SEHL MELLOULI

FATMAS : A Methodology to Design Fault-tolerant
Multi-agent Systems

Theése présentée
a la Faculté des études supérieures de 1’Université Laval
dans le cadre du programme de doctorat en Informatique
pour l'obtention du grade de Philosophiae Doctor (Ph.D.)

Département d’informatique et de génie logiciel
Faculté des Sciences et Génie

UNIVERSITE LAVAL
QUEBEC

Mai 2005

©Sehl Mellouli, 2005



https://core.ac.uk/display/442651124?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Résumé

Un systéme multi-agent (SMA) est un systéme dans lequel plusieurs agents opérent
et interagissent. Chaque agent a la responsabilité d’exécuter des téaches. Cependant,
chaque agent, pour diverses raisons, peut rencontrer des problémes pendant I’exécution
de ses taches; ce qui peut induire un disfonctionnement du SMA. Cependant, le SMA
doit étre en mesure de détecter les sources de probléms (d’erreurs) afin de les controler
et ainsi continuer son exécution correctement. Un tel SMA est appelé un SMA tolérant
aux fautes.

Il existe deux types de sources d’erreurs pour un agent : les erreurs causées par
son environnment et les erreurs diies a sa programmation. Dans la littérature, il existe
plusieurs techniques qui traitent des erreurs de programmation au niveau des agents.
Cependant, ces techniques ne traitent pas des erreurs causées par ’environnement de
I’agent. Tout d’abord, nous distinguons entre 1’environnment d’un agent et 1’environ-
nement du SMA. L’environnement d’un agent représente toutes les composantes ma-
térielles ou logicielles que I'agent ne peut controler mais avec lesquelles il interagit.
Cependant, 'environnment du SMA représente toutes les composantes que le systéme
ne contrdle pas mais avec lesquelles il interagit. Ainsi, le SMA peut contréler certaines
des composantes avec lesquelles un agent interagit. Ainsi, une composante peut appar-
tenir a 'environnement d’un agent et ne pas appartenir a I’environnement du systéme.
Dans ce travail, nous présentons une méthodologie de conception de SMA tolérants aux
fautes, nommée FATMAS, qui permet au concepteur du SMA de détecter et de corriger,
si possible, les erreurs causées par les environnements des agents. Cette méthodologie
permettra ainsi de délimiter la frontiére du SMA de son environnement avec lequel il
interagit. La frontiere du SMA est déterminée par les différentes composantes (maté-
rielles ou logicielles) que le systéme controle. Ainsi, le SMA, a l'intérieur de sa frontiére,
peut corriger les erreurs provenant de ses composantes. Cependant, le SMA n’a aucun
controle sur toutes les composantes opérant dans son environnement.

La méthodologie, que nous proposons, doit couvrir les trois premiéres phases d’un
développement logiciel qui sont ’analyse, la conception et I'implémentation tout en in-
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tégrant, dans son processus de développement, une technique permettant au concepteur
du systéme de délimiter la frontiére du SMA et ainsi détecter les sources d’erreurs et les
controler afin que le systéme multi-agent soit tolérant aux fautes (SMATF). Cependant,
les méthodologies de conception de SMA, référencées dans la littérature, n’intégrent pas
une telle technique.

FATMAS offre au concepteur du SMATF quatre modéles pour décrire et déve-
lopper le SMA ainsi qu'une technique de réorganisation du systéme qui lui permet
de détecter et de controler ses sources d’erreurs, et ainsi définir la frontiére du SMA.
Chaque modéle est associé & un micro processus qui guide le concepteur lors du déve-
loppement du modéle. FATMAS offre aussi un macro-processus, qui définit le cycle
de développement de la méthodologie. FATMAS se base sur un développement itératif
pour identifier et déterminer les taches a ajouter au systéme afin de controler des sources
d’erreurs. A chaque itération, le concepteur évalue, selon une fonction de cotit /bénéfice
s’il est opportun d’ajouter de nouvelles taches de controle au systéme.

Le premier modele est le modéle de tiches-environnement. 11 est développé lors de la
phase d’analyse. Il identifie les différentes taches que les agents doivent exécuter, leurs
préconditions et leurs ressources. Ce modéle permet d’identifier différentes sources de
problémes qui peuvent causer un disfonctionnement du systéme. Le deuxiéme modéle
est le modele d’agents. 11 est développé lors de la phase de conception. Il décrit les
agents, leurs relations, et spécifie pour chaque agent les ressources auxquelles il a le droit
d’accéder. Chaque agent exécutera un ensemble de taches identifiées dans le modéle de
taches-environnement. Le troisieme modéle est le modele d’interaction d’agents. 11 est
développé lors de la phase de conception. Il décrit les échanges de messages entre les
agents. Le quatriéme modéele est le modeéle d’implémentation. Il est développé lors de
la phase d’implémentation. I1 décrit l'infrastructure matérielle sur laquelle le SMA va
opérer ainsi que l'environnement de développement du SMA. La méthodologie inclut
aussi une technique de réorganisation. Cette technique permet de délimiter la frontiére
du SMA et controler, si possible, ses sources d’erreurs. Cette technique doit intégrer trois
techniques nécessaires a la conception d’un systéme tolérant aux fautes : une technique
de prévention d’erreurs, une technique de recouvrement d’erreurs, et une technique
de tolérance aux fautes. La technique de prévention d’erreurs permet de délimiter la
frontiere du SMA. La technique de recouvrement d’erreurs permet de proposer une
architecture du SMA pour détecter les erreurs. La technique de tolérance aux fautes
permet de définir une procédure de réplication d’agents et de taches dans le SMA pour
que le SMA soit tolérant aux fautes. Cette derniére technique, a I'inverse des techniques
de tolérance aux fautes existantes, réplique les taches et les agents et non seulement les
agents. Elle permet ainsi de réduire la complexité du systéme en diminuant le nombre
d’agents a répliquer.
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De méme, un agent peut ne pas étre en erreur mais la composante matérielle sur
laquelle il est exécuté peut ne plus étre fonctionnelle. Ce qui constitue une source
d’erreurs pour le SMA. Il faudrait alors que le SMA continue & s’exécuter correctement
malgre le disfonctionnement d’une composante. FATMAS fournit alors un support au
concepteur du systéme pour tenir compte de ce type d’erreurs soit en controlant les
composantes matérielles, soit en proposant une distribution possible des agents sur les
composantes matérielles disponibles pour que le disfonctionnement d’une composante
matérielle n’affecte pas le fonctionnement du SMA.

FATMAS permet d’identifier des sources d’erreurs lors de la phase de conception du
systéme. Cependant, elle ne traite pas des sources d’erreurs de programmation. Ainsi,
la technique de réorganization proposée dans ce travail sera validée par rapport aux
sources d’erreurs identifiées lors de la phase de conception et provenant de la frontiére
du SMA. Nous démontrerons formellement que, si une erreur provient d’une composante
que le SMA controle, le SMA devrait étre opérationnel. Cependant, FATMAS ne certifie
pas que le futur systéme sera toujours opérationnel car elle ne traite pas des erreurs de
programmation ou des erreurs causées par son environnement.



Abstract

A multi-agent system (MAS) consists of several agents interacting together. In a
MAS, each agent performs several tasks. However, each agent is prone to individual
failures so that it can no longer perform its tasks. This can lead the MAS to a failure.
Ideally, the MAS should be able to identify the possible sources of failures and try
to overcome them in order to continue operating correctly; we say that it should be
fault-tolerant.

There are two kinds of sources of failures to an agent : errors originating from the
environment with which the agents interacts, and programming exceptions. There are
several works on fault-tolerant systems which deals with programming exceptions. Ho-
wever, these techniques does not allow the MAS to identify errors originating from an
agent’s environment. In this thesis, we propose a design methodology, called FATMAS,
which allows a MAS designer to identify errors originating from agents’ environments.
Doing so, the designer can determine the sources of failures it could be able to control
and those it could not. Hence, it can determine the errors it can prevent and those it
cannot. Consequently, this allows the designer to determine the system’s boundary from
its environment. The system boundary is the area within which the decision-taking pro-
cess of the MAS has power to make things happen, or prevent them from happening. We
distinguish between the system’s environment and an agent’s environment. An agent’s
environment is characterized by the components (hardware or software) that the agent
does not control. However, the system may control some of the agent’s environment
components. Consequently, some of the agent’s environment components may not be a
part of the system’s environment.

The development of a fault-tolerant MAS (FTMAS) requires the use of a metho-
dology to design FTMAS and of a reorganization technique that will allow the MAS
designer to identify and control, if possible, different sources of system failure. However,
current MAS design methodologies do not integrate such a technique.

FATMAS provides four models used to design and implement the target system and
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a reorganization technique to assist the designer in identifying and controlling different
sources of system’s failures. FATMAS also provides a macro process which covers the
entire life cycle of the system development as well as several micro processes that guide
the designer when developing each model. The macro-process is based on an iterative
approach based on a cost/benefit evaluation to help the designer to decide whether to
go from one iteration to another.

The methodology has three phases : analysis, design, and implementation. The ana-
lysis phase develops the task-environment model. This model identifies the different
tasks the agents will perform, their resources, and their preconditions. It identifies se-
veral possible sources of system failures. The design phase develops the agent model
and the agent interaction model. The agent model describes the agents and their re-
sources. Each agent performs several tasks identified in the task-environment model.
The agent interaction model describes the messages exchange between agents. The im-
plementation phase develops the implementation model, and allows an automatic code
generation of Java agents. The implementation model describes the infrastructure upon
which the MAS will operate and the development environment to be used when de-
veloping the MAS. The reorganization technique includes three techniques required to
design a fault-tolerant system : a fault-prevention technique, a fault-recovery technique,
and a fault-tolerance technique. The fault-prevention technique assists the designer in
delimiting the system’s boundary. The fault-recovery technique proposes a MAS archi-
tecture allowing it to detect failures. The fault-tolerance technique is based on agent
and task redundancy. Contrary to existing fault-tolerance techniques, this technique re-
plicates tasks and agents and not only agents. Thus, it minimizes the system complexity
by minimizing the number of agents operating in the system. Furthermore, FATMAS
helps the designer to deal with possible physical component failures, on which the MAS
will operate. It proposes a way to either control these components or to distribute the
agents on these components in such a way that if a component is in failure, then the
MAS could continue operating properly.

The FATMAS methodology presented in this dissertation assists a designer, in its
development process, to build fault-tolerant systems. It has the following main contri-
butions :

1. it allows to identify different sources of system failure ;

2. it proposes to introduce new tasks in a MAS to control the identified sources of
failures ;

3. it proposes a mechanism which automatically determines which tasks (agents)
should be replicated and in which other agents ;

4. it reduces the system complexity by minimizing the replication of agents;
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5. it proposes a MAS reorganization technique which is embedded within the desi-
gned MAS and assists the designer to determine the system’s boundary. It pro-
poses a MAS architecture to detect and recover from failures originating from
the system boundary. Moreover, it proposes a way to distribute agents on the
physical components so that the MAS could continue operating properly in case
of a component failure. This could make the MAS more robust to fault prone
environments.

FATMAS alows to determine different sources of failures of a MAS. The MAS
controls the sources of failures situated in its boundary. It does not control the sources of
failures situated in its environments. Consequently, the reorganization technique pro-
posed in this dissertation will be proven valid only in the case where the sources of
failures are controlled by the MAS. However, it cannot be proven that the future sys-
tem is fault-tolerant since faults originating from the environment or from coding are
not dealt with.
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Chapitre 1

Introduction

A multi-agent system (MAS) is a system in which several agents operate and interact
with one another [30]. Each agent is autonomous, reactive and proactive [58]. An agent
is autonomous means that the agent is an independent entity that is able to function
without direct programmer or user intervention [32]. An agent is reactive means that
the behavior of the agent is directed by the goals it has to achieve [32]. An agent is
proactive means that the agent can monitor its environments and respond quickly and
effectively to changes in those environments [32]. The environment of a MAS is defined
as what lies outside the MAS boundary [9]. The MAS boundary is the area within which
the decision-making process of the MAS has power to make things happen, or prevent
them from happening. Consequently, we can define the environment of an agent as what
lies outside the agent boundary. The agent boundary is then defined as the area within
which the decision-making process of the agent has power to make things happen, or
prevent them from happening.

In a fault-tolerant system, any component acting in this system should be able to
overcome any possible failure which could prevent it from achieving its goals and hence
the system’s goals. If an agent is in failure in a multi-agent system, and if this failure is
not originating from the agent’s environment, then the agent will be able to prevent this
failure from happening since it has the power to prevent things happening if they occur
in its boundary. Moreover, if the failure is originating from the agent’s environment,
then the agent will quickly and effectively respond to that failure since agents are
reactive. Furthermore, since agents are proactive, their behavior is directed by their
goals. So, if an agent is in failure, then it could not achieve its goals. Hence, the system
could not achieve its goals. Consequently, there could be other agents which could not
achieve their goals. So, each agent must quickly and effectively respond to these failures
in order to overcome them. So multi-agent systems are appropriate solutions to build
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fault-tolerant systems [36].

Consequently, fault-tolerance can be dealt with during either a methodological pro-
cess in which the fault-tolerance aspects are taken into account when designing the
future system, or when using a pre-defined structure of the system so that the system
adapts itself when failure occurs, or even by applying fault-tolerance to the infrastruc-
ture on which the MAS will be deployed :

1. At the methodological level, any design methodology of fault-tolerant MAS should
integrate a reorganization technique which allows the MAS to detect and recover
from its failures;

2. An adaptive MAS is defined in [49] as a self-adaptive software which evaluates its
own behavior and changes behavior when the evaluation indicates that it is not
accomplishing what the software is intended to do, or when better functionality or
performance is possible. An agent can change its behavior by changing the way
it perceives its inputs and by the way it interacts with other agents. An adap-
tive MAS does not use redundancy so that the system recovers from its failures.
It makes the agents adapt their behavior to overcome the encountered failures.
An adaptive MAS has a pre-defined structure that must adapt its behavior to
encountered failures. The adaptive MAS are used in a forward recovery approach
since the system should operate, sometimes, in a degraded mode as in [18];

3. Infrastructure faults are dealt with by adopting self-healing MAS. The MAS auto-
matically detects, diagnoses, and repairs localized software and hardware problems
[52]. For example, solutions based on broker agents allow to manage the system
and detect its component failures and to manage the infrastructure failures such
as network failures or machine crashes [29].

The goal of this thesis is to provide a methodology to design FTMAS. In this intro-
duction, we first describe the problem that we intend to address in the thesis. Then, we
set the objectives of the thesis. Finally, we outline the methodology described in this
thesis and give an overview of the remaining chapters of this thesis.

1.1 The Issue

We stated earlier that a MAS is not able to make things happening or prevent them
from happening if they are originating from its environment [9]. Hence, the MAS does
not control its environment, nevertheless it controls its boundary. Any agent operating
in a MAS has two possible sources of failures : its environment or programming excep-
tions. The programming exceptions are dealt with when the system is programmed and
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tested. However, failures coming from the environment can be dealt with when desi-
gning the system since they are identified before MAS implementation. Consequently,
the development of a fault-tolerant MAS (FTMAS) requires the use of a MAS design
methodology which assists the MAS designer in identifying the different sources of sys-
tem failures and determining which of them can be controlled by the system and which
could not be. Doing so, the methodology determines the future MAS boundary. We dis-
tinguish between the MAS’ environment and an agent’s environment. The MAS does
not control its environment and so the sources of failures situated in the environment.
However, the MAS may control an agent’s environment and thus the sources of failures
of this agent.

Current MAS design methodologies such as those described in [2][7][14][17][20][24]
[27][31][43][44][57] do not integrate a fault-recovery technique to assist the designer in
determining the MAS boundary. Furthermore, several fault-recovery techniques have
been proposed in the literature to build FTMAS [8] [11] [12] [16] [18] [21] [22] [25] [28]
[29] [39] [45] [47] [51]. All these techniques address programming exceptions. None of
these techniques address the issue to identify the system boundary in order to determine
the sources of failures situated in its environment that the system does not control, and
those situated in its boundary that it controls. Consequently, it should be better for the
development of a FTMAS to use an appropriate design methodology that integrates
a reorganization technique [38| from the start. The reorganization technique includes
three techniques required to design a fault-tolerant system : a fault-prevention tech-
nique, a fault-recovery technique, and a fault-tolerance technique. The fault-prevention
technique assists the designer in delimiting the MAS boundary. The fault-recovery tech-
nique proposes a MAS architecture allowing it to detect failures. The fault-tolerance
technique is based on agent and task redundancy. Contrary to existing fault-tolerance
techniques, this technique replicates tasks and agents and not only agents. Thus, it
minimizes the system complexity by minimizing the number of agents operating in the
system.

1.2 The Objective ?

A software development method as defined in [4] encompasses a notation whose
purpose is to provide common means of expressing strategic and tactical decisions, ul-
timately manifesting themselves in a variety of artifacts and a process, responsible for
specifying how and when certain artifacts should be produced. A notation serves as the
language for communicating decisions that are obvious or cannot be inferred from the
code itself, provides rich enough semantics, sufficient to capture all important strategic
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and tactical decisions and offers a concrete form for human to reason about decisions.

In this thesis, we aim at providing a fault-tolerant MAS design methodology, called
FATMAS,. Hence, this methodology must propose notations and models to design
the MAS. Furthermore, the methodology must integrate a reorganization technique as
stated in [35] [38]. This reorganization technique includes techniques required to build
a fault-tolerant system [47] :

1. A Fault-prevention technique to prevent the introduction and occurrence of faults ;
2. A fault-recovery technique to detect the existence of faults and eliminate them ;

3. A fault-tolerance technique to provide services complying with the specifications
of the system in case of faults.

FATMAS takes its origins in two related domains : multi-agent systems software
engineering and fault-tolerant systems. From a methodological perspective, there are
several concepts which should be taken into account when defining the methodology.
These concepts define the basis upon which FATMAS is built. Doing so, FATMAS
is not built from scratch, it relies on well-accepted software engineering concepts as
presented in Chapter 2.

From a fault-tolerant systems perspective, the reorganization technique includes
three techniques for fault-prevention, fault-recovery, and fault-tolerance. The concepts
related to these techniques must be integrated with the software engineering concepts.
In Chapter 2, we formally define all the methodology concepts and their relations.
Doing so, we integrate the reorganization technique within the methodology’s models
and hence ease the design of a fault-tolerant multi-agent system.

1.3 A MAS Design Methodology With Fault-tolerant
Features

FATMAS is a software design methodology. It has three phases which are analy-
sis, design, and implementation. Each phase proposes models to develop. They propose
four models and a reorganization technique. The analysis phase proposes the task-
environment model that determines the different tasks to be performed in the system
and assist the designer to delimit the system’s boundary. The design phase proposes
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the agent model and the agent interaction model. The agent model that determines the
agents that will perform the identified tasks, the agent interaction model that deter-
mines the interactions between agents when performing their tasks. The implementation
phase proposes the implementation model and code generation. The implementation
model determines the infrastructure upon which the system will operate, and the code
generation determines the Java code of the different agents. Finally, the methodology
proposes a reorganization technique which allows the MAS to control the sources of
failures identified in its boundary and overcome them. This technique will be based on
the information carried by these models.

Each model is associated with a micro-process which describes how to build it. The
methodology is characterized by a macro-process that supports the designer when going
through the design steps and the creation of the different models. FATMAS is based on
an iterative approach to allow the designer discover sources of failures and introduce
new tasks in order to control them. The designer goes from an iteration to another
based on a cost/benefit evaluation.

FATMAS deals with faults which can be identified at design level and not on faults
originating from coding. Hence, the reorganization technique proposed in this disserta-
tion will be proven valid only in the case where the sources of failures are controlled by
the MAS. However, it cannot be proven that the future system is fault-tolerant since
faults originating from the MAS environment and from coding are not dealt with.

1.4 Case Studies

The methodology presented in this thesis has been applied to two different types of

multi-agent systems :

— One which implements a supply chain that produces mechanical pieces. Multi-
agent systems are well-suited for this task because of the complexity of the domain
and its natural degree of distribution;

— One which manages printers in a computer network. The system controls the prin-
ters and notifies the users of any problem that occurs in the system, preventing
the printing of a document.

This dissertation has 7 chapters. In chapter 2, we present the different concepts
which are used in the FATMAS methodology. Chapter 3 presents FATMAS, the design
methodology that we propose to build fault-tolerant multi-agent systems. This chapter
is based on the supply chain example. Chapter 4 presents further case studies to apply
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FATMAS. Chapter 5 presents several agent-oriented design methodologies and shows
how they can be integrated with FATMAS. Chapter 6 presents related work on fault-
tolerant techniques. Chapter 7 concludes this dissertation and presents future research

works.



Chapitre 2

FATMAS Basic Concepts

This thesis aims at defining a methodology, FATMAS, to design fault-tolerant multi-
agent systems. This methodology is built upon different concepts related to multi-agent
systems and fault-tolerant systems while it includes a reorganization technique. In this
chapter, we first present an ontology that defines the different concepts on which FAT-
MAS is based. These concepts are related to system theory, multi-agent systems, and
fault-tolerant systems. Second, in order to formally define the reorganization technique
of the methodology, we formalize the definitions and relations between these concepts.
The formal definitions will be used to delimit the system’s boundary, to propose a fault-
recovery technique to deal with possible agents and physical component failures, and
to establish a relation between the different models produced in FATMAS. FATMAS
models will be defined in Chapter 3.

