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Résumé

L’objectif de ce mémoire est de partager les connaissances obtenues lors de mon travail sur la
spectroscopie à deux peignes et ses applications sur les matériaux solides.

Pour y parvenir, certain sujets connexes sont élaborés. Dans l’ordre, on y aborde la physique
des lasers, le verrouillage et la stabilisation des modes, l’interférométrie générale et celle des
peignes, ainsi que la modification des impulsions des peignes de fréquence en utilisant l’ptique
non-linéaires.

On présente ensuite deux études expérimentales. La première porte sur la combinaison de la
spectroscopie à deux peignes avec la technique pompe-sonde et la seconde sur l’analyse de la
variance baseline en contexte de la spectroscopie à deux peignes.

ii



Abstract

The goal of this memoire is to communicate my work regarding the application of dual comb
spectroscopy to materials beyond traditional gas phase spectroscopy.

A variety of topics required to understand my work are presented, such as general laser physics,
mode-locking, stabilization of the repetition rate and carrier envelope offset, interferometry,
dual comb spectroscopy, and the modification of said combs via non-linear optics.

Two experimental studies are presented as well. These include the combination of dual comb
spectroscopy with the pump-probe technique, as well as an analysis of baseline variance in
context of dual comb spectroscopy.
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On the planet Earth, man had
always assumed that he was more
intelligent than dolphins because
he had achieved so much - the
wheel, New York, wars and so on
- whilst all the dolphins had ever
done was muck about in the
water having a good time. But
conversely, the dolphins had
always believed that they were
far more intelligent than man -
for precisely the same reason.

Douglas Adams, Hitchhikers
Guide to the Galaxy
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Introduction

This memoire focuses on the fabrication, stabilization, and application of frequency combs,
particularly their use in dual comb spectroscopy (DCS), a technique which allows for the
rapid, ultra-precise detection of optical signals. Traditionally, the technique has been used
in gas phase absorption spectroscopy for its extreme precision, but my work focuses on its
applications to the reflective and absorptive properties of solid-state materials.

Fully stabilized, mode-locked lasers, also called frequency combs, are represented in the fre-
quency domain by a series of equally spaced, delta-like lines “teeth”, which correspond to optical
modes, and are modulated by some envelope function. In the time domain, these combs often
manifest as wave packets, or pulses.

The frequency of these teeth have two degrees of freedom, and can thus be fully described
by two parameters. The first of these parameters is the repetition rate of the pulsed source,
frep, which determines mode spacing in the frequency domain, and the second is the phase
relationship between successive periods, called the “carrier envelope offset”, or CEO. This CEO
is commonly expressed as a frequency offset from zero, fCEO, common to all modes in the
spectral domain.

Mixing the fields of two such lasers, differing in frep by ∆frep, on a photodetector produces a
time-varying interference pattern called an “interferogram” (IGM). This signal may be subse-
quently Fourier transformed, allowing for the retrieval of spectral domain information.

Chapter 1 presents a review of the physics underpinning dual comb spectroscopy and the
research done in this memoire. It begins with fundamental laser physics, and shows how to
create a mode-locked laser. Next, a variety of mathematical concepts are presented (Fourier
transformations, dispersion relations, and Kramers-Kronig relations), along with an explana-
tion of how to actually stabilize a mode-locked laser, and why the method works. Next, various
types of frequency combs are presented, along with an overview of interferometry and dual
comb spectroscopy in particular. Finally, the topic of non-linear optics is briefly discussed, as
it has a large impact on my work.

Chapter 2 and chapter 3 present data and analysis covering my work at Université Laval
(ULaval) and at the National Institute of Standards and Technology (NIST).
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My work done at ULaval focuses on combining dual comb spectroscopy with the well known
pump-probe technique, thereby allowing for the spectral study of material excitation and
relaxation rates. Chapter 2 begins by defining pump probe spectroscopy and showing what
frequency combs add to the technique. Next, previous experiments are repeated to demonstrate
mastery of the system and give credibility to future results. Finally, dual comb spectroscopy
is combined with the pump probe technique, and preliminary results are presented.

My work done at NIST focuses on understanding the various effects which can change the
spectral baseline of a measurement in the context of dual comb spectroscopy. Chapter 3 be-
gins by defining what a baseline is, and by defining various referencing techniques. Next, a
mathematical model is developed which provides insight into the assumptions of each of the
different referencing techniques. Then, various methods to induce and or suppress baseline va-
riance are tested. Finally, a flat spectral baseline over the period of four hours is demonstrated
using one of the techniques described previously.

Lastly, a brief conclusion is presented.
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Chapitre 1

Theory

This first chapter focuses on the physics required to understand later chapters. It starts with
basic laser physics, and works its way up to the creation of a frequency comb, dual comb
spectroscopy, and the field of non-linear optics.

Specifically, it begins by covering laser basics, and how to mode-lock a laser. We discuss
spontaneous emission, three state systems, optical feedback, and cavity modes. We also discuss
pulse formation via modal interference, and how to produce pulses using saturable absorbing
mirrors, non-linear polarization rotation, and non-linear optical loop mirrors.

A short section of math follows, along with the specifics of mode-locked laser stabilization and
the presentation of various other types of combs. The Fourier transform limitations of pulsed
lasers are discussed, along with the basics of dispersion and the Kramers-Kronig relations. It
is then shown how to stabilize the repetition rate and carrier envelope offset of a mode-locked
laser, and how, in doing so, a frequency comb is created. Other types of combs are reviewed
as well, including micro-resonator and electro-optical combs.

Next, interferometry and dual comb spectroscopy in particular are discussed. Both the single
beam and multi-beam cases of interferometry are discussed, using Michelson and Fabry-Perot
interferometers as examples. Using this basis in interferometry, DCS is described, starting with
the formation of heterodyne beats and a radio frequency comb. The symmetric and asymme-
tric cases of DCS are explained, and the impact of unintentional multi-path interference is
discussed.

Finally, the field of non-linear optics is presented. Specifically, we look at χ2 processes, focusing
on second harmonic generation, as well as χ3 processes, focusing on the Kerr non-linearity.
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1.1 Laser Basics

In general, a laser (light amplification by stimulated emission of radiation), [1] exploits the
discrete energy levels in some quantum system, hereafter referred to as the gain medium, to
amplify light via stimulated emission, the process by which one photon interacts with some
electron in an excited state, forcing it to radiatively relax to a lower state. Here, the difference
in energy between the electron’s excited and relaxed states must be equal to the incoming
photon’s energy.

The emitted photon is of the same frequency, phase, direction, and optical polarization of the
stimulating photon, giving rise to a property known as coherence. For a light source to be
coherent with some other light source means that there exists some fixed phase relationship
in either space or time between the two sources. Stimulated emission of radiation is just one
of many ways to produce a coherent source.

For certain gain media, including erbium doped glass (see figure 1.1), the gain medium used
primarily throughout this memoire, the energy levels in question are not of single frequency,
but instead exist over a broad bandwidth. This is primarily due to the splitting and shifting of
energy levels, as caused by some external electric field (in this case, the neighboring atoms).
This process of splitting and shifting is referred to as the Stark effect. Here, not only are the
absorption and emission spectra broadened, but the the emission spectrum is red-shifted from
its absorption spectrum by the same process [2].

Figure 1.1 – The absorption and emission profiles of Erbium 3+ ions in phosphate (P2O5)
glass. Note that the spectra, being influenced heavily by the local electric field, will differ
between various types of glasses. Credit RP Photonics & Honaken’s work in 1997 [3].

For erbium lasers, the basic mechanism of action is as follows (see figure 1.2) : 980 nm light

2



Figure 1.2 – Excitation and relaxation of energy levels in Erbium 3+ ions, as denoted by their
Stark manifolds (solid lines). These manifolds consist of many energy levels split from a central
point due to the Stark effect, labeled by their "term symbols", a shorthand used to describe
the total angular momentum quantum numbers in a multi-electron atom. The wavelength
value provided for each transition uses the center wavelength of each Stark manifold [4].

is absorbed by a ground-state (labeled 4I15/2 in figure 1.2) erbium atom, pushing an electron
into an unstable, short lived, high-energy state (4I11/2 ). This electron then quickly decays to
a metastable state (4I13/2 ).

The short electron life time in the upper-most level allows for the rapid pumping of electrons
to the metastable state, while the longer lifetime of the metastable level enables electrons to
accumulate in that state. There can therefore exist more electrons in the metastable level than
in the ground state. This situation is called population inversion, and is necessary for optical
amplification.

This is because, in a system experiencing population inversion, more electrons are in a state
from which stimulated emission occurs than there are electrons in a state from which absorp-
tion occurs. Any incoming light is thus more likely to induce stimulated emission than it is to
be absorbed, and optical amplification can occur.

To obtain a laser, one needs to recycle part of the amplified optical field such as to continuously
sustain the coherent emission process. This optical feedback is typically achieved by placing
the gain medium inside a cavity made of partially reflective mirrors, as shown in figure 1.3. In
the special case presented in the figure, one mirror is perfectly reflective at the laser wavelength
while still allowing the pump to couple in the cavity. The second mirror is partially reflective
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Figure 1.3 – A Laser cavity. Here, a gain medium resides between two mirrors. Mirror 1 is
fully reflective, while mirror 2 is partially reflective and partially transmissive. The mechanism
of pumping here is general, but could be electrical, optical, etc.

and allows a fraction of the field in the cavity to escape as the laser output.

An important result stemming from the fact that a laser field is generated inside a cavity,
is the fact that only specific modes of oscillation are allowed within said cavity. In essence,
standing waves inside the cavity, or modes, interfere constructively, while any fields of offset
frequency interfere deconstructively. The practical result being that the output of such a laser
consists of discrete modes corresponding to frequencies which are resonant with the cavity.

Many modes can exist within the cavity, each with a wavelength corresponding, in a simplistic
picture which is sufficient for the moment, to a different integer multiple of the cavity’s optical
length, as seen in equation 1.1. The separation between any of two of these modes inside the
cavity, then, is determined by the cavity’s optical round trip length, as seen in equation 1.2.

L = m · λ (1.1)

∆v =
c

L
(1.2)

Where L is the cavity’s round trip optical length, m is the mode number, λ is the wavelength
of light inside the cavity, ∆v is the separation (in frequency space) between the mth and
m+1th modes, and c is the speed of light,. It should be noted here that this model assumes a
dispersion free cavity. Later discussions will not include this assumption.

In practice, laser cavities are typically much longer than the wavelengths of light traveling
inside them, and thus values of m are high, resulting in a small frequency difference between
subsequent modes. For example, for a 1.0 m long (physical length) linear cavity made of a
medium whose index of refraction, n, is 1.5, (L = 3 m), m = 1e6 at 1500 nm, and m = 9.68e5

at 1550 nm, with 32,000 modes between the given wavelengths.
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1.2 Mode-Locked Lasers

A mode-locked laser usually produces a series of short wave packets (on the order of pico or
femtoseconds), separated from each other both in space and in time by some regular quantity
related to the round trip distance and time required to traverse the cavity. As described above
in section 1.1, laser cavities only support specific standing waves, or longitudinal modes.

The action of mode-locking, at the most basic approach, is to force a fixed phase relationship
between these longitudinal cavity modes. Looking at the cavity’s output, as shown in figure
1.4, the fixed phase relation creates a repeating interference pattern between modes. At regular
time intervals, equal to 1

frep
, all modes are “in phase” and interfere constructively to produce

pulses.

Between these brief moments of constructive interference, modes interfere in a mostly destruc-
tive manner. In practice, the large number of modes sustained by the gain medium and cavity
produce a near zero field between the pulses. Inside the cavity, this corresponds to, when the
mode-locking condition is met, a single pulse circulating in the cavity.

Figure 1.4 – Cavity modes with a fixed phase relationship (above), with an applied vertical
offset for ease of viewing, and their summation (below) to produce a pulse which travels the
length of the cavity. Here, only a few modes (50 used in the simulation, 9 pictured) are used
in the calculation. Data is presented in the time domain, in units of Lc = 1

frep

The creation of a fixed phase relationship between cavity modes can be implemented in a
variety of ways. One common method is the application of saturable absorbing mirrors (SAMs)
[6]. SAMs are typically constructed via the coating of some mirror, generally dielectric, with
a semiconducting media which exhibits saturable absorption (SA).
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Figure 1.5 – Reflectivity response of a semiconducting saturable absorbing mirror (SESAM)
and a graphene saturable absorbing mirror (GSAM) after excitation by various fluences of
light. Credit Wang & Blau, 2017 [5]. Here, F stands for the fluence, in units of Joules per cm2.

