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Résumé

L’objectif général de cette thèse est d’utiliser les connaissances en physique de la radiation, en
programmation informatique et en équipement informatique à la haute pointe de la technologie
pour améliorer les traitements du cancer. En particulier, l’élaboration d’un plan de traitement
en radiothérapie peut être complexe et dépendant de l’utilisateur. Cette thèse a pour objectif
de simplifier la planification de traitement actuelle en curiethérapie de la prostate à haut débit
de dose (HDR).

Ce projet a débuté à partir d’un algorithme de planification inverse largement utilisé, la
planification de traitement inverse par recuit simulé (IPSA). Pour aboutir à un algorithme de
planification inverse ultra-rapide et automatisé, trois algorithmes d’optimisation multicritères
(MCO) ont été mis en œuvre. Suite à la génération d’une banque de plans de traitement
ayant divers compromis avec les algorithmes MCO, un plan de qualité a été automatiquement
sélectionné.

Dans la première étude, un algorithme MCO a été introduit pour explorer les frontières de
Pareto en curiethérapie HDR. L’algorithme s’inspire de la fonctionnalité MCO intégrée au
système Raystation (RaySearch Laboratories, Stockholm, Suède). Pour chaque cas, 300 plans
de traitement ont été générés en série pour obtenir une approximation uniforme de la frontière
de Pareto. Chaque plan optimal de Pareto a été calculé avec IPSA et chaque nouveau plan a
été ajouté à la portion de la frontière de Pareto où la distance entre sa limite supérieure et sa
limite inférieure était la plus grande.

Dans une étude complémentaire, ou dans la seconde étude, un algorithme MCO basé sur la
connaissance (kMCO) a été mis en œuvre pour réduire le temps de calcul de l’algorithme MCO.
Pour ce faire, deux stratégies ont été mises en œuvre : une prédiction de l’espace des solutions
cliniquement acceptables à partir de modèles de régression et d’un calcul parallèle des plans
de traitement avec deux processeurs à six cœurs. En conséquence, une banque de plans de
traitement de petite taille (14) a été générée et un plan a été sélectionné en tant que plan
kMCO. L’efficacité de la planification et de la performance dosimétrique ont été comparées
entre les plans approuvés par le médecin et les plans kMCO pour 236 cas.

La troisième et dernière étude de cette thèse a été réalisée en coopération avec Cédric Bélanger.
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Un algorithme MCO (gMCO) basé sur l’utilisation d’un environnement de développement
compatible avec les cartes graphiques a été mis en œuvre pour accélérer davantage le calcul.
De plus, un algorithme d’optimisation quasi-Newton a été implémenté pour remplacer le
recuit simulé dans la première et la deuxième étude. De cette manière, un millier de plans de
traitement avec divers compromis et équivalents à ceux générés par IPSA ont été calculés en
parallèle. Parmi la banque de plans de traitement généré par l’agorithme gMCO, un plan a
été sélectionné (plan gMCO). Le temps de planification et les résultats dosimétriques ont été
comparés entre les plans approuvés par le médecin et les plans gMCO pour 457 cas.

Une comparaison à grande échelle avec les plans approuvés par les radio-oncologues montre
que notre dernier algorithme MCO (gMCO) peut améliorer l’efficacité de la planification
du traitement (de quelques minutes à 9.4 s) ainsi que la qualité dosimétrique des plans de
traitements (des plans passant de 92.6 % à 99.8 % selon les critères dosimétriques du groupe
de traitement oncologique par radiation (RTOG)).

Avec trois algorithmes MCO mis en œuvre, cette thèse représente un effort soutenu pour
développer un algorithme de planification inverse ultra-rapide, automatique et robuste en
curiethérapie HDR.
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Abstract

The overall purpose of this thesis is to use the knowledge of radiation physics, computer
programming and computing hardware to improve cancer treatments. In particular, designing
a treatment plan in radiation therapy can be complex and user-dependent, and this thesis aims
to simplify current treatment planning in high dose rate (HDR) prostate brachytherapy.

This project was started from a widely used inverse planning algorithm, Inverse Planning
Simulated Annealing (IPSA). In order to eventually lead to an ultra-fast and automatic inverse
planning algorithm, three multi-criteria optimization (MCO) algorithms were implemented.
With MCO algorithms, a desirable plan was selected after computing a set of treatment plans
with various trade-offs.

In the first study, an MCO algorithm was introduced to explore the Pareto surfaces in HDR
brachytherapy. The algorithm was inspired by the MCO feature integrated in the Raystation
system (RaySearch Laboratories, Stockholm, Sweden). For each case, 300 treatment plans
were serially generated to obtain a uniform approximation of the Pareto surface. Each Pareto
optimal plan was computed with IPSA, and each new plan was added to the Pareto surface
portion where the distance between its upper boundary and its lower boundary was the largest.

In a companion study, or the second study, a knowledge-based MCO (kMCO) algorithm was
implemented to shorten the computation time of the MCO algorithm. To achieve this, two
strategies were implemented: a prediction of clinical relevant solution space with previous
knowledge, and a parallel computation of treatment plans with two six-core CPUs. As a
result, a small size (14) plan dataset was created, and one plan was selected as the kMCO
plan. The planning efficiency and the dosimetric performance were compared between the
physician-approved plans and the kMCO plans for 236 cases.

The third and final study of this thesis was conducted in cooperation with Cédric Bélanger. A
graphics processing units (GPU) based MCO (gMCO) algorithm was implemented to further
speed up the computation. Furthermore, a quasi-Newton optimization engine was implemented
to replace simulated annealing in the first and the second study. In this way, one thousand
IPSA equivalent treatment plans with various trade-offs were computed in parallel. One plan
was selected as the gMCO plan from the calculated plan dataset. The planning time and the
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dosimetric results were compared between the physician-approved plans and the gMCO plans
for 457 cases.

A large-scale comparison against the physician-approved plans shows that our latest MCO
algorithm (gMCO) can result in an improved treatment planning efficiency (from minutes to
9.4 s) as well as an improved treatment plan dosimetric quality (Radiation Therapy Oncology
Group (RTOG) acceptance rate from 92.6% to 99.8%).

With three implemented MCO algorithms, this thesis represents a sustained effort to develop
an ultra-fast, automatic and robust inverse planning algorithm in HDR brachytherapy.
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Introduction

Background

According to the analysis from the Global Burden of Disease Study [1], there were 52.8 million
deaths in 2010 in the world, the top three causes of which were attributed to: (1) Communicable,
maternal, neonatal and nutritional causes (13.1 million, or 24.9%), (2) Ischaemic heart disease
and stroke (12.9 million, or 24.4%), and (3) Cancers (8 million, or 15.2%) [1].

Even though the age-standardized death rates of cancers in 2010 has dropped by 13.8%
compared to 1990 [1], it is important to improve current treatments and to accelerate the
development of new therapeutic approaches.

While immunotherapy, hormone therapy, or targeted therapy may be effective for some cancer
patients, radiotherapy (also called radiation therapy), together with surgery and chemotherapy
remain three common cancer treatment approaches nowadays [2].

Studies [3–5] estimated that about 52.3% of non-skin cancer patients receive radiation therapy
(alone or in combination with other approaches) during the course of their illness. Radiation
can be administered either in the form of photons (x-rays and gamma rays) or particles
(protons, heavy ions, neutrons, and electrons) [3]. Photons are currently the main type of
therapeutic radiation beam, and they can be used to kill the tumor cells by damaging the DNA
in chromosomes [3]. Specifically, photon interactions involve transferring part of their energy
to free electrons (Compton scattering or photoelectric effect), and these electrons can induce
DNA damage either directly or indirectly (by producing hydroxyl radicals through interacting
with water molecules) (Figure 0.1).

Photons can be delivered either externally from a medical linear accelerator (LINAC) in
external beam radiation therapy (EBRT) or internally from an inserted small radioactive
source in brachytherapy [5]. Treatment-delivery machines in radiation therapy are shown in
Figure 0.2. This project focuses on the second type of radiation therapy: brachytherapy.
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Figure 0.1 – The direct and indirect effects of photon beams on DNA, image from [3].

Brachytherapy

Definition

Shortly after Henri Becquerel discovered radioactivity in 1896, the idea of shrinking tumors
with a radioactive source was suggested by Pierre Curie in 1901 [6]. This treatment method,
later known as internal radiation therapy or brachytherapy (curiethérapie in French), involves
directly placing a sealed container of radioactive substance into a tumor. These characteristics
can be derived from the word brachy, which originates from the Greek word βραχυς (brachys,
meaning "short-distance").

Based on the dose rate of radioactive sources, brachytherapy can be classified into low dose rate
(LDR) brachytherapy and high dose rate (HDR) brachytherapy. LDR brachytherapy delivers
durable and continuous low doses of radiation. The dose rate of radioactive seeds in LDR
brachytherapy is less than 2 Gy h−1, and common LDR seeds include 103Pd, 125I and 131Cs [7,8].
The seeds (Figure 0.3a) are usually implanted through inserted needles (Figure 0.3d), and their
duration inside the patient’s body can either be hours, days (1 to 7 days before being taken
out) or they can be permanent [9].

On the other hand, HDR brachytherapy usually delivers a single temporary high dose of
radiation (although some treatments may be conducted in multiple fractions). The dose
rate of radioactive sources in HDR brachytherapy is larger than 12 Gy h−1, and classic HDR
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(a) An example of external beam radiation ther-
apy.

(b) An example of permanent prostate brachyther-
apy.

Figure 0.2 – Treatment facilities in radiation therapy. Images downloaded from
https://www.mayoclinic.org/tests-procedures in December 2018.

sources include 60Co and 192Ir [7, 8]. The sources are attached with wires (Figure 0.3b), and
travel through plastic catheters and applicators using a remote afterloader (Figure 0.3c). The
duration inside a patient’s body is usually a few minutes [9].

Both LDR brachytherapy and HDR brachytherapy are currently widely used in clinics. The
anatomic sites treated with LDR brachytherapy usually include prostate, eye, lung and brain
cancers. HDR brachytherapy, on the other hand, is commonly used to treat prostate, cervical,
breast, and head and neck cancers.

Pros and cons of brachytherapy

In brachytherapy, radioactive sources are placed directly on, in, or within the treatment target
volume, and tumor cells are killed from a short distance. Due to this characteristic, there are
both advantages and disadvantages of brachytherapy compared with EBRT.

Based on the fact that radioactive sources are placed close to the target volume and that

3



Figure 0.3 – An overview of the Devices used in brachytherapy: (a) LDR seeds for implantation,
(b) A HDR radioactive source attached with wires, (c) A MicroSelectron remote afterloader
(Elekta Brachy, Veenendaal, The Netherlands), and (d) Needles for LDR brachytherapy, images
from [10].

(a) Dose distribution of EBRT (b) Dose distribution of brachytherapy

Figure 0.4 – A comparison of dose distribution between EBRT prostate (image downloaded
from https://www.varian.com in December 2018) and HDR prostate brachytherapy (a screen-
shot of Oncentra Brachy).
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the dose distribution simply follows the inverse square law, brachytherapy treatments can
result in (1) A sufficiently high dose in the target, and (2) A rapid dose falloff to surrounding
healthy tissue [9]. In other words, the resulting dose distribution is often considered an ideal
outcome because it can be both high and conformal within the target volume and low in
healthy organs (Figure 0.4). The dosimetric advantages of brachytherapy over proton therapy
(with significant skin entry dose) and stereotactic radiosurgery (SRS) (with entry dose and
exit dose) are detailed in the following reference [9]. In addition, brachytherapy has a clinical
advantage in the accuracy and reliability of its dose delivery because the relative position
between the target and the inserted applicator/catheters is fixed, and the setup error caused
by internal organ movement can be minimized [9]. Furthermore, the overall treatment duration
of HDR brachytherapy is generally shorter than external beam treatment, therefore the errors
caused by the target volume change can be mitigated [9].

However, directly delivering radioactive sources to the target volume can also lead to several
clinical disadvantages. For example, one main disadvantage is the invasive procedure of
inserting catheters or sources. Even though some form of anesthesia may reduce the pain
during surgery, the brachytherapy treatment procedure is relatively complicated, and usually
involves a multidisciplinary cooperation. Furthermore, the clinical application of brachytherapy
is relatively limited compared with EBRT because the treatment sites need to be suitable
for source placements. In particular, the tumors treated in brachytherapy is usually limited
to surface tumors (skin), body cavities (gynecological, esophagus and bronchus), and a few
interstitial sites (prostate, breast, rectal, gynecological and head-and-neck region) [9]. Finally,
specific skills and training are required to conduct brachytherapy, which could also limit its
application [9].

Treatment procedure in HDR prostate brachytherapy

HDR prostate brachytherapy can either be delivered as a boost to EBRT or delivered alone
(or called monotherapy) [8]. Prior to a brachytherapy procedure, it is necessary for the patient
to make an initial consultation with a radiation oncologist. Clinical examinations including an
imaging scan may be given to identify the characteristics of the tumour in a digital visualized
form. The options of imaging scans usually include ultrasound (US), computerized tomography
(CT) and magnetic resonance imaging (MRI) (detailed in Section ).

Once a decision to proceed with brachytherapy is made, it is important to coordinate efforts
from different specialists including urologists, radiation oncologists, anaesthetists, medical
physicists, nurses, therapists and dosimetrists.

Treatment setups in the operating room (OR) begin with a general or regional (spinal, epidural)
anesthesia to reduce the pain, and patients are placed on a treatment couch in the lithotomy
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position (Figure 0.5). Radiation oncologists then insert plastic catheters/needles (Figure 0.5)
into the prostate through the perineum area, guided by a transrectal ultrasound (or TRUS)
(Figure 0.5). Through a cystoscopy, physicians are able to make sure the position of catheters
will not damage bladder and urethra, while ensuring a good coverage of the base of the prostate.

After the treatment setup, it is necessary to begin a treatment planning procedure (described
in the next section).

Figure 0.5 – Treatment setups for prostate brachytherapy in the OR, images from [10].

Treatment planning process in HDR brachytherapy

The purpose of radiation therapy is to deliver a therapeutic dose to the target volume without
over-irradiating the surrounding healthy tissue. Oncologists are responsible for the prescription
of the treatment. In order to meet the clinical prescription, it is necessary to develop an
optimal (ideal) treatment plan that is deliverable using the equipment on hand (Figure 0.2).
While an EBRT plan may consist of a beam angle arrangement and a fluence map distribution,
a brachytherapy plan usually involves in determining dwell positions (source positions in
catheters) and dwell times (source stopping duration).

The process of designing such a plan is known as treatment planning, and a variety of treatment
planning algorithms [11] installed in workstations are available to facilitate the process. In
Figure 0.6, the process of treatment planning for HDR prostate brachytherapy is described
in the scenario of Oncentra Brachy IPSA (Inverse Planning Simulated Annealing, detailed in
Section 1.2.1.1) (Elekta Brachy, Veenendaal, The Netherlands). Each step will be described in
the following sections.
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(a) Step 1: imaging (b) Step 2: contouring

(c) Step 3: 3D reconstruction
(d) Step 4: planning and evaluation

Figure 0.6 – Workflow of treatment planning in HDR prostate brachytherapy: (1) CT image
import, (2) Contouring of organs, (3) 3D reconstruction of organs and catheters, and (4)
Treatment planning and plan evaluation.

Medical imaging modalities used in brachytherapy

The emergence of 3D imaging modalities is often marked as an evolution in modern radiation
oncology because of its non-invasive approach to visualize internal organs and identify abnor-
malities inside patient’s body. The electromagnetic (EM) spectrum (Figure 0.7) of medical
imaging techniques includes x-rays in mammography and CT, radiofrequency in MRI, and
gamma rays in nuclear medicine [12].

In radiography, x-rays are emitted from a fixed vacuum X-ray tube, where the high-speed
electrons (released by a hot cathode, accelerated with a high voltage) collide with a metal target
(usually tungsten) [12]. As the attenuation properties of tissues are different, the entering
homogeneous x-rays become heterogeneous when emerging from the patient [12]. An image is
created when the heterogeneous x-ray distribution is received by a detector opposite the x-ray
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Figure 0.7 – The electromagnetic spectrum in medical imaging modalities, image from [13].

tube [12].

In computed tomography (CT), images are synthesized from the transmission projection data
of a large number of angles by a computer [12]. The transmission projection data are produced
by rotating the x-ray tube and the detector array around the patient [12]. Compared with
MRI, a CT scan has several advantages as they are: (1) Less expensive, (2) Require a shorter
examination time, and (3) Are able to better distinguish between bone structure, soft tissue
and air [12]. In Figure 0.6a, a set of CT images from a prostate cancer patient were obtained.

In clinical magnetic resonance imaging (MRI), patients (whom contain abundant water inside
the body) are placed in a strong magnetic field (1.5 to 3.0 T). Based on the fact that some
hydrogen nuclei within water molecules can absorb and emit radio signals at a given frequency
in a magnetic field, MRI can produce a set of tomographic images from the emitted radio
signals, which are then detected by the antennas around the patient [12]. Compared with
CT, MRI has three advantages: (1) Soft tissue and internal organs can usually be better
distinguished, (2) The difference between normal and abnormal tissue is often clearer, and (3)
No ionizing radiation is required (hence usually a good choice for pregnant women or children).

Ultrasound (US) is sound waves of which the frequency is too high (above 20 kHz) to be
heard by humans [12]. The frequency of medical ultrasound usually ranges from 2 MHz to
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10 MHz [12]. With this imaging technique, a probe (ultrasonic transducer) is used to produce
a sound wave from electrical signals. Once the sound wave is delivered, it travels towards the
tissues. Reflection of ultrasound (returns to the probe as an echo) occurs at tissue boundaries
because of the differences in the acoustic impedances of the two tissues [12]. The distance
from the probe to the tissue can be calculated based on the speed of sound and the travel
duration [12]. After adjusting the angle of the probe several times, a set of tomographic images
can be synthesized [12]. Compared with other imaging modalities, there are a few advantages
in using US imaging techniques: (1) The portability of the imaging device, (2) The ability to
perform real time examinations, (3) A lower treatment cost and (4) No ionizing radiation is
required.

In brachytherapy, CT and ultrasound are currently the two major imaging modalities because
of their widespread availability in the majority of radiation oncology departments. However,
MRI guided brachytherapy is promising, as it can offer an excellent distinction between soft
tissues, especially in prostate and gynecologic cancers [14–16].

Contouring

With digital visualizations from imaging modalities it is possible to delineate the regions of
interest (ROIs). In radiation therapy, ROIs include both the target volume for treatment and
its surrounding normal critical structures or organs at risk (OARs).

For the target volume, there are three definitions according to the International Commission
on Radiation Units and Measurements (ICRU) Report No. 50 [17]. The Gross Target Volume
(GTV) is defined by the physician as all visible disease, as determined after reviewing medical
images and clinical information [17, 18]. The Clinical Target Volume (CTV) includes areas at
risk for microscopic disease extension [17,18]. Usually, the scan must include all of the CTV
with at least 9 mm superior and inferior margin [18]. The Planning Target Volume (PTV) aims
to compensate for the variability of treatment setups and internal organ motion [17,18]. In
brachytherapy, the PTV is either the same as the CTV or a 2-3 mm margin is added anteriorly
and laterally [18] because there are no significant opportunities for setup errors [9].

In addition to treating the disease, it is also important to keep the OARs at a low-level
toxicity. Due to the different deliveries of the radiation between EBRT and brachytherapy (see
Figures 0.3 and 0.4), the contouring of OARs in prostate cases slightly vary (bladder, rectum
and femoral heads in EBRT [19,20], bladder, rectum and urethra in HDR brachytherapy [18]).
In Figure 0.6b, the target volume and OARs were contoured by an experienced radiation
oncologist.
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3D reconstruction of organs and catheters

The determination of dwell positions (source positions in catheters) is part of the plan opti-
mization in brachytherapy. Therefore, it is necessary to first reconstruct the catheter positions
(Figure 0.6c) from the CT images before the plan optimization. The reconstruction can either
base on the use of the radio-opaque markers with metal wires [21], or the air filled inside the
catheters on the CT images, as the Hounsfield Unit (HU) value of air is significantly different
to the surrounding soft tissue. Recent studies show that it is possible to use electromagnetic
(EM) tracking systems for catheter reconstructions [22,23].

