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Résumé 

Ce mémoire présente les travaux de recherche effectués au sein du département de Génie 

Mécanique de l’Université Laval dans le cadre du projet « Impact modeling of Composite 

Aircraft Structure », IMCAS du Consortium de Recherche et d’Innovation en Aérospatiale 

(CRIAQ).  

Le but de ces travaux était de créer une loi de comportement pour les composites tissés sec 

mous et de les implanter dans un élément coque reproduisant le comportement dynamique d’un 

croisement de fibres dans un pli typique sous impact balistique et en fonction de certains 

paramètres géométriques propres au tissé. La création d’une loi de comportement de l’usager 

dans le logiciel d’analyse par éléments finis Abaqus a été nécessaire pour mener à bien ce 

projet. 

La méthodologie de développement de la sous-routine de l’usager, qui définit le matériau tissé 

et est utilisée en conjonction avec l’élément shell S4R, est basée sur les récents travaux de 

Grujicic et al (1) et Shahkarami et al (2). La validation de ce modèle a été réalisée en vérifiant la 

validité de sa réponse à certaines sollicitations rencontrées  dans des études simples d’impact. 

Le résultat final de ces tests numériques d’impact a permis de démontrer que nous obtenons des 

résultats similaires à ceux de Shahkarami pour les mêmes paramètres d’expérimentation. Enfin, 

après cette dernière validation, nous avons appliqué l’outil développé à l’étude, en dynamique 

explicite, de l’impact d’une pale de soufflante sur un caisson de confinement hybride. Ce 

caisson est composé d’une première couche intérieure en coque métallique et sur laquelle 

s’empilent plusieurs couches de kevlar. 

Tout au long  de ce mémoire, nous avons détaillé toutes les hypothèses, les démarches et les 

outils utilisés pour réaliser ce travail. Nos résultats montrent finalement qu’il est possible de 

reproduire les phénomènes physiques à une échelle méso-mécanique lors d’un impact haute 

vitesse sur un matériau composite tissé multicouche tout en minimisant le temps de calcul 

nécessaire. 
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Abstract 

This thesis presents the work that has been carried out inside the Mechanical Engineering 

Department of Laval University within a CRIAQ project related to Impact Modeling of 

Composite Aircraft Structure (IMCAS). 

The main goal of this work was to develop a dry fabric model for ballistic impact application 

and to implement it into a shell element capable of reproducing the dynamic behavior of a yarn 

crossover point with due account of some specific geometric and material parameters. The 

development of a material user subroutine (VUMAT user subroutine) was necessary to carry 

out this project. 

The methodology employed for the development of the user subroutine to be used with the S4R 

shell element available in Abaqus is based upon the works of Grujicic et al (1) and Shahkarami 

et al (2). The validity of the mesomechanical model created was carried out in order to assess 

the accuracy of its behavior under elementary loadings. Subsequently, using the same 

parameters to set up the analysis, the developed model has been applied in simple impact 

problems in Abaqus to demonstrate that we are able to obtain the same results as in the work of 

Shahkarami (2) used as a reference. Finally, after this last validation, the model is used in the 

impact study of an aeronautical engine’s fan blade containment problem using a hybrid casing. 

In our problem the casing’s inner shell is metallic and multiple Kevlar fabric layers are wrapped 

around it to contribute to the energy absorption and containment of the fan blade debris released 

outward at high speed. 

In this thesis all the assumptions, process and tools necessary to carry out every analysis have 

been described in details. Our results demonstrate that it is possible to capture the physical 

phenomenon happening at the yarn’s mesoscopic level during a high-velocity impact on a dry 

fabric while minimizing the computation time. 
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CHAPTER 1 - INTRODUCTION: DYNAMIC ANALYSIS OF 

FABRIC SYSTEMS 

Because of their high resistance and lightweight, composite materials have naturally become 

very attractive for aerospace applications. Indeed, in this particular industry, in order to decrease 

the weight of flight vehicles and increase their energy efficiency, the demand is very high for 

more effective materials capable of replacing aluminum or steel structures used in airplane main 

structural components. Composites parts also have the advantage of having great design 

flexibility so they can be adapted to the loads they are designed to withstand. This particularity 

has greatly extended the field of their possible applications.  

Because of the safety issues that drive the aerospace industry, composites were very slowly 

introduced even though it was widely recognized that they had a very high potential. As we can 

imagine, the need to gain confidence in a technology is crucial before implementing it in a 

commercial plane. In consequence, the use of these materials started in the early 1960 when 

they were first introduced in the manufacturing of aircraft “secondary” parts. As such they were 

meant to replace the traditional metallic parts of existing aircrafts and they served as a test to 

explore their inflight durability. This was the case of the DC-10 rudder, or the Lockheed L-1011 
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Tristar ailerons. At this time the weight reduction for these specific parts ranged from 20% to 

25%. 

Then, progressively, as the confidence in the design of these materials grew and as the 

manufacturing expertise became more solid, they were applied to “primary” (or structural) 

components such as the vertical stabilizer or the engine casing for example. Nowadays, 

composite materials are used by every commercial airplane manufacturer and the most recent 

large commercial airplane is the new Boeing 787 which is 50% composites.  

 

 

Figure 1-1: Composite materials in new Boeing 787 Dreamliner (bintang.site11.com) 

As we can see in Figure 1-1 the whole fuselage is now made of composite which leads to 

tremendous gains in terms of weight of the structure. Also, it simplifies the structure because 

there is no longer a need to assemble the hundreds of metal sheets that used to constitute the 

skin in the fuselage.  

Another example of the great confidence the industry has developed using these materials is the 

Airbus A380, largest commercial aircraft ever produced and for which  the center wing box, 

linking the wings, is made of carbon fiber reinforced plastics (CFRP).  

There is still great potential for the development of continuous fiber-reinforced composites to be 

used as load-bearing parts. New manufacturing techniques decrease the cost with short 

production cycle time and increased reproducibility by automation. This evolution leads to an 

ever increasing use of fabric reinforced plastics to obtain part with even more complex forms. 

These high performance applications are always in need of new ways to design composites and 

this is why the industry focused on textile reinforced composites.  
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1.1 Textile composites 

Textile composites have textile reinforcement, constituted of continuous fibers that are arranged 

in a repetitive woven pattern. The interesting property of the fabric reinforcement lies in the fact 

that the stiffness and strength of the fabric depend not only on the yarns and matrix properties, 

but also on the composite material parameters (3). These parameters define the geometry of the 

fabric such as the fabric count specifying the number of yarns per inch, or the type of weave 

used determining how the warp and fill are interlaced, etc. 

1.1.1 Composite under impact 

In aeronautics, composite parts are exposed to high velocity impact, ranging from bird strikes 

on the wings leading edges to engine fan blade debris striking on the casing in case of a 

catastrophic failure, the examples are numerous. In order to address these issues, there is a great 

deal of studies and tests carried out on composite materials to study various textile composites 

behavior under impact as well as their deformation modes, damage and rupture.  

We already know in theory that in the case of textile, the reinforcements are continuous yarns, 

that infer to the resulting composite a good impact and fatigue resistance but that the modeling 

of the impact resistance still raises some questions. There is still a great deal of work that 

remain to be done in order  to fully understand and model all the phenomena that take place 

under such a dynamic loading (4).  

1.1.2 Numerical impact modeling on textiles 

The procedure used in the aerospace industry to achieve the certification of a certain aircraft 

component made of composite materials relies on the “building-block” approach. That approach 

implies that a large number of experimental tests are performed at each stage of the product 

development. This procedure of systematic testing is very costly and time consuming so the 

natural tendency is to substitute numerical testing to physical testing. The use of analytical and 

numerical models for the prediction of the mechanical behavior of composites structures can 

replace some tests, and as it evolves, it will take an ever growing place in the design and 

certifications processes. 
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But numerical testing needs models adapted to the specific phenomenon we want to analyze. It 

takes time to develop and validate such models before they can finally be used in the industry. 

Also, to further complicate the problem there are often different ways to model the same 

phenomenon, and each way has its specific capabilities and deficiencies we need to be aware of. 

As we can see, the amount of work is considerable. Even though several approaches have been 

proposed, but they can however be divided in two main categories: first the mesoscale models 

and then the macro-scale models.  

Mesoscale models describe in details the structure of a textile unit cell using finite elements or 

analytical equations. These models use the theory of the physical phenomena and deformation 

mechanisms at the mesoscale level to predict the macro-scale behavior. Mesoscale models have 

the potential to avoid costly textile spending for the representative volume element (RUC) 

characterization and to virtually design multiple-ply systems (4). The RUC is the smallest 

repeatable geometrical unit of a fabric which characterizes the whole fabric structure. 

Macroscale models are typically implemented in a non-linear finite element program to 

perform forming or impact simulations. These models are generally of elastic nature and 

consider a homogenized medium or a set of elements (truss, membrane, shell, etc…). They 

usually display behaviors as identified in fabric numerical tests with mesoscale models. 

Researchers have developed a continuum model for the mechanical behavior of woven fabrics 

in planar deformation to deal with the impact problem. The macroscopic behavior under impact 

is determined by deformation mechanisms at smaller scales. In order to perform simulations at 

acceptable numerical cost, a multi-scale material approach is applied such that the smaller 

length scale model predicts the mechanical behavior at the larger length scale. 

This model can simulate simple existing plain weave fabrics but can also predict the behavior of 

novel fabrics provided that we have the geometrical properties of the yarns and the weave 

pattern defining the RUC. The approach relies on the selection of the geometric model for the 

fabric weave, coupled with constitutive models for the yarn behaviors. 
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1.2 Research objectives and methodology 

1.2.1 Objectives 

The main objective of this research theme is the study of the containment of engine debris 

inside the engine casing should a catastrophic malfunction of the engine occur. This naturally 

leads us to the study of the high velocity impact problem on composite fabrics using industrial 

FE software such as Abaqus.  

The specificity of this work is that it consider a “dry” woven composite which means there is 

still the textile reinforcement made of fiber but there is no matrix. Indeed, for the confinement 

application, the textile acts as a net to prevent any debris from perforating the confining ring 

structure. Also, an in-house material model will be developed using facilities provided by an 

Abaqus user’s subroutine called VUMAT to apply it to shell elements mimicking the behavior 

of one fiber crossover. In the long term the study will provide a numeric testing answer to the 

question of how many plies of a specific type of fibers and weave do we need to have in order 

to contain a specific type of debris. 

This numerical approach to composite fabric analysis is justified because as we have seen 

before, the use of composites will replace the actual metallic casing and save some weight while 

reducing the cost of physical testing because the same analysis will be done numerically.  

1.2.2 Methodology 

The methodology behind this work is as follows: 

1. The development in Abaqus of a full blown 3D crossover. This is done by selecting the 

geometry we want to study and by modeling it inside the FE software. Applying 

displacements on the yarns of the representative volume element we are able to capture 

its behavior in specific modes of deformation.  

2. Our second and most important task is to create the user material subroutine that will be 

used to model the behavior of the dry fabric. We based this VUMAT user subroutine 

development on the algorithm proposed by Shahkarami (2).  

3. Using the 3D crossover specific geometrical and mechanical parameters the VUMAT 

user subroutine is tested the VUMAT by applying to one shell element in the same 
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modes of deformation that was used in the 3D model. This will enable to verify and 

validate the response given by the shell element. 

4. Once the tests on a single shell element have proven successful, the subroutine is then 

applied to an impact analysis involving several elements. A dry fabric plate is thus 

modeled and its behavior under impact is observed and recorded. This is first done on a 

single ply fabric and then on a 4-ply fabric structure. Throughout this thesis 

Shahkarami’s work is used to validate our model since he was able to perform the 

physical experiments and to present data against which our own results could be tested. 

5. The last part of this work is the modeling of the impact of fan blade debris on an engine 

casing. This is a pretty interesting work since it involves several modeling techniques 

with Abaqus FE software that were not yet explored in our laboratory. The casing was 

made of an inner metallic ring around which composite plies are wrapped. 

1.3 Outline of the thesis 

This thesis consists of eight chapters that provide the necessary background knowledge on 

textile composite reinforcements (Chapter 2), the literature review (Chapter 3), the necessary 

numerical tools needed in the work (Chapter 4), the detailed modeling of the 3D crossover 

(Chapter 5), the development, verification and validation of the VUMAT user subroutine that 

was designed (Chapter 6 and 7) and finally the modeling of the impact of a fan blade 

containment study by an hybrid engine casing which is the goal of this study (Chapter 8). 

Chapter 2 presents an overview of textile reinforced composite materials. Starting with the 

most elementary constituents of a composite material we present the characteristics of fibers 

and the way they are assembled to form the yarns. Then, we discuss the geometrical 

configuration of different types of weave patterns and their specific mechanical properties. 

Also, the definition of the representative volume element (RVE) is presented since it is a crucial 

concept at the basis of this work. The mechanical phenomena observed during experimentation 

and taking place in the plain weave during deformation are discussed. This gives us the best 

understanding of the physics at the microscopic and mesoscopic scales that ultimately define the 

behavior of textile reinforcements at a macroscopic scale. 
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Chapter 3 constitutes the literature review. We briefly talk about the evolution of composite 

modeling and the different types of modeling techniques that have been developed by various 

researchers. In this chapter we outline the basic principles of their work and point out the good 

as well as the less interesting aspects of each technique.  

Chapter 4 presents all the tools that are necessary to understand in order to conduct this work. 

Of course, the shell element theory will be briefly discussed outlining the main features and 

characteristics of the shell element that was used. In the case of the 4-plies fabric impact, a 

contact definition between plies that is suited for high velocity impacts in Abaqus that was used 

is also described. The dynamic and explicit formulation codes are also overviewed since they 

are constantly used throughout this work. Abaqus documentation is extensive on these subjects 

but we will extract the main ideas that helped us while working on the analysis. VUMAT user 

subroutine description is also presented in great details. Using that particular subroutine inside 

Abaqus some very specific guidelines must be followed in order to handle the computations and 

return the results to Abaqus FE engine. Finally, our work on the subroutine involved the use of 

the Newton-Raphson optimization routine at the heart of the VUMAT and thus we think it is 

important to summarize the basic knowledge we acquired with it. 

Chapter 5 deals with the modeling of the crossover in 3D using Abaqus. The geometry 

representing the crossover as well as mechanical properties to define the yarns’ material are first 

chosen. Then, the virtual testing of the crossover is described extensively from the definition of 

boundary conditions to the applied displacement on the yarns’ edges. The goal in this chapter is 

to define a crossover model from which we can extract mechanical properties and all the 

necessary parameters to be used in the material subroutine. The crossover was tested in biaxial 

tension, uniaxial tension, shear and transverse compression. 

Chapter 6 is concerned with the development of the VUMAT used with the shell element. The 

subroutine is simply the representation of a complex yarn geometry using a treillis mechanism. 

Simplifying assumptions are discussed as well as the complete procedure of computations 

taking place inside the subroutine. The VUMAT is essentially a procedure using constitutive 

relations to model the behavior of the crossover under specific in plane loadings. Also in this 
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chapter the testing of the subroutine on one single shell element is described and the obtained 

results are compared to observation and analysis. 

Chapter 7 presents the modelling of the impact problem in Abaqus. The geometry of the 

problem is described as well as the features we used like element deletion and surface 

interactions. Analysis was created for the impact study on a 1-ply, 2-plies and finally 4-plies 

fabric. The influence of several parameters is studied to see whether or not their variation 

impacted the results of the analysis. Finally we tested our results against the results obtained by 

Shahkarmi (2). 

Chapter 8 explains all the necessary steps required for modelling the impact of a fan blade 

debris on a hybrid engine casing. As in chapter 7 the specific modelling techniques that have 

been used for the successful creation of this analysis are presented. The results that we were 

able to obtain are presented and their validity is discussed using the work of previous graduate 

students (5) who modeled the same impact problem on an engine casing made of aluminum and 

dry woven composite.  

Finally, a summary of the work done and of the findings of this thesis along with the 

conclusions that can be drawn from them are presented. Moreover some propositions aimed at 

further improving and refining the designed VUMAT model and the modeling approach are 

also suggested. 
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CHAPTER 2 - OVERVIEW ON TEXTILE COMPOSITES 

The mechanics of textiles composites can be studied better by understanding the multiple levels 

of their design and hierarchical organization. There are four levels of organization, from small 

scale to relatively large scale: 

1. Fiber 

2. Yarn 

3. Textile 

4. Composite 

We will now discuss these four levels in details. 

2.1 Fibers in textile composites 

The choice of fibers represents the first step in the manufacturing of a textile composite. There 

exists a wide choice of fibers and each type has specific material properties depending on their 

internal structure. Today, the industry has created many types of fibers capable of reinforcing 

any class of materials either metals, plastics or ceramics. 
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To resist high loads in structural applications, textile structural composites products must be 

made from high modulus fibers like glass, graphite, Aramid or Kevlar for example. Other types 

of fiber like ceramic or steel fibers can also be found but they are rarely used for aeronautical 

applications and therefore we will not discuss them in details. 

2.1.1 Glass fibers 

Glass fibers represent more than 99% in mass of the reinforcement used in the industry of 

composites. They are made for the most part of silicium which has a fusion temperature of 

1700°C, this temperature does not allow the use of a threading die because of the lack of 

material that can resist it. This is why silicium is combined with other elements such as sodium, 

magnesium oxide or potassium oxide to better control the temperature which is lowered to 

1200°C. Other elements such as alumina (Al2O3) are employed to stabilize the glass structure 

and modify its physical properties (6). 

