this guess. Heuristic solutions are designed
for computational performance or simplicity at the poten-
tial cost of accuracy or precision. Such solutions generally
cannot be proven to converge to the optimum or desired
value. A notable example is the greedy approach in [8] that
optimizes resource allocation and energy management in a
hosting center. This system controls server allocation and
routing requests based on an economic model, where cus-
tomers bid for resources as a function of service volume and
quality. Bod́ık et al. use linear regression to predict the
workload based on previous data. This predicted workload
is fed to a performance model that estimates the number of
servers required to handle it; these servers are subsequently
activated [6].

Standard control-based solutions employ canonical mod-
els – two examples being discrete-time linear models and
discrete event systems – and apply standard control tech-

niques such as Proportional Integral (PI) controllers, Pro-
portional Integral and Derivative (PID) controllers, optimal
controllers, Petri nets. Assuming the model to be correct,
some properties may be enforced, among which stability and
convergence time are probably the most important ones,
thereby providing formal performance guarantees. As an ex-
ample, Pan et al. [24] propose two PI controllers for guaran-
teeing proportional delay differentiation and absolute delay
in the database connection pool for web application servers.
The model used is a first order linear time-invariant sys-
tem and the PI controllers are design with the Root Locus
method. Such techniques may not however be enough in the
case of heavily varying environment or workload conditions.

Advanced control-based solutions require complex mod-
els, with some unknown parameters (e.g., the machine work-
load) that may be estimated online, to provide Adaptive
Control (AC). AC requires an identification mechanism and
the ability to adjust controller parameters on the fly. An-
other advanced control strategy is Model Predictive Control
(MPC) where the controller selects the next actions based
on the prediction of the future system reactions. The over-
head of sophisticated control solutions is greater than that of
standard controls; however, one may still be able to formally
analyze parameter-varying systems and prove stability, ob-
taining formal guarantees even in the case of unknown op-
erating conditions. For example, [18] proposes an approach
based on model identification, to adjust the CPU percent-
age dedicated to the execution of a web server. A first-order
auto-regressive model is used for identification purposes. A
PI control structure is presented together with an adaptive
controller. The recursive least squares method is used to
estimate the model parameters.

Model-based machine learning solutions require the
definition of a framework in which to learn system behav-
ior and adjust tuning points online. Neural Networks (NN)
are often useful to build a model of the world for control
purposes, see again [5]. NN solutions may be used to pre-
dict the system reaction to different inputs and, given some
training samples, to build a model. The structure of the
network and the quality of the training data are critical to
performance. The accuracy of the results depend on these
crucial choices, and thus no a priori guarantees can be en-
forced. Another model-based family of techniques is Genetic
Algorithms (GA), see e.g. [25] for a discussion on their use
in autonomic system. Using a genetic algorithm requires
selecting a suitable representation for encoding candidate
solutions (in other words, a model). In addition, some stan-
dard operators (crossover and mutation) must be defined
and a mathematical function must be provided to rate can-
didate solutions and select among them. The overhead of
both neural networks and genetic algorithms may in princi-
ple be very significant.

Model-free machine learning solutions do not require
a model of the system. A notable example is Reinforcement
Learning (RL), even if a recent research trend is to comple-
ment RL solution with a model definition [27, 28]. Accord-
ing to [22], RL agents face three major challenges. The first
challenge is how to assign credits to actions, the second is
how to balance exploration versus exploitation and the third
is generalization. The convergence time of an RL algorithm
is often critical [26] and complementing them with a model

3

of the solution space may decrease it [30].

3.2 Qualitative comparison
Providing a meaningful comparison of the mentioned tech-

niques is apparently hard. Part of the difficulty is due to the
fact that literature works typically implement a single tech-
nique to solve a specific problem. Before proposing an ex-
perimental evaluation of different techniques, some qualita-
tive points are thus worth briefly discussing. Specifically, we
compare these techniques along four dimensions: the pres-
ence or absence of a model, the extent to which they provide
analytic performance guarantees, their ability to handle un-
expected conditions, and their ease of implementation.

One point that differentiates the techniques is the pres-
ence (or the absence) of a model. Intuitively, a heuristic
solution in principle does not require a model, while RL
is the only model-free machine-learning based mechanism
mentioned herein. The difficulty of developing a model can
vary depending on what that model is required to capture.
In the case of a NN, for example, defining a model means
structuring the dependency between input and output vari-
ables. Equivalently, setting up a GA means defining a way
to encode the solution and to evaluate it, without necessarily
capturing the relationship between the modeled quantities.
On the contrary, building a model for control-theoretical
purposes, means deriving the mathematical relationship be-
tween the involved entities. This crucial matter will be
treated with an example in Section 4.2.1.

