
Search-and-Replace Editing for Personal Photo Collections

Samuel W. Hasinoff Martyna Jóźwiak Frédo Durand William T. Freeman

Massachusetts Institute of Technology

Computer Science and Artificial Intelligence Laboratory

Abstract

We propose a new system for editing personal photo col-

lections, inspired by search-and-replace editing for text. In

our system, local edits specified by the user in a single photo

(e.g., using the “clone brush” tool) can be propagated auto-

matically to other photos in the same collection, by match-

ing the edited region across photos. To achieve this, we

build on tools from computer vision for image matching.

Our experimental results on real photo collections demon-

strate the feasibility and potential benefits of our approach.

1. Introduction

Editing large photo collections can be a tedious task.

With current tools, more sophisticated edits—such as re-

touching a facial blemish—must be applied in each photo

individually. The cost of editing is felt even more sharply

by professional photographers, who routinely capture thou-

sands of photos when shooting portrait sessions, or when

covering weddings.

Inspired by the search and replace feature in text editing,

we propose a system that allows the user to make local edits

in a reference photo and automatically propagate those edits

to other photos in the same collection. Just like in a text

editor, the user can accept or reject a given “replace”.

While our approach can be used to enable more general

edits, we focus on the most common edit used for image

retouching—transferring image content between source and

destination regions in the image. Our system implements

both the “clone brush” tool, which copies RGB values di-

rectly, as well as its “healing brush” variant, which uses

gradient-based blending to minimize seams [24, 14].

The key challenge addressed by our system is finding

the detailed geometric correspondence matching the regions

being edited between the reference photo and a new target

image. Successfully transferring an edit entails matching

both the source and destinations regions of the edit, even in

the presence of varying subject pose and illumination. To

meet this challenge, we build on techniques from computer

vision for image matching.

After our system transfers the edit regions into the tar-

get image, the edit itself is applied wholly within the target.

This has the useful feature of preserving the low-level prop-

erties of the target, including its defocus, noise grain, and

color balance.

In contrast to less structured internet-based photo collec-

tions (e.g., [18, 28]), we restrict our attention to personal

photo collections (i.e., photo “albums”), where all photos

are captured by one photographer in a single session. Since

all photos are taken at approximately the same time and lo-

cation, our matching problem is potentially easier.

Our main contribution is a new system that provides

search and replace functionality for photo collections. Ab-

sent such a tool, performing local edits across large photo

collections would be prohibitively expensive. A side bene-

fit of our system is that it helps maintain consistency over

a photo collection being edited. Furthermore, as a conse-

quence of the reduced effort needed for editing, our system

could allow photographers to be less aggressive at rejecting

photos from their collections.

1.1. Related work

For basic edits, like overall tonality adjustment, batch

processing to apply the same edit over multiple photos can

be useful [1]. Local edits, however, are more challenging

to transfer between photos, since the subject being edited

may move in the frame, change pose, or be differently

illuminated. Despite recent advances in image matching

[30, 27, 28], there has been limited work on propagating

such local edits over photo collections.

Face-specific edit transfer. For the specific application of

face retouching, search-and-replace editing along the lines

we propose has recently been demonstrated: edits to a ref-

erence face can be transferred to new faces using landmarks

given by a face detector [16], or specified manually [29]. In

related work, a facial blemish detector and retouching edit

was learned from labeled examples, and then the recovered

operation was applied automatically to a new collection of

face images [7]. Here the edit is “trained” once and for all,

and does not follow a user’s specification.

While our system incorporates face detection as well, we

rely mainly on generic local image features, which enables



edited

target image

detect image 

features

match & 

refine feats.

cluster feat. 

matches

expand 

clusters

reference

image

edited

ref. image

Sec. 2.1 Sec. 2.2

transfer edit 

to target

Sec. 3

approve

new edit?
image

edit

(new) target 

image

Figure 1. System overview. The user specifies edits in a reference image (in the example shown, replicating the subject’s earring), and

our system transfers those edits to the rest of the photo collection automatically. The outlined steps correspond to standard single-photo

image editing. For each new target image, we match image features between the reference image and the target (Sec. 2). The detected

correspondence lets us transfer the edit to the new image (Sec. 3), while preserving its intended meaning. Analogous to search and replace

for text editing, we present the results of each edit to the user for approval.

us to match and edit arbitrary subjects. In our application,

faces should be easier to relate, since a given edit is applied

to the same person in each photo.