The primary mechanism of action for SAMs is to favor high peak power in the cavity by selec-
tively absorbing low intensity light. Due to the mirror’s SA properties, the mirror’s reflectively
depends partially on the fluence (energy per unit area) of the incident light. For low intensity
light, the mirror’s reflectively, R, is relatively constant with respect to fluence, but for high
intensity light, R = R0 + ∆R, where R0 is the linear reflectivity, and ∆R is a positive
value called the modulation depth. Figure 1.5 shows the non-linear response of two SAMs to
increasing fluence, F . After some time, the SAM will relax back to its initial state.

An interesting effect of the mode-locking mechanism of SAMs is that pulses may be formed
via their use which are much shorter than their relaxation rate. This is because the only
requirements placed on the time-domain response of a SAM are that a) its absorption saturates
quickly enough to force a phase relationship between cavity modes, and b) the SAM relaxes
to its unsaturated state before the pulse returns to interact with the saturable absorber.

Another common mode-locking mechanism, and the one used in the Menlo combs at Uni-
versité Laval, can be created via the use of non-linear polarization rotation (NPR) in optical
fiber [7]. Here, a non-linear change in the optical field’s polarization state is created when high
intensity light passes though a fiber which is not polarization maintaining. If the output of the
fiber then passes through a polarizing filter which is tuned to selectively allow transmission of
the new optical polarization state, the final output is now intensity dependent. Light which
does not contribute to pulse formation will not undergo the polarization shift, and is thus
absorbed by the filter. On the other hand, light which does contribute to pulse formation will
pass. This again favors pulse formation in the cavity and hence forces a fixed phase relation-
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ship. Alternatively, the same method may be applied using a highly birefringent (polarization
maintaining) fiber and Faraday rotators [8; 9].

A third commonly used mechanism for the mode-locking of lasers is the non-linear optical
loop mirror (NOLM) [10]. Here, the "mirror" is formed by connecting together the two output
ports of a 2x2 fiber coupler, creating a loop. Light coming from an input port will couple
into the loop and propagate along two distinct paths, one clockwise around the loop and the
other anti-clockwise. When these waves meet again at the coupler after traversing the loop,
the waves interfere, and this interference determines what amount of power is sent back into
which input port. In the linear regime, the two paths around the loop have the same optical
length, and thus return to the coupler in phase. Assuming a 50 : 50 coupling ratio between
output ports, a lossless loop, and no change in optical polarization state during propagation,
this creates a perfect, 100% reflective mirror. All light which enters from input port A will
return to input port A.

In the regime of high intensity light (the non-linear regime), the light itself will modify the
refractive index of the medium, as a function of that light’s intensity. This means that some
low intensity light traversing the loop will see a different optical path length than would some
high intensity light. Indeed, when in the non-linear regime, and when the coupling ratio is
anything other than 50 : 50, light traveling around the loop clockwise does see a different path
than light which travels anti-clockwise around the loop. When the two finish their round trip
and return to the coupler, their instantaneous phases will be different. This in turn changes the
interference between them, and therefore the amount of power sent back into each input port.
The reflectivity of the NOLM must therefore be a function of intensity. By modifying various
parameters of the system, such as the input power, coupling ratio, loop length / material, etc,
an artificial saturable absorbing mirror may be created and used to mode-lock a laser.

Both NPR and NOLMs rely on a non-linear relation between the optical field, E, and the
material polarization, P , which changes the index of refraction via the Kerr effect. This relation
occurs quickly enough that it is often treated as being instantaneous [11]. These kinds of non-
linear effects will be discussed in further detail in section 1.8. Such mode-locking schemes
over several advantages over the use of SAMs, namely the fact that the system can respond
nearly instantaneously to losses or changes within the resonator, and that the pulse is treated
symmetrically about its center in time, as opposed to a SESAM, which treats the leading edge
of the pulse differently than the trailing edge. In general, these effects lead to a mode-locking
scheme which tends towards lower noise.

Mode-locked laser formation places a variety of requirements on the physical components of
the system. Not only is some method of forcing a fixed phase relationship required, but so
is a broad bandwidth gain medium. This is because pulse formation requires constructive
interference between many cavity modes, and thus a gain medium broad enough to support

7



the many modes is required. Erbium 3+ ions in glass fill this role well, given that their gain
bandwidth covers tens of THz [12].
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1.3 Transform-Limited pulses, Dispersion, and
Kramers-Kronig Relations

The Fourier transform (FT) and its inverse (IFT) prescribe a unique bi-directional relation
between a signal in the time or space domains and the constituent frequencies which may
be used to express the same signal in the frequency domain. This relationship is defined in
equations 1.3 and 1.4, where the Fourier transform is applied to some time varying function,
x(t), to yield its equivalent in the frequency domain, X(ω), where both x(t) and X(ω) are
generally allowed to be complex functions.

X(ω) =

∫ ∞
−∞

x(t)e−iωtdt (1.3)

x(t) =
1

2π

∫ ∞
−∞

X(ω)e−iωtdω (1.4)

For a pulsed signal having a given spectral amplitude, there exists a narrowest possible tem-
poral shape. As this relation is defined by the Fourier transform, a temporal pulse respecting
this condition is sometimes called “transform limited”. This is the result of the uncertainty
principle [13]. Any two physical quantities forming a Fourier pair are bound by this limitation
(i.e. localization of one implies delocalization of the other).

The time-bandwidth product (TBWP) of a pulsed signal is a unitless quantity defined as
the product between the duration of the signal in the time domain (∆t) and its width in
the spectral domain (∆f = ∆ω

2π ), and can be used to quantify how close a signal is to it’s
transform limit. The transform limited TBWP depends upon the spectral shape of the signal.
For instance, using the amplitude spectrum’s full-width half-max (FWHM), the transform
limited TBWP is ∼0.315 for sech2 pulses and ∼0.44 for Gaussian pulses [14; 15; 1]. For
reference, the uncertainty principle relation fixes an absolute minimum of 0.25 for the TBWP.

On the other hand, when given both the spectral amplitude and phase profile of the pulse,
there exists only one possible solution to the Fourier transform. It so happens that the phase
spectrum required for a transform limited pulse is one which is frequency independent. All
pulses which are not transform-limited, then, must have a phase which depends on frequency.
These pulses are referred to as being chirped.

In some media, different frequencies of light can acquire different phase shifts while traveling
through a medium. We call these dispersive media, and they have a special importance when
modeling the propagation of pulses, as they effect the pulse shape in the time domain.

A pulse traveling through such a media can be described using equation 1.5.
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E(x, t) =

∫ ∞
−∞

Ẽ0(ω)eiβ(ω)x e−iωtdω (1.5)

Here, we assume that the field can be described by the plane wave solution to the wave
equation. Ẽ0(ω) is a complex phasor which describes the spectral amplitude and phase at
some initial position in space and time (x=0, t=0), and β is the propagation constant, which
we can think of as the phase shift ∆φ acquired for some frequency of light ω, per distance L
through the medium, as expressed by equation 1.6.

β(ω) =
∆φ(ω)

L
(1.6)

In equations 1.5 and 1.6, we see that β is written as a function of ω. In fact, in dispersive
materials where the propagation constant depends on the frequency, it is often convenient to
express β(ω) as a Taylor expansion about its center or mid-band frequency, ω0, as seen in
equation 1.7.

β(ω) = β0 + β′0 · (ω − ω0) + β′′0 ·
(ω − ω0)2

2
(1.7)

Here, β0 = β(ω0), β′0 = β′(ω0), and β′′0 = β′′(ω0), β′ is the first derivative of β with respect to
ω, β′′ is the second derivative of β with respect to ω, and we assume that the field is narrow
around ω0.

Three definitions are important here. Firstly, phase velocity, vφ, represents the speed at which
the carrier phase under the envelope propagates through the medium. Secondly, the group
velocity, vg, describes the speed at which the group, or pulse, travels through the medium.
And finally, the group velocity dispersion, GVD, of the system describes the rate of change of
the inverse group velocity with respect to ω.

For a monochromatic field at ω0, 2π of phase is accumulated for each length in space 2π
β0
, and

the same is accumulated for each length in time 2π
ω0
. We can therefore conclude that a point of

constant phase must travel at vφ(ω0) = distance
time = ω0

β0
. This of course implies that β0 = ω0

vφ(ω0) .

A pulse, however, is not a monochromatic source. To better understand pulse propagation,
we therefore need to analyze how β changes with respect to ω. To see how this works, let’s
rewrite equation 1.5 using the first two terms of the Taylor expansion of ω about β (i.e., we
write ω(β) = ω0 + ω′0(β − β0)), keeping in mind that ω is implicitly a function of β, and
using the same labeling scheme as was used for the Taylor expansion of β previously. This
new expression is shown in equation 1.8.
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E(x, t) =

∫ ∞
−∞

dω Ẽ0(ω) eiβ(ω)xe−iωt

=

∫ ∞
−∞

dω Ẽ0(ω) eiβxe−i[ω0+ω′
0(β−β0)]t

=

∫ ∞
−∞

dω Ẽ0(ω) eiβxe−iω0te−iω
′
0βteiω

′
0β0t

=

∫ ∞
−∞

dω Ẽ0(ω) eiβxe−iω0te−iω
′
0βteiω

′
0β0teiβ0xe−iβ0x

= ei(β0x−ω0t)

∫ ∞
−∞

dω Ẽ0(ω) ei(β−β0)·(x−ω′
0t)

(1.8)

We see two terms in the final expression of this equation. The one which is outside the integral
represents a single, monochromatic frequency which has a phase velocity vφ = ω0

β0
, as expected.

The term inside the integral, however, represents an envelope or wave packet which travels at
a velocity vg = ω′0 = dω

dβ |ω0 (from the Taylor expansion of ω about β). This in turn implies
that 1

vg(ω0) = dβ
dω |ω0 = β′0.

A nearly identical argument may be used to show that β′′0 = d
dω ( 1

vg(ω0)) = GVD. Alternatively,
we can simply remember that GVD represents the change in group velocity with respect to
frequency. From this, we can conclude that for a β′′=0 material, the pulse shape remains
temporally unchanged during propagation, since all frequencies have the same group velocity.
For non-zero GVD materials, however, because the group velocity is different for different
frequencies of light, a transform limited pulse will stretch in time, becoming chirped. For an
alimited pulse, it is subject to broadening or compression depending on initial chirp and on the
sign of β′′. Such behavior is used to compress pulses to their Fourier limit, thereby producing
the highest peak power available for the given signal. See figure 1.6 for a visual representation
of the chirp a transform limited pulse will acquire having traveled through a β 6= 0 material.

Finally, an important relationship between the phase and intensity of light in the frequency
domain, after passing through some absorptive media, is provided by the Kramers-Kronig
relation (derived in its entirety in A.1). For now, let’s assume that some light is sent into an
optical system, is somehow changed by that system, and that some amount of light then leaves
the system. This can be expressed mathematically below in equation 1.9.

Eout(ω) = Ein(ω)H(ω) (1.9)

In such an expression, H(ω) is called the transfer function, is allowed to be complex such that
H(ω) = H1 + iH2, and describes the action of the material on the input field to produce the
output. It has an associated impulse response, h(t), which is real.
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Figure 1.6 – A wave packet moving in space at some velocity vg. After experiencing GVD, the
pulse is stretched, since its constituent frequencies have different group velocities. In the picture
above, higher frequencies travel with higher group velocity (and are therefore temporally
ahead) of their lower frequency counter parts. We therefore know that β” is positive in the
medium through which the transform limited pulse travels. In doing so, the peak power is
reduced considerably.

A variety of derivations are found in the literature, but they all follow the same basic premise
[16]. The condition of causality forces the impulse response of such a system to be 0 for t < 0.
We can therefore think of the impulse response function as being some arbitrary real function
multiplied by a step function centered at the origin. This in turn, imposes a relationship
between the real and imaginary parts of the transfer function [17]. This relationship is seen in
equations 1.10 and 1.11.

H1(ω) =
1

π
PV

∫ ∞
−∞

H2(ω′)

ω − ω′
dω′ (1.10)

H2(ω) = − 1

π
PV

∫ ∞
−∞

H1(ω′)

ω − ω′
dω′ (1.11)

Where PV refers to the Cauchy principle value (found by replacing the limits of the integral
with some variable, ξ, and taking the limit of the integral as ξ approaches ±∞).

A more interesting physical result in the field of material optics arises when the transfer
function in question is the electric susceptibility, χ, which is used to describe the polarization
response, P (ω) of a material to an incident electric field E(ω), as seen in 1.12 where ε0 is the
electric permittivity.

P (ω) = ε0χ(ω)E(ω) (1.12)
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Here, we note that χ = χ1 + iχ2 serves the same role as H(ω) from before, it can thus be
expressed in the same way. When we assume a linear relationship between P (ω) and E(ω),
and know that χ1(ω) = χ1(−ω) and χ2(ω) = −χ2(−ω) for all real values of ω, we are able to
write the Kramers-Kronig relation as follows in equations 1.13 and 1.14 [17].