There are five types of glass fibers and each has its specific properties suited for different 

applications. E-type glass is the most commonly used and its Young modulus is similar to 

aluminum. S-type and R-type contain more alumina and therefore have higher mechanical 

properties than the E-type; they are used for advanced structural composites. C-type glass is 

especially resistant to corrosion and D-type has been developed for application in which 

dielectric properties are important (6). 

Glass fibers usually have a diameter ranging from 5 μm to 15 μm. These fibers have less 

superficial flaws than massive glass and therefore have a much better resistance to failure; they 

display an elastic behavior in tension and a brittle failure. 

2.1.2 Carbon fibers 

Carbon has the strongest covalent link in nature, but carbon atoms can be organized in different 

ways such as graphite, diamond or other forms. Graphite displays a very peculiar micro-

structural anisotropic organization which is formed by successive planes distant of 0.34 nm 

from one another. Carbon fiber is very strong when stretched or bent, but weak when 

compressed or exposed to high shock (a carbon fiber bar is extremely difficult to bend, but will 
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crack easily if hit with a hammer). Carbon fibers are used in composites with a lightweight 

matrix. Carbon fiber composites are ideally suited to applications where strength, stiffness, 

lower weight, and outstanding fatigue characteristics are critical requirements. That kind of 

structure is found in very high modulus graphite fibers (6). 

Most carbon fibers are manufactured using a process designed in England and Japan in 1960. 

An acrylic polymer made of 49% carbon called polyacrylonitril (PAN), is heated to 1000°C to 

obtain a fiber which is 93% carbon in mass. During pyrolysis the fiber must be kept under 

tension so that the molecular structure is oriented. Between 1500°C and 1600°C the fiber 

become 100% carbon and its resistance reaches a maximum, if it continues to be heated, the 

mechanical resistance will decrease and Young modulus will increase. The three stages process 

is illustrated in the next figure and comprises of: (i) Oxidative stabilization, (ii) carbonization 

and (iii) graphitization (graphitization process between 1500
0
 and 3000

0
C).  

 

Figure 2-1: Schematic representation of carbon fiber preparation from PAN fibers (6) 
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In Table 2-1 we enumerate the various advantages of carbon fibers and give examples of their 

application. 

Table 2-1: Characteristics and Applications of Carbon Fibers (6) 

Physical strength, specific toughness, 

light weight 

Aerospace, road and marine transport, sporting 

goods 

High dimensional stability, low 

coefficient of thermal expansion, and 

low abrasion 

Missiles, aircraft brakes, aerospace antenna and 

support structure, large telescopes, optical 

benches, waveguides for stable high-frequency 

(GHz) precision measurement frames 

Good vibration damping, strength, and 

toughness 

Audio equipment, loudspeakers for Hi-fi 

equipment, pickup arms, robot arms 

Electrical conductivity 

Automobile hoods, novel tooling, casings and 

bases for electronic equipments, EMI and RF 

shielding, brushes 

Biological inertness and x-ray 

permeability 

Medical applications in prostheses, surgery and x-

ray equipment, implants, tendon/ligament repair 

Fatigue resistance, self-lubrication, 

high damping 
Textile machinery, genera engineering 

Chemical inertness, high corrosion 

resistance 

Chemical industry; nuclear field; valves, seals, and 

pump components in process plants 

Electromagnetic properties 
Large generator retaining rings, radiological 

equipment 

2.1.3 Organic fibers 

There are many types of organic fibers made throughout the world. The Nomex fiber was 

industrialized in 1960, the presence in its structure of Aramid molecules leads to a higher fusion 

temperature than polyamide fibers. Nomex fibers are used to manufactures some secondary part 

in the aeronautic industry because it doesn’t have a high modulus and thus can’t be used for 

structural applications (6). 

Another configuration of aramid molecules is used to produce Kevlar fibers which were 

introduced in 1972 in the United States (6). They are made of highly oriented chains of poly-
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paraphenylene terephthalamide molecules with strong inter-chain bonding. Their internal 

structure gives the resulting fiber very good thermal properties and also a very high modulus 

while being a very light material that makes it a material of choice in a variety of applications. 

Also, in the principal direction, chemical bonding is very strong whereas in other perpendicular 

directions Van der Waals bonds are a lot weaker and this explains why these fibers cannot be 

used in structural application to supports loads in directions other than the principal direction of 

the fiber (6). 

One of the highest Young modulus we can find for these types of fibers is 280 GPa obtained in 

Zylon fibers. Organic fibers have a diameter ranging from 12 μm to approximately 30 μm (6). 

2.2 Yarns types 

The second step of the manufacturing process consists of grouping together the fibers in a linear 

assemblage to form a continuous tubular structure from called a yarn. Also, to hold the fibers 

together, they are impregnated with resin. There exist various yarn structures, each having 

different properties suited for various types of applications. Yarns may be composed of one or 

more continuous fibers, discontinuous chopped fibers and finally, two or more single yarns can 

be twisted together to form plied yarns. In the traditional textile industry, the filaments are 

twisted to provide good structural integrity and the ability to hold the shape. In contrast, in the 

forming of structural composites a softer yarn is desirable since it allows greater compaction 

and flattening and therefore greater total volume fraction of the fibers in the resulting 

composite, thus increasing its strength (6).  

In this study, we will be concerned with multiple, continuous, untwisted fibers because they are 

simpler to study and because their mechanical properties are very close to the monofilament 

properties. Also, for structural composites the twisting of the filaments would reduce the axial 

stiffness of the yarns which is one of the most important properties we are looking for in a yarn. 

The yarn’s structure is characterized by several geometrical parameters which are (6): 

 The number of filaments, 

 The cross-sectional area  (we will assume they have an elliptic shape), 



Chapter 2 – Overview on Textile Composites 

 

 

-14- 

 

 The yarn packing density, defined as the ratio of the fiber volume to the yarn overall 

volume. 

Yarn structure plays a dominant role in the translation of fiber properties into various yarn 

properties. First, the mechanical properties of the yarns are mainly dictated by the fiber 

obliquity, which is the orientation of the filament relative to the yarn axis. Second, the way 

fibers are grouped together, called the fiber entanglement is also a very important consideration. 

An assemblage of chopped fibers is not as strong as a yarn made of untwisted monofilament. 

Typical filament to yarn strength translation efficiency in the previously presented yarn 

structures are listed in Table 2-2 (6). 

Table 2-2: Geometrical parameters of the RVE to be defined in Abaqus 

Yarn structure Strength translation efficiency 

Monofilament 100% 

Multifilament: untwisted 98% 

Multifilament: slightly twisted 95% 

Multifilament: air jet texturized 85% 

Multifilament: stretch texturized 85% 

2.3 Fabric structure 

The third step in textile structural composites manufacturing process consists in interlacing the 

yarns in a periodic configuration to form a flat sheet with a specific weave pattern. Fabric types 

are categorized by the orientation of the yarns and the weave pattern used to hold the yarns 

together. Three common fabric structures are shown in Figure 2-2. A weave pattern is defined 

by its representative volume element (RVE) which is its smallest repeating unit. Thus giving the 

description of the RVE is sufficient to describe the complete structure of a textile composite 

reinforcement. Among the family of textile reinforcements for composite materials the principal 

types of fabrics are detailed in following subsections (7). 

2.3.1 Woven 

Woven are produced by interlacing yarns in orthogonal directions. The warp yarn (0°) is 

interlaced in a rectangular pattern with the fill yarn (90°). The fabric integrity is maintained by 
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the mechanical interlocking of the crossing yarns. Drapability over a complex surface, surface 

smoothness and deformation stability of the fabric are controlled primarily by the weave style. 

2.3.1.1 Plain weave (7) 

Each warp yarn passes alternately under and over each fill yarn. The fabric is symmetrical, with 

good stability and reasonable porosity. However, it is the most difficult of the weaves to drape, 

and the high level of yarn crimp imparts relatively low mechanical properties compared with 

the other weave styles. With large yarns, this weave style gives excessive crimp and therefore it 

tends not to be used for very heavy fabrics. 

2.3.1.2 Twill weave (7) 

One or more warp yarns alternately weave over and under two or more fill yarns in a regular 

repeated manner. This produces the visual effect of a straight or broken diagonal 'rib' to the 

fabric. Superior wet out and drape is seen in the twill weave over the plain weave with only a 

small reduction in stability. With reduced crimp, the fabric also has a smoother surface and 

slightly higher mechanical properties. 

2.3.1.3 Satin weave (7) 

Satin weaves are fundamentally twill weaves modified to produce fewer intersections of warp 

and fill. The ‘harness’ number used in the designation (typically 4, 5 and 8) is the total number 

of yarns crossed and passed under, before the yarns repeats the pattern. Satin weaves are very 

flat, have good wet out and a high degree of drapability. The low crimp gives good mechanical 

properties. Satin weaves allow yarns to be woven in the closest proximity and can produce 

fabrics with a close “tight” weave. However, this weave displays low stability and its 

asymmetric nature needs to be considered. Bending and stretching in a satin weave ply are 

coupled because of exchange sites breaking symmetry and causing yarns to bend in an 

asymmetric way. Coupling between those two phenomenons will cause warping during cure 

because of thermal strains. Care must be taken in assembling multiple layers of these fabrics to 

ensure that stresses are not built into the component through this asymmetric effect. 
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a) 

 
b) 

 
c) 

Figure 2-2: Representation of various weave patterns for textile reinforcements: plain weave a), 

twill weave b) and satin weave c) (7) 

2.3.2 Other types of fabrics 

2.3.2.1 Non crimp fabrics (7) 

This type of fabric has a very low crimp of the yarns in each lamina. Yarns are ideally straight 

and each ply is arranged in various orientations best suited to support the loadings, this enable 

the designed part to fully exploit the yarn modulus. Each individual ply is then stitched together 

to optimize interlaminate bonds and thus reduce delamination. In consequence, the combination 

of unidirectional placement of yarns in multiple loading directions with consolidation by 

stitching leads to highly advantageous combination of properties. A visual example of such 

fabrics is shown in Figure 2-3. 

Composite components of non crimp fabrics make it possible to ideally transmit the forces that 

arise in the stress direction using targeted fiber alignment. This makes reduced component 

weight despite identical mechanical values or higher loads for the same component weight 

compared to woven fabrics while displaying of low production costs.  

 

 

Figure 2-3: Non crimp fabric constituted of an assemblage of unidirectional plies stitched 

together (3) 
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2.3.2.2 3D Fabrics (7) 

When the thickness of a composite part is large, the use of laminated composites is restricted by 

manufacturing problems and low out-of-plane resistance causing delamination. These problems 

have been solved by the design of the 3D fabric architecture which is presented in Figure 2-4. 

There are no yarns set in the transverse direction but the through the thickness properties are 

very much improved. These reinforcements have significant applications in military hardware 

and are also used today to manufacture the fan blade of GE90 turbojet engine. 

 

Figure 2-4: 3D fabric reinforcement (3) 

2.4 Multi-scale nature of composite materials 

As we already know, composite materials are usually composed of reinforcements and a matrix 

that hold the reinforcement in place. In the case of textiles, these reinforcements are an 

assemblage of yarns in a specific weave pattern and the yarns are constituted of filaments. Thus 

the overall composite inherits the properties of the filaments composing the yarns and also 

taking into account the specific pattern in which the yarns are organized. During an impact 

loading, the yarns undergo extension in their principal axis as well as small in-plane rotations; it 

is then important to characterize each of the phenomena taking place at a mesoscale level during 

an impact to assess the behavior of the composite under such loadings.  

As we have seen before, composites are by definition multi-scale materials. We may distinguish 

three levels to investigate the mechanical response of the textile reinforcements during 

deformation. These scales have been studied in details and are used by many different 

researchers and hold their own significance; they are presented here in order of decreasing size. 
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Macroscopic scale is considered the level of the whole part at which we study the 

phenomenon, in our case it is the impact. It covers the dimensions from a few centimeters to 

decimeters and even meters. The models developed usually consider a simple equivalent media 

like a set of elements. The behavior at this level is highly dependent on the possible motions 

and interactions of yarns at the mesoscopic level; it is therefore determined by the deformation 

mechanisms at smaller scales. In the following pages we will go over the deformation 

mechanisms we have to understand fully before any work is done at the macro-scale. 

Mesoscopic scale consists of yarns made of a few thousand of filaments; this scale is focused 

on the representative volume element of the fabric which is repeated continuously to make the 

fabric. Thus it is used to study on crossover and the yarn-yarn interactions. Finite element (FE) 

modeling of the textile at mesoscale level aims at determining the maximum details of both the 

reinforcement geometry and the stress-strain state. FE at this level is used to mesh a realistic 

geometrical model of the reinforcement internal geometry which represents actual volumes of 

the yarns. An example of the typical studied geometry and mesh is given in Figure 2-5. 

 
Figure 2-5: Deformed geometry of RUC at mesoscale level in plane shear (8) 

 

In an FE model of this nature, the geometry and yarn properties are usually imported from a 

textile pre-processing program to generate the solid mesh. Typical studies have been conducted 

conjointly by Badel, Vidal-Salle and Boisse (8) and also Lomov et al. (9).  Due to the large 

number of elements in these models, they require large CPU time (1). 

Microscopic scale is the smallest of the three levels at which the textile reinforcements are 

studied. This scale is confined to the yarns and their composing filaments whith diameters 
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ranging from approximately 5 μm to 50 μm. There exist some modeling studies at this scale by 

Durville (10), Vandeurzen (11) and Zhou (12) and the main problem is the very large number of 

contact elements which demand very large CPU time.  

Because of the specific multi-scale nature of the textile reinforcements, different approaches 

have been developed to model the impact problem. These approaches exploit the three different 

scales presented above from a geometrical, analytical, or FE modeling perspective. We will 

discuss in greater details the work done on each of these approaches in chapter 3. The focus 

here is to present the specificities of the geometries, mechanical properties and deformation 

modes of fabrics; these concepts are crucial to the understanding of the modeling approaches to 

be adopted. 

2.4.1 Observation of the fabric architecture 

Many pictures of the textile structure are available throughout the literature. As part of our 

study we will start focusing on the plain weave as shown in Figure 2-6 taken from ref (13). 

 

Figure 2-6: Microscale image of a plain weave showing the undulation of the yarns and their 

cross-sectional shape (13) 

2.5 Mechanical properties of textiles reinforcements 

Several deformation mechanisms take place inside the fabric and we will provide a summary of 

the main ones in the following paragraphs. Not every one of the following mechanisms will be 

taken into account in the user material subroutine to be presented later, but it is important to 

understand them if the subroutine is to be improved in further work by adding some of the 

mechanisms to better model the behavior of the fabric. 
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2.5.1 Deformation modes in the fabrics architecture (1)  

There are two main types of deformation modes that will be briefly described here: in-plane 

deformations and out-of-plane deformations. In-plane deformations are caused by uniaxial and 

biaxial yarn extension and shear. Out-of-plane deformation is typically caused by transverse 

compaction of the yarns, bending etc. 

2.5.1.1 Elongation in yarn principal direction (1) 

When applying a load in the direction of the yarns, the fabric is being elongated in that 

direction. That elongation is usually very small and is attributed to the straightening of the yarns 

from their crimped initial state. This straightening may be caused by high deformation energies 

as it can be seen in figure 2-9. 

2.5.1.2 In-plane shear (1) 

Because of the weave pattern that is being used, large rotations of the warp and fill yarns are 

possible. They appear at the crossover points between the two perpendicular yarns because of 

the shearing effect. Indeed shearing is the principal in-plane deformation mechanism and the 

relative yarn rotation can be large even for small shearing loadings. Yarn rotation is happening 

until the angle between the yarns reaches the locking angle; at this point the fibers cannot freely 

rotate anymore as shown in Figure 2-7 taken from ref. (1).  

 
                            a) 

 
                    b) 

Figure 2-7: Fabric in uniaxial tensile deformation a) and in shear deformation b) (1) 

2.5.1.3 Compression in yarn principal direction (1) 

When the fabric is submitted to compressive load in the principal direction of either warp or fill 

yarns then buckling appears almost immediately. The yarns have a very poor compressive 

strength, thus the fabric also has very low compression properties. 
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2.5.1.4 Transverse compression (1) 

When transverse compressive loads are applied to the fabric there is a flattening effect 

happening at the crossover points. The yarns are being compressed between one another and the 

cross-sectional area of each yarn is reducing, this is due to the fact that the filaments at the 

micro-scale level are being jammed against each other. It is important to mention at this point 

that the transverse compression of the ply is affecting its in-plane tensile and shear behavior 

since the contact areas between the fibers are increased by the compression load (1). 

2.5.1.5 Bending (4) 

A fabric’s resistance in bending is very low because of the small cross-section of each yarn able 

to bear the load and also because of the sliding between warp and fill yarns. This very low 

bending resistance is interesting in the case of composite forming processes and often, in 

numerical analysis, the textile ply is modeled as a membrane element. However in some fabrics, 

the resistance in bending is not low enough to be considered negligible and in that case shell 

elements are used. 

2.5.1.6 Locking (4) 

The locking phenomenon happens when the in-plane shear of the fabric has brought the fabric 

in a situation where the angle between warp and fill yarns is less or equal the locking angle. At 

this point if the shear strain continues to grow over time, there will be a lateral compression of 

warp or fill yarns by the surrounding adjacent yarns. This causes a change in the yarns cross-

sectional areas which in turn will change the mechanical properties of the whole fabric. 