2.1 Key Concepts for Designing Fault-tolerant Multi-

agent Systems

This section defines the key concepts on which our methodology is based, in the
form of an ontology. An ontology is defined in [54]| as "some sort of world view with
respect to a given domain...often conceived as a set of concepts...their definitions and
their inter-relationships". So, in this section, we present informal definitions of these
concepts and their relationships. In the next section, we propose formal definitions of
these key concepts in order to propose our reorganization technique.

Before introducing the concepts related to multi-agent systems and fault-tolerant
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systems, we present concepts related to general system theory. This theory is described
in [9][40][56]. As presented in Figure 2.1, a system is composed of interacting components
that operate together in order to achieve some objectives or purposes. A system is
intended to get inputs, process them in some way and produce outputs. The inputs
are requests for services sent by the environment to the system. They are considered
as external stimuli to the system. They are out of control of the system. The outputs
are defined as services that the system provides to its environment. The system may
require access to resources in order to deliver the services it is requested for.

Environment

Inputs

Outputs

external stimuli services rendered

Resources
F1G. 2.1 — A system definition.

The external stimuli comes from the environment. Their combination characterizes
the situations to which the system must react to. A situation characterizes a snapshot of
the environment [34]. However, the external stimuli may be affected by the outputs de-
livered by the system. Hence, the system outputs have an influence on its environment :
they may trigger environmental changes that may result in a situation change.

In a system, some of the components are activated by stimuli originating from the
system’s environment while others are activated by stimuli originating from system’s
components. The stimuli originating from the system’s components are called the in-
ternal stimuli [10]. The internal stimuli characterize the observable state of the system.
Furthermore, the system must have control on things happening in it. Hence, the in-
ternal stimuli must be controlled by the system. Consequently, they characterize the
boundary of the system.

Each system’s component can perform several tasks. Each task has a set of precon-
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ditions which must be met so that the task is properly performed. Also, each task has
post-conditions which are conditions that must be met after the execution of the task.
If a precondition is not met, the task cannot be performed. Hence, preconditions may
prevent tasks from execution. Consequently, preconditions could be possible sources of
failures to the system. This will be discussed in the next sections.

A fault-tolerant system is a system which recovers from its failures. Any fault-
tolerance technique used in the literature is based on redundancy [8] [11] [12] [16]
[18] [21] [22] [25] [28] [29] [39] [45] [47] [51]. Consequently, a fault-tolerant multi-agent
system should be based on agent replication. Hence, we introduce the concepts of an
original agent and a replica agent. An original agent is an agent which is identified,
when designing a MAS, before taking into account the fault-tolerance aspects. A replica
agent is an agent which is added to the system in order to support fault-tolerance.

From the study above, the basic concepts on which a fault-tolerant MAS design
methodology is built are summarized in what follows :

1. System : A system can be viewed as an organization in which agents have to
perform tasks [42];

2. Component : a component is a software program which operates in the system.

3. Agents : As stated in [32], there is no consensus in the literature on the definition
of an agent. However, there is a consensus on the properties of an agent. An agent
has at least four properties [32] :

— Autonomy : agents are able to function without direct programmer or user
intervention ;

— Reactiveness : agents can monitor their environments and respond quickly and
effectively to changes in those environments;

— Proactiveness : agents have overarching goals that direct behavior over longer
periods of time towards achieving complex tasks;

— Social ability : since agents operate in dynamic and open environments with
many other agents, they must have the ability to interact and communicate
with these others.

4. Objective : As defined in [9], and adapted to multi-agent systems, an objective is
an end which a set of agents may seek to achieve;

5. Input : As defined in [9], an input is something that is changed by a transformation
process ;

6. Output : As defined in [9], an output is something that is produced by a trans-
formation process;
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7.

10.

11.

12.
13.
14.

15.
16.

17.

Resource : As stated in [46], a resource includes for example computational re-
sources, network resources or data resources;

Environment : As defined in [9], the environment is defined as what lies outside
the system boundary. The system boundary is the area within which the decision-
making process of the system has power to make things happen, or prevent them
from happening;

Internal Stimuli : The internal stimuli are the stimuli originating from the system’s
agents [10] ;

External Stimuli : The external stimuli are the stimuli originating from the sys-
tem’s environment [10];

Task : An abstract description of how the world needs to be transformed in order
to achieve a desired behavior or functionality [55];

Precondition : A precondition is a condition to the execution of a task;
Postcondition : A condition which must be met after the execution of a task;

State : A state is the observable state of the system. It is characterized by the
internal stimuli of the system ;

Failure : A failure is defined as a result of a task malfunctioning;

Original agent : An original agent is an agent identified at system design before
introducing fault-tolerance in the system;

Replica agent : A replica agent is an agent which is added to the system to
replicate an original agent in order to take into account fault-tolerance.

The described concepts and links between them are depicted in Figure 2.2. Sub-

classes are shown by entities having an extra small rectangle on the left. This notation
is taken from [46].

2.2 Formal Definitions of Concepts Related to System

Theory

At this stage, we identified the different concepts on which FATMAS is based. In
this section, we formally define ! these concepts and their relations in order to propose a

reorganization technique which assists the designer in determining the system boundary

"'We notice that the majority of the definitions provided in this chapter serves to define the reor-

ganization technique. Some of them will be referred to when defining the methodology in Chapter

3.
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External Internal N N
stimuli stimuli

failure

precondition

environment 1 N input

component Post-condition
agent

oroginal replica
agent agent

F1G. 2.2 — A diagram showing the concepts and the links between them, including the
cardinalities of the links : many-to-many, many-to-one or one-to-many, and subclassing.

and propose a reorganization technique to overcome failures originating from the system
boundary.

As presented in Figure 2.1, and stated earlier, a system is composed of interacting
components that operate together in order to achieve some objectives or purposes.
A system is intended to get inputs, process them in some way and produce outputs.
The inputs are requests for services sent by the environment to the system. They are
considered as external stimuli to the system. The outputs are defined as services that
the system provides to its environment. The system may require access to resources in
order to deliver the services it is requested for.

In Definition 1, we define the set of the external stimuli received by the system.

Definition 1. We define E; as the set of the external stimuli to the system. By, =
{st1, ..., stn }, |Es|=n .

The external stimuli are the elements of the environment that influence the system
operation. The combination of the external stimuli characterizes the situations to which
the system must react to. They are out of control of the system. They are situated out-
side the system boundary. Each external stimulus could take several values belonging
to a definition domain. However, each external stimulus could condition the functioning
of the future system since the change of value of an external stimulus may require that
the system delivers a new service. Hence, these values could be used to determine the
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services the system may deliver. Consequently, the system evaluates conditions, which
truth values are evaluated based on the external stimuli, in order to determine which
services it has to deliver. So, we will consider these preconditions in order to describe
the external stimuli of the system. Hence, if there are n external stimuli to which the
system must react to, then the system is confronted to 2" different situations resulting
from the combination of external stimuli generated by the environment.

Definition 2. We define the set E = {e; = (st;,, .., sti,, .., st;,) | i € [1..| E|], ¥
j € [1.n], sti; € E; and |Es|=n}. e; is a situation to which the system must react to.
| E|=2".

When an external stimulus is perceived by the system, a set of outputs must be
generated by the system as a response to this external stimulus. The system outputs
have an influence on its environment : they may trigger environmental changes that
may result in a situation change. The outputs of the system, which are the services
the system has to deliver, can be thought of as the objectives that the system must
achieve. Hence, the resulting environment situations, from the system’s point of view,
can be thought of as goal situations. We notice that not all environment situations are
goal situations. However a goal situation is a particular situation of the environment.
Consequently, the set of goal situations is a subset of the environment situations.

Definition 3. We define G as the set of goal situations. They describe the environment
after the delivery of the related services. G = {g; | g; € E, i € IN }. g; is a goal situation.
G CE.

The outputs of the system are delivered by the different components operating in
the system. In Definition 4, we define the set of these components.

Definition 4. Let C' = {cy,...,c,} be the set of all m components operating in the
system. |C|=m.

In a system, some components are activated by stimuli originating from the sys-
tem’s environment while other components are activated by stimuli originating from
the system’s components. The stimuli originating from the system’s components are
called the internal stimuli [10]. The internal stimuli are components’ outputs which
stay within the system, i.e, messages from other components. They are not meant for
the environment. In fact, they do not reach the outside environment. Hence, the sys-
tem controls the internal stimuli. Consequently, the internal stimuli are defined in the
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system boundary.

Definition 5. We define I as the set of the internal stimuli of the system. I = {isy, ..., s, },
|1 =h.

However, each internal stimulus could condition the functioning of an agent since
the change of value of an internal stimulus may require from an agent to deliver a
new output. Hence, these values could be used to determine the outputs an agent may
deliver. Consequently, an agent evaluates conditions, which truth values are evaluated
based on the internal stimuli, in order to determine which outputs it has to deliver. So,
we will consider these preconditions in order to describe the internal stimuli of the sys-
tem. Hence, if there are h internal stimuli in the system, then the system has at most 2"
different situations resulting from the combination of the internal stimuli generated by
the agents. The internal stimuli characterize the observable state of the system. Hence,
the system could have at most 2" observable states.

Definition 6. We define S = {s; = (isy, .., 8., -, is;,) | 1 € [1..|S|], V j € [1..h],
isi; € I and |I|=h}. s; is an observable state of the system. |S] < 2".

Since the environment is out of control of the system, the system could not prevent
from failures originating from the environment. However, it should be able to prevent
from failures originating from the system boundary; That is these failures are caused
by the system’s internal stimuli. So, for the rest of this document, we only take into
account the observable states of the system.

Each system’s component can perform several tasks. Tasks are the activities requi-
red, or believed to be necessary for a component to achieve a goal in an interactive
environment [3]. We define, in what follows, the set of all the tasks to be performed by
the system’s components.

Definition 7. We define T the set of all tasks to be performed by the system’s compo-
nents of . Let | T |=q, then T = {t;, i € [1..q/}.

Of course, each component has tasks to perform. We define a function that deter-
mines the tasks which should be performed by a particular component.
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Definition 8. Let i € [1..|C|]. We define the function task : C — o(7)*, V ¢ € C,
task(c;) = {t | t € 7}. task(c;) represents the set of tasks which will be performed by
component ¢;.

Now, each component may have to perform a particular task when it receives a sti-
mulus for that. Hence, the achievement of a task is related to some particular observable
states of the system. We define a function that determines the tasks a component could
perform in a particular observable state of the system.

Definition 9. Let i € [1..|C]]. Let ¢; € C and s € S. We define the function perfor-
mableTask : S x C — (1), with performableTask(s, ¢;) C task(c;). performableTask(s,
c;) defines the set of tasks that ¢; could perform in a particular observable state s.

However, each task has a set of preconditions which must be met so that the task
is properly performed. We define a function that determines the set of preconditions of
a task t. These preconditions are based on the truth values of the external and internal
stimuli. As stated in Definitions 2 and 6, these stimuli have boolean values.

Definition 10. Let t € 7. Let u = n+h. Let k < u. We define the function prec(t) =
fe =51 N ANsg N ANsy | sp €1 orsg € Egl

Also, each task has post-conditions which are conditions that must be met after the
execution of the task. We define a function that determines the post-conditions of a
task t. These post-conditions may change the value of an internal or external stimuli.
Consequently, they are expressed based on the internal and external stimulus.

Definition 11. Let t € 7. Let u = n+h. Let k < u. We define the function post(t) =
fe=s1 N ANSEN NSy | se €1 ors, € Eg)

Fault-tolerance techniques are based on redundancy [47]. Redundancy is used in
order to add fault-tolerance capabilities to the system. The redundancy can be a re-
dundancy of hardware or software components. Redundancy is introduced in a system
after the system was designed without taking into account fault-tolerance aspects. Ho-
wever, in a system, it is possible to have two identical components operating in the
system and identified at system design. For example, a system in which two printers,

20 is the partition set function
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with the same characteristics, are used. In this case, it could be possible not to introduce
redundancy to deal with fault-tolerance. In the case where software redundancy is used,
it could be a redundancy of tasks. Hence, there could be identical tasks which must
be performed in the system and which are identified at system design before adding
fault-tolerance capabilities to the system. Two tasks are identical if under the same
preconditions, the two tasks provide the same post-conditions.

Definition 12. Let t and t’ € 7. We define the function idTask : T X T — {true, false}.
idTask(t, t’) = true < (if prec(t) = prec(t’) = post(t) = post(t’)).

Furthermore, a task may be equivalent to another task. A task ¢ is equivalent to
a task t' if under the same preconditions, the post-conditions of ¢ are a subset of the
post-conditions of task t'. If task ¢ is equivalent to task ¢’, then it is not sure that ¢’ is
equivalent to ¢.

Definition 13. Let t and t’ € 7. We define the function equiTask : 7 X T — {true,
false}. equiTask(t, t’) = true < (if prec(t) = prec(t’) = post(t) C post(t’)). equiTask(t,
t’) # equiTast(t’, t).

However, if task ¢ is equivalent to task ¢ and task t' is equivalent to task ¢, then
tasks ¢t and t' are identical.

Definition 14. Let t and t’ € 7. idTask(t, t’) = true < equiTask(t, t’) = true A
equiTask(t’, t) = true.

As stated earlier, the system has control over its internal stimuli. Consequently, there
must be tasks in the system to control them. Hence, the truth value of a precondition
can be changed if the MAS has control over the stimuli from which the precondition
depends. These stimuli are called the effectors of the condition. We define :

Definition 15. Let i € [1..|1|]. Y is; € I, effector : < I — {true, false} | 3 t € T, such
that if effector(t, is;) is true, then t controls the effector of is;.

Moreover, each task, which controls the effectors of an internal stimulus, has an
effect on this stimulus by changing its value. We define, in what follows, the function

effect -
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Definition 16. Let i € [1..|1]]. V is; € I, effect : < I — D | 3 t € T, such that effect(t,
is;) € D where D is the domain of is;.

Consequently, the system has control over its internal stimuli. Hence, the internal
stimuli characterize the system boundary, and the external stimuli characterize the
system environment. So, based on tasks’ preconditions, we can determine which ones
can be controlled by the system and which could not be. Doing so, we delimit the
system’s boundary.

Now, for the system to function properly, the different components of the system
operate with each other in order to provide the requested services to the environment.
Consequently, a component’s task may request the execution of another component’s
task. Hence, the components must operate together .

Definition 17. Let t € 7 and t’ € 7. We define the function call : 7 x T — {true,
false}. call(t, t’) = true means that task t will request the execution of task t’.

This assumes that the various components need to communicate with each other.

Definition 18. Let i€ [1..|C]]. Let j € [1..|C|]. We define the function communication :
C x C — {true, false}. Let ¢; and ¢; € C. communication(c;, ¢;) = true = 3 t €
task(c;), 3 t’ € task(c;) | call(t, t’) = true.

Consequently, each component may interact with several other components.

Definition 19. Let i € [1..|C|/. Let j € [1..|C|]. We define the function interaction : C
— p(C). Let ¢; € C. interaction(c;)={c; € C'| communication(c;, c;) = true, for i #

Jt

For a system to operate correctly, its components may require to use resources. If
a resource, required by the system, is not available, then the system may be in failure.
Hence, the set of resources required by the system must be identified. We define, in
what follows, the set of resources required by the system.

Definition 20. We define R = {ry,...,r;} the set of resources. | R |=L.

3This assumes full cooperation of the different components
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More precisely, the resources may be required by tasks. Consequently, if a resource
is not available, the tasks which require this resource may be in failure. Hence, when
designing a fault-tolerant system, it is important to identify, for each task, its required
resources.

Definition 21. Let t € 7. We define the function resources : T — p(R). resources(t)
determines the set of the resources required by t; resources(t) C R.

Nevertheless, each resource, for some reason, may be available or not in a particular
situation. If a resource is not available, then the system may be in failure. Consequently,
it is important to identify the resources which are not available and in which state of
the system.

Definition 22. Let s € S and r € R. We define the function resourceAvailable : S X R
— {true, false}. resourceAvailable(s, r) = true if r is available in s, and false otherwise.

Furthermore, each component will perform tasks. As stated earlier, each task re-
quires resources to be properly performed. Hence, each component must have access to
the required resources by its tasks.

Definition 23. Let ¢ € C. We define resourceAccessibility : C' — p(R). resourceAcces-
sibility(c) = {r € R | 3 t € task(c), r € resources(t)}.

As stated earlier, redundancy could be a redundancy of hardware or software. Re-
sources are a part of the hardware used by the system. Consequently, in order to provide
fault-tolerance to the system, resource redundancy can be used. However, as for tasks,
if there are identical or equivalent resources required by the system (before introducing
redundancy to deal with fault-tolerance), then it could be unnecessary to replicate re-
sources. A resource could be identical or equivalent to another resource for a particular
task. Hence, we define a function that indicates whether two resources are equivalent
or not for a particular task.

Definition 24. Let i € [1..|R|]. Let j € [1..|R|]. Let t € 7, 1; and r; € R. We define
the function resourceEquivalence : TxX R X R — {true, false}. resourceEquivalence(t,
r;, 15) = true if the two resources can be used by t independently.
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Consequently, we can define a function which determines, for each resource, its equi-
valent resources, for a particular task.

Definition 25. Let i € [1..|R|]. Let j € [1..|R]|]. Let t € T and r; € R. We define the
function equivalentResources : TX R — p(R). equivalentResources(t, 1;) = {r; € R | i
# j, resourceEquivalence(t, r;, ;) = true}.

Now that we have defined the different concepts composing a system, we provide a
system characterization so that the links between these concepts are established :

Definition 26. Let Sys be a system. Sys = <7, C, E, G, S, R> in which 7 is the set
of tasks to be performed by the components, C is the set of components operating in the
system, F is the set of situations to which the system must react, G is the set of goal
situations, S is the set of observable internal states of the system and R is the set of
required resources by the system.

For each request of service, there is a plan which determines the tasks to be achieved
in order to deliver the requested service. Hence, each component may have to achieve
some of its tasks at particular observable states of the system.

Definition 27. Let s€ S, c€ C, g€ G and t € 7. We define the function perform :
S x Cx G— g(r). perform(s, ¢, g) = {t € 7| t is scheduled to be executed in s to
deliver g}. We have perform(s,c, g) C performableTask(s, c).

In each situation e of E that represents a request for services, there are several tasks
that must be performed in order to provide these services. Hence, these tasks must be

identified.

Definition 28. Let i € [1..|5]]. Let j € [1..|C|]. Let k € [1..|G|]. Let Sys be a system.
Let e € E. Let {¢1, ..., gt} € p(G). We define the function service : Sys x E x ©(G)
— (7). service(Sys, €, {g1, ..., ¢}) ={teT|IFs€ S8, T¢c;€C, I g € {q, ..., ¢}, t
€ perform(s;, ¢;, gr)}. The function service determines the plan that must be performed
to deliver the requested services.

At this stage, we have provided a formal definition of the different concepts charac-
terizing a system. These definitions allowed us to delimit the system’s boundary based
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on the identification of tasks’ preconditions. In the next subsection, we adapt these
concepts to multi-agent systems. Then, we define a reorganization technique which will
be integrated in FATMAS as it will be shown in Chapter 3.

2.3 Concepts From Multi-agent Systems

Multi-agent systems are systems in which agents operate. Hence, the components
of these systems are agents. Agents are reactive and proactive components of some
system ; components that are somewhat autonomous [57]. We define the set of agents
operating in a multi-agent system.

Definition 29. We define A the set of agents operating in a MAS. If there are m agents,
A ={a,ie[l.m]}.|N]| =m.

In a multi-agent system, the set of components is the set of agents operating in the
system. Hence, in this case, C = A. Consequently, we can adapt the previous definitions
to deal with multi-agent system :

Definition 30. Let i € [1..|A|]. Let task : A — (1), ¥ a; € A, task(a;) = {t |t € 7},
so that task(a;) represents the tasks that agent a; could perform.

Definition 31. Let i € [1..|A|]. Let s € S. Let a; € A. We define the function perfor-
mableTask : S XA — (1), with performableTask(s, a;) C task(a;). performableTask(s,
a;) defines the set of tasks that a; could perform in a particular system state.

Definition 32. Let i € [1..|A]]. Let j € [1..|A|]. We define the function call : 7 X T —
{true, false}. Let t € T, t’ € 7. call(t, t’) = true means that when task t requests the
execution of the task t’.

Definition 33. Let i € [1..|A]]. Let j € [1..|A|]. Let a; and a; € A. We define the
function communication : A x A — {true, false}. communication(a;, a;) = true = 3 ¢
€ task(a;), 3 t" € task(a;) | call(t, t’) = true.

Definition 34. Let i€ [1..|A|]. Letj € [1..|A]]. i # j. Let a; € A. We define the function
interaction : A — p(A). interaction(a;) = {a; € A | communication(a;, a;) = true}.
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Definition 35. Let a € A. We define resourceAccessibility : A — p(R). resourceAcces-
sibility(a) = {r € R | 3 t € task(a), r € resources(t)}.

Definition 36. Let Mas be a multi-agent system. Mas = < 7, A, E, G, S, R> in which
T is the set of tasks to be performed by agents, A is the set of agents, F is a set of
situations to which the system must react, G is the set of goal situations, S is the set of
observable states of the system, and R is a set of resources.

Definition 37. Let s € S, a € A, g € G, and t € 7. We define the function perform : S
XAx G — (7). perform(s, a, g) = {t € 7| t is scheduled to be executed in s to deliver
g}. We have perform(s,a, g) C performable Task(s, a).

Definition 38. Let i € [1..|5]|]. Let j € [1..|A]]. Let k € [1..|G|]. Let Mas be a multi-
agent system. Let e € E. Let {q1, ..., ¢} € p(G). We define the function service : Mas
X Ex o(G) — ¢(r). service(Mas, e, {g1, ..., }) = {te7|3Ts €8 Fa €A, 3
Gk € {g1, ..., ¢}, t € perform(s;, aj, gi)}. In the situation e, the system has to produce
the set of services {g1, ..., gi }.