χ1(ω′) =
2

π
PV

∫ ∞
0

ωχ2(ω)

ω2 − ω′2
dω (1.13)

χ2(ω′) = −2ω′

π
PV

∫ ∞
0

χ1(ω)− 1

ω2 − ω′2
dω (1.14)

Keeping in mind that χ = n̂2−1, we might desire a relationship between the real and complex
parts of the refractive index, n̂(ω) = n(ω) + iκ, where n(ω) = c

v and κ is the attenuation
coefficient. Unfortunately, n̂(ω) is not actually a response function itself but is instead an
analytic function of the system’s response function [18].

We are thus unable to directly use the Kramers-Kronig relations to relate n(ω) to κ. That
being said, so long as the system is minimum phase, you can still uniquely find n(ω) from κ

and vice versa.

The relationship between the real and imaginary parts of the complex refractive index, n̂(ω),
is defined by the equations below (equations 1.15 & 1.16) [16].

n(ω′) = 1 +
2

π
PV

∫ ∞
0

ωκ(ω)

ω2 − ω′2
dω (1.15)

κ(ω′) = −2ω′

π
PV

∫ ∞
0

n(ω)− 1

ω2 − ω′2
dω (1.16)

In general, these relations tell us that in a minimal phase system, any absorption of light in
a medium must come with a change in index of refraction (and thus phase), and that any
change in phase or index of refraction must come hand in hand with a change in absorbance.
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1.4 Mode-Locked Laser Stabilization - the Creation of a
Frequency Comb

In general, a frequency comb is a laser source in which the frequency domain spectra is made of
a series of well known, stable, and equally spaced, delta-like peaks called teeth. Fully stabilized,
mode-locked lasers are a natural fit and were the first sources used as optical frequency combs.

Two parameters are of key importance when discussing a mode-locked laser, and both require
stabilization to produce a frequency comb, as will be seen below. The first of these is the
repetition rate of pulses, frep, as was discussed previous in chapter 1.2, and the second of
these is the so called "carrier envelope offset", or CEO.

The carrier envelope offset, and its related frequency, are related to the fact that within the
cavity, due to dispersion, the carrier and envelope do not travel at the same speeds (i.e.
vg 6= vφ), leading to a phase offset acquired during each round trip of the cavity between the
carrier and the envelope’s maximal value, as seen in figure 1.7. We refer to the instantaneous
difference in phase between the carrier and envelope as the CEO, and the frequency with
which the CEO is modulus to frep as fCEO. This is expressed mathematically in equations
1.18 & 1.17.

∆φCEO = (
L

vg
− L

vφ
)|fc 2π fc (1.17)

fCEO =
∆φCEO frep

2π
(1.18)

Where ∆φCEO is the change in carrier envelope offset phase per round trip (and thus between
successive pulses), and where vφ and vg are the average inter-cavity phase and group velocities,
respectively, evaluated at the carrier frequency fc [19].

In this case, ∆φCEO represents an unbounded phase slope. By wrapping the phase change
modulo 2π, a limit of ±frep

2 is applied to fCEO.

In a mode-locked laser, frep and fCEO govern the frequency of each mode, as seen in figure
1.7 and in equation 1.19, where m is the integer mode index, frep is the repetition rate as
determined by the cavity round trip length, L, and where fCEO is the carrier envelope offset
frequency as determined by the difference in inter-cavity phase and group velocities. The
following relation has been used for precision frequency metrology with fractional frequency
instabilities less than 3e−18 at 1 second [20] :

vm = fCEO + mfrep (1.19)
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Here, the repetition rate of the pulses, frep, and the frequency of the carrier envelop offset,
fCEO, are held constant. When stabilization is successful, the frequency of each mode is
constant over time and can be subsequently referenced to a well known external source [21; 22].
In doing so, the accuracy and stability of the frequency reference is transferred to each tooth
and the pulse train as a whole.

Figure 1.7 – A stabilized frequency comb. (top) In the time domain, a pulse train advances
with a constant period between each pulse equal to the inverse of frep, and a constant ∆φCEO
between subsequent pulses, as determined by fCEO. (bottom) Mode location is determined
by fCEO and frep. All modes, m, exist, but only some have an associated non-zero intensity,
as determined by Fourier transform relations with the time domain signal. In an unstabilized,
mode-locked laser, optical modes are free to move, both in terms of translation along the
frequency axis, and in terms of frequency spacing between subsequent modes. In our stabili-
zed picture above, modes are locked to a particular frequency. No comb translation, and no
breathing are present.

Looking at equation 1.19, it can be seen that an unstable fCEO results in tooth translation
along the frequency axis depending on the sign of the change, while an unstable frep results
in the spacing between subsequent comb teeth either increasing or decreasing depending on
the sign of the change. The former is referred to as comb translation, while the later is called
comb breathing.

Because the repetition rate of the laser is related directly to the cavity length, L, by the
equation frep = c

L , the stabilization of the cavity length serves to stabilize the repetition
rate. A variety of mechanisms exist to do so, but one common method employs the use of
piezoelectric (PZT) materials.

15



These are a special class of crystalline material which lack inversion symmetry. In layman’s
terms, this means that the crystalline structure is not symmetric about some central point
around which one could invert points to find a mirrored structure on the other side. In such
materials, the electric and mechanical states of the crystal may be coupled such that mecha-
nical stress induces an electric charge or vise versa. In the case of cavity length stabilization,
the PZT is attached to one cavity mirror, and a voltage is applied which induces a change
in its physical dimensions, either shortening or lengthening the cavity. Such a scheme of frep
stabilization is used extensively in my work.

Looking back to equation 1.18, it can be seen that fCEO stabilization depends on two para-
meters. The first of these is the phase shift acquired per round trip (governed by dispersion),
and the second is the repetition rate. To produce a stable fCEO, either both these parameters
can be locked to independent values, or both can be changed in unison.

In the case of comb stabilization at both Université Laval and NIST, the pump beam’s power
is modulated to accomplish this fCEO stabilization [23]. Essentially, the index of refraction of
the cavity is changed as a function of input power (see Dr. Newbury’s 2005 paper for a full
understanding of all those contributing effects) [24; 25]. For now, it will suffice to know that
by changing the power in the cavity, we change the dispersion properties of that cavity. This
can be done to accomplish either a relative or an absolute CEO lock. Here, by relative locking,
we mean that ∆fCEO is stabilized between two combs, and by absolute locking we mean that
fCEO itself is stabilized.

It remains to be seen, however, how frep and fCEO stabilization are actually monitored and
implemented. Throughout my thesis, I have used two of the most common methods, which
will now be discussed further. The first of these methods produces a relative lock between
two combs, via the beating of combs against two stabilized continuous wave (CW) references,
while the second produces an absolute lock for a single comb via beating against some CW
reference in conjunction with “f → 2f comparison”, as will be discussed below.

The method of relative locking between two frequency combs, as implemented at Université
Laval, uses two stable and spectrally narrow CW lasers, with frequencies within the bandwidth
of the frequency combs used. By mixing two separate frequency modes from individual combs
with a CW laser whose emission frequency is within the combs’ bandwidth, an interference
pattern can be observed in the radio frequency band which can be directly measured by a
photodetector. By analyzing this interference pattern, one can directly measure either the
breathing or translation of the individual modes. In our case, corrections are provided via
voltage input to a PZT which controls cavity length, and via changes in the pump diode laser
current which controls inter-cavity dispersion, ensuring a constant ∆fCEO and ∆frep between
any two combs [12]. This is discussed in detail in A.2.

An alternative method, employed at NIST, uses an octave spanning comb (a comb which
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includes in its spectral bandwidth both some frequency f , and it’s frequency double 2f),
broadened via non-linear processes (see section 1.8), to "self-reference", and extract the CEO
frequency. This method takes advantage of the fact that, as can be seen from equation 1.19,
fCEO = 2fm − f2m. The measurement of fCEO is monitored for stability and controlled
by varying the input current of the pump diode. Here, frep is stabilized by phase locking the
comb to a stable CW laser within its bandwidth, and is controlled via both a slow and fast
PZT, the first of which has a large range of motion and corrects for slow drifting of cavity
length, while the second of which has a shorter dynamic range and corrects for quick changes
in cavity length [22].

Once frep and fCEO are stabilized for a mode-locked laser, we refer to the device as a frequency
comb, or simply a comb for short. There are many ways to create a comb, and some of these
will be discussed below.
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1.5 Types of Frequency Combs

Frequency combs come in many shapes and sizes, but those used in my research fall exclusi-
vely under the umbrella of fiber frequency combs. This simply means that the cavity exists
within some optical fiber. This not only confines light to a small area which favors non-linear
optical effects, but allows for the choice of specialty fiber. For instance, if single-mode, po-
larization maintaining fiber is chosen, then both polarization and spatial mode interference
are well controlled. Mode-locking mechanisms for fiber frequency combs may vary, with some
examples already being described including saturable absorbing mirrors, non-linear polariza-
tion rotation, and non-linear optical loop mirrors.

Figure 1.8 – A microresonator comb (above) formed by the placement of a resonator near the
edge of a leaky waveguide, and (below) the evolution of its spectra. A seed laser is used, which
initially produces side frequencies via modulation instability. Various other four wave mixing
processes then cascade throughout the spectra, producing a frequency comb, and supporting
a single pulse within the resonator.

A second type of frequency comb is created via a microresonantor, and called a microcomb,
which is schematically shown in figure 1.8 [26]. In the particular case pictured, both a wave-
guide and a ring resonator are etched onto some dielectric chip. A single CW or pulsed laser
passes through the waveguide while some amount of light is coupled into the resonator. Due
to size constraints of the waveguide, and the buildup of light in the microresonator, non-linear
optical effects begin to manifest (see section 1.8). These effects initially produce two frequency
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lines via modulation instability (MI, a form of degenerate 4 wave mixing), equally spaced on
either side of the seed laser. The MI lines then further interact amongst themselves and the
seed laser via non-degenerate four-wave mixing to produce cascading, equally spaced spectral
lines. In some cases, a single pulse can arise inside the cavity, with an frep being determined by
the effective length of the microresonantor [27]. Such combs tend to have wide tooth spacings,
and much higher repetition rates than fiber frequency combs because of their comparatively
small cavity lengths.

A third type of frequency comb is an electro-optical comb, which works on the principle of
electro-optic modulation of a CW laser via a well known and controllable radio frequency signal
[28; 29]. Such a system exploits electro-optical modulators (EOMs) to induce phase/intensity
modulation on the seed laser, producing side modes in a cascading fashion. Such a system
also offers two independent actuating variables, namely the modulation frequency of the seed
laser, and the seed laser frequency itself.

It is worth discussing here a variety of characteristic values of frequency combs. fCEO and frep
have already been discussed, and can be used to find exact tooth location. Other important
values include the center optical frequency, the pulse’s peak power and duration, the energy
per pulse, and the beam’s average power. The temporal pulse shape is normally approximated
by an equation in order to ease Fourier analysis (Gaussian, sech2, etc), and the spectral
bandwidth of the pulse in the optical domain is measured in wavenumbers, wavelength, or
frequency. Common measurements for bandwidth include include the -3db (50% of greatest
tooth intensity, FWHM) and the -10db (90% of greatest tooth intensity, FWHM) bandwidth.
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1.6 Interferometry

One principle use of frequency combs is in the field of interferometry, a technique in which mu-
tually coherent sources interfere constructively or deconstructively, depending on their phase,
onto the surface of a medium used for intensity detection, where the intensity is proportional
to the square of the field. This is expressed mathematically in the following equations (equa-
tions 1.20 and 1.21), where U(r, t) is the total displacement as a function of location r and
time t, of the two summed waves (U1 and U2), each having a magnitude of displacement Ax,
phase φx, and angular frequency ω, and where I(r) is the associated intensity.

U(r, t) = U1(r, t) + U2(r, t)

= A1(r)ei[φ1(r)−ωt] +A2(r)ei[φ2(r)−ωt]
(1.20)

I(r) =

∫
U(r, t)U∗(r, t)dt

∝ A2
1 +A2

2 + 2A1(r)A2(r)cos[φ1(r)− φ2(r)]

(1.21)

The resulting pattern in space is referred to as an interferogram (IGM), and contains informa-
tion about both the intensity, and relative phase of the incoming light. In general, interferogram
is used as a broad term referring to any interference pattern in either space or time. An IGM
may thus manifest as wave packet, spatial fringe pattern, etc. The instruments which mea-
sure and interpret these IGMs are called interferometers, and we divide them into two broad
categories, double-path and single-path (or common-path), and provide an example of each.

An example of a double-path interferometer is the Michelson interferometer, used by Albert
Michelson [30] in his famously inconclusive experiment that tried to identify the medium into
which light is propagating. A typical schematic representation is shown below in figure 1.9.