In order to keep the normal tissue at a minimum level of irradiation, there is no need to stop
the radioactive sources outside the target [18]. In other words, source dwell positions are only
activated (or turned on) if these positions are located inside the target volume.

Treatment planning and plan evaluation

Dose calculation points creation

From an image dataset, 3D Cartesian coordinates of the contoured organs and the reconstructed
catheters are extracted. In order to evaluate if a dose distribution is adequate, it is necessary
to create a set of dose calculation points and make an evaluation based on the dose values at
these points. The number of dose calculation points, which are created from contours such
as those shown in Figure 0.8 should be minimized in order to accelerate the calculations [24].
Three types of dose calculation points were therefore introduced in IPSA [24]: surface, volume,
and dose-volume histogram (DVH) dose calculations (Figures 0.8b-d). Surface dose calculation
points (uniformly generated on the contours) and volume dose calculation points (created inside
the organ volumes) are required only where the dose needs to be controlled [24]. For example,
the surface and the volume dose calculation points of the rectum/bladder are generated only
within a limited area around the catheters to reduce their numbers. As a result, the numbers
of surface and volume dose calculation points are much less than the number of DVH dose
calculation points that are uniformly generated throughout the whole volume (e.g. in Figure 0.8,
surface: 392, volume: 566, DVH: 8201). This strategy can result in a high computational
efficiency in IPSA because only a small number of surface and volume dose calculation points
are repetitively used during the plan optimization process.

Source definition and dose calculation

A wide range of brachytherapy sources are available [25], and the type of source needs to be
specified before the treatment. Once the source type, active dwell positions and dose calculation
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(a) Contours (b) Surface dose calculation points

(c) Volume dose calculation points (d) DVH dose calculation points

Figure 0.8 – An example to illustrate three types of dose calculation points in IPSA: (a)
Only contours (target in red, rectum in green), (b) Surface dose calculation points (number of
points: 392), (c) Volume dose calculation points (number of points: 566), and (d) DVH dose
calculation points (number of points: 8201).

points are determined, it is possible to calculate the dose kernel for each dwell position. A
dose kernel is sometimes referred as a dose rate matrix (the dose rate contribution of a dwell
position to the surrounding dose calculation points).

In HDR prostate brachytherapy, the dose calculation formalism was proposed in the American
Association of Physicists in Medicine Task Group No. 43 (AAPM TG-43) report [26] and
its updates [27,28]. The TG-43 formalism is based on the dose rate measured at a reference
point in a spherical water phantom from a single source geometry [9]. The dose rates at other
points are corrected for relative attenuation in water, through the radial dose function and
anisotropy function [9]. The 1D and 2D equations used to calculate dose rate in the TG-43
report update [27] are described in Equation (1-2) respectively:

Ḋ(r) = Sk · Λ ·
GL(r, θ0)

GL(r0, θ0)
· gL(r) · φan(r) (1)
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Ḋ(r, θ) = Sk · Λ ·
GL(r, θ)

GL(r0, θ0)
· gL(r) · F (r, θ) (2)

with dosimetry parameters defined below:

∗ Ḋ(r) is the 1D calculated dose rate at radial distance r.

∗ Ḋ(r, θ) is the 2D calculated dose rate at radial distance r, and polar angle θ.

∗ Sk is the air-kerma strength of the brachytherapy source, with a unit of U=cGy cm2 h−1.

∗ Λ is the dose rate constant, with a units of cGy h−1U−1.

∗ GL(r, θ) is the geometry function, defined as β
L·r·sinθ , if θ 6=0°, and (r2 − L2/4)−1, if

θ =0°.

∗ L is the active length of a brachytherapy source.

∗ r0 is the radial distance of a reference position, with a value of 1 cm.

∗ θ0 is the polar angle of a reference position, with a value of 0°.

∗ gL(r) is the line-source radial dose function, defined as Ḋ(r,θ0)

Ḋ(r0,θ)
· GL(r0,θ0)
GL(r,θ0)

.

∗ φan(r) is the 1D anisotropy function.

∗ F (r, θ) is the 2D anisotropy function.

Figure 0.9 – Polar coordinate system used in 2D TG-43 dose calculation formalism. The dose
value at any point P (r, θ) is a function of its radial distance r and polar angle θ. A reference
position is defined at P (r0, θ0), where r0 =1 cm and θ0 =90°. Image from [9].

More details about these dosimetry parameters can be found in the TG-43 report [26] and
its updates [27,28]. Recommended dosimetry parameters can be found in the MD Anderson
Imaging and Radiation Oncology Core (IROC) database [25] and the Carleton Laboratory for
Radiotherapy Physics (CLRP) database [29]. These databases are based on the report from the
High Energy Brachytherapy Source Dosimetry (HEBD) Working Group [30]. An uncertainty
analysis of these parameters can be found in the AAPM Task Group No. 138 report [31].
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Briefly, the TG-43 dose calculation formalism aims to estimate the dose distribution of a source
that is placed in an environment similar to a water phantom [32]. The dose distribution in
brachytherapy treatment planning can be calculated by superposing the precalculated TG-43
dose distributions for a single source from all dwell positions [32]. The TG-43 formalism and
the superposition strategy are fast and therefore practical, but the effect of heterogeneity
(tissue or applicator) and interseed attenuation are not considered [32].

To address the limitations of the TG-43 formalism, various model-based dose calculation
algorithms (MBDCAs) such as collapsed-cone convolution [33], superposition- convolution [34],
Monte Carlo methods [35,36], and grid-based Boltzmann solver [37,38] have been proposed.
Among these algorithms, Monte Carlo methods are often considered as the gold standard for
3D dose calculations [36]. Further details as well as the guidance to ensure practice uniformity
when implementing MBDCAs can be found in the AAPM Task Group No. 186 report [32]. In
this work, such algorithms are not used for optimization purposes, only TG-43. However, a
demonstration was conducted where MDBCAs could be used to recalculate 3D dose kernels
for all possible dwell-positions in the geometry and in place of TG-43 in the optimization
process [39].

Plan optimization

For each active dwell position (inside the target), the dose distribution is a multiplication of
the dose kernel (calculated with Equation (1)/(2)) with the corresponding dwell time value. As
a result, the final dose distribution is a superposition of dose distributions of all dwell positions
(Equation (3)),

Dij =

Nact∑
l=1

Ḋijltl (3)

where Dij is the dose at the ith dose calculation point of the jth organ, Nact is the number
of active dwell positions, Ḋijl is the dose rate contribution of the lth dwell position to the ith

dose calculation point in the jth organ, and tl is the dwell time of the lth dwell position.

As mentioned previously, clinical prescriptions in radiation therapy often consist of a goal for
the target volume, and several goals for OARs. The purpose of the plan optimization is to
find a final dose distribution that meets these goals, through determining the dwell times of
all dwell positions. After translating these goals into mathematical objective functions and
accumulating them into a single function (known as the weighted sum method, in Equation (4)),
an optimization algorithm can be used to obtain a solution to the summed function,
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OF =

NO∑
j=1

wj ·
1

Npnt,j

Npnt,j∑
i=1

fj(Di,j , Dlimit,j) (4)

where OF stands for the summed objective function and NO for the number of organs. For the
jth organ, wj is the weight (or called importance factor, to steer the trade-offs among organs),
Npnt,j is the number of dose calculation points, fj is the objective function, Di,j is the dose
value at the ith dose calculation point, and Dlimit,j is the dose limit in the prescription. These
defined objective functions can be initialized with a planning template, called the IPSA class
solution (Figure 0.10). More details about the plan optimization in HDR brachytherapy can
be found in Chapter 1.

Figure 0.10 – The IPSA class solution (the weights and the dose limits) used for HDR prostate
brachytherapy in our center (a screenshot of Oncentra Brachy).

Plan evaluation

It is important to evaluate if the dose distribution of the obtained treatment plan is acceptable.
The most commonly tool used to evaluate dose distributions for treatment planning is the
dose-volume histogram (DVH), a histogram that shows the relationship between radiation dose
and tissue volume. There are two types of DVH: the differential DVH and the cumulative
DVH. While the differential DVH is defined as the volume of the organ receiving a dose within
a specified dose interval, the cumulative DVH represents the volume receiving a minimum
specified dose value [40]. The latter is the preferred format in clinical practice because it
is easier to evaluate the total size of tissue volume in hot spots (overdose, dose above the
maximum dose value) or cold spots (underdose, dose below the minimum dose value) [40].

To ease the evaluation procedure, a variety of dose-volume metrics can be extracted from
the DVH results. These metrics are sometimes referred as dosimetric parameters, and can
be categorized into Vx% (the volume of tissue receiving x% of the prescription dose) and
Dx% (the dose covering at least x% of the tissue volume). The Radiation Therapy Oncology
Group (RTOG) recommended parameters for HDR prostate brachytherapy can be found in
the following protocols [18,41]. An example of a plan evaluation based on DVH results and
dosimetric parameter results is shown in Figure 0.11. There is one major disadvantage in using
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DVHs which is the lack of anatomical location of hot or cold spots. To solve this issue, graphic
dose distributions such as isodose distributions (curves that indicate an equal radiation dose,
see Figure 0.6d) are often used [40]. In addition, dose homogeneity (the degree of homogeneity
of a dose distribution over the volume) and dose conformity (the degree of the entire volume
receiving the optimal dose) are sometimes used to evaluate treatment plans.

Figure 0.11 – DVH results and dosimetric parameter results (the recommended ones for
evaluations are highlighted) of an optimal treatment plan for prostate cancer in Oncentra
Brachy (top: cumulative DVHs, bottom: dosimetric parameters).

High performance computation

A vision 20/20 paper [42] reviewed current applications of automation and advanced computing
in radiotherapy. The authors envisioned that four main areas including cloud computing,
aggregate data analysis, parallel computation and automation might change the practice in
radiation oncology. This thesis involves an application of parallel computation to speed up
the computational tasks in treatment planning, and an application of automated planning to
mitigate the repetitive tasks and to improve productivity.

The history in computation and main parallel computation techniques are briefly reviewed
in this section, and a detailed literature review on automated planning will be discussed in
Chapter 1.
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A brief history of computation

The idea of a digital computer can be dated back to 1931, when C. E. Wynn-Williams suggested
that digital electronics can be used for computation [43].

In 1946, the announcement of ENIAC (Electronic Numerical Integrator And Computer) was
known as the first electronic general-purpose computer available to the public. With ENIAC,
computing problems can be solved through programming for the first time.

In 1971, Intel (Santa Clara, CA) introduced the world’s first commercial microprocessor chip
(Intel 4004), which led to the development of microcomputers. Due to technical advances, the
dimension of transistors has been reduced. As a result, more and more transistors (Figure 0.12)
can be fit on the chip of the same size, and the computing efficiency of microprocessors
experienced significant improvements.

Figure 0.12 – Moore’s Law: the number of transistors per chip doubles about every two years,
image from [44].

As chip-making technologies are approaching their physical limits (i.e. the number of transistors
per chip), keeping up with Moore’s law is a challenge, however, the industry managed to
improve the computational performance by adding extra microprocessor cores on a single chip.
For example, IBM (Armonk, New York) introduced the first commercial multi-core processor
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(POWER4) in 2001. The performance of a single chip can be increased significantly (up to a
factor of the number of physical cores), as each core can simultaneously execute instructions.

Central processing unit (CPU) parallel computation

In order to fully utilize the capabilities of the multi-core architecture, two types of application
programming interfaces (APIs) are usually used: Open Multi-Processing (OpenMP) and
Message Passing Interface (MPI).

OpenMP is not a new programming language, and it instead, consists of a set of compiler
directives that describe how the work will be shared by different cores [45, 46]. As a result,
OpenMP greatly simplifies writing multi-threaded programs in Fortran, C and C++ for
programmers.

Here is an example to explain the OpenMP core syntax (written in C, executed with a four-core
CPU):

#include <omp.h>

int main(void)
{

int var1, var2;
execute_serial_code();

#pragma omp parallel num_threads(4) shared(var2)
{

execute_parallel_code();
}

resume_serial_code();
}

$ gcc -fopenmp main.c -o main

In this example, the main code is executed serially, like any C or C++ program. In the
beginning, it is mandatory to have an include file that defines the functions used by OpenMP.
OpenMP compiler directives always start with #pragma omp, followed by a specific keyword
that identifies the directive [45]. For example, #pragma omp parallel instructs the compiler to
run the enclosed code in parallel, and the following keywords specify the number of threads
and the variable to be shared by all threads. In the end, it is a command to compile this
OpenMP program.
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OpenMP is used for parallelism on the multi-core level within a node (a single computation
device). On the other hand, MPI is used for parallelism within a distributed computing system,
which usually consists of thousands of computation devices often known as massively parallel
computing, distributed computing, or grid computing [46].

Graphics processing unit (GPU) parallel computation

While a CPU is a general-purpose processor, a GPU has been a special-purpose processor
optimized for image or video data processing. This is because GPUs can have more arithmetic
logic units (ALUs) compared to CPUs (Figure 0.13), and these ALUs are responsible for all
the required arithmetic and logic operations. Therefore, GPUs are more efficient in processing
massive graphic data in parallel.

Figure 0.13 – CPU architecture versus GPU architecture. Image downloaded from
https://nvidia.com in April 2019.

NVIDIA (Santa Clara, CA) is a major player in the GPU field. In 1999, the company launched
the world’s first GPU (GeForce 256), and the term of GPU became popular afterwards [47].
The company launched the first programmable GPU (GeForce 3) in 2001, and released its
GPU programming model (CUDA, Compute Unified Device Architecture) in 2007 [48]. CUDA
allows researchers and developers to design programs without understanding the computing
architecture of GPU. They can write a kernel function in C or C++, with additional key
words to express parallelism, and execute it simultaneously by thousands of threads [46]. It is
worthwhile to note that CUDA is specific to NVIDIA GPUs [48].

Since the launch of CUDA, there has been a tendency for programmers to fully utilize the
computing capabilities of GPUs in general-purpose computing (including non-graphic tasks) [48].
For example, the number of GPU-related research articles published in the medical physics
community has been monotonically increasing since 2007 [49]. The authors indicated that GPUs
can offer a high computing power suitable for both imaging and therapy related problems [49].
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In addition to CUDA, OpenCL (Open Computing Language) is another GPU programming
model. One main advantage of OpenCL is its ability to cross various platforms including CPUs,
GPUs, digital signal processors (DSPs), and field-programmable gate arrays (FPGAs) [48,50].

Description of the research project

Problem

A desirable output of radiation therapy is a dose distribution that meets the criteria rec-
ommended by the Radiation Therapy Oncology Group (RTOG) or other organizations. To
achieve this, it is necessary to determine an optimal planning parameters to configure treatment
modalities. This process is essentially a computerized optimization which is known as inverse
planning.

Current inverse planning algorithms usually require dosimetrists or medical physicists to
determine the patient-specific trade-offs between the target and healthy organs under the
supervision of oncologists. The process usually starts with a population based planning
template (Figure 0.10), and involves an inevitable fine-tuning of the corresponding weights in
the template.

This process could result in the following issues:

1. There are large dosimetric variations in treatment planning among medical institu-
tions [51].

2. It is likely that the dosimetric results of treatment plans are superior in experienced
centers than in less-experienced centers [52].

3. The total average time of planning, in particular in an operating room setting, can be
become prohibitively long if too many iterations are performed [53].

Consequently, these issues can limit further advancements, as the dosimetric variations would
complicate multi-institutional clinical trials [51], and furthermore the low planning efficiency
can increase the overall cost of the operation [53].

Purpose and objective of the thesis

The goal of this thesis is to design and validate an operator-free inverse planning framework
for HDR brachytherapy. The framework aims to improve the treatment planning efficiency
and the treatment plan quality comparing to the available inverse planning algorithms.

After a literature review on traditional and operator-free inverse planning algorithms in
Chapter 1, we can make two important hypotheses. First, patient-specific treatment plans can
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always be found after exploring the solution space with a multi-criteria optimization (MCO)
algorithm. Second, an appropriate optimization algorithm and high performance computing
techniques can fundamentally boost the computational performance of the implemented MCO
algorithm.

In order to respond to the hypotheses, the project was divided into four objectives:

1. Develop and integrate an MCO algorithm on top of a traditional dose optimization engine
to automatically generate a set of treatment plans with various trade-offs.

2. Upgrade the implemented MCO algorithm to a knowledge-based MCO (kMCO) algorithm,
after incorporating prior knowledge and parallel computation techniques. Finally, the
kMCO plans were compared with the IPSA physician-approved plans.

3. Develop and validate a quasi-Newton method to improve the computational performance
without jeopardizing the quality of solutions.

4. Propose a GPU-based MCO (gMCO) algorithm on top of the quasi-Newton method to
compute hundreds of plans in parallel, and compare the gMCO plans with the IPSA
physician-approved plans.
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Chapitre 1

Methodology

Optimization is the action of finding the best solution for a given problem (Figure 1.1). The
process of identifying objectives, optimization variables, and constraints of a problem is known
as modeling [54]. Constructing an appropriate model is the first, and sometimes most important
step in the optimization process because (1) If the model is too simplistic, it will not give
useful insights into the practical problem, and (2) If the model is too complex, it may be too
difficult to solve the problem [54].

Once the problem has been formulated into a model, an optimization algorithm can be used to
find its solution, usually with the help of a computer [54]. Choosing an appropriate algorithm
is important because it can determine whether the problem can be solved at all, or whether it
can be solved rapidly or slowly [54]. Usually, mathematical objective functions are used for
checking if the current solution is indeed the optimal solution of the problem [54].

Figure 1.1 – The process of building a mathematical model of a problem and solving the
model with an optimization algorithm. Image downloaded from https://www.eudoxus.com in
April 2019.

In the context of high dose rate (HDR) brachytherapy, treatment planning is often considered
as an optimization problem where the solution consists of a set of dwell times (source stopping
duration) and dwell positions (source positions in catheters). The first part of this chapter
consists of a literature review on mathematical objective functions and optimization algorithms
used in HDR brachytherapy over the past two decades. The second part of this chapter includes
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a literature review on operator-free inverse planning algorithms that were proposed to facilitate
the manual planning procedure in external beam radiation therapy (EBRT) and brachytherapy.
While the first part of the literature review laid a foundation for finding a fast optimization
algorithm, the second part gave an inspiration of how to mitigate the trial-and-error efforts in
traditional planning, which is the main purpose of this study.

1.1 A review of mathematical objective functions in HDR
brachytherapy planning

1.1.1 Dose-volume based objective functions

The ultimate goal in treatment planning is to find an optimal dose distribution inside the
treatment target volume and OARs. In order to achieve this goal, an intuitive approach for
both physicists and physicians is to formulate a set of objective functions to illustrate the
relationship between dose and volume. These function are dose-volume based, and are widely
used in HDR brachytherapy [15,24,55–61].

1.1.1.1 Underdose and overdose

An optimal dose distribution can be specified as: a dose which is not only high enough to
kill the cancerous cells inside the target volume, but also low enough to keep the surrounding
organs at a low-level toxicity.

A collection of dose-volume terminologies, including the maximum dose, the average dose, the
underdose and overdose limitations can be used to find an optimal dose distribution. Among
them, underdose and overdose, referring to the dose below and above a threshold (or dose
limit) (Figure 1.2b-d), respectively, are often used in brachytherapy.

For the target, applying underdose and overdose limitations can steer the dose distribution
towards the prescription dose because any dose values outside the scope will be penalized
(Figure 1.2b-c). On the other hand, an underdose limitation is counterproductive for healthy
OARs, for which lower dose values are acceptable. Therefore, applying an overdose limitation
to OARs is necessary, and will restrict a high dose distribution inside (Figure 1.2d).