2.5.1.7 Cross-locking (4) 

Cross-locking is a result of changes in the undulations of the yarns. For example, during biaxial 

tensile loadings, the yarns straighten and de-crimp and the jamming of warp and fill yarns 

against each other at the crossover leads to a cross-locking. In that situation, neither family of 

fibers is completely straighten and no matter how high the tensile load is, the yarns will stay 

undulated because of the locking at the crossover points. 
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2.5.2 Mechanical behavior of composites under various loadings 

2.5.2.1 Behavior in biaxial tension (4) 

Tensile tests on different types of fabrics in warp and fill directions have shown that the fabric 

has a non-linear behavior in tension. This behavior is especially non-linear at the beginning of 

the test where low tensions are applied but generate a relatively high deformation. There is a 

progressive stiffening taking place at first, followed by a linear response corresponding to the 

behavior of straightened yarns as shown in Figure 2-8. 

 
a) 

 
b) 

Figure 2-8: Response of characterizing loads on a plain weave fabric: shear response a) and 

tensile response b) (14) 

The observed non-linearity is a consequence of the weave pattern which gives the yarns a 

natural tendency to undulate as they pass over and under the crossing yarns. Under tensile 

loading, the yarns progressively straighten and then elongate. In the case where warp yarns are 

submitted to loading while fill yarns are free, the warp yarns become totally straight and the fill 

yarns get more undulated.  

 
Figure 2-9: Straightening of the yarns in case of uniaxial tension (14) 

 

In other cases of combined loadings in the two main fabric directions, neither one yarn family 

nor the other is entirely straightened. In that case, the fabric achieves an equilibrium state. Thus 
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it appears clearly that the fill and warp yarns are interacting with each other throughout a 

uniaxial or biaxial tensile load. 

In consequence, the non-linearity at the beginning of the loading process is due to geometrical 

considerations that can be seen at the scale of the representative volume element. It is caused by 

the change in the yarns undulations. Other phenomena also take place at the mesoscale level (4). 

First, under tensile loading, the cross-section of the yarns is reduced because of the elongation 

taking place. Second, yarns are transversally compressed against each other at the crossover 

points, yarns rearrange and this also has an effect on the yarns ’sections. 

2.5.2.2 In-plane shear behavior 

Shear tests on textile reinforcement have shown that the fabric have a non-linear shear behavior 

which is characterized by three distinct and successive steps. The first step corresponds to a 

linear behavior characterized by a very low stiffness. The second step is where the non-linear 

behavior happens; it corresponds to progressive stiffening. Finally, the third step is an almost 

linear behavior with a relatively high stiffness compared to the two preceding steps. Shearing 

leads to rotations between the two yarn families, these rotations generate friction at crossovers 

between the yarns. Thus the low initial stiffness of step one is attributed to the initial friction 

happening at each crossover point during the rotation of the yarns (4). 

The non-linear part corresponds to the progressive jamming of adjacent yarns when the voids 

between the yarns are progressively closed. When all the voids are being closed up, the fabric is 

considered in the locked state meaning it will no longer continue its shearing deformation in the 

plane. The quasi-linear phase in step 3 shows a very high shearing stiffness, this rises from the 

fact that the shearing deformation is limited because of the lateral compressibility of the yarns. 

In that particular zone, if the shearing loads continue to be applied the fabric will start showing 

wrinkles which really are out-of-plane deformations. 

The non-linear behavior of the fabric in shearing observed at a macro-scale level rises from 

geometrical changes in the fabric at a mesoscale level. Important variations in the yarns 

placement, relative position, orientation and geometry are happening. Figure 2-10 shows the 

shearing effect causing a modification of yarn relative position from initial configuration shown 
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in Figure 2-10-a to final configuration shown in Figure 2-10-b; also there is an important 

change in the yarns cross-sectional area due to the lateral compression that occurs. 

 
Figure 2-10 Shearing effects taking place at the mesoscale level at crossover where the yarns 

interact: a) initial configuration, yarn undeformed  b) final configuration, yarn deformed (15) 

 

The phenomena taking place at a mesoscale level are complex and much work has been done to 

capture their effects as we will see in chapter 3.  

2.6 Conclusion 

In this chapter, we went over the basics of fabric reinforced composites from their application to 

their constituents and various structure types. We mainly focused on the multi-scale nature of 

fabrics to get a clear understanding of the challenges we had to face at each level and fully 

grasp the importance of positioning our study at the right scale to capture the right deformation 

effects. Then, we overviewed and explained each phenomenon taking place in the fabric during 

its deformation such as yarn elongation, in-plane shear, bending, locking, transverse 

compression etc. Lastly, we tried to understand the basic behavior of a fabric under tensile and 

shear loads to get familiar with that type of loading and the deformations they lead to. 
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CHAPTER 3 - MODELING BALLISTIC FABRICS 

Modeling woven fabrics is challenging due to the need to capture the fabric response at both the 

macroscopic scale of the fabric and the “mesoscale” of the yarns that compose the weave. In 

order to capture the dynamic behavior of fabrics, various modeling techniques have been 

developed and in this chapter we will present an extensive literature review of the different 

types of modeling approaches. Emphasis has been put on the unit-cell approach since it is the 

type of model that has been developed in this work and tested under impact loading using 

Abaqus. 

3.1 Overview of ballistic fabric modeling techniques 

Among the main computational analysis methods used to model ballistic fabric behavior, four 

main classes can be identified.  

3.1.1 Finite-element analyses based on the use of pin-jointed orthogonal bars  

The most notable studies in this category of analyses are those performed by Roylance and 

Wang (16), Shim et al. (17), Lim et al. (18), Shahkarami et al. (4). While the pin-jointed 
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orthogonal-bars based finite-element analyses have proven to be very efficient in approximating 

the dynamic behavior of woven fabrics, the discrete nature of the yarn models was associated 

with inherent oversimplifications that significantly limited the predictive capability of the 

analyses. In particular, important contributions associated with the weave architecture, surface-

finish and friction governed yarn-to-yarn and layer-to-layer contacts (in multi-layer fabrics) 

could not be accounted for. 

3.1.2 Detailed full-blown 3D continuum  

Analyses using this method have been carried out by Shockey et al. (19), Duan et al. (20). 

While these analyses have proven to be powerful tools for capturing and elucidating the detailed 

dynamic response of single layer fabrics, they are computationally very demanding when 

applied to practical armor or engine containment casing systems which typically contains 30 to 

50 fabric layers/plies. 

3.1.3  Unit-cell based approach  

This approach has been used extensively in order to derive the equivalent (smeared) continuum-

level (membrane/shell) material models of textile composites from the knowledge of the 

mesoscale fiber and yarn properties, fabric architecture, and inter-yarn and inter-ply frictional 

characteristics. Among the most notable studies based on these analyses are those carried out by 

Kawabata et al. (21) who introduced simple analytical models to capture the uniaxial, biaxial 

and shear behavior of fabrics. Furthermore, Ivanov and Tabiei (22)  proposed a micro-

mechanical material model for a woven fabric (in which a visco-elastic constitutive model was 

used to represent the mechanical behavior of the yarns) for the use in non-linear finite-element 

impact simulations. In deriving the material model, Ivanov and Tabiei (22) considered the 

motion of the yarn-crossover point and developed a procedure for determining the equilibrium 

position of this point under the applied unit-cell strains. Recently, King et al. (23) proposed a 

new approach for deriving the continuum-level material model for fabrics based on the 

properties of the yarns and the weave architecture which involves the use of an energy 

minimization technique to establish the relationship between the configurations of the fabric 

structure to the microscopic deformation of fabric components. Similar unit-cell based 
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continuum-level membrane/shell material models have been developed by Boisse et al. (24) and 

Peng and Cao (25). Also, Shahkarami and Vaziri (2) proposed a similar but simpler model to 

that introduced by King et al. (23) and provided a detailed account of its incorporation into a 

material-model subroutine which can be readily coupled with commercial dynamic-explicit 

finite-element codes. 

3.1.4 Higher-order membrane/shell  

This approach is used to represent the dynamic response of fabric under ballistic loading 

conditions and overcome the aforementioned computational cost associated with the use of full 

3D finite element analyses of the yarn/fabric structure. Among the studies falling into this 

category, the most notable is the one carried out by Scott and Yen (26). While the use of higher 

order membrane elements was found to be indeed advantageous computationally, it was never 

fully validated by comparing its results against either those obtained experimentally or those 

obtained using full 3D finite element analyses. 

3.2 Analytical based modeling for the unit-cell method 

Four main approaches using the unit-cell method may be encountered in the literature:  

 The mesostructurally based analytical models proposed and refined by Pierce (27), 

Bejan and Poterasu (28), Warren and Sagar et al. (13). 

 The simple analytical models first introduced by Kawabata (21) is introduced to capture 

the uniaxial, biaxial and shear behavior of fabrics while reducing the complexity of 

geometry description of the mesostructural models 

 The micro-mechanical material model for a woven fabric proposed by Ivanov and 

Tabiei (22) in which a visco-elastic constitutive model was used to represent the 

mechanical behavior of the yarns. This material model has been used in non-linear 

finite-element impact simulations.  
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 A novel approach for unit cell continuum-level material model for fabrics based on the 

properties of the yarns and the weave architecture proposed by King et al. (23) and 

further improved by Shahkarami and Vaziri (2), Grujicic et al. (1). 

3.2.1 Meso-structurally based analytical models 

These models use mathematical equations to describe the geometry of a representative volume 

element of the fabric and to predict the mechanical response of the fabric and its components in 

specific modes of deformation. Such models can be valid only for uniaxial or biaxial tension of 

the fabric along the warp or fill family of directions, rotations and thus shear effects between 

yarns are not considered, hence the models are very limited in their predictions. The advantage 

of a meso-structural model can be used to quantify the homogenized material properties that 

will be used in continuum models. 

In 1937, Peirce (27) proposed a model that provides the mathematical framework to describe 

the geometrical configuration of plain weave fabric having circular yarns. He based his 

description on the assumption that a yarn can be decomposed into undulated portions and 

straight portions as one can see in Figure 3-1. 

 

Figure 3-1: Geometry proposed by Peirce (27)  

This model was the starting point used by many researchers to develop their own models taking 

into account further refinements like yarns with non-circular deformable cross sections.  

To further present the process of describing the geometry of the lamina configuration we have 

taken the works of Liliana Bejan and V. F. Poterasu (28) as an example. Their work is restricted 
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to a two dimensional orthogonal balanced weave fabric. It features an idealized representation 

of a plain weave fabric lamina which is presented in Figure 3-2. 

 

Figure 3-2: Geometrical representation of the plain weave fabric unit-cell used by Bejan and 

Poterasu (28) 

From the macro-scale to a micro-scale, the unit cell consists of the interlacing region and of the 

gap region and then the interlacing region consists of the warp and fill yarns one over the other. 

The geometrical parameters chosen and used to describe this unit-cell are as follows:  

 aw (af ) is the yarn width,  

 hw (hf ) the yarn thickness,  

 gw (gf ) the interyarn gap,  

 uw (uf ) the undulated length,  

 ht the fabric thickness, and h the lamina thickness. 

Depending on the side from which you observe the representative unit cell, the authors have 

described two types of sections: sections E-A and sections A-H (they are presented graphically 

in Figure 3-3. This is to define the different zones used to describe the undulation of the yarns. 

Section E-A, for example, is divided into different zones marked by a1 to a5. Similarly, the 

sections parallel to A-H are divided into different zones marked by b1 to b5. 
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a) 

 
b) 

Figure 3-3: Section description: a) section E-A, b) section A-H 

The expressions for    to    and    to    are as follows: 

            (3.1) 

    
     

 
      

     

 
 (3.2) 

    
  

 
      

  

 
 (3.3) 

    
     

 
      

     

 
 (3.4) 

    
  

 
         

  

 
    (3.5) 

    
     

 
         

     

 
    (3.6) 

                     (3.7) 

The shape functions given below are given as an example of the geometrical description of the 

crossover used by Bejan and Poterasu (28) to define the configuration of the yarn in warp or fill 

direction are presented below: 
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As it is shown in this example, the geometrical description of a plain weave fabric unit cell is a 

complex task as it was carried out by Bejan and Poterasu (28). 

Using previous works on geometry description, Warren (29) coupled it with the elastic beam 

theory to predict the response of yarns in uniaxial or biaxial tension taking into account a 

bending effect. Sagar et al. (13) employed a modified form of this geometry and used the 

principle of stationary potential energy to determine the fabric deformation resulting from an 

applied load. Warren and Sagar models (29), (13) are still limited in their prediction 

capabilities; since the models assume that the yarns remain orthogonal to one another, no in-

plane rotation is allowed and thus it is not possible to account for shearing effects. Also, 

because of the complex geometries it is quite difficult to extend the model predictions to other 

types of loading without making overly simplifying assumptions. 

3.2.2 Pin-jointed truss geometry 

To overcome the problems and the demanding computations caused by the detailed geometry, 

other researchers have proposed simpler models to achieve greater mathematical simplicity and 

thus better computational efficiency. Kawabata et al. (21) was the first to propose the use of a 
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pin-jointed truss geometry to represent flexible fabric yarns that incorporates analytical models 

for the biaxial, uniaxial and shear deformation behaviors. His model is shown in Figure 3-4. 

 

Figure 3-4: Pin-jointed truss geometry proposed by Kawabata et al. (11) 

Since then, other works have been conducted to include other deformation behaviors. For 

example, Realff et al. (30) have modified Kawabata’s (21) model to include yarn flattening and 

consolidation due to yarn compaction. Other analyses of this type where performed by 

Roylance and Wang (16), Shim et al. (17), Lim et al. (18) and Shahkarami et al. (31). Pin-

jointed orthogonal bars based FE analyses have proven to be very efficient in capturing the 

dynamic behavior of woven fabrics. 

3.3 Continuum based modeling 

The design of woven fabric systems is still largely based on empirical methods and experience. 

Modeling woven fabrics is challenging due to the need to capture the fabric response at both the 

macroscopic scale of the fabric and the “mesoscale” of the yarns that compose the weave. In 

fact, there is no widely accepted computational model for fabric deformation which is both 

computationally efficient and able to represent the behavior of the evolving structure of the 

fabric at the level of the individual yarns.  

In the literature, either the fabric has been modeled at the level of the mesoscale, with detailed 

discretization of each fiber in the weave, or the fabric has been modeled at the continuum level, 

with phenomenological approaches, typically treating the fabric as an anisotropic continuum 

with two preferred material directions.  
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The continuum modeling approach, used by many researchers (32), (8) to capture the dynamic 

response of fabrics and fabric composites, is usually subdivided into 3D solid models and unit-

cell shell models as illustrated in Figure 3-5 (a) and (b) respectively. 

  
(a) Unit-Cell Shell Models (b) 3D Solid Models 

Figure 3-5: Continuum modeling approaches 

3.3.1 3D solid models 

This approach is focused on the numerical modeling to directly capture the fabric meso-

structure. In consequence, every yarn in the fabric is modeled using solid continuum element 

with homogenized material properties. Using this approach, modeling a full ply is a tedious task 

because each yarn is represented as a solid model as it is shown in Figure 3-6. 

 

Figure 3-6: Full blown 3D modeling example 

The difficult task here is both to set up the geometry in the finite element software and also to 

approximate the material properties for the yarns. This method has been used by Ng et al. (33), 

Boisse et al. (24) and Shockey et al. (19) among others and it has the advantage of capturing all 

yarn interactions and of providing a detailed description of yarn interactions at a mesoscale 
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level. However this method is very computationally demanding especially in analysis involving 

a multi-ply composite and therefore is usually limited to the prediction of the behavior of 

smaller systems. For example, it is used to gain insight into the mechanics of fabric deformation 

at a mesostructural level to estimate the homogenized material properties over a representative 

volume element. Furthermore, the constitutive behavior of each individual yarn will inevitably 

be a source of uncertainty as the yarns themselves are not homogeneous but composed of 

individual fibers. Detailing this complex morphology might require even more complex sub-

modeling. 

For 3D solid models, the discretization length scale is determined by the dimensions of the 

yarns and the weave pattern and thus multi-ply simulations are computationally prohibitive 

(31). Unit-cell shell models cannot be used to design fabrics based on the properties of the 

fibers and weave, and it is unsuitable for applications where the macroscopic response depends 

on the fabric’s unique underlying mesostructure and its specific deformation mechanisms, such 

as fiber failure, crimp interchange, shear locking, or relative slip between the two yarn families. 

As such, without suitable models, the analysis and improvement of existing products and the 

development of new applications for woven fabrics is currently overly costly and time 

consuming. 

3.3.2 Shell based unit-cell models 

The principle of unit-cell shell based models is to homogenize the behavior of the underlying 

yarn structure to approximate the fabric in an anisotropic continuum having two preferred 

material directions. Homogenized formulations for textile reinforcement have been proposed by 

a number of researchers; Reese (34) considered an elastoplastic anisotropic continuum 

formulation, Xue et al. (35) and Shockey et al. (19) have proposed continuum models for woven 

composites. Work has also been done on knitted composites. 

A continuum-level modeling technique for woven fabrics such as the ones developed by 

Shahkarami et al. (4) and King et al. (23) captures the macroscopic mechanical response of the 

fabric as well as the evolution of its mesostructure with deformation. An appropriate unit cell 

approximation, based on a pin-joined truss geometry, represents the weave architecture. The 
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configuration of the unit cell is determined by the macroscopic deformation gradient and the 

satisfaction of local equilibrium. The forces on the unit cell, and in turn the corresponding 

continuum level stresses, are calculated from physically motivated constitutive relations. 