In a double-path interferometer, a light source is usually split in two by a semi-reflecting,
semi-transparent mirror called a beam-splitter. Light then propagates through each of the
two arms before being recombined, and is subsequently measured. The two imbalanced arms
serve to introduce a differential delay between the recombined fields, called an optical path
difference (OPD), which is controllable by moving a mirror in one of the arms, and which can
be approximated as a time delay, τ .

The interference pattern produced by a two-beam interferometer, and measured on a photo-
detector is an estimate of the optical field’s autocorrelation function [31], which is described
mathematically in equation 1.22 below, where A(τ) is the autocorrelation function and E

represents some complex electric field.
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Figure 1.9 – A Michelson interferometric setup, consisting of a source laser, a beam-splitter,
one fixed mirror, one translating mirror, and a detector. By varying the position of the trans-
lating mirror, a source will produce an interference pattern on the surface of the detector.
Such a pattern contains all necessary information to determine the relative phase difference
between the two beams. Alternatively, a sample may be inserted into the optical setup and
the spectral amplitude and phase of the sample’s transfer function may be measured.

A(τ) =

∫ ∞
−∞

E(t)E∗(t− τ) dt (1.22)

According to the Wiener Khintchine theorem [32], the Fourier transformation of the autocor-
relation function is the power spectral density (PSD). Hence, computing the Fourier transform
of the interferogram measured as a function of optical path difference, one obtains an estimate
of the field’s spectrum.

If light is filtered by a sample, in reflection or in transmission, one can extract information
about the sample’s spectral reflectance or transmittance by making two measurements : one
with and one without the sample present in the light path. This is discussed at length in 3.

One example of the single-path or common-path type is the Fabry-Pérot interferometer, also
called an etalon [33; 34; 35]. Two typical formats of construction are shown above in figure 1.10.
In essence, some portion of a beam passes through the front surface of the etalon, but upon
reaching the back surface, partially transmits, and partially reflects. At the front surface, this
back reflection partially transmits and partially reflects again. We now have a secondary beam,
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which travels along the same path as the initial beam, assuming two flat, parallel surfaces.
This process repeats for tertiary beams, etc.

An optical path difference exists between the initial beam and those secondary beams which
share a common path with it, meaning that the beam will constructively and deconstructively
interfere with its common path back reflections, producing an interferogram which depends
upon cavity length. Etalons are particularly important in the context of dual comb spectro-
scopy, as they are often created accidentally by optical components in the beam’s path. This
will be discussed further in section 1.7.

Figure 1.10 – A Fabry-Pérot cavity (etalon), in two forms. Each uses a well known fixed
distance material (the cavity) to produce an interferogram, one with reflective mirrors and the
other relying on fresnel reflections. In the case pictured above, these reflections are between an
n = 1 material and an n = 1.5 material. In the figure above, each reflection is back shifted by
a constant z value for ease of visual analysis. In reality, reflections and back-reflections occupy
the same physical space assuming parallel, flat reflective surfaces.

Another important distinction among types of interferometry is homodyne vs. heterodyne
detection. In homodyne detection, one considers the interference pattern between some source
and itself, while heterodyne detection implies that the signal and local oscillator are derived
from different sources.

Oftentimes in the field of heterodyne interferometry, one source is well known and under the
operator’s control. It then serves as a known reference and is called the local oscillator, while
the other beam is referred to as the signal.
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1.7 Dual Comb Spectroscopy

Dual Comb Spectroscopy (DCS) is an interferometric technique between two frequency combs
[36]. The technique is largely based on the fact that any two coherent optical signals with
frequencies f1 and f2, if spatially overlapped, will interfere to produce two new frequencies,
hereafter called heterodyne beats. This is represented mathematically in equation 1.23, where
I is the intensity measured after the interference of two E-fields which oscillate in time.

I ∝ |E1cos(f1t) + E2cos(f2t)|2

∝ E2
1cos

2(f1t) + E2
2cos

2(f2t) + 2E1E2 · [cos(f1t)cos(f2t)]

∝ E2
1cos

2(f1t) + E2
2cos

2(f2t) + E1E2 · [cos((f1 − f2)t) + cos((f1 + f2)t)]

(1.23)

We can see from the final term of the last expression that this means that one beat will be
produced at f1 − f2 and the other at f1 + f2. For optical signals, only the difference frequency
is accessible for data acquisition, given the high frequency of the sum frequency.

In our case, some stabilized frep offset ∆frep is introduced between the two combs. Now,
assuming two perfect combs, and looking at two teeth (mode numbers m and n), equation
1.24 will describe the location of the difference frequency beat notes.

∆f = f1 − f2

= fCEO,1 + nfrep,1 − (fCEO,2 +mfrep,2)

= fCEO,1 − fCEO,2 + nfrep,1 + (−nfrep,2 + nfrep,2)−mfrep,2
= ∆fCEO + n∆frep + (n−m)frep,2

(1.24)

Where ∆frep = frep,1 − frep,2 and ∆fCEO = fCEO,1 − fCEO,2.

We can see that the first two terms of equation 1.24, after being done for all modes, imply
the creation of a radio frequency (RF) comb. The first indicates that each mode of the RF
comb has a constant frequency offset from zero of ∆fCEO, and the second term in the final
expression tells us that the modes of this RF comb are separated by ∆frep. Finally, the third
term indicates that there is one such comb in each frep,1f ≈ frep,2 ≈ frep interval.

See figure 1.11, and its corresponding caption for a better understanding of this process.

In general, DCS can be done symmetrically, wherein both lasers pass colinearly through the
material to be probed, or asymmetrically, wherein only one laser probes the sample(s) under
test, while the other is used as a local oscillator to optically sample the sample’s impulse
response. Both cases are shown in figure 1.12. In the first scenario, the phase response of the
sample is imprinted on both combs, and thus drops out in the RF comb. In the asymmetric
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Figure 1.11 – (Left) Dual comb spectroscopy in the spectral domain between two combs with
a difference in repetition rate ∆frep, showing each of the comb’s teeth. Teeth from the first
comb interfere with the second comb’s teeth to produce an IGM, or RF comb (right) The
RF comb, existing within the radio frequency domain, is produced by the interference of two
combs with some difference in repetition rate, ∆frep. Connecting lines are drawn between the
two interfering modes on the left and their corresponding heterodyne beat on the right.

case, phase data of the local oscillator is conserved, as only the signal beam probes the material.
This means that the complex transmittance of the sample can therefore be measured.

Figure 1.12 – (Left) Symmetric dual comb spectroscopy, in which both the local oscillator and
signal beams pass colinearly through the sampple (Right) Asymmetric dual comb spectroscopy,
in which beam recombination happens after the signal beam has passed through the material.
Here, phase data of the local oscillator is conserved, in contrast to the symmetric case, in
which it is lost.

An important point should be made here regarding the acquisition of data. In its early days
of conception, IGMs gathered from DCS were streamed onto hard drives and treated in post-
processing. These days, field programmable gate arrays (FPGAs) are the current first choice
due to their ability to phase correct and average subsequent IGMs in real time [12]. Given
that signal to noise ratio (SNR) generally grows with the number of IGMs averaged (and thus
acquisition time), high SNRs are readily achievable.

24



Figure 1.13 – Etalons in the time domain. One symmetric etalon exists whose centers are
located at ± 2.5 ps. This corresponds to an optical path distance (n · L) of 750 µm, and
a modulating frequency on the spectrum of 400 GHz. Its symmetry implies that the etalon
appears in both branches (i.e in both the signal and local oscillator) of the interferometer.
Another etalon appears at -1.5 ps, corresponding to an optical path distance of 450 µm, which
will modulate the frequency spectrum at 667 GHz. The lack of symmetry implies that it exists
outside the common path.

It’s also worth mentioning here the presence of unintentional interference in dual-comb spec-
troscopy. Any time a beam passes through a material interface where a change in refractive
index occurs, Fresnel reflections are present, with R =| n1−n2

n1+n2
|2 for perpendicular interactions.

The process described above in section 1.6, regarding Fabry-Perot interferometers (etalons)
occurs, creating a secondary pulse which follows the primary. We refer to these back reflections
as etalons.

After the combs interfere on the surface of the detector, etalons manifest as side bursts in
the interferogram, either to the left, right, or symmetric about the center (see figure 1.13).
In the time domain, etalons are symmetric about the center burst when they are produced
after beam recombination, and asymmetric when they occur outside of the common path (see
previous section on optical interference).

To better understand the effects of such a side burst, let’s look at the addition theorem of
Fourier transforms (equation 1.25) and the shift theorem of Fourier transform (equation 1.26).

FT [f + g](ω) =

∫ ∞
−∞

f(t)e−i2πωtdt+

∫ ∞
−∞

g(t)e−i2πωtdt

= F (ω) +G(ω)

(1.25)
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FT [f(t− t0)](ω) =

∫ ∞
−∞

f(t− t0)e−i2πωtdt

= F (ω)e−i2πωt0
(1.26)

Together, these tell us that a side burst which is a copy of the primary interferogram can be
independently Fourier analyzed, and that the result of this analysis is a modulation in the
frequency spectra of the center burst corresponding to the delay between the primary and
secondary reflections.

Etalons which are closer to the center burst provide a slower (i.e. lower frequency) modulation,
while those etalons which are further away provide a faster (i.e. higher frequency) modulation.

Stable etalons may sometimes be referenced out of a measurement via comparison to a "blank"
measurement (discussed at length in chapter 3), in which the sample is removed and the
interferometer itself is measured. Another common method is via apodization in the time
domain (an optical lowerpass filtering technique in which a window function is applied around
the center burst). In doing so, special care must be taken, as the choice of window function has
a very particular effect on the spectrum [37; 38]. In the frequency domain, this comes at the
expense of spectral resolution. Direct downsampling in the frequency domain is also sometimes
used, but is not discussed further in this memoire. Ideally, etalons are avoided altogether by
removing all parallel surfaces of diffractive media from the optical setup.
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1.8 Non-Linear Optics

Broadly speaking, many standard and well known optical processes are non-linear in nature.
When we refer to the field of non-linear optics, however, we are often referring to a specific
set of processes which occur due to local changes in material polarization state, and which
are parametric in nature. By this, we mean that the quantum state of the material is not
changed, and as a consequence, the process is “instantaneous” and energy conserving, (i.e.
Σ(~ωfinal) = Σ(~ωi)), where ~ is the reduced plank’s constant and ~ω is the photon energy.

We categorize these processes by their nth order susceptibility term, χn, found via the Taylor
expansion of the material polarization density equation as a function of electric field (equation
1.27), which is seen in equation 1.28 as a function of time [11].

P = ε0χeE (1.27)

P (t) = ε0 (χ1E(t) + χ2E2(t) + χ3E3(t) + ... ) (1.28)

Where P is the material polarization density (dipole moment per unit volume), ε0 is the
permittivity of free space, χe is the non-linear susceptibility, E is the applied complex electric
field, and χn is the nth derivative of χ with respect to the electric field. Here, χ0 = 0 for all
non-ferroelectric materials. All interactions of χn produce new frequencies of light, except for
when n = 0, 1.

For acentrosymmetric crystals (crystals which lack inversion symmetry) χ2 processes which
produce new frequencies of light, like difference frequency generation (DFG), sum frequency
generation (SFG), and second harmonic generation (SHG, a degenerate case of SFG), can
occur.

To understand, let’s suppose that the field is made up of two different frequencies, ω1 and ω2.
This means we can write the incident field as seen in equation 1.29.

E(t) = E1e
iω1t + E∗1e

−iω1t + E2e
iω2t + E∗2e

−iω2t (1.29)

This implies that the square of the applied electric field, E(t)2, will have 16 terms, as seen in
equation 1.30.
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E(t)2 = E2
1e

2iω1t + E∗21 e−2iω1t . . . The second harmonic of ω1

+ E2
2e

2iω2t + E∗22 e−2iω2t . . . The second harmonic of ω2

+ 2E1E2e
i(ω1+ω2)t + 2E∗1E

∗
2e
−i(ω1+ω2)t . . . SFG

+ 2E1E2e
i(ω1−ω2)t + 2E∗1E

∗
2e
−i(ω1−ω2)t . . . DFG

+ 2|E1|2 + 2|E2|2 . . . Zero frequency - Optical rectification

(1.30)

Now, combining equations 1.28 and 1.30, we see that each of these terms will produce some
change in the material polarization with a strength according to χ2. This material polarization
is then allowed to oscillate at whatever its frequency happens to be, emitting radiation via
Maxwell’s equations. In the case of the first two terms of equation 1.30, for instance, the
resulting radiation will be the second harmonic of ω1.

These processes are at their maximum efficiency when the input and output waves have a
phase relationship such that all intensity contributions from various points in the crystal are
in phase after leaving the crystal. This occurs when the sum of input wave vectors, Σki, is
equal to the sum of all output wave vectors, Σkf . The difference between these sums is called
the phase matching parameter, and is denoted by ∆k.