It is worthwhile to mention that the urethra, being located within the treatment volume, is a
special OAR in HDR prostate brachytherapy because it is necessary to protect this organ from
being over-radiated by the implanted radioactive sources. For example, if the urethra is only
subject to an overdose limitation, it may have cold spots (low dose regions) and the adjacent
prostate may not be covered with adequate doses [62, 63]. Therefore, applying both underdose
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and overdose limitations to this special OAR is very common [15,58,60]. For the target volume,
the underdose and the overdose limitations are typically 100 % and 150 % of the prescription
dose, correspondingly [15, 58, 60]. For the urethra volume, the underdose limitation is 100 % of
the prescription dose, and the overdose limitation is either 113 % or 120 % of the prescription
dose [15,58,60].

Figure 1.2 – Underdose and overdose objective functions of: (a) Step functions (solid line:
Heaviside, dashed line: A smooth approximation (used in HIPO) defined in Section 1.2.2.1),
(b) Target (DVH objective, or DVHO), (c) Target (linear and quadratic) and (d) OAR
(bladder). The values of dose limits and weights in (c) and (d) are identical to values used in
references [64–66].

Based on how to penalize the difference between the ideal and actual dose distribution, objective
functions can be divided into three categories: dose volume histogram objectives (DVHO), linear
objectives and quadratic objectives [67,68], depending on the α value in Equation (1.1-1.2),

fU (x) =
N∑
i=1

H(DU − di(x))(DU − di(x))α (1.1)
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fO(x) =

N∑
i=1

H(di(x)−DO)(di(x)−DO)α (1.2)

where fU and fO are the objective functions to be minimized, with underdose and overdose
limitations correspondingly. N is the number of dose calculation points (can be created based
on the strategy in Section ). x is a treatment plan that contains dwell positions and dwell
times. H is the Heaviside step function (solid line in Figure 1.2a). Underdose limit DU and
overdose limit DO are assigned by an oncologist before the optimization. di(x) is the dose
value for the ith dose calculation point.

If α = 0, Equation (1.1-1.2) are in the form of DVH objectives [59–61, 67], as the objective
value fO is the cumulative DVH value at the dose DO (Figure 1.2b). One advantage of this
category is that the objective value, which equals the number of voxels in which the dose value
is higher or lower than the dose limit value, is more intuitive to understand than the linear or
quadratic objectives.

If α = 1, Equation (1.1-1.2) are in the form of linear objectives [24,55], as the difference between
the ideal and actual dose distribution is penalized linearly (solid lines in Figure 1.2c-d). This
category of objective functions is sometimes coupled to a stochastic optimizer such as simulated
annealing in IPSA (Inverse Planning Simulated Annealing) (Elekta Brachy, Veenendaal, The
Netherlands).

If α = 2, Equation (1.1-1.2) are in the form of quadratic objectives [56,57], as the difference
between the ideal and actual dose distribution is penalized quadratically (dashed lines in
Figure 1.2c-d). This category of objective functions is usually coupled to a deterministic
optimizer [56,57].

1.1.1.2 Dose homogeneity index and dose conformity index

In 1988, Wu et al. [69] proposed a dose homogeneity index (HI) to evaluate the dose homogeneity
of treatment plans in HDR breast brachytherapy. As shown in Equation (1.3), HI is equivalent
to the fraction of the total treatment volume which receives a dose between 100 % and 150 %

of the prescribed dose.

HI =
V100 − V150

V100
(1.3)

Where V100 and V150 are the fraction of the total treatment volume which receives at least
100 % and 150 % of the prescription dose, respectively.
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Ten years later, Baltas et al. [70] proposed a conformal index (COIN) to replace the DVH
when evaluating the plan quality in HDR brachytherapy. The definition of COIN is expressed
by Equation (1.4),

COIN = c1 × c2

=
PTVref
PTV

× PTVref
Vref

(1.4)

where PTV is the planning target volume (PTV), Vref is the volume that is enclosed by the
reference isodose curves and PTVref the overlap volume between PTV and Vref (Figure 1.3).
As such, the coefficient c1 is the fraction for the PTV that is enclosed by the reference isodose
curves, and the coefficient c2 is the fraction of volume Vref that is enclosed by the PTV.

Figure 1.3 – Schematic diagrams of volumes in COIN computation, image from [70].

In summary, a high HI value means a uniform dose distribution within the treatment volume,
and a high COIN value means a conformal dose distribution within the treatment volume.
These indices can be used to select a final solution after generating a dataset of optimal
solutions [56,67].

1.1.2 Dwell time in objective functions

Dwell time is less common when formulating objective functions [71–73] compared to the
widely studied dose-volume based ones [15,24,55–61].

Renner et al. [71] formulated an objective to minimize the total dwell time under the constraint
that all the points inside the target receive at least the target dose. The purpose is to minimize
the total reference air kerma (TRAK) or the accumulated dose inside the patient’s body while
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meeting the treatment requirements, as these quantities are directly proportional the total
dwell time.

Baltas et al. [72] proposed a dwell time gradient restriction (DTGR) in HDR prostate brachyther-
apy which was integrated into HIPO (Elekta Brachy, Veenendaal, The Netherlands) [74]. The
purpose is to achieve a smooth source movement or a smooth dwell time distribution within the
catheters. This DTGR parameter was implemented by considering the variation of the source
dwell times as an additional objective function to the dose-volume ones. The DTGR parameter
has a range from 0 (no dwell time restriction) to 1 (maximum dwell time restriction).

Cunha et al. [73] applied a similar strategy to obtain a smooth distribution of dwell times
with IPSA. A plan was computed with IPSA, and the mean dwell time in each catheter was
calculated from the optimized plan. A new plan of dwell times that were tightly clustered
around the mean value in each catheter were obtained.

1.2 A review of optimization algorithms

In order to obtain a solution to the planning problem, it is necessary to solve it with an
optimization algorithm. Optimization algorithms can either be stochastic or deterministic.
Stochastic algorithms include randomness in the search-process. Such randomness not only
mitigates the effect from modeling errors, but also enables the algorithms to approach a
global solution. A global solution is the point with the lowest objective function of all feasible
points [54].

On the other hand, in deterministic algorithms, the search-process is completely known (without
randomness). These algorithms are usually superior in computing efficiency, but might be
more sensitive to modeling errors and can be trapped in a local solution. A local solution is a
point at which the objective function is smaller than all other feasible nearby points [54].

Convexity is an important concept in optimization. If the objective function and the feasible
set of the optimization variables are both convex, then the optimization problem is convex,
and local solutions are also global solutions [54,75].

The objective function is convex if the line segment (or the chord) between any two points of
the function lies above the function (illustrated in Figure 1.4) [75]. Mathematically, a convex
function needs to be satisfied the following expression (Equation 1.5).

f(αx+ (1− α)y) ≤ f(αx) + (1− α)f(y) (1.5)

Where f is the objective function. x, y are any two input optimization variables, and 0 ≤ α ≤ 1.
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Figure 1.4 – Graph of a convex function. The chord (or line segment) between any two points
on the graph lies above the graph, image from [75].

The feasible set of points that satisfying the constraints (if they exist) is convex if the line
segment between any two points from this set lies in this set (satisfying Equation (1.6)) [75].

αx+ (1− α)y ∈ S (1.6)

Where x, y are any two points that belong to the feasible set S, and 0 ≤ α ≤ 1.

1.2.1 Stochastic optimization algorithms

Simulated annealing and evolutionary algorithms are two widely studied stochastic optimization
algorithms in HDR brachytherapy [9].

1.2.1.1 Simulated Annealing

In 1983, Kirkpatrick first proposed simulated annealing (SA) as a stochastic optimization
algorithm [76]. As seen from its name, SA was inspired from annealing in metallurgy, a
technique that involves heating and controlled cooling of a material to increase the size of its
crystals and reduce their defects [77].

Sloboda [78] first adapted SA in brachytherapy. The author used SA to optimize the dose
distribution in LDR vaginal brachytherapy. Pouliot et al. [79] implemented SA to rapidly
produce plans for permanent prostate implant treatments. Later, Lessard and Pouliot [55]
developed the Inverse Planning Simulated Annealing (IPSA) algorithm to implement an
anatomy-based inverse planning algorithm in HDR brachytherapy. IPSA is a commercialized
stochastic optimization algorithm (Elekta Brachy, Veenendaal, The Netherlands) for HDR
brachytherapy. As SA can approximate an acceptable global optimal solution [55], IPSA has
gained popularity both in clinic and in research studies [15,24,56,58,60,61,80,81].
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In IPSA, linear dose-volume based objective functions are used for the target volume and OARs
because the translation from the physician’s idea of the ideal treatment to a mathematical form
is straightforward [24]. For each organ, the dose limits and the corresponding slope values are
assigned before starting the optimization. By minimizing the value of the objective function, a
set of optimized dwell times can be found with SA.

Major steps in IPSA [55] are:

1. The initial solution of dwell times are set with arbitrary values (i.e. 1 s for all dwell
positions within the target).

2. At the kth iteration, the objective function value fk can be calculated based on Equa-
tion (1.1-1.2) (α = 1).

3. At the k+ 1th iteration, one random dwell position is selected, and the dwell time at this
position is modified (increased or decreased, which is randomly decided) with a step size
(0.1 s). The objective function value fk+1 is recalculated, and the change in the objective
function during the transition is ∆f = fk+1 − fk.

4. While a solution that results in a smaller objective function value (∆f < 0) is always
accepted, a solution that results in a larger objective function value (∆f > 0) will only
be accepted with a certain level of probability, given by Equation (1.7),

P (∆f) = exp[−∆f/T (k)] (1.7)

where P (∆f) is the probability to accept a positive transition, ∆f is the change in
the objective function during a transition from the kth iteration to the k + 1th iteration,
and T (k) is the pseudo-temperature parameter at the kth iteration, with an annealing
schedule expressed in Equation (1.8),

T (k) = T0/k
α (1.8)

where T (k) is the current temperature, T0 is the initial temperature, which is set
proportional to the mean ∆f values over 500 random transitions fk to fk+1 [55] (as the
first transition is chosen at random, so this transition is repeated until a good statistical
sample of the initial optimization problem condition is accumulated [24]). α is the
annealing speed parameter, which is often empirically set to 0.6 to optimize the results
while preserving a reasonable time [55].

5. The search process (steps 2-4) is repeated until termination (a large number of iterations,
for example 100 000 in reference [82]).
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1.2.1.2 Evolutionary algorithms

Evolutionary algorithms (EAs) represent a category of population-based optimization algo-
rithms. As seen from the name, EA was inspired by biological evolution including the processes
of selection, crossover and mutation.

In HDR brachytherapy, Lahanas et al. [83] formulated a multi-objective problem using dose-
volume based objective functions. Each chromosome represents several dwell weights, or
the fraction of a specific dwell time in the total dwell time. A set of optimal solutions
were obtained with an EA. Finally, the decision maker chose one solution depending on the
COIN and DVH results. Milickovic et al. [84] also formulated a multi-objective problem
using dose-volume based objective functions. The problem was solved with two variants
of EAs and one deterministic gradient based optimization algorithm. The authors claimed
that the computational performance can be improved by initializing the population of EAs
with a deterministic algorithm. Other studies about EAs can be found in the following
references [67,85–87].

1.2.2 Deterministic optimization algorithms

Due to the high computing efficiency, deterministic optimization algorithms are widely stud-
ied [56,72,88–91] and used in treatment planning systems (e.g. the limited memory Broyden-
Fletcher-Goldfarb-Shanno (L-BFGS) (Elekta Brachy, Veenendaal, The Netherlands) and the
Nelder-Mead simplex (NMS) (Varian, Palo Alto, CA)). A deterministic optimization algorithm
is either gradient-based or gradient-free, depending on if the gradient of the objective function
is used. In the following sections, the applications in each category are reviewed in the context
of HDR brachytherapy.

1.2.2.1 Gradient-based algorithms

Gradient-based optimization algorithms are sometimes coupled with dose-volume based
quadratic objective functions. For example, Milickovic et al. [56] formulated dose-volume based
quadratic objective functions and compared the solutions obtained with three optimization
algorithms: two gradient-based algorithms (L-BFGS and the Fletcher-Reeves-Polak-Ribiere
(FRPR) algorithm) and one gradient-free algorithm (the modified Powell method). The authors
concluded that the solutions obtained with deterministic optimization algorithms are global
optimal, due to the constructed convex objective functions.

The Hybrid Inverse Planning Optimization method (HIPO) is a well-known example of a
gradient-based optimization algorithm in brachytherapy. HIPO was introduced by Karabis et
al. [88] and has been widely studied [72,89–91] after being integrated into Oncentra (Elekta
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Brachy, Veenendaal, The Netherlands). HIPO starts from an initial set of catheters and uses a
simulated annealing algorithm to select and adjust catheter positions [88]. For each combination
of catheters, HIPO uses L-BFGS for dose optimization. As in IPSA, a linear dose-volume
objective function was used in HIPO, based on Equation (1.1-1.2) (when α = 1) [74]. In order
to avoid the discontinuity of the Heaviside step function H in Equation (1.1-1.2), HIPO employs
the logistic smooth approximation to the step function (dashed line in Figure 1.2a): H(y) =

0.5(1 + tanh(βy)), where β is a parameter corresponding to the sharpness of transition [74,89].

Major steps of L-BFGS [54,57,92] are reviewed:

1. Starting with x0, an initial solution, and H0, an initial approximation of the inverse
Hessian of f .

2. At the kth iteration, determine a descent direction pk = −Hk∇f(xk).

3. Line search: choose a step size αk = arg min
α>0

f(xk + αkpk).

4. Update xk+1 = xk + αkpk.

5. Update gk+1, the gradient of f at xk+1.

6. Update Hk+1, the approximation of the inverse Hessian of f at the k + 1th iteration.

7. k = k + 1, steps 2-6 are repeated until termination.

There are two important features of HIPO [72,74, 89,90]. First, operators can make a local
adjustment of dose distribution by locking certain catheters (no change of dwell times at dwell
positions for these catheters). The second feature is the aforementioned dwell time gradient
restriction (DTGR) to achieve a smooth dwell time distribution within a catheter.

Poulin et al. [60] compared HIPO with IPSA for eight HDR prostate cases. The authors con-
cluded that HIPO and IPSA gave similar dosimetric results under fixed catheter configurations.

1.2.2.2 Gradient-free algorithms

In addition to the gradient-based algorithms described above, other deterministic optimization
algorithms are categorized into gradient-free algorithms in this section. As this category is not
common in clinical brachytherapy, only linear programming (LP) algorithms will be discussed.

A LP problem is usually defined by a linear objective function and constraints (sometimes
using clinical criteria) [82]. The global solution for a LP problem can be solved exactly and
deterministically [82]. Alterovitz et al. [82] formulated the dwell time optimization problem
as a LP problem and conducted a comparison against IPSA for twenty prostate cases. The
results showed that the planning time with the LP method was less than 15 s, and that no
significant difference in dosimetric indices (P<0.01) existed between the LP method and IPSA.
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1.3 Operator-free inverse planning algorithms in EBRT

A treatment plan can be obtained through inverse planning that consists of an appropriate
mathematical objective function and an optimization algorithm. As mentioned in Section ,
however, there is a limitation of inverse planning: trial-and-error adjustments of planning
parameters to approach a clinically acceptable treatment plan.

In order to improve the planning efficiency, it is necessary to streamline the planning process
and develop an inverse planning algorithm that can automatically generate a deliverable plan.
Planning is a common problem shared in HDR brachytherapy and EBRT. Due to the limited
references of this topic in brachytherapy, four major approaches to solving the planning problem
in EBRT were firstly reviewed. These approaches were categorized as operator-free inverse
planning algorithms because they do not require manual weight adjustment (although they
might still require minor user intervention by picking a suitable plan).

1.3.1 Knowledge-based planning algorithm

In general, knowledge-based planning (KBP) algorithms use previous knowledge to gain a
high computational efficiency and/or a high quality treatment plan. To be specific, KBP
algorithms aim to create a valid plan by using an established relationship between patient-
specific anatomical features and high quality physician-approved treatment plans. KBP
algorithms have been commercialized in RapidPlan (Varian Medical Systems, Palo Alto, CA),
and have been studied by many groups (a recent review [93]). In this section, we will review
the KBP studies from the group at University of California San Diego (UCSD) [94] to illustrate
the evolution of this approach.

In 2011, Moore et al. [95] proposed an algorithm to predict achievable OAR mean doses
based on the overlap volume of the OAR with the PTV. This algorithm has been tested with
intensity modulated radiotherapy (IMRT) prostate cases and IMRT head and neck cases. The
authors concluded that this algorithm can either be an automated quality control tool or a
plan generation tool in IMRT planning.

In 2012, Appenzoller et al. [96] proposed a quality control tool for IMRT planning to predict
achievable OAR DVHs. The prediction was based on the correlation of the expected dose
with the Hausdorff distance (the minimum distance between a point outside the PTV and
the PTV surface). The authors trained the prediction model with 20 prostate plans and 24
head-and-neck plans. The KBP plans were evaluated by the physician who approved the
original plan. The authors concluded that their mathematical framework can successfully
predict achievable OAR DVHs based on individual patient anatomy.
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In 2015, Shiraishi et al. [97] proposed an algorithm to predict DVH-based quality metrics (QMs)
based on anatomical features in intracranial stereotactic radiosurgery (SRS). QMs include
brain V10Gy and the conformity index (COIN). The training cohort consists of 223 SRS plans,
and the validation cohort consists of 20 plans. The authors concluded that the algorithm can
predict SRS QMs precisely.

In 2016, Shiraishi et al. [98] established an artificial neural network (ANN) to predict 3D dose
distributions based on anatomical and plan parameters. The network was trained with 12
prostate plans and 23 SRS plans, and the results were evaluated with 11 prostate plans and
20 SRS plans. The authors concluded that their knowledge-based 3D dose predictions for
radiotherapy plans were highly accurate.

1.3.2 Multi-criteria optimization algorithm

In a single-objective optimization, the optimal solution is usually clearly defined [99]. However,
in a multi-objective problem (conflicting objectives) there are a set of trade-off solutions because
a single solution is hardly the best for all the objectives simultaneously [99]. A multi-objective
optimization problem can be expressed in Equation (1.9),

Minimize F (x) = [f1(x), f2(x), ..., fm(x)] (1.9)

where F represents the vector of objective functions, m is the number of objective functions
and x is the input optimization variable.

As shown in Figure 1.5, a solution is Pareto optimal if one objective can not be improved
without decreasing at least one of the other objectives, and a collection of all Pareto optimal
solutions is called the Pareto (optimal) surface or the Pareto frontier [99,100].

As previously mentioned, treatment planning in radiation therapy is usually a multi-objective
problem, and the objective of treating the target and the objectives of protecting the OARs are
often conflicting. The multi-objective problem can be solved with a multi-criteria optimization
(MCO) algorithm by computing the Pareto surface for each patient and selecting a plan that
meets the clinical goals [102].

To the best of our knowledge, the concept of MCO in radiation therapy can be dated back
to 1997, when Yu et al. [103] combined a decision-theoretic steering scheme and iterative
optimization to explore the Pareto surfaces in the context of stereotactic radiosurgery and
prostate implantation. Hamacher et al. [104] described the first use of MCO for intensity-
modulated radiation therapy. The author started the optimization process with an initial
solution, and the algorithm explored the neighborhood solutions until the Pareto surface is
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Figure 1.5 – Illustration of Pareto optimal solutions (black dots) and the Pareto surface (black
curve) for a bi-objective optimization problem, image adapted from [101].

well reconstructed. With the aid of an appropriate online tool, the physician can select a plan
that meets his/her wishes and preferences from the plan dataset in a few minutes.

One year later, Küfer et al. [105] specified more details about the method to populate the Pareto
surface in the previous study [104]. There are two phases in this method: (1) A calculation of
all extreme compromises by only optimizing one objective, and (2) An iterative interpolation
based on triangulation. In the end, an Equivalent Uniform Dose (EUD) navigation tool is used
to select the final plan. The computing time for constructing the plan dataset ranges 2 to 5 h

on a 1.7 GHz Pentium IV platform with 2 GB RAM.

In 2006, Craft et al. [102] presented an algorithm to approximate Pareto surfaces. The algorithm
automatically generates a Pareto optimal solution based on the geometric lower and upper
bounds on the Pareto surfaces. The author illustrated the mechanism of the algorithm in
details with one IMRT prostate case and one skull base case.