In this section, we adapted some definitions introduced in Section 1 to multi-agent
systems. In the next section, we provide more definitions to deal with fault-tolerant
multi-agent systems.

2.4 Concepts Related to Fault-tolerant Systems

At this stage, we have determined the MAS boundary. In this section, we present the
reorganization technique which will be a part of FATMAS and includes fault-prevention,
faut-recovery, and fault-tolerance techniques. To this end, we continue providing defi-
nitions in order to build and formally valid our reorganization technique.

The second domain to which FATMAS is related is fault-tolerant systems. A fault-
tolerant system is a system which recovers from its failures. A system is said to be in
failure whenever it is not capable of performing correctly at least one of the tasks that
it must perform in order to provide some desired service. A task cannot be performed
if at least one of its preconditions is not met or if one of its required resources is not
available. Hence, we do not deal with failures as programming languages exceptions but
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as preconditions which are not met when a task is required to be performed.

Definition 39. Let s in S and t € 7. We define the function taskFailure : S xT — {true,
false}. taskFailure(s, t) = true < (3 ¢ € prec(t) | ¢ = false) vV (3 r € resources(t) |
resourceAvailable(s, r) = false).

An agent is in failure, if one of the tasks that it must perform in a particular obser-
vable system state s to deliver a service, cannot be performed.

Definition 40. Let s € S, a € A, and g € G. We define a function agentFailure :
S xAx G — {true, false}. agentFailure(s, a, g) = true < 3 t € perform(s, a, g) |
taskFailure(s, t) = true.

So, we define for each agent which tasks are in failure : the set of aborted tasks.

Definition 41. Let s € S, a € A, and g in G. We define the function abortedTasks :
S xAx G — @(1). abortedTasks(s, a, g) = {t € perform(s, a, g) | taskFailure(s, t) =
true}.

Nevertheless, an agent can be down. An agent is down, if all the tasks that it must
perform in a particular observable state s in S in order to deliver a service, cannot be
performed. Hence, if an agent is down, then it is in failure.

Definition 42. Let s € S, a € A, and g € G. We define a function agentDown : S X Ax
G — {true, false}. agentDown(s, a, g) = true < ¥ t € perform(s, a, g) | taskFailure(s,
t) = true.

Definition 43. Let s € S, a € A, and g € G. agentDown(s, a, g) = agentFailure(s, a,

9)-

A MAS is in failure, in a particular observable state s of S, if one of its agents is in
failure in s. Hence, the system cannot reach a goal situation. If the MAS is in failure,
and the system has no control on the effectors of the preconditions or cannot repair
the resource in failure then the system is in a fatal failure. That is, the system has no
control on the origin of the failure. So, the source of the failure is originated from the
system’s environment.



Chapitre 2. FATMAS Basic Concepts 22

Definition 44. Let MAS be a mutli-agent system. Let s € S. Let g € G. MAS is in a
fatal failure if the origin of the failure comes from the MAS’ environment. We define
the function : FatalMasFailure : MAS x S x G — {true, false}. FatalMasFailure(Mas,
s, g) =trueiff 3a €A, and t € T | t € perform(s, a, g), taskFailure(s, t) = true A 3 ¢
€ prec(t) | c=false, ¢ = sy A..A s A..A 5, and 3 sp=false, k leq u, B t’ € T effector(t’,
s) = true .

If the MAS is in failure, and the system has control on the effector of the precondi-
tions or can repair the resources in failure then, since the system has control over the
sources of failure, it can overcome them. This kind of failure is not a fatal failure. The
source of the failure is originating from the MAS boundary.

Definition 45. Let Mas be a multi-agent system. Let s € S, and g € G. We define a
predicate MasFailure : Mas x S x G — {true, false}. MasFailure(Mas, s, g)=true iff
Jae A Jter|te perform(s, a, g), taskFailure(s, t) = true AV ¢ € prec(t) | ¢ =
false, ¢ = siA\.ASEN.. NSy, kleq u, and 3 t” € T, effector(t’, s;) = true for all sp=false.

At this stage, we defined a multi-agent system failure. However, we aim at designing
a fault-tolerant multi-agent system. In what follows, we define the techniques that must
be applied to transform a multi-agent system into a fault-tolerant system. As presented
in Chapter 1, at least the following techniques should be defined in order to build
fault-tolerant systems according to [47] :

1. Fault-prevention technique : to prevent fault introduction and occurrence ;
2. Fault-recovery technique : to detect the existence of faults and eliminate them

3. Fault-tolerance technique : to provide services complying with the system’s ob-
jectives in case of faults.

Consequently, these technique should be included in the FATMAS methodology. The
first technique is for fault-prevention. It is achieved by using rigorous design techniques
in order to eliminate the conditions that may trigger faults during execution [47|. The
second technique is for fault-recovery. It leads the system from an erroneous state to an
error-free state. It is achieved by [47] :

1. Detecting an error : identifying an erroneous state;

2. Recovering from an error : substituting the erroneous state with an error-free
state.

There are two ways to recover from errors [47| : backward recovery, and forward
recovery. The backward recovery restores the system to a previously saved state which
is supposed to be error-free. The system’s states are saved at predetermined recovery
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points. This approach requires significant resources (time and computation). Neverthe-
less, the backward approach is the most generally applicable recovery technique for
fault-tolerance [47|. The forward recovery approach finds a new state from which the
system can continue to operate. This state may be a degraded mode of the previous
error-free state.

The last technique is fault-tolerance. It is achieved by using redundancy [16][47].
Redundancy provides the additional capabilities and resources needed to detect and
tolerate faults. There could be a redundancy of either hardware or software. Hardware
redundancy includes replicated and supplementary hardware added to the system to
ensure fault tolerance. The software can reside on the redundant hardware to tole-
rate both hardware and software faults. Software redundancy includes the additional
programs or modules used in the system to achieve fault tolerance.

In what follows, we present how to achieve these elements in order to include them
in our design methodology.

2.5 The Reorganization Technique

The reorganization technique covers three techniques : fault-prevention technique,
fault-recovery technique, and fault-tolerance technique. This reorganization technique
will be a part of FATMAS. In what follows, we present these different techniques.

2.5.1 Fault-prevention Technique

The first technique to include in the reorganization technique is fault-prevention
that identifies different sources of failure. We define a source of failure of a MAS as the
cause which prevents the MAS from providing the environment’s requested services.
Hence, a system fails when it cannot reach any goal situation in G from a particular
situation s in S. In this case, there are two possibilities :

1. The goals were all unrealistically set, and they must be revised. Hence, we define
a new set of goals G’ for the MAS;

2. or something came up during the system operation and prevented it from rea-
ching the goal situations in G, which, under other circumstances, would have
been reached. A system failure comes from observing and responding to either
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some external or internal stimuli. If the failure comes from an external stimulus,
the MAS cannot recover from that failure since it has no control over such a
stimuli.

As stated earlier, the sources of failure of a MAS that we will consider are the tasks’
themselves. Hence, the first technique, fault-prevention, will be achieved by identifying
all tasks’ preconditions (to determine if they can be met) and all the tasks’ required
resources (to determine if they are available). Once the preconditions are predetermined
and the resources are identified, new tasks could be added to the system in order to
control some of the stimuli and consequently delimit the system’s boundary. Conse-
quently, we delimit the stimuli that the system will control and the stimuli that the
system will not control. Hence, some sources of failures will be prevented by adding
tasks to control them, and others will not be because it is not possible to control them.

The fault-prevention technique can be achieved in a linear time since if there are
n tasks in the system, the number of preconditions of each task and the number of
resources which will be used by the different tasks is limited and is independent from
the number of tasks.

2.5.2 The Fault-tolerance Technique

The second element to consider in a design methodology of fault-tolerant systems is
fault-tolerance itself, which is based on redundancy. Particularly, fault-tolerant multi-
agent systems [18] [21] [22] are based on agent redundancy. Consequently, designers may
overload the MAS with a large number of agents which increases the MAS complexity.
In what follows, we propose an approach that minimizes the number of agents to be
replicated and thus the overall system complexity. The idea is to replicate tasks first
whenever possible, and if not, then to replicate agents.

In a MAS, there are agents determined at system design which are called original
agent, and there are agents added to the system which replicate original agents in order
to acquire the system with fault-tolerance capabilities. These latter agents are called
replica agents. Consequently, a fault-tolerant multi-agent system will be composed of
the original agents and of the replica of some agents. We make the distinction between
these two kinds of agents.

Definition 46. Original agents are the agents which compose the MAS before introdu-
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cing agent replication for the purpose of fault-recovery. Let O, be the set of the original
agents of a MAS. | O, | = p.

Definition 47. A replica agent is an agent which is created to prevent the failure of an
original agent. Let R, be the set of the replica agents. | R, | = v.

The set of agents A is defined as the union of O, and R, :
Definition 48. A=0,U R,. Hence, n = p + v.

Our approach is based on the following principle. If an agent is in failure, then
there should be another agent in the MAS that could act in its place so that the MAS
continues operating correctly. Of course, in order to perform a task, an agent needs to
access to the task’s required resources. Consequently, if a task t is in failure, only the
agents that have access to the appropriate resources in resource(t) would be candidates
to perform t.

Definition 49. Leti € [1..|A|]. Let t € T and a; € A. We define the function ability : Ax
T — {true, false}, such that ability(a;, t)=true if resource(t) C resourceAccessibility(a;),
and false otherwise. t can be performed by a; if resource(t) C resourceAccessibility(a; ).

The fault-tolerance approach that we propose aims at minimizing the number of
agents to replicate. Hence, only a certain number of agents will be replicated. To deter-
mine which agents will be replicated, we introduce the notions of critical and non-critical
agents. A critical agent is an agent which performs at least one task that cannot be
performed by any other agent in the system.

Definition 50. Let i € [1..|A|]. Let j € [1..|A|]. Let C, be the set of the critical agents.
Co = {a; € A | 3 t € task(a;), P a; € A with i # j such that ability(a;, t)=true V A t’
€ task(a;) such that equiTask(t, t’) = true or idTask(t, t’) = true}.

A non-critical agent is an agent for which each task can be performed by at least
another agent.

Definition 51. Let i € [1..|A|]. Let j € [1..|A]]. Let NC, be the set of the non-critical
agents. NC, = {a; € A |V t € task(a;), 3 a; € A with i # j such that ability(a;, t)=true
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V 3 t’ € task(a;) such that equiTask(t, t’) = true or idTask(t, t’)=true}. Hence, NC,N
C, = 2.

Furthermore, if an agent is in failure, then this failure can either be originating from
the system’s boundary or from the system’s environment. In the first case, the system
can prevent this failure from happening. In the second case, it cannot. Consequently, if
each agent is replicated at least once, and if the failure is originating from the system’s
environment, then all the replica agents will be confronted to the same environment
situation, and so to the same failure. Hence, the system will not be able to recover from
its failure. Thus, it is not necessary to have several replicas per agent. Each agent must
be replicated once. So, we propose that each task of a non-critical agent be replicated
in another agent. Hence, implicitly, the agent is replicated within several other agents.
We also propose to replicate each critical agent only once. Doing so, we can minimize
the overall system complexity.

At this stage, we claim that each agent in a fault-tolerant MAS can be either an
original agent or a replica agent (see Figure 2.3). Moreover, when the MAS is designed,
each original agent can be either a critical agent that must be replicated or a non-
critical agent that should not be replicated.

>

F1G. 2.3 — The different agent sets.

Furthermore, each task is replicated in only one agent. If there are two possible
agents in which a given task can be replicated, then the MAS’ designer may use several
criteria in order to choose the agent in which to replicate the tasks. These criteria can
depend, for example, on the cost to replicate a task in another agent or to replicate a
task into the agent which has a minimal number of tasks to perform.

Now, when the system will operate, agents must identify the agents in which their
tasks are replicated in order to coordinate their activities. To this end, we couple the
agents on a task basis so that we avoid the overhead associated with task reallocation
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after a task failure.

Definition 52. Let i € [1..|A|]. Let j € [1..|A|]. Let t € 7, a; € A, a; € N with i # j
and t € task(a;). We define the function coupling : 7 — A X A | coupling(t)=(a;, a;), if
3 t’ € task(a;) such that equiTask(t, t’)=true or idTask(t, t’)=true.

Moreover, each agent can have its tasks replicated in different agents such that each
task is replicated in only one agent. Hence, we define a function duplicate to determine,
for each agent, the agents in which its tasks are replicated :

Definition 53. Let i € [1..|A|]. Let j € [1..|A]]. We define the function duplicate :
A— p(A) |V a €A, duplicate(a;)={a; € A with i j| 3 t € task(a;), coupling(t)=(a;,
a;j)}. duplicate(a;) is the set of agents in which a;’s tasks are replicated.

To conclude, the fault-tolerance technique allows the system to replicate either
agents or tasks. Each original agent can be either a critical agent or a non-critical
agent. If it is a non-critical agent, then it is not replicated and its tasks are replicated
in other agents. If it is a critical agent, then it must be replicated. Hence, the fault-
tolerance technique minimizes the system complexity by minimizing the overall number
of agents in the system.

2.5.3 The Fault-recovery Technique

The third element to take into account when defining a fault-tolerant system is
fault-recovery. This technique should allow the MAS to continue operating correctly
despite agent failures. The fault-recovery technique should allow the system to first
detect failures and then recover from them. In this section, we provide techniques to
detect and recover from failures. The validity of these techniques will be demonstrated
in Section 4.

There are five possible kinds of failures for an agent :
1. The communication with the agent is down but :
(a) the agent can perform all of its tasks;
(b) the agent can only perform some of its tasks;

(c) the agent cannot perform any of its tasks.



Chapitre 2. FATMAS Basic Concepts 28

2. The communication with the agent is up but :
(a) the agent can only perform some of its tasks;

(b) the agent cannot perform any of its tasks.

For each of these kinds of failure, we present a technique that allows the MAS to
detect the failure and recover from it. We notice that the two kinds of failures can be
dealt with in the same way since, in both cases, the agent is not able to perform its tasks
to deliver the requested services. To illustrate our techniques, we consider an agent a;
in failure such that | duplicate(a;) | > 1 and i € [1..|A]].

Fault Detection Techniques

As stated earlier, any fault recovery technique is based on redundancy (agent or task
redundancy). So, if an agent is in failure, there should be other agents in the MAS to
replace it. Hence, each agent should be able to detect other agents’ failure and help to
recover from it. Let a; be an agent such that a; has some of its tasks replicated in a;, i.e,
a; € duplicate(a;). a; can be down or some (and not all) of its tasks could be in failure.
In order for the agents in duplicate(a;) to take over the failed tasks, they have to know
whether a; is down or in failure. To that effect we propose to use a handshake protocol
in order to ensure that coupled agents know whether their counterparts are down or not.

Definition 54. Let i € [1..|A|]. Let j € [1..|A|]. Let a; € A. Let a; € A. Let s € S.
We define the function handShake : S xA x A — {true, false}. handShake(s, a;, a;) =
true if a; receives a handshake from a; in state s. If handShake(s, a;, a;) = false, then
a; knows that a; is down.

If a; is down, then each of the agents in duplicate(a;) will not receive a handshake
from a;, and will assume that they have to take over.

Nevertheless, all these agents must agree that a; is down in order to take over.
We propose to use a counter on the number of agents agreeing that a; is down. All
the agents which are in duplicate(a;) can modify the value of this counter. Each agent
which detects that a; is down, increments the value of this counter. If the value of the
counter is equal to | duplicate(a;) |, then the agents agree that g; is down. Otherwise,
the agents that have incremented the value of the counter deduce that a; is not able to
communicate with them, but ¢; is not down.
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Definition 55. Let i € [1..|A]]. Let a; € A. Let s € S. We define the function down-
Detected : S xN — {true, false}. downDetected(s, a;) = true if V a; € duplicate(q;),
handshake(s, a;, a;) = false.

In the same way, if a; is in failure and cannot perform a task ¢, then it should
notify a counterpart, an other agent a; acting as a backup agent for task ¢, i.e, a; in
coupling(t)=(a;, a;), since each task is replicated in one agent as stated earlier.

Definition 56. Let i € [1..|A|]. Let j € [1..|A|]. Let a; € A. Let a; € A. Let t € T.
Let s € S. We define the function informFailure : S XA x 7 x A — {true, false}.
informFailure(s, a;, t, a;) = true means that in system’s state s, agent a; informs agent
a; that it has a task t in failure ; with a; € duplicate(a;) and coupling(t) = (a;, a;).

The following algorithm summarizes the fault-detection step.

Let g; € G. —g; is one of the services the system has to provide.
— we verify that a; has some of its tasks replicated in a;.
if agentDown(s, a;, g;) = true then
for V a; € duplicate(a;) do
if handShake(s, a;, a;) = false then
counter,, := counter,, + 1; — we increment the counter associated to a;.
end if
end for
end if
— we verify whether the agents agree over a;’s failure.
if counter = | duplicate(a;) | then
downDetected(s, a;) = true;
end if
— if the agent is not down but in failure.
if (agentDown(s, a;, g;) = false) and (agentFailure(s, a;, g;)= true) then
— we inform the agents in which ¢ is replicated that ¢ is in failure.
for V t € abortedTasks(s, a;) do
for V a; € duplicate(a;) do
if coupling(t) = (a;, a;) then
informFailure(s, a;, t) == a;;
end if
end for
end for
end if
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Now that a failure is detected, the system should recover from it, whenever possible.

Fault Recovery Techniques

In what follows, we present how the system recovers from its failures. As stated
earlier, an agent can be in failure or down. In both cases, coupled agents will perform
the tasks in failure.

In both cases of a; failures, there could be at least one task of a; that could not be
performed. Each task ¢ in failure will be performed by agent a; in duplicate(q; ) such that
coupling(t)=(a;, a;). Nevertheless, a; should have a copy of ¢;’s knowledge so that it can
continue operating from the last non-faulty point, if possible. a; can have a copy of a;’s
knowledge by either receiving a;’s knowledge from it or by sharing a common memory
area in which ¢;’s knowledge pertaining to task ¢ is stored. In the first case, the network
may be overloaded by messages allowing agents to exchange their knowledge. The more
there are agents in the system, the more there are messages exchanged between agents.
This could slow down the system tremendously. Consequently, it is expected that for
many applications a partially shared memory between agents would be best in order
to minimize the quantity of information exchanged by agents. The access to the shared
memory areas must be synchronized.

One of the problems that can occur when using a shared memory is that the agent
acting as a replica cannot access to this memory. Hence, in the case of an agent failure,
the replica agent will not have the necessary information to back-up the failed agent.
So, we propose that each agent maintains a copy of each agent’s shared memory to
which it acts as a replica. Doing so, if an agent is in failure, and if its replica has no
access to the shared memory, then the replica could use its copy of the shared memory
to back-up the failed agent.

For each task, each memory area can be accessed by the two agents that are coupled
with regard to this task. This may change the communication links between agents, as
calls between agents will need to be redirected. The following algorithm summarizes
the fault-recovery technique.

for V t € abortedTusks(s, a;) do
for V a; € duplicate(a;) do
if coupling(t) = (a;, a;) then
t’ € perform(s, a;, g;); —with equiTask(t, t’) = true or idTask(t, t') = true.
end if
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— the interactions between agents change since ¢ is performed by another agent.
for V o, € interact(a;) do
for V t” € task(ay) do
if call(t, t”) = true then
call(t, t”) := false
call(t’, t7) := true;
end if
end for
communicate(a;, a) = false;
communicate(a;, a,) := true;
end for
end for
end for

Consequently, even if several agents will be able to modify the content of a;’s shared
memory, only one agent is allowed to modify the content of this memory at a given
time.

To summarize, the fault-recovery technique is based on :
— fault detection : faults are detected based on a presence notification mechanism
that relies on :
a) a direct handshake protocol between coupled agents;
— b) a request for the counterpart agent whenever a task failure is detected by an
agent.
— fault recovery : the system can recover from a one failure at a time based on the
shared memory areas between agents.

2.5.4 The Validation of the Technique

As stated earlier, a fault-tolerant multi-agent system is not able to recover from its
failures if these failures are originating from sources of failures situated in the system
environment since the system has no control over these sources. Hence, the system is
able to recover from its failures, if they are originating from the system’s boundary.
Consequently, as proved in theorem 1, if the system is in failure, and this failure is
originating from the system’s boundary, then it will recover from it. This theorem is
true only in the case that there exists a task in the system that controls the effector
of the internal stimulus which originated the failure. Otherwise, the system will not be
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able to recover from its failure if there is no task which controls the internal stimulus
that originated the failure. In the next section, we will propose an approach to deploy
the system in such a way that there always exists a task which controls the internal
stimulus that originated the failure.

Theorem 1 : A fault-tolerant multi-agent system to which we apply the fault-
recovery techniques presented above will recover from an agent failure :

1. if the effectors of the preconditions of the tasks in failure are controlled by system’s
tasks ;

2. if their resources are available to the agent that takes over.

To prove the validity of our technique, we demonstrate that the fault-tolerant multi-
agent system behaves in the same way when it operates under non-faulty system’s states
as under faulty system’s states. We demonstrate that the plan the system performs,
when there is a request for services from the environment, is the same whether the
system goes into a failure state or not.

Let us consider e € E as a request of services to the system. The system has to
reach a set of goal situations to provide these services. Let {g1, ..., g} be this set of
services to be provided. The system has to achieve tasks to provide these services. These
tasks belong to the system’s plan P, i.e, P = service(Mas, e, {g1, ..., g:}). During the
execution of the plan, the MAS will go through several intermediate states. Let s be
an intermediate state in which the MAS could not perform one of the tasks scheduled
to be achieved in s. Consequently, the agent which has to achieve ¢ in s is in failure.
Let a; refer to this agent.