Unit-cell shell based continuum models typically allow greater computational efficiency and 

can easily be applied in multi-ply system models with good precision. The real challenge lies in 

the identification and characterization of the homogenized parameters to calibrate such models. 

There exist different manners to tackle the problem, for example, Xue et al. (35) relied on 

testing to determine material properties and Shockey et al. (19) used detailed 3D modeling of 

one crossover at mesoscale level. 

The major handicap of this type of continuum modeling lies in the fact that most of the actual 

work in this field do not take into account the effects of the interactions between yarns. These 

interactions include crimp interchange, locking and resistance to relative yarn rotation. Crimp 

interchange is a mechanism by which the fabric elongates in one direction without notable yarn 

extension in that direction because of the yarn de-crimp mechanism that occurs while the 

crossing yarn in the perpendicular direction is retracting by becoming more undulated. Locking 

is a mechanism by which the fabric resists shear deformation as the yarns jam against each 

other. Relative yarn rotation is the dominant response of the fabric to in-plane shear which is a 

phenomenon that appears in many fabric applications including impact. Omission of these very 

important behaviors makes continuum models unsuitable for the general analysis of fabric 

systems where yarn interactions are important.  

Because this work has been specifically focused on this approach, we will present it in greater 

details than the others. In section 3.4 we give a comprehensive review of the relevant literature 

and the shell based fabric unit-cell models is first presented, to highlight the strengths and 

shortcomings of the unit-cell models currently studied by other scientists. 

3.4 Literature review on shell based unit-cell models 

This approach combines the advantages of continuum modeling and analytical modeling. 

Mathematical relationships to evaluate the behavior of the fabric under specific loadings are 

incorporated in the anisotropic continuum medium to obtain a model that allows tracking of the 
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mesostructure’s evolution as the continuum element deforms. It is interesting to note that in unit 

cell based modeling the yarns directions also evolve as the element deforms and so shearing 

effects can be precisely quantified.  

In other words, one crossover is considered as being the representative volume element to 

which a simple geometrical model is associated to describe the evolution of the structure’s 

deformation. This geometrical model, described by mathematical equations to capture the 

deformation effects is then implemented into a VUMAT that is embedded in a shell element 

that is none other than the anisotropic thin continuum medium. In that situation, during the 

numerical simulation, the displacements of the shell nodes translate into changes in the 

geometrical model allowing to calculate the forces in the yarns for the simple tension effect as 

well as other effects (yarn shearing, bending etc…). The process is described in Figure 3-7: 

         
 

 

 
Figure 3-7: Unit-cell based modeling process from Grujicic et al (1) 

Most fabrics possess a periodic geometry due to the specific pattern that the yarns are woven 

into, making them an excellent candidate for unit-cell analysis approach. Many researchers have 

tried to duplicate the mechanical response of fabrics into efficient membrane/shell elements. 

The elements developed are generally a continuum representation of the fabric through 

smearing the effects of warp and weft yarns into a two dimensional homogeneous material. 

While pin-jointed bar models of fabrics generally consider the response of warp and weft yarns 
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to be decoupled, shell/membrane elements can accommodate the biaxial behavior of the fabrics 

through implementation of appropriate constitutive models. This section includes a brief review 

of some of the unit-cell models that have employed shell/membrane elements as the basis to 

predict the fabric response. 

Fabrics exhibit a non-linear structural response when stretched in the in-plane direction. Perhaps 

some of the earliest models of fabric crossover to capture the biaxial behavior of the fabrics 

response under extensional and shear deformation modes are those of Kawabata et al. (21). In a 

series of papers published in 1973, Kawabata et al. (21) presented simple analytical models to 

capture the biaxial and uniaxial behavior of symmetrically loaded yarn crossovers, as well as 

their shear response.  

 

Figure 3-8: Illustration of the biaxial crossover model of a single plain weave fabric crossover 

with linear yarns originally developed by Kawabata et al. (21) 

Considering a linear representation of the yarn centerlines shown in Figure 3-8, the equilibrium 

of the crossing yarns under biaxial extension was satisfied through balancing the yarns tensile 

forces with the contact force developed between them. Kawabata et al. (21) accommodated the 

transverse deformation of the yarns due to the inter-yarn contact force in determining the 

transverse position of the yarns satisfying the equilibrium of forces and compatibility of the 

deformations. This model was expanded in a subsequent paper (36) to incorporate the bending 

resistance of yarns, most dominant in the uniaxial extension of the fabrics. The model 

developed to capture the shear response of the fabric (37) is discussed in Section 4.3.2. 

Since the early work of Kawabata et al. (21), many other studies have adopted a similar, if not 

identical, approach to capture the biaxial response of fabrics using finite element analysis 
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approach. Ivanov and Tabiei (22) developed a model that in their words was “a computational 

micro-mechanical material model for loosely woven fabric”, with a unit-cell consisting of a 

crossover with the yarns interacting under the applied displacements. The yarn material was 

considered to be visco-elastic and its response was modeled by a three-element spring/dashpot 

model and it was implemented in the shell element and used to simulate ballistic impact 

experiments on Kevlar fabric targets.  

King et al. (23) published the details of a continuum-based model of a fabric unit-cell used to 

capture the deformational response of woven fabrics. The model relies on the selection of a 

representative model of weave geometry along with a constitutive relationship to capture the 

biaxial response of the fabric crossover. In this multi-scale approach, King et al. (23)  adopted 

geometry similar to that of Kawabata et al. (21)  to identify the in-plane extensional response of 

the yarns. The yarns were represented by an assembly of trusses pin-jointed together to make up 

the geometry of a certain weave. Other aspects of the fabric response such as lateral 

compression and bending of yarns were considered through individual springs in the unit-cell. 

With the knowledge of the macroscopic deformations and displacements of the fabric at any 

time, the internal forces can be calculated from the unique configuration of the yarns network 

by minimizing the energy stored in the system. King et al. (23) compared and obtained good 

agreement between the predictions of their numerical model and the laboratory data for a 

variety of different experiments. King’s model was further improved by Grujcic et al. (1) works.                 

Detailed mesoscopic model for biaxial analysis of fabric deformation during the forming 

process was developed by Boisse et al. (24). The initial geometry of yarns was represented by a 

combination of circular arcs and straight lines. The tensile response of the yarn was measured 

from simple tension tests. The model considered for transverse crushing law of the yarns was 

dependent on both the compressive state of the yarn and its axial tension. The friction between 

the yarns were considered implicitly to prevent relative sliding of the yarns, however, it was 

assumed that the frictional dissipative energy was too small compared to other energy 

components. Boisse et al. (24) used this model to predict the forming behaviour of a fabric with 

a square punch and die. They reported that their biaxial unit-cell model was in good agreement 

with the experimental data and the predictions of a 3D micromechanical unit-cell model they 

developed for the same purpose (discussed in Chapter 4). 
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Xue et al. (35) proposed a combined micro/macro-mechanical non orthogonal constitutive 

model to capture the large deformation behavior of the fabrics in the thermoforming process. 

The developed constitutive model considered details of the weave such as the dimensions of the 

yarns and the unit-cell, their material properties and the orientation of the yarns. The shear 

properties of the fabric were then obtained from a mechanistic analysis of the unit-cell and the 

tensile properties of the fabric were obtained from a simplified analytical model. The tensile 

model is based on incorporating the interaction of the crossing yarns through correlation 

parameters determined by performing fabric uniaxial tensile tests. 

The continuum based fabric unit-cell models discussed above are just a few of many useful 

approaches to simulate the biaxial response of fabrics. The invaluable research and scientific 

development in the field of computational modeling of fabrics, some of which briefly discussed 

above, has been instrumental in the evolution of the approach presented in this thesis. 

3.5 Shell fabric unit-cell formulation description 

The 2D shell crossover model developed here is based on a continuum representation of the 

fabric unit-cells using shell elements following Shahkarami’s work (4). The model captures the 

micromechanics of the yarns in the fabric through a smeared continuum approach. In 

establishing the basis of the model, it is assumed that the in-plane extensional mode of 

deformation is decoupled from the shearing mode. As a result, the constitutive relations 

developed for these two modes of deformation are derived separately. The following sections 

review the material models developed to capture the extensional and shearing response of a 

plain weave fabric unit-cell comprised of a single yarn crossover. 

3.5.1 Simplifying assumptions 

Several simplifying assumptions were made in the mathematical formulation. Firstly, the yarn 

profile of the woven fabric is assumed to be initially sinusoidal and remains sinusoidal at all 

times throughout the analysis. This assumption is based on the micrographic image of the yarns 

presented in Figure 3-9. 
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Figure 3-9: Cross-sectional micro-image of a plain weave fabric made of Kevlar fibers (2) 

Secondly, the in-plane warp and fill displacements are assumed to be symmetrically applied at 

both yarn ends, this will prevent any sliding between the two crossing yarns and impedes the in-

plane movement of the contact point. The in-plane displacement of the contact point is thus not 

allowed. 

Thirdly, there is no friction between the contacting yarns so that contact force at any point of 

the yarn in perpendicular to the surface of the yarns. As the yarns interact a contact force 

develops between them while stretching occurs under applied displacement. The mechanics of 

the crossover point that we use only take into account the resulting force acting at the center-

point of the crossover. 

Fourth, it is assumed, based on the physical behavior of the fabric, that the out-of-plane stiffness 

of the fabric is insignificant compared to their in-plane stiffness. This is due to the fact that the 

bending stiffness is very low as is the shear stiffness. 

Fifth, the extensional and shear responses of the fabric are totally decoupled and therefore in the 

user-defined material subroutine described in this work they are treated separately. This is 

explained in the sections to come. 

3.5.2 In-plane extensional response 

Plain weave fabrics exhibit strong biaxial behavior when extended in their plane. An analytical 

model is developed here to capture this biaxial response considering the interaction of warp and 

weft yarns at fabric crossovers. The model presented here is inspired by Kawabata’s linear 

crossover model (21) with further expansion to accommodate the non-linear geometry of the 

yarns. 
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The model is based on tracking the location of the yarn centerlines (with geometries illustrated 

in Figure 3-10), as the two yarns interact under the applied displacements. The initial geometry 

of each yarn centerline is determined by its initial crimp value, obtained from the laboratory 

measurements.  

 

Figure 3-10: 3D finite element mesh of a single fabric crossover (left) and the equivalent 

mathematical representation of the yarns by their centerlines (right). 

The analytical model developed here is aimed to capture the interaction of the warp and weft 

yarns and to determine their in‐plane extensional response. 

3.5.3 Shear Response 

A distinctive attributes of plain weave fabrics is their unconventional shear behavior. Due to the 

specific arrangement of the yarns in the weave structure, the fabric can shear easily up to a 

certain locking angle where the compacted yarns resist further shearing. Many scientists in the 

textile industry and in the field of textile composites manufacturing have studied this behavior, 

some of which are reviewed here. 

Kawabata et al. (21) introduced a semi-empirical model to capture the shear deformation 

response of fabrics. Usually the information obtained from the picture frame tests is used to set 

up a shear model for the plain weave fabric. The overall shear behavior of fabrics under biaxial 

tensile and shear deformations was approximated based on utilizing a linear empirical 

relationship to estimate the torque required to change the angle between the crossing yarns. The 

unknown parameters in this empirical relationship, comprised of a frictional and an elastic 

component, were calibrated through experimental measurements. 
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Prodromou and Chen (38) studied the relationship between the shear angle and wrinkling of 

textile composite performs. They performed frame shear tests on glass fabrics with plain weave, 

four and eight harness satin weaves. Their experimental results showed that two distinct regions 

can be distinguished on the load versus shear angle response of the fabrics: prior to locking 

where the trellis mechanism dominates the response and post-locking where the fabric starts to 

wrinkle out-of-plane due to high shear modulus in the fabric. They found that more 

conformable weaves such as satin would reach the shear locking at larger deformations, as is 

also the case for smaller yarn size at a given yarn count. The shear tests performed by 

Prodromou and Chen (38) indicated that the relative motion of the yarns at the centre of a fabric 

crossover does not occur during the trellising, meaning that the crossing yarns can effectively be 

considered pinned. Based on these observations, Prodromou and Chen (38) proposed a method 

for calculating the locking angle. In their proposed pin-jointed model, they assumed that shear 

locking occurs when the space between the parallel yarns closes, and moved on to calculate the 

locking angle by setting the distance between the yarns of the deformed fabric equal to their 

width. Based on the results obtained from this mechanistic pin-jointed model, they concluded 

that other factors not considered such as friction and changes in the yarn width and their spacing 

can result in a different measured locking angle compared to the predicted value. 

McBride and Chen (39) proposed a pin-jointed shear model that would consider the geometry 

of the fabric unit-cell with sinusoidal yarn shapes during the shearing deformation. In this 

model, transverse yarn compaction was included as a deformation mechanism in addition to the 

trellising. The model predictions of yarns width and fiber volume fraction as a function of shear 

angle showed good agreement with the observed values, despite the inaccuracies stemming 

from other factors not accounted for, such as friction and fiber waviness within a yarn. 

The model presented in this study is motivated by the two models of Prodromou and Chen (38) 

and McBride and Chen (39). A trellis mechanism is considered where the shear response of a 

crossover is subdivided into three distinct regions. Initially, due to the presence of gaps between 

parallel yarns, the lone resisting mechanism against shearing is considered to be friction, 

leading to a very small initial shear modulus (referred to here as zone I). Further shearing of the 

unit-cell would give rise to the shear modulus, as the yarns start to interact and compact each 
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other transversely (zone II). Eventually, the compaction of the yarns reaches a maximum value, 

after which the shear modulus is at its maximum and further shearing deformation of the fabric 

would lead to wrinkling (zone III). The information obtained from the picture frame tests are 

used to set up a shear model for the plain weave fabric.   

3.6 Governing equations of the model 

Some of the basic equations and assumptions used to track the principal deformations effects 

that occur inside the geometrical structure (such as yarn tension, yarn bending, yarn crossover 

contact and yarn locking) will be described in this section.  

3.6.1 Tension (4)  

When both yarns are intact and under tension the in-plane normal strains in both directions are 

positive and there is a non-zero contact force between the yarns at the crossover. The effect of 

the contact and the yarn equilibrium must be taken into account before computing the yarn 

tensions. A simple procedure is used for the calculation of yarn tensions using the yarn contact 

force at the crossover enabling us to obtain the yarn centerline heights (denoted   ). The truss 

element lengths    can therefore be calculated using the representative volume element half-

length (denoted   ) as such (see figure 3.8):  

    √  
    

  (3.10) 

It follows that the tensions    within the truss members is described by the following equation: 

      (       )  (     ) (3.11) 

where subscript 0 is used to denote the initial (undeformed) quantity, and Ki is the yarn-stiffness 

constant taken, in our case, from the 3D model of the crossover which is detailed in Chapter 5. 

It is assumed that truss members have no ability to support compressive axial loads. The full 

procedure for calculating yarn tension is covered in great detail in Chapter 6. 

3.6.2 Shearing (4) 

Following Shahkarami’s thesis work, the fabric geometry changes from its initial state to 

deformed state are schematically shown in Figure 3-11. As the fabric shears, the warp-to-weft 
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angle β decreases from its original value, denoted     thus reducing the spacing between the 

adjacent parallel yarns. This distance, denoted  , is shown in Figure 3-11. The relationship 

between the shear angle and yarn spacing can be derived from the fabric deformed geometry, 

as: 

       
 

 
 (3.12) 

where L is the side-length of the fabric in picture frame shear test. The presence of in-plane gap, 

p , between adjacent yarns in the undeformed configuration allows the fabric to shear freely to a 

certain angle,   . At this angle, the inter-yarn gap diminishes and the parallel yarns start to get 

in contact with each other. Angle    can be calculated as: 

        
    

 
 (3.13) 

where    is the initial distance between the yarns. Further shearing of the fabric leads to gradual 

compaction of the yarns, up to an angle   , where the yarns reach their maximum compaction. 

This angle can be calculated from the following equation: 

        
  

 
 (3.14) 

where u2 corresponds to the yarns spacing at maximum compaction. In order to calculate   , 

certain assumptions need to be made. It is assumed that the fabric thickness, as reported in 

many other studies, remains more or less constant and is decoupled from the shear deformation. 

Based on this assumption, it is concluded that the amplitude of the sine function representing 

the yarn profiles remains constant during shear. It is further assumed that the yarn cross-

sectional shape becomes elliptical at the point of full compaction. In reality, the yarn 

compaction would not be uniform along its length due to the localized interaction of the 

crossing yarns and their specific configuration in a highly sheared fabric. To account for this 

effect, an area reduction factor, denoted Ks, is considered which results in a yarn packed area 

that can be estimated from the formula below that can be derived using the schematic of the 

yarns in the sheared unit cell shown in Figure 3-11: 
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 (3.15) 

The values of    calculated from the above equation can be substituted in equation (3.14) to 

determine the locking angle β2. Using the locking angles β1 and β2, the corresponding shear 

strains γ1 and γ2 can be determined.  