Applications of the MCO algorithm proposed by Craft et al. [102] has been extended to other
clinical sites, to volumetric modulated arc therapy (VMAT) and to proton therapy. For example,
Chen et al. [106] adapted an MCO algorithm to solve the intensity modulated proton therapy
(IMPT) planning problem for three clinical cases (a pancreas case, an esophagus case, and a
case where the tumor is located along the rib cage). Craft et al. [107] used the MCO algorithm
to solve the fluence map optimization and angle configurations simultaneously. The algorithm
was tested with one IMRT pancreas case under 100 different five-beam configurations [107].
Craft et al. [108] adapted the MCO algorithm to solve the VMAT planning problem (an angular
grid of 180 equi-spaced beams). The algorithm was tested with one prostate, one pancreas,
and one brain case. The authors concluded that a high quality plan with a single arc can be
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created within 5 min [108].

After RaySearch Laboratories (Stockholm, Sweden) integrated the aforementioned MCO
algorithm [102] into its Raystation treatment planning system, several studies [109–111]
reported their comparisons between the MCO algorithm and a standard treatment planning
system. For example, Wala et al. [109] compared the Raystation MCO algorithm against a
standard planning algorithm (Corvus, Nomos, PA) for 9 IMRT prostate cases. The results
showed that the MCO algorithm is superior to the standard planning algorithm for all 9 cases.
The planning times per case are 1 to 8 h (standard) and 35 min (MCO). The authors concluded
that the MCO algorithm is a valuable tool for IMRT prostate cases.

Wo et al. [110] compared the Raystation MCO algorithm against a standard planning algorithm
(XiO, CMS, St. Louis) for 10 IMRT anal cases. The results showed that there was an increase
in target dose heterogeneity in MCO plans. With MCO, the OAR mean dose can be reduced
(6/10 in the large bowel, and 9/10 in femoral heads). The navigation time was less than 10 min

for each case. The authors concluded that the MCO implementation is feasible in treatment
planning for anal cancer patients.

Craft et al. [111] compared the Raystation MCO algorithm against a standard planning
algorithm (XiO, CMS, St. Louis) for 10 IMRT cases (5 with glioblastoma and 5 with locally
advanced pancreatic cancers). Results indicated that the MCO plan was preferred in all cases.
The mean planning times were 156 min (standard) and 12.4 min (MCO) for glioblastomas,
114 min (standard) and 11.6 min (MCO) for pancreatic cancers. The authors concluded that
the MCO algorithm is a new and efficient clinical tool that is able to aid the decision making
process for physicians in treatment planning.

1.3.3 Auto-planning algorithm

In order to improve the planning efficiency, various class solutions are usually developed for
simple cases (e.g., localized prostate, whole breast) [112], however, treatment planning can still
be time-consuming for complex cases which have multiple target volumes (e.g. head and neck,
pelvic nodes). Sometimes, treatment planning can include extra optimization structures, beam
geometry adjustments, and changes in the objectives to reduce cold and hot spots in the dose
distribution [112].

The Auto-Planning (AP) module, an option in Pinnacle (version 9.10, Philips Medical Systems,
Best, The Netherlands), was developed to mimic these planning tricks mentioned above. The
core part of the AP algorithm can be derived from the regional optimization introduced by
Cotrutz and Xing [113]. It begins with defining and automatic segmentation of hot and cold
spots from an optimized treatment plan, introducing new objectives and relative weights of
these spots into the optimization process, re-optimizing the plan, and repeating these steps
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until a termination criteria [112,114]. Therefore, in the AP algorithm, there are multiple loops
that automatically adjust the planning configurations, which includes not only changing the
objectives but also adding tuning structures, beams, or arcs.

Since the AP module has been integrated into the Pinnacle system [112], several comparison
studies were conducted to compare the AP algorithm and a standard planning algorithm. For
example, Hazell et al. [115] re-optimized 26 IMRT head and neck (oropharynx) plans with the
AP algorithm. The results showed that all 26 AP plans were clinically acceptable. While the
target coverage was similar between AP plans and manual plans, AP plans could better protect
the healthy tissues. Gintz et al. [114] re-optimized 10 challenging VMAT head and neck plans
with the AP algorithm. The results showed that AP plans gave a better OAR sparing (lower
doses), but manual plans gave a higher dose homogeneity. The authors concluded that the AP
algorithm was a promising clinical tool, but it could benefit from a better process for shifting
the balance between the target dose coverage/homogeneity and OAR sparing.

Hansen et al. [116] re-optimized 30 VMAT head and neck plans with the AP algorithm. The
results showed that 29/30 of AP plans were preferred, as the AP plans gave a higher dose
homogeneity for the target and gave lower OAR doses. The AP planning time was half of
the manual planning time (64 min). The authors concluded that the target coverage were
similar between two methods, but AP plans better spared all OARs. One year later, Hansen et
al. [117] validated the AP algorithm with 32 VMAT esophageal plans. The results showed that
31/32 of AP plans were preferred over the standard plans. While the two planning methods
gave similar target coverage, AP plans resulted in a higher mean spinal cord dose and a lower
mean lung dose. The planning time was faster with auto planning (117 min). The authors
concluded that auto plans were usually preferred, and gave a better protection for lung.

Vanderstraeten et al. [118] re-optimized 56 stereotactic body radiation therapy (SBRT) lung
plans with the AP algorithm. The results showed that AP plans gave a significant reduction in
OAR dose and a similar target coverage. The authors concluded that the AP plans were not
always preferred over manual plans.

1.3.4 iCycle algorithm

iCycle (IMRT Cycle) was mainly developed and studied at the Erasmus Medical Center
(Rotterdam, The Netherlands). In traditional inverse planning algorithms, the planning
problem was solved through a weighted sum method where the objective function of each
organ was first set up and aggregated into a single objective function which was then solved
with an optimization algorithm. iCycle proposed to solve the problem with goal programming
(an extension of linear programming to handle multiple conflicting objectives) by optimizing
one objective (by ordered prioritization) at a time while keeping the other objectives as
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constraints [119].

Breedveld et al. [119] developed a prototype of iCycle that optimizes fluence profiles under a
fixed beam arrangement. Breedveld et al. [120] improved iCycle by integrating a wish-list of
beam orientations into the fluence profile optimization algorithm. In this way, iCycle is able to
generate coplanar and non-coplanar IMRT plans.

Several studies reported the comparisons between iCycle and a standard planning algorithm.
For example, Voet et al. [121] compared iCycle with a standard planning algorithm (Monaco,
Elekta AB, Stockholm, Sweden) for 20 IMRT head and neck cases. Plans created with these
two methods were blindly selected by a physician. Results showed that 32/33 selected plans
were iCycle plans, for which, the OARs were in general better protected, and target coverage
was improved in 15 out of 20 cases. The authors concluded that iCycle was able to improve
plan quality and reduce workload.

Sharfo et al. [122] validated iCycle with a standard planning algorithm (Monaco, Elekta AB,
Stockholm, Sweden) for 10 cervical cases. For each case, three IMRT plans (9, 12, and 20
beams) and two VMAT plans (single and dual arc) were created with iCycle. Results showed
that all iCycle plans were clinically acceptable with a high and similar PTV coverage, and that
OAR sparing increased when going from 9 to 12 to 20 IMRT beams, and from single to dual
arc VMAT. The authors concluded that the plan quality of a 20 beam IMRT was superior to
VMAT (single and dual arc) for all tested cervical cases.

1.4 Operator-free inverse planning algorithms in
brachytherapy

In brachytherapy, several studies have been published to simplify the treatment procedure.
For example, Lahanas et al. [67] proposed a multi-objective optimization algorithm called
nondominated sorting genetic algorithm II (NSGA-II). The authors calculated 1000-2000
solutions in 2-5 min to represent the trade-off surfaces. A decision making tool based on the
COIN results can be used to select the final treatment plan from the computed plans.

Nicolae et al. [123] applied a machine learning algorithm to generate a high quality treatment
plan in LDR prostate brachytherapy. The authors established a framework to match 100
high quality LDR treatment plans based on the similarity of geometric features. The authors
concluded that this algorithm was expected to improve LDR treatment plan uniformity while
reducing planning time.

Shen et al. [124] used deep reinforcement learning to mimic manual planning in HDR cervical
brachytherapy. This approach is named as weight-tuning policy network (WTPN). The plan
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quality was evaluated based on a reward function (related to clinical objectives) for 5 cases.
The results showed that the plan quality was improved by 10.7 % with WTPN compared
to the plan generated by human planners. For each patient case, it took 25 steps of weight
adjustment, and the total time was 4-5 min. The author concluded that it was feasible to
develop an intelligent treatment planning approach via deep reinforcement learning.

1.5 Conclusion

After reviewing the mathematical objective functions, optimization algorithms, and the operator-
free inverse planning algorithms that aim to mitigate current workload, it is necessary to justify
the approaches used in this study.

From all the reviewed operator-free inverse planning algorithms, the multi-criteria optimization
(MCO) algorithm (Section 1.3.2) was chosen throughout this thesis. Traditionally, clinical
plans are obtained by experienced physicists, through searching the solution space around a
population-based planning template. We hypothesize that MCO algorithms can mimic manual
planning, by (1) Automatically generating a high quality plan dataset around a population-
based planning template, and (2) Selecting the RTOG acceptable plans from the plan dataset.
As such, this thesis is working toward implementing a robust and ultra-fast MCO algorithm.

The mathematical objective functions used in the subsequent Chapters (2-4), are dose-volume
based (Section 1.1.1.1), similar to IPSA. These functions are preferred because they are relevant
to the dosimetric parameters specified in the Radiation Therapy Oncology Group (RTOG)
0924 protocol [18] and are intuitive to physicians and physicists.

The optimization algorithm used in Chapters 2 and 3 is simulated annealing (SA) (Sec-
tion 1.2.1.1). There are two reasons for choosing SA: (1) The algorithm is known to the
brachytherapy community and is already part of a commercial inverse planning system, (2) We
believe that applying the same optimization algorithm (SA) can smooth the transition from a
traditional inverse planning algorithm (IPSA) to an operator-free inverse planning algorithm
(MCO).

SA was found to be a major obstacle in increasing the planning efficiency, and as such,
a deterministic optimization algorithm (L-BFGS in Section 1.2.2.1) was implemented to
achieve a high computing efficiency in Chapter 4. Like SA, the popularity of L-BFGS in
clinical brachytherapy is the first reason to consider this algorithm. Admittedly, the HDR
brachytherapy optimization problem is relatively small-scale for one plan (a few hundreds
of dwell positions), the computational burden proposed by our approach is large scale for
thousands of plans. For this reason, a limited-memory quasi-Newton optimizer such as L-
BFGS is well suited to reduce the computational burden associated with the Hessian matrix
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evaluations.
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2.1 Résumé

La planification de la curiethérapie à haut débit de dose (High Dose Rate, HDR) implique
généralement un processus itératif d’affinement des objectifs de planification jusqu’à ce qu’un
plan cliniquement acceptable soit élaboré. Le but de cette étude en deux parties est d’améliorer
les pratiques de planification actuelles en concevant un nouvel algorithme de planification
inverse basé sur l’optimisation multicritères (Multi-Criteria Optimization, MCO). Dans la
première partie, les surfaces complètes de Pareto ont été approximées et étudiées pour les cas
de prostate.

Un algorithme d’approximation de la surface de Pareto a été implémenté dans le cadre du recuit
simulé de planification inverse (Inverse Planning Simulated Annealing, IPSA). Les surfaces
de Pareto de 140 cas de prostate ont été approximées avec l’algorithme MCO proposé. Pour
chaque cas, la surface de Pareto était représentée en générant automatiquement 300 plans
optimaux de Pareto, et la région cliniquement acceptable était identifiée. Ainsi, les plans
optimaux de 42 000 Pareto ont été créés pour caractériser les surfaces de Pareto pour tous les
cas. En outre, la relation entre la région cliniquement acceptable et 4 plans d’ancrage a été
étudiée. En conséquence, un ensemble de modèles de régression polynomiale a été extrait afin
de prédire rapidement la région cliniquement acceptable sur la surface de Pareto sur la base de
plans d’ancrage.

Les surfaces de Pareto pour les cas de prostate de curiethérapie HDR ont été bien caractérisées
dans cette étude. Les modèles de régression proposés peuvent aider à définir l’espace de phase
de solution le plus pertinent.
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2.2 Abstract

High dose rate (HDR) brachytherapy planning usually involves an iterative process of refining
planning objectives until a clinically acceptable plan is produced. The purpose of this two-part
study is to improve current planning practice by designing a novel inverse planning algorithm
based on multi-criteria optimization (MCO). In the first part, complete Pareto surfaces were
approximated and studied for prostate cases.

A Pareto surface approximation algorithm was implemented within the framework of Inverse
Planning Simulated Annealing (IPSA). The Pareto surfaces of 140 prostate cases were approxi-
mated with the proposed MCO algorithm. For each case, the Pareto surface was represented
by automatically generating 300 Pareto optimal plans, and the clinically acceptable region
was identified. Thus, 42 000 Pareto optimal plans were created to characterize Pareto surfaces
for all the cases. In addition, the relationship between the clinically acceptable region and 4
anchor plans was studied. As a result, a set of polynomial regression models was extracted to
rapidly predict the clinically acceptable region on the Pareto surface based on anchor plans.

Pareto surfaces for HDR brachytherapy prostate cases were well characterized in this study.
The proposed regression models may help define the most relevant solution phase space.

keywords: brachytherapy, treatment planning, prostate cancer, optimization, Pareto surface
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2.3 Introduction

High dose rate (HDR) brachytherapy is an effective radiotherapy treatment modality. It
consists in temporarily implanting a small radioactive source directly into or near the tumor [8].
Several studies have demonstrated an excellent therapeutic outcome for HDR brachytherapy
in combination with external beam radiation therapy (EBRT), in particular for intermediate
and high risk localized prostate cancer [125–127] and for gynecologic cancer [128].

Treatment planning in radiation therapy directly affects patient treatment quality [129]. The
optimized quantities in HDR brachytherapy is a set of dwell times and dwell positions necessary
to achieve good therapeutic results, i.e. high enough dose inside the target to kill cancer cells and
low enough dose in surrounding organs at risk (OARs) to keep organ function [9]. Most modern
treatment techniques involve some forms of inverse planning with often conflicting objectives
related to both tumor coverage and OAR sparing. Currently available inverse planning
approaches usually solve the multi-objective problem using a weighted sum method [130]. With
this method, all individual objective functions are aggregated into a single objective function.
Since the appropriate weights are patient specific [9], the treatment planner has to make several
attempts to seek the optimal set of weights for the specific case. This is usually done by tuning
an empirically found class solution containing the recommended objectives (target doses and
constraints) and their weights [55]. This is time consuming and the result is dependent on the
treatment planner’s experience [60,129,131].

A treatment plan is Pareto optimal if no plan resulting in an improvement of all individual
objective functions exists, and the set of Pareto optimal solutions is called the Pareto surface. In
order to better understand the trade-off in the multi-objective problem, it is necessary to explore
the Pareto surface. It can be solved by enumerating a set of weights, but there is no guarantee
of an evenly distributed representation of the Pareto surface. Several studies have proposed
effective Pareto surface approximation algorithms, such as the inner approximation [132],
the outer approximation [133] and the sandwich approximation [102, 134, 135]. In the inner
approximation, a convex hull of current Pareto optimal solutions is first computed, and a Pareto
surface is approximated by iteratively using inside lower hulls as bounds of the Pareto surface.
In the outer approximation, a Pareto surface is approximated by iteratively finding supporting
hyperplanes of the Pareto surface from outside [136]. Sandwich algorithm is a combination of
these two algorithms: it iteratively approaches a Pareto surface by minimizing the distance
between lower hulls found with inner approximation and supporting hyperplanes found with
outer approximation [136]. Since large distance reflects the parts of the Pareto surface that
need more accurate approximation, the property of directly minimizing the distance is often
considered as a major advantage of Sandwich algorithm [135,136].

While effective Pareto approximation algorithms have been applied in EBRT [102,105,137,138],
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to the best of our knowledge, only enumerative algorithms including both randomly and
uniformly distributed weights have been applied in brachytherapy [56,57].

In this study, the concept of multi-criteria optimization (MCO) [102] is introduced within the
framework of the well-known Inverse Planning Simulated Annealing (IPSA) algorithm [55].
First, an effective Pareto surface approximation algorithm based on a sandwich algorithm is
illustrated with an example. The algorithm is used to characterize Pareto surfaces and to
identify clinically acceptable solution space for 140 prostate patients. In the end, a set of
regression models is proposed to rapidly predict clinically acceptable region on Pareto surfaces
for new cases.

2.4 Materials and Methods

This section is divided into three parts: Pre-, Peri- and Post-Pareto surface approximations. In
Pre-Pareto surface approximation, the design of experiments and the formulation of objective
functions are described. In Peri-Pareto surface approximation, the implementation of a sandwich
scheme Pareto surface approximation is detailed. In Post-Pareto surface approximation, the
distribution of clinically acceptable solutions on the Pareto surface is analysed.

2.4.1 Pre-Pareto surface approximation

2.4.1.1 Design of experiments

One hundred and forty prostate cases that have received HDR brachytherapy as a boost to
EBRT were randomly selected from a research anonymized database at our institution. These
cases are a subset of data previously published [139,140]. Sixteen to eighteen catheters were
inserted into the prostate using a template guide (Elekta Brachy, Veenendaal, The Netherlands)
under transrectal ultrasound guidance. The target (the whole prostate) and OAR structures
(the bladder, the rectum and the urethra) were contoured on a CT dataset with a slice thickness
of 2 mm obtained with a Brilliance Big Bore CT (Philips, Amsterdam, The Netherlands). The
mean prostate volume was 60.5 cm3 (SD: 18.3 cm3). Each patient received a 15 Gy one fraction
HDR brachytherapy treatment delivered using Ir-192 from a Flexitron afterloader (Elekta
Brachy, Veenendaal, The Netherlands).

The computations of the proposed algorithm were performed on a 4-core CPU (Intel Core
i7-930, 2.8 GHz, 8M Cache).
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2.4.1.2 Traditional planning with IPSA

In our current clinical planning procedure with IPSA, a single joint objective function (Equa-
tion (2.1)) is minimized by a fast simulated annealing optimizer [55].

f(x) =

N∑
i=1

1

Mi

Mi∑
j=1

fi(xj) (2.1)

where N is the number of organs, Mi is the number of dose calculation points of the ith organ,
fi is an individual objective function (a piecewise linear function, Equation (2.2)) of the ith
organ, and xj is the dose value at the jth dose calculation point. The individual objective
functions are defined as follows:

fi(xj) =


wmin(Dmin − xj) xj < Dmin

0 Dmin ≤ xj ≤ Dmax

wmax(xj −Dmax) xj > Dmax

(2.2)

where Dmin is the minimum dose (or underdosage) limit of the ith organ and wmin is the weight
of minimum dose limit of ith organ. Similarly, Dmax is the maximum dose (or overdosage)
limit of the ith organ and wmax is the weight of maximum dose limit of the ith organ. The
population-based class solution used as an initial objective function in our center is listed in
Table 2.1. Dose calculation points used in the objective function are uniformly generated either
on the contours (surface dose calculation points) or inside the volume (volume dose calculation
points) [55].

Table 2.1 – The IPSA class solution for 15 Gy prostate boost HDR treatment (Surface: surface
dose calculation points. Volume: volume dose calculation points).