A task is in failure if either its preconditions are not met or its required resources
are not available. The truth value of a precondition of ¢ is evaluated based on the values
of the external and internal stimuli of the system. Each internal stimulus is controlled
by a task of the system. Hence, the values of these internal stimulus can be changed to
make the precondition true.

Moreover, if one of the resources, r;, of the task ¢ is not available, then r; cannot be
used by q;. If there exists another resource ry, in the system, which is equivalent to r;
for task ¢, and if a; has access to 1, and 73, is available in s, then a; will perform task
t in failure using rj,. Otherwise, the task ¢ must be achieved by an agent @, such that
coupling(t) = (w;, ay). a, will perform either an identical task or an equivalent task. In
this thesis, we study the case in which a, performs an identical task. If a, has access to
1, and 73, is available in s, then a, will perform task ¢’ that is identical to task ¢ using
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;. Consequently, the system will continue performing its plan as if task ¢ would not
be in failure. Hence, the system will not be in failure. This proof is expressed as follows :

Proof :

Let e € E a request of services to the system ;
Let g = {g1, ..., &} € p(G) the set of services to provide in e;
Let P be a plan such that P = service(Mas, e, {¢1, ..., ¢:});
In the case of an agent is in failure or down :
Let s € S a failure situation | 3 a;, € A | 3 g; € g | agentFailure(s, a;, g;) = true;
dte P|te perform(s, a;, gj) , taskFailure(s, t) = true;
taskFailure(s, t) = true = 3 ¢ € prec(t) | ¢ = false V 3 r € resources(t) | resourceA-
vailable(s, r) = false;
Nevertheless, ¢ = 81 A .. A's, | with s, € I or s, € Ey;
If all s € E, are false, then it will not be guaranteed that the system will recover
from its faults since the truth value of s is not controlled by the system.
Let us suppose that only the s; belonging to I are false;
Since for each of the internal stimuli s;, 3 t” € 7| effector(t’, s;) = true, consequently
we ensure that the precondition ¢ = true;
Moreover, if a resource r € resources(t) is not available = resourceAvailable(s, r) =
false ;
if 3 ry | resourceEquivalence(t, r, ry ) = true A resourceAvailable(s, 1) A resourceAccessible(a;)
then

agentFailure(a;) = false;

MasFailure(Mas, s) = false ;
else

3ty € perform(s, a,, g;) | idTask(t, t;) = true and a, € A | coupling(t) = (a;, a,);
end if
if 7, € resourceAccessibility(a,) and resourceAvailable(s, 1) = true then

ty € P;

taskFailure(s, t;) = false;
end if
This demonstration is true for any task in failure in s. Consequently, each failure
task can be either recovered by using replicated resources or by performing identical
tasks ;
MasFailure(Mas, s) = false ;

At this stage, we demonstrated that if the sources of failures are originating from the
system’s boundary, then the system will recover from its failure. However, each agent
will be deployed on a physical component, and each physical component is prone to
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failure too. Consequently, we need to determine how the system could be distributed
over the physical components so that if a physical component is in failure, then the
system will not be in failure. This is the scope of the next section.

2.6 Physical Components Failure

The physical components on which the fault-tolerant MAS will operate must func-
tion without any failure. Meanwhile, the physical components are prone to failure. Since
FATMAS proposes to not replicate all agents, it will also propose to not replicate all the
physical components. If all the physical components are replicated, then all the agents
could be replicated. However, it is not always possible to replicate all the physical com-
ponents because replication is expensive. Furthermore, FATMAS tries to minimize the
number of agents to be replicated. So, we will propose a technique in order to determine
the number of physical components on which the system will operate so that the failure
of a component will not alter the MAS functioning. We notice that, since FATMAS
is applied to design fault-tolerant multi-agent systems running on a limited number of
physical component, the probability that two physical components are in failure at the
same time, and the probability that a resource is in failure is very low. Otherwise, there
must be more components on which agents will be running.

The idea is to define groups of agents and deploy each group on a physical com-
ponent. Nevertheless, these groups must be defined such that if a physical component is
in failure, which means that the agents running on this component are in failure, then
there exists agents in the system to backup the failed ones. Hence, these groups have a
characteristic that there cannot be two agents a and o’ in the same group such that o’
€ duplicate(a). To this end, we propose to define a group of agents as follows :

Definition 57. Let i € N, the set of natural numbers. Let j € N. Gp is a group a agent
such that Gp = {a; € A |V a; € Gp, j # 14, a; ¢ duplicate(a;))}.

Doing so, each agent will not be running on the same physical component with its
replica. Hence, if a physical component is in failure, then the group of agents running
on that component may be in failure. Since the agents of a group are independent
from each other, each of the agents of a group in failure has its tasks replicated in
other agents running on other physical components which are not in failure. So, by an
adaptive behavior of the agents, the remaining agents on which the tasks are replicated
can organize themselves so that the system continues operating. Hence, if there are n
agents in the MAS, then they can be grouped in k£ groups such that k& < n. So, there
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should be k physical components. We notice that each physical component on which a
group of agents is running must offer access to the required resources of all agents of
the group.

The way agents are assigned to physical components could be compared to works
done in agents resource allocation [5] [15] . However, the works done in resource allo-
cation are about how a resource can be shared between several agents which requires
access to that resource. In our case, while agents are assigned to physical components,
we only determine how agents should be distributed over the physical components. We
do not address the issue on how the processors of the physical components are shared
between agents.

2.7 Summary

In this chapter we presented and defined the different concepts on which the FAT-
MAS methodology is based. They deal with the different concepts that describe a multi-
agent system, and they also cover three techniques required to build a fault-tolerant
system, i.e, fault-prevention, fault-recovery, and fault-tolerance. We also presented how
a multi-agent must be distributed over physical components so that if a physical com-
ponent is in failure then the system will not be in failure. In the next chapter, we detail
the process development of FATMAS based on a case study and present a general
system design approach required to use FATMAS.



Chapitre 3

FATMAS : an Agent-Oriented
Methodology for Fault-Tolerant
Multi-Agent Systems

A Multi-Agent System (MAS) operates in and interacts with an environment (as
stated in Chapter 2). This environment is characterized by the services it requests from
the MAS. Moreover, the MAS may go through several observable states which may cause
system failure. However, the MAS should be able to continue properly operating in case
of failure. Designing a fault-tolerant multi-agent system should require the identification
of possible causes of failure in order to overcome them. However, existing MAS design
methodologies, such as those described in [2] [7] [14] [17] [20] [24] [27] [31] [43] [44]
[57], are not well suited for the design of fault-tolerant multi-agent systems since they
do neither allow to identify probable sources of faults nor integrate a fault recovery
technique. In this chapter, we propose an agent methodology, FATMAS, to design fault-
tolerant multi-agent systems. This methodology is based on the development of several
models to support a designer in order to define the software architecture of a fault-
tolerant multi-agent system. Each model is associated with a micro-process providing
guidelines on how to build the model. The methodology also has a macro-process that
provides guidelines on how to proceed from one model to the next. This methodology
includes the reorganization technique presented in Chapter 2.

This methodology, as presented in this chapter, is original in the way that it designs
fault-tolerant multi-agent systems, which is not the case of existing methodologies.
It guides the designer through an iterative process to design its fault-tolerant system
while proposing criteria based on a cost/benefit approach to stop iterating over the
models. Moreover, the methodology integrates the reorganization technique defined in
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Chapter 2. Consequently, it helps the designer to determine the system’s boundary, to
use a replication algorithm which reduces the system complexity, and to determine the
required physical components on which the future system will operate. Furthermore,
based on definitions of Chapter 2, the methodology provides a model validation when
moving from one model to another.

In this chapter, we first present an overview of FATMAS. Then, we present the
different models of FATMAS and their micro-processes. Finally, we present the deve-
lopment life-cycle of FATMAS that represents its macro-process.

3.1 Overview of FATMAS Models

In this section, we first identify the different models of FATMAS. Then, we present
the relations between these models.

3.1.1 The Identification of FATMAS Models

As presented in Figure 3.1, a MAS is a system composed of several agents interacting
with each other. Each agent performs several tasks. Each task is performed under
conditions and could require resources to be correctly performed.

Considering Figure 3.1, we notice that the definition of a FTMAS requires at least
the following steps :

1. The identification of the inputs and outputs of the environment.
2. The identification of the tasks which will be performed by agents ;
3. The identification of the agents which will perform the tasks;

4. The identification of the interactions between agents ;

Each task is performed under certain conditions and may require a set of resources.
Moreover, it may require to interact with the environment. According to Definition 2 of
Chapter 2, the environment is characterized by its stimuli to which the MAS must react.
Consequently, the environment will be defined during the task identification phase of
the MAS design. We propose a task-environment model which identifies the different
tasks that the agents will perform. Each task is described by its preconditions and
resources. The task-environment model allows us to determine the preconditions under
which the tasks operate, and their required resources. Hence, it allows to determine the
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F1G. 3.1 — A multi-agent system interacting with its environment.

system’s boundary, as stated in Chapter 2. Consequently, the task-environment model
integrates the fault-prevention technique in FATMAS.

The different tasks identified in the task-environment model will be performed by
several agents. Each agent must have access to the resources required by its tasks. An
agent model is proposed to specify task assignment according to the task-environment
model. Each agent may have relations with other agents, such as communication or
control relations as defined in [37]|. These relations must be explicitly represented in
the agent model as part of the specification of the system. Moreover, relations defined
between agents in AUML [24]|41][57] can be considered per se in the agent model.

Furthermore, agents, in a MAS, interact with each other. An interaction, as defined
in [41], is the ongoing two-way or multi-way exchange of data among computational
entities. The exchange of information between agents is materialized by a sequence
of messages exchanged between them [41|. The agent model does not represent this
sequence of messages. To this end, we propose an agent interaction model to model
agent interactions. The agent interactions define the communication protocols between
agents. Hence, since the sequence or collaboration diagrams of AUML [41] represent
these protocols, these diagrams can be directly used to represent the agent interaction
model.

Each agent is prone to failure. If there is an agent in failure, some other agent will
take over as we saw in Chapter 2. Consequently, the sequence of messages exchanged
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between agents would change. Hence, a MAS reorganization must take place since the
agents and their interactions have been modified. Therefore, in order to build a fault-
tolerant system, the MAS methodology should provide a reorganization technique which
represents the possible changes that may affect the agents and their interactions in case
of failures. Hence, this reorganization technique includes the fault-tolerance and fault-
recovery techniques. It was presented in Chapter 2; it is based on the replication of
tasks and agents. As a result, the interaction model may need to change.

Finally, the FTMAS, as any software system, will be implemented. The infrastruc-
ture and the physical components on which the MAS will run must be determined. So,
we propose an implementation model that defines the physical components on which
the FTMAS will operate.

To summarize, the FATMAS methodology contains the following deliverables :

1. A task-environment model that specifies the different tasks that will be performed
by the agents. For each task, we identify its preconditions in order to insure that
the task will be properly performed. These preconditions are used to identify
different sources of failure. They characterize either the environment in which the
fault-tolerant multi-agent system operates or its observable states. It determines
the system’s boundary. This model includes the fault-prevention technique;

2. An agent model which shows the agents’ tasks and relationships. In the agent
model, we focus on assigning and determining agent tasks and relations;

3. An agent interaction model which describes the interactions between agents; it is
inferred from the task-environment model, at least partially ;

4. A reorganization technique which specifies the new system reorganization in case
of a failure. The reorganization technique specifies the different techniques used
to recover from a fault : fault recovering and fault tolerance. As a result, the
interaction model may change;

5. An implementation model which determines the physical components upon which
the fault-tolerant multi-agent system will operate.

3.1.2 The Relations Between FATMAS Models

As presented in the previous section, FATMAS proposes to build several models in
order to provide a fault-tolerant multi-agent system. These models should be related
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to one another so that a designer can build each model from the previous ones. Hence,
FATMAS should support the main activities of software engineering which are [33] :

1. Requirements’ analysis and specification : The requirements’ analysis and speci-
fication are the permanent recording of a set of requirements. They produce the
basis on which to implement a computer-based software system to ’deliver’ the
required features and functions;

2. Design of computer-based software solution : The design of a computer-based
software solution is the process of conceptualizing and implementing an artefact
that supplies the requirements. The result of software design should be a blueprint
of what can be made. Software design provides the highest level specification of
the software to be developed, to meet the specification ;

3. Implementation of the design as programs : The implementation of the designed
programs allows to code the program and to determine the support environment.

Each model of FATMAS can be associated to one of these phases (see Figure 3.2).
The task-environment model allows to define the services required from the system. The
services are expressed as the outputs of the system on its environment. These outputs
are provided by the tasks of the system. Hence, this model is developed during the
requirements’ analysis and specification phase.

The agent model, the agent interaction model and the reorganization technique pro-
vide the highest level specification of the software to be developed. The agent model
provides the static structure of the system by identifying the agents and their rela-
tionships. The agent interaction model provides the dynamic interactions that will take
place in the future system to be developed. The reorganization technique provides a me-
chanism specifying how the system will behave in case of failure. Hence, these models
are developed during the system’s design phase.

The implementation model allows code generation of the agents and the determina-
tion of the hardware infrastructure upon which the MAS will operate. This model is
developed during the implementation phase.

Now that we have determined the different phases of FATMAS, we present in the
next sections these phases in detail using a case study as an illustration.
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F1G. 3.2 — The different phases of FATMAS.

3.2 Case Study

In order to illustrate the FATMAS methodology, we use the example of a flexible
manufacturing cell (see Figure 3.3). The manufacturing cell produces small mechanical
pieces like nails. It is composed of a :

— machining unit ;

— lathe which is a machine tool for producing circular and cylindrical forms, in

which the workpiece rotates in contact with a stationary tool or cutter;

— robot which stores material in the lathe;

— carrousel : a conveyor on which objects are placed and carried around a complete

circuit on a horizontal plane;

— mobile carriage : there is a storage unit for each machine-tool (the machining unit

or the lathe) in which the carriage puts the pieces or delivers them to another
machine-tool.

The manufacturing cell operates as follows. The information of each piece to be
produced is stored in a manufacturing order. It represents the different instructions
needed to produce this piece. The manufacturing orders are stored in a database. To
follow the production process, an electronic identification tag is associated with each
piece. The instructions which are in the manufacturing order are transcribed on the tag
associated with the piece to be produced. Each time, the piece under production is in
front of a machine-tool, the agent controlling the machine-tool reads the instructions
on the tag and performs them. Before starting the production process, the carrousel
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is started so that the pieces to be produced are carried around all the machine-tools.
Each machine-tool has a local storage unit from which or in which the mobile carriage
takes or puts the pieces under production.

On the basis of this example, we present the different models of the FATMAS me-
thodology.

3.3 The Analysis Phase

The analysis phase provides the basis on which to implement a computer-based
software system to ’deliver’ the features and functions required. The analysis phase
includes the production of the task-environment model which is presented in what
follows.

3.3.1 The Task-environment Model

As stated in Section 1, the first model to be developed in the FATMAS methodology
is the task-environment model. It helps the designer to determine the different tasks
that the future agents will perform, the required resources, and the preconditions under
which each task is to be performed. The task-environment model allows to support
the fault-prevention technique, the first technique necessary to build a fault-tolerant
system. Fault-prevention is ensured by identifying the tasks’ preconditions and their
resources. These preconditions or resources, as stated in Chapter 2, when they are not
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met or available, are the possible sources of a MAS failure which can be identified when
designing the system.

First, the tasks which will be performed in the MAS are determined.
These tasks can be identified by analyzing the problem requirements. The model will go
through a refinement process by performing a functional decomposition of the system’s
task into several sub-tasks and by applying this stepwise refinement process recursi-
vely to these sub-tasks. The decomposition leads to a task hierarchy that captures the
fundamental functional aspects of the system.

For the manufacturing cell example, the system’s overall task is to produce small
mechanical pieces. Hence, the objective is to produce, at each production cycle, a me-
chanical piece. We can define a condition to state that the mechanical piece is correctly
produced. This condition is referred to as pieceProduced. It has a boolean value and it
belongs to set G defined in Definition 3. The tasks, which the system must perform in
order to reach its global objective, are identified from the presentation of the case study
introduced in Section 2 as follows (see Figure 3.4) :

1. The manufacturing cell is started at the beginning of the production process. We
introduce the task startMC' to start the manufacturing cell ;

2. When the manufacturing cell starts, the manufacturing order must be read from
the database and the carrousel is started. Hence, startMC can be decomposed
into two sub-tasks which are : readInst ; i.e, read the instructions from the manu-
facturing order, and startC which starts the carrousel ;

3. There are two machine-tools in the cell. Each machine-tool must be controlled.
Hence, we introduce two tasks to manage the machine-tools : manageLathe which
controls the lathe, and manageM Unit which controls the manufacturing unit ;

4. When a mechanical piece arrives at the manufacturing unit, the instructions on
the electronic tag of the piece must be read. Moreover, when the manufacturing
unit starts working on the piece, it must be controlled so that the manufactu-
ring process works correctly. Hence, the management of the manufacturing unit
includes : the readInstM task which reads the instruction on the electronic tag,
and the controlM task which controls the manufacturing unit ;

5. When a piece arrives at the lathe, the instructions on the electronic tag of the
piece must be read. Moreover, when the lathe starts working on the piece, it must
be controlled so that the process works correctly. Hence, the management of the
lathe includes : the readlInstL task which reads the instruction on the electronic
tag, and the controll task which controls the lathe;

6. During the manufacturing process, the mobile carriage moves between the manu-
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F1G. 3.4 — The task hierarchy of the manufacturing cell.

facturing unit and the lathe. Hence, the system should have a task, moveCarriage,
which controls the mobile carriage ;

The different tasks identified in FATMAS will be performed by agents which are
determined in the design phase.

Second, the requested resources of each task are determined. In the ma-
nufacturing cell example, we can identify two resources : the electronic tag and the
database in which the orders are stored. We refer to these resources by elecTag and
dBase. Each of these resources can be available or not. The parameter elec TagAvailable
has two possible values : 0 when it is not possible, for any reason, to read the electronic
tag and 1 otherwise. The database can be either accessible or not accessible. Hence,
the parameter dBaseAvailable has two possible values : 0 when the database, for any
reason, is not accessible and I otherwise. The task readInst has access to the database
to read the manufacturing order and to the electronic tag to transcribe the instructions
of the manufacturing order in order to perform them. However, the task readInstL has
access to the electronic tag to read the instructions to perform, but it need not access
the database.

Third, the designer determines for each task its preconditions so that
it will be properly performed. These preconditions are considered as the possible
sources of the MAS’s failures. They will characterize either the environment with which
the system interacts or the system’s boundary. As stated in Chapter 2, the preconditions
of the tasks are evaluated based on the inputs of the agents. Each agent could respond
to inputs either from the environment or from other agents. We also stated that we only
focus on failures originating from inputs of the system’s boundary since the MAS has
no control on the failures originating from its environment. Consequently, in FATMAS,
we make the difference between the environment in which the future MAS operates and
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the implementation environment of the MAS. The environment in which the system
operates is characterized in the task-environment model. However, the environment
in which the MAS will be implemented is characterized at the implementation phase.
This is not the case of other methodologies which only consider the environment as the
implementation environment of the MAS as in SODA [43]| and Gaia [57].

In the manufacturing cell example, the mobile carriage moves only if there is a piece
to put or take from a machine-tool, or it could break and therefore be unable to move *.
Hence, one of the preconditions of the task carriageMowve is that the carriage has pieces
to put in or take from the machine-tools. We refer to this precondition by piece Available ;
pieceAvailable € prec(carriageMove). In addition, the task readInst must have access
to the database to read the manufacturing order. Hence, one of the resources required
by the task readlnst is that the database is accessible. We refer to this resource by the
parameter dBase; dBase € R and dBase € resources(readlnst).

Consequently, the micro-process for creating a task model is :

— Identify the different tasks needed to operate the future system by building a task
hierarchy according to a top-down approach. The granularity of the decomposition
depends on the specific problem. The task hierarchy only provides a general picture
of the activities that will be present in the target system ;

— Determine, for each task, its name, and its required resources. Each task, whether
there exists some equivalent, requires resources or not. If not, enquire whether it
should and could be replicated ;

— Identify the different tasks’ preconditions so that the possible causes of failure asso-
ciated with each of them can be identified. For each precondition, enquire whether
and how it can be remedied.

The task-environment model can be formally defined using the sets E,, G, I, 7, R,
and the functions prec and post respectively defined in Definitions 2, 3, 5, 7, 20, 10 and
11.

Definition 58. Let TEM refer to the task-environment model. We define TEM = {r,
Es, G, I, R, prec, post}. T is the set of tasks. R is the set of resources. E is the set of the
external stimuli of the system. I is the set of the internal stimuli of the system. G is the
set of goal situations. prec determines the preconditions of each task. post determines
the post-conditions of each task.

In which case the manufacturing unit could be paralysed
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The task-environment model micro-process provides the designer with three steps to
allow him to identify the tasks, their preconditions, and their resources. Nevertheless, it
is on the designer discretion to determine which tasks to take into account in the system,
their preconditions, and their resources. Hence, there could not be an automatic way
to build this model. However, the formal definition of this model will allow FATMAS
to verify, at the design step, that all these tasks, their preconditions, and their required
resources are taken into account in the future system.