Within-photo search and replace. A variation on

search-and-replace editing can apply within a single photo,

where edits to one part of the image can be made to propa-

gate across repeated structures. In early work, such a tech-

nique was described for vector illustrations [19], but the

well-defined primitives in this context are much easier to

match than real images.

Special approaches have also been proposed for editing

“texture” images consisting of repeated elements. For more

stochastic textures, patch-based matching has been used to

define self-similarity within an image [8, 4]. For more reg-

ular textures, individual repeated elements can be detected

explicitly [20].

Closer to our approach, Glassner proposed a method for

replacing repeated objects in a single photo, using a new

object from another source [15]. Unlike our automated

system, his method requires a good initialization for each

match to be provided manually.

Object removal. For the looser editing task of filling in

a missing region in a single image, the only constraint is

that the completed image look plausible. Recent methods

have exploited large unstructured internet-based image col-

lections to search for the most compatible image region to

blend in [18, 6]. Like our system, these methods involve

finding matches in image collections, but their notion of

matching is weaker and extends across object class.

Editing video and multi-view stereo. Our system is also

related to video editing methods where edits in one frame

are propagated to other frames using automatic object track-

ing [3, 25]. In a sense, the photo collections we treat can be

thought of as a very sparse, non-uniformly sampled video,

where object motion is no longer continuous and image

matching may be significantly more challenging.

Edit propagation has also been explored in the more con-

strained context of multi-view stereo [26], where all frames

can be related according to a common rigid 3D geometry.

1.2. Overview

As described in Fig. 1, our system for editing photo col-

lections is straightforward from the perspective of the user.

After the user specifies edits in a single reference image, the

edits are propagated automatically to the rest of the photo

collection. Just like in search and replace editing for text,

the only remaining interaction is to verify the correctness

and desirability of each of the transferred edits.

Internally, the key task of our system is to compute de-

tailed geometric correspondence for scene structure shared

between the reference image and each target image (Sec. 2).



all features feature matches

Figure 2. Left: Local feature detections in the reference and tar-

get image from Fig. 1, visualized by their associated affine frame.

Features types are indicated by color: Harris-affine (red), Hessian-

affine (green), MSER (blue), and face detection (magenta). Right:

Candidate feature matches (colored randomly), after refinement.

We match features whose descriptors are mutually closest, pro-

vided that the match meets our criterion for distinctiveness.

Our approach builds on feature-based methods from com-

puter vision (Sec. 2.1). To find corresponding parts of the

scene, we use the local geometry of individual features and

cluster together features mutually explained by planar 3D

structure (Sec. 2.2).

After computing detailed matching between in the ref-

erence and the target image, our system associates the edit

regions with particular scene structures, and then uses their

geometric correspondence to transfer the edit into the tar-

get image (Sec. 3). After applying the edit, we present the

edited image to the user for approval.

2. Image Matching

The key component of our system is an automatic

method to match the edited regions between images, and re-

cover their geometric correspondence. To this end, we build

on an approach widely used in computer vision—matching

sparse sets of invariant local features (Sec. 2.1). This ap-

proach has shown to been successful for a variety of appli-

cations, including object detection [21, 27], geometric reg-

istration [9, 28], and generic object recognition [12].

The benefit of using local features is their ability to pro-

vide reliable matches, even in the presence of moderate

changes in viewpoint, object pose, and lighting. In our ap-

plication, we treat these features in groups (Sec. 2.2), where

clusters of consistent features define local geometry that can

be used to transfer the desired edit.

Since the image edits in our application are associated

with particular people or objects, we require less flexible

matching than for recognition across object class [12]. On

the other hand, our system must handle greater subject de-

formation compared to static architectural scenes [28] or

landscapes [9].

2.1. Feature detection and matching

Our system combines three different types of generic

local image features, plus a special-purpose face detector

(Fig. 2, left). As previous methods have shown [27], using

multiple types of features provides complementary infor-

mation about stable image structures.

Affine-invariant features. We use the popular imple-

mentation from Oxford [2] to detect three types of generic

image features: (1) Harris-affine features for corners, [23],

(2) Hessian-affine features for blob-like structures [23], and

(3) maximally stable extremal regions (MSER) for more ir-

regularly shaped regions [22]. All the feature detectors we

use are affine-invariant, so the structures they detect should

be recoverable up to affine deformation [30].