Organ Surface Volume
wmin Dmin(Gy) Dmax(Gy) wmax wmin Dmin(Gy) Dmax(Gy) wmax

Target 200 15 22.5 80 200 15 22.5 10
Urethra 30 14 16 100 30 14 16 100
Bladder 0 0 7.5 90 - - - -
Rectum 0 0 7.5 30 0 0 7.5 30

2.4.1.3 The new joint objective function

Hidden weight was introduced into the original IPSA objective function (Equations (2.1) and
(2.2)). Hidden weight is an organ specific scaling of the IPSA weights (in Table 2.1), conveying
the user’s preferences between treating the prostate and sparing the OARs. These weights are
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hidden, in contrast to the IPSA weights that were exposed to the user for modifications. The
new joint objective function based on hidden weights is given by:

f = wTU (fT + fU ) + wBfB + wRfR, (2.3)

wTU + wB + wR = 1 (2.4)

Equation (2.3) represents how the total objective function (f) is calculated. In it, volumes
are denoted by their initials (T for target, U for urethra, B for bladder and R for rectum).
Hidden weights wTU , wB, wR are always non-negative, and their summation is 1. Individual
objective functions fT , fU , fB , fR are the same objective functions as those of the original IPSA
algorithm (Equations (2.1), (2.2) with data from Table 2.1). Based on the dose calculation
points of each organ, four individual objective functions are calculated, and are aggregated
into a single function after multiplication with hidden weights.

Two assumptions were made to formulate the new joint objective function (Equation (2.3)).
First, it assumes that the current class solution used in the clinic is a good starting point,
and clinically acceptable trade-offs will be found around that class solution by fine-tuning the
hidden weights values. Furthermore, the clinical class solution used for prostate and urethra
always results in a well-protected urethra. Over the 140 training cases, the mean V125 and D10

results are 0.08% and 105.7%, respectively (both well below the RTOG recommended values
described in Section 2.4.2.2). As a result, there is no motivation to leave the urethra weight as
a free parameter. Instead, it assumes that it is sufficient to let it vary from its class solution
value by the same magnitude as the target, with the added benefit of a reduction of the search
space (4 to 3 dimensions).

2.4.1.4 RTOG valid solutions

As recommended by the Radiation Therapy Oncology Group (RTOG) 0924 protocol [18],
RTOG valid solutions or clinically acceptable plans should meet the following requirements:

— Target V100 of at least 90%,

— In practice, a value above 90% (95%) is desirable because it is usually attainable in
the clinic without sacrificing the OAR protection.

— Bladder and rectum V75 < 1 cm3.

— Urethra D10 < 118%.

In the above items, Vx stands for the volume receiving x% of the prescription dose and Dx

stands for the dose covering x% of the volume.
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2.4.1.5 Determination of the number of iterations to reach the Pareto surface

Simulated annealing is a stochastic optimization approach, and is able to escape local minima
solutions. The selection of the number of iterations is a key element to reach the Pareto surface.
Here, the effect of the number of iterations on Pareto surface approximation was evaluated.

The Pareto surface of a bi-objective function (objective "subfunctions" for the target and the
bladder) was visualized and compared to illustrate the effect of the number of IPSA iterations
(200 000, 100 000, 50 000, 40 000, and 30 000 iterations per plan). The formulation of the global
objective function was based on Equation (2.3). In addition, the convexity of Pareto surfaces
of all 140 patients were verified.

2.4.2 Peri-Pareto surface approximation

In order to effectively approximate Pareto surfaces, a sandwich algorithm [102] has been
implemented in a research version of IPSA [55]. This IPSA is similar to the one implemented
in Oncentra Brachy, and allows us to use the algorithm as we see fit and integrate it within
other pieces of code. A treatment plan is mathematically an optimal solution (although SA
does not necessarily converge to a global optimum), or geometrically a vertex. A convex hull
algorithm (qhull) [141] was used to find convex hulls of current vertices. Both upper hulls and
lower hulls are found, and they are geometrically referred as facets.

The mechanism of the Pareto surface approximation can be divided into four steps: (1) anchor
plans computation, (2) current plan convex hull computation, (3) lower bounds and intersection
points computation, and (4) next plan computation.

Each step begins with a general description of how the mechanism works for clinical cases
(three objectives), and ends with an illustration of a bi-objective problem (visualization-friendly,
but not a clinical case) in Figure 2.1.

2.4.2.1 Computation of anchor plans

Usually, an anchor plan is defined as a Pareto optimal solution obtained by minimizing one
single objective [135]. In this study, the definition of anchor plan was extended slightly adding
the class solution as an anchor plan (can be seen as equally minimizing all organs) and an
anchor was not defined for a plan minimizing the urethral dose, again since it is inside the
target. The definition of anchor plans was defined as follows:

Anchor plan CS:
class solution or equally minimizing all organs (a planning template).
(wTU , wB, wR) = (13 ,

1
3 ,

1
3)
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Figure 2.1 – The mechanism of Pareto surface approximation (expected in open dots). (a)
Computation of anchor plans (P1, P2, P3). (b) Convex hull (including lower hulls LH1, LH2

in solid line, and rejected upper hull UH1 in dashed line) of current vertices. (c) Generation of
lower bounds (LB1, LB2, LB3 in solid lines) of Pareto surface, and intersection points (IP1,
IP2 in closed dots) of lower bounds. Note: LH1, LH2 in b were renamed as upper bounds
UB1, UB2. (d) Computation of next plan (P4) after optimization with w4 = 0.5(w1 + w2).
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Anchor plan minT:
only minimizing the target volume.
(wTU , wB, wR) = (1, 0, 0)

Anchor plan minB:
only minimizing the bladder volume.
(wTU , wB, wR) = (0.1, 0.9, 0)

Anchor plan minR:
only minimizing the rectum volume.
(wTU , wB, wR) = (0.1, 0, 0.9)

Note that in the third and fourth scenarios, the value of wTU was not set to zero as the
optimization would be trapped at an invalid solution (zero dwell times for all dwell positions)
and thus a small value of 0.1 was selected to represent an optimization that almost completely
favors the bladder or the rectum.

For a bi-objective problem in Figure 2.1a, three anchor plans (CS: P1, minT: P2, minB:
P3) were first computed after optimization with hidden weights w1 = (wT , wB) = (0.5, 0.5),
w2 = (wT , wB) = (1, 0), w3 = (wT , wB) = (0.1, 0.9). The Pareto surface was approximated
with 50 vertices (open dots in Figure 2.1).

2.4.2.2 Convex hull computation of current plans

A C++ version of the qhull algorithm [141] was integrated into IPSA to perform a convex
hull calculation. The algorithm reads an input file that contains individual objective function
values of current plans, and writes an output file that contains the convex hull information.
Both upper hulls and lower hulls obtained were expressed with a normal vector and an offset.
Upper hulls were identified if the output hulls have a negative offset, and were rejected in
following steps. A hull facet is identified by 3 vertices for a clinical case, or 2 vertices for the
bi-objective problem in Figure 2.1 (i.e. The hull LH1 is identified by P1 and P2).

For the bi-objective problem in Figure 2.1b, both upper hulls (dashed line, noted as UH) and
lower hulls (solid line, noted as LH1, LH2) were created by the qhull algorithm. Only lower
hulls LH1, LH2 will be used in following steps.

2.4.2.3 Computation of lower bounds and intersection points

Each lower hull facet found in Section 2.4.2.2 was used as an upper bound of the Pareto
surface, and was paired with the 3 vertices identifying this facet. For each vertex, a supporting
hyperplane was specified, and was used as a lower bound of the Pareto surface. The normal
vector of the supporting hyperplane is the hidden weight of this vertex. Three lower bounds
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linked with an upper bound intersected at one point. The distance between the intersection
point and the upper bound was calculated, and the upper bound facet with maximum distance
was chosen as the next-to-run facet.

For the bi-objective problem in Figure 2.1c, the lower hulls LH1 and LH2 in Figure 2.1b
were re-named as UB1and UB2 respectively to show that they served as upper bounds of the
Pareto surface. For the upper bound UB1, vertices P1 and P2 were on UB1, and therefore were
associated with it. For vertex P1, lower bound LB1 was found, and for vertex P2, lower bound
LB2 was found. Lower bounds LB1 and LB2 intersected at a point IP1, and the distance
between this intersection point IP1 and the upper bound UB1 was calculated. Same method
was implemented for UB2. The results are displayed in Figure 2.1c and show that UB1 was
clearly the next-to-run facet because the distance between IP1 and UB1 is larger than the
distance between IP2 and UB2.

2.4.2.4 Computation of the next plan

The average hidden weight of the three associated vertices on the next-to-run facet was used
to create the next plan. Steps described in Sections 2.4.2.2, 2.4.2.3, and this section were
repeated until a fixed number (an arbitrary value of 300 was used) of plans had been generated.

For the bi-objective problem in Figure 2.1d, P1 and P2 are the vertices associated with the
next-to-run facet UB1. The hidden weight of the next plan is w4 = 0.5(w1 + w2), and P4 is
the next plan that is obtained. Steps described in Sections 2.4.2.2, 2.4.2.3, and this section
were repeated until generating a total of 50 plans (open dots in Figure 2.1) to represent the
Pareto surface.

2.4.3 Post-Pareto surface approximation

2.4.3.1 Relationships between hidden weights and dosimetric parameters

For each case, the Pareto surface was represented with 300 Pareto optimal plans generated
using the method described in Section 2.4.2. For each Pareto optimal plan, dose-volume
histograms (DVH) and dosimetric parameters were computed for both target and OARs. For
the target, the relationship between the hidden weight value wTU and the dosimetric parameter
value V100 was studied, and the requirement of wTU to find RTOG valid solutions (only in
terms of the criteria of the target) was identified. For OARs, the relationship between the
hidden weight value (both absolute ones wB, wR and the relative ones wB/wTU , wR/wTU ) and
the dosimetric parameter value V75 was studied, and the requirement of the hidden weight to
find RTOG valid solutions (only in terms of the criteria of the related OAR) was identified.
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2.4.3.2 Regression models to obtain RTOG valid solutions

Even though it is possible to identify RTOG valid solutions after characterizing the Pareto sur-
face with numerous plans, the costly computation (1.1 h per patient) makes the implementation
unrealistic in clinical practice.

The concept of dosimetric indicators were therefore introduced to predict the clinically accept-
able solution space based on a few anchor plans. Dosimetric indicators are organ-specific, and
indicate the difficulty to reach the RTOG recommended dosimetric criteria from the planning
template (class solution). The dosimetric indicator value are determined based on the hidden
weights and the dosimetric results of anchor plans (Equations (2.5a) - (2.5c)).

diTU =
V100,RTOG − V100,CS

(V100,minT − V100,CS)/(wTU,minT − wTU,CS)
(2.5a)

diB =
D1ccB,RTOG −D1ccB,CS

(D1ccB,minR −D1ccB,CS)/(wB,minR − wB,CS)
(2.5b)

diR =
D1ccR,RTOG −D1ccR,CS

(D1ccR,minB −D1ccR,CS)/(wR,minB − wR,CS)
(2.5c)

In the definition of target-urethra dosimetric indicators diTU (Equation (2.5a) ), for instance,
variables V100,RTOG, V100,CS , V100,minT are the minimal target V100 values required by RTOG,
resulted in anchor plan CS, and resulted in anchor plan minT, respectively. A value of 95% (a
common criteria in clinic) was assigned to V100,RTOG. Variables wTU,minT , wTU,CS (defined in
Section 2.4.2.1) are the target-urethra hidden weights in anchor plan minT and in anchor plan
CS, respectively.

The numerator of diTU reflects the difference between V100,RTOG (expectation) and V100,CS
(starting point), and the denominator of diTU reflects the change of V100 per unit of hidden
weight wTU (or 4V100/4 wTU ). As a result, the value of diTU indicates the level of difficulty
to obtain a 95% of target V100 value from the class solution. The same strategy was applied to
the OARs in Equation (2.5b-c).

With the method described in Section 2.4.3.1, Pareto surfaces were approximated and the
requirement of the hidden weight to find RTOG valid solutions were identified for 140 prostate
cases. In addition, the dosimetric indicator values were also determined for those cases.

The relationship between the dosimetric indicator values and the hidden weight values was
observed. Simple regression models (Microsoft Excel Version 15.27) including linear and
polynomial models were applied to illustrate this relationship, and one appropriate model with
the highest R2 result was chosen.
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2.5 Results

2.5.1 Pre-Pareto surface approximation

2.5.1.1 Determination of the number of iterations to reach the Pareto surface

In Figure 2.2, Pareto surfaces of a bi-objective problem were approximated under 5 different
number of iterations (200 000, 100 000, 50 000, 40 000, 30 000) were compared. From the result,
the Pareto surface can already be well represented with 100 000 iterations because there was
not significant improvement with further iterations (200 000 iterations). For an average size
prostate clinical case, the optimization time is 2.5 s per 10 000 iterations. Therefore, in order
to be clinically pragmatic, 50 000 iterations per solution was chosen to approximate the Pareto
surface in this study.
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Figure 2.2 – Comparison of Pareto surface approximations under 5 scenarios (200 000, 100 000,
50 000, 40 000, 30 000 iterations).

Pareto surfaces of 140 patients were approximated under 50 000 iterations of IPSA. On average,
about 98 % solutions were non-dominated (no solution that improves all individual objective
function values exists). Therefore it seems safe to assume that our method is capable of
sufficiently approximating the Pareto surface.
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2.5.2 Peri-Pareto surface approximation

2.5.2.1 Distributions of objective functions and hidden weights

The Pareto surface of one clinical case was characterized with 300 Pareto optimal plans. The
distribution of hidden weights leading to such a Pareto surface characterization is shown
in Figure 2.3a, and the distribution of resulting dosimetric parameter results is shown in
Figure 2.3b.
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Figure 2.3 – Pareto surface approximation of one case (anchor plan in squares, regular optimal
plans in solid dots, clinical acceptable plans in open dots) (a) Distribution of hidden weights
(b) Distribution of dosimetric parameters.

2.5.3 Post-Pareto surface approximation

2.5.3.1 Relationships between hidden weights and dosimetric parameters

The relationships between the hidden weights and the dosimetric parameters for the same case
in Section 2.5.2.1 are shown in Figure 2.4. From the result in Figure 2.4a, there is a positive
correlation between the absolute hidden weight value and the dosimetric parameter value for
the target. However, as shown in Figure 2.4b-c, there are negative correlations between the
relative hidden weight value and the dosimetric parameter value for the bladder or the rectum
(closed dots in Figure 2.4). Similar behaviors were not found between the absolute hidden
weight value and the dosimetric parameter value for the bladder or the rectum (open squares
in Figure 2.4).
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Figure 2.4 – Relationships between hidden weights and dosimetric parameters (the require-
ments of hidden weights are in dashed lines, the dosimetric results of anchor plans are in closed
stars). (a) The relationship between wTU and V100 for the target. (b) The relationship between
wB/wTU (closed dots), wB (open squares) and V75 for the bladder. (c) The relationship
between wR/wTU (closed dots), wR (open squares) and V75 for the rectum.

From the dashed lines in Figure 2.4, the requirements to obtain RTOG valid solutions can be
identified as: wTU ≥0.39, wB/wTU ≥0.12, wR/wTU ≥0.08. Since the criteria of the urethra
can be met for all the cases studied, its result was ignored in Figure 2.4.

2.5.3.2 Regression models to obtain RTOG valid solutions

A set of polynomial models to predict the requirement of hidden weights to obtain RTOG valid
solutions for new cases is illustrated in Figure 2.5. Dosimetric indicators were calculated with
Equation (2.5) simply based on anchor plans (stars in Figure 2.4).
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Figure 2.5 – Regression models ((a) prostate, (b) bladder, (c) rectum) to have RTOG valid
solutions based on dosimetric indicators (In each subfigure, one dot refers to the dosimetric
indicator value and the hidden weight value of one patient, and the line is the fit based on all
dots).

2.5.3.3 Performance

Pareto surfaces for 140 prostate cases were characterized. For each case, 300 Pareto optimal
plans were created. The average time to obtain one plan is 13.3 s (50 000 iterations optimization
+ DVH computations).

Therefore, in order to characterize Pareto surface for 140 cases, a total number of 42 000 plans
were generated, for a total time of approximately 155 h (140× 300× 13.3 s).

2.6 Discussion

The first part of the study serves as a preprocessing stage of developing an operator-free inverse
planning algorithm for HDR brachytherapy.

In EBRT, DVH based objective functions usually lead to a non-convex solution space [142]. In
our case, convex Pareto surfaces were observed. A sandwich algorithm was implemented within
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the framework of IPSA to iteratively populate the Pareto surface. This algorithm approaches
both upper bounds and lower bounds of the surface, and has the capacity of steering the new
points towards the part of the Pareto surface with a high approximation error [135,136].

The objective function of commercial brachytherapy inverse planning algorithms, including
IPSA, is usually based on limited dose calculation points, rather than all possible dose
calculation points (i.e. DVH or dosimetric parameters). For example, only the bladder surface
dose calculation points near the target (or dwell positions) are used in optimization in IPSA.
However, such a compromise of efficiency [143] does not necessarily lead to a disadvantage,
since a direct/indirect relationship between hidden weights and dosimetric parameters can
already be achieved with IPSA (Figure 2.4).

The characterization of Pareto surfaces is a compute-intensive process (1.1 h per patient in
this study), and a Pareto surface approximation algorithm may thus not be compatible to
a real-time inverse planning system. However, the resulting regression models (Figure 2.5)
enable an extremely fast navigation for any new prostate HDR brachytherapy cases.

In a companion paper, the regression models obtained in this study were implemented within
IPSA to automatically generate a plan. This plan was benchmarked against a physician-
approved plan in terms of dosimetric parameters and performance.

2.7 Conclusion

A sandwich algorithm was implemented to automatically populate Pareto surfaces in the HDR
brachytherapy planning process. The algorithm was tested with 140 prostate cases. The
algorithm could help treatment planners and researchers better understand the trade-off on
Pareto surfaces, and the results may help in obtaining a clinically acceptable plan without
manual tuning of the class solution on a case-by-case basis.
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3.1 Résumé

L’approche itérative actuelle de la planification inverse de la planification du traitement à haut
débit de dose peut prendre beaucoup de temps. Cette étude en deux parties vise à rationaliser le
processus de planification tout en maintenant la qualité du plan. Dans cette seconde partie, un
algorithme de planification d’optimisation multi-critères (Multi-Criteria Optimization, MCO)
est proposé et comparé à un algorithme de planification standard.

Avec un ensemble de modèles de régression préalablement établis, un espace de solution
valide spécifique au patient sur la surface de Pareto a été prédit en fonction des résultats du
plan d’ancrage. Des plans alternatifs générés parallèlement au front partiel de Pareto ont été
présentés au planificateur, et un plan a été choisi comme plan de MCO. Les résultats des
paramètres dosimétriques ainsi que le temps de planification ont été comparés entre les plans
de MCO et les plans standard approuvés par le médecin pour 236 cas de prostate.

Les résultats montrent que la planification de l’MCO protège mieux l’urètre que la planification
standard (valeur urétrale moyenne inférieure D10 de 2.25%). La qualité globale du plan MCO
est également supérieure à la qualité du plan standard, car la planification MCO est capable
d’augmenter la fréquence des plans cliniquement acceptables répondant à tous les critères
RTOG simultanément sans intervention humaine (de 83.05% à 97.46%). Enfin, le temps
de planification moyen d’une MCO est 41 s sans aucune intervention des planificateurs de
traitement.

L’algorithme de planification MCO présenté constitue un moyen robuste et automatisé d’amé-
liorer la qualité du traitement en curiethérapie.
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3.2 Abstract

The current iterative approach to inverse planning of high dose rate (HDR) treatment planning
can be time consuming. The purpose of this two-part study is to streamline the planning
process while maintaining plan quality. In this second part, a multi-criteria optimization (MCO)
planning algorithm is proposed and benchmarked against a standard planning algorithm.

With a set of previously established regression models, a patient-specific valid solution space on
the Pareto surface was predicted based on the anchor plans results. Alternative plans generated
alongside the partial Pareto front were presented to the planner, and one plan was selected as
the MCO plan. The dosimetric parameters results as well as the planning time were compared
between the MCO plans and the physician-approved standard plans for 236 prostate cases.

Results show that the urethra is better spared with MCO planning than with standard
planning (a lower mean urethral D10 value of 2.25%). The overall MCO plan quality also
outperforms the standard plan quality, since MCO planning is able to increase the frequency
of clinically acceptable plans meeting all of RTOG criteria simultaneously without any human
intervention (from 83.05% to 97.46%). Finally, the average MCO planning time is 41 s without
any interventions of treatment planners.