It’s important to keep in mind here, that even for processes such as second harmonic gene-
ration, two waves are still interacting to produce a third. In this degenerate case, it just so
happens that the two interacting waves are of the same frequency (i.e. ∆k = Σkf − Σki =

k2ω − 2kω). It is for this reason, that χ2 processes are often considered as 3-wave interac-
tions. This picture is especially useful when considering the problem in terms of the energy
conservation of photons.

As a brief example to demonstrate the process, I will discuss the special case of second har-
monic generation (which is used in chapter 2). During SHG, a sinusoidally oscillating electric
field is applied to some material, which in turn produces a corresponding oscillation (material
polarization) in the media. The oscillating electron, however, exists within an anharmonic po-
tential well, and therefore does not oscillate sinusoidally. The non-linear material polarization
includes an oscillating contribution at twice the fundamental (seed) frequency, and radiates
its own electromagnetic wave outwards via Maxwell’s equations. This resultant light is the-
refore of the second harmonic, or twice the frequency of the input field. This SHG light will
be produced at all places within the crystal. When the phase matching condition is not met,
however, contributions from various locations in the crystal will not be in phase with one
another upon leaving the medium, leading to an overall inefficient conversion scheme [11]

Up until now, our picture of χ has been very limited, assuming a material which has the same
response for all directions of excitation and for all frequencies of excitation. In general, this is
not the case. Materials are composed of an array of dipoles which are oriented along 3 spatial
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directions (x, y, & z), and have different oscillation parameters for each direction, and for each
frequency. In reality then, χ2 must be a 3rd order tensor, with each term evaluated at some
ω, as seen in equation 1.31, where subscripts refer to the specific xyz spatial orientation.

χ2(ω) =


χ2

111 χ2
112 χ2

113

χ2
121 χ2

122 χ2
123

...
...

...
χ2

331 χ2
332 χ2

333


(ω)

(1.31)

Now, keeping in mind that E-fields are directional as well, it becomes obvious that only certain
tensor components will be pertinent. It’s for this reason that we define an effective non-linear
coefficient, deff , as a sum over only those contributing components after they have been
multiplied by a degeneracy factor (set to 1

2 or 1, depending on whether or not the process is
degenerate). As an example, this allows us to write the process of second harmonic generation
in a realistic, but simple equation (equation 1.32), commonly found in the literature [39].

P (2ω) = 2ε0 deff (2ω;ω, ω) |E(ω)|2 (1.32)

In general, a material’s natural phase matching parameter for a given set of frequencies,
∆k (ω1, ω2, ω3) can be used for frequency conversion, but this presents a problem. The effi-
ciency of such a natural phase matching scheme is oscillatory with optical length, having a
period T = 2π

∆k . This creates a cyclical pattern in the total non-linear frequency generation,
and a generally inefficient frequency conversion scheme.

To avoid this, the non-linear crystal’s axis can periodically flipped after a distance d = T
2 = π

∆k

(see figure 1.14). This inverts the sign of χ for those flipped domains, reversing the loss in
efficiency. The total conversion efficiency of the crystal is therefore allowed increase with
interaction length, albeit at a slower rate than would be the case for natural phase matching.
This is called quasi-phase matching (QPM).

Because of the overall slower efficiency growth, a periodically poled crystal has a deff which is
reduced by 2/π. In contrast, however, it allows for the use of potentially advantageous tensor
components of χ2 by using the same polarization direction for all waves.

For instance, in periodically poled lithium niobate (PPLN), phase matching uses the d31 = ∼
4.1 pm/V component (ignoring the ith term of dijk, as here we assume interactions are parallel
to the Z-axis), while QPM typically uses the d33 = ∼ 25 pm/V tensor component, which,
even after accounting for efficiency losses due to QPM, is more than 4 times larger, leading to
a more efficient frequency conversion scheme overall [40].
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Figure 1.14 – A variety of media suitable for non-linear frequency conversion. (left) A bulk
crystal, which has a single, set phase matching condition. (right) A periodically poled crystal
taking advantage of quasi phase matching conditions from the periodicity of the structure.
Here, the arrows represent efficiency of the frequency conversion process.

Let’s now examine χ3 non-linearities, using the general equation 1.33, which solves for the
material polarization in a direction i, at a frequency ω4 [41].

Pi(ω4) =
1

4
ε0ΣPΣjklχ

3
ijkl(ω4;ω1, ω2, ω3)Ej(ω1)Ek(ω2)El(ω3) (1.33)

A large variety of four-wave mixing processes fall broadly under the category of χ3 processes,
many of which produce new frequencies of light.

For the purposes of this memoire, however, we’re going to focus on a particular manifestation
of the χ3 non-linearity called the Kerr effect. For the most part, the derivation which follows
is based on a standard example found in the literature [42].

Let’s consider the case where we apply a DC (ω = 0) field E = Ē to some material while
an optical field with frequency ω propagates through the same medium. We can now write
equation 1.33 as equation 1.34 [43].

Pi(ω) = 3ε0Σjklχ
Kerr
ijkl (ω; 0, 0, ω)Ēj(0)Ēk(0)El(ω) (1.34)

If we now assume a DC field in the ŷ direction, and an optical field which propagates in the ẑ
direction, then we can write the polarization in the x̂ and ŷ directions as follows in equations
1.35 and 1.36 respectively.

Px(ω) = 3ε0χ
Kerr
xyyx (ω; 0, 0, ω)Ē2

y(0)Ex(ω) (1.35)

Py(ω) = 3ε0χ
Kerr
yyyy (ω; 0, 0, ω)Ē2

y(0)Ex(ω) (1.36)
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Both these expressions follow the basic form P (ω) = CχeffE(ω), where C is a constant.
We can therefore conclude that there exists some non-linear contribution to the material
polarization at ω which is proportional to Ē2. This of course implies a change in the refractive
index of the material, and is called the DC-Kerr effect.

The DC-Kerr effect is often presented more succinctly via equations 1.37 & 1.38, where we
define ∆n as the change in index of refraction due to an excitation at some wavelength λ, K
as the Kerr constant, Ē as the applied electric field, n0 as the intensity independent index of
refraction, I as the intensity of incident light, and nKerr is the so called non-linear index [11].

∆n = λK Ē2 (1.37)

n(I, λ) = n0(λ) + I · nKerr(λ) (1.38)

The DC-Kerr effect, and it’s AC counterpart, the optical Kerr effect, are responsible for a
wide variety of interesting effects in the field of non-linear optics, just a few of these will be
discussed further.

Figure 1.15 – Kerr lens mode-locking. Here, a non-linear medium is placed within a laser
cavity. Low intensity CW light does not experience lensing, while high intensity light does.
Thus, only high intensity (pulsed) light is allowed to leave the cavity.

In the context of self phase modulation, for instance, this ∆n produces a variation in the
instantaneous phase and therefore the frequency spectrum of the material. This has been
shown to be useful in the fields of pulse compression, and supercontinuum generation [44].
The effect can occur between wavelengths as well, leading to a phenomenon called cross-phase
modulation (XPM), wherein excitation from some incident frequency changes the polarization
state of the material and therefore effects the instantaneous phase of light at another frequency
[45].

Another consequence of the Kerr effect is self-focusing, in which the intensity dependant index
of refraction causes a beam to collapse in upon itself. In essence, a propagating beam will
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generally experience radial symmetry in its intensity distribution, with its maximum fluence
at its center. Because n(I) = n0 + I nKerr, this produces a lens within the material,
focusing the beam into a specific radial pattern, similar to a Gaussian but less stable, called a
Towne’s profile [46; 47]. This mechanism is useful in a mode-locking scheme called Kerr-lens
mode-locking [48], as seen in figure 1.15.

A variety of other, non-parametric processes are contained under the umbrella term non-linear
optics as well, such as lasing (which requires a population inversion), two-photon absorption
(where the energy of two photons are combined to induce one transition), and saturable
absorption (wherein electrons gather in an excited energy band, preventing excitation to that
band).

Summary

The chapter begins with basic laser physics and by introducing the concept of resonant modes
within the laser cavity. It then moves on to show how a proper fixed phase relationship between
these modes can produce a pulsed source, and gives several examples of how to do so, including
SESAMS, NOLMs, and NPR.

Next, the Fourier transformation and how it limits the time-bandwidth product of a pulse, a
model for including dispersion in the propagation of waves, and finally the Kramers-Kronig
relations are all presented.

Next, the actual methods for frep and fCEO stabilization of a mode-locked laser are discussed,
and it is shown how in doing so, a frequency comb is created. A variety of methods for the
creation of a frequency comb are discussed. This includes different forms of fiber frequency
combs, micro-resonator combs and electro-optical combs.

The field of interferometry is discussed next, focusing on both the single and multi-beam
approaches. Having understood the basics of interferometry, we then discuss the actual me-
chanisms behind dual comb spectroscopy in more detail.

Finally, it is shown how to modify these combs using non-linear optics to expand the technique
into new frequency regimes.
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Chapitre 2

Pump Probe Dual Comb Spectroscopy

In this chapter, we discuss the results obtained by combining the pump probe technique, which
is a technique used for the measurement of time resolved non-linear optics, with dual comb
spectroscopy. The resulting instrument offers the ability to quickly measure the complex and
time-resolved non-linear response of a system.

The chapter begins by describing the basics of the pump probe technique, and what DCS
brings to the table. Then, the materials being used and tested are discussed. This system’s
functionality, including the working of the FPGA, is validated by repeating the previous results
of Julien Roy and JD Deschênes [12]. Finally, a standard SESAM is tested. We measure both
the absorbance and phase response in the time domain to non-linear excitation, and compare
our data to values as furnished by the manufacturer, BATOP.

2.1 Theory of Pump Probe Dual Comb Spectroscopy

2.1.1 Pump Probe Technique

The goal of pump probe spectroscopy is to measure the non-linear response of a material in
the time domain, after that material has been excited by some pulsed source of light [49]. In
general, the mechanism of action is as follows : Some high energy pulse (the pump) excites a
medium. After some time delay, τ , a secondary pulse (the probe), interacts with the medium
(now in its excited state), and is subsequently analyzed [50]. An archetypical layout for such
an optical setup (in transmission) is shown in figure 2.1.

Repeating this process for many values of τ allows for the retrieval of time resolved absorp-
tion dynamics. This correspond to the medium’s excitation and relaxation dynamics. These
measurements are highly sensitive to repetition rates, pulse duration, polarization, peak and
average powers of the pump beam, chirp of the pulses, solvent used (if the sample is dissolved),

33



Figure 2.1 – A typical layout for pump probe spectroscopy of a transmissive medium. Here,
the source beam is split into the pump and probe beams. The pump passes through a delay
line, the sample, and finally a beam dump. After some time delay, τ , as determined by the
delay line, the probe passes through the sample, and is subsequently measured.

etc [51].

Diverse applications of the technique exist, including the study of laser gain media, inter-
band relaxation rates, and many others [52; 53]. One common application for pump probe
spectroscopy is the measurement of a saturable absorbing media’s relaxation rate. A typical
result of such an experiment is shown in figure 2.2.

Figure 2.2 – The bi-exponential rise and decay of a semiconductor saturable absorbing mirror
after being struck with a short, high intensity pulse. Credit RP Photonics.
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2.1.2 Pump Probe DCS

While the pump probe technique is useful for measuring the time domain response of a system
to various non-linear excitations, it lacks the ability to simultaneously acquire both magnitude
and phase spectral information. In combing it with DCS, we achieve all those above capabilities
in one system.

An archetypal layout for asymmetric and reflective pump probe dual comb spectroscopy is
shown in figure 2.3.

Figure 2.3 – The layout of a typical pump probe DCS experiment. The signal beam is split
into two, and acts as both the pump and the probe. The pump is sent into a variable delay
line, which introduces some time time delay, τ , before exciting the sample. After excitation
from the pump, the probe then passes through the sample, and is recombined with the local
oscillator, giving us a radio frequency interferogram. IGMs are recorded for many values of τ ,
yielding the excitation and relaxation dynamics of the sample.

For reflective measurements (pictured), as inspired by the work of Asahara in 2017 [54], the
system works as follows : A polarizing beam-splitter divides Comb 1 (the signal) into an s-
polarized and p-polarized state, which act as the pump and probe respectively, and which
propagate orthogonally. The pump enters a variable delay line, which introduces some time
delay τ . The pump and probe beams are then recombined and pass collinearly through the
sample. Immediately after interacting with the sample, the pump beam is absorbed by a

35



polarizing filter. Finally, the probe is combined with Comb 2 (the local oscillator), yielding a
radio frequency interferogram.

In most cases, focusing optics are necessary to increase local fluence on the sample and to
excite material non-linearities. Aspheric lenses or off-axis parabolas (OAPs) both produce
minimal aberrations when used correctly. OAPs, however, are a dispersion free system, and
therefore likely to be the ideal focusing optic, despite being difficult to align.