In addition to the position of each feature point xi, we re-

cover the attached 2×2 affine frame Ti in which the feature

was detected. This frame incorporates both an affine warp

and a designated direction (illustrated in the figures by el-

lipses with designated radii), so that Ti(p−xi) maps image

point p to normalized coordinates in the feature’s frame. In

contrast to methods that use feature positions exclusively

[27, 9, 28], we found it useful to analyze geometry using

their affine frames as well (Sec. 2.2).

Note that the correspondence between a single affine

frame over two images, (x1

i ,T
1

i ) ↔ (x2

i ,T
2

i ), is sufficient

to establish the full geometric relationship of all surround-

ing points [30]. As a result, it is possible to transfer an edit

between images based on a single feature match, using

p2 = x2

i + (T2

i )
−1T1

i (p
1 − x1

i ) . (1)

As discussed in Sec. 3, we found that the affine frames from

feature detection are generally too imprecise, even after re-

finement, to be used directly for the purpose of editing.

Feature matching. To match feature detections be-

tween images, we represent the features using their 128-

dimensional SIFT descriptors [21], based on histograms of

differently-oriented gradients. Since these descriptors are

computed in the affine frame of each feature, feature match-

ing is invariant to local affine deformation. The SIFT de-

scriptor also includes intensity normalization for invariance

to illumination changes.

We search for candidate feature matches by evaluating

L2 distances between feature descriptors in the reference

and target images, treating each of our three types of image

features separately. To prune the set of candidates, we only

retain matches that are mutually the best match from the

point of view of both images. As is common, we impose a

distinctiveness criterion as well [21], requiring that the de-

scriptor distance for the best match be below some fraction

τratio of the second-best match (we use τratio = 0.95).

Feature refinement. Once an initial set of feature

matches has been established, we refine the positions and

affine frames of corresponding features, based on a direct



x
1

i

x
1

j

x
2

i

x
2

j

dij

0

reference target

rejected matches

Figure 3. Left: Testing the consistency of a pair of feature matches

(i, j), using the geometry of their affine frames. For each image

we transform feature point j into the affine frame of feature i, then

measure the distance between the transformed points. Right: Fea-

ture matches from Fig. 2 rejected by our pairwise consistency test.

similarity measure between RGB pixels in each frame [13].

We found that this refinement can significantly improve

the accuracy of the local geometry, compared to the affine

frames returned by feature detection, which are computed

in each image independently

Face detection and matching. While generic local im-

age features are useful for matching arbitrary parts of the

scene, we found that augmenting our system with face-

specific features improved robustness for edits in the vicin-

ity of faces. Our implementation uses the frontal face detec-

tor described in [11]. This method incorporates a flexible

parts-based model to identify 9 points per face detection,

corresponding to specific facial features, all in a common

affine frame. For faces matched between the reference and

target image, we add their corresponding feature points to

the overall list of matches.

To match faces, we use the proposed pixel-based face de-

scriptor [11]. Analogous to our matching criteria for generic

image features, we search for face matches whose descrip-

tor distance is lowest in both directions, and which must

pass our distinctiveness test (again using τratio = 0.95) if

more than one face is detected.

While face detection can lead to false positives (for ex-

ample, the cyan cluster in Fig. 4, left), these incorrect

matches can generally be filtered out later, unless there are

few reliable matches for other feature types.

2.2. Feature clustering

While the local feature matches we recover are a good

starting point, they only provide a sparse correspondence

between the reference and target image, and outliers gen-

erally remain. To improve robustness, we recover higher-

level scene structure by clustering these features into

geometrically-consistent groups. We do this by filtering

out features whose affine frames are mutually inconsistent

(Fig. 3), and clustering feature matches whose image posi-

tions are well explained by a common underlying 3D planar

geometry (Fig. 4).

feature clusters cluster for edit transfer

Figure 4. Left: Expanded feature clusters, labeled by color, as

recovered from Fig. 2. We cluster feature matches whose cen-

ters approximately define a homography, and whose affine frames

are consistent as well. Right: Cluster used to transfer the edit

in Fig. 1, with the associated homography shown by the overlaid

quadrilaterals.