Another interesting comparison point is the presence of
performance guarantees. Ideally, a decision methodology
may be proven to converge to a predefined performance level
with a known convergence time, at least in standard (or
“nominal”) conditions. This is the case, for example, of stan-
dard control techniques, where the design of the system may
be carried out so the system is asymptotically stable, imply-
ing that the measured signal will approach the set point with
the desired accuracy and timing. With a control-theoretical
solution one is able to compute the convergence rate (i.e.,
the time the system needs to stabilize at the desired value)
analytically. This is usually not the case with heuristic or
machine learning solutions, although in the latter case some
algorithms are proven to converge to the optimal solution if
it exists and under some technical assumptions [26].

The third topic to be addressed is how the decision mecha-
nism is able to handle unexpected (non-nominal) situations.
Such situations may include unseen data, i.e., data that were
not tested before and still depend only on the entities un-
der control. Also there may be environmental fluctuations.
Suppose for example that something is happening in the
machine we are controlling, or in the network, and does not
depend on the entities under control. This situation is differ-
ent from the previous one, since the decision mechanism may
not have the correct actuators to act on the system. The
last thing to be handled are failures, distinguished as soft
or hard. Soft failures limit the performance of the system,
while hard failures completely eliminate the system’s ability
to respond to requests. A control-based solution is poten-
tially able to handle any kind of situation, except for hard
failures, especially if the system is augmented with iden-
tification and prediction mechanisms; however, the system
needs to be designed with the correct actuators to handle
performance degradations and environmental fluctuations.
Suppose, for example, that a chip temperature control mech-

anism reduces the clock frequency when the temperature is
too high. In this case, any decision mechanism should be
able to increase the number of computation units (CPUs) to
be allotted to a specific application in order for it to reach
its goals. However, if the number of CPUs is not an ac-
tuator, any solution can fail. At the same time, machine
learning solutions may handle unseen data and failures if
designed carefully. However, it is usually stated that for ex-
ample in NN, the test data that should be provided to train
the network has to be representative of the entire space of
solutions, therefore tendentiously reducing robustness. A
decision mechanism’s ability to handle unseen data is some-
thing that should be carefully analyzed.

The last consideration is on ease of programming. A
heuristic solution usually does not require much effort to be
implemented, while machine learning and control theory-
based ones are often harder, as a system analysis (in the
control engineering sense) is required.

4. IMPLEMENTATION
In the following we propose, discuss and implement some

decision making solutions, and evaluate them with some ex-
periments. The following sections will provide details about
each solution implementation and synthesis.

4.1 Heuristic frameworks
Setting up a heuristic solution for the addressed problem

is very easy, the main drawback being the lack of guarantees.
In the following we sketch a possible solution and show its
behavior in the proposed case study. Suppose the hardware
device has some capabilities that can be tuned online, in
this case the number of cores assigned to the application and
the frequency of the machine. The sensing framework just
introduced provides performance data from the application.
A simple heuristic solution is to list system states in order
from least to most powerful. The heuristic solution keeps
track of the current state. It moves to a less powerful state
if the measured performance is above the threshold and a
more powerful state if performance is below threshold.

4.2 Control frameworks
The pioneering work by Hellerstein et al., [12] contains a

variety of examples of control-theoretical solutions for com-
puting systems problems, generally with a view toward mak-
ing said systems adaptive, robust, and stable. For our re-
source allocation problem, a preliminary control result is
published in [21]. In the following we extend that result,
limiting the scope to the comparison of different decision
making techniques. In so doing, we will also explain the ba-
sic steps to build a control system for resource management.

A key point in building a control system is the choice
of the modeling framework and control formalism. There
are many possibilities including continuous or discrete time
linear or non-linear systems, discrete event models, Petri
networks, and a vast corpus of possible other choices. In
the following, discrete-time linear systems are used. Once
the formalism is chosen, the application of a fully control-
theoretical approach requires that a model is written. In
fact, the synthesis of a control system starts from the defini-
tion of what is called the “open loop behavior” of the object
to be controlled. In the definition of the open loop behavior
we should introduce a“control signal” that drives the system
performance.

4

Probably one of the best reasons to use a control-theoretical
framework for a decision mechanism is the performance guar-
antees control provides. In fact, when modeling and analyz-
ing the closed-loop system, proving stability means proving
that the heart rate value would reach the desired point, if
the control system is well-designed.