 

Figure 3-11: Shear model representation 

The shear stress-strain relationship is formulated such that the instantaneous shear strain γ is 

related to the secant shear modulus G by the function defined by: 

   

{
 
 

 
 

             

   
     

     
 (    )

            

             (3.16) 

3.6.3 Yarns crossover contact (4) 

Yarn/yarn interactions and yarn cross-sectional area changes at the crossover points are 

accounted for through the use of a non-linear, axial ‘‘interference’’ spring whose contact force, 

Fc, versus yarn contact overclosure dc, relation is defined by the following constitutive relation: 

     
    

    
    (3.17) 
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where   and   are constants that need to be calibrated through 3D modeling of a fabric 

crossover and the interference,    , is defined as a difference between the sum of the initial 

crimp amplitudes and the sum of the current crimp amplitudes.  

3.6.4 Yarn bending (1) 

The yarn-bending moment,    , is assumed to depend linearly on the change in yarn crimp 

angle,        , so that the constitutive relation for the rotational springs attached at the truss-

member pin joints is defined as: 

        (       )  (     ) (3.18) 

where     is the bending stiffness. To account for different amounts of permanent set in the 

yarns, appropriate values should be assigned to the reference crimp angle     . 

3.6.5 Yarn locking (1) 

Before a constitutive relation for the locking trusses is proposed, it must be recognized that the 

yarn cross section is typically an oblate ellipse.  

 Yarn cross-sectional area changes associated with the crossover-point interference, 

discussed above, are taking place primarily in the direction of the minor axis of the yarn 

cross-section (i.e., in the fabric through-the thickness direction).  

 In the case of yarn locking, these changes take place in a direction parallel to the yarn 

cross-section major axis. Consequently, the locking response is expected to be more 

compliant than the yarn crossover-interference response. To account for this difference, 

a power-law relation is used to describe the locking force,     , versus locking 

interference,             , where      is the locking-truss length where the locking first 

time takes place. 

      {
            

   (    )
            

   (3.19) 

where    and   are the ‘‘locking’’ material parameters. 

Among the most notable studies were those carried out by Kawabata et al. (21) Furthermore, 

Ivanov and Tabiei (22) proposed a micromechanical model for a woven fabric to use in impact 
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simulations. Interestingly, they introduced a procedure to determine the position of equilibrium 

of the crossover and to study its evolution under applied strain. Therefore the crimp interchange 

mechanism is accounted for because knowing the position on that particular point enables one 

to calculate the crimp for each fiber.  

Boisse et al. (24) successfully developed a four-node finite element for textile composite 

forming applications. Recently King et al. (23) proposed a new model to derive the continuum-

level material model for fabrics based on an energy minimization technique. This technique 

establishes the relationship between the configuration of the fabric structure and the 

microscopic deformation of fabric components. Boisse et al. (24) and Peng and Cao (25) have 

also developed such models. Finally, Shahkarami and Vaziri (2) have created a similar model to 

the one proposed by King et al. (23) only simplified but fully integrated in commercial 

dynamic-explicit finite element softwares by using the VUMAT user subroutine. It is upon 

Shahkarami’s equations that we based our Abaqus VUMAT subroutine that has been used in all 

our numerical tests. 

3.7 Conclusion 

In this chapter, a brief literature review was performed in order to get acquainted with different 

types of methodologies used to model the dynamic behavior of ballistic fabrics subjected to 

simple loadings aimed at capturing specific deformation mechanism (shear, bending etc…). 

Despite many attempts to develop effective models for fabric behavior, there is no widely 

accepted model that can predict the response of fabric in every type of application. Indeed, the 

models do not capture all the important aspects of fabric deformation largely because the 

requirements for fabric models differ with each specific application.  

In this work, a continuum level modeling technique for woven fabrics such as the one used by 

Shahkarami et al (2) and King et al (23) which captures the macroscopic response of the fabric 

as well as the evolution of its mesostructure with deformation in a single efficient modeling step 

is used. Both the 3D solid models and the unit-cell shell models are employed to develop a 

fabric crossover material model that is implemented in the commercial nonlinear finite element 

fully explicit solver code Abaqus through its VUMAT subroutine facility. The implementation 
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is done so that the material model can be used with Abaqus S4R shell element with hard 

contact. In addition to displacement degrees of freedom, degrees of freedom representing the 

crimp amplitude of each yarn family are defined in order to solve for the configuration of the 

fabric unit cell at each step in time. The accuracy of the model is verified by comparing the 

simulation results with the experimental results provided by Shahkarami et al (2). The fabric 

model is used to simulate projectile impact on single plies of plain-weave Kevlar. Direct 

comparisons are made with experimental data obtained from available literature (ELVS data). 
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CHAPTER 4 - DESCRIPTION OF THE MAIN TOOLS 

4.1 Explicit Dynamic FE formulation 

An explicit dynamic analysis is computationally efficient for the analysis of large models with 

relatively short dynamic response times and for the analysis of extremely discontinuous events 

which is the case in our impact models. Explicit solutions are especially suited for problems 

where a small time step is required because of: 

 Material non linearity. A high degree of non-linearity requires very small time step for 

accuracy.  

 Large geometric nonlinearity. Contact and friction algorithms can introduce 

instabilities and a small time step is needed for accuracy and stability. 

 Material or geometric non-linearity combined with large displacements. 

 Large models. Explicit methods have also increasing advantage over implicit methods 

for large models containing several thousand elements. 
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In explicit codes, by using the principle of virtual work, internal and external forces are summed 

at each node and the discrete equations of motion become:  

 
  ̈            (4.1)  

where M is the mass matrix and the displacement and its derivatives are denoted by       u . 

     and      are respectively the internal and external force vectors. Explicit methods do not 

require matrix decomposition or matrix solutions since M is usually lumped and division by the 

nodal mass yields the nodal acceleration. Instead, a loop is carried out for each time step as 

shown in Figure 4-1. The algorithm is however conditionally stable and therefore the maximum 

permissible time step is the time for an acoustic wave to travel through the material. 

 

 

 

 

 

 

 

Figure 4-1: Explicit integration scheme loop 

4.1.1 Central difference integration rule 

In Abaqus/Explicit, the explicit integration scheme is based on the central difference integration 

rule of the equation of motion for the body considered. A key to the computational efficiency of 

the explicit procedure is the use of diagonal element mass matrices because the inversion of the 

mass matrix that is used in the computation for the accelerations at the beginning of the 

increment is trivial. Equation 4.1 thus becomes: 

Grid-point accelerations 

Grid-point velocities 

Element strain rates 

Element stresses 

Element forces at grid point 

Grid-point displacements 

Central difference integration in 

time 

Element formulation and gradient operator 

Constitutive model and integration 

Elt formulation and divergence operator 
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   ̈             (4.2)  

 
 ̈  

 

 
(         ) 

(4.3)  

The explicit procedure requires no iterations and no tangent stiffness matrix and there is no need 

of solving a coupled system of equations.  

The integration rule is based on the following explicit equations [Abaqus/Explicit user guide]: 

  ̇(  
 
 
)   ̇(  

 
 
)  

  (   )    ( )

 
 ̈( )  

(4.4)  

  (   )   ( )    (   ) ̇(  
 

 
)   

(4.5)  

where  ̇ is the velocity and  ̈ is the acceleration. Equation 4.4 means that the kinematic state is 

advanced using known values of  ̇(  
 

 
) and  ̈( )  from the previous increment. Unless the initial 

values (at time    ) of velocity and acceleration are specified by the user, they are set to zero. 

We assert the following condition: 

 ̇( 
 
 
)    ̇( 

 
 
)  

  

 
 ̈( ) (4.6)  

The central difference operator is not self-starting at     because the value of the mean 

velocity  ̇( 
 

 
)
 needs to be defined. Substituting equation 4.4 in equation 4.5 yields the 

following definition of   ̇( 
 

 
)
. 

  ̇( 
 
 
)    ̇( )  

  ( )

 
 ̈( ) (4.7)  

4.1.2 Time step control 

The control of the time increment can be either defined by the user or set to automatic mode. In 

the latter case, Abaqus/Explicit loops through the elements to update the stresses and 

determines a new time step    by taking the smallest of the set of time increments calculated for 

each one of the N elements of the model such as: 

              (                                 ) (4.8)  
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For stability reasons, the scale factor    is multiplied on the smallest found time step. This 

factor is usually set to 0.9. 

In Abaqus explicit code, the time step for each shell element is estimated based on the smallest 

characteristic length of the shell elements    in the analysis and on the speed of sound inside the 

considered material    such as:  

   
  

  
 (4.9)  

From the knowledge of Young’s modulus  , Poisson’s ratio   and the material density  , we 

can calculate the speed of sound in the material which is given by: 

    √
 

 (    )
 (4.10)  

Knowing the length of the four edges of each shell element denoted            and the area As of 

the element, we can obtain the characteristic length of a shell element using the following 

formula: 

    
  

    (           )
 (4.11)  

4.2 Constitutive law of the model 

As we have seen in the literature review provided in Chapter 3, the multi-scale nature of the 

reinforcements allows discrete as well as continuous approaches. In discrete approaches also 

called mesoscale approaches each yarn is modeled individually thus this approach is limited to 

small domain study. The continuous approach considers the fibrous material as a continuum. 

The yarns are not continuous when considered at a microscopic scale but it may be considered 

continuous in average at a macroscale level. The constitutive model of this continuum has to 

convey the very specific mechanical behavior of the fibrous reinforcement during the 

deformation and also has to take finite strain into account because fabric deformations usually 

involve large shear angles. Among continuous models of mechanical behavior at large strain, 
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rate constitutive equations relating stress and strain rates (also called hypoelastic laws) are 

widely used (4).  

The hypoelastic approach uses a rotated frame in which the objective summation of stress 

increments is performed. Rotations classically used are the ones from the polar decomposition 

of the deformation gradient tensor (Green Naghdi objective derivative) (4) or the corotational 

frame rotation (Jaumann objective derivative). The constitutive operator calculations are 

performed in the corresponding rotated frame (Green Naghdi’s frame or corotational frame). 

The components of this operator in this frame are obtained from its specific form in the yarn 

frame by a change of base.  

These rotations are mean values of the material rotations and are well adapted for finite strain 

calculations of isotropic media, and particularly metals. In the case of fibrous media, the yarn 

orientation does not follow the orientation of the previously mentioned frames.  

For example, let’s observe the fibrous media presented in Figure 4-2 where f is the unit vector 

in the fiber direction. 

 
Figure 4-2: Initial frame e0i, rotated frame ei and yarn frame fi in the case of unidirectional yarns 

Frame ei denotes the orthonormal frame formed by the initial basis vectors e0i rotated by the 

rotation Q.ei  is the rotated frame. The direction of the vector f is in general not constant in ei. 

Since it is a material direction, the initial yarn direction f0 is transformed by F the gradient 

tensor into f = f1, while ei is rotated by Q (see Figure 4-2). 
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In case of fibrous materials, the constitutive tensor C is oriented by f which is varying in the 

rotated frame. The mechanical behavior of fibrous media is thus directly related to the 

orientation of the yarn which is a material direction. To take into account and solve that 

particular aspect two approaches have been developed for fibrous media within the hypoelastic 

formulation. 

The first one, which is the most frequently used (4) is based on the objective derivative of 

Green Naghdi (or Jauman’s one) and the corresponding rotated frame (as proposed by FE 

codes). Using this approach is convenient, its principal advantage lies in the direct use of the 

rotated frame of the commercial codes (Green Naghdi’s or corotational). These codes provide 

the user with the whole set of quantities necessary for the incremental computation using this 

frame. 

The second approach consists in using another objective derivative defined from the yarn 

rotation and has been used by Badel et al. (40) in his works. According to his paper (40) the 

rotated frame used in the hypoelastic law follows the yarn rotation better than the Green-Naghdi 

frame. Indeed objective derivative of Green-Naghdi uses a rotation that fits the matter only in 

average which is precise enough for isotropic materials or for anisotropic material that can be 

assumed to be oriented by this rotated frame. However in the case of fibrous materials under 

load cases leading to finite strain in the material it may lead to a rotation discrepancy between 

the material directions and the computed Green-Naghdi directions. The results obtained give 

satisfying results to some tests on fibrous materials undergoing finite strains. The analysis of a 

woven unit cell submitted to large in-plane performed using the approach based on the yarn 

rotation shows that numerical results are in good agreement with a shear picture frame 

experimental test. According to Badel et al. (40), this fiber frame approach preserves the 

objectivity and thus yields greater accuracy as well as better computational stability.  The paper 

even goes further stipulating that “only this approach is correct to simulate fibrous media 

undergoing finite strains". We will detail this very interesting method in the following sections. 

Because of its integrated nature with Abaqus, the hypoelastic approach with Green-Naghdi 

objective derivative has been used in this work. At this point it is important to mention that two 

methods described above will be explored for the case of in-plane yarn displacements because 
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this is what the VUMAT presented in this work was coded for. Also this will simplify the 

equations, putting more emphasis on the algorithm. 

4.3 Description of the Green-Naghdi hypoelastic approach 

The rate constitutive equations (or hypoelastic laws) are widely used in FE codes (41): 

         (4.12)  

where    is an objective derivative of the Cauchy stress tensor   and   is the strain rate 

deformation tensors. These two dual tensors are usually considered as eulerian variables for the 

strain rate and the stress in the continuum mechanics. The aim of the objective derivative is to 

avoid spurious results induced by rigid body rotations in  ̇  
  

  
, the time derivative of   , if 

these are not properly handled.  It can be seen as a derivative for an observer who is fixed with 

respect to the matter. Several objective rates addressing this issue have been developed and are 

available in technical literature. However the rotational objective derivatives are the most 

commonly used for simplicity reasons. 

If a rotation operator   is used to define a frame that will be called ‘‘rotated frame”, the 

objective derivative is then the derivative for an observer fixed in this rotated frame and can be 

written as : 

      (
 

  
(       ))     

(4.13)  

If we introduce the corresponding spin such as: 

      ̇     (4.14)  

we can write the objective Cauchy stress derivative as: 

     ̇          (4.15)  

The rotation operator   can be written in two ways depending on the chosen objective 

derivative. For example in the case of the Green-Naghdi objective derivative, the rotation 

operator    is taken as the rotation tensor   obtained from the polar decomposition of the 

gradient tensor   written as follows: 
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       (4.16)  

4.3.1 Updating current constitutive axes  

For woven composite materials, the constitutive tensor C is oriented always along the fiber 

directions; hence it is essential to update the current fiber direction so that the constitutive laws 

could be used properly. The necessary steps to carry out that update are described below. But 

since the implementation details are given in chapter 6, here only a brief overview is given in 

this section. Considering e.g. a plane stress problem as shown in Figure 4-3, the Green-Naghdi 

axes are rotated by R which is the rotation tensor obtained from polar decomposition of 

gradient as such: 

         (4.17)  

 

 

Figure 4-3: An element with simple shear under plane stress showing Green-Naghdi (n) and 

Fiber Frames (f) before and after deformation (41) 

The Green-Naghdi axes denoted hereafter by    are updated as: 

    
     

 

‖     
 ‖

       
     

 

‖     
 ‖

 
(4.18)  

Where   
  and   

  are the Green-Naghdi axes from the previous time increment equivalent 

respectively to n1 and n2 in Figure 4-3. Also the yarn directions need to be updated. They are 

obtained from the deformation gradient tensor F as: 

    
     

 

‖     
 ‖

       
     

 

‖     
 ‖

 
(4.19)  
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Note that   
  and   

  are assumed to coincide initially. Once both directions of yarn axes    and 

GN axes    are determined, it is then possible to transform strain increment from current 

software working axes (GN) to yarn frame.  Since the two yarn directions do not remain 

orthogonal after deformation, it is necessary to generate a new local orthogonal frame where 

each one of the two yarn axes will be defined.   

4.3.2 Transforming strains and stresses between GN frame and yarn frame 

This transformation necessitates the knowledge of two angles at each increment. The first angle 

is    between the vectors    and     and the second one is    between the vectors    and   . The 

computation of these specific angles is detailed in chapter 6. Let us denote by [ ] the 

transformation matrix between the Green-Naghdi axes and yarn axes, it is written at each time 

increment as follow: 

 [ ]  [
          

           
]        

(4.20)  

Abaqus gives the strains in the Green-Naghdi frame and so the strain in the yarn directions is 

defined as: 

 [ ]   [ ] 
 [ ]  

[ ]     (4.21)  

Stresses along yarn directions are computed using the constitutive tensor in the yarn direction 

and the transformed yarn direction strains from the previous equation: 

 [ ]   [ ]  [ ]      (4.22)  

And finally the stresses are transformed to the Green-Naghdi Frame: the default bases of stress 

calculation in Abaqus/Explicit. 

 [ ]  
 [ ] [ ]  [ ] 

 
    (4.23)  

The above formulations are implemented in the user subroutines VUMAT of Abaqus/Explicit. 

Since two methods of calculations are proposed in this article, only one fiber direction is 

updated for two sets of elements with unidirectional fibers oriented differently whereas both 

directions are updated with two directions of material orientation in the same set of elements. 
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4.3.3 Computation algorithm for the hypoelastic GN approach 

The implementation of the Green-Naghdi approach using Abaqus’ VUMAT user subroutine is 

described in this section. The methods to be used in other finite element codes that let the user 

write the constitutive equations at finite strain should be very similar. At each time step n the 

code provides the following matrices: 

[    ]  
     [    ]  

     [  ]  
    [  ]

  
      

The user subroutine has to return the stress state at the end of the step: [    ]  
   . Since F and 

U are given at time n + 1, it is needed to work at the end of step configuration instead of mid 

step configuration. The implementation of both above approaches using the VUMAT user 

subroutine in Abaqus is explained later. The performed steps of the computations are given 

below. 