Pairwise feature consistency. As a pre-filtering step, we

eliminate the feature matches that are inconsistent with all

others. This reduces the number of feature matches to

search, which can later improve the quality of clustering.

To test the consistency between a given pair of feature

matches, we measure the position of one feature in the affine

frame of the other, and compare its coordinates between im-

ages (Fig. 3, left). More specifically, for feature pair (i, j),
we define the asymmetric measure

dij = ‖T1

i (x
1

j − x1

i ) − T2

i (x
2

j − x2

i )‖ . (2)

For a pair of matches to pass this test, both dij and dji
must be below τconsis, all of which are measured in nor-

malized feature coordinates. We use a very loose threshold

(τconsis = 2) so that only clear outliers are rejected, but

many matches can often still be eliminated (Fig. 3, right).

Homography-based clustering. To cluster the feature

matches, we search for sets of features whose correspon-

dence between the reference and target images can jointly

be described using a single homography, or plane-to-plane

projective mapping [17].

We extract clusters using a RANSAC approach, by ran-

domly sampling quadruples of matching feature positions

[17]. For each quadruple, we recover the corresponding

3 × 3 homography H, and test all other feature matches

for consistency. After a set number of trials, we retain the

homography with the most inliers, cluster its associated fea-

ture matches and remove them from further consideration.

We repeat the process until we fail to find new clusters.

For better numerical conditioning, we normalize feature

positions to have their centroid at the origin and mean dis-

tance to the origin of
√
2. To define an inlier, we test the

homography in both directions using the relatively loose

threshold of 0.05 in normalized coordinates.

After extracting the clusters, we reapply the above pair-

wise consistency test to remove features without at least one

other consistent feature in the cluster.



clusters for src. & dst. regions of edit edits in the target image

Figure 5. Copying the man’s flower to his ear, described in

Fig. 7(f). Left: Since the source and destination regions of the

edit move independently (the man turns his head), our system as-

sociates different feature clusters with each. Right: To transfer the

edit to the target image, we apply the corresponding homographies

for each region of the edit separately.

Cluster expansion. To improve the reliability of the clus-

ters, we use the geometry encoded in their homographies

to guide the search for additional geometrically-consistent

feature matches, along the lines of [13]. In this step we re-

consider features that were discarded earlier in the method,

for example, because they were not the top SIFT descriptor

match, or they failed the distinctiveness criterion.

We expand the clusters conservatively, using a reduced

threshold for consistency with the homography (0.025).

From the new geometrically-consistent features, we add a

match only if it passes a stronger version of the pairwise

consistency test—any new feature match must meet at least

the median level of within-cluster pairwise-consistency.

3. Transferring Image Edits

Given the computed feature clusters, which describe

matching geometrically-consistent parts of the scene, we

are nearly ready to transfer the edit from the reference im-

age to the target. The only remaining decision our system

must make is what clusters, representing matching scene

structure, to associate with the edit.

In many cases, the both the source and destination re-

gions of the “clone brush” style edit lie on the same rigid

scene structure, so associating the edit with a single cluster

is sufficient (Fig. 4). More generally, these regions may lie

on independently moving parts of the scene, so we allow

them to be associated with different clusters (Fig. 5).

Cluster selection. We use a simple scoring method to as-

sociate each of the edit regions with a cluster. In particular,

we score cluster Ck based on the distance of its features to

the centroid of the edit, p̄edit, according to the formula

∑

xi∈Ck

1

‖xi − p̄edit‖+ ε
, (3)

where ε = 10. This metric favors clusters both with many

features and close to the edit. While we experimented with

more sophisticated metrics for cluster selection, none of

them performed consistently better overall.

Homography-based transfer. To transfer an edit region

to the target image, we use the homography Hk for the se-

lected cluster to warp pixels from the reference image. In

homogenous coordinates, this simply involves computing

p̃2 = Hkp̃
1 [17].

Given the new locations of both edit regions, as warped

into the target image, we implement the transfer from

source to destination using a form of inverse warping. To

achieve more seamless transfer we use Poisson image edit-

ing [24, 14], which consists of transferring gradients rather

than pixel values, and then re-integrating the result while

respecting the boundaries of the destination region.