The presented MCO planning algorithm constitutes a robust and automated way to improve
treatment quality in brachytherapy.

keywords: brachytherapy, prostate cancer, patient-specific, treatment planning, optimization
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3.3 Introduction

Radiotherapy, along with surgery and chemotherapy are three major methods of cancer
treatment [144]. Radiotherapy can be categorized into external-beam radiotherapy (EBRT)
and internal radiotherapy (brachytherapy). With EBRT, tumor cells are killed by radiation
beams generated from a linear accelerator, and with brachytherapy, small radioactive sources
are directly implanted into or near a tumor [8].

High dose rate (HDR) brachytherapy consists of a temporary implant of a radioactive source
with ≥ 12 Gy h−1 dose rate, and it can either serve as a monotherapy or a boost to EBRT [145].
During treatment planning, treatment planners need to determine a set of dwell times and
dwell positions that results in a dose distribution, which is high enough to kill cancerous cells
but low enough to spare organs at risk (OARs) [9].

Commercially available inverse planning algorithms used in HDR brachytherapy such as
Inverse Planning Simulated Annealing (IPSA) [55] and Hybrid Inverse Planning Optimization
(HIPO) [57] are able to help treatment planners optimize the dose distribution. However, the
underlying objective function of these algorithms is population based and thus not tailored
specifically to each patient.

Several patient-specific inverse planning algorithms such as multi-criteria optimization [102,146],
knowledge-based planning [147–149] and artificial intelligence based approaches [123,150,151]
have been proposed to improve current planning practice in EBRT and low dose rate (LDR)
brachytherapy. MCO first populates Pareto surface by constructing a plan dataset and lets
treatment planners navigate among these plans [152]. Knowledge-based planning matches one
or several physician-approved plans based on the similarity of anatomic geometric features.
Artificial intelligence approaches try to solve the problem using a machine learning algorithm.
To the best of our knowledge, the only two HDR brachytherapy studies about patient-specific
inverse planning algorithms [153,154] were specific to gynecological (GYN) cancers.

MCO developed for external beam therapy [102,146] may not be compatible to the planning in
HDR prostate brachytherapy that usually occurs in the operation room because interactively
populating the Pareto surface is time consuming.

In this study, a patient-specific inverse planning algorithm called multi-criteria optimization is
proposed for HDR brachytherapy. The algorithm was benchmarked in terms of the dosimetric
parameters and the planning time against physician-approved plans for 236 prostates cases.
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3.4 Materials and Methods

3.4.1 Patient selection

Two hundred and thirty-six prostate cases who received HDR brachytherapy as a boost to
EBRT were randomly selected. These cases are different from the cases used in the first
part study, but they are both from a larger patient database [139,140]. For each case, 16-18
catheters were implanted in the prostate under the guidance of a transrectal ultrasound while
the patient was under anesthesia, and one fraction of 15 Gy was delivered using Ir-192 from a
Flexitron afterloader (Elekta Brachy, Veenendaal, The Netherlands). The structures of the
target, the bladder, the rectum and the urethra were contoured on a CT dataset by a physician.
The mean prostate volume was 57.4 cm3 (SD: 20.6 cm3).

3.4.2 RTOG valid solutions

Plan evaluations may vary across centers as described in the American Brachytherapy Society
(ABS) Consensus Guidelines [41]. The Radiation Therapy Oncology Group (RTOG) 0924
protocol [18] recommended that valid solutions or clinically acceptable plans for CT based
HDR prostate brachytherapy boost should meet the following requirements:

— Target V100 of at least 90%,

— A value above 90% (95%) is desirable because it is usually attainable in the clinic
without sacrificing the OAR protection.

— Bladder and rectum V75 < 1 cm3.

— Urethral D10 < 118% of the prescription dose.

In the above items, Vx stands for the volume receiving x% of the prescription dose and Dx

stands for the dose covering x% of the volume.

3.4.3 Standard planning

Standard planning involved creating a treatment plan with the traditional inverse planning
algorithm IPSA in Oncentra Prostate (Elekta Brachy, Veenendaal, The Netherlands). The
objective functions of the inverse planning algorithm include several linear piecewise functions
which are formulated based on Equation (3.1). The minimum dose limitDmin and the maximum
dose limit Dmax are the underdosage limit and the overdosage limit, respectively. The weight
of minimum dose limit wmin and the weight of maximum dose limit wmax are also referred as
the slope of the piecewise function. The objective function value depends on the dose values
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x at dose calculation points. There are two types of dose calculation points: surface dose
calculation points (on the contours) and volume dose calculation points (inside the volume).

f(x) =


wmin(Dmin − x) x < Dmin

0 Dmin ≤ x ≤ Dmax

wmax(x−Dmax) x > Dmax

(3.1)

In this approach, treatment planners first set up the objective function with a planning template
called class solution (Table 3.1), which contains recommended dose limits and weights values [55].
After the initial optimization, a plan was created and evaluated based on dosimetric parameters
and the isodose curves. Usually, the class solution would be modified and the aforementioned
steps would be repeated until a RTOG valid solution is obtained. This trial-and-error procedure
of the standard planning is illustrated in Figure 3.1.

Table 3.1 – The IPSA class solution for 15 Gy prostate boost HDR treatment (Surface: surface
dose calculation points. Volume: volume dose calculation points).

Organ Surface Volume
wmin Dmin(Gy) Dmax(Gy) wmax wmin Dmin(Gy) Dmax(Gy) wmax

Target 200 15 22.5 80 200 15 22.5 10
Urethra 30 14 16 100 30 14 16 100
Bladder 0 0 7.5 90 - - - -
Rectum 0 0 7.5 30 0 0 7.5 30

3.4.4 Multi-criteria optimization planning

To improve the efficiency of the standard planning approach, it is desirable to avoid manual
modifications of the class solution. To achieve this, the MCO planning algorithm was imple-
mented based on a research version of IPSA [55], which is similar to the one implemented in
Oncentra Brachy, and allows us to use the algorithm as we see fit and integrate it within other
pieces of code. In Figure 3.2, the formulations of objective functions for both the standard
planning and the MCO planning are illustrated.

Here, T refers to Target, U refers to Urethra, B refers to Bladder, and R refers to Rectum.
The standard objective function fS is the summation of all individual objective functions (fT ,
fU , fB, fR) which are determined by the dose values x at the dose calculation points (dots in
Figure 3.2).

As for the MCO objective function fMCO, the concept of the hidden weights ( wTU , wB, wR)
was introduced. The non-negative hidden weights are organ specific, and are used to represent
the user’s preferences between treating the target and sparing the OARs. The MCO objective
function fMCO is a ’hidden weighted’ sum of the individual objective functions.
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Figure 3.1 – The re-planning procedure with Oncentra Prostate where the treatment planner
manually adjusts the class solution.

Figure 3.2 – The formulations of the standard objective function and the MCO objective
function: the standard objective function fS (dashed lines) is the summation of the individual
objective functions, and the MCO objective function fMCO (solid lines) is a ’hidden weighted’
sum of the individual objective functions.

63



Two assumptions were made to construct fMCO. First, it assumes that clinically acceptable
trade-offs will be found around the population-based class solution by leveraging hidden
weights. Furthermore, the clinical class solution used for prostate and urethra always results in
a well-protected urethra. Over the 140 training cases, the mean V125 and D10 results are 0.08%
and 105.7%, respectively (both well below RTOG recommended values). As a result, there is
no motivation for this specific protocol to leave the urethra weight as a free parameter. Instead,
it assumes that it is sufficient to let it vary from its class solution value by the same magnitude
as the target, with the added benefit of a reduction of the search space (4 to 3 dimensions).

The mechanism (Figure 3.3) of the MCO planning can be divided into 4 steps: (1) anchor plan
computation, (2) weight adjustment, (3) alternative plan computation and (4) plan selection.
The details of each step will be described below.

Figure 3.3 – The MCO planning mechanism: four anchor plans computation, weight adjust-
ment, ten alternative plans computations, and plan selection (from left to right).

3.4.4.1 Anchor plan computation

This step consists of four anchor plans computations. Usually, an anchor plan is defined as a
Pareto optimal solution obtained by minimizing one single objective [135]. The definition of
anchor plans was extended by adding the class solution as an anchor plan:

Anchor plan CS:
class solution (CS) or equally minimizing all organs.
(wTU , wB, wR) = (13 ,

1
3 ,

1
3)

Anchor plan minT:
only minimizing the target volume (minT).
(wTU , wB, wR) = (1, 0, 0)

Anchor plan minB:
only minimizing the bladder volume (minB).
(wTU , wB, wR) = (0.1, 0.9, 0)

Anchor plan minR:
only minimizing the rectum volume (minR).
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(wTU , wB, wR) = (0.1, 0, 0.9)

Ideally for anchor plan minB or anchor plan minR, the value of wTU will be set to zero and
only the bladder volume or the rectum volume will be optimized. However, in order to keep
the optimization from being trapped at an invalid solution (zero dwell times for all dwell
positions), an arbitrary and small value of 0.1 is selected to represent an optimization that
almost completely favors the bladder or the rectum.

3.4.4.2 Weight adjustment

In the companion paper, organ-specific dosimetric indicators (di) were introduced, and their
values can be used to predict the weights in the clinically relevant region of the Pareto surface.
Dosimetric indicators are determined by anchor plans (Equations (3.2a) - (3.2c)), and their
values indicate the level of difficulty to reach a clinical plan from a planning template (class
solution).

diTU =
V100,RTOG − V100,CS

(V100,minT − V100,CS)/(wTU,minT − wTU,CS)
(3.2a)

diB =
D1ccB,RTOG −D1ccB,CS

(D1ccB,minR −D1ccB,CS)/(wB,minR − wB,CS)
(3.2b)

diR =
D1ccR,RTOG −D1ccR,CS

(D1ccR,minB −D1ccR,CS)/(wR,minB − wR,CS)
(3.2c)

In the definition of target-urethra dosimetric indicators diTU (Equation (3.2a) ), for instance,
variables V100,RTOG, V100,CS , V100,minT are the minimal target V100 values required by RTOG,
resulted in anchor plan CS, and resulted in anchor plan minT, respectively. A value of 95% (a
common criteria in clinic) was assigned to V100,RTOG. Variables wTU,minT , wTU,CS (defined in
Section 3.4.4.1) are the target-urethra hidden weights in anchor plan minT and in anchor plan
CS, respectively.

The numerator of diTU reflects the difference between V100,RTOG (expectation) and V100,CS
(starting point), and the denominator of diTU reflects the change of V100 per unit of hidden
weight wTU (or 4V100/4 wTU ). As a result, the value of diTU indicates the level of difficulty
to obtain a 95% of target V100 value from the class solution. The same approach was also used
for OARs, using D1cc for the bladder and the rectum (Equations (3.2b) and (3.2c)).

One of the major results in the companion study is the regression curves (along with their
corresponding equations in Figure 3.4) that illustrate the relationship between dosimetric
indicators and the hidden weights of the clinically relevant solution space. Therefore, by
inputing the results of dosimetric indicators (or anchor plans) into the regression curves, the
hidden weight requirements to reach a RTOG valid solution can be estimated.

65



{

{
≥ 

< 

≥ 

< 

Figure 3.4 – Regression curves to predict the RTOG valid region on the Pareto surface based
on dosimetric indicators for (a) prostate, (b) bladder and (c) rectum (hidden weight larger
than 1 is not necessary achievable, and will be scaled during optimization.).

3.4.4.3 Alternative plan computation

In Section 3.4.4.2, the requirements of hidden weights to reach the RTOG valid region can
be estimated, e.g., wTU ≥ a, wB/wTU ≥ b, wR/wTU ≥ c (or approximated as: wTU ≥ a,
wB ≥ a × b, wR ≥ a × c, where a, b, c refer to three constants that are calculated by three
equations in Figure 3.4).

In addition to anchor plans, a set of alternative plans that variously favor different organs were
created. However, there are two problems when constructing a high quality plan dataset: (1)
the requirements are only estimations, the dataset may fail to include any RTOG valid plans,
if the dataset size is too small. (2) if a+ a× b+ a× c > 1, it could be difficult or impossible to
obtain a RTOG valid plan, because these requirements could not be met simultaneously.

For the first problem, 10 alternative plans are generated as a balance between the cost of
computational resources and the quality of the plan dataset based on our observations, due to
the fact that dual six-core CPUs are able to compute up to 12 plans in parallel.
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As for the second problem, it is necessary to rescale a, b, c, so that a+ a× c+ a× c is always
below 1. A comparison between a scaling factor of 0.8/(a+ a× c+ a× c) and a scaling factor
of 0.9/(a + a × c + a × c) suggested that the scaling factor of 0.8/(a + a × c + a × c) could
better guarantee a RTOG valid plan.

In this way, the rescaled requirements of hidden weights can guide the plan operators to an
estimated RTOG valid region on the Pareto surface. Furthermore, by assigning an additional
value of 0.2 (i.e., 1 − 0.8) to the hidden weights wTU , wB, wR according to a mathematical
combination rule, 10 alternative plans that variously favor different organs were created near
the estimated RTOG valid region.

3.4.4.4 Plan selection

After the computations detailed in Sections 3.4.4.1, 3.4.4.2, 3.4.4.3, a plan dataset consisting
of 4 anchor plans and 10 alternative plans was created. There are two options to select the
final plan: user-selection and auto-selection.

With the option of user-selection, this step will be left to treatment planners according to the
clinical practice. A python script was implemented to facilitate the navigation to the final plan
among the plan dataset. With the option of auto-selection, a plan can be automatically selected
for the user from the plan dataset. The principles of selecting the final plan are described as
follows:

— If there is at least one RTOG valid plan in the plan dataset, choose the one with a
maximal target V100 value.

— If there are no RTOG valid plan in the plan dataset, choose the one with a minimal
target V100 value (but still ≥90%), while V75 values of the bladder and the rectum ≤
1 cm3.

Figure 3.5 illustrates an example of the four steps of the MCO planning. In this example, four
anchor plans (stars) were computed, and the results of dosimetric indicators were calculated
(Equations 3.2). The requirements (dashed line) of hidden weights to reach the RTOG valid
region were estimated based on the results of dosimetric indicators (Figure 3.4). Alternative
plans (solid dots) were computed within the range defined by the anchor plans and finally one
plan (open squares) was selected from the plan dataset.

3.4.5 Comparisons

For each case, a physician-approved plan obtained using the standard planning was referred as
a standard plan. As a retrospective study, the dosimetric parameters results of this plan were
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Figure 3.5 – An example to illustrate the MCO planning: anchor plan computation (stars) in
Section 3.4.4.1, weight adjustment (dashed lines) in Section 3.4.4.2, alternative plan computation
(solid dots) in Section 3.4.4.3, and plan selection (open squares) in Section 3.4.4.4.

retrieved using 3D Slicer [155] from the RS and RD DICOM images that were exported from
Oncentra Prostate (Elekta Brachy, Veenendaal, The Netherlands). On the other hand, a plan
obtained using the MCO planning under the auto-selection option was referred as a MCO plan.

A set of dosimetric comparisons as well as a planning time comparison were conducted for 236
prostate cases between the standard planning and the MCO planning.

Dosimetric comparisons between two planning approaches include a histogram that illustrated
the distributions of dosimetric parameters, and a box-and-whisker diagram that provided the
statistic information (such as the median, the upper quartile and the lower quartile) as a
supplement.

3.4.6 Computational implementations

The planning time was measured on an Intel Xeon X5650 processor (12M Cache, 2.66 GHz).
To achieve a high efficiency, a multithreading scheme openMP [156] was implemented for both
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the anchor plans (Section 3.4.4.1) and the alternative plans computations (Section 3.4.4.3).
After acceleration using openMP, the MCO planning time was measured on dual Intel Xeon
X5650 processors.

In addition, the number of IPSA iterations to compute a plan is 50 000 because the results of
the companion study indicated that this number was a clinically pragmatic choice and that
the improvement of further iterations (200 000 iterations) was limited.

3.5 Results

3.5.1 The interface of the user-selection option

The procedure of user-selection is interactive, a real-time comparison of both dose-volume-
histograms (DVHs) and dosimetric parameters is displayed as the user drags the ID slider (left
in the Figure 3.6). A final plan can be selected from the plan dataset until the user is satisfied
with the dosimetric parameters results.

Figure 3.6 – An interactive interface that helps user navigate a final plan under the user-
selection option (left: the ID slider, middle: the DVH result, bottom: the dosimetric parameter
slider, vertical lines in the dosimetric parameter slider indicate the corresponding clinical
criteria).
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3.5.2 Dosimetric results

In Figure 3.7, the histogram on the left compares the frequency of the dosimetric parameters
between two planning methods, and the box plot on the right visualizes the descriptive statistics,
such as the median, the upper quartile and the lower quartile.

The proportion of plans with a target V100 value of at least 95% or more was 55.5% in the
standard plans, and 68.6% in the MCO plans.

As for OARs, a lower mean urethral D10 value -2.25%) was observed in the MCO plans, and
all plans complied with the RTOG criteria of the urethra (D10 > 118%).

The proportion of plans that violated the bladder RTOG criteria (V75 > 1 cm3) was 15.25%
and 2.54% in the standard and MCO plans respectively.

Finally, 2.54% of the standard plans and 2.97% of the MCO plans violated the rectum RTOG
criteria (V75 > 1 cm3).

Overall, the probability of clinically (RTOG, using V100 at 90% or more) acceptable plan was
97.46% for the MCO plans without any manual interventions, and was 83.05% for the standard
plans with manual intervention.

Figure 3.7 – A further comparison of dosimetric parameters results between the standard plans
and the MCO plans: a histogram (left) that compares the frequency of dosimetric parameters
values, and a box-and-whisker plot (right) that compares the descriptive statistics informations
of dosimetric parameters.
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3.5.3 Performance

The average standard planning time (a single plan with dose optimization and DVH com-
putation) was around 15 s. The average MCO planning time (14 plans) was 3.9 min before
acceleration, and was 41 s after acceleration using openMP. The time for manual review of the
isodose curves is not included in the numbers quoted above.

3.6 Discussion

MCO planning is capable to improve the number of RTOG valid plans based on the following
results of two planning methods: (1) a comparable target coverage and urethra protection (all
plans but one (standard) meet the RTOG criteria), (2) a comparable rectum protection (plans
with a >1 cm3 V75: 2.97% (2.54%) for MCO (standard). (3) a significant improvement in the
bladder protection of the MCO plans (plans with a > 1 cm3 V75 value: 2.54% (15.25%) for
MCO (standard).

The presented work has shown that it is possible to remove the manual weight adjustments
using the resulting regression models, and that the computing efficiency in planning can be
potentially improved with the MCO planning. Multiple plans with various trade-offs generated
within a clinically acceptable time were presented to the physician to choose from. In this way,
the MCO planning enabled a true patient-specific inverse planning algorithm. The proposed
algorithm can be implemented in a clinical TPS as an adjunct treatment planning tool that is
able to rapidly provide optimal plans by providing already generated alternative plans, even to
inexperienced planners. To the best of our knowledge, this is the first study to establish an
advanced inverse planning algorithm in HDR brachytherapy for prostate cases.

It is worth noting that the regression models were estimated from a relatively small training set
(140), however the results were validated with a relatively large set (236). This is particularly
important when high quality and consistent data are limited.

In future studies, the philosophy of the proposed MCO planning algorithm may be tested on
other HDR brachytherapy sites such as gynecologic and breast. The implementation of the
MCO planning into current treatment planning system may also be desirable.

3.7 Conclusion

A patient-specific brachytherapy inverse planning algorithm called multi-criteria optimization
planning is presented in this two-part study. With this algorithm, high quality treatment plans
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are generated avoiding the need for user intervention in the standard manual iterative planning
approach, and the planning time spent in the operating room could therefore be reduced.
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4.1 Résumé

Actuellement, dans la planification de la curiethérapie HDR, un réglage manuel d’une fonction
objectif est nécessaire pour obtenir des plans valides spécifiques à chaque cas. Cette étude vise
à faciliter ce processus en proposant un algorithme de planification inverse spécifique au patient
pour la curiethérapie HDR de la prostate : optimisation multicritère basée sur GPU (gMCO).