3.3.2 Iterating the task-environment model

A failure occurs if the system has no control on the source of the stimuli that
originated the failure or if the required resources are in failure. Hence, before pursuing
the development of the other models, the designer should continue introducing new
tasks or resources to the system in order to control the sources of failures, or to prevent
from a resource failure. The designer may have to replicate resources. In this case, it
has to identify the resources which cannot be replicated.

Furthermore, the designer may iterate over the task-environment model to add new
tasks that would either control sources of failures, or control the resources (if they cannot
be replicated) by preventing, detecting, or repairing their failures, whenever possible.
If there are new tasks that need to be added to the system as a result of that process,
then the designer must modify the task-environment model to include them. Hence,
new preconditions or resources will be added to the description of the environment.
The designer can iterate this process so that the MAS is as autonomous as possible
with regard to tasks and resource failure. However, the designer cannot indefinitely
reiterate.

At each iteration, the designer may add new tasks or resources to the system. Each
task is added with the objective to either control a source of failure or to control a
resource. For each added task t;, we can associate a cost ¢;. Moreover, for each added
resource to the system r;, we associate a cost ¢;. The MAS can be in failure or in fatal
failure. If a fatal failure occurs, then the MAS must be restarted. Hence, we associate a
cost ¢ to restart the system in case of system fatal failure. The designer has to evaluate
the total cost of adding new tasks and resources to the system with the cost of restarting
the system in case of fatal failure. We propose that the designer stops iterating if he finds
that the total cost of adding tasks and resources to the system is greater than the cost
of restarting the system in case of fatal failure. Consequently, FATMAS is based on a
cost /benefit approach to support the designer when iterating over the task-environment
model.
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In the manufacturing cell example, if the machine-tools are no longer able to read the
instructions from the database then the system should be able to connect to a backup
database which duplicates the orders since the cost to replicate the database is less than
the cost to restart the manufacturing cell. Of course, a backup database is a replicated
resource. We refer to this resource as dBasel. Hence, dBasel € R, and using the function
resourceEquivalence (see Definition 24), we have resourceEquivalence(readInst, dBase,
dBasel) = true. In this case, a new task, called replaceDB, is added to the system’s
tasks to allow machine-tools to connect to dBasel. This task is under the control of the
task which starts the manufacturing cell.

If dBase is in failure, then the MAS uses dBasel. Consequently, the MAS evaluates
whether dBase is in failure. Let us use the precondition dBaseAvailable to check whe-
ther dBase is available. If dBase is not available, then the truth value of dBaseAvailable
is false. However, the MAS will run with dBasel. Hence, it changes the truth value
of dBaseAvailable to true. Consequently, replaceDB controls the precondition dBaseA-
vailable. Using the function effector (see Definition 15), we have effector(replaceDB,
dBaseAvailable) = true; dBaseAvailable € I (the set I is defined in Definition 5). Fur-
thermore, the designer evaluates the cost to replicate all the machine tools. However,
the machines cannot be replicated since it is very expensive to replicate a lathe or
a carriage. Consequently, the preconditions describing the state of each machine will
characterize the system’s environment. The new task model is presented in Figure 3.5.

At this point, we identified the different tasks that should be performed in the
system. In the next model, we will specify the agents that will operate them.
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3.4 The Design Phase

The design phase provides the highest level specification of the software to be deve-
loped, to meet the specification. In FATMAS, the design phase provides two models and
a technique : the agent model, the interaction model, and the reorganization technique.
We present each of these models in the following sub-sections.

3.4.1 The Agent Model

The task-environment model has identified the different tasks that the MAS may
perform. We propose to specify the agents by considering groups of tasks, each group
being a set of logically related tasks, bound by the same constraints or goals. For
instance, each different output of the system could determine different group of tasks.
The complementarity of tasks could be dealt with by different groups. This grouping of
tasks, i.e, of functionalities is left to the expertise of the system designer. The agents,
identified in the agent model, represent the types of agents that will operate in the future
system. This model does not determine the agent instances that will really operate in
the system.

In our example, the tasks can be grouped in four groups in order to deliver mechani-
cal pieces. The first group has the control of the manufacturing unit. The second group
has the control of the lathe. The third group has the control of the carriage. The fourth
group corresponds to the activities which should be performed when the manufacturing
unit starts operating. Hence, we could assign an agent to each of these groups. Thus,
there could be four types of agents in the manufacturing cell example :

— ManufacturingUnitAgent : an agent which controls the manufacturing unit ;

— LatheAgent : an agent which controls the lathe;

— ManufacturingAgent : an agent which starts the manufacturing cell ;

— CarriageAgent : an agent which controls the carriage.

In this example, the set A (see Definition 29) of agents is : A={ ManufacturingUnitAgent,
LatheAgent, ManufacturingAgent, CarriageAgent}.

Each agent must have access to the resources required by its tasks. In the manufac-
turing cell example, the required resources of the ManufacturingAgent is the database
in which the orders are stored and the tag in which it writes instructions; dBase €
resourceAccessibility(ManufacturingAgent). For both the LatheAgent and the Manufac-
turingUnitAgent, the required resource is the tag from which they read instructions.
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ManufacturingUnitAgent

tagAvailable : Boolean

controlM() : void

ManufactruingAgent 1.1 communicate 0.1 readinstM() : void

dBaseAvailable : Boolean 0.1  communicate  + L.1

manageUnit() : void CarriageAgent

readInst() : void

- VoI 1.1 pieceAvailable : Boolean
startC() : void 11

replaceDB() : void
startMC() : void

moveCarriage() : void

+ +
LatheAgent

. + i +
tagAvailable : Boolean ECIIMUTISAE

controlL() : void
readlnstL() : void

managel.athe() : void

F1G. 3.6 — The agent model of the manufacturing cell.

The required resource of the CarriageAgent is the carriage.

Each agent can be related to other agents according to their interactions. In the
agent model of the manufacturing cell (see Figure 3.6), agents are related by associa-
tion relations as defined in [41]. The ManufacturingAgent can either communicate with
the ManufacturingUnitAgent or not. Hence, the cardinality of this relation is (0..1)
on the ManufacturingUnitAgent side. Nevertheless, the ManufacturingUnitAgent must
communicate with the ManufacturingAgent. So, the cardinality of this relation is (1..1)
on the ManufacturingAgent side. The associations between the LatheAgent and the
ManufacturingAgent, the LatheAgent and the CarriageAgent, and the Manufacturin-
gUnitAgent and the CarriageAgent are similar to the association between Manufactu-
ringAgent and ManufacturingUnitAgent.

The micro-process used to create the agent model is :

Define groups of logically related tasks that share complementary, common goals

or are bound by the same constraints ;

— Associate a type of agent to each grouping ;

— For each type of agent, define its required resources as the union of the resources
of all the tasks it will perform ;

— Define the different agent relations.

The agent model can be formally defined based on A, 7, and the function task which
are respectively defined in definitions 7, 29, and 30 of Chapter 2.

Definition 59. Let AM be the agent model. AM = {A, 7, Rel, task}. A is the set of
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agents. T is the set of tasks to be performed by agents. Rel :A x Ax Label — {0, 1}
which relates two agents and in which Label is a kind of relation which can be observed
between two agents. The function task determines the tasks which will be performed by
each type of agent.

From the formal definition of the agent model, it is possible to verify, for a designer
using FATMAS, that the set of tasks taken into account in the task-environment model
is equal to the set of tasks taken into account in the agent model. Doing so, tasks’
preconditions and resources must be declared in the agents’ attributes. Moreover, the
third item of the agent model micro-process makes that each agent has access to the
required resources of its tasks. Consequently, at this stage, we ensure that the different
tasks are taken into account in the future system and that each agent has access to the
required resources of its tasks.

In the agent model, the different tasks have been assigned to types of agents. In the
next sections, we present the agent interaction models to model the dynamic behavior

of the MAS.

3.4.2 The Agent Interaction Model

In this section, we present the agent interaction model which details how the sys-
tem operates to reach its objectives. This model is defined based on the definition of
interaction [41] that is the ongoing two-way or multiway exchange of data among com-
putational entities, such that the output of one entity may influence the later outputs
of the other entity.

The agent interactions are defined by the information received or sent by the agents’
tasks. Agent interactions can be represented by either a sequence diagram or a collabo-
ration diagram as defined in [53|. Agents’ interactions can be deduced from the agent
model and the relations between the different tasks.

For the manufacturing cell example, we determine the different calls between the
tasks. For example, the task controlM can ask the task moveCarriage to move the
carriage to the manufacturing unit. Hence, the controlM() task calls the moveCar-
riage() task. Consequently, based on the definition of function call (see Definition 32),
call(controlM(), moveCarriage())=true. We can determine the different calls between
the tasks.
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/startMC, readlInst, startC: /readInstM, controlM:
/manageUnit:
ManufacturingAgent1 : ManufacturingUnitAgentq :

/managelathe:
/moveCarriage:

[CarriageAgent1 :

[LatheAgent1 :

/moveCarriage:
/re%dlnstL, cont{olL:

F1G. 3.7 — The collaboration diagram of the manufacturing cell.

Based on this relation, ManufacturingUnitAgent communicates with the Carria-
geAgent. Consequently, communication(ManufacturingUnitAgent, CarriageAgent) =
true. This communication can be verified in the agent model of Figure 3.6. The colla-
boration diagram is presented in Figure 3.7.

The micro-process of the agent interaction model is :

— Determine the set A of agents that will operate in the system ;

— Determine the information sent or received by tasks ; mainly from the task-environment
model, task hierarchy, and the agent model. If a task is a sub-task of another task,
then the two tasks communicate with each other. Moreover, if an agent is in re-
lation with another agent in the agent model, then these two agents interact with
each other. Hence, the agent interaction model can be deduced based on the task-
environment model and the agent model. Consequently, a continuity in building
the models is provided to the designer which could ease its process in designing
the MAS;

— Deduce the agent interaction model.

We formally define the interaction model based on the definition of A and of the
function interaction (see Definition 34).
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Definition 60. Let IM be the agent interaction model. IM = {A, interaction}. A is the
set of agents. The function interaction determines the different agents with which an
agent interacts.

At this stage, we have presented the task-environment model, the agent model, and
the interaction model. In the next section, we present the reorganization technique that
defines how the system will recover from its failures.

3.4.3 The Reorganization Technique

The reorganization technique described in Chapter 2 includes a fault-prevention
technique, a fault-recovery technique, and a fault-tolerance technique. The fault-prevention
technique is dealt with in the task-environment model. We proved the validity of the
fault-recovery technique in Chapter 2. In this section, we determine, based on the fault-
tolerance technique, the agents which should be replicated. In the fault-tolerance tech-
nique, only the critical agents (see Definition 50) are replicated. The non-critical agents
(see Definition 51) will have their tasks replicated in other original agents.

In the manufacturing cell example, we determine the set of critical agents in order
to determine which agents and tasks need to be replicated. There are two critical agents
which are CarriageAgent and ManufacturingAgent, since the other agents do not have
access to the resources that these two agents can access. So, each instance of these two
agent types will be replicated. The ManufacturingUnitAgent and the LatheAgent are
two non-critical agents since each of them has access to the required resources of the
other agent. Hence, each instance of one of the agent types will have its tasks repli-
cated in another instance of the other agent type. Consequently, instead of replicating
four agent types, we only replicate two. Furthermore, the two tasks readInstM and
readInstL are identical since they read information from an electronic tag. readInstM
is performed by ManufacturingUnitAgent, and readIlnstL is performed by LatheAgent.
Based on the function idTask (see Definition 12), we have idTask(readInstM, readInstL)
= true. Consequently, it is not necessary to replicate each of these tasks in the other
agent. Then, we have, based on Definition 53, and Definition 52 : LatheAgent € dupli-
cate(ManufacturingUnitAgent), and coupling(readInstM) = (ManufacturingUnitAgent,
LatheAgent).

Now, that the agents and their replica were determined, the agent model must be
updated. Each agent replica or each replicated task will have its name preceded by the
tag repl followed by the name of the original agent. Hence, the updated agent model of
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repl_ManufactruingAgent

dBaseAvailable : Boolean repl_CarriageAgent

repl_ManufactruingAgent_readinst() : void pieceAvailable : Boolean

repl_ManufactruingAgent_startC() : void

repl_CarriageAgent_moveCarriage() : void
repl_ManufactruingAgent_replaceDB() : void
repl_ManufactruingAgent_startMC() : void
¥
ManufacturingUnitAgent
+
tagAvailable : Boolean
replc
controlM() : void
+
readInstM() : void
+ + manageUnit() : void
ManufactruingAgent *
repl_LatheAgent_controlL() : void
dBaseAvailable : Boolean, g icatd icate
| 1..1 ' communicate 0.1 repl_LatheAgent_manageLathe() : void 0..1 1.1 -
readInst() : void CarriageAgent
startG() : void * 1.1 pieceAvailable : Boolean
replaceDB() : void 1.1 0.1 ate 1.1
. moveCarriage() : void
startMC() : void LatheAgent
1.1 communicate 0..1 + +

tagAvailable : Boolean

controlL() : void
readInstL() : void
manageLathe() : void

repl_ManufacturingUnitAgent_controlM() : void

repl_ManufacturingUnitAgent_manageUnit() : void|

Fia. 3.8 — The updated agent model of the manufacturing cell.

the manufacturing cell example is presented in Figure3.S.

In the next section, we present the implementation model.

3.5 The implementation Phase

The implementation phase allows to code the programs and to characterize the

support environment. FATMAS provides an implementation model to develop the future
system.

3.5.1 The Implementation Model

The implementation model determines the development environment of the MAS.
The development environment specifies the physical architecture of the system, and the
rules used to automatically generate a skeleton code for the system.
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X . computer2 managing the manufacturing cell
Computer1 Managing the manufacturing cell

Fic. 3.9 — The deployment diagram of the manufacturing cell.

MAS Physical Architecture

The MAS physical architecture first determines the number of physical compo-
nents on which the MAS will run, and then their descriptions. In Chapter 2, we pro-
posed, based on agents grouping, a way to determine the number of physical com-
ponents on which the system should run. From the manufacturing cell agent model,
the agents can be grouped into two groups as defined in Definition 57 : g; = {Ma-
nufacturingAgent, ManufacturingUnitAgent, CarriageAgent} and go = {LatheAgent,
repl ManufacturingAgent, repl CarriageAgent}. Hence, there should be two compu-
ters in the MAS to manage the physical components (lathe, manufacturing unit, car-
riage, manufacturing cell). Each computer requires access to the available machines and
resources. If a computer is out of service, there will be another computer to replace it.

The physical architecture deals with the detailed description of the hardware on
which the system will run [53]. In the context of FATMAS, there is no hardware spe-
cification in addition to UML’s hardware specifications [53]. Hence, we propose to use
the physical architecture of UML materialized by the deployment diagram.

The deployment diagram of the manufacturing cell example is presented in Figure
3.9.

Code Generation

The second step in the implementation model is code generation. The code generation
allows us to generate the skeleton code of the application. To automatically generate the
code, in the context of object-oriented programming, we propose the following micro-
process :

— the agent name is the class name ;

— each agent’s task is represented by a method in the class representing the agent ;

— each task precondition is declared as a variable ;

— each information exchanged by two tasks is translated into a variable declared in
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public class LatheAgent extends ManufactruingAgent ({
/* {src_lang=Java}*/

public
public
public
public

repl_ManufacturingUnitAgent 1..1;
repl_ManufacturingUnitAgent 0..1;

CarriageAgent myCarriageAgent;
ManufacturingUnitAgent myManufacturingUnitAgent;

public void controlL() {

}

public void readInstL () {

}

public void manageLathe () {

}

public void repl_ManufacturingUnitAgent_controlM() {

}

public void repl_ManufacturingUnitAgent_readInstM() {

}

public void repl_ManufacturingUnitAgent_manageUnit () {

}

F1G. 3.10 — The code of LatheAgent.

the two classes participating in this interaction.

For the manufacturing cell example, the skeleton code of the LatheAgent is presented

in Figure 3.10.

At this point, we have presented the different models that FATMAS will produce,
together with their micro-processes. In the next section, we present FATMAS macro-
process that guides the designer through the different models.

3.6 The FATMAS Macro-process

There are two kinds of approaches to design a system : a task-driven approach
or a goal-driven approach. In FATMAS, each agent performs several tasks. Each task
is performed under conditions and could require resources to be correctly performed.
Hence, each agent in the MAS has to react to inputs, and check whether it can perform
tasks. So, FATMAS uses a task-driven process since agents have a reactive architecture
based on event-condition-action rules. Moreover, FATMAS includes a reorganization
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technique. It provides a way for the system to overcome agent failures in order to
perform its required tasks and consequently to reach its objectives. As stated in [13]
[48], a goal-driven process is appropriate to deal with system failure since it allows the
system to adapt its plan in order to overcome a failure. Consequently, FATMAS includes
by the mean of its reorganization technique a goal-driven process to design the system.
Consequently, FATMAS uses a hybrid process, a macro-process, based on task-driven
and goal-driven processes.

The FATMAS macro-process model defines the different steps to follow to go from
one model to another. These steps allow a designer to establish a link between the
different models.

As seen before, the additional control over effectors of preconditions and over the
resources, may require that new tasks be added to the task-environment model. Also
an agent replication may require that additional agents be added to the agent model.
Hence, the macro-process of our methodology is summarized as follows and presented
in Figure 3.11 :

Step 1 : Develop the task-environment model ;
Step 2 : For each identified task precondition, determine whether it is possible to add
new tasks to the system to control these preconditions;
if new tasks are added to the system then
go to Step 1;
end if
Step 3 : Develop the agent model;
Step 4 : Develop the agent interaction models;
if new tasks are added to the system then
go to Step 1;
end if
Step 5 : Develop the implementation model ;
if new tasks are added to the system then
go to Step 1;
end if
Step 6 : Implement the reorganization technique
if new agents are added to the system after agent replication then
go to step 3;
end if

Now, we have defined all the models that should be developed using the FATMAS
approach. FATMAS determines different sources of failures other than those related
to code bugs. This methodology should allow to build FTMAS which, under certain
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|The task- envnronment model ’4—‘

The agent model

The agent interaction model }4—‘

The implementation model |

\_,‘ The reorganization technique|

F1G. 3.11 — The macro-model of the FATMAS methodology.

conditions, can recover from its failures.

3.7 Application Domains of FATMAS

As any methodology, FATMAS has restrictions on its application domains. First,
FATMAS determines the different tasks and agents of the system which do not evolve
over time. Hence, tasks and agents are known before implementing the system. Conse-
quently, FATMAS can be applied to design MAS in which the set of agents is known in
advance. Hence, FATMAS cannot be applied to design an open MAS in which agents
come from different locations, and are not known in advance.

Furthermore, FATMAS can be applied to build large-scale multi-agent systems. In
[30], scalability refers to how well the capacity of a system to do useful work increases as
the size of the system increases. Thus, the scalability of a MAS requires that we take a
society view of the performance of the system at different sizes. The variables that affect
the performance of MAS include, but not exclusively, the number of agents, the number
of tasks/goals the agent are carrying out, and the type of the coordination protocols
employed [30]. In FATMAS, we do not specify a particular coordination protocol to be
used by agents. However, FATMAS minimizes the number of agents to operate in a fault-
tolerant MAS, and allows the agents to operate a high number of tasks. Nevertheless,
at each iteration, new tasks may be added and hence new preconditions must be dealt
with. If the number of tasks increases, so is the number of preconditions, and so is
the number of iterations. This may render the system development complex. Hence, we
can advance that FATMAS could be applied to build large-scale multi-agent systems.
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Meanwhile, there should be a limit to the number of agents which must operate in a
MAS designed using FATMAS, that beyond it the performance of the system degrades.

3.8 Summary

In this chapter, we proposed FATMAS a design methodology to build fault-tolerant
multi-agent systems. This methodology uses an incremental strategy, based on a cost /benefit
approach, to build the system. It has the advantage to provide techniques for fault-
prevention, fault-recovery, and fault-tolerance right from the design phase, which is
not the case of existing methodologies used to design multi-agent systems. It has the
following main contributions :

1. It helps the designer to determine the system boundary and the system’s envi-
ronment ;

2. It proposes a task reallocation mechanism which automatically determines which
tasks (agents) should be replicated and in which other agents;

3. It reduces the system complexity by minimizing the replication of agents;
4. Tt proposes an approach to distribute the system over physical components;

5. It proposes a MAS fault-recovery technique that is embedded within the designed
MAS which allows it to detect certain faults and recover from them, making the
MAS more robust to fault prone (unstable) environments.



Chapitre 4

Further Case Study : A Fault-Tolerant
Multi-Agent System For Document
Printing

In the previous chapter, we applied FATMAS to design a fault-tolerant MAS to
manage a manufacturing cell. In this chapter, we apply FATMAS to design a fault-
tolerant multi-agent system to manage a company’s printers. By the use of this example,
we highlight the iterative approach of FATMAS which is useful to add fault-tolerant
capabilities to a MAS, right from the design phase of the system. The different sets and
functions referred to in this chapter were defined in Chapter 2. Furthermore, in Chapter
3, we specified for each model the definitions and functions it refers to in Chapter 2.

Let us consider a company which has several employees and three printers. Each
employee has access to the three printers (see Figure 4.1). One of the printer prints do-
cuments in the format 8'/2/11, another printer prints documents in the format 8'/2/14,
and the other one prints documents in the format 8'/2/17. Each employee needs that
his/her documents be printed despite any problem that could occur.

Our proposed example is a distributed problem since there are several distributed
users and printers. In order to exemplify the usefulness of FATMAS, we propose a multi-
agent system to manage the various printing tasks. This MAS must be fault-tolerant
since any document should be printed despite any failure that could occur with the
printers. Moreover, any problem that appears in a printer must be repaired since every
printer is dedicated to a specific printing task. As described above, FATMAS is based
on an incremental development. As will be shown below, it has taken four iterations to
design the proposed system. In the following sections, we describe these iterations.
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F1G. 4.1 — The company local network.