 

Step-1: Compute the inverse matrix of the right stretch tensor:  [    ]  
 
  

  

Step-2: Compute the polar rotation matrix: 

 [    ]  
  [    ]  

 [    ]  
 
  

    (4.24)  

Step-3: Compute the current work basis   
    from   

  and [    ]  
  using the equation below: 

   
    [    ]  

    
     (4.25)  

Step-4: Compute the current material basis   
    from   

  and [    ]  
  using the equation 

below: 

   
    [    ]  

    
     (4.26)  

Step-5: Compute the rotation (we restricted our explanation to in-plane rotations) and base 

change matrix [ ]  
    such as: 

 [ ]  
    [

          

           
]        

(4.27)  

where    is the angle between the vectors    and     (i=1,2). 
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Step-6: Obtain    which represents the rotation between configuration at       and 

    
 

 
 

          (   
 

 )
 

        
(4.28)  

Step-7: Compute the corresponding transformation     : 

    ( )                  (4.29)  

Step-7: Derive [   (   
 

 )]
   

   
 from [ ]

 
 

  
 
 
 which is the constitutive matrix expressed in the 

rotated frame as such: 

 

 [   
 
 ]

 
 

  
 
 
     [    ]  

       
(4.30)  

Step-8: Update the stress tensor and return it to Abaqus:  

 [    ]  
      [  ]  

    [   (   
 
 )]

   
   

 [   (  )]  
    

(4.31)  

4.3.4 Computation algorithm for Badel’s fiber frame (FF) approach 

Badel’s algorithm [] is described in detail in this section.  

Step-1: Compute the inverse matrix of the right stretch tensor:  [    ]  
 
  

  

Step-2: Compute the polar rotation matrix: 

 [    ]  
  [    ]  

 [    ]  
 
  

    (4.32)  

Step-3: Compute the current work basis   
    from   

  and [    ]  
  using the equation below: 

   
    [    ]  

    
     (4.33)  

Step-4: Compute the current material basis   
    from   

  and [    ]  
  using the equation 

below: 

   
    [    ]  

    
     (4.34)  
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Step-5: Compute the rotation (we restricted our explanation to in-plane rotations) and base 

change matrix [ ]  
    as such: 

 [ ]  
    [

          

           
]        

(4.35)  

where    is the angle between the vectors    and     (i=1,2). 

Step-6: Derive the material strain increment from the code’s strain increment: 

  [   (  )]  
    [ ]

  
   

   [   (  )]  
   [ ]

  
   

         (4.36)  

Step-7: Update the material stress tensor:  

 [    ]  
      [  ]  

    [   (   
 
 )]

   
   

 [   (  )]  
    

(4.37)  

Step-8: Return the stress tensor in the work basis of the code: 

 [    ]  
      [ ]  

   [    ]  
     [ ]

  
   

  (4.38)  

4.4 Shell element description 

Shell elements are used to model structures in which one dimension, the thickness, is 

significantly smaller than the other dimensions. Conventional shell elements use this condition 

to discretize a body by defining the geometry at a reference surface. In this case the thickness is 

defined through the section property definition. Conventional shell elements have displacement 

and rotational degrees of freedom. In ABAQUS an element behavior is characterized by five 

parameters: 

 Family (continuum, shell, beam, truss, membrane, rigid or connector elements) 

 Degrees of freedom (directly related to the element family) 

 Number of nodes 

 Formulation (mathematical theory or variational formulation used to define the 

element's behavior) 

 Integration (numerical techniques used to integrate various quantities over the volume of 

each element, so as to allow for a complete generality in material behavior) 
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We have been using the S4R shell element in our works which has 4 nodes and uses a reduced 

integration scheme. We will present some aspects of its formulation in the following paragraphs 

as well as the integration particularities for this element. 

4.4.1 S4R overview 

The S4R element is a general purpose, conventional shell element that is valid for thick and thin 

shell problems and that allows for transverse shear deformation. It uses thick shell theory as the 

shell thickness increases and use discrete Kirchhoff thin shell elements as the thickness 

decreases. The transverse shear deformation becomes very small as the shell thickness 

decreases. Elements of type S4R account for finite membrane strains and arbitrarily large 

rotations; therefore, they are suitable for large-strain analysis which is why we chose this 

element for our analyses. 

4.4.2 S4R formulation 

An element's formulation refers to the mathematical theory used to define the element's 

behavior. All our work has been done in Lagrangian setting thus the shell element follows the 

deformation of the material.  

At a given stage in the deformation history of the shell, the position of a material point in the 

shell is denoted   and defined by [see Abaqus/Explicit theory manual for details]:  

  (  )   ̅(  )     
̅̅ ̅̅ (  )   (  )    (4.39)  

where    are local surface coordinates that are assumed to be orthogonal.    is the coordinate in 

the thickness direction. The subscript i and other Roman subscripts range from one to three. 

Subscripts   and other lowercase Greek subscripts which describe the quantities in the reference 

surface of the shell range from one to two. In the above equation     is the normal to the 

reference surface of the shell. If we consider that in the thickness, the increase factor    
̅̅ ̅̅  is 

assumed to be independent of     and neglecting derivatives of    
̅̅ ̅̅  with respect to     we obtain 

the in-plane and out-of-plane gradient of the position vector as: 
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  ̅

    
    

̅̅ ̅̅    

    
      

  

    
    

̅̅ ̅̅         (4.40)  

In the deformed state, we define local and orthonormal shell directions    such that: 

                     [  ]   (4.41)  

where     is the Kronecker delta and [  ] is the identity tensor of rank 2. Summation convention 

is used for repeated subscripts. The in-plane components of the gradient of the position are thus 

obtained by projecting the gradient equation 4.19 in the tangent plane as:  

        
  

   
 (4.42)  

where    is the normal to reference surface  . If we define the reference surface deformation 

gradient    
̅̅ ̅̅ ̅ as: 

    
̅̅ ̅̅     

  ̅

   
 (4.43)  

and the reference surface normal gradient     as: 

        
   
   

 (4.44)  

It is now possible to express the gradient of position in terms of reference surface deformation 

gradient and the reference surface normal gradient defined before so as to obtain: 

        
̅̅ ̅̅         

̅̅ ̅̅      (4.45)  

In the reference configuration we denote the position of a material point by   ( ̅ for the 

reference surface) and the direction vectors by   , which yields to:   

   (   )   ̅(   )     (   )   (4.46)  

The gradient of the position vector is:  

 
  

   
 

  ̅

   
 

   

   
    

  

   
    (4.47)  
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And, if we assume the in-plane direction vectors follow the surface coordinates, we get the in-

plane components of the deformation gradient in the reference configuration: 

    
         

      (4.48)  

Where    
  is the original reference surface normal gradient defined by eqn 4.28 as:  

    
     

   

   
 

(4.49)  

4.4.2.1 Deformation gradient 

We already have obtained an expression for the deformation gradient in the reference surface, 

and we have assumed that the thickness change is constant:  

  ̅     ̅         ̅     ̅   (4.50)  

At other points in the shell we obtain for the in-plane component  

        
̅̅ ̅̅ ̅         

̅̅ ̅̅ ̅     (4.51)  

which leads to : 

     (   
̅̅ ̅̅      

̅̅ ̅̅        )(         
 )

  
 (4.52)  

Neglecting terms of order  (  )
  then yields the simplified relation: 

        
̅̅ ̅̅ ̅    (   

̅̅ ̅̅        
̅̅ ̅̅    

 ) (4.53)  

We can write equation 4.32 as the product of a finite-membrane deformation and a bending 

perturbation:  

 

    [      (   
̅̅ ̅̅         

̅̅ ̅̅̅      
̅̅ ̅̅     

     
̅̅ ̅̅ )]    

̅̅ ̅̅ ̅ 

 [      (   
̅̅ ̅̅           

̅̅ ̅̅     
     

̅̅ ̅̅ )]    
̅̅ ̅̅ ̅ 

(4.54)  

If we assume that the deformation (strain and rotation) due to bending is small then, 

   (   
̅̅ ̅̅           

̅̅ ̅̅     
     

̅̅ ̅̅ )    (4.55)  

We finally obtain: 
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̅̅ ̅̅ ̅ (4.56)  

4.4.2.2 Membrane strain increment 

The membrane strain increment follows from the incremental stretch tensor    , whose 

components follow from the incremental deformation gradient     
̅̅ ̅̅   by the polar 

decomposition. 

     
̅̅ ̅̅      

̅̅ ̅̅      
̅̅ ̅̅ ̅  (4.57)  

Let     
̅̅ ̅̅ ̅ 

 and     
̅̅ ̅̅ ̅    

  be the deformation gradient at the beginning and the end of the 

increment, respectively. By definition:  

     
̅̅ ̅̅ ̅    

        
̅̅ ̅̅ ̅     

̅̅ ̅̅ ̅ 
 (4.58)  

The incremental deformation gradient follows as: 

      
̅̅ ̅̅ ̅         

̅̅ ̅̅ ̅    
( ̅   

)
  

 (4.59)  

Since      
̅̅ ̅̅ ̅ are the components of an orthogonal matrix, the square of the incremental stretch 

tensor can be obtained by:  

      
̅̅ ̅̅̅     

̅̅ ̅̅ ̅         
̅̅ ̅̅ ̅      

̅̅ ̅̅ ̅   ∑ (   )
   

    
  

     (4.60)  

Where    are incremental principal stretches and    
  are corresponding principal directions. The 

logarithmic strain increment is then: 

       ∑   (   )  
    

  
     (4.61)  

The average material rotation increment is defined from the polar decomposition:  

     
̅̅ ̅̅ ̅   ∑

 

   
  

    
  

       
̅̅ ̅̅   (4.62)  

This, due to the choice of the element basic directions leads to: 

     
̅̅ ̅̅ ̅       (4.63)  
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4.4.2.3 Transverse shear treatment 

Several interpolation schemes have been proposed to avoid shear-locking, which typically 

arises as the thickness of a plate or shell goes to zero. Here we employ an assumed strain 

method based on the Hu-Washizu principle. For reduced integration quadrilateral and triangular 

shell elements that can be used for both implicit and explicit integration, this assumed strain 

method needs to be modified.  

We summarize below the assumed strain method used with fully integrated elements, followed 

by the modifications required for the one-point integration plus stabilization used in 

Abaqus/Explicit. 

4.4.2.4 Construction of the assumed strain field 

Consider a typical isoparametric finite element, as depicted in Figure 4-4, and denote by A, B, 

C, D the set of midpoints of the element boundaries.  

 

Figure 4-4: Notation for the assumed strain field on the standard isoparametric element. 

The following assumed transverse shear strain field is used:  
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 ̅  
 

 
[(   )  

  (   )  
 ]   

 ̅  
 

 
[(   )  

  (   )  
 ]  

(4.64)  

where  

 
  

      ̅ 
      ̅ 

                 
      ̅ 

      ̅ 
    

  
      ̅ 

      ̅ 
                 

      ̅ 
      ̅ 

  

(4.65)  

are the covariant transverse shear strains evaluated at the midpoints of the element boundaries. 

In the above transverse shear strain definitions, the use of uppercase letters indicates quantities 

in the reference configuration and the use of lowercase letters indicates the deformed 

configuration. For readability we have removed subscript 3 from the director field. Making use 

of the bilinear element interpolation, it follows that: 

 

 ̅ 
  

 

 
( ̅   ̅ )               ̅ 

  
 

 
( ̅   ̅ )   

   ̅ 
  

 

 
( ̅   ̅ )                ̅ 

  
 

 
( ̅   ̅ ) 

(4.66)  

where  ̅ , for I=1,2,3,4, are the reference surface position vectors of the element nodes.  

By making use of the assumed strain field along with the update formulae for the director field, 

the assumed covariant transverse shear field can be written concisely in matrix notation. Recall 

the director field update equation and the corresponding linearized director field:  

          [  ̂]                 (4.67)  

It follows from the element interpolation that: 

 

    
 

 
(       )                       

 

 
(       )        

    
 

 
(       )                       

 

 
(       )       

(4.68)  

We now define the following vectors to be able to express the linearized transverse shear strain 

where  ̅ is the transverse shear strain field:  
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  ̅  {
 ̅ 

 ̅ 
}         ̅  {

  ̅ 

  ̅ 

  ̅ 

  ̅ 

}        {

   

   

   

   

}  (4.69)  

Then, the linearized transverse shear strain is:  

   ̅  {
  ̅ 

  ̅ 
}   ̅    ̅   ̅           (4.70)  

where  ̅   is the in-plane part of the strain/deformation operator: 

  ̅   
 

 
[
 (   )   

(   )   
(   )   

 (   )   

 (   )   
 (   )   

(   )   
(   )   ]       (4.71)  

Define the four vectors:  

 
  

      ̅ 
           

      ̅ 
     

  
      ̅ 

           
      ̅ 

    
(4.72)  

Then the rotation or bending part of the strain/displacement operator is written: 

  ̅   
 

 
[
(   )  

  
(   )  

  
(   )  

  
(   )  

  

(   )  
  

(   )  
  

(   )  
  

(   )  
  ]       (4.73)  

4.4.2.5 Constitutive relations 

A St. Venant-Kirchhoff constitutive model for the Kirchhoff curvilinear components of the 

resultant transverse shear force is written in terms of the transverse shear strains as:  

 {
  

  }    {
 ̅ 

 ̅ 
} (4.74)  

where    is the transverse shear stiffness in curvilinear coordinates. For a single isotropic layer 

we get: 

    
 

 
   [ 

     

      ]  (4.75)  

The matrix [   ] is the inverse of the metric [   ], where metric components in the reference 

configuration     are defined by the inner product: 
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      ̅   ̅   (4.76)  

 The Cauchy or true transverse shear force components in the shell orthonormal coordinate 

system {     }  are calculated with the coordinate transformation   
          as:  

   {
  

  }  
 

 
 [
  

   
 

  
   

 ]  {
  

  
} (4.77)  

where A is the element's reference area and a is the current area. 

4.4.3 In-plane displacement hourglass control 

The in-plane displacement hourglass control is applied in the same way as in the 

Abaqus/Explicit membrane elements. The hourglass strains are defined by: 

    
  ̅

   
  ̅    

  ̅

   
  ̅    

  ̅

   
  ̅        ̅    (4.78)  

where    is the hourglass mode. This mode is obtained by making the “regular” hourglass mode 

   {         } orthogonal to the homogeneous deformation mode in the undeformed shape 

of the element. This last condition can be written as:  

               

   

   
 (4.79)  

Observe that:  

     ̅        ̅       ̅       (4.80)  

and consequently: 

    
  

   
  ̅    (4.81)  

This expression can be worked out further. We define the projected nodal coordinates:  

   
      ̅  (4.82)  

and the projected element area: 
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[(  

    
 )(  

    
 )  (  

    
 )(  

    
 )] (4.83)  

 The hourglass mode can then be written in the form: 

 

   
 

 
[  

 (  
    

 )    
 (  

    
 )    

 (  
    

 )] 

   
 

 
[  

 (  
    

 )    
 (  

    
 )    

 (  
    

 )] 

   
 

 
[  

 (  
    

 )    
 (  

    
 )    

 (  
    

 )] 

   
 

 
[  

 (  
    

 )    
 (  

    
 )    

 (  
    

 )] 

(4.84)  

The hourglass stiffness is chosen equal to: 

    (   ) 
   

   

   

   
   (4.85)  

where G is the shear modulus and    is a small number chosen to be 0.005 in 

Abaqus/Explicit/Standard and 0.05 in Abaqus/Explicit/Explicit. When the hourglass control is 

based on assumed enhanced strain, the artificial stiffness factor is replaced by coefficients 

derived from a three-field variational principle. The hourglass force Z conjugates to z is then 

equal to:  

         (4.86)  

For virtual work we need the first variation of the hourglass strain. From the expression for the 

strain follows immediately:  

     
  ̅

   
   ̅    

   ̅

   
  ̅    (4.87)  

Note that the second term is not accounted for in the initial configuration since  ̅     . The 

second variation is needed for the Jacobian. From the first variation follows right away:  

      
   ̅

   
   ̅    

   ̅

   
   ̅    (4.88)  
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The second variation does not contribute in the initial configuration since initially     .  

4.4.4 Rotational hourglass control 

The expressions for the curvature change, the transverse shear constraints, and the drilling mode 

constraints still leave three non-homogeneous rotational modes unconstrained. These modes 

correspond to zero rotation at the mid-edges and zero gradient at the centroid. Hence, they 

correspond to the familiar    {         } hourglass pattern. To pass curvature patch tests 

exactly, it is necessary to use orthogonalized hourglass patterns as derived for in-plane 

hourglass control. 

4.4.5 Parametric interpolation 

The position of the points in the shell reference surface is described in terms of discrete nodal 

positions with parametric interpolation functions noted   (  ). The functions are continuous, 

and    are non-orthogonal, non-distance measuring parametric coordinates. For the reference 

surface positions one, thus, obtains:  

  ̅(  )    (  ) ̅   (4.89)  

The gradients of the position with respect to    are: 

 
  ̅

   
 

   

   
 ̅  

(4.90)  

Note that uppercase Roman superscripts such as I denote nodes of an element and that repeated 

superscripts imply summation over all nodes of an element. Now consider the original 

configuration. The unit normal to the shell reference surface is readily obtained as: 

    

  ̅
   

  
  ̅
   

|
  ̅
   

  
  ̅
   

|

 

(4.91)  

Subsequently, we define two orthonormal tangent vectors    and distance measuring 

coordinates    along these vectors. The derivatives of these coordinates with respect to    

follow from:  
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̅̅ ̅

   
    

  ̅

   
     ̅  

   

   
 

(4.92)  

The gradient of    with respect to    is readily obtained by inversion:  

 
   

   
 [

   
̅̅ ̅

   
]

  

 
(4.93)  

which makes it possible to obtain the gradient operator: 

 
   

   
 

   

   

   

   
 

(4.94)  

The original reference surface normal gradient is obtained from the nodal normals   
  with:  

    
       

  
   

   
 

(4.95)  

Since the original reference surface normal gradient is obtained by taking derivatives with 

respect to orthogonal distance measuring coordinates, we will call     
     

  the original 

curvature of the reference surface. 