Non-linear transfer. Our initial scheme for transferring

edits was inspired by Beier-Neely warping [5], and it di-

rectly used the affine frames of feature matches in the se-

lected cluster to carry out the warping. In theory, this would

have allowed us to capture non-linear deformations not cap-

tured by a homography, but we found that the affine frames

of individual feature matches were not accurate enough

for image editing, even after refinement [13]. Particularly

problematic were orientation estimates, whose inaccuracy

is magnified away from the feature. By adding outlier re-

jection we were able to achieve passable results with this

approach, but we found that the simpler homography-based

transfer led to more robust performance.

4. Experimental Results

We evaluated our system by editing a variety of real

photo collections corresponding to single photography ses-

sions, collected from Flickr, Picasaweb, and our personal

archives. As shown in Fig. 7, we explored different types

of edits, including face retouching and cloning arbitrary

objects. For additional results and full-resolution images,

please see the supplementary materials.

For 1Mpixel images, our prototype takes approximately

20 seconds for each target image, to match against the refer-

ence, cluster features, and transfer the edit. We run feature

detection as a pre-processing step, which requires about the

same amount of time per image.

Based on our results, we can make four observations

about our system. First, the system is generally success-

ful at propagating image edits over photo collections. As



(a) bad image matching

(b) non-planar deformation

(c) occlusion in the target image

Figure 6. Representative failure cases for the photo collections

shown in Fig. 7. (a) Feature clusters for two examples where im-

age matching is unsuccessful. The limited number of good feature

matches allow the outliers, mainly due to incorrect face detection,

to dominate. (b) When subject deformation is modeled poorly by

the best-fit homography, the transferred edit may be inaccurate. In

this example, the change in facial expression and viewpoint causes

the transferred edit to be aligned poorly in the target image. (c)

Even when the geometry of the transferred edit is correct, our sys-

tem fails to account for partial occlusion in the destination region

of the edit.

expected, the best case for our method is editing a rigid,

distinctively textured object (Fig. 7(b-c)). For more chal-

lenging cases (Fig. 7(a,d-f)), our system fails more often,

typically due to poor image matching.

Second, the edited region of the image itself does not

need to possess distinctive local image features. Rather, it

is sufficient for the edit to be well-localized relative to other

features on the same part of the scene. This is the case for

Fig. 7(b), where the facial blemish being retouched is not

distinctive enough to trigger local feature detection, but its

location is well constrained by surrounding facial features.

Third, our homography-based transfer can yield geo-

metrically consistent results in the presence of perspective

changes (Fig. 7(b,c,e)), despite the fact that the source and

destination regions of the edit are offset by a simple transla-

tion in the reference image. Note that when editing photos

manually, achieving consistent perspective is difficult using

a “clone brush” style tool alone.

Finally, since the edits themselves are carried out com-

pletely within each target image, our editing results preserve

the low-level appearance of the target. This can be seen in

the closeups of Fig. 1, where the edit preserves subtle de-

tails of the target image, including slight blur due to camera

shake and JPEG compression artifacts.

5. Discussion

While our system can propagate edits over a broad range

of photo collections, and handle various types of local ed-

its, its performance is far from perfect. Particularly for less

distinctive subjects, or for subjects exhibiting greater varia-

tion, the overall effectiveness of our system depends on the

fact that the user remains in the loop, and must ultimately

approve each of the edited images. To better understand

the limitations of our system, as well as opportunities for

improvement, we detail its three main failure modes, illus-

trated in Fig. 6.

Bad image matching. The most common failure mode

for our system is due to bad image matching, shown in

Fig. 6(a). This typically occurs when the set of candidate

matches contains few inliers, in turn causing our RANSAC-

based clustering method to be unstable. Even a single in-

correct feature match in the selected cluster can corrupt the

recovered homography.

Despite being an obvious parameter to adjust, we found

that changing the sensitivity of feature detection had a lim-

ited ability to improve matching performance. For example,

detecting a larger number of image features can actually be

counterproductive, since correct feature matches may be-

come even less distinctive.

The key issue is not just the lack of enough correct fea-

ture matches, but also the inability of our clustering method

to handle very few inliers. While we already carry out a

post-hoc search for new geometrically-consistent matches

(Sec. 2.2), it would be better if clusters could be generated

more robustly. One promising direction is to search for con-

sistent geometry in more incremental way [13, 10], which

may allow us to recover a denser and more flexible corre-

spondence between images.