Before presenting the different iterations, we provide the conventions used to choose
the names of the different tasks, preconditions, and agents. The names of the tasks are
given by the concatenation of a verb describing the task and the object on which the
task is applied (e.g, if there is a task to manage a printer, then this task is called mana-
gePrinter). The names of the preconditions are given by either the concatenation of the
name of a resource with the term available to state whether the resource is available
(e.g, if, for a particular task to be correctly performed, a printer must be available,
then one of the preconditions of the tasks is printerAvailable) , or the concatenation
of the name of the task and the term receptive to state whether it is possible to call
this task (e.g, if there exists a task called sendMessageAvailability which calls the task
notifyRepairStatus, then one of the preconditions of sendMessageAvailability is notify-
RepairStatusReceptive). Finally, the names of the agents are given by the concatenation
of the semantic of the grouped tasks and the term agent (e.g, if there is an agent that
manages a printer, then this agent is called PrinterManagerAgent).

4.1 The First Iteration (Analysis Phase)

As presented in Chapter 3,FATMAS has three phases : analysis, design, and imple-
mentation. In the analysis phase, we iteratively create the task-environment model that
aims at determining the system boundary. In the task-environment model, we determine
the tasks that will be performed by the future agents of the system, the preconditions
of these tasks, and their required resources. The case study refers to different sets or
relations defined in Chapter 2.
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Printing
document

receiveDocument sendDocument

F1G. 4.2 — Task hierarchy at iteration 1.

4.1.1 The Task-environment Model

The system’s objective is to guarantee that a document sent to a printer is printed
as requested. To reach this objective, the document is received by the application that
requests its printing. Hence, the system needs at least to perform the following tasks :

1. recetveDocument : a task that receives from an employee the document to be
printed. It does not require any resource to be properly performed *;

2. sendDocument : a task that sends the document to the printer to which the em-

ployee has access. This task requires an access to a printer.

The task hierarchy associated to the first iteration is presented in Figure 4.2. Hence,

T = {receiveDocument, sendDocument}.

Each task may require resources to properly operate. Hence, for each task, we de-

termine its required resources.

1. The receiveDocument task does not require any resource to correctly operate.

2. The sendDocument task requires access to a printer, considered as its needed
resource ;
resources(sendDocument) = {printerl, printer2, printer3}, since the page size of
the document could be any of the three available.

Hence, the set of resources R = {printerl, printer2, printer3}.

Each task has preconditions that must be met before it can be performed. The tasks’

preconditions are :

ITo simplify the example, we assume no limit on its input buffer
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1. The receiveDocument task does not have any precondition ; prec(receive Document)

2. The sendDocument task has a precondition that the printer to which the docu-
ment must be sent is not defective (printerNotDefective) ; prec(sendDocument) =
{printerNotDefective}

Finally, if a printer is defective, then the system must look for another printer while
trying to repair the defective one so that the MAS continues to operate properly. Hence,
the system should have some control over its printers in order to detect their defective
components and to repair them, if possible. The designer evaluates the cost to add new
tasks to detect and repair problems in the printers. This will consist of developing agents
to manage the printers and try to repair them. Doing so, this could make employee not
waste their time in waiting for any person to repair the printer. Consequently, new tasks
should be added to the system, as presented in the next iteration.

4.2 The Second Iteration

In the first iteration, we concluded that there must be new tasks in the system
to manage the printers in order to detect defective components and repair them, if
possible. Hence, we iterate over the design of the task-environment model.

4.2.1 The Task-environment Model

In order to manage a printer, a printer manager task (managePrinter) is added to
the system. This task identifies the problems that could occur in a printer, repair them
and then report them to the end-user. Hence, this task is decomposed into three sub-
tasks : detectPrinterProblems that identifies the problems in the printer, repairPrinter
that repairs the printer if needed, and reportProblems that reports the problems to the
end-user. The end-user must be able to receive the reported problems as information
sent to him. Hence, there must be a task that receives and presents these problems to
the end-user (reportProblems).

So, the system must now have the following tasks :

1. receiveDocument : a task that receives the document to print. It does not need to
access any resource ;
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2. sendDocument : a task that sends the document to the printer. It requires to
access one of the three printers; resources(sendDocument)={printerl, printer2,
printer3} ;

3. managePrinter : a task that manages a printer. It requires to access to the printer ;
resources(managePrinter)={printerl, printer2, printer3} ;

4. detectPrinterProblems : a task that identifies the problems that occur in the prin-
ter. It requires the access a the printer ; resources(detectPrinterProblems) = {prin-
terl, printer2, printer3};

5. repairPrinter : a task that repairs, if possible, the problems that occur in the
printer. This task can be decomposed into the following ones :

(a) updatePrinterDriver : a task that updates a printer driver if there is a pro-

blem with it. It requires the access to the printer ; resources(update Printer Driver)
= {printerl, printer2, printer3} ;

(b) detectPrinterCPUProblems : a task that detects whether there is a problem
with the printer CPU. It requires the access to a printer;
resources(detectPrinterCPUProblems) = {printerl, printer2, printer3} ;

(c) detectHardwareProblems : a task that detects hardware problems. It re-

quires the access to a printer ; resources(detectHardwareProblems) = {prin-
terl, printer2, printer3} ;

(d) evaluatePaperQuantity : a task that determines whether a printer must be
fed with paper. It requires the access to the printer;
resources(evaluate PaperQuantity) = {printerl, printer2, printer3} ;

(e) evaluateInkQuantity : a task that determines whether there is a sufficient
quantity of ink in a printer. It requires the access to the printer
resources(evaluateInkQuantity) = {printerl, printer2, printer3} ;

(f) detectPrinterConnectionProblems : a task that detects whether an end-user
has connection problems with its printer. It requires the access to the printer ;
resources(detect PrinterConnectionProblems) = {printerl, printer2, printer3} ;

(g) notifyRepairStatus : a task that notifies whether the repair task was perfor-
med properly. It does not require any resource to be properly performed.

6. reportProblems : reports any problem if the printing task is not achieved, or sends
an acknowledgement to the end-user to inform him that the printing task was
properly done. It does not require any resource ;

The task hierarchy associated to the second iteration is presented in Figure 4.3. The

set 7 = {receiveDocument, sendDocument, managePrinter, detectPrinterProblems, re-
pairPrinter, update Printer Driver, detectPrinter CPUProblems, detectHardwareProblems,

evaluatePaperQuantity, evaluatePaperQuantity, detectPrinterConnectionProblems, no-
tifyRepairStatus, reportProblems}.
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F1G. 4.3 — Task hierarchy at iteration 2.

— For each task, we identify the preconditions that enable it to properly perform.
1. The receiveDocument task does not have any precondition ;

2. The precondition of the reportProblems task is that there exists a problem in
a printer to report to the end-user (problemDetected). prec(reportProblems)
= {problemDetected} ;

3. The precondition of the sendDocument task is that the managePrinter task is
receptive (managePrinterReceptive) ; prec(sendDocument) = {managePrin-
terReceptive} ;

4. The precondition of the managePrinter task is that the printer is connected
(printerAwvailable) ; prec(managePrinter) = {printerAvailable} ;

5. The precondition of the detectPrinterProblems task is that the printer is
connected (printerAvailable); prec(detectPrinterProblems) = {printerAvai-

lable} ;

6. The precondition of the evaluatePaperQuantity task is that the printer is
connected (printerAvailable) ; prec(evaluatePaperQuantity) = {printerAvai-
lable} ;

7. The precondition of the evaluatePaperQuantity task is that the printer is

connected (printerAvailable) ; prec(evaluatePaperQuantity) = { printerAvai-
lable} ;

8. The precondition of the detectPrinterCPUProblems task is that the printer
is connected (printerAvailable); prec(detectPrinterCPUProblems) = {prin-
terAvailable} ;

9. The precondition of the detectHardwareProblems task is that the printer is

connected (printerAvailable); prec(detectHardwareProblems) = {printerA-
vailable} ;
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10. The precondition of the detectPrinterConnectionProblems task is that the
printer is connected (printerAvailable) ; prec(detect PrinterConnectionProblems)
= {printerAvailable} ;

11. The precondition of the update PrinterDriver task is that the printer is connec-
ted (printerAvailable) and it must have the needed software to update the
driver (softwareAvailable); prec(updatePrinterDriver) = {printerAvailable,
software Available} ;

12. The precondition of the notifyRepairStatus task is that the reportProblems
task is receptive (reportProblemsReceptive) ; prec(notifyRepairStatus) = {re-
portProblemsReceptive}.

Finally, if the software needed to update a printer is not provided, then the system
is in failure. Also, if there is not enough paper available, or there is not any toner
cartridge available, or there is not an available CPU to replace the defective one, then
the system is also in failure. At this stage, we determine that if a problem occurs while
printing, then it is only possible to repair it in case of software update. Otherwise,
the MAS will not be able to overcome the failure. However, the MAS could be able
to identify the problem, and check whether the required materiel to make the printer
functioning is available in the company’s warehouse. If the answer is affirmative, then
the person who will repair the printer will be informed that the material is available
in the company’s warehouse. Hence, this person will not have to order the required
material from suppliers.

Based on the cost/benefit evaluation, the cost to add new tasks to check whether
the required material is available in the company’s warehouse is not expensive. Further-
more, this makes the company save time since the person who will repair the printer is
informed that the material is available. In this case, the system should not be in failure
for a long time.

So, we propose to add new tasks to the system in order to check whether the needed

materials are available so that the printer can be repaired. This is done in the third
iteration.

4.3 The Third Iteration

In the second iteration, we concluded that the system could not be able to achieve
its objective in several cases. Hence, new tasks should be added to handle these cases,
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as much as possible.

4.3.1 The Task-environment Model

The system must now be able to check whether there is the needed quantity of paper,
toner cartridge, CPU, and hardware material available in the company’s warehouse.
Hence, the following tasks are added to the system :

— determineMaterial : this task determines the needed material to repair a printer.

It is decomposed into the following subtasks :

1. getPaper : this task determines the quantity of paper available; It requires
an access to a data base that has information about available stocks (DbA-
vailable) ; resources(getPaper) = {DbAvailable} ;

2. getToner : this task determines the quantity of toner cartridges available ;It
requires an access to a data base that has information about available stocks
(DbAvailable) ; resources(getToner) = {DbAvailable} ;

3. getCPU : this task determines the quantity of CPU available ;It requires an
access to a data base that has information about available stocks (DbAvai-

lable) ; resources(getCPU) = {DbAvailable} ;

4. getSoftware : this task determines whether the needed software is available
on particular servers; It requires an access to a data base that has informa-
tion about available stocks (DbAwvailable) ; resources(getSoftware) = {DbA-
vailable} ;

5. repairConnection : this task determines which repairs are needed to re-
establish the connection with a printer; It requires an access to a data base
that has information about available stocks (DbAvailable) ;

resources(repairConnection) = {DbAvailable} ;

6. sendMessageAvailability : this task sends a message about the availability of
the needed material.

Thus, the set of resources R = {printerl, printer2, printer3, DbAvailable}. The task
hierarchy associated to the third iteration is presented in Figure 4.4. The set 7 =
{receiveDocument, sendDocument, managePrinter, detectPrinterProblems, repairPrin-
ter,update PrinterDriver, detectPrinterCPUProblems, detectHardwareProblems, evalua-
tePaperQuantity, evaluatePaperQuantity, detectPrinterConnectionProblems, notifyRe-
pairStatus, reportProblems, receiveMessage Availability, sendMessage Availability, repair-
Connection, getSoftware, getCPU, getToner, getPaper, determineMaterial}.

For each task, we identify the preconditions that enable it to be properly performed.



Chapitre 4. Further Case Study : A Fault-Tolerant Multi-Agent System For Document Printing67

Printing
document

/N

...................... determineMaterial

——

getPaper || getToner getCPU | getSoftware ” repairConnection || sendMessageAvailability

F1G. 4.4 — Task hierarchy at iteration 3.

1. The getPaper, getToner, getCPU, bringHardware, repairConnection, and getSoft-
ware tasks have no preconditions ;

2. The precondition of the sendMessageAvailability task is that the notifyRepairSta-
tus task is receptive (notifyRepairStatusReceptive) ; prec(sendMessage Availability)
= {notifyRepairStatusReceptive }.

There are several printers in the system. However, if there is a printer out of service,
then the system should be able to repair it. Hence, if the system finds that there are
not enough stocks in the company’s warehouse to help in repairing a printer, then the
printer could not be repaired. Hence, the system must be able to order the material for
which there is not enough stocks from the company’s suppliers. Hence, new tasks must
be added to the system to order materials from suppliers. Hence, the person, who will
repair the printer, will not have to order the required material from suppliers.

Based on the cost/benefit evaluation, the cost to add new tasks to order the required
materials from suppliers is not expensive. Furthermore, this makes the company save
time since the person who will repair the printer will not order the required material.

4.4 The Fourth Iteration

In the third iteration, we concluded that the system could not be able to achieve
its objective. Hence, we have to modify our previous system design so that it can order
the needed materials.



Chapitre 4. Further Case Study : A Fault-Tolerant Multi-Agent System For Document Printing68

The system is now able to order from suppliers the needed materials such as paper,
toner cartridge, CPU, or any hardware material. So, new tasks are added to the system
accordingly, and some modifications need to be made to the previous task-environment
model so that the system can order materials from its suppliers.

4.4.1 The Task-environment Model

— orderMaterial : this task orders the needed material to a supplier. In order to be
able to order paper, toner cartridge, CPU, and hardware, this task is decomposed
into the following subtasks :

1. orderPaper : this task orders papers to a supplier;
. orderToner : this task orders toner cartridges to a supplier;

. orderCPU : this task orders CPU to a supplier;

2
3
4. orderHardware : this task orders hardware to a supplier;
5. orderSoftware : this task orders software to a supplier;

6

. recewweOrderStatusSupplier : this task receives the answer from the supplier
on its ability to fulfill the order.

The set of resources R = {printerl, printer2, printer3, DbAvailable, Supplier}. The
task hierarchy associated to the fourth iteration is presented in Figure 4.5. The set 7 =
{receiveDocument, sendDocument, managePrinter, detectPrinterProblems, repairPrin-
ter,updatePrinterDriver, detectPrinterCPUProblems, detectHardwareProblems, evalua-
tePaperQuantity, evaluatePaperQuantity, detectPrinterConnectionProblems, notifyRe-
pairStatus, reportProblems, receiveMessageAvailability, sendMessageAvailability, repair-
Connection, getSoftware, getCPU, getToner, getPaper, determineMaterial, orderPaper,
orderToner, orderCPU, orderHardware, receiveOrderStatusSupplier}. ;

— For each task, we identify the preconditions to be performed.

1. The precondition of the orderPaper, orderToner, orderCPU, orderHardware,
orderSoftware, and orderMaterial tasks is that the supplier is connected (sup-
plierConnected) ;

2. The receiveOrderStatusSupplier and receiveOrderStatus tasks, have no pre-
conditions to be verified.

At this stage, the only possible source of failure that could make the system fails
is that the supplier is not connected or could not deliver the ordered goods. In order
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F1G. 4.5 — Task hierarchy at iteration 4.

to overcome this source of failure, there are no other tasks that can be added to the
system to control this source since the supplier is out of control of the system. Hence,
the company should have several suppliers to overcome this source of failure.

Now, there are no new tasks that can be added to the system, there is no possible
iterations over the task-environment model. Consequently, we move on to the design
phase.

4.4.2 The Design Phase

In the design phase, we develop the agent model and the agent interaction model,
and we apply the reorganization technique, described in Chapter 2, to determine which
tasks and agents should be replicated

The Agent Model

As stated in Chapter 3, we identify the types of agents by considering groups of tasks,
each group being a set of logically related tasks, bound by the same constraints or goals.
In this example, we identify four groups of tasks that can be logically grouped together.
The first group has to manage the printer, rendering the services and maintaining its
status. The second group has to repair a printer. The third group has to provide the
required materials to repair a printer. The fourth group has to ask a supplier to provide
the missing materials. Hence, we could define a type of agent for each of these groups.
Thus, there will be four types of agents in the our example :

1. — Agent name : PrinterManagerAgent
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— Description : this agent prints documents by sending them to a printer, and
monitors the printer to detect any default in it
— Resources : printerl, printer2, printer3.

2. — Agent name : PrinterRepairAgent
— Description : this agent repairs the problems identified by the PrinterManage-
rAgent
— Resources : printerl, printer2, printer3.

3. — Agent name : OrderPickerAgent
— Description : this agent checks whether the material needed to repair a printer
is available
— Resources : DbAvailable.

4. — Agent name : OrderPlaceAgent
— Description : this agent orders the needed material from the company’s suppliers
— Resources : Supplier.

The set A of agents is : A={PrinterManagerAgent, PrinterRepairAgent, OrderPi-
ckerAgent, OrderPlaceAgent}.

FEach agent can be related to other agents according to their interactions. In the
agent model of the document printing example (see Figure 4.6), agents are related
by association relations as defined in [41]|. Each PrinterManagerAgent can collaborate
with another PrinterManagerAgent. Hence, the cardinality of that relation is (0..*) on
both sides oof PrinterManagerAgent. The PrinterRepairAgent can communicate with
several PrinterManagerAgent or not. Hence, the cardinality of that relation is (0..*)
on the PrinterManagerAgent side. Nevertheless, the PrinterManagerAgent can com-
municate with the PrinterRepairAgent. So, the cardinality of that relation is (0..1) in
the PrinterRepairAgent side. The associations between the PrinterRepairAgent and the
OrderPickerAgent, and the OrderPickerAgent and the OrderPlaceAgent are similar to
the association between PrinterManagerAgent and PrinterRepairAgent. The agent mo-
del is presented in Figure 4.6.
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F1G. 4.6 — Agent model at Iteration 4

The Agent Interaction Model

We determine the different calls between the tasks. For example, in case the Printer-
RepairAgent identifies a failure in the printer, it asks the OrderPicker Agent to check for
the availability of the required material in order to repair the printer. Hence, the evalua-
teInkQuantity() task calls the bringToner() task. Consequently, call(evaluateInkQuantity(),
bringToner())=true. We can determine the different calls between the tasks.

Based on the call function, the PrinterRepairAgent communicates with the Order-
PickerAgent. Consequently, communication(PrinterRepairAgent, OrderPickerAgent) =
true. In the same manner, communication (PrinterManagerAgent, PrinterRepairAgent)
= true, and communication(OrderPickerAgent, OrderPlaceAgent) = true. Based on the
communication and the call functions, we can deduce the following collaboration dia-
gram of Figure 4.7.
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F1G. 4.7 — Collaboration model at Iteration 4.

The Reorganization Technique

As stated in Chapter 3, the reorganization technique described in Chapter 2 includes
a fault-prevention technique, a fault-recovery technique, and a fault-tolerance technique.
The fault-prevention technique is dealt with in the task-environment model. The fault-
recovery technique has been proofed valid in Chapter 2. In this section, we determine,
based on the fault-tolerance technique, the agents which should be replicated. Based
on the agents’ required resources, we deduce that :

— Any task of the PrinterManagerAgent can be replicated in the PrinterRepai-
rAgent, and vice-versa, since the two agents have the same required resources;

— The tasks of the OrderPickerAgent cannot be replicated in any other agent of the
system since none of these agents have access to the database. So, the OrderPi-
ckerAgent should be replicated.

— The tasks of the OrderPlaceAgent cannot be replicated in any other agent of the
system since none of these agents have access to the suppliers. So, the OrderPla-
ceAgent should be replicated.
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In that case, the shared memory of PrinterManagerAgent is shared with PrinterRe-
pairAgent. The shared memory of PrinterRepairAgent is shared with PrinterManage-
rAgent. The shared memory of OrderPickerAgent is shared with its replica. The shared
memory of OrderPlaceAgent is shared with its replica.

Only two types of agents will be replicated instead of four, which reduces the number
of agent instances that will operate in the system. Hence, the system will not be loaded
with replicated agents. The new agent model is presented in Figure 4.8.

4.4.3 The Implementation Phase

The implementation phase has only one model to develop which is the implementa-
tion model.

The Implementation Model

The implementation model determines the physical architecture of the system and
assists the code generation phase of the system. The physical architecture is provided as
a deployment diagram as defined in [53]. There are four types of agents in the system.
The PrinterManagerAgent which operates in the end-user machine since it receives the
document to print from the end-user. The PrinterRepairAgent which operates in the
server to which the printer to repair is connected since the end-user has not to repair the
printer. The OrderPickerAgent which operates also in the server to which the printer is
connected since it has to look if the needed material to the printer is available. Finally,
the OrderPlaceAgent which operates in the server connected to the suppliers since it
orders the material to one of the available suppliers.

From this distribution, we know that PrinterManagerAgent and PrinterRepairAgent
are not running on the same physical components. However, repl OrderPickerAgent
and repl OrderPlaceAgent are not assigned to a physical component. These two agents
and PrinterRepairAgent can be grouped together since they do not replicate each other.
Consequently, they can run on the same physical component. In this case, the server to
which the printer to repair is connected must have access to database warehouse stocks
and to the suppliers which are required by these two replica agents.

The deployment diagram is presented in Figure 4.9.
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F1G. 4.8 — Agent model after introducing redundancy.

End-user Printer server Supplier server

Fic. 4.9 — The deployment diagram of the printing system.
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The second step in the implementation model is the code generation. The code of
PrinterManagerAgent is presented in Figure 4.10. The codes of the remaining agents is
presented in Appendix A.