Orientation update and curvature change are discussed in details in Abaqus/Explicit theory 

manual (41). 

4.4.6 The rate of virtual work 

To obtain an expression for the rate of virtual work, we first write the virtual work equation in 

terms of the reference volume: 

    ∫           

  

 ∫ ∫              

   

 
(4.96)  

where    is the Kirchhoff stress tensor, related to the Cauchy or true stress tensor via: 

          (4.97)  

 The rate of change then becomes:  
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     ∫ ∫ (                     )       

   

 
(4.98)  

Here    indicates that the rates are taken in a material, corotational coordinate system. The 

terms involving stress rates are related to the material behavior. We assume constitutive 

equations of the form: 

                  (4.99)  

Substituted in the expression and transformed back to the current configuration, this yields:  

     ∫ ∫ (                         )  ̅       
   

 
(4.100)  

Consistent with the derivation of the virtual work equation itself, we neglect terms of the order 

   ̅          . Hence, the rate of virtual work can be written as:  

 

    ∫ [∫(   ̅    ̅       )     (   ̅    ̅       )  ̅    
   

         ̅           ]    

(4.101)  

Hence one needs to compute the second variation of the membrane strain 

     ̅   and of the curvature strain         

4.4.7 Numerical integration 

S4R elements use a reduced integration scheme and there is only one point of integration in this 

Abaqus/Explicit element which is integrated numerically.  

From the virtual work expression the volume integral will be replaced by a summation: 

 ∫            ∑          

 

    

 
(4.102)  

where n is the number of integration points in the element and    is the volume associated with 

integration point i. Abaqus/Explicit will use either “full” or “reduced” integration. For full 

integration the number of integration points is sufficient to integrate the virtual work expression 
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exactly, at least for linear material behavior. All triangular and tetrahedral elements in 

Abaqus/Explicit use full integration. Reduced integration can be used for quadrilateral and 

hexahedral elements; in this procedure the number of integration points is sufficient to integrate 

exactly the contributions of the strain field that are one order less than the order of interpolation. 

The (incomplete) higher-order contributions to the strain field present in these elements will not 

be integrated. 

The advantage of the reduced integration elements is that the strains and stresses are calculated 

at the locations that provides optimal accuracy, the so-called Barlow points. A second 

advantage is that the reduced number of integration points decreases CPU time and storage 

requirements. The disadvantage is that the reduced integration procedure can admit deformation 

modes that cause no straining at the integration points. These zero-energy modes make the 

element rank-deficient and cause a phenomenon called “hourglassing”.  

For reduced-integration elements the transverse shear force components need to be evaluated at 

the center of the elements. Consider    the transverse shear contribution to the internal energy:  

    
 

 
∫  ̅      ̅    

(4.103)  

The reference area measure    is written in terms of the isoparametric coordinates as 

        , where    √       (   )  and     are the components of the reference 

surface metric in the undeformed configuration.  

This transverse shear energy can be approximated in many ways to produce one point 

integration at the center of the element plus hourglass stabilization. It is important that this 

treatment yields accurate representation of transverse shear deformation in thick shell problems 

and provide robust performance for skewed elements. The treatment should collapse smoothly 

to a triangle, which should be insensitive to the node numbering during collapse; that is, the 

triangle's response should not depend on the nodal connectivity. For an entire mesh of triangular 

elements, the treatment should give convergent results (that is, the element should not lock). 

Furthermore, the high frequency response of the transverse shear treatment should be controlled 

so that transverse shear response does not dominate the stable time increment for explicit 
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dynamic analysis (including for skewed triangular or quadrilateral geometries). All of these 

requirements are embodied in the following transverse shear treatment. 

Define the transverse shear strain at the center of the element (the homogeneous part) and the 

“hourglass” transverse shear strain vectors as: 

  ̅  
 

 
{
  

    
 

  
    

 }     {
  

  
}              {

   

   
} (4.104)  

 The element distortion coefficients    and    are constants determined by the element reference 

geometry. For geometries with constant Jacobian transformation we have        . The 

components of the hourglass strain vector     are defined in terms of the edge strains as:  

          
      

      
      

   (4.105)  

and,  

        
    

    
    

   (4.106)  

The coefficients                are constants determined from the reference geometry of the 

element. For rectangular elements    
 

 
      

 

 
    

 

 
      

 

 
 and     can be identified 

as the strain associated with the rotational deformation pattern. We call     the deformation 

pattern that resembles the sweeping over the element normals in a circular pattern. We defined 

the reference element area to be   . The transverse shear energy can be approximated as a 

center point value plus a stabilization term:  

    
 

 
   ̅       ̅  

 

 
              (4.107)  

where     is the transverse shear stiffness evaluated at the center of the element and the 

hourglass stiffness H is the diagonal matrix  

   
   

   

  
[
  
      

]   
(4.108)  

The effective stiffness    
   

 is the average direct component of the transverse shear stiffness.  

    
   

 
(   

      
  )

 
   

(4.109)  
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The formulation of the homogeneous part of the transverse shear has two contributions: the 

average edge strain across the element, plus the element distortion term. The average strain 

treatment is essentially the same as that for the assumed strain formulation of MacNeal and 

others presented earlier, with expressions evaluated at the center of the element (          

 ). The details of this part are omitted; only the element distortion term is presented in detail. 

The variation of the homogeneous transverse shear strain can be written:  

   ̅   ̅     ̅   ̅       ̅     ̅    ̅          (4.110)  

where  ̅    and  ̅    are  ̅   and  ̅   evaluated at the center of the element. The 

stabilization term has a similar formulation. The variation of the hourglass strain is:  

       ̅   ̅   ̅        (4.111)  

4.5 Conclusion 

In this chapter, we overviewed the principal numerical tools that we have to use in all our work. 

First we gave the basics of explicit dynamic formulation and computation process that is used 

by Abaqus. The VUMAT subroutine description was explained to provide a framework in 

which we have to set our model computations. In this description we put emphasis on the 

updating of the Green-Nahgdi frame as well as the yarns orientation. Also it was crucial to 

understand what variables were passed into the VUMAT to feed our computations and how we 

should return our results to Abaqus. We ended by focusing especially on the S4R shell element 

in this chapter. The formulation of S4R in explicit dynamic with reduced integration was given 

in great details, it is the core of our work and our VUMAT is tailored to be used in conjunction 

with this particular element. 
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CHAPTER 5 - DEVELOPMENT AND TESTING OF THE 3D 

CROSSOVER MODEL 

 

The goal of the present model development and testing is to capture the biaxial tensile and 

compressive response of a representative unit cell (RUC) of a plain weave fabric in order to 

obtain equivalent material parameters to be fed into the biaxial tensile and compressive 

response of an equivalent representative smeared shell element. Specific parameters which are 

geometry and material dependent are needed to be used afterward as inputs data for the 

VUMAT subroutine. First a virtual testing approach is thus used in order to obtain the E, Nu 

and G values from the FE analysis. Simple virtual uniaxial and shear tests are used to determine 

the required parameters and numerical results obtained are compared with experimental values 

given by Shahkarami et al (4). Essentially, using these preliminary tests to obtain the numerical 

values of E, Nu and G , the intent was to validate the behavior of the RUC before moving on to 

stage of obtaining  two fundamental parameters a and b (to be defined in the following pages) 

describing the compressive behavior of the representative unit cell. They are found by using a 

virtual transverse compression test. 
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And then experimental data used by Shahkarami et al (4) was used to ensure good model 

accuracy and to validate the response of the model for further testing. Since our goal was not to 

use a very refined model, we therefore only modeled the yarn geometry according to the 

examples of representative unit cells shown in the literature (4) and we implemented the Kevlar 

mechanical properties using Abaqus. This type of analysis is not weave-dependent so it can be 

applied to any weave structure provided that the right representative volume element is chosen. 

5.1 Model basics 

The model is based on the representation of a single yarn crossover in which the yarns are 

modeled by using an 8-node brick element with reduced integration available in Abaqus 

element library. First the geometry is created in the Abaqus/CAE software and then the meshing 

was applied on it automatically by Abaqus.  

To correctly define the geometry of a yarn, we made some basic assumptions regarding the 

longitudinal profile of the yarn and its cross-section. These assumptions derive from the study 

of micro-images of the plain weave fabric that can be found in reference (2). As a result, first it 

is assumed that the cross-sectional shape of the yarn is mostly lenticular although many authors 

also use the elliptical section type. Also, it is assumed that the yarn longitudinal profile follows 

a sinusoidal path. In his work, Durville (10) has described the yarns as exhibiting a variation of 

the cross-sectional area and shape along its longitudinal path. This issue was not taken into 

account in our simulation since it is a more complex problem to handle. We wanted to keep a 

simple model because dealing with a very refined model will not lead to a meaningful change 

regarding the values and parameters we want to extract from the model. This is also why we 

considered that the fill and warp yarns have the same geometrical properties. Finally, we 

assumed that while under tensile loading, the change in cross-sectional shape of a yarn is 

negligible. 

The key to the success in modeling a 3D yarn crossover unit cell is to capture the true response 

of each individual yarns composing the crossover as well as the specific interaction 

phenomenon between them. This translates into the fact that not only the geometry must be 

properly accounted for but also that the mechanical properties we use are valid. In finite 
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element analysis, the lack of meaningful mechanical properties may cause instabilities that lead 

to spurious modes of deformation. Therefore, if the results that one could extract from these 

virtual tests and that are to be fed in the VUMAT program are inaccurate this would cause 

inaccuracies in the results given by the shell element. Spurious modes usually appear for 

strongly orthotropic material as are the Kevlar yarns. Boisse et al. (24) state that “because some 

rigidities are nearly equal to zero, some numerical instabilities often appear and this can be 

avoided by Hourglass control”. In other words, the lack of sufficient shear stiffness for example 

will often lead to unstable element shapes especially if reduced integration elements are to be 

used as in our model. As such a problem was encountered, it was found that a possible solution 

is to use the hourglass-control stiffness contribution to the element stiffness which would 

eliminate the associated hourglass modes of deformation. However, the induced hourglass 

energy should be kept to a small amount compared to the total energy of the model. 

Throughout the literature review, the following mechanical considerations have been retained 

and taken into account while defining the 3D models:  

 First, the yarns exhibit a high axial stiffness in tension and can support almost no load in 

compression because buckling appears instantly. 

 Secondly, the lack of bonding between the fibers that constitute the yarn translates into 

near zero shearing or bending stiffness in the yarn.  

 Lastly, the presence of voids between fiber bundles and their possible relative motion 

leads to an extremely complex non-linear response.  

The yarns show strong overall orthotropic characteristics and their behavior can be considered 

isotropic in the transverse direction in Abaqus. In our model, we assumed that the axial and 

transverse responses of the yarns are completely decoupled and we therefore set the Poisson’s 

ratio to a very low value.  
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5.2 3D model definition of the unit cell 

5.2.1 Geometrical definition  

The geometric properties were taken from the document detailing the input parameters of 

Shahkarami’s LS-Dyna based UMAT model (42) which studied the plain weave fabric made of 

Kevlar reinforcements. In his work, two different set of geometrical properties for the fill and 

warp yarns were considered, but in our case, the two crossing yarns having the same geometry 

will be considered. In the next paragraphs, two key aspects of the yarn geometry are described 

in details: (i) the yarns’ centerline profile and (ii) their cross-sectional shape. 

The profile of the centerline is given by equation 5.1 from reference (4) and is shown in Figure 

5-1. 

  (  )         (
 

   
  ) (5.1)  

Where    is the height of the yarn centerline at the center of the unit cell which is the point 

where the yarns cross each other at   =0.  

 
Figure 5-1: Cosine-based shape of an arbitrary yarn in a plain weave fabric (4) 

The unit-cell half width is denoted by    (in mm) and can be calculated from the thread count 

of the crossing yarns    (in threads/mm) using: 

      
 

  
 (5.2)  

The initial value of     can be calculated mathematically from the crimped length of the yarn 

called    depending on the unit-cell’s total length   in equation 5.3: 
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Knowing  the value    , of crimp observed in the fabric, the initial length of the yarn is given by: 

         (     ) (5.4)  

Using equation 5.3 and 5.4 we obtain the non-linear equation needed to solve for the value of 

    (4): 

   (     )  ∫ √  (
   

   
)
 

    (
 

   
 )   

  

 

 (5.5)  

A Maple program was created (shown in Appendix A) in order to calculate the result of this 

equation given the thread count per millimeter of the type of yarn used and the crimp of the 

fabric. Each calculated value is summarized in Table 5-1. 

From the value of   , it is then possible to evaluate the thickness of the yarn and therefore the 

total thickness of the shell element. If we assume that the point where the two fibers come in 

contact is located at z=0 then we can consider that the value    is half the yarn’s thickness. 

Therefore the yarn thickness has a value of      and the shell thickness is    . 

Table 5-1: Geometrical parameters of the RVE defined in Abaqus/CAE 

Properties Values 

Thread count per inch 27 

Crimp (for 2% take 0.02) 0.0421 

Yarn width (mm) 0.9407 

Initial value of    (mm) 0.12495 

Yarn thickness (mm) 0.2499 

Unit-cell length (mm) 0.9407 

Shell thickness (mm) 0.4998 
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These values were used in Maple to plot the yarn’s cross-sectional curve using the sinusoidal 

function  5.1 to obtain the profile shown in Figure 5-2.  

 

Figure 5-2: Initial lenticular shape of the yarns’ cross-sectional area 

Using this shape plotted in Maple, we extracted the coordinates of a set of 20 key points to be 

exported in Abaqus/CAE for the generation of CAD geometry. One should also mention that 

this lenticular shape has led to the creation of a mesh displaying distorted element. The distorted 

elements were located at extremities of the cross-section where the sinusoidal curves intersect. 

Therefore, these sharp edges have been trimmed to obtain a line edge instead of sharp one, thus 

allowing Abaqus to generate a regular solid element mesh without distorted elements at each 

end of the yarn’s cross-section as it can be seen in Figure 5-3. 

 

Figure 5-3: Modified lenticular shape of the yarns’ cross-sectional area 

The next step in creating the yarn geometric model is to define the undulation path which can 

also be represented by a sinusoidal path given by equation 5.1. Using the same formula as the 

one defining the yarn cross-section has the advantage of generating a yarn that can easily be 

assembled within Abaqus. Consequently, instead of having a small area of contact between the 

two yarns, we obtain contact over a large surface which is what researchers have been 

observing. Ultimately the yarn three-dimensional geometry presented in Figure 5-4 is obtained. 
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Figure 5-4: Undulated shape of one yarn in Abaqus 

Shahkarami (4) introduces a gap parameter to define the distance between two adjacent yarns of 

the same family. In order to simplify the problem, this gap parameter has been set to zero 

throughout this work. 

5.2.2 Mechanical definition of the model 

The mechanical definition of the yarns’ behavior is quite easy to set up. In Abaqus, we defined 

a purely linear-elastic orthotropic (or more precisely transversely isotropic) material with a 

unique material direction being aligned with the yarn axis direction. The   properties of Kevlar 

yarns used can be found in the work of Grujicic (1). These values match the ones used in the 

LS-Dyna user material model input file of Shahkarami (42). These properties are summarized in 

Table 5-2. 

Table 5-2: Mechanical parameters of the RVE defined in Abaqus/CAE 

Properties Values 

Young modulus in longitudinal direction of the yarn, E11  (GPa)  96.0 

Young modulus in transverse direction of the yarn, E22 (GPa) 3.28 

Young modulus in transverse direction of the yarn, E33 (GPa) 3.28 

In-plane shear / transverse shear modulus G12 ,G23 ,G13 (GPa) 3.28 

Poisson ratio, ν12 ν23, ν13 0 

Density, ρ (g/mm
3
) 1,44 
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The Young modulus of the two transverse normals, the shear moduli and the Poisson ratios are 

set to low values. This is because of the fibers bundled within the yarns are only weakly 

coupled with each other (4). Furthermore, in the numerical tests we conducted on the crossover 

model, these values have very little influence on the results considering the deformation modes 

we want to probe. Also, we could not set these values to zero as we would obtain instabilities 

during the analysis and non-physical deformation of the finite elements; therefore these values 

are taken to be very small compared to the axial stiffness.  

Having tried multiple boundary conditions cases to correctly constrain the yarns, we finally 

selected the following one as being the best at limiting the yarns’ displacements without 

generating unwanted strains or stresses inside the model.  

 The first yarn we need to constrain is the one on which we apply the forced 

displacement of 0,01 millimeters. This displacement is along direction one of the unit 

cell, meaning it is applied on one extremity of the moving yarn (i.e. to the cross 

sectional surface of the yarn in Abaqus model) along its principal direction. All other 

displacements in the remaining directions of space and all rotations at the two 

extremities are not allowed and hence they are set to zero.  