4.2.1 The model
We define the model for the open loop behavior of our

system as follows. The performance of the application at
the k-th heartbeat is given as

r(k) =
s(k)

w(k)
+ δr(k) (1)

where r(k) is the heart rate of the application at the k-th
beat, s(k) is the relative speedup applied to the application
between time k − 1 and time k, and w(k) is the workload
of the application. The workload is defined as the expected
time between two subsequent heartbeats when the system
is in the state that provides the lowest possible speedup. In
this model, speedup is applied to the system and clearly con-
trols the heart rate signal. This formulation is general so the
source of speedup can vary and may include the assignment
of resources, such as cores, servers and memory, or the online
modification of the algorithms used in the application.

The simplicity of this model is both an advantage and a
disadvantage. Obviously we are not modeling all the com-
ponents that may interact with the application and change
its performance value, but a model does not need to be com-
plete to serve its control purposes (as decades of experience
in other domains like process control have shown). We intro-
duce the term δr(k) as an exogenous disturbance that may
vary the application behavior in unexpected ways to deal
with the unknown. However, using a simple model to de-
scribe a much more complex behavior may be effective, if we
are correctly describing the main components that interact
with the modeled object.

4.2.2 Standard control techniques
The next step in order to exploit the capabilities of a

control-theoretical framework is the choice of a controller
that constrains the behavior of the closed-loop system, usu-
ally named the control synthesis. This build phase involves
the specification of the desired behavior, in this case, main-
taining a target heart rate value. Some simple controllers
may be synthesized for the problem at hand.

Probably the easiest control solution would be a Pro-
portional (P) controller, that would compute the relative
speedup proportionally to the error between the desired heart
rate and the actual measured one. Another viable choice
are Proportional and Integral (PI) and Proportional, Inte-
gral and Derivative (PID) controllers. In the former case
the speedup is computed as a function of the error and its
integral over time, while in the latter a term based on the
actual trend is added to these two. These controllers are
usually very easy to build, the only action involved is the
choice of their parameters (e.g., the degree of proportional-
ity of the various terms). More details on how to build and
parameterize such controllers may be found in [3, 23].

Another standard control solution is a Deadbeat controller.
Its synthesis involves the specification of the Z-transfer func-
tion between the input data (the desired heart rate, r̄) and
the output (the measured heart rate r). In our case we

specify that function as

R(z)

R̄(z)
= µ

z − z1

(z − p1)(z − p2)
(2)

where z−1 is the delay operator and {z1, p1, p2} are a set of
customizable parameters which alter the transient behavior.
We want to shape the function so that the overall gain of
the closed loop system is 1, meaning that the input signal
is reproduced to the output one, therefore we choose µ =
(1− p1)(1− p2)/(1− z1).

The Deadbeat control is straightforward to synthesize, in
that the closed loop transfer function

R(z)

R̄(z)
=

R(z)C(z)

1 +R(z)C(z)
(3)

where C(z) is the controller transfer function and can be
obtained solving the equation. The control equation is then
found by taking the inverse Z-transform of C(z) to find the
speedup s(k) to apply at time t:

s(k) = F · [As(k − 1) +Bs(k − 2)+
Ce(k)w(k) +De(k − 1)w(k − 1)]

(4)

where e(k) is the error between the current heart rate and
the desired heart rate at time k and the values of the pa-
rameters {A,B,C,D, F} come from the controller synthesis.
The choice of the parameters {z1, p1, p2} allows customiza-
tion of the transient response. A preliminary discussion on
different viable ways to impose the desired speedup value,
the parameters values and some words on how to shape dif-
ferent responses and therefore select the parameter values
can be found in [15].

However, it is evident that the speedup equations depend
on w(k), the workload value. It is not always possible to
have an off-line estimation of the workload value, so a ro-
bustness analysis is in order. Suppose to use wo as a nominal
value for the workload. Trivial computations show that if
the actual workload w is expressed as wo(1 + ∆w), thereby
introducing the unknown quantity ∆w as a multiplicative er-
ror, then the eigenvalue of the closed loop system is ∆w

(1+∆w)
.

Requiring the magnitude of said eigenvalue to be less than
unity, one finds that closed loop stability is preserved for
any ∆w in the range (−0.5,+∞) hence if the workload is
not excessively overestimated such a simple control law can
effectively regulate the system despite its variations.