Non-planar deformation. A second common type of

editing failure occurs when the image features we use for

matching are not well approximated by a rigid plane, as in

Fig. 6(b). Because the homographies we use for transfer-

ring the edit do not capture out-of-plane deformations, any

such deformations can lead to inaccuracy.

To remedy this problem, we could potentially refine the

transferred edit in an additional post-processing step, remi-

niscent of the method we use to refine affine feature matches



reference
image

image
edit

edited
ref. image

edited target images

(a
) 

d
u
p
li

ca
te

ea
rr

in
g

(d
) 

re
m

o
v
e

p
o
ck

m
ar

k
(b

) 
d
u
p
li

ca
te

cr
o
w

n
 o

n
 r

u
g

(e
) 

d
u
p
li

ca
te

m
ed

al
s

(f
) 

ad
d
 f

lo
w

er
 

b
eh

in
d

 e
ar

(c
) 

re
m

o
v
e 

C
fr

o
m

 s
ta

n
d
s

Figure 7. Gallery of results. Target images successfully edited using our system (judged subjectively) are outlined with green, and unsuc-

cessful edits are outlined with red. Our system is capable of both face retouching (d) and editing arbitrary objects (a-c,e-f). The system

also allows us to achieve perspective-consistent editing results, even in the presence of significant perspective changes (b,c,e). While the

first four photo collections (a-d) can be handled reliably, the last two (e-f) push the limits of our system, with success rates of about 45%

and 35% respectively. As discussed in Sec. 5, failures of our system are often caused by insufficient correct feature matches in the vicinity

of the edit.



[13]. In practice, this could involve performing a local op-

timization, matching gradients in the edit regions between

the reference and target images.

Missing or occluded regions. Another limitation of our

system is that we currently do not handle cases where re-

gions of the edit are outside the field of view or occluded in

the target. This is illustrated in Fig. 6(c), where the destina-

tion region of the edit is partially occluded in the target.

In principle, we should be able to detect these situations,

again by directly comparing the content of the edit regions

between the reference and target images. For cases where

part of the edit is missing, we could even fall back to copy-

ing information directly from the reference image.

6. Conclusions

In this paper we demonstrated a first step toward prop-

agating generic local edits over personal photo collections.

Even in its limited form, our system may still be a useful

tool to help ease the burden of image editing. For future

work, we are interested in extending the reach of our sys-

tem by improving the robustness of image matching. We

are also interested in testing our system on larger photo col-

lections, and conducting user studies to evaluate its useful-

ness in practice. More generally, we believe that tools from

image matching and object recognition hold great potential

to improve the state-of-the-art in photo editing, particularly

for editing tasks at the level of an entire photo collection.

Acknowledgments. This work was supported in part by an

NSERC Postdoctoral Fellowship, the MIT UROP program, NSF

CAREER award 0447561, the Quanta T-Party, NGA NEGI-1582-

04-0004, MURI Grant N00014-06-1-0734, and by a gift from Mi-

crosoft Research. F. Durand acknowledges a Microsoft Research

New Faculty Fellowship and a Sloan Fellowship. Special thanks

to Josef Sivic for helpful discussions and sharing code. We also

thank the Flickr user Alaskan Dude and the Picasaweb users

hadtoshare, riggs.brock, and ToddandApril08, for

releasing their photos under a Creative Commons license.

References

[1] Adobe Photoshop Lightroom, http://adobe.com/. 1

[2] K. Mikolajczyk, Affine covariant features, http://www.

robots.ox.ac.uk/∼vgg/research/affine/,

Visual Geometry Group, University of Oxford, 2007. 3

[3] A. Agarwala, A. Hertzmann, D. H. Salesin, and S. M. Seitz.

Keyframe-based tracking for rotoscoping and animation. In

SIGGRAPH, pp. 584–591, 2004. 2

[4] X. An and F. Pellacini. Appprop: All-pairs appearance-space

edit propagation. In SIGGRAPH, pp. 1–9, 2008. 2

[5] T. Beier and S. Neely. Feature-based image metamorphosis.

In SIGGRAPH, pp. 35–42, 1992. 5

[6] D. Bitouk, N. Kumar, S. Dhillon, P. N. Belhumeur, and S. K.