2.2 Verification of DCS System Functionality in the Linear,
Steady State Regime

2.2.1 DCS at Université Laval

The pump probe dual comb spectroscopy experiments carried out at Univertsité Laval in
Québec, are based on a system first implemented by J. Roy and J-D. Deschênes in 2012 [12].
In order to demonstrate mastery of this system, their results are replicated. Thereafter, the
system is expanded to include pump probe functionalities.

To insure the system is fully functional, those results we wish to replicate include the frequency
doubling of comb frequencies, the real-time co-adding of successive IGMs, and finally, the
spectroscopy of vapor phase rubidium (Rb) in a reference cell.

2.2.2 Materials and Methods for DCS System Functionally
Demonstration at Université Laval

Accurate knowledge of reference cell absorption lines are useful for the calibration of tunable
diode lasers, stabilization of laser frequencies, and calibration of wavelength meters [55]. They
tend to have strong and sharp absorption lines at well known frequencies.

In particular, the test cell used in these initial experiments consists of two rubidium isotopes
in their naturally occurring ratio (72.15% 85Rb and 27.85% 87Rb). Each of these isotopes has
a 52S1/2 → 52P3/2 transition (called the D2 line), centered around 780.2412 nm (384 THz),
which is well within the bandwidth of a frequency doubled erbium comb.

Rubdium is a group 1 element on the periodic table and thus an alkali metal, which means
that its electronic structure falls under roughly the same category as hydrogen. This means
that its outermost shell, 5s, contains only a single electron when in the ground state. Within
the 5s shell, this single electron is allowed to be in either the spin up, J = 1

2 , or spin down,
J = −1

2 state, where J is the angular momentum of the electron.

Likewise, the nucleus has an associated spin, I, of either I = 5
2 for 85Rb, or I = 3

2 for 87Rb.

This gives us a total atomic angular momentum for the ground state, Fg = J + I, of either 2
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or 3 for 85Rb , and either 1 or 2 for 87Rb [56]. The cell then, can be thought of as having 4
distinct ground states, each with an associated energy.

While each of these split energy levels is centered about nearly the same frequency, the energy
level of each ground state is unique. In 85Rb, for instance, the two ground state energy levels
are separated from the center by ±1.518 GHz, while in 87Rb, they are separated by ±3.417

GHz [57].

To measure the absorption lines associated with these energy levels, asymmetric dual comb
spectroscopy (refer to the previous figure 1.12) is implemented.

Figure 2.4 – Continuous wave frequency references (CW 1, CW 2) mix with the all-fiber
combs (Comb 1, Comb 2) on photodiodes to produce 4 signals (D1 - D4). These four signals
are sent to an FPGA and used to create 2 reference phase signals, ∆φ1 and ∆φ2. These
reference phases are then used to phase correct and average IGMs in real time. The FPGA
also communicates with a top-level MatLab script which serves two functions. The first being
to control a servo loop which stabilizes ∆frep and ∆fCEO between combs, and the second
being to receive and store co-added IGMs from the FPGA.

Both combs are made using erbium doped glass optical fiber, are mode-locked using non-linear
polarization rotation, have a pulse reputation rate of approximately 100 Mhz, and come from
Menlo Systems. ∆frep between combs is set to 100 Hz. Both ∆frep and ∆fCEO are stabilized
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between combs as described above in section 1.4.

Before interacting with the sample, both beams are frequency doubled in individual PPLN
crystal waveguides. Seed frequencies and their doubles are separated via wedged dielectric
mirrors. One frequency doubled beam then passes through a rubidium test cell, before being
recombined with the local oscillator (also frequency doubled) in an AR coated, wedged plate
beam-splitter. The two collinear beams then interfere on the surface of a silicon detector.

As seen in figure 2.4, along with the IGM, four mixing signals (D1 - D4) are acquired by beating
two in-fiber CW reference lasers at 1549.351 and 1562.236 nm against the two frequency combs.
All detected signals are then sent to an FPGA which phase corrects and co-adds subsequent
IGMs, and which communicates with a top-level MatLab script that manages co-added data
and stabilization servo loops.

In short, the goal of detecting the mixing signals D1 - D4 is to use them to find reference
phases, ∆φ1 = D1 ·D2∗ and ∆φ2 = D3 ·D4∗, which each describe how an individual comb’s
teeth beat around a single CW reference. These may subsequently be used to align IGMs
(necessary for co-adding) [58; 12]. See annex A.2 for a better understanding of this process.

A removal of ∆φ1 from the measured IGM removes phase variation between pulses and leaves
a corrected signal mapped to a non-uniform optical path distance (OPD) grid. The second
correction, the creation of a uniform OPD grid, is then found via subtraction of ∆φ2 from ∆φ1.
A resampling of the now modified IGM on to the new, uniform grid finishes the correction.

A cross-correlation function is applied and monitored in real time in order to align IGMs at a
subsample level. A summation of corrected signals is completed over a chosen number, N , of
IGMs. A separate Matlab script is then used to either a) manually convert the corrected, uni-
form OPD grid into an optical frequency (OF) grid using absolute frequency references, such
as the spectral spacing between the D1 and D2 absorption lines of rubidium as previously re-
ported [59], or b) automatically construct an OF grid using knowledge of the effective sampling
frequency and ∆frep. Here we choose the second.
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2.2.3 Results of Steady State Rb Spectroscopy

Figure 2.5 – (top left) Time domain complex interferogram of the probed Rb cell after
corrections and averaging, N = 1,000,000 (∼2.78 hours). (top right) The FT of the complex
interferogram to the left, yielding the steady state Rb vapor absorption embedded in the IGM’s
spectrum. (inset) Zoom-in of oxygen absorption overtones in the near-IR. (bottom left) De-
monstration of noise reduction with the number of interferograms averaged, normalized to
their maximum respective values. (bottom right) Accuracy of automatic OF grid construction
via comparison to known absorption lines of Rb. Two spectra at different N values are shown
with a vertical offset to ease comparison.

As seen in figure 2.5, phase correction and coherent addition of successive IGMs via FPGA
is successful. After extensive work, the corresponding spectra is largely etalon free, with the
amplitude of the strongest etalon being less than 0.2% of the center burst’s maximum intensity.
For all values of N measured, rubidium’s D2 line is easily resolved. For values of N > 100, 000,
oxygen overtones are visible as well. Quantitatively, we achieve spectral signal to noise ratios
of 5.5, 14.6, 20.0, and 21.4 decibels, corresponding to N values of 1,000, 10,000, 100,000
and 1,000,000, respectively. Our OF grid is calculated automatically using knowledge of the
effective sampling frequency of the IGM and ∆frep. It can be seen that the maximum error
between any point and a known D2 reference is less than ±200 MHz.
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2.3 Time-Resolved Dual Comb Spectroscopy at 1550 nm

2.3.1 Time-Resolved Absorption of a SESAM using Pump Probe DCS

Here we study the time resolved dynamics of a SESAM using pump probe DCS.

In figure 2.6, we see the response of the system to a high energy pulse. A bi-exponential fit
is applied to the recovered data points (where each point represents the integrated difference
between the spectra at τ and it’s τ = 0 counterpart). From this, we find a rise time constant
of approximately 5.5 ps, and a relaxation time constant of approximately 23 ps.

Figure 2.6 – (left) Batop SAM spectra integrated from 1510 nm to 1610 nm at various time
delays, normalized to data before excitation (τ = 0). (right) Spectral data taken at peak of
saturation (τ = 6.6 ps) divided from data taken before excitation (cyan), and subsequently fit
using a 4th degree polynomial (red).

In the same figure, we see the saturated state’s (corresponding to the data point with the
highest modulation depth, τ = 6.66 ps) spectra divided by the acquired spectra at τ = 0. A
single, frequency unstable etalon exist between the spectra which is not referenced away after
division. A polynomial fit is used to smooth the data pictured, using as justification the fact
that the feature in question is quite broad compared the the fast etalon which modulates the
spectrum. Here, an aggressive lowpass filter would also be suitable.

This etalon is examined further in figure 2.7. Here, the autocorrelation represents the Fourier
transform of the ratio of the saturated and unsaturated states. It’s integral then, from 0→∞,
must represent the total variance between the two spectra in units of transmission. A single
delta like peak in the autocorrelation represents a phase and frequency stable etalon, while a
wide peak represents either broadband noise or a frequency unstable etalon.
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Figure 2.7 – The autocorrelation function (IGM space) found by taking the Fourier transform
of the ratio of two spectra. The two spectra used are taken from the saturated and unsaturated
states.

We note that the associated optical path length for this frequency unstable etalon (at 3.22 ps)
is centered at 965 µm, and ranges from 935 µm to 1 mm. The only thing of such a size in the
optical setup is the SESAM itself, so we must conclude that the etalon is formed somewhere
inside.

All in all, this gives us an effective modulation depth maximum of 1.28% at 1567 nm. This is
somewhat smaller than the 2% modulation depth value given by the manufacturer, BATOP,
and slightly redshifted from the 1550 nm center claimed. The manufacturer does not give
an expected rise time, but does provide a relaxation constant of approximately 20 ps. This
matches the value found experimentally.

2.3.2 Phase Response Difference between the Saturated and Unsaturated
States of a SESAM using Pump Probe DCS

In figure 2.8, the phase and dispersion response of the medium both before and after excitation
to its saturated state is shown. As seen in the panel to the left, the wavelength corresponding
to zero phase difference between the saturated and unsaturated states is located at 1550 nm,
the claimed center of the SAM’s activity. To the right, we see the group velocity dispersion
for, and GVD difference between, the saturated and unsaturated states. Each is individually
on the order of fs2, while the difference between them is on the order as2.
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Figure 2.8 – (left) Phase data for the unsaturated (τ = 0 ps), state and saturated (τ = 6.66
ps) state, in radians. (right) Group velocity dispersion parameter of the unsaturated and
saturated states, in fs2, as well as the difference between the two, in as2. An offset of -0.7 fs2

is applied to the difference spectra to highlight variation between the spectra.

Importantly, the peak modulation depth as seen in figure 2.6 does not correspond to any
obvious feature in phase space. This is important, as it suggests phase response stability over
the wavelength region for which the SESAM was designed to function.

Summary

In conclusion, we successfully demonstrate mastery of the system set up by Julien Roy and
JD Deschênes. We then expand upon this system to include time resolved capabilities by
combining the pump probe technique with DCS.

We suggest further studies in which more exotic media are observed, such as carbon nanotubes,
graphene saturable absorbers, and the like. Various other studies which take advantage of
DCS’s spectral resolution would also be very valuable.
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Chapitre 3

Experimental Baseline Stability

The results and discussion presented in this chapter correspond to a series of studies on baseline
stability. Here, the term baseline is a broad term which refers to any spectral curve which is
used as a reference for future measurements.

A stable baseline is not always necessary for the quantitative analysis of dual comb spectra.
In fact, the vast majority of DCS experiments have focused on quantitative spectroscopy of
narrow absorbers, and simply fit the baseline to a polynomial. In this case, broadband baseline
stability is not necessary. On the other hand, a stable baseline is necessary for the quantitative
analysis of broad absorbers (including solid phase materials). This is the motivation for the
chapter.

Various methods of referencing exist to produce a baseline, and the chapter begins by defining
some of those methods, and discussing the assumptions of each.

Next, various experimental modifications are studied which can change the baseline. These
include multi-path interference, path instabilities, and source variance. Finally, we show how
the process of four point referencing can create a stable and flat spectral baseline upon which
changes (such as the insertion of a sample) may be observed.

More specifically, the first of these studies focuses on the case of multi-path interference off
diffusely scattering surface. The resulting speckle pattern renders the measurement (in general)
not useful in a scientifically rigorous manner. Such a measurement simultaneously justifies the
interest in further measurements of baseline variance and stability, and demonstrates the need
for equivalent optical paths between measurements which are referenced to one another.

Next, we delve deeper into the effect of unstable optical paths. By physically moving the
detector relative to the beam, we show that reference curves can be made inaccurate. This
serves to highlight the need for optical path stability between successive measurements which
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are referenced to one another.

Third, we examine the baseline variance which arises due to the comparison of disparate pulse
pairs, and how this is affected by coherent averaging. By having two arms which are referenced
to one another but are not delay matched, we are not actually comparing exactly equivalent
pulse pairs. Instead, we are comparing intensities which arise due to disparate electric fields.
This can be thought of as a variance in each arm’s respective source.

Finally, we demonstrate a broadband, four point referenced baseline which is stable over the
course of four hours.

3.1 Baselines and Baseline Stability

Let’s assume an optical setup which matches that found in figure 3.1, and for which the sample
is a transparent glass cell filled with some gas.

Figure 3.1 – An optical setup which is able to measure two paths simultaneously. In one arm
(called hereafter the vertical arm), a sample is placed, while in the other (hereafter called the
horizontal arm), no sample is present.