Deux moteurs d’optimisation basés sur GPU, comprenant le recuit simulé (gSA) et un optimiseur
quasi-Newton (gL-BFGS), ont été mis en œuvre pour calculer plusieurs plans en parallèle. Après
évaluation de l’équivalence et des performances de calcul de ces deux moteurs d’optimisation, un
moteur d’optimisation préféré a été sélectionné pour l’algorithme gMCO. Cinquante-soixante-
deux cas de HDR de prostate précédemment traités ont été divisés en ensemble de validation
(100) et en ensemble de test (462). Dans l’ensemble de validation, le nombre de plans optimaux
de Pareto permettant d’obtenir la meilleure qualité de plan a été déterminé pour l’algorithme
gMCO. Dans l’ensemble de tests, les plans de gMCO ont été comparés aux plans cliniques
approuvés par les médecins.

Nos résultats indiquent que le processus d’optimisation est équivalent entre gL-BFGS et gSA
et que les performances de calcul du gL-BFGS sont jusqu’à 67 fois plus rapides que celles de
gSA. Sur 462 cas, le nombre de plans valides sur le plan clinique était de 428 (92.6%) pour les
plans cliniques et de 461 (99.8%) pour les plans gMCO. Le nombre de plans valides avec une
couverture cible de V100 supérieure à 95% était de 288 (62.3%) pour les plans cliniques et de
414 (89.6%) pour les plans gMCO. Le temps de planification moyen était de 9.4 s pour que
l’algorithme gMCO génère des plans optimaux de Pareto.

En conclusion, le gL-BFGS est capable de calculer des milliers de plans de traitement équivalents
au SA en très peu de temps. Optimisé par gL-BFGS, un algorithme d’optimisation multicritères
ultra-rapide et robuste a été mis en œuvre pour la curiethérapie HDR de la prostate. Des pools
de plans avec divers compromis peuvent être créés avec cet algorithme. Une comparaison à
grande échelle avec les plans cliniques approuvés par les médecins a montré que la qualité
du plan de traitement pouvait être améliorée et que le temps de planification pouvait être
considérablement réduit avec l’algorithme gMCO proposé.
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4.2 Abstract

Currently in HDR brachytherapy planning, a manual fine-tuning of an objective function
is necessary to obtain case-specific valid plans. This study intends to facilitate this process
by proposing a patient-specific inverse planning algorithm for HDR prostate brachytherapy:
GPU-based multi-criteria optimization (gMCO).

Two GPU-based optimization engines including simulated annealing (gSA) and a quasi-Newton
optimizer (gL-BFGS) were implemented to compute multiple plans in parallel. After evaluating
the equivalence and the computation performance of these two optimization engines, one
preferred optimization engine was selected for the gMCO algorithm. Five hundred sixty-two
previously treated prostate HDR cases were divided into validation set (100) and test set (462).
In the validation set, the number of Pareto optimal plans to achieve the best plan quality was
determined for the gMCO algorithm. In the test set, gMCO plans were compared with the
physician-approved clinical plans.

Our results indicated that the optimization process is equivalent between gL-BFGS and gSA,
and that the computational performance of gL-BFGS is up to 67 times faster than gSA. Over
462 cases, the number of clinically valid plans was 428 (92.6%) for clinical plans and 461
(99.8%) for gMCO plans. The number of valid plans with target V100 coverage greater than
95% was 288 (62.3%) for clinical plans and 414 (89.6%) for gMCO plans. The mean planning
time was 9.4 s for the gMCO algorithm to generate 1000 Pareto optimal plans.

In conclusion, gL-BFGS is able to compute thousands of SA equivalent treatment plans within
a short time frame. Powered by gL-BFGS, an ultra-fast and robust multi-criteria optimization
algorithm was implemented for HDR prostate brachytherapy. Plan pools with various trade-
offs can be created with this algorithm. A large-scale comparison against physician approved
clinical plans showed that treatment plan quality could be improved and planning time could
be significantly reduced with the proposed gMCO algorithm.

keywords: brachytherapy, prostate cancer, patient-specific, treatment planning, optimization,
GPU
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4.3 Introduction

About 52.3% of non-skin cancer patients receive radiation therapy during the course of their
illness [3–5]. The most common radiation therapy treatment particle type used is photon, which
can be delivered either externally from a medical linear accelerator (External Beam Radiation
Therapy - EBRT) or internally from an inserted small radioactive source (brachytherapy, high
dose rate (HDR) or low dose rate (LDR)).

Dose prescriptions in modern radiation treatment planning contain both tumor and healthy
organ objectives. These objectives are often conflicting and can be generalized as: treating
the tumor with high radiation dose and sparing the healthy organs with low radiation doses.
Computerized treatment planning systems were used to formulate clinical prescriptions into
a mathematical optimization problem, and to find treatment plans that well presented these
prescriptions with treatment facilities.

However, most available algorithms are not inherently patient-specific in a sense that manual
re-plannings are usually inevitable to find a clinically acceptable plan for each patient. As
a result, the planning procedure can be time consuming and the planning output is planner
dependant [95,157,158].

Several patient-specific inverse planning algorithms such as knowledge-based planning (KBP),
auto-planning (AP) and multi-criteria optimization (MCO) have been proposed in EBRT.
In KBP, one plan is created for a new case by searching in a prior physician-approved plan
dataset based on the geometric features [95,158–160]. In AP, a clinical plan can be obtained by
interactively and automatically adapting objectives, constraints and dose shaping contours [115].
In MCO, a plan pool is constructed by generating plans with various trade-offs on Pareto
surfaces [102,146]. Similar studies can also be found in brachytherapy [64,124,154,161,162].

Our prior studies [64,162] showed that a patient-specific treatment plan can be created without
any user interventions in HDR prostate brachytherapy. However, the optimization engine of
these studies was stochastic, and was implemented on CPU hardware [64, 162]. As a result,
the algorithm inevitably involved an intensive computation (41 s), which may restrain its
application in clinical practice because the patient is under general anesthesia in the operating
room waiting for the treatment to be delivered.

The capability of graphics processing unit (GPU) architecture in reducing calculation time
in medical physics were reviewed in [49,163,164]. The purpose of this study is to propose an
ultra-fast patient-specific inverse planning algorithm on GPU for HDR brachytherapy.
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4.4 Methods and Materials

This section begins with a detailed description of experimental setups including patient selection,
mathematical formulations and computational specifications. Next, two inverse planning
optimization engines were implemented on GPU architecture to calculate multiple plans in
parallel and to populate the Pareto surfaces. Powered by the preferred optimization engine,
a GPU-based multi-criteria optimization algorithm (gMCO) which is able to automatically
generate clinical plans was proposed to eliminate the re-planning problem in HDR brachytherapy.
In the end, a comprehensive comparison, including dosimetric performance as well as planning
time, between clinical plans and gMCO plans was made.

4.4.1 Experimental setup

4.4.1.1 Patient selection

An anonymous dataset that contains 562 prostate cancer patients who received an HDR
brachytherapy treatment as a boost to EBRT from 13/04/2011 to 06/07/2016 at our institution
was studied. This dataset incorporates the cases studied in prior works [64,162,165]. Among
the dataset, 100 random cases (validation set) were used to determine the number of Pareto
optimal plans with the gMCO algorithm, and 462 random cases (test set) were used in the
performance evaluation of the gMCO generated plans. After inserting 16-18 plastic catheters
into the prostate under a transrectal ultrasound guidance, the anatomy of these patients was
obtained from CT scans. Organ structures (prostate, urethra, bladder and rectum) were
delineated and were imported into a commercial treatment planning system (Elekta Oncentra
Brachy IPSA, Veenendaal, The Netherlands). The prescription was 15 Gy in a single fraction
to the prostate. Plans were delivered using a Flexitron afterloader (Elekta Brachy, Veenendaal,
The Netherlands) with an Ir-192 radioactive source.

The dwell positions were extracted from DICOM-RT files of clinical plans, and the mean
number of active dwell positions (Nact) used for the optimization was 171 (range: 102-385). The
dose calculation points were generated based on the description in Section . The mean number
of dose calculation points (Npnt) used for the optimization was 5913 (range: 2753-15 998),
and the mean number of dose calculation points used for the dose-volume histogram (DVH)
computations was 31 039 (range: 11 451-66 089).

4.4.1.2 Quadratic objective function formulation

Inverse Planning Simulated Annealing (IPSA) [55] was used as a dose optimization engine
in our prior studies [64,162]. In IPSA, piecewise linear objective functions were solved with
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simulated annealing [55], a stochastic optimizer. These objective functions were constructed
with a population based planning template called a class solution [64,162].

In order to implement an efficient optimizer, one option is to replace the stochastic optimizer
with a gradient-based optimizer. Therefore, it may be necessary to replace the IPSA linear
piecewise objective functions with piecewise quadratic objective functions, so that the first
derivative (gradient) of the objective function is continuous. Quadratic objective functions are
usually solved with gradient-based optimizers in radiation therapy [56,57,92,166].

The dose at the ith dose calculation point in the jth organ, denoted by dij , is described in
Equation (4.1)

dij =

Nact∑
l=1

ḋijltl (4.1)

where ḋijl is the dose rate contribution of the lth dwell position to the ith dose calculation
point in the jth organ, and tl is the dwell time of the lth dwell position. In order to avoid
negative dwell times, new decision variables called dwell weight (xl = t

1/2
l ) were introduced as

in [56,57]. With this substitution, the dwell times are always non-negative (tl = x2l ).

The piecewise quadratic objective function fij at the ith dose calculation point of the jth organ
is given in Equation (4.2)

fij(dij) =


wmin · (Dmin − dij)2 dij < Dmin

0 Dmin ≤ dij ≤ Dmax

wmax · (dij −Dmax)2 dij > Dmax .

(4.2)

Variables Dmin and Dmax are the underdose limit and the overdose limit respectively, and
variables wmin and wmax are the corresponding weights. The corresponding gradient function
gij of Equation (4.2) is described in Equation (4.3)

gij(xl) =
∂fij
∂xl

=


4 · ḋijl · xl · wmin · (dij −Dmin) dij < Dmin

0 Dmin ≤ dij ≤ Dmax

4 · ḋijl · xl · wmax · (dij −Dmax) dij > Dmax .

(4.3)

The single joint MCO objective function to be minimized is defined as a weighted sum in
Equation (4.4)

F =

NO∑
j=1

wj ·
1

Npnt,j

Npnt,j∑
i=1

fij(dij) (4.4)

where NO is the number of organs, Npnt,j is the number of dose calculation points in the jth

organ. wj is a hidden weight applied to the objectives (surface and volume) of the jth organ
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to introduce trade-off in the solution space around the population-based starting point as
in [64,162]. The hidden weights are always non negative and their sum is one (because of the
weighted sum method).

The original class solution designed for the piecewise linear objective functions [64,162] will no
longer be appropriate to construct the new quadratic objective functions, and so a new one
must be designed (Table 4.1).

Table 4.1 – The class solution to formulate quadratic objective functions (Equation (4.2))
for 15 Gy prostate boost HDR treatment (Surface: surface dose calculation points, Volume:
volume dose calculation points).

Organ Surface Volume
wmin Dmin(Gy) Dmax(Gy) wmax wmin Dmin(Gy) Dmax(Gy) wmax

Target 200 15 22.5 80 200 15 22.5 1
Urethra 30 14 16 160 30 14 16 160
Bladder 0 0 7.5 60 0 0 7.5 60
Rectum 0 0 7.5 15 0 0 7.5 15

4.4.1.3 Computational specifications

The CPU algorithm was written in C++, compiled with g++ (7.3.0) and executed on a six-core
Intel® Xeon® CPU (E5-2620 v3 @ 2.40 GHz). The GPU algorithms were written in CUDA
C, compiled with nvcc (CUDA toolkit 10.0.130) and executed on an NVIDIA Titan X (Pascal)
GPU.

4.4.2 GPU-based efficient optimization engines

Previous studies showed that it is feasible to find clinically acceptable treatment plans after
exploring Pareto surfaces with MCO approaches [102, 162]. However, constructing Pareto
surfaces could be inefficient, if performed sequentially.

4.4.2.1 IPSA on GPU

A traditional CPU-based inverse planning algorithm such as IPSA (or cSA) [55] can be divided
into several serial computing steps (Figure 4.1). In each step, the same operation is repeated
over a large dataset. For example, the following five steps are essential in cSA:

1. Initialization and dose rate matrix calculation (repeated for: Npnt dose calculation points
× Nact dwell positions),

2. dwell time updates (repeated for: Nact dwell positions),
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(ii) Dwell time updates
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Figure 4.1 – Illustration of the iterative procedure to optimize one treatment plan on CPU and
Nplan plans on GPU. In each CPU or GPU iteration, the steps (ii)-(v) are executed sequentially.
In each step on the CPU, the operations are executed sequentially in a loop. In each step on
the GPU, the operations are executed in parallel on different threads for Nplan plans. (The
superscript indicates the plan number on GPU).
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3. dose calculations based on Equation (4.1) (repeated for: Npnt dose calculation points),

4. objective function values calculation based on Equation (4.2) (repeated for: Npnt dose
calculation points),

5. mean objective function evaluation based on Equation (4.4) (repeated for: one accumula-
tion over Npnt dose calculation points).

To obtain an optimal solution or a treatment plan, steps (ii)-(v) are iteratively repeated in
cSA. Furthermore, in order to explore Pareto surfaces by computing Nplan treatment plans, it
is usually necessary to repeat the aforementioned steps Nplan times.

To increase the efficiency of MCO approaches, GPU-based IPSA (or gSA) was implemented
on GPU architecture to compute treatment plans with various trade-offs in parallel. Two
strategies were applied to achieve this purpose.

First, the serial operations computed in each step in cSA were adapted to run in parallel
on GPU, so the operations within each step can be executed simultaneously on different
threads (Figure 4.1). Note that in each step on GPU, the computational burden is Nplan

times larger than in the CPU implementation (Nplan plans on GPU vs. one plan on CPU in
Figure 4.1). However, a performance gain can be achieved with the GPU implementation, as
the huge burden of updating the values for all plans in each step is processed in parallel on
different threads. To obtain Nplan optimal solutions or Nplan treatment plan with the proposed
implementation, it is necessary to iteratively repeat steps (ii)-(v) in gSA.

Second, as frequent data transfers between CPU and GPU will slow down the computation, data
transfer only occurs twice in gSA: once when preparing the data used for the optimization (CPU
to GPU), once more when saving the dosimetric results onto the disk after the optimization
(GPU to CPU).

4.4.2.2 Deterministic optimizer

In Section 4.4.2.1, a stochastic optimizer was implemented on CPU and on GPU. To fur-
ther improve the computational performance, a deterministic optimizer (Limited-memory
Broyden-Fletcher-Goldfarb-Shanno, L-BFGS) [167–169] was introduced to replace the stochas-
tic optimizer. There are two reasons to choose this quasi-Newton optimizer, (1) BFGS and
its variants are widely studied in brachytherapy [56, 57], and (2) L-BFGS is widely used in
clinic after being integrated in Hybrid Inverse Planning Optimization (HIPO) (Elekta Brachy,
Veenendaal, The Netherlands) [88].

So far, four optimization engines were implemented: cSA, gSA (simulated annealing on CPU
and on GPU), cL-BFGS and gL-BFGS (L-BFGS on CPU and on GPU). The description of
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L-BFGS implementation on CPU and on GPU is omitted in this study, due to the similarity
with the context and Figure 4.1 in Section 4.4.2.1.

4.4.2.3 Equivalence between the four optimizers

The equivalence between the four optimization engines was evaluated based on the same
objective function (class solution in Table 4.1) as tested over the validation set. For cSA,
gSA, and cL-BFGS, one plan using uniform 5 s initial dwell times as a starting point was
generated. For gL-BFGS, 1000 degenerated plans were calculated to evaluate the convergence
of different starting points (randomly distributed between 0 and 10 s). The stopping criteria
for cSA and gSA was specified by the number of iterations. The stopping criteria for cL-BFGS
and gL-BFGS was specified by the parameter ε (based on the relative variation of the objective
function [166]). To measure the equivalence between the four optimizers, 1 000 000 iterations
and ε = 10−7 were used as the stopping criteria because no significant improvements in the
objective function were observed.

4.4.2.4 Pareto surfaces characterization with gSA and gL-BFGS

Planning efficiency is a key factor when designing an inverse planning algorithm. For SA, a
clinically useful stopping criteria (50 000 iterations) can be used to reach Pareto surfaces [162].
For gradient-based method, it is also desirable to find a stopping criteria that can well
approximate the Pareto surfaces.

By computing solutions in parallel with various combinations of hidden weights, Pareto surfaces
can be populated either with gSA and with gL-BFGS. Such solutions were Pareto optimal, or
non-dominated, if no solution that improves any individual objective value without worsening
at least one of the other individual objective values exists. A clinically useful stopping criteria
was determined for gL-BFGS to approximate the Pareto surfaces, after examining the effect
of different stopping criteria (ranging from ε = 10−7 to ε = 10−2) based on the fraction of
non-dominated solutions and the speedup factor of the optimization time for all 100 validation
cases.

4.4.2.5 Computational performance under clinically useful scenarios

The benefits of the proposed GPU implementation over a traditional CPU implementation of
inverse planning algorithms were explored. Based on the clinically useful stopping criteria, the
computational performance of cSA, gSA, cL-BFGS and gL-BFGS were measured against the
number of generated plans.
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4.4.3 Patient-specific multi-criteria optimization algorithm

Usually, plans obtained with a population-based planning template are not always directly
acceptable, and manual weights adjustments are required to obtain a patient-specific deliverable
plan. After reviewing the definition of acceptable plans, a GPU-based multi-criteria optimization
algorithm (gMCO) powered with gL-BFGS was proposed to eliminate the procedure of manual
weights adjustments.

4.4.3.1 Plan evaluation

The schedules of dose fractionation and the evaluation criteria of HDR prostate brachytherapy
plans may vary between centers [41]. According to the Radiation Therapy Oncology Group
(RTOG) 0924 protocol [18], RTOG acceptable plans (or valid solutions) can be summarized as
follows:

— Prostate/Target coverage constraint: V100 ≥ 90% of the volume.

— Urethra constraint: D10 < 118% of the prescription dose.

— Bladder constraint: V75 < 1 cc.

— Rectum constraint: V75 < 1 cc.

Note:

(1) Vx refers to the absolute volume that receives x% of the prescription dose, and Dx refers to
the percent of the prescription dose that covers x% of the volume.

(2) In this study, a more stringent set of criteria was introduced. It is designated by the
RTOG+ symbol and is the same as the RTOG criteria set except that it specifies a higher
target coverage requirement of 95% for the V100. This is usually attainable in the clinic without
sacrificing the OAR protection.

4.4.3.2 gMCO algorithm

Compared with our previous studies [64,162], there are three main differences in gMCO: (1)
the trade-off between target and urethra is now explored, (2) the Pareto surfaces are widely
explored with a large number of plans, as no prior knowledge of the RTOG+ valid solution space
is involved, and (3) the validation cases were used to determine the number of parallel plans
(from 1 to 10 000) needed to achieve high RTOG and RTOG+ acceptance rates with random
hidden weights. In gMCO, the parallel plan computations were executed with gL-BFGS.
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4.4.4 Comparison between clinical plans and gMCO plans

A plan pool was created with the gMCO algorithm. One plan was selected from the plan pool
and was referred to as the gMCO plan.

The criteria used for plan selection are, in descending order of priority: RTOG+ valid plan,
RTOG valid plan, RTOG invalid plan (violates at least one criteria). If multiple RTOG or
RTOG+ valid plans existed, the one with a highest target V100 was selected. If multiple RTOG
invalid plans existed, the one with the lowest bladder and rectum V75 (while not violating the
criteria for target and urethra) was selected.