4.5 Conclusion

In this chapter, we applied FATMAS to design a fault-tolerant multi-agent system
which manages different printers used in a company. We have demonstrated how the
iterations of FATMAS has allowed us to identify different tasks, and thus agents, which
will operate in the system and add fault-tolerant capabilities to the system. These
identified tasks and agents would not be identified by other existing methodologies
since they do not integrate a fault-recovery approach.
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public class PrinterManagerAgent {
/* {src_lang=Java}*/

public int managePrinterConnected;
/* {transient=false, volatile=false}*/

public int printerConnected;
/* {transient=false, volatile=false}*/

public int repl_printerConnected;
/* {transient=false, volatile=false}*/

public int repl_softwarePossesion;
/* {transient=false, volatile=false}*/

public PrinterRepairAgent
myPrinterRepairAgent;

public void receiveDocument () {

}

public void sendDocument () {
}

public void managePrinter () {

}

public void detectPrinterProblems () {
}

public void reportProblems () {

}

public void
repl PrinterRepairAgent_updatePrinterDriver () {

}

public void
repl_PrinterRepairAgent_detectPrinterCPUProblem
s() |

}

public void
repl_PrinterRepairAgent_detectHardwareProblems (
) |

}

public void
repl_PrinterRepairAgent_evaluateInkQuantity () {

}

public void
repl_PrinterRepairAgent_evaluatePaperQuantity ()

{

public void
repl PrinterRepairAgent_detectPrinterConnection
Problems () {

}

public void repl_notifyRepairStatus() {
}

F1G. 4.10 — The code of PrinterManagerAgent.



Chapitre 5

Related Work On Agent-Oriented
Software Engineering Techniques

In this chapter, we present an overview of several MAS design methodologies :
(MAS-CommonKADS |24], GAIA [57], SODA |43], AALAADIN [17], Adelf 2], SABPO
[14], MESSAGE/UML |7|, BDI agents [27], Tropos, and Prometheus [44]. For each
methodology, we first present its delivered proposed models. Then, we discuss which of
these models can be added to FATMAS and their impacts on the fault-tolerance aspects
of FATMAS.

5.1 The MAS-CommonKADS Methodology

MAS-CommonKADS|24] is a multi-agent system design methodology based on the
CommonKADS [23][50] methodology and uses techniques and models borrowed from
object-oriented methodologies. It has three phases : the conceptualization phase, the
analysis phase and the design phase. MAS-CommonKADS produces the same models
as CommonKADS, but adapted in order to deal with multi-agent systems.

5.1.1 The Conceptualization Phase

The conceptualization phase helps developers to understand the problems to be
solved. The main outputs of this phase is a use case diagrams [53].
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5.1.2 The Analysis Phase

The second phase is analysis. It carries out a requirement specification of the MAS
through the development of the following five models :

1. The agent model consists in identifying and describing the agents;

2. The task model consists in a task decomposition. For each task, it specifies the
task’s name, task’s inputs and outputs, and task’s preconditions ;

3. The coordination model consists in describing the interactions and coordination
protocols for the agents. It shows the dynamic relationships between the agents;

4. The expertise model is used to model the agents’ reasoning capabilities to carry
out their tasks and achieve their goals. It consists in determining the application
knowledge model and the problem solving knowledge. The application knowledge
model consists of the domain knowledge, the inference knowledge and the task
knowledge. The domain knowledge represents the declarative knowledge of the
problem modelled as concepts, properties, expressions and relationships. The in-
ference knowledge represents the inference steps performed to carry out a task.
The task knowledge represents the plans to perform the inference rules. The pro-
blem solving knowledge specifies how the inference is carried out ;

5. The organization model represents the organization in which the MAS will be
introduced and the software organization of the MAS. It shows the static or
structural relationships between the agents. This model is the specification of
the structural relationships between human and/or software agents, and the rela-
tionships with the environment.

5.1.3 The Design Phase

The third phase is design. It carries out the agent network design, the agent design
and the platform design.

1. The agent network design determines the infrastructure upon which the MAS
will be deployed. It determines the network structure that agents will use to
communicate ;

2. The agent design consists of determining the most suitable architecture for each
agent ;

3. The platform design is the selection of the needed software and hardware to im-
plement the MAS.
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5.1.4 Comparison With FATMAS

There are several commonalities and differences between FATMAS and Mas-CommonKADS
models. The use case and the expertise models can be considered as the main difference
between FATMAS and MAS-CommonKADS. The expertise model details the agents
structure. It can be used in FATMAS without affecting the fault-recovery technique.
Nevertheless, MAS-CommonKADS uses a use-case driven approach to understand the
problem to be solved by the system. In FATMAS, we use rather an event-driven ap-
proach to delimit the problem to be solved. A use-case driven approach allows the de-
signer to determine the actors of the future system and the functionalities that will be
provided. It does not support the designer to determine the system’s boundary. Howe-
ver, in FATMAS, the sources of failures are identified within the events that trigger the
system functioning. Consequently, the event-driven approach used by FATMAS is more
appropriate to design a fault-tolerant system than using a use-case driven approach.

Looking at the remaining models of MAS-CommonKADS, we can map them to
models produced by FATMAS. In fact the design phase of MAS-CommonKADS is
equivalent to the implementation phase of FATMAS since the two phases determine the
infrastructure upon which the MAS will be deployed. Moreover, the coordination model
of MAS-CommonKADS is equivalent to the agent interaction mode of FATMAS in the
sense that they model agents interactions. The agent model of MAS-CommonKADS
is equivalent to the agent model of FATMAS. And finally, the task model of MAS-
CommonKADS is included in the task-environment model of FATMAS since in FAT-
MAS the task-environment model determines the resources required by the different
tasks and also determines the future system’s boundary.

5.2 The Gaia Methodology

The Gaia[57] methodology is applicable to a wide range of multi-agent systems
in which agents are cooperative and the system is open. It is composed of two main
phases : the analysis phase and the design phase.

5.2.1 The Analysis Phase

The objective of the analysis phase is to understand the system and its structure. To
this end, four models are proposed : the environment model, the preliminary roles model,
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the preliminary interaction model, and a set of organization rules. The environment mo-
del represents the environment in which the MAS will be located. The preliminary role
model identifies the basic functionalities required to define the MAS. The preliminary
interaction model identifies the basic interactions between roles required to perform the
preliminary roles. The set of organization rules contains the rules that the organization
should respect and enforce in its global behaviour.

5.2.2 The Design Phase

The objective of the design phase is to transform the analysis models into sufficiently
low abstraction levels in order to implement the MAS. The design phase includes an
architectural design step and a detailed design step. The architectural design step in-
cludes the definition of the system’s organizational structure, and the completion of the
preliminary roles and interaction models.

In the detailed design step, the designer specifies the agent model in which the agent
classes are identified. The agent classes will make up the system and the agent instances
that will be instantiated from these classes. This detailed design step also covers the
definition of the service model which identifies the main services (tasks) required to
achieve the agent’s roles.

5.2.3 Comparison With FATMAS

FATMAS and Gaia have similarities and differences in the models they produce. The
main difference between Gaia and FATMAS is the starting point to design the MAS.
Gaia provides an organization view of the MAS. It focuses on the roles the agents
will enroll and then determines the tasks to be enacted by agents. FATMAS does not
focus on the role concept. However, the different tasks identified in the task-environment
model of FATMAS can be grouped to define roles. Consequently, the role concept can be
added to FATMAS. However, there should be new definitions to be added in FATMAS
in order to integrate the role concept with the different other concepts of FATMAS.
This could influence the reorganization technique since this technique refers to the agent
and task concepts. If the role concept is added to FATMAS, then the reorganization
technique must take into account this concept.

However, there are similarities between Gaia and FATMAS models. Precisely, the
services model of Gaia is a sub-model of the FATMAS’ task-environment model since
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the service model only determines the tasks to be performed by agents but do not
determine the preconditions or the requested resources of the tasks. The interaction
model of Gaia can be used in FATMAS to allow a more detailed representation of the
interaction protocols between agents.

5.3 SODA

The SODA|43] methodology is suited for the development of internet-based systems.
It consists of two phases, the analysis phase and the design phase. During the analysis
phase, the application domain is studied and modeled, the available resources and the
technological constraints are listed, and the fundamental application goals and targets
are pointed out. The design phase deals with the representation of the abstract models
obtained during the analysis phase.

5.3.1 The Analysis Phase

The analysis phase produces three models that are the role model, the resource mo-
del, and the interaction model. In the role model, the tasks are expressed according to
the responsibilities they involve, the competencies they require, and the resources they
depend upon. The tasks are classified as either individual or social. Each individual
task is associated with an individual role. A role is defined according to the responsibi-
lities. Social tasks are assigned to groups. A social role describes the role played by an
individual in a group.

In the resource model, the services express the functionalities provided by the agent
environment to the multi-agent system such as querying a sensor and verifying an
identity. Each service is associated with an abstract resource which is defined according
to the services it provides. Each resource defines abstract access modes (permissions),
modeling the different ways in which the corresponding service can be exploited by
agents.

The interaction model presents interactions involving roles, groups and resources
according to the interaction protocols. An interaction protocol associated with a role
is defined according to the information required and provided by the role in order to
perform its individual task. An interaction protocol associated with a resource is defined
according to the information required to invoke the service provided by the resource
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itself, and by the information returned when the invoked service has been brought
to an end, either successfully or not. An interaction protocol associated with a group
governs the interactions between social roles and resources in order to enable the group
to perform its social tasks.

5.3.2 The Design Phase

The design phase is based on three models : the agent model, the society model, and
the environment model. In the agent model, an agent class is defined as a set of one or
several roles. It is characterized by the tasks, the set of permissions, and the interaction
protocols associated with its roles. In the society model, each group is mapped onto
a society of agents. An agent society is characterized by the social tasks, the set of
permissions, the participating social roles, and the interaction rules associated with its
groups. In the environment model, resources are mapped onto infrastructures classes.

5.3.3 Comparison With FATMAS

As with Gaia, SODA focusses on the social structure of a multi-agent system. The
main differences between SODA and FATMAS are the concepts of role, group, or society
which are central in SODA. But, as stated for Gaia, these concepts can be integrated
in FATMAS if they are formally defined and well integrated with the other concepts
of FATMAS. Furthermore, the concepts should be taken into account in FATMAS
reorganization technique since they add new abstraction levels to the system.

However, there are similarities between SODA and FATMAS. The role model and
the resource model of SODA can be compared to the task-environment model of FAT-
MAS. Omitting the fact that the role model refers to the role concept, it includes a task
identification as in the FATMAS’ task-environment model. Furthermore, the resource
model identifies the different resources to be used in the system which is done in the
task-environment model of FATMAS. However, the interaction model in SODA includes
the interaction between groups and roles. In the case of FATMAS, the notion of group
is used only to group agents and not to form a social entity. And the interaction model
only represents the interactions between agents.

The society model can be used in FATMAS if the different concepts of role, group,
and society are formally defined and integrated with the different other concepts of
FATMAS. The agent model of SODA is equivalent to the agent model of FATMAS.
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Finally, the environment model of SODA is equivalent to the implementation model of
FATMAS.

5.4 The AALAADIN Meta-methodology

AALAADIN|17] is a generic meta-model for multi-agent systems. The core concepts
of AALAADIN are roles and groups. A group is defined as a set of agents. A role is
defined as an abstract representation of an agent function, a service or an identification
within a group. In AALAADIN, the agents are defined by their functions in an organi-
zation, that is by their roles and the set of constraints which they must accept in order
to be able to play these roles. Agents can play different roles in different groups. AA-
LAADIN’s methodological approach consists in determining first the group structure
by identifying all the roles and interactions that can appear in a group, and secondly
the MAS organizational structure, that is the set of group structures expressing the
design of a multi-agent organization scheme.

5.4.1 Comparison With FATMAS

As presented, AALAADIN provides the concepts upon which a multi-agent system
is built. It does not propose a set of diagrams. Since AALAADIN is based on the role
and group concepts, it cannot be easily integrated in FATMAS. As state earlier, these
concepts can be integrated in FATMAS if they are formally defined and integrated
with the other concepts of FATMAS. Furthermore, the concepts should be taken into
account in FATMAS reorganization technique since they add new abstraction levels to
the system.

5.5 ADFELFFE, a Methodology for Adaptive Multi-
agent Systems Engineering

ADELFE|2] is suited to adaptive multi-agent systems in which the environment is
unpredictable and the system is open. A strong adaptation is the ability that the system
must possess in order to take into account unpredictable events and to react to evo-
lutionary environments. The MAS is developed to react to agent cooperation failures.
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It is developed to consider new inputs from the environment that could make agent
interactions change. In adaptive multi-agent systems, the agents are involved in coope-
rative interactions. ADELFE proposes three workflows : the requirements workflow, the
analysis workflow and the design workflow.

5.5.1 The Requirements Workflow

In the requirements workflow, ADELFFE provides a model composed of the target
system, and the system environment. This workflow focuses on what may be in in-
teraction with the studied system in terms of passive or active entities or constraints.
It requires a characterization of data flows and interactions between passive or active
entities and the system. These interactions are expressed by UML’s collaboration and
sequence diagrams|53).

5.5.2 The Analysis Workflow

In the analysis workflow, ADFELF proposes to first identify the agents by performing
a domain analysis to produce a preliminary class diagram. Each agent has to be analyzed
as a system. Secondly, it proposes to study the interactions between the different entities
as a set of sequence (like in AUML[41]) and activity diagrams which explain the possible
interactions between the different entities within each level of the system.

5.5.3 The Design Workflow

In the design workflow, ADELFFE defines the agent model and the Non-Cooperative
Situations model (NCS) which can be thought of as exceptions in classical programs.
The agent model represents the relationships between agents. The NCS model deals
with the non-cooperative situations in which the multi-agent system cannot reach its
objectives. In addition, the design phase produces the architecture of the system in
terms of blocks, classes, agents and interactions.

ADELFFE considers only NCS in which agent interactions may change. It does not
deal with NCS in which agents are no longer available or in which tasks cannot be
performed.
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5.5.4 Comparison With FATMAS

ADELFE is a methodology used to design adaptive multi-agent systems. As sta-
ted earlier, adaptive multi-agents are systems in which agents change their behavior
or interactions in order to overcome a non-common situation. ADELFE builds coope-
rative multi-agent systems. In case of a non-cooperative situation, agents change their
interactions. It is another way to deal with fault-tolerance.

The requirements workflow of ADELFE characterizes the environment in which the
system will be placed by identifying the active or passive entities and the constraints
under which the system operates. These constraints can be seen as the delimitation
of the environment of the MAS as done in FATMAS. Moreover, the passive or active
entities of the environment can be seen as the resources that the agents will use. Hence,
the requirements workflow of ADELFE can be used as a complementary model to
produce the task-environment model of FATMAS.

The preliminary class diagram and the agent model of ADELFE are equivalent to the
agent model of FATMAS. The sequence diagram and the activity diagram are equivalent
to the agent interaction model of FATMAS. ADELFE does not have an implementation
workflow to design the infrastructure upon which the system will operate. Moreover, it
does not include a fault-recovery technique due to component failures.

56 SABPO : a Standard Based and Pattern Orien-
ted Multi-Agent Development Methodology

A MAS behaves like a social organization in which each agent plays a specific role.
The Foundation for Intelligent Physical Agents (FIPA) [19] standards define the services
required to build MASs working in open environments and define interaction patterns
in order to build robust organizational structures. SABPO takes the FIPA standards
as a basis|14].

In FIPA-based agent systems, agent interactions are specified using the pre-defined
FIPA interaction protocols. SABPO[14] tries to identify the required interaction pro-
tocols based on the system requirements during the analysis phase. The approach is
composed of an analysis phase and a design phase.
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5.6.1 The Analysis Phase

In the analysis phase, the following models are developed : the role model and the
interaction model. The role model identifies the roles that should be enrolled by the
MAS’ future agents and their responsibilities in order to satisfy the organization’s glo-
bal goals. SABPO introduces two roles to comply with the FIPA’s abstract architecture.
These roles are 'Directory Service Provider’ and ’Ontology Service Provider’. The in-
teraction model defines the interaction protocols between agents. These interactions are
documented using AUML[41].

5.6.2 The Design Phase

In the design phase, three models are developed : the ontology model, the agent model
and the detailed interaction model. The ontology model extends the knowledge obtained
during the analysis phase. The agent model specifies the agent types and assigns to the
agent types the roles defined in the analysis phase. The detailed interaction model maps
the interaction protocols identified in the analysis phase to the FIPA specifications. In
fact, the FIPA specifications define an interaction protocol which allows one agent to
request another to perform some action.

5.6.3 Comparison With FATMAS

SABPO is a methodology that tries to determine the interaction protocols between
agents. The core of SABPO is its analysis phase which determines the role model and
the interaction model. Hence, the core concept of SABPO is the role. As stated earlier,
this concept can be integrated in FATMAS if it is formally defined and integrated with
the other concepts of FATMAS. Furthermore, this concept should be taken into account
in FATMAS reorganization technique since it adds new abstraction levels to the system.
However, SABPO can be integrated with FATMAS in order to defined FIPA compliant
protocols to deal with agent interactions.
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5.7 Agent Oriented Analysis Using Message/UML

MESSAGE|7] stands for : Methodology for Engineering Systems of Software AGEnts.
It proposes five model views : organization view, goal/task view, agent/role view, in-
teraction view and domain view.

The organization view (OV') shows concrete entities (agents, organizations, roles,
resources) of the system and its environment and coarse grained relationships between
them (aggregation, power, and acquaintance relationships). The goal/task view (GT'V')
shows the goals, tasks, situations and dependencies between them. The agent /role view
(ARV) focuses on the individual agents and roles. In the interaction view (V) a de-
signer must, for each interaction between agents/roles, show the initiator, the collabo-
rators, the motivator, the relevant information supplied/achieved by each participant,
the events that trigger the interaction, and other relevant effects of the interaction. The
domain view (DV') shows the domain specific concepts and relations that are relevant
for the system under development.

5.7.1 Comparison With FATMAS

Message/UML is a methodology that produces five model views to design a multi-
agent system. This methodology views the MAS as an organization which is not the view
of FATMAS. Hence, this view cannot be easily integrated in FATMAS. The goal /task
view allows to build the MAS by a goal-driven and task-driven approach, which is the
same optic of FATMAS. Hence, this view could be integrated in FATMAS within the
task-environment model. The interaction view is equivalent to the agent interaction
model of FATMAS and could be integrated in FATMAS. Each of the models that can
be integrated in FATMAS has no influence on the performance of the reorganization
technique.

5.8 Agent Modelling Techniques for Systems of BDI
Agents

This methodology develops BDI agents and is based on object-oriented technologies
[26] [27]. This methodology distinguishes between the external aspects of the system
and its internal aspects. The external aspects of the system determines the different
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components which will operate in the system and the internal aspects of the system
describes the architecture of the different components operating in the system.

The external aspects are characterized by two models : the agent model and the in-
teraction model. The agent model determines the agent classes and their instances. The
agents are identified after a refinement process on role identification and description.
The interaction model describes the interactions between agents. The internal aspects
are characterized by three models which represent the mental structure of the agents :
the belief model, the goal model, and the plan model. The belief model describes the
information about the environment and the internal state that an agent may hold, and
the actions it may perform. The goal model describes the goal that an agent may pos-
sibly adopt and the event to which it can respond. The plan model describes the plans
that an agent may possibly employ to achieve its goals.

5.8.1 Comparison With FATMAS

While this methodology is based on role concept to identify its agents, it proposes
models which could be integrated within FATMAS without affecting its fault recovery
approach. The agent model of FATMAS can be augmented by the identification and
description of the instances which will operate in the system. Moreover, the interaction
model is equivalent to the interaction model of FATMAS. Furthermore, the description
of agent architectures can improve the agent description. The reorganization technique
presented in FATMAS is independent from the agent architecture. Consequently, this
methodology based on BDI agents can be easily integrated with FATMAS.

5.9 Tropos

The Tropos methodology|20] is based on key features that are agents, goals, and
plans. The phases of the methodology are early requirements, late requirements, ar-
chitectural design, detailed design, and implementation. The early requirement phase
identifies actors and their goals. The late requirements introduces the system-to-be as
an actor that interacts with other actors. In the architectural design more system ac-
tors are introduced and are assigned sub-goals. The detailed design defines the system
actors in further details, including specifications of communication and coordination
protocols. The implementation transforms the system to the JACK platform|6].
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Tropos proposes fours models : the actor and dependency model, the goal and plans
model, the capability diagram, and the agent interaction model. The actor and depen-
dency model results from the analysis of social and system actors. An actor represents
a physical agent, a software agent, a role, or a set of roles. The goal and plans model
determine the differen goals the actor may achieve and the plans to achieve them. The
capability diagram is an UML activity diagram from an agent’s point of view. It repre-
sents the ability of an actor to define, choose, and excecute a plan to fulfill a goal. The
interaction diagram is an AUML sequence diagram [41].

5.9.1 Comparison With FATMAS

Tropos is a methodology based on the extension of object-oriented methodologies.
While Tropos refers to the role concept, it offers a set of models which can be easily in-
tegrated in FATMAS. The actor and dependency model can be integrated in FATMAS.
As stated earlier, these concepts can be integrated in FATMAS if they are formally
defined and integrated with the other concepts of FATMAS. Furthermore, the concepts
should be taken into account in FATMAS reorganization technique since they add new
abstraction levels to the system. Moreover, the goal and plan models provide a more
detailed description of the agent’s architecture. This can be a valuable addition to the
agent diagram of FATMAS and improves its agents’ descriptions. Also, the capability
diagram can be integrated in FATMAS to detail how the agents will achieve their plans
according to the request of services they receive from the environment. Finally, the

agent interaction diagrams of Tropos are equivalent to the agent interaction diagram of
FATMAS.