4.2.3 Advanced control techniques
A standard control solution may be sufficient for many

systems and applications, but much more can be done by in-
troducing more articulated (e.g., adaptive) techniques. Sup-
pose that the proposed control system is augmented with an
identification block, which provides an online estimation of
the workload. Adding this capability to a standard control
system turns it into an adaptive one. Different techniques
can be used for identification; we implement both a Kalman
filter and a Recursive Least Square algorithm to estimate
the workload value [19] and turn the standard Deadbeat
controller into an adaptive one.

However, even more complex solutions may be envisaged,
where more parameters describe the relationship between
the control entities (number of cores assigned to the ap-
plication, frequency of the machine, and so forth) and the
performance metric, to build a more sophisticated controller.

5

4.3 Machine learning frameworks
Machine learning techniques are often employed as deci-

sion mechanisms for a variety of systems. Roughly speak-
ing, machine learning allows computers to evolve behaviors
based on empirical data, for example from sensor data. Dur-
ing the years, a number of techniques have been proposed to
address both specific and broad issues. As done for classical
control-theoretical frameworks, we focus our exploration on
well-established, standard decision mechanisms. Therefore,
we will explore the implementation of a neural network and
a reinforcement learning algorithm, as examples of model
based and model free techniques, respectively. Some words
are spent on the use of a genetic algorithm, without coding
this solution.

4.3.1 Neural Networks
We implement an artificial neural network (NN), with the

purpose of learning the best policy for control. This means
the neural network has to produce the next step control out-
puts from the current situation, with the purpose of reducing
the error between the measured heart rate and the desired
one. Every time we have a new sample, we feed that into the
network and update its weights according to the gradient of
the error we are experiencing.

Desired
Heart Rate

Measured
Heart Rate

Old Number
of Cores

Old
Frequency

Number
of Cores

Frequency

w111

w134

w223

w211

Figure 1: Neural Network topology.

The network is composed by four different input sources,
corresponding to the desired heart rate, the actual heart
rate and the two control inputs: number of cores and fre-
quency. With three neurons in the (single) hidden layer and
two output neurons we learn the relationship between the in-
puts and the (possibly optimal) control strategy. It is worth
stressing that we didn’t train the network before launching
the experiments and the network itself is trained online, up-
dating the weights according to the experienced error with a
gradient descent method. The network topology is shown in
Figure 1. The activation function used for the hidden layer
is the atan, while the output layer uses a linear combination;
the learning rate is set to 0.6. In general, to find the best
solution, a study on the influence of these two parameters
should be conducted; moreover, one may in principle train
the network before updating the weights online. These two
tasks are deferred to future investigations.

4.3.2 Genetic algorithms
Genetic algorithms are another class of popular and well

assessed machine learning techniques. The employment of
a genetic algorithm requires selecting a suitable representa-
tion scheme for encoding candidate solutions, to define some
standard operators, crossover and mutation, and to encode
a mathematical function to rate the obtained solutions and
to select among them. A possible solution for the proposed

case is to synthesize a solution as a couple {cores, fre-

quency} and to use as crossover operator the choice of the
number of cores from the first solution and the frequency
from the second pair. A mutation operator could be an in-
crease or decrease in one of the two quantities. The fitness
function for the proposed problem could be some function
of the desired heart rate and the expected speedup given to
the application by the encoded solution.

Notice that this straightforward idea for GA is not how-
ever of particular interest for the proposed problem. Usually,
GAs are used when it is hard to explore the space of possible
solutions (either because that space is infinite or for other
reasons). In the proposed scenario, the number of possible
solutions would be 56 and the algorithm would just choose
the most suitable solution, without evolution. In this case
it makes no sense to implement a GA and pay its overhead.
However, there may be different ways to encode the solution
that would exploit the potential of the strategy.

4.3.3 Reinforcement learning
As for reinforcement learning solutions, we implement a

SARSA (State-Action-Reward-State-Action) algorithm for
the problem at hand [26]. The algorithm learns a decision
policy for the system. A SARSA implementation interacts
with the environment and updates the policy based on ac-
tions taken, known as an on-policy learning algorithm.

We define three different states in which the system can
be found. In the first one, the heart rate of the monitored
application is above the maximum performance threshold.
In the second one, the heart rate is between the minimum
and maximum levels. In the third one the heart rate is below
the minimum. The algorithm automatically finds the opti-
mal policy for these three states. An action is a pair (c, f)
where c is the number of cores assigned to the application
and f is the frequency set for the computing units of the
machine, resulting therefore in 56 different actions.