4.4.4.1 Dosimetric performance

The dosimetric results of clinical plans were retrieved from Oncentra Brachy (Elekta Brachy,
Veenendaal, The Netherlands). Dosimetric comparisons between clinical plans and gMCO
plans were analyzed for 462 test cases. The overall result was examined based on RTOG and
RTOG+ acceptance rates (the criteria of all organs were met). The acceptance rate (i.e. target
V100, urethra D10, bladder V75, and rectum V75) for each organ was also reported.

4.4.4.2 Planning time

The planning time consists of the time taken for dose calculation points creation, dose rate
matrix calculation, optimization, and DVH calculation on GPU. The calculation time of each
portion was recorded for gMCO plans. The total planning time was compared between clinical
plans and gMCO plans.

4.5 Results

4.5.1 GPU-based optimization engines

4.5.1.1 Equivalence between the four optimizers

The optimization processes of the four optimizers for one random validation case are illustrated
in Figure 4.2. From this figure, (1) gL-BFGS plans obtained with different initial dwell times
converge to the SA objective function value, (2) no significant differences (within 0.02%)
in objective function values resulted from the four optimizers were observed. Over all 100
validation cases, similar results were observed because the final objective function values of the
four algorithms were in agreement within 0.2%.
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Figure 4.2 – Illustration of cSA, gSA, cL-BFGS and gL-BFGS objective function values
against the number of iterations for one random validation case. (The difference between CPU
and GPU random number generators accounts for the different trajectories for cSA and gSA).

4.5.1.2 Pareto surfaces characterization with gSA and gL-BFGS

To characterize Pareto surfaces, 100 000 different solutions were generated with gSA and
gL-BFGS (1000 solutions/case for all 100 validation cases). For gSA, the mean fraction of
non-dominated solutions was 99.6% under 50 000 iterations.

For gL-BFGS, the results in figure 4.3a indicate that the fraction of non-dominated solutions
decreased (from 100% to 89.3%) as the stopping criteria increased (from ε = 10−7 to ε = 10−2).
On the other hand, the speedup factor in the optimization time increased (from 1 to 10) as the
stopping criteria increased (from ε = 10−7 to ε = 10−2). It should be noted that over 99.3% of
the solutions obtained with a larger stopping criteria (ε = 10−3) are Pareto optimal solutions.
Given that reaching optimality and a reasonable calculation time are important criteria for
clinical applicability, the results in Figure 4.3a suggest that there could be a time advantage in
using a larger stopping criteria (ε = 10−3).

Furthermore, a single 2D Pareto surface characterization with gSA and gL-BFGS is shown in
Figure 4.3b. The results suggest that no significant difference in Pareto surfaces approximations
is observed with GPU-based optimization engines under clinically useful stopping criteria and
under more strict stopping criteria as specified in Section 4.4.2.3. From these results, ε = 10−3
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Figure 4.3 – (a) Effect of the stopping criteria on the fraction of non-dominated solutions in
the Pareto front characterized with gL-BFGS (black solid line) and the speedup factor of the
optimization time (red dashed line). The speedup factor are normalized to the values obtained
with a stopping criteria of ε = 10−7. (b) A comparison of 2D Pareto surface approximations
with gSA and gL-BFGS optimization engines for a random case. (fT is denoted for target
individual objective function and fR is denoted for rectum individual objective function).

is used as the stopping criteria in gL-BFGS afterwards.

4.5.1.3 Computational performance under clinically useful scenarios

Under clinically useful scenarios, the optimization time of cSA, gSA, cL-BFGS and gL-BFGS
are shown in Figure 4.4a. From the results, the time of all four engines increased as the
number of plans increased. For 1000 plans, the mean optimization time was 9.2 s/plan (cSA),
60 ms/plan (gSA), 1 s/plan (cL-BFGS), and 0.9 ms/plan (gL-BFGS). In other words, compared
with the cSA result, cL-BFGS can achieve a speedup factor up to 9, gSA can achieve a speedup
factor of up to 176, and gL-BFGS can achieve a speedup factor of up to 10 990.

Figure 4.4b shows that the mean GPU memory usage increased with the number of plans for
the GPU algorithms, and that the increase rate becomes significantly large when the number
of plans reaches approximately 1000.

4.5.2 Multi-criteria optimization algorithm

As the hidden weights were randomly generated in gMCO algorithm, the RTOG and RTOG+
acceptance rates were measured multiple times with different random hidden weight vectors in
Equation (4.4). In Figure 4.5, the RTOG+ acceptance rate increases (from 17% to 85%) and
the spread of the acceptance rate distributions decreases with the number of plans. However, a
number of 1000 plans was selected as the best compromised between optimization time (which
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Figure 4.4 – Computational performance against the number of plans for cSA, gSA, cL-BFGS
and gL-BFGS under clinically useful scenarios (cSA and gSA: 1000 iterations, cL-BFGS and
gL-BFGS: ε = 10−3): (a) The mean optimization time, (b) The mean GPU memory usage of
gL-BFGS (the result of gSA was ignored, for its similarity to the gL-BFGS one).

increases after 1000 plans, see Figure 4.4a) and the RTOG+ acceptance rate (which does not
increase significantly after 1000 plans) for gMCO algorithm.
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Figure 4.5 – The effect of the number of plans on RTOG and RTOG+ acceptance rates for
gMCO (including the spread of the distributions in the boxes).
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4.5.3 Comparison between clinical plans and gMCO plans

4.5.3.1 Dosimetric performance

The dosimetric comparison between clinical plans and gMCO plans is illustrated in Figure 4.6.
These results suggest that the mean target coverage was higher for gMCO plans (97.2%) than
for clinical plans (95.3%). The mean urethra D10 was significantly higher for gMCO plans
(115.7%) than for clinical plans (109.1%). The mean bladder V75 was 0.53 cc for clinical plans,
and 0.78 cc for gMCO plans. For rectum sparing, the mean rectum V75 was 0.56 cc for clinical
plans, and 0.52 cc for gMCO plans.

Clinical gMCO

90

95

100
(a) Target V100 (%)

Clinical gMCO

110
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(b) Urethra D10 (%)

Clinical gMCO
0

1

2
(c) Bladder V75 (cc)
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0.5

1.0
(d) Rectum V75 (cc)

Figure 4.6 – Dosimetric comparison between IPSA physician-approved plans and gMCO plans
over the test cohort: (a) Target V100, (b) Urethra D10, (c) Bladder V75, and (d) Rectum V75.

The acceptance rate results are summarized in Table 4.2. For overall dosimetric performances,
the number of RTOG valid plans was 428 (92.6%) for clinical plans, and 461 (99.8%) for gMCO
plans. The number of RTOG+ valid plans was 288 (62.3%) for clinical plans, and 414 (89.6%)
for gMCO plans.

The number of plans with a target coverage greater than 95% was 296 (64.1%) for clinical
plans, and 414 (89.6%) for gMCO plans. The number of plans that exceeded the urethra
sparing constraint was 7 for clinical plans, and 0 for gMCO plans. The number of plans that
exceeded the bladder sparing constraint was 22 for clinical plans, and 1 for gMCO plans. The
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Table 4.2 – RTOG and RTOG+ acceptance rates (%) for clinically approved plans and gMCO
plans over 462 test cases.

RTOG RTOG+ Time
Target Bladder Rectum Urethra All Target All

Clinical 99.8 95.2 98.7 98.5 92.6 64.1 62.3 mins
gMCO 100.0 99.8 100.0 100.0 99.8 89.6 89.6 9.4 s

number of plans that exceeded the rectum sparing constraint was 6 for clinical plans, and 0 for
gMCO plans. In addition, the mean number of RTOG valid plans was 617/1000 (61.7%), and
the mean number of RTOG+ valid plans was 268/1000 (26.8%) for the gMCO plan pool.

As a supplement to the general comparisons described above, one example case was chosen
to illustrate the advantage of gMCO in terms of the results of DVHs and isodose curves in
Figure 4.7.

4.5.3.2 Planning time

The time to create a plan is of the order of a few minutes in clinic, including manual tweaking
of the objective function and/or dwell times. On the other hand, the mean planning time
was 9.4 s for gMCO to generate 1000 optimal plans. Among these numbers, the mean dose
calculation points creation time was 7.4 s, which represents 79% of the mean planning time.
The mean optimization time was 0.8 s (8.5% of the mean total planning time). Dose rate
matrix calculation and DVH calculation on GPU contribute to the rest of the mean planning
time. In addition, automatically plan selection from the plan pools was performed in batch for
462 cases, and the corresponding time was negligible (4.2 s for plan selection for 462 cases).

4.6 Discussion

Our recent studies [64,162] showed that it is possible to obtain a RTOG valid plan without
any user interventions. In order to further increase the planning efficiency, four optimization
engines were implemented and compared. Our results indicated that (1) gSA and gL-BFGS
can speedup the optimization time by two or three orders of magnitude compared to their
CPU implementation (Figure 4.4a), (2) L-BFGS is equivalent to simulated annealing, and
is not trapped in local minima (Figure 4.2), (3) gL-BFGS is able to compute 10 000 plans
within 9 s (optimization time in Figure 4.4a), and (4) the multi-GPU approach is not necessary,
considering the fact that the mean GPU memory usage to generate 10 000 plans was 2.6 GB
out of 12 GB (Figure 4.4b).
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Figure 4.7 – A comparison between the clinical plan and the gMCO plan for one example
case: (a) DVHs and dosimetric parameters, (b) and (c) Isodose curves (target in black, urethra
in blue, bladder in red, and rectum in green.).

A new patient-specific approach called GPU-based MCO (gMCO) was proposed as an upgrade
of our prior studies [64, 162]. gMCO can increase the RTOG acceptance rate from 97.5% [64]
to 99.8%, and can decrease the planning time from 1 h (300 plans) [162], to 41 s (14 relevant
plans) [64], to 9.4 s (1000 plans). Compared with the IPSA physician approved plans, gMCO
can increase the RTOG+ acceptance rate by 27.3%, eliminating around 10 manual tweaking
needed to achieve the observed clinical level based on the results presented in Figure 4.5.
For example, a RTOG invalid plan (urethra D10 above 118%) can be escalated to a RTOG+
valid plan by using gMCO. This has been made possible by relaxing the bladder V75 dose
(still below 1 cc), while still meeting all requirements for target, urethra and rectum dose
parameters as shown in Figure 4.7a. Such information can also be seen from the isodose curves
in Figure 4.7b-c. Note that in this study, the trade-off involved in the automatic selection
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scenario is based on selecting the highest target V100 while satisfying all the other RTOG
criteria (Figure 4.6). However, a high quality gMCO plan pool is available for the user to pick
a plan that best suits the patient-specific conditions.

KBP and MCO are widely used patient-specific inverse planning algorithms. In KBP, clinical
plans were used to extract the regression models based on geometric features. However, clinical
plans are user-dependent [51], and may be inconsistent between centers [52]. On the other
hand, gMCO is independent of these issues. In MCO, even though interpolations between
calculated plans were usually used to achieve a high planning efficiency, ultra-fast planning
remains a challenge since no parallelization scheme was implemented. In this study, it only
takes 9.4 s to generate a high quality plan pool with gMCO. However, it is admitted that these
comparisons were made by ignoring that the dwell times optimization in HDR brachytherapy
is a relatively small scale problem compared to the fluence map optimization in EBRT.

Note that for the objective function considered in this work, the solution space is convex and it
would be easy to dismiss SA in favor of the more computationally efficient gL-BFGS algorithm.
While this objective function is popular in the field, other types of objective function might
have more complex solution spaces. Therefore, having a robust, albeit slower, MCO algorithm
based on SA remains an essential tool.

We anticipate that the approach proposed in this study will be implemented in clinical systems
as an adjunct tool. In future work, the application of gL-BFGS as well as gMCO to other
HDR brachytherapy sites will be investigated.

4.7 Conclusion

Two GPU-based optimization engines were designed to calculate multiple plans in parallel.
With the preferred engine, an ultra-fast patient-specific planning tool that is able to generate
a high quality plan without any user interventions was proposed. After a validation over
a large-scale patient cohort, both plan quality and planning efficiency can be significantly
improved compared with the traditional planning in clinic.
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Conclusion

The development of traditional inverse planning algorithms used nowadays dates back to over
two decades ago. In brachytherapy, one well-known example is Inverse Planning Simulated
Annealing (IPSA), the beta version of which was integrated into PLATO-BPS (Nucletron,
Veenendaal, The Netherlands) in 2000 [82,170].

Traditional inverse planning algorithms play an important role in radiation oncology because
they can propose solutions to the multi-dimensional problems with constraints oncologist
prescribed. There is a gap between traditional and operator-free inverse planning algorithms:
inevitable user interventions to adjust the input planning parameters (iterative re-planning).
Bridging this gap could narrow the variation in treatment plan quality and in planning efficiency
across different cancer centers, and which may eventually benefit all the patients who receive
radiation therapy.

This study has implemented three algorithms to enable an operator-free inverse planning in
HDR brachytherapy. Several high performance computing techniques have been applied to
achieve a desirable plan generation time and a large patient cohort has been used to validate
the proposed algorithms.

Accomplished work and review of objectives

Three multi-criteria optimization (MCO) algorithms were proposed in this thesis: a traditional
one, a knowledge-based one and a GPU-based one. The objectives of this thesis are fulfilled
through the implementation of these MCO algorithms, and will be discussed as follows.

Manuscript#1: a traditional MCO algorithm

In Chapter 2, a traditional MCO algorithm was implemented to construct Pareto surfaces
for one hundred and forty prostate cases treated with HDR brachytherapy. For each case,
IPSA was used to compute Pareto optimal plans to approach its Pareto surface. This MCO
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algorithm is traditional because Pareto surfaces were approximated in the same way as the
method proposed in 2006 for external beam radiation therapy (EBRT) [102].

The implementation of this MCO algorithm fulfills the first objective of this thesis: an MCO
algorithm was implemented on top of a traditional dose optimization engine to automatically
generate a set of treatment plans with various trade-offs. This portion of the study is critical
because it suggests that the clinically acceptable region can be found around the class solution,
and that it is possible to implement an operator-free inverse planning algorithm for HDR
brachytherapy. The average computing time, however, is about 1 h per case, which could
restrain its application in clinic, therefore, the rest of this study aims to achieve a high
computing efficiency.

Manuscript#2: a knowledge-based MCO algorithm (kMCO)

In Chapter 3, a knowledge-based MCO algorithm was proposed to achieve a high computational
performance. Two updates were implemented into the traditional MCO algorithm: a set of
regression models were established to predict the clinically acceptable region on the Pareto
surface, and ten alternative plans alongside the predicted region were computed in parallel to
reduce the plan generation time.

A validation over 236 prostate cases suggest that the kMCO algorithm can lead to a large
improvement in the planning efficiency (from 1 h with the traditional MCO algorithm to 41 s).
In addition, the kMCO algorithm is able to improve the RTOG acceptance rate compared to
the current treatment planning algorithm (IPSA).

The implementation of the kMCO algorithm fulfills the second objective of this thesis: prior
knowledge and multi-core techniques were incorporated into an MCO algorithm, then kMCO
plans were compared with the IPSA physician-approved plans. This portion of the study is
important because it shows that a fast, operator-free inverse planning algorithm is possible in
HDR brachytherapy.

Manuscript#3: a GPU-based MCO algorithm (gMCO)

In Chapter 4, a GPU-based MCO algorithm was proposed to further improve the computational
performance. In traditional MCO and kMCO algorithms, simulated annealing (stochastic
optimizer) was used to compute treatment plans on the CPU architecture. In the gMCO
algorithm, a gradient-based optimizer (deterministic) on the GPU architecture was implemented
to compute multiple plans in parallel.

A validation using 462 prostate cases shows that the average gMCO planning time (9.4 s) is lower
than that obtained using the kMCO algorithm (41 s) and the clinical IPSA implementation (a
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few minutes). The gMCO algorithm can also improve the RTOG acceptance rate compared to
the kMCO and physician-approved plans (Table 5.1).

The implementation of the gMCO algorithm shows that the gradient-based optimizer and the
GPU architecture (the third and forth objectives of this study) can improve the algorithm
currently used in clinic. This portion of the study makes it possible to implement a fast,
operator-free MCO inverse planning algorithm in HDR brachytherapy.

Table 5.1 – A comparison between clinically approved plans, kMCO plans and gMCO plans.
RTOG acceptance rate: target V100>90%, bladder and rectum V75<1 cc, urethra D10<118%.
RTOG+ acceptance rate: target V100>95% is the only change).

# of cases # of plans RTOG (%) RTOG+ (%) Time

Clinical 462 1 92.6 62.3 a few minutes
kMCO 236 14 94.9 68.6 41 s
gMCO 462 1000 99.8 89.6 9.4 s

Perspectives

This thesis has explored different approaches to implement multi-criteria optimization algo-
rithms in HDR prostate brachytherapy, and eventually leads to an ultra-fast, automated inverse
planning algorithm (publication [66] inserted in Chapter 4). As a retrospective study, the
clinical plans were re-planned with our MCO algorithm, and improved RTOG and RTOG+
acceptance rates could be observed.

From a clinical perspective, an efficient and intuitive plan navigation tool is as important
as the MCO algorithm itself for real-time intra-operative use. An efficient plan navigation
tool should allow oncologists to specify the navigation range (within RTOG valid plans or
RTOG+ valid plans) of the MCO generated treatment plans. An intuitive plan navigation
tool should align with the expectations from oncologists, especially when making a decision
between treating the target and sparing one or multiple organs at risk (such as urethra/rectum
due to their sensitivities). We envision that one possible implementation of such a tool can be
seen in Figure 5.1, where plans could be selected efficiently and intuitively.

In order to conduct a clinical validation of the MCO algorithm, a protocol is needed and could
be described as follows. With a traditional inverse planning algorithm, a standard plan is
created under cooperation between an oncologist and a medical physicist. After using our
MCO proposed algorithm, an MCO plan is created by an oncologist. The planning time of
both planning approaches would be recorded, and the reports of both plans are sent for an
independent and blind evaluation (scoring from 1 to 10). The comparison results would be
reported, and the feedback would be collected from the oncologist who works with the MCO
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Figure 5.1 – A plan navigation tool that could be used in clinical implementation.

algorithm to improve user experience and treatment outcome. Ideally, the clinical validation
should be multi-institutional, to account for various fractionation schemes and plan evaluation
criteria.

The clinical validation should be extended to other tumor sites, particularly interstitial GYN
and breast, to test the capabilities of the MCO algorithm. To adapt the algorithm to other
tumor sites, it is important to communicate with the clinical medical physicists to identify the
major trade-offs, the fractionation scheme (or the prescription dose per fraction), as well as the
evaluation criteria. In addition, designing a class solution and determining the size of the plan
pool over a validation set (as in [66], inserted in Chapter 4) will be critical to obtain a desirable
dosimetric result. In order to conduct a robust validation with an adequate statistical power,
it would be preferable to have a large scale patient cohort, which could be a major challenge.

In the future, the following steps are likely to improve the optimization platform presented
in this study. First, in order to avoid hot or cold spots, it is desirable to have an option
to enable a smooth source movement, through controlling the relative uniformity of dwell
times [74]. In addition, reducing the number of catheters may decrease the toxicity while
maintaining the plan quality, thus it may be interesting to combine a catheter optimization
algorithm (for example, the Centroidal Voronoi Tessellations (CVT) algorithm [171]) with
the presented inverse planning algorithm. Finally, incorporating radiobiological models into
current algorithms would benefit the patients, because the physical dose-volume information
used to formulate the objective function and evaluate an optimized plan may not always
reflect the radiation response of biological tissues. Radiobiological models reviewed in the
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following references [9, 172,173] can be considered to facilitate the report and the comparison
of radiobiological responses in brachytherapy.

It is worthwhile to mention that the following two aspects regarding automation could further
simplify the current treatment planning procedure. First, an automated and real-time catheter
reconstruction through electromagnetic (EM) tracking systems may open the possibility of
dynamical (re)planning [22]. In other words, it will be possible to feed the catheter trajectory
into the inverse planning algorithms in real-time, which will likely shorten the treatment course
and improve the plan quality. Finally, an image segmentation algorithm that automates current
manually organ delineations is desirable. Such algorithms are able to shorten the treatment
course, and will play an important role in real-time treatment planning systems.
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