Now, if we take a single measurement from the vertical arm (which contains the sample), we
are not actually measuring the sample as you might expect. Instead, we are measuring the
entire system. This includes the source, optical components such as the beam-splitter, any
transparent media (including the gas cell), the atmosphere, the response of the detector, and
finally, of course, the sample itself. We are therefore unable to isolate the effect of our sample
without taking more measurements, or making a series of assumptions.
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Broadly speaking, we consider three methods which attempt to isolate the effect of the sample.
The first and second are each a type of two-point referencing, while the third is a combination
of the two previous types.

In the first method, called successive referencing, we take two measurements of the vertical
arm at different points in time and compare them. One measurement is taken with an empty
cell, while the other is taken with a cell full of gas. Successive referencing is appropriate when
you know both the source and optical path to be stable over time.

In the second method, called simultaneous referencing, we take simultaneous measurements of
both the vertical arm (which includes a full gas cell) and the horizontal arm (which includes
no cell at all), and then compare these measurements. Simultaneous referencing is appropriate
when you know both the source and optical path to be identical between arms.

Our final method, called 4 point referencing, is a combination of these techniques. First we
take simultaneous measurements of both arms (where the vertical arm has an empty gas cell,
and the other has no cell). Then, at a later point, we take simultaneous measurements of the
two arms again (this time where the vertical arm contains a cell which is full of gas, and the
other has no cell). We then compare the four measurements. 4 point referencing is appropriate
when you know the optical path of each arm to be stable over time, and the source to vary
identically between arms over time.

We write the electric field at the surface of a detector as a function of the source and some
transfer function (i.e. Eout = HEin), where the transfer function H describes the entire action
of the optical path on the source Ein, and therefore includes the effects of the sample, at-
mosphere, detector, path length, etc. Subscripts α and Ω will be used to describe the vertical
and horizontal arms respectively. Superscripts of t0 and t′ will be used to describe initial and
successive measurements.

The math for successive referencing of the vertical arm is presented in equation 3.1, the math
for simultaneous referencing between the vertical and horizontal arms is presented in equation
3.2, and the math for 4 point referencing is presented in equation 3.3. Here, T simply refers
to a ratio between two measured signals.

Tsuccessive =
Et

′
out,α

Et0out,α

=
Ht′
αE

t′
in,α

Ht0
α E

t0
in,α

(3.1)

It can thus be seen that we are unable to isolate the sample. In fact, what we measure is
every difference in the optical path between time t = t0 and time t = t′ (i.e. Ht′

α

H
t0
α
), as well as
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every difference in the source (i.e.
Et

′
in,α

E
t0
in,α

). In order to say with confidence that we’re actually

observing the impact of the sample with such a measurement, we have to assume that both
the source, as well as every portion of the optical path are constant in time (except for the
presence of the sample) over the measurement series.

Tsimultaneous =
Et0α,out

Et0Ω,out

=
Ht0
α E

t0
α,in

Ht0
Ω E

t0
Ω,in

(3.2)

Again, for simultaneous measurements, what we measure is not actually the sample itself.
Instead, we’re measuring every difference between both arms (i.e. H

t0
α

H
t0
Ω

) at time t = t0, and

every difference between the input to each arm (i.e.
E
t0
α,in

E
t0
Ω,in

) at time t = t0. In order to say with

confidence that we’re actually observing the impact of a sample with such a measurement, we
have to assume that both sources, as well as every part of the vertical and horizontal arm, are
identical (except for the presence of the sample) between arms.

T4point =
T t

′
simultaneous

T t0simultaneous

=
Ht′
αE

t′
α,in

Ht′
ΩE

t′
Ω,in

/
Ht0
α E

t0
α,in

Ht0
Ω E

t0
Ω,in

=
Ht′
αE

t′
α,inH

t0
Ω E

t0
Ω,in

Ht0
α E

t0
α,inH

t′
ΩE

t′
Ω,in

(3.3)

Here, in order to say with confidence that we are actually measuring the sample, we only
have to assume two things. The first assumption is that both optical paths are stable over the
course of the measurement in every way (except for the addition of the sample into arm α at
some point between the measurements taken at t = t0 and t = t′), and the second assumption

is that
Et

′
α,in

E
t0
α,in

=
Et

′
Ω,in

E
t0
Ω,in

. In other words, the second assumption is that the input to the vertical

arm must vary in the same way as a function of time as the input to the horizontal arm.

To summarize : Successive referencing relies on stability of both the optical path and input
source over time. Simultaneous referencing relies on identicality between both the optical path
and input source between reference arms. 4 point referencing, on the other hand, relies on the
stability of both optical paths over time, and on the input source varying identically in time
for each arm (but it does not require the source to be stable over time).

Each of these cases will now be studied.
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3.2 Multi-path Interference

To further explore the impact of the optical path, we prepare a simple, symmetric DCS expe-
riment. Here, by symmetric we mean that the local oscillator and signal are combined before
passing thru the sample.

Two frequency combs centered each at 1550 nm, with ∆frep = 400 Hz, are amplified, com-
bined in fiber, collimated after leaving the fiber, and subsequently pass colinearly through
an integration sphere (Thorlabs IS200) which is filled with gaseous CO2. As calculated by
Hodgkinson and others, this gives us a total effective pathlength inside the sphere of 1.252
meters, and an average number of 50 scattering events before leaving the cavity [60]. A detec-
tor (Thorlabs PDA10CF) is placed near the secondary output of the integration sphere, and
an interferogram is measured and co-added for 1 minute (24,000 IGMs).

The topic of etalons (as seen in figure 1.13) has been discussed previously in section 1.7, as
one example of unintentional multi-path interference. This topic is expanded upon here and
in figure 3.2 to include a diffusely reflective cavity.

Each scattering event inside the sphere will produce many spurious reflections. These then
come together to create what is called a speckle pattern, as seen in the top sub-figure of
figure 3.2. Such a pattern is characterized by what seems at first glance to be a random (but
generally smooth) modulation of intensity, but is in reality the interference between many,
many wavefronts. Such a pattern is a typical result of a coherent source being diffusely scattered
[61]. The top sub-figure’s inset shows the best matching absorption line when compared to a
model of the CO2 absorption based on voigt line shapes and HITRAN parameters, as found
from a flat portion of the spectra [62]. Also, seen in the top figure’s inset is the chatoic baseline
removing the ability to read either an absorption depth, line shape, and line width from an
unreferenced spectra.

Pictured in the bottom sub-figure of figure 3.2 is the time domain interferogram corresponding
to the spectrum above. In general, it can be said that the presence of distinct peaks here
necessitates that some modulating frequency (corresponding to the time delay from the center
burst) is present in the spectral domain, although some does come from the free induction
decay of CO2. Unfortunately however, the presence of such side bursts in our IGM does not
necessarily imply path stability. Note that the strength of an etalon, for instance, could change
over the course of the minute long integration. The spectrum displayed in figure 3.2 shows
only the average strength of this etalon.

By physically agitating the sphere, the stability of the path may be sufficiently destroyed
such that etalons are effectively turned into white noise, as demonstrated previously [63]. This
technique, however, is not applicable to situations where multi-path interference comes from
parallel plate Fresnel reflections (etalons).
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Figure 3.2 – (top) Unreferenced, symmetric DCS spectra, normalized to maximum intensity
(black) and HITRAN data corresponding to CO2 lines at standard temperature and pressure,
using a 5.7% concentration. (red). A vertical offset is applied to the HITRAN data to highlight
line-shape similarities in the flat portions of the spectra, and dissimilarities in portions of the
spectra in which the speckle pattern distorts both the line shape and peak location (inset).
(bottom) The IGM associated with the spectra above, plotted on a log scale in time to ease
comparison with autocorrelation functions which follow.

In general, we can think of the action of the integrating sphere as being an exceptionally
complicated transfer function in the context of section 3.1’s discussion.

While the case of an integration sphere is admittedly an extreme example of such behavior
(etalons in the baseline), the impact of the integration sphere’s many diffuse reflections does
a good job of highlighting the fact that an unreferenced measurement is generally unable to
isolate the effect of the sample (in this case, CO2). While true that one could conceivably take
advantage of CO2’s sharp features and back out some usable data from the pictured spectrum,
the quantities in question would be dubious at best.
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Moreover, let’s consider for a moment the case of simultaneous two point referencing. If one
branch of the instrument (say the vertical beam in figure 3.1) were to pick up an etalon
(or enter an integration sphere), while the other (horizontal beam) does not, the resulting
modulation will be projected onto the baseline. Our final, referenced measurement would
include the modulation provided by this etalon (or integration sphere).

49



3.3 Effect of Changing Beam Position and its Impact on DCS
Baseline

Next, to further explore the impact of an unstable optical path, we present a study in which
the optical path is purposely changed over the course of multiple measurements.

Figure 3.3 – A collimated beam is focused, and subsequently sent through a beam-splitter,
such that the distance from the focusing optic to the beam-splitter is greater than the focal
length of the optic. The first transmitted beam is discarded, while the reflecting beam is
focused again, such that the focal point lies on the surface of the sample. The beam which was
reflected off the sample now returns to the beam splitter, and transmits onto the surface of
the detector. Reflections which are not in focus on the sample are therefore greatly minimized.

Here, we once again combine two erbium combs (∆frep of 400 Hz) in an all-fiber beam-
splitter. The collinear beams are collimated in free space, and pass through a standard confocal
microscope (as seen in figure 3.3) and onto the surface of a Thorlabs PDA10CF photodetector.
The optical components of this microscope are each less than 1 cm in maximum thickness, AR
coated, and are separated in space by increments of 25 mm. A thick (25 mm, 1 inch) window
of BK7 is mounted as the sample onto which the microscope is focused. Power on the detector
is set to 333 µW for the initial and final measurements, but is allowed to vary between them.
The diameter of the beam is measured to be 225 µm in diameter, and the detector surface is
µm by 500 µm.

We record a single measurement with the beam located at the center of the detector and call
this our zero position. Next, the detector is vertically displaced in increments of 50 µm, and
in each case referenced to the center measurement. Finally, after 150 µm of displacement, the
detector is returned to its zero position, and a final measurement, also referenced to the first,
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Figure 3.4 – Unreferenced Interferograms, normalized to maximum IGM intensity (100 %).
The center burst at t = 0 is not pictured for any IGM. One IGM is presented for each
measurement taken, in the color order in which they were taken (purple → red). Subsequent
IGMs are offset in both frequency and time.

is recorded. Unreferenced IGMs for these measurements are presented in figure 3.4, while the
referenced measurements in both the transmission and autocorrelation domain are presented
in figure 3.5. This represents a two point, successive referencing schema.

In figure 3.4, each IGM is normalized to its maximum intensity. It should be noted, however,
that the actual power on the detecter surface decreases as we move further from the initial
position, but returns to the initial 333 uW after movement back to the zero position. All etalons
are constant between normalized measurements, and drop out after two point referencing,
except for one which is located at approximately ± 130 ps. This corresponds to a modulation
in the frequency spectrum at approximately 7.7 GHz, and an optical path in vacuum of 3.9
cm or 1.5 inches. Given that the only component in the system which corresponds to such
an optical length is the thick glass window used in place of a sample (thickness of 1 inch,
n = 1.5), it is strongly suggested that this is the source.

In the top panel of figure 3.5, we see the ratio of spectral data taken after movement and
spectral data taken at the zero location. As we move further from the center, not only do
we acquire a significant tilt to the spectrum (low frequency, unstable noise), we also see the
growth of phase and frequency stable noise present at a single frequency (the etalon at ± 130
picoseconds as discussed above).

This is further studied in the bottom subplot, in which we take the Fourier transform of
transmission (the FT of the top sub-figure’s curves), yielding the autocorrelation function.
Here, we see the difference spectra in IGM space, showing only those differences which produce
a modulation in the referenced spectra. We see the growth of tilt in the spectral baseline in
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Figure 3.5 – (top) Transmission data as found by symmetric DCS after 1 minute of integra-
tion. Each curve represents some vertical motion of the detector, in increments of 50 µm, from
the center. (bottom) The autocorrelation spectrum, as found by taking the Fourier transform
of the above spectra. The inset zooms in on the etalon which changes in intensity with detector
movement relative to the beam.

the form of unstable, low frequency noise, as well as the etalon growth at 130 ps.

While likely that the etalon at ± 130 ps stems from the BK7, and that baseline tilt stems
from a change in detector responsivity across the surface [64], neither were the subject of this
study, and no definitive claims are made regarding either. Instead, this study serves only to
highlight the need for a stable optical path in the context of dual comb spectroscopy (i.e. we
show that by changing the transfer function which corresponds to the optical path, we are
able to change the output). In this case, we purposely choose a complicated optical setup (a
confocal microscope) to highlight the fact that stable etalons may be successfully referenced
away after two point referencing.
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3.4 Effect of Source Instability on DCS Baseline

Next, we investigate source instabilities and their impact on the baseline of a DCS measure-
ment.