Using the standard formulation of the algorithm, the Q-
value for a state-action is updated by an error, adjusted by
the learning rate α (chosen to be 0.5), while the reward dis-
count factor γ is set to 0.2. Q-values represent the possible
reward received in the next time step for taking action a
in state s, plus the discounted future reward received from
the next state-action observation. The new value for the
Q-value Q(sk, ak) is the following

Q(sk, ak) + α[rk+1 + γQ(sk+1, ak+1)−Q(sk, ak)] (5)

and in the implementation the Q-values are randomly ini-
tialized to provide some variability and exploration of the
solution space. It can be shown that under certain bound-
ary conditions SARSA will converge to the optimal policy if
all state-action pairs are visited infinitely often.

In this example, the algorithm is implemented in such a
way that if two different actions provide the same expected
reward for the same state, the one that guarantees a higher
speedup is chosen.

5. EXPERIMENTAL RESULTS
Due to space limitation, a single case study is shown in

detail for all the proposed techniques. Then, some aggregate
results are presented using five benchmarks from the PAR-
SEC benchmark suite [4]. All the applications used are in-
strumented with the Application Heartbeat framework [14].

6

Pe
rfo

rm
an

ce
 (H

ea
rt

R
at

e)

2

4

6

8

10

12

14

16

18

20

Time (Heart Beat)
0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

(a) Heuristic

Pe
rfo

rm
an

ce
 (H

ea
rt

R
at

e)

2

4

6

8

10

12

14

16

18

20

Time (Heart Beat)
0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

(b) Deadbeat

Pe
rfo

rm
an

ce
 (H

ea
rt

R
at

e)

2

4

6

8

10

12

14

16

18

20

Time (Heart Beat)
0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

(c) RLS Identification

Pe
rfo

rm
an

ce
 (H

ea
rt

R
at

e)

2

4

6

8

10

12

14

16

18

20

Time (Heart Beat)
0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

(d) Kalman Identification

Pe
rfo

rm
an

ce
 (H

ea
rt

R
at

e)

2

4

6

8

10

12

14

16

18

20

Time (Heart Beat)
0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

(e) Reinforcement Learning

Pe
rfo

rm
an

ce
 (H

ea
rt

R
at

e)

2

4

6

8

10

12

14

16

18

20

Time (Heart Beat)
0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

(f) Neural Network

Figure 2: The heart rate of the application (swaptions) with different solutions.

ISE WDP ISEWDP Overhead

Heuristic controller 9.82 0.39 4.40 3.60 · 10−9

Power controller (Deadbeat) 4.72 0.15 1.40 20.09 · 10−9

Power controller (Adaptive with RLS) 5.85 0.19 1.38 37.10 · 10−9

Power controller (Adaptive with Kalman) 2.81 0.12 1.86 44.90 · 10−9

Reinforcement learning 4.15 0.14 1.77 89.80 · 10−9

Neural network 10.81 0.42 7.27 1410.00 · 10−9

Table 1: Integral of the Squared Error (ISE), percentage of data point outside the specified thresholds (WDP),
integral of the squared error for wrong data points (ISEWDP), technique overhead (expressed in seconds)
for the swaptions test case (plots are shown in Figure 2); lower is better.

All experiments are run on a Dell PowerEdge R410 server
with two quad-core Intel Xeon E5530 processors running
Linux 2.6.26. The processors support seven power states
with clock frequencies from 2.4 GHz to 1.6 GHz. The cpufre-
qutils package enables software control of the clock fre-
quency, while the taskset Linux command allows to set the
affinity mask of the controlled application to specific com-
puting units (CPUs). The two actuators used are therefore
the machine frequency and the number of cores to be as-
signed to the given instrumented application.

5.1 Swaptions
The in-depth case study manages performance of the swap-

tions application, which uses the Heath-Jarrow-Morton frame-
work to price a portfolio of swaptions and employs Monte
Carlo simulation to compute the prices. When a swaption
is processed, the application makes an API call to signify
a heartbeat. Over time, the intervals between heartbeats
provide information about progress for the purpose of ap-
plication auto-tuning and/or externally-driven optimization.
Moreover the Application Heartbeat framework allows users
to set minimum and maximum performance targets. For
swaptions these targets are set to 6 and 12 heartbeats per
second, respectively. The application processes 300 swap-
tions and performs 100000 simulations for each of them.
swaptions is run multithreaded with 8 threads.