5.10 Prometheus

Prometheus [44] is an iterative methodology which aims at developing intelligent
agents using goals, beliefs, plans, and events. Prometheus covers three phases which are
the system specification, the architectural design, and the detailed design. The system
specification identifies the basic functions of the system, along with inputs, outputs, and
their processing. Prometheus proposes to adopt a use case view in order to determine
these three elements. The architectural design determines which agents the system will
contain and how they will interact. The architectural design produces two diagrams
which are the system overview diagram (equivalent to the agent diagram of FATMAS)
and the interaction protocols which are specified as interactions in AUML [41]. The
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detailed design describes the internals of each agent and they way it will achieve its
tasks. This phase outputs the agent overview diagram providing the agent’s top level
capabilities, the capabilities diagrams, the detailed plan descriptions so that agents
perform their tasks, and the data descriptions describing the beliefs with which agents
will operate.

5.10.1 Comparison With FATMAS

Prometheus can be easily integrated with FATMAS. In fact, the architectural de-
sign of Prometheus determines which agents the system will contain and how they will
interact. This architectural design is equivalent to the design phase of FATMAS. Mo-
reover, the system overview diagram is equivalent to the agent diagram of FATMAS.
Furthermore, the agent overview diagram, the capabilities diagrams, the detailed plan
descriptions, and the data descriptions can be integrated in FATMAS since they en-
rich the agent descriptions while they do not affect the reorganization technique of
FATMAS.

5.11 Conclusion

In this chapter, we presented several methodologies to design multi-agent systems.
First, we notice that none of these methodologies allows to design fault-tolerant multi-
agent system since they do not integrate any of the techniques required to build fault-
tolerant system. Nevertheless, each of these methodologies propose to develop a set of
models or diagrams to design multi-agent system. This chapter, identified for each of the
studied methodologies, their models or diagrams which can be integrated in FATMAS.

FATMAS is not a closed methodology. It is built in such a way that it can integrate
other models or diagrams taken from other methodologies. FATMAS also is not built
upon a large number of concepts and its reorganization technique is described in such a
way that it does not refer to any system or agent architectures. Consequently, any other
MAS design methodology can easily have some of its model or diagrams be integrated
in FATMAS. This makes FATMAS open to integrate other methodologies’ diagram or
models.



Chapitre 6

Related Work on Fault-tolerant
Systems

In Chapter 3, we proposed a methodology to design fault-tolerant multi-agent sys-
tems. This methodology integrates a reorganization technique based on task and agent
replication which was described in Chapter 2. As demonstrated in Chapter 2, this
technique allows the system to detect certain failures and to overcome some, while
minimizing the system complexity. It focuses on failures originating from the system
boundary or the system’ environment. It does not focus on failures originating from
programming exceptions.

In this chapter, we present several fault-tolerant techniques developed in multi-agent
systems, and compare them to our technique. This comparison will not be based on a
performance criteria since the presented techniques and the reorganization technique of
FATMAS do not address the same kind of failures. However, this comparison will allow
us to have an idea on the capacity of each technique to take into account criteria which
are important to build fault-tolerant systems.

6.1 The Comparison Criteria

In this section, we provide qualitative criteria on which we compare our recovery
technique with others. The other techniques are either based on redundancy or using
adaptive MAS or using a fault-recovery approach at the infrastructure level. These
criteria are defined based on the basic concepts of fault-recovery. A fault-recovery tech-
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nique allows to prevent from faults by identifying different sources of failures. Hence,
the first comparison criteria is whether a fault identification is provided. Moreover, a
fault-recovery technique allows a system to detect and recover from its failures. Hence,
two comparison criteria can be taken into account which are whether the technique
allows the system to detect its faults, and whether it allows the system to recover from
them.

Also, fault-tolerance is based on redundancy. Hence, the third comparison criterion
takes into account is the kind of redundancy used by each fault-recovery technique. In
addition, each element is replicated several times. Thus, the fourth comparison criterion
is whether the number of replica per elements to be replicated is limited. Finally, each
fault-recovery technique can use either a backward recovery or a forward recovery me-
chanism (as explained in Section 3 of Chapter 2). Hence, the final comparison criteria
makes that distinction.

To summarize, the comparison criteria are :

1. fault identification : to state whether there are sources of faults identified while
designing the system ;

fault-detection : to state whether the system is able to detect its faults;
fault-recovery : to state whether the system can recover from its failures;

kind of redundancy : to state which kind of redundancy is applied ;

number of replica : to determine the number of replica per replicated elements;
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kind of recovery : to determine whether the system uses a backward or a forward
recovery technique or a mix of both.

In what follows, we present different approaches to build fault-tolerant multi-agent
systems. These approaches are used in adaptive MAS [21], broker systems [29], mobile
agents [39], autonomous robots [18] and computational grid [45]. These approaches will
be compared with our approach using the criteria that we selected.

6.2 DARX Technique

The first technique we present is the DARX framework [21]| used to develop fault-
tolerant multi-agent systems. It is based on data and /or computation replication. DARX
allows to automatically and dynamically apply replication mechanisms to agents. It only
replicates critical agents. An agent is considered as critical during the MAS design phase
in which the designer determines which agents are critical and should be replicated
by the programmer before runtime, or at runtime by identifying, for each agent, the
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criticality of the role it is enacting. The roles and their criticality are assessed during
system design. Since each agent can change roles during the MAS operation, the DARX
framework uses a role recognition method to determine which role each agent is enacting.
Hence, as soon as an agent enacts a critical role, it is replicated (the number of replica
is not determined by DARX). If an agent is no longer considered as critical, then all its
replicas are removed from the system. Each replicated agent acts as a group leader for
its replicas. The replicated agent is responsible for broadcasting its state to its replicas.
When the agent fails, it is replaced by one replica, which is chosen according to a
predefined strategy. DARX has the advantage of dynamically adapting the number of
replicas to reduce the system complexity.

The DARX framework uses a backward recovering strategy since the replica agent
starts performing from the last broadcasted state. However, if the last agent’s state is
not an error-free state, then the replica agent will also be in failure. Hence, the DARX
framework does not provide a control mechanism to ensure that the replica will perform
correctly. Moreover, the DARX framework provides a strategy to reduce the number
of agents to be replicated. However, each agent can be replicated an unlimited number
of times, which is not always possible due to resource limitation.

Based on the comparison criteria, we find that :

— Fault identification : there are no sources of faults identified while designing the
system ;

— fault-detection : known ;
fault-recovery : known ;

— kind of redundancy : agent replication ;

— number of replica : the number of replica is not provided ;

— kind of recovery : backward recovery.

6.3 Brokered Multi-agent Systems

Multi-agent systems often require brokers to accept requests, route requests and
responses, manage the system, and for various other facilitation tasks [29]. However,
these systems are prone to broker failures. In fact, a multi-agent system depending on
brokers, can become unavailable if one or more system’s brokers are inaccessible due to
failures such as machine crashes, network breakdown, etc. In [29], a recovering broker
failure technique is presented. The technique is based on broker replication. It is applied
when there are several broker agents in a multi-agent system [29]|. These broker agents
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may be able to substitute for any broker agent that becomes unavailable. Hence, the
multi-agent system can continue to operate as long as there is at least one broker agent
remaining in the broker team. The agents, that were communicating with the failed
broker, will subscribe with a new broker, and will restart their communication.

This technique uses a forward recovery approach. The system is moved from a failed
state to an error-free state. The system does not continue operating from the last error-
free state. In case of failure, agents restart their communications. This technique covers
neither fault prevention nor fault forecasting. It does not restrain either the number of
brokers to be replicated, or the number of replicas per broker.

Based on the comparison criteria, we find that :

— Fault identification : there are no sources of faults identified while designing the
system ;

— fault-detection : unknown ;
fault-recovery : known ;

— kind of redundancy : agent replication ;

— number of replica : unlimited since brokers can create other brokers;

— kind of recovery : forward recovery.

6.4 Mobile Agents

Mobile agents can travel from one server to another to look for information or to
perform tasks in the visited servers. A multi-agent system, composed of mobile agents,
can be prone to two kinds of failures [39] : server failures and agent failures. We present,
in the next subsections, techniques that have been proposed for dealing with both types
of failures.

6.4.1 SG-ARP : a Server Recovering Approach

The Server Group based Agent Recovery Protocol (SG-ARP) approach is described
in [39]. It enables mobile agents to perform properly despite server failures.

In order to overcome a server failure, each server is replicated several times. The
server and its replicas define a server group. The members of a server group divide among
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themselves the load brought upon by the visiting agents. The different servers share a
storage area in which they store their states. When a server is down, all the agents
that were running on the failed server are distributed to the remaining group members.
Since the system uses a backward recovery approach, there could be information lost
when the agents are distributed to the remaining servers.

This approach uses backward recovery since servers share their states. When a server
fails, the system is backed to a free-error state so that agents can perform on other
existing servers. However, it does not specify how many times a server is replicated. In
addition, this technique does not cover fault prevention and fault forecasting.

Based on the comparison criteria, we find that :

— Fault identification : there are no sources of faults identified while designing the
system ;

— fault-detection : unknown ;
fault-recovery : known ;

— kind of redundancy : server replication ;

— number of replica : unlimited ;

— kind of recovery : backward recovery.

6.4.2 Recovering Approaches from Agent Failures

In the literature, several approaches are proposed to recover from agent failures in
mobile agent systems [51]. An agent can be confronted to three sources of failures :

1. The failure of the component in which the agent is performing;
2. Failure of other agents with which the agent is cooperating;

3. Failure of the agent itself.

One of the proposed approaches [51]| is the Meta-agent approach : each agent is
associated with a meta-agent which is responsible for the fault-tolerant aspect. The
meta-agent enables the agent to handle exceptions. In this approach, the meta-agent
needs another meta-agent since it is prone to failure too. Hence, fault tolerance is not
guaranteed. This approach does not cover fault prevention nor fault forecasting.

Based on the comparison criteria, we find that :

— Fault identification : there are no sources of faults identified while designing the
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system ;

— fault-detection : known ;

— fault-recovery : known ;
kind of redundancy : agent replication ;

— number of replica : there is a limit in the number of replica per agent. Nevertheless,
this limit is not provided ;

— kind of recovery : forward recovery.

6.5 Autonomous Robot

Fault tolerance techniques are also developed for robot systems. In [18], an approach
is proposed to overcome the physical failures of a robot. The robot on which these ex-
periences are made is Hannibal [1] which has 19 actuators and over 60 sensors. Physical
failure can be attributed to either mechanical failure or sensor failure. Hannibal’s task
is to move in a rough and hazardous environment.

The approach used to overcome a robot failure is forward recovery. In fact, the robot
can see its functionalities degrading when failures occur. If the robot has a physical
failure or if one of its sensors is out of service, it is not possible to replace either the
defected sensor or the defected physical component. Hence, the robot state cannot back
up to an earlier free-error state. However, the robot can be developed so that it adapts
to failures. For example, if the robot detects a sensor failure, it must no longer consider
any information provided by the failed sensor. Nevertheless, it has to continue to operate
properly, if possible, depending on the type of failure.

Based on the comparison criteria, we find that :

— Fault identification : there are no sources of faults identified while designing the
system ;

— fault-detection : known ;

— fault-recovery : known ;

— kind of redundancy : no redundancy ;

— number of replica : 0;

— kind of recovery : forward recovery.
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6.6 Computational Grid

Another domain in which fault-tolerant techniques can be applied is computational
grids. Computational grids are computing environments with massive resources such
as servers for data processing and storage [45]. In [45], a computational grid, NetSolve,
is proposed to overcome server failures. Each agent can interact with a server which
processes its requests. In order to overcome a server failure, the agent can ask another
server to perform its requests. The new server needs information about the failed server
state. Hence, NetSolve uses a backward recovery technique.

NetSolve provides storage servers that will store checkpoints of the computations
running on other servers. If an agent detects that a server has failed, then it selects a
new server to resume the computation from the most recent checkpoint in the storage
server. As in [21], if the last server state is not an error-free state, then the replica server
will be in failure. Hence, it is not guaranteed that the system will behave according to
its specifications.

Based on the comparison criteria, we find that :

— Fault identification : there are no sources of faults identified while designing the
system ;

— fault-detection : known ;

— fault-recovery : known ;

— kind of redundancy : server replication ;

— number of replica : unknown since there are no information on the number of
replica per server ;

— kind of recovery : backward recovery.

This comparison is summarized in the table 6.1 below :

6.7 Summary

In this chapter, we have reviewed some related works on fault-tolerant systems
applied to multi-agent systems. Each of the presented systems was described briefly and
compared with the fault-recovering technique used in the FATMAS methodology. None
of the described techniques provides all together the major contributions of FATMAS
that are :
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fault fault fault kind of number of | kind of

identification | detection | recovery | redundancy | replica recovery

DARX not known known agent unlimited | backward
identified

Brokered MAS | development | unknown | known agent unlimited | forward

SG-ARP not known known server unlimited | backward
identified

Meta-agent not known known agent limited forward
approach identified

Robots not known known - 0 forward
identified

NetSolve not known known server unlimited | backward
identified

FATMAS identified known known agent limited | backward

and task

TAB. 6.1 — The comparison between different techniques.

1. the use of task replication in existing agents as much as possible;

2. the design of a MAS allowing MAS reorganization when a fault occurs in a manner

consistent with its specification, design, and implementation ;

3. the limitation of the number of replicated components to minimize the impact of

added fault-tolerant based features on the overall system complexity.




Chapitre 7

Conclusion

This thesis aimed at defining a methodology to design fault-tolerant multi-agent
systems. This methodology was built on the basis of concepts that support the design
of multi-agent systems. The methodology integrates a reorganization technique which
allows the system to detect and recover from some failures.

In this chapter, we first present the achievements of this thesis. Then, we outline
the future directions of the research and development of the FATMAS methodology.

7.1 Achievements

In this thesis, we provided a fault-tolerant multi-agent systems design methodology.
It has three phases : analysis, design, and implementation. The analysis phase produces
the task-environment model. The design phase produces the agent model and the agent
interaction model. The implementation model produces the deployment model and al-
lows a code generation of the agents. Furthermore, FATMAS integrates a reorganization
technique which allows the MAS to be fault-tolerant against failures originating from the
MAS boundary. These models are produced following a macro-process and four micro-
processes. The macro-process guides the designer on how to proceed from one model
to the next. Each model is associated with a micro-process which guides the designer
to produce the model. FATMAS uses an iterative approach based on a cost/benefit
evaluation to decide whether the designer go from one iteration to another.

This methodology has the advantage to integrate a reorganization technique, which
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is not the case of existing MAS design methodologies [2][14][17][24][31][57]. Hence, a de-
signer finds him /herself in a process allowing him/her to anticipate possible failures to
which the system may be confronted. Consequently, FATMAS reduces the implementa-
tion complexity of the system by identifying possible sources of failures from the design
phase, which is therefore built to easily adapt itself to these new arising situations.

The proposed technique has the advantage to include the techniques required to
build a fault-tolerant system which are : fault-prevention, fault-recovery, and fault-
tolerance. The fault-prevention technique allows to delimit the system boundary from
its environment. The fault-recovery technique allows the agents to detect and overcome
failures originating from the system’s boundary. The fault-tolerance technique deter-
mines the critical agents of the system which must be replicated. The other agents of
the system will only see their tasks being replicated in other agents. Hence, this tech-
nique minimizes the system complexity by reducing the number of agents that will be
replicated.

The FATMAS methodology has the advantage to be open in that it does not rely
on any programming language. The development of the different models does not refer
to any particular technology. Furthermore, FATMAS is built upon a minimal number
of concepts and provides a reorganization technique which is independent from any
agent or MAS architecture. This allows it to integrate several models from existing
methodologies.

Now that we have presented the achievements of this thesis which are the fault-
detection and fault-recovery in the design phase, the automatic reassignment of failed
tasks, and the decrease of the resulting system complexity by reducing the number of
agents to replicate. We outline, in the next section, the limits of FATMAS and how
research on the FATMAS methodology could proceed in the future.

7.2 Limits of FATMAS and Future Work

In spite of its achievements, FATMAS has limits. First, FATMAS does not address
the issue of code bugs. Second, FATMAS is built for closed systems in which the agents
are identified during the design phase. FATMAS cannot be applied to the development
of an open system in which agents are not determined in advance. Third, FATMAS
does not support all the processes of software engineering such as documentation of the
model or the support of the test phases. Finally, but not last, FATMAS has not been
used to develop real size projects in order to test its robustness. Meanwhile, there are
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several challenges in the development of FATMAS. They can be represented by three
research directions presented in what follows.

The first direction in the development of FATMAS is to develop a case tool which
models the macro-process and the micro-processes. The case tool would assist the desi-
gner in the development of the different models and in the management of the projects
that use FATMAS. It should also coordinate the activities of the different developers
working on the design of a common system. The different models of FATMAS are defi-
ned. Furthermore, the formal definitions will allow to validate one model according to
the previous ones.

The second direction in the development of FATMAS is to include a forward recovery
approach. In fact, we stated that a MAS is in failure when one of its tasks is in failure.
This assumption means that the MAS cannot operate in a degraded mode. Nevertheless,
there are cases where a MAS could operate in such a mode. This could be a challenge
in the future to model a system which can operate in a degraded mode, and thus to
identify this degraded mode during the design level.

The third direction in the development of FATMAS is to evaluate this methodo-
logy on real industrial projects. This will allow to validate and overcome some of the
weaknesses of the methodology. This methodology must also be compared to other
methodologies used to develop fault-tolerant systems by applying them on the same
projects.

FATMAS provides a new methodology to develop fault-tolerant multi-agent system.
It integrates a reorganization technique in the design phase which allows to delimit the
system boundary, and to anticipate on particular faults which should be taken into
account in the design phase due for example to the high cost to remedy them during
system execution. The methodology determines how the failed tasks can be performed
by other agents so that the way the system overcome its failure is planned at design
which avoids the system to reorganize itself. Finally the methodology decreases the
resulting system complexity by minimizing the number of agents to replicate. Conse-
quently, if it is costly to replace an agent by another one, then this methodology allows
to minimize such a cost.
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Annexe A

Printer’s Manager Agents

The agents operating in the printers manager system described in Chapter 4.
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import java.util.Vector;

class PrinterRepairAgent {
/* {src_lang=Java}*/

public int printerConnected;

/* {transient=false, volatile=false}*/

public int softwarePossesion;

/* {transient=false, volatile=false}*/

public int reportProblemsConnected;

/* {transient=false, volatile=false}*/

public int repl_managePrinterConnected;

/* {transient=false, volatile=false}*/

public int repl_printerConnected;

/* {transient=false, volatile=false}*/

/**

*

* @element-type PrinterManagerAgent
*/

public Vector myPrinterManagerAgent;

public OrderPickerAgent myOrderPickerAgent;

public void updatePrinterDriver () {

}

public void detectPrinterCPUProblems ()

}

public void detectHardwareProblems ()

}

public void evaluateInkQuantity () {
}

public void evaluatePaperQuantity () {

}

public void detectPrinterConnectionProblems ()

}

public void notifyRepairStatus () {
}

public void

repl_PrinterManagerAgent_receiveDocument ()

}

public void
repl PrinterRepairAgent_sendDocument ()

}
public void
repl_PrinterRepairAgent_managePrinter ()

}

public void

repl PrinterRepairAgent_detectPrinterProblems ()

{

public void

repl_PrinterRepairAgent_detectPrinterProblems ()

{

1

{

{

{
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import java.util.Vector;

class OrderPickerAgent {

/* {src_lang=Java}*/

public int bdAccess;
/* {transient=false, volatile=false}*/

public int notifyRepairStatusReceptive;
/* {transient=false, volatile=false}*/

/**
*

* @element-type PrinterRepairAgent
*/
public Vector myPrinterRepairAgent;
public OrderPlaceAgent myOrderPlaceAgent;

public void getPaper () {
}

public void getToner () {
}

public void getCPU() {
}

public void getSoftware () {
}

public void repairConnection() {

}

public void sendMessageAvailability () {
}

Fic. A.2 — The code of OrderPickerAgent.
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import java.util.Vector;

class OrderPlaceAgent {
/* {src_lang=Java}*/

public int supplierConnected;
/* {transient=false, volatile=false}*/

/**
*

* @element-type OrderPickerAgent
*/
public Vector myOrderPickerAgent;

public void orderPaper () {

}

public void orderToner () {

}

public void orderCPU() {
}

public void orderHardware () {

}

public void orderSoftware () {

}

public void receiveOrderStatusSupplier () {

}

Fi1G. A.3 — The code of OrderPlaceAgent.
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public class repl_OrderPickerAgent {

public int repl_bdAccess;
/* {transient=false, volatile=false}*/

public int repl_notifyRepairStatusReceptive;
/* {transient=false, volatile=false}*/

public void repl_getPaper () {
}

public void repl_getToner () {
}

public void repl_getCPU() {
}

public void repl_getSoftware () {
}

public void repl_repairConnection() {
}

public void repl_sendMessageAvailability () {
}

F1G. A.4 — The code of OrderPickerAgent replica.

public class repl_OrderPlaceAgent {

public int repl_supplierConnected;
/* {transient=false, volatile=false}*/

public void repl_orderPaper () {
}

public void repl_orderToner () {

}

public void repl_orderCPU() {
}

public void repl_orderHardware () {

}

public void repl_orderSoftware () {

}

public void repl_receiveOrderStatus () {

}

F1G. A.5 — The code of OrderPlaceAgent replica.
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