Nayar. Face swapping: automatically replacing faces in pho-

tographs. In SIGGRAPH, 2008. 2

[7] M. Brand and P. Pletscher. A conditional random field for

automatic photo editing. In CVPR, pp. 1–7, 2008. 1

[8] S. Brooks and N. Dodgson. Self-similarity based texture

editing. In SIGGRAPH, pp. 653–656, 2002. 2

[9] M. Brown and D. Lowe. Automatic panoramic image stitch-

ing using invariant features. IJCV, 74(1):59–73, 2007. 3

[10] M. Cho, J. Lee, and K. M. Lee. Feature correspondence and

deformable object matching via agglomerative correspon-

dence clustering. In ICCV, 2009. 6

[11] M. Everingham, J. Sivic, and A. Zisserman. Taking the bite

out of automatic naming of characters in TV video. IVC,

27(5):545–559, 2009. 4

[12] R. Fergus, P. Perona, and A. Zisserman. Object class recog-

nition by unsupervised scale-invariant learning. In CVPR,

vol. 2, pp. 264–271, 2003. 3

[13] V. Ferrari, T. Tuytelaars, and L. V. Gool. Wide-baseline

multiple-view correspondences. In CVPR, vol. 1, pp. 718–

725, 2003. 4, 5, 6, 8

[14] T. Georgiev. Photoshop healing brush: a tool for seamless

cloning. In Workshop on Applications of Comp. Vision, pp.

1–8, 2004. 1, 5

[15] A. Glassner. Image search and replace. IEEE Computer

Graphics and Applications, 23(3):80–88, 2003. 2

[16] F. Grabler, M. Agrawala, W. Li, M. Dontcheva, and

T. Igarashi. Generating photo manipulation tutorials by

demonstration. In SIGGRAPH, pp. 1–9, 2009. 1

[17] R. I. Hartley and A. Zisserman. Multiple View Geometry in

Computer Vision. Cambridge University Press, 2nd edition,

2004. 4, 5

[18] J. Hays and A. A. Efros. Scene completion using millions of

photographs. In SIGGRAPH, pp. 1–7, 2007. 1, 2

[19] D. Kurlander and E. Bier. Graphical search and replace. In

SIGGRAPH, pp. 113–120, 1988. 2

[20] Y. Liu, W.-C. Lin, and J. Hays. Near regular texture analysis

and manipulation. In SIGGRAPH, pp. 368—376, 2004. 2

[21] D. G. Lowe. Distinctive image features from scale-invariant

keypoints. IJCV, 60(2):91–110, 2004. 3

[22] J. Matas, Š. Obdržálek, and O. Chum. Local affine frames

for wide-baseline stereo. In ICPR, pp. 363–366, 2002. 3

[23] K. Mikolajczyk and C. Schmid. Scale & affine invariant in-

terest point detectors. IJCV, 60(1):63–86, 2004. 3

[24] P. Pérez, M. Gangnet, and A. Blake. Poisson image editing.

In SIGGRAPH, pp. 313–318, 2003. 1, 5

[25] A. Rav-Acha, P. Kohli, C. Rother, and A. W. Fitzgibbon. Un-

wrap mosaics: a new representation for video editing. In

SIGGRAPH, pp. 1–9, 2008. 2

[26] S. M. Seitz and K. N. Kutulakos. Plenoptic image editing.

IJCV, 48(2):115–129, 2002. 2

[27] J. Sivic and A. Zisserman. Video Google: A text retrieval

approach to object matching in videos. In ICCV, vol. 2, pp.

1470–1477, 2003. 1, 3

[28] N. Snavely, S. M. Seitz, and R. Szeliski. Modeling the world

from Internet photo collections. IJCV, 80(2):189–210, 2008.

1, 3

[29] W.-S. Tong, C.-K. Tang, M. S. Brown, and Y.-Q. Xu.

Example-based cosmetic transfer. In Pacific Conference on

Computer Graphics and Applications, pp. 211–218, 2007. 1

[30] T. Tuytelaars and K. Mikolajczyk. Local invariant feature

detectors: A survey. Foundations and Trends in Computer

Graphics and Vision, 3(3):177–280, 2007. 1, 3

http://adobe.com/
http://www.robots.ox.ac.uk/~vgg/research/affine/
http://www.robots.ox.ac.uk/~vgg/research/affine/