For each invocation of swaptions run we collect 300 data
points (corresponding to the 300 heartbeats emitted) and
disregard the first 10 and last 10 data points, as perfor-
mance at these values is dominated by initialization and fi-
nalization. We present some plots to depict the application
behavior using the different decision mechanisms. Moreover,
Table 1 presents some useful comparison numbers. The first
column of the table shows the Integral of the Squared Error
(ISE). Suppose we define a target at T heartbeats per sec-
ond (the average between the minimum and the maximum
threshold, respectively Tmin and Tmax), the ISE is defined
as

ISE =
1

n

nX
k=1

[T − hr(k)]2 (6)

where k represent a single heartbeat and n is the number
of considered points, in this case 280. The second column
presents the percentage of data points that lays outside the
desired performance range, i.e. those with a wrong control.
The third column contains the integral of the squared error
considering just the points with wrong control

ISEWDP =
1

n

nX
k=1

[1− ITmin<hr(k)<Tmax][T − hr(k)]2 (7)

where ITmin<hr(k)<Tmax a Borel set, i.e., a function that is
1 in the specified interval and 0 elsewhere (in this case 1 if

7

Heuristic
Deadbeat

RLS Identification
Kalman Identification

Reinforcement Learning
Neural Netowrk

IS
E

pe
rc

en
ta

ge
 (C

om
pu

te
d

IS
E

/ D
es

ire
d

H
ea

rt
R

at
e)

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

Benchmark
blacksholes swaptions dedup x264 bodytrack

0

0.2

0.4

0.6

bodytrack

0

0.2

0.4

0.6

blacksholes

Figure 3: Summary ISE results (lower is better).

the measured heart rate belongs to the interval from Tmin to
Tmax). The last column proposes a measure of the technique
overhead, i.e., an average of the number of seconds necessary
to execute the decision mechanism at each iteration.

Figure 2 depicts the data for the proposed solution. Table
1 reports some numerical data. In Figure 2(a) the heuris-
tic decision mechanism is shown at work. The power aware
scheduler described in [15] obtains the results of figure 2(b).
Figure 2(c) presents the results obtained with the same con-
troller empowered with the Recursive Least Square identifi-
cation mechanism while Figure 2(d) shows the Kalman filter
solution. Figure 2(f) shows the results obtained using the
neural network. Apparently, swaptions is poorly controlled
with the proposed neural network. However, the more ex-
tensive benchmark study reported in the following shows
that there are other applications where the NN outperforms
other approaches. The tendency of the SARSA RL algo-
rithm to choose the most powerful state is quite evident in
Figure 2(e), as the measured heart rate is consistently in the
upper part of the desired range.

5.2 Benchmark campaign results
This section presents aggregate results from an extensive

test campaign. Five different PARSEC benchmark are used
as applications, these being blacksholes (options pricing,
1600 heartbeats emitted), bodytrack (tracking of people in
a video, 260 heartbeats emitted), dedup (compression with
data deduplication, 300 heartbeats emitted), swaptions and
x264 (video encoding, 500 heartbeats emitted). For these
benchmarks, a tighter performance range is used compared
to the previous example. The desired heart rate for blacks-
holes is set between 13 and 14 heartbeats per second (h/s),
bodytrack is given a performance target between 3 and 4

h/s, dedup’s thresholds are respectively 53 and 54 h/s and
for this second swaptions run, the heart rate was constrained
to be between 9 and 10 h/s. The desired range is wider for
x264, since its modified version proposed in [15] is supposed
to span from 25 and 35 beats, therefore maintaining a target
of 30 frames per second.

For each benchmark, we again measure ISE, WDP, and
ISEWDP. Figure 3 shows the ISE for these benchmarks.
Every bar depicts a percentage of error, the meaning of a
single bar being the percentage of average fluctuation with
respect to the set point. For example, a value of 2 means
that, on average, the ISE is twice as big as the desired heart
rate value. Figure 4 depicts the percentage of data points
that are not in the desired performance interval for each test
case with each of the different decision methods.

Notice that dedup is especially hard to control as there is
little regularity in the heartbeats emission and the feedback
mechanism is difficult to exploit. In that case, apparently,
almost all the points lay outside the desired range indepen-
dently of the adopted decision method, but the use of an
adaptive control system based on a Kalman filter seems to
limit the errors as much as possible. The Kalman filter so-
lution behaves better than the other proposals for black-

sholes and swaptions as well, where both the percentage
of wrong data points and the relative error are smaller than
with all the other techniques.

On the contrary, the most powerful solution to control the
performance of bodytrack seems to be the implemented neu-
ral network, for which all the points are inside the specified
range, with a limited error. The reinforcement learning so-
lution’s performance is highly variable between benchmarks;
this is probably partially due to its random initialization.