Here, two erbium frequency combs, each individually broadened using highly non-linear fiber
(HNLF) are combined in an all-fiber beam-splitter. The resulting symmetric DCS light is
collimated into free space, then filtered such that the seed frequency (the orignal comb), and
all optical frequencies higher than it are absorbed by the filter. The result is a broad spectrum
which spans the wavelength range of 1650-2000 nm.

Now, we return to our initial optical setup, as seen in figure 3.1. Our broadband DCS spectrum
is therefore sent into a broadband beam-splitter, and directly onto the surface of two in-house
photodetectors. No focusing optics are present, just one beam-splitter and two detectors. The
optical paths are not matched in length, and contain no elements besides atmosphere (i.e.
two blank paths of unequal length). ∆frep is set to 133 Hz. First, simultaneous two point
referencing is done between the two paths over the course of a single second (133 IGMs). Next
the same is done over the course of a minute (7980 IGMs). In all cases, power on the detector
is estimated to be 333 µW.

Figure 3.6 – The autocorrelation of a one second integration (133 IGMs) after being broade-
ned via HNLF, and the autocorrelation of a one minute integration (7980 IGMs) after being
broadened via HNLF. No offset is applied. Spectra are two point referenced to blank paths

This process introduces source variance in two distinct ways. Firstly, it has been well esta-
blished in the literature that non-linear broadening in HNLFs add additional noise to the
spectrum [65; 66]. This can be thought of as non-linear amplification of the pre-existing noise
on the seed. Secondly, because no delay matching was done between arms, the simultaneous
measurement is actually comparing the intensity of disparate optical fields (although it should
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be noted that in general, DCS does assume a train of identical pulses). While both of these
points are very interesting in their own right, further comments are outside the scope of this
memoire. The important point here being that we are comparing disparate pulse pairs, and
that the noise on these pulse pairs has been increased via χ3 non-linearities during the spectral
broadening process.

All this to say that when we take the ratio of our simultaneous measurements (shown in the
IGM domain in 3.6), we are not only measuring the difference in optical path (including path
length, detector response, etc) but also the source variance between the arms. This difference,
in the context of section 3.1’s discussion, corresponds to an Ein,α and Ein,Ω which are different.

Now, looking again at figure 3.6, we see that two cases are presented (as were described at
the beginning of this section), which correspond to a one second integration and a one minute
integration. Assuming that both the optical paths and detector response are constant over
all measurements taken, we are left to conclude that the only difference we see between the
two cases is due to coherent averaging. No further comments are made regarding the impact
of coherent averaging on the autocorrelation spectra of referenced measurements. Further
analysis into this phenomenon is required, but beyond the scope of this thesis.
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3.5 Longterm Baseline Stability in the Context of DCS

Finally, we investigate the long term stability of a broadened DCS measurement.

The same experimental conditions are used here as were used in section 3.4, except for a few
modifications. First, a simultaneous measurement is taken between the two arms, and co-added
over a period of 20 minutes (159,600 IGMs). Immediately after, while holding all other variable
constant, another 20 minute integration is performed. This continues for 4 hours, with every
measurement besides the first being referenced to the first. We therefore have both successive
and simultaneous measurements - or 4 point referencing.

It is also important to highlight that for these measurements, power on the detector was set
to approximately 80 µW, such that the total noise (which can be found by integrating the
autocorrelation from 0→∞) is significantly elevated.

Figure 3.7 – The autocorrelation of baseline stability over the course of four hours, where
each color represents a successive 20 minute integration as four point referenced to both a
blank measurement and some measurement at t = 0. (inset) The corresponding transmission
spectra (T = arm 1

arm 2) for each curve, before being four point referenced to the measurement at
t = 0.

This is all shown in figure 3.7, where we track the four point referenced autocorrelation along
with the two point referenced transmission spectra over the course of 4 hours.

For the first time in this memoire, the autocorrelation spectra are largely flat as a function of
time. This implies that all etalons (which would manifest as sharp, pronounced peaks in the
autocorrelation function) have been referenced away, and that no tilt (which has been shown
to manifest as low frequency, broadband noise) is accumulated in the frequency spectrum over
the course of the measurement

Indeed, looking at the largest change in transmission at any single frequency over the course
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of 4 hours, we observe a maximum difference of approximately 1%. Such a stable baseline is
required for spectroscopy of broad absorbers.

Summary

In the preceding chapter, we define and implement various ways to reference spectra, and
discuss the implications of each.

We show that DCS is achievable after many diffuse reflections (and thus significant speckle /
multi-path interference), but that the data recovered must be properly referenced before being
rigorously useful in a scientific context.

We also show that that movement of the detector relative to the beam can introduce signi-
ficant tilt to a spectrum, which manifests in the autocorrelation spectrum as broadband low
frequency noise. This process is also shown to be reversible. We believe this to have a variety of
implications, especially concerning long path open air measurements which have been shown
to be sensitive to turbulent atmospheric conditions.

Finally we demonstrate that coherent averaging is able to change the noise curve in the
autocorrelation domain (i.e. different portions of the autocorrelation spectrum are affected
differently by the process) in the case of simultaneous referencing of disparate pulse pairs.
Currently, we lack both a model and the data to definitively explain this behavior.

We also achieve a broadband DCS baseline which is stable over the course of 4 hours, as
measured via 4 point referencing.
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Conclusion

In conclusion, three topics are discussed.

The first chapter focuses on theory. This includes the basic physics of lasers, mode-locking,
frep and fCEO stabilization, interferometry, DCS, and non-linear optics. This not only demons-
trates a mastery of the subject, but also provides the reader with all necessary information
required for the understanding of subsequent chapters.

The second chapter focuses on the combination of DCS with the well known pump-probe
technique. This chapter begins with an explanation of pump-probe spectroscopy, and what
frequency combs add to the technique. Next, previous measurements are replicated to de-
monstrate mastery of the system and verify its functionality. Finally, the system is expanded
upon to include time domain functionality. Pump probe DCS results are then presented and
analyzed.

The last chapter focuses on the analysis of spectral baseline variance. A mathematical model
is developed to better understand various referencing techniques. Then, various experimental
modifications are performed, each of which highlights the assumptions underlining various
referencing techniques. Examples of these changes include optical path instability, source va-
riance, etc. Finally, a stable four point referenced measurement is shown over the course of
four hours.

All combined, a mastery of the theory of DCS, an ability to use and expand upon the technique,
and the ability to explore its fundamental assumptions are each demonstrated.
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Annexe A

Derivations

A.1 Derivation of the Kramers-Kronig Relations

This derivation largely follows a common method described by M. Schonleber [67]. We begin
with an impulse response function of a linear system which is invariant in time, h(t).

The frequency response is therefore expressed as H(ω), as seen in equation A.1.

H(ω) =
1√
2π

∫ ∞
−∞

h(t)e−iωtdt [By Fourier transformation (FT)] (A.1)

Knowing that the impulse response is equal to 0 for all times t < 0 from causality, and
assuming it is non-zero for times t > 0, h(t) must obey the equality found in equation A.2,
where σ(t) is the Heaviside step function.

h(t) = σ(t)h(t) [By causality] (A.2)

We now take the Fourier transform of h(t) = σ(t)h(t), as seen in equation A.4.

F [h(t) · σ(t)] =
1√
2π
H(ω) ∗ F [σ(t)] [By the convolution theorem] (A.3)

= H(ω) ∗
{

1

2π

[
1

iω
+ πδ(ω)

]}
[FT of the Heaviside step function] (A.4)

Now, we remember what a convolution means, as seen in equation A.5.

[f ∗ g](ω) =

∫ ∞
−∞

f(ω′)g(ω − ω′)dω′ [Definition] (A.5)
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Following some simplification, we can therefore write equation A.4 in a new form, as seen
below in equation A.8.

H(ω) =
1

2π

{∫ ∞
−∞

H(ω′)

i(ω − ω′)
dω′ +

∫ ∞
−∞

πH(ω′)δ(ω − ω′)dω′
}

(A.6)

=
1

2π

{∫ ∞
−∞

H(ω′)

i(ω − ω′)
dω′ + πH(ω)

}
(A.7)

=
1

π

∫ ∞
−∞

H(ω′)

i(ω − ω′)
dω′ [Simplification] (A.8)

From here, we separate the integral −∞→∞ into two parts as follows in equation A.9.

∫ ∞
−∞

H(ω′)

i(ω − ω′)
dω′ =

∫ 0

−∞

H(ω′)

i(ω − ω′)
dω′ +

∫ ∞
0

H(ω′)

i(ω − ω′)
dω′ [By linearity of integration on R]

(A.9)

Next, we rewrite the integral −∞ → 0 such that it can be combined with the positive inte-
gration. This is shown in equation A.10.

∫ 0

−∞

H(ω′)

i(ω − ω′)
dω′ =

∫ ∞
0

H(−ω′′)
i(ω + ω′′)

dω′′ [Redefinition of ω′] (A.10)

Now, because the Fourier transform of a real signal is guaranteed to be Hermitian, H(−ω′′) =

H∗(ω′′), and we rewrite equation A.9 as follows in equation A.13.

H(ω) =
1

π

{∫ ∞
0

H(ω′)

i(ω − ω′)
dω′ +

∫ ∞
0

H∗(ω′′)

i(ω + ω′′)
dω′′

}
(A.11)

=
1

π

∫ ∞
0

H(ω′) · (ω + ω′) +H∗(ω′) · (ω − ω′)
i(ω2 − ω′2)

dω′ (A.12)

=
2

π

∫ ∞
0

HIm(ω′) · ω′ − iHRe(ω
′) · ω

ω2 − ω′2
dω′ [Separation of complex components]

(A.13)

And finally, by splitting up the real and imaginary parts of the final expression found in
equation A.13, we arrive at the standard expressions for the Kramers-Kronig relations as seen
in equations A.14 and A.15.

HRe(ω) =
2

π

∫ ∞
0

ω′HIm(ω′)

ω2 − ω′2
dω′ (A.14)
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HIm(ω) =
−2

π

∫ ∞
0

ωHRe(ω
′)

ω2 − ω′2
dω′ (A.15)
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A.2 Relative Locking at Université Laval

In order to lock ∆frep and ∆fCEO of the system used at Université Laval, two CW lasers are
employed as intermediary oscillators.

Each one (CW1 and CW2) has an associated power (PCW1 and PCW2), frequency (fCW1 and
fCW2), and phase (φCW1 and φCW2).

Each comb (FC1 and FC2) has an associated power about each CW laser frequency (PFC1,fCW1
,

PFC1,fCW2
, PFC2,fCW1

, and PFC2,fCW2
), center frequency (fFC1 and fFC2), phase (φFC1 and

φFC2), and delay between pulses (TFC1 and TFC2).

The measured signals D1 - D4 then, can be expressed as seen in equations A.16, A.17, A.18,
and A.19, as a function of k, the index of a pulse pair.

D1(k) =
√
PCW1PFC1,fCW1

· e {i2πfCW1
TFC1

(k) + iφFC1
(k) + iφCW1

(TFC1
(k))} (A.16)

D2(k) =
√
PCW1PFC2,fCW1

· e {i2πfCW1
TFC2

(k) + iφFC2
(k) + iφCW1

(TFC2
(k))} (A.17)

D3(k) =
√
PCW2PFC1,fCW2

· e {i2πfCW2
TFC1

(k) + iφFC1
(k) + iφCW2

(TFC1
(k))} (A.18)

D4(k) =
√
PCW2PFC2,fCW2

· e {i2πfCW2
TFC2

(k) + iφFC2
(k) + iφCW2

(TFC2
(k))} (A.19)

Next, these signals are used to find two referenced signals R1 and R2, as seen in equations
A.20 and A.21.

R1 = D1 ·D2∗

= PCW1

√
PFC1,fCW1

PFC2,fCW1
· e{i2πfCW1

∆T (k)+i∆φ(k)+iφCW1
(TFC1

(k))−iφCW1
(TFC2

(k))}

(A.20)

R2 = D3 ·D4∗

= PCW2

√
PFC1,fCW2

PFC2,fCW2
· e{i2πfCW2

∆T (k)+i∆φ(k)+iφCW2
(TFC1

(k))−iφCW2
(TFC2

(k))}

(A.21)

To phase correct the incoming interferogram, we normalize R∗1 and multiply it by the IGM.
This leaves a corrected signal mapped to a non-uniform OPD grid.
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To map the IGM to a uniform OPD grid, we need only extract the phase difference between
the two referenced signals, i.e. R∗1(k) ·R2(k).

Finally, we find the effective optical sampling frequency, as given by the FPGA, along with
the number of data points in our IGM, and subsequently produce an optical axis.

A full derivation of the process is seen in J.-D. Deschênes’ 2010 paper [58].
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