It is worth noticing, however, that for x264, the heuristic

8

Heuristic
Deadbeat

RLS Identification
Kalman Identification

Reinforcement Learning
Neural Netowrk

Pe
rc

en
ta

ge
 o

f p
oi

nt
s

ou
ts

id
e

th
re

sh
ol

ds

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Benchmark
blacksholes swaptions dedup x264 bodytrack

Figure 4: Summary WDP results (lower is better).

solution and the two machine learning-based ones outper-
form the control-theoretical methods. This seems to imply
that the model assumption in this particular case are wrong.
One reason for this may be that the dynamic between the
measured heart rate and the past one is more complex than
what is modeled for the control solutions, a matter to be
further studied in the future.

6. CONCLUSIONS
In this paper, we proposed a comparison of some state-of-

the-art techniques for building decision making mechanisms
in autonomic computing systems. The Application Heart-
beat framework was used to provide the necessary sensors to
develop different solutions, spanning from machine learning
techniques to heuristic and control-theoretical systems.

We focused on decisions related to the problem of self-
optimization, where for an application a range of desired
operating conditions is defined, and the decision making
mechanism needs to provide the necessary resources (and
possibly no more) to meet the requirements. A single case
study was shown in detail with all the proposed techniques,
to allow a meaningful comparison, and some numerical data
are proposed as well as plots depicting the behavior of the
system. This case study is chosen among the tests con-
ducted with all the PARSEC benchmark applications, for
which some aggregate results are provided.

Our results indicate that the best decision method can
vary depending on the specific application to be optimized;
however, we note that the adaptive control system based on
a Kalman filter tends to produce good performance for a
range of applications. Thus, we conclude that for specific
systems with a narrow range of target applications develop-
ers are probably best off testing a number of decision mech-
anisms, but for systems with a broad or unknown range of
target applications, adaptive control may provide the best
general solution. Future works will consider more advanced
methodologies and extend the present comparison. More-

over, we will summarize the results obtained with all the
software applications, to the extent of generalization.

Acknowledgment
We’d like to thank the Rocca Foundation for the support
through the Progetto Rocca.

7. REFERENCES
[1] An architectural blueprint for autonomic computing.

Technical report, June 2006.

[2] D. Albonesi, R. Balasubramonian, S. Dropsho,
S. Dwarkadas, E. Friedman, M. Huang, V. Kursun,
G. Magklis, M. Scott, G. Semeraro, P. Bose,
A. Buyuktosunoglu, P. Cook, and S. Schuster.
Dynamically tuning processor resources with adaptive
processing. Computer, 36:49–58, December 2003.

[3] K. Åström and T. Hägglund. Advanced PID Control.
ISA - The Instrumentation, Systems, and Automation
Society, Research Triangle Park, NC, 2005.

[4] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The
PARSEC benchmark suite: Characterization and
architectural implications. In Proceedings of the 17th
International Conference on Parallel Architectures and
Compilation Techniques, October 2008.

[5] R. Bitirgen, E. Ipek, and J. Martinez. Coordinated
management of multiple interacting resources in chip
multiprocessors: A machine learning approach. In
Proceedings of the 41st annual IEEE/ACM
International Symposium on Microarchitecture,
MICRO 41, pages 318–329, Washington, DC, USA,
2008. IEEE Computer Society.

[6] P. Bod́ık, R. Griffith, C. Sutton, A. Fox, M. Jordan,
and D. Patterson. Statistical machine learning makes
automatic control practical for internet datacenters. In
Proceedings of the 2009 conference on Hot topics in

9

cloud computing, HotCloud’09, pages 12–12, Berkeley,
CA, USA, 2009. USENIX Association.

[7] D. Breitgand, E. Henis, and O. Shehory. Automated
and adaptive threshold setting: Enabling technology
for autonomy and self-management. In Proceedings of
the Second International Conference on Automatic
Computing, pages 204–215, Washington, DC, USA,
2005. IEEE Computer Society.

[8] J. Chase, D. Anderson, P. Thakar, A. Vahdat, and
R. Doyle. Managing energy and server resources in
hosting centers. In Proceedings of the eighteenth ACM
symposium on Operating systems principles, SOSP
’01, pages 103–116, New York, NY, USA, 2001. ACM.

[9] M. Chen, A. Zheng, J. Lloyd, M. Jordan, and
E. Brewer. Failure diagnosis using decision trees. In
Proceedings of the International Conference on
Autonomic Computing, pages 36–43, May 2004.

[10] R. Dantu, J. Cangussu, and S. Patwardhan. Fast
worm containment using feedback control. IEEE
Transactions on Dependable and Secure Computing,
4(2):119–136, April-June 2007.

[11] P. Geurts, I. E. Khayat, and G. Leduc. A machine
learning approach to improve congestion control over
wireless computer networks. In Proceedings of the 4th
IEEE International Conference on Data Mining, pages
383 – 386, November 2004.

[12] J. Hellerstein, Y. Diao, S. Parekh, and D. Tilbury.
Feedback Control of Computing Systems. Wiley,
September 2004.

[13] J. Hellerstein, V. Morrison, and E. Eilebrecht.
Applying control theory in the real world: experience
with building a controller for the .net thread pool.
SIGMETRICS Performance Evaluation Review,
37(3):38–42, 2009.

[14] H. Hoffmann, J. Eastep, M. Santambrogio, J. Miller,
and A. Agarwal. Application heartbeats: a generic
interface for specifying program performance and
goals in autonomous computing environments. In
Proceeding of the 7th international conference on
Autonomic computing, ICAC ’10, pages 79–88, New
York, NY, USA, 2010. ACM.

[15] H. Hoffmann, M. Maggio, M. D. Santambrogio,
A. Leva, and A. Agarwal. SEEC: A Framework for
Self-aware Management of Multicore Resources.
Technical Report MIT-CSAIL-TR-2011-016, CSAIL,
MIT, March 2011.

[16] J. Kephart. Research challenges of autonomic
computing. In Proceedings of the 27th international
conference on Software engineering, ICSE ’05, pages
15–22, New York, NY, USA, 2005. ACM.

[17] J. Kephart and D. Chess. The vision of autonomic
computing. Computer, 36:41–50, January 2003.

[18] X. Liu, X. Zhu, S. Singhal, and M. Arlitt. Adaptive
entitlement control of resource containers on shared
servers. In Proceeding of the 9th IFIP/IEEE
International Symposium on Integrated Network
Management, pages 163–176, May 2005.

[19] L. Ljung. System Identification: Theory for the User.
Prentice Hall PTR, December 1998.

[20] C. Lu, Y. Lu, T. Abdelzaher, J. Stankovic, and
S. Son. Feedback control architecture and design
methodology for service delay guarantees in web

servers. IEEE Transactions on Parallel and
Distributed Systems, 17(7), 2006.

[21] M. Maggio, H. Hoffmann, M. D. Santambrogio,
A. Agarwal, and A. Leva. Controlling software
applications via resource allocation within the
heartbeats framework. In Proceeding of the 49th
international conference on decision and control,
Atlanta, USA, 2010. IEEE Control.

[22] J. Martinez and E. Ipek. Dynamic multicore resource
management: A machine learning approach. IEEE
Micro, 29:8–17, September 2009.

[23] A. O’Dwyer. Handbook of PI And PID Controller
Tuning Rules. Imperial College Press, second edition,
February 2006.

[24] W. Pan, D. Mu, H. Wu, and L. Yao. Feedback
Control-Based QoS Guarantees in Web Application
Servers. In Proceedings of the 10th International
Conference on High Performance Computing and
Communications, pages 328–334, September 2008.

[25] A. Ramirez, D. Knoester, B. Cheng, and P. McKinley.
Applying genetic algorithms to decision making in
autonomic computing systems. In Proceedings of the
6th international conference on Autonomic computing,
ICAC ’09, pages 97–106, New York, NY, USA, 2009.
ACM.

[26] R. Sutton and A. Barto. Reinforcement learning: an
introduction. page 322, 1998.

[27] G. Tesauro. Reinforcement learning in autonomic
computing: A manifesto and case studies. IEEE
Internet Computing, 11:22–30, January 2007.

[28] G. Tesauro, N. Jong, R. Das, and M. Bennani. A
hybrid reinforcement learning approach to autonomic
resource allocation. In Proceedings of the 2006 IEEE
International Conference on Autonomic Computing,
pages 65–73, Washington, DC, USA, 2006. IEEE
Computer Society.

[29] C. Tsai, Y. Hsu, C. Lin, and W. Lin. Review:
Intrusion detection by machine learning: A review.
Expert Syst. Appl., 36:11994–12000, December 2009.

[30] P. Ulam, A. Goel, J. Jones, and W. Murdoch. Using
model-based reflection to guide reinforcement
learning. In Proceedings of the 2005 IJCAI Workshop
on Reasoning, Representation and Learning in
Computer Games, pages 1–6, 2005.

[31] J. Wildstrom, E. Witchel, and R. Mooney. Towards
self-configuring hardware for distributed computer
systems. In Proceedings of the Second International
Conference on Automatic Computing, pages 241–249,
Washington, DC, USA, 2005. IEEE Computer Society.

10