 The other yarn is also constrained at its extremities. First, displacements are authorized 

in direction two which is the direction along that yarn’s length. Other displacement in 

the two other directions of space and all rotation are not allowed, they are set to zero.  

During the application of the displacement, we observed an extension of the yarn on which the 

forced displacement is applied. It leads to a straightening of that yarn and the occurrence of a 

tension inside it. The curvature of the overlapping yarn’s centerline is increasing because it is 

pushed by the straightening of the first yarn. The contact point between the crossing yarns is 

moving out of the plane. 

Finally, the contact between the fibers is modeled using the ‘general contact’ option available in 

Abaqus. 
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5.3 Testing of the fabric unit-cell 

The 3D crossover model made of solid elements has to be tested in order to obtain the 

mechanical parameters to be implemented in the user subroutine. The crossover model created 

in Abaqus is presented in Figure 5-5. 

 

Figure 5-5: Crossover model in Abaqus 

The mechanical parameters to be determined are: 

 Young modulus in direction 1: E1, 

 Young modulus in direction 2: E2, 

 In-plane Poisson’s ratio: ν12, 

 Compression parameters a and b. 

We have subjected the unit-cell geometry to a uniaxial traction test, a transverse compression 

test and a shear test; the details of the behavior of the unit cell in each case are given in the next 

paragraphs. 

5.3.1 Extensional response of the unit-cell 

This test is meant to measure the extensional response of the unit cell. This is done on only one 

direction at a time. Since the model is totally geometrically symmetric, only one test has been 

Bottom 

(fixed) yarn 

Top (moving) 

yarn  
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carried out. Obviously the results we obtain in the direction we tested (direction 1) apply for the 

other direction (direction 2). A visualization of the undeformed and deformed configuration is 

presented in Figure 5-6 and puts emphasis on the displacements. 

 

Figure 5-6: Biaxial extension of the crossover (magnitude of displacements U) 

In Figure 5-6 we extracted the displacement magnitude, we can observe that the maximum 

displacement value appears at the end of the yarn where the displacement boundary condition is 

applied. Also the displacements are large at the middle portion of the yarns (in green in Figure 

5-6) and this is because of the new equilibrium position of the contact surface. In this case, 

because the non-zero displacement boundary condition is applied on one yarn and the other 

yarn ends are fixed in space the point of equilibrium moves out of plane. Thus, during the 

analysis the moving yarn is straightening while the other one is bending. Figure 5-6, showing 

the magnitude of the displacements, enables us to verify that the simple predicted crossover 

behavior is reproduced by the software. 

We choose to select the results from elements selected at the middle of the yarn and remove 

those affected by the boundary conditions at the end of each yarn. This method was chosen to 

give us the opportunity to verify that the values for strain and stress are globally correct on the 

yarn. From these results we plotted the curve presented in Figure 5-7. The red curve shows the 

best fit with respect to the blue curve showing the numerical results taken from the 3D 

crossover model. R
2
 is the correlation coefficient between the two curves. 
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Figure 5-7: Stress-strain relationship in direction one for the 3D crossover 

According to the theory, the engineering Young modulus in direction one is given by the 

following equation: 

    
  

  
 (5.6)  

This shows that the engineering modulus to be assigned as a VUMAT input in this direction is 

96,117 GPa which is, as expected, a value very close to the yarn modulus. Then, we calculated 

the in-plane Poisson’s ratio by extracting from the model the strains in both directions one and 

two. Poisson ratio is given by equation: 

    
  

  
 (5.7)  

This enabled us to plot the strain in direction two versus the strain in direction 2 as shown in 

Figure 5-8. 
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Figure 5-8: Strain relationship for Poisson ratio  

 

Finally, we obtain a Poisson’s ratio for the unit cell of approximately 0.30 which will be used as 

an input for the VUMAT. 

5.3.2 Transverse compression of the unit cell 

The boundary conditions here are simpler to set up than in the previous model. Indeed, for the 

two yarns’ extremities, the only displacements authorized are along each yarn’s principal 

direction. The application of the compression force along the transverse direction is done by 

creating a rigid surface in Abaqus on the top of the 3D crossover model on which we apply a 

maximum force of 3000 mN that will compress the yarns. Another rigid surface is defined 

under the crossover point to support the compression that is applied. 

The model created in Abaqus to model the compression of the yarns is shown in Figure 5-9. 
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a) 

 
b) 

Figure 5-9: a) Compression model of the crossover in Abaqus  b) Graphical results for the 

strains during the compression test 

We extracted the contact force    between the yarns at the middle of the crossover and we also 

extracted the mean relative compression height    of the yarns. The transverse compression of 

the yarns is described in our user material subroutine model by the following function provided 

in the works of Grujicic et al. (32): 

     
    

    
 (5.8)  

Therefore, we need to obtain the values of parameters a and b from our 3D model to be able to 

use this equation in the VUMAT subroutine. When the two values are extracted from the FEA 

as described before and plotted against each other we obtain the following numerical 

experimental curve displayed in blue in Figure 5-10.  
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Figure 5-10: Transverse compaction characterization of the 3D crossover 

Using the Maple program presented in Appendix A, we were able to obtain the following values 

for parameters a and b. Parameter a has a value of 0.12389 mm and parameter b is 984.32 mN. 

Plotting the theoretical red curve in Figure 5-10 based on the analytical function given by 

Grujicic against the experimental curve obtained from the FEA extractions, we can see that 

there is a very good correlation between them.  

5.3.3 Shear behavior of the unit cell 

Shear behavior of the model has been tested but could not return any useful results. This is due 

to a number of unanswered questions about the analysis setup in the literature. We based the 

modeling of this test on the works of Grujicic et al. (1) and compared our results to the ones he 

obtained. We pinpointed the following three problems concerning the definition of the analysis 

that may cause our results to be different from his results.  

Firstly, since our model is geometrically different from the one used in Grujicic’s works (1), the 

contact area is also different which obviously leads to a discrepancy between the two results. 

Indeed, the shear modulus is extremely dependent on the contact surface. Moreover, as the 
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analysis progress, the contact surface between the yarns is also changing and this is a 

phenomenon that is difficult to quantify.  

Secondly, we do not know the maximum angle of rotation that has been used in Grujicic’s 

analysis. The shear behavior is indeed a complex phenomenon to quantify and to reproduce in 

finite element analysis.  Because the fiber is rotating in plane around the crossover point, then if 

the rotation continues, we may have the problem that the two yarns will ultimately tend to 

become parallel and jam with each other. In that situation the yarns will require a large force to 

further displace them. In the 3D model created for this work we manually adjusted the boundary 

condition forcing the rotation of the yarns to limit their rotation up to the point where the yarns 

started to jam against each other.  

Finally, the shear modulus also depends on the transverse compaction of the yarns at the 

crossover point as will be seen in chapter 6. In our model, we made the assumption that the 

yarns had to stay in contact at the crossover point. 

Because of these uncertainties, we could not produce a valid simulation without making abusive 

assumptions about our model. In consequence, the shear modulus law given in Shahkarami et 

al. (31) was taken.  It is presented in greater details in chapter 6. 

5.4 Conclusions 

The 3D unit-cell model of the RUC proves to be very powerful in predicting the behavior of one 

crossover in simple loading cases. We tested it for simple loading and obtained results regarding 

material properties (Young modulus) to calibrate the VUMAT subroutine. This is due to the 

wealth of geometry and material details it is able to take into account. But because it is aimed to 

be used at a very small scale, it is quite inefficient for representing large engineering systems. It 

is thus used to calibrate the VUMAT subroutine that will be used in conjunction with a shell 

element as it is discussed in the next chapter. 
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CHAPTER 6 - DEVELOPMENT OF THE FABRIC UNIT-CELL 

CROSS-OVER MATERIAL MODEL   

SUBROUTINE  

This chapter is concerned with the development of a constitutive material model for a smeared 

(equivalent) shell element that capture the biaxial response of the fabric unit-cell and that 

performs similarly as the 3D yarn crossover model of the previous chapter. The shell element 

takes advantage of a meso-mechanical model of the fabric crossover and can be classified as 

being between the simple pin-jointed cable model and the detailed 3D fabric crossover model of 

the fabric unit-cell both in terms of complexity and efficiency. The developed shell element 

based crossover model will thus be able to capture many details of the weave and yarns that the 

pin-jointed bar model would overlook, while it is significantly more efficient numerically 

compared to the 3D fabric crossover model. This chapter thus discusses the details of the User 

Material Model (VUMAT) development to provide the constitutive relationship for the smeared 

shell element that represents a fabric unit-cell. While developing the VUMAT for the shell 

element, several simplifying assumptions have been made based on the physical behavior of a 

fabric. In particular since fabrics generally have very low bending and shear stiffness, it is 
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assumed that their out-of-plane stiffness is negligible compared to their in-plane stiffness. The 

in-plane extensional and shear responses of the fabric are assumed decoupled and treated 

separately based on the mathematical models developed in the preceding sections. A meso-

mechanical model of fabric crossover is thus developed and implemented as a constitutive 

material model for an efficient shell element in ABAQUS-Explicit to capture the biaxial 

response of a fabric unit-cell. 

6.1 VUMAT subroutine description 

As Abaqus/Explicit help file on this subject is very extensive; we will only present here an 

overview of what this Abaqus/Explicit tool enables one to do. We will outline the principal 

built-in variables we had to use in the process of developing the user material subroutine. Also, 

some technical insights from the knowledge we gained working with this routine will be given. 

Further details on how the routine was designed and how our mathematical model was 

integrated to fit the routine’s framework are discussed in chapter 6.  

6.1.1 Generalities on the subroutine 

A VUMAT user subroutine is used to define the mechanical constitutive behavior of the 

material that would be used in a dynamic analysis in Abaqus/Explicit module. It provides the 

framework and the methodology to create a material model that is not already present in 

Abaqus/Explicit material model library. Simply put, the VUMAT consists of a Fortran sub-

program that is called by the finite element software for blocks of material calculation points for 

which the material is defined in the user subroutine. The subroutine can roughly be divided into 

five main parts: 

 Complete variable definition. This concerns the declaration and description of all the 

variables to set up the framework of the subroutine. Also we find a description of all the 

state variables that we use to do the necessary calculations. Finally all the material 

parameters are defined to fit the subroutine’s nomenclature. Material parameters are 

described to help the user find his way inside the program and finally each one is 

affected a value that is read from Abaqus/Explicit.  
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 Computations for initialization. It is a small part of the program used by 

Abaqus/Explicit mainly to check on the constitutive relation and then calculate the 

equivalent material properties. This is done to ultimately compute the initial elastic wave 

speed in the material. 

 Reading the variables that are passed in by Abaqus/Explicit. At this point we need to 

read and store all the necessary information from Abaqus/Explicit input file that will be 

fed into the mathematical model to calculate the new state of the material. Since fabric 

model must be used in nonlinear geometric context, in our case we need to use the right 

stretch tensor [U] and the deformation gradient from the previous step [F] as well as 

some user defined state variables as it is explained in details in chapter 6. 

 Computing the new material state. This is the core of the routine because it is mainly 

constituted of the mathematical equations of our model. It also includes a local Newton-

Raphson solution scheme. 

 Transform and return the results to Abaqus/Explicit. After the update of material 

state we have to translate the results we obtain from the model into the Green-Naghdi 

frame used by Abaqus/Explicit to read the updated stress.  

At this point it is interesting to note that for debugging purposes we coded inside the program a 

number of operations to verify the validity of the results given by some key computations. All 

the output results at various steps of the computation are stored in a text file allowing the user to 

follow almost step by step the intermediate results given by the model.  

6.1.2 Material point deletion 

This is a very important feature available in VUMAT that we used to delete the damaged shell 

elements from the analysis. Indeed, material points that satisfy a user-defined failure criterion 

can be removed permanently. We had to define a specific state variable (state variable 30 in our 

case) controlling the element deletion flag. The deletion state variable should be set to a value 

of one or zero. A value of one indicates that the material point is active while a value of zero 

indicates that Abaqus/Explicit should delete the material point from the model and set the 

stresses in the element to zero. The structure of the block of material points passed to user 
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subroutine VUMAT remains unchanged during the analysis and deleted material points are not 

removed from the block. Abaqus/Explicit will pass zero stresses and strain increments for all 

deleted material points. Once a material point has been flagged as deleted, it cannot be 

reactivated. 

As we discussed before, most fabrics exhibit a periodic geometry of yarn interlacings, thus 

making them good candidates for unit-cell analysis approach. Many researchers like Kawabata 

et al. (21), King et al. (23), Ivanov and Tabiei (22) have tried to incorporate the mechanical 

response of fabrics in efficient membrane or shell elements. The material model for the smeared 

shell elements that has been developed, assume for simplicity a balanced plain weave 

architecture and hence the crossover point as having two principal directions, naturally taken 

into account in the  model development. Generally these elements are a continuum 

representation of the fabric into a two dimensional homogeneous material. 

Pin-jointed bar models usually consider that the warp and fill responses are decoupled but 

continuum, unit-cell based membrane/shell elements can reproduce the biaxial behavior of the 

fabrics if the proper constitutive model is implemented. The actual implementation is performed 

in Abaqus/Explicit through its VUMAT facilities provided by the software. The goal here is to 

present a simple model capable of capturing the biaxial and uniaxial behavior of symmetrically 

loaded yarn crossovers, as well as their shearing response. Considering a linear representation 

of the yarn centerlines, the equilibrium of the crossing yarns under uniaxial or biaxial extension 

is achieved by balancing the tensile forces taking place in the yarns with due account of the 

contact forces developed between the yarns. In fact, using the contact force between the yarns, 

it is possible to determine the position of the contact point along the transverse z axis. Then, 

using the position of the 2 deformable yarns contact point and the yarns extensions, one can 

determine the tensile force induced in each yarn. The model is thus based on tracking the 

location of the contact point between the yarns. It is aimed at capturing the interactions of warp 

and fill yarns to determine their in-plane extensional response. The details of the computations 

involved in the VUMAT are presented in this chapter. 
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Figure 6-1: Trellis mechanism in initial undeformed configuration  

Figure 6-1 shows the basic trellis mechanism in the undeformed configuration that is used to 

model the behavior of the crossover as described in the works of Grujicic (1) which is the 

starting point of the VUMAT. The deformed configuration of this structure is shown in Figure 

6-2. 

 

Figure 6-2: Trellis mechanism in deformed configuration  

The principle is quite simple, when the yarn cross-over model is subjected to biaxial extension 

for example, it gets elongated in its two principal directions corresponding to the two yarn 

directions and contact forces appear at the crossover point. The contact forces are called     

for warp yarns and     for fill yarns and the height of the yarns centerline    and    decreases 

because of the transverse compaction. Also, during compaction, the angles      and       

decrease. Once the yarns are fully compacted and the shell element gets elongated again then 

the beam elements representing the behavior of the yarns are subjected to tensions    and    

appearing in each yarn. Using a basic beam formula we can relate the extension of the beam and 
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the tension developing inside it as it is explained in later. In order to facilitate the understanding 

of the computational process used, the reader is referred to Figure 6-3 extracted from 

Shahkarami (2) that illustrates the geometry of the yarn crossover before and after deformation 

by symmetrically applied displacements along the two crossing yarn directions. 

 

Figure 6-3: Geometry of the yarn crossover before and after deformation by symmetrically 

applied displacements along the two crossing yarn directions. Both yarns are shown on the same 

plane (1) 

6.2 User subroutine computations 

6.2.1 Using the VUMAT in Abaqus 

Interfacing Abaqus main engine with the user material subroutine is quite easy since the 

software gives the framework needed to define the material. At each time step Abaqus passes to 

the user subroutine the element strain increments evaluated at the shell element integration point 

in a local Green-Naghdi coordinate system. It is thus required to compute the updated Cauchy 

stresses in the local material frame (yarn direction) inside the VUMAT, express the results in 

the element Green-Naghdi frame and return them to Abaqus for continuation of the analysis. 

The main goal here is to develop an efficient shell element whose behavior can be compared to 

that of a yarn crossover. This shell element takes advantage of a meso-mechanical pin jointed 

cable model of the fabric crossover and is able to capture the compression of the yarns at the 

crossover point. 

This section provides all the information about the development of the user material model 

providing the mathematical framework to be used in the routine. In setting up the VUMAT, the 
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main objective is to use the strain increments that are passed into the subroutine to calculate at 

each time step the extension and rotation of the warp and weft yarns that are required for 

computing the stresses based on the tensile and shear behavioral equations. 

6.2.2 Short description of the VUMAT’s built-in variables 

This paragraph explains to the reader the meaning of the main variables imposed by the 

subroutine framework. Doing so it will be much easier to understand the program presented in 

appendix B.  

A user subroutine VUMAT is used to define the mechanical constitutive behavior of the 

material that would be used in a dynamic analysis in Abaqus/Explicit module. It provides the 

framework and the methodology to create a material model that is not already present in 

Abaqus/Explicit material model library. Simply put, the VUMAT consists of a Fortran sub-

program that is called by the finite element software for blocks of material calculation points for 

which the material is defined in the user subroutine. Our subroutine can roughly be divided into 

five main parts: 

 Complete variable definition. This concerns the declaration and description of all the 

variables to set up the framework of the subroutine. Variables are classified into either 

input variables, known at the beginning of the time step and output variables that are 

updated by the subroutine and returned to Abaqus at the end of the time step. All the 

material parameters are defined to fit the subroutine’s nomenclature and are input 

variables (each one is affected a value that is read from Abaqus/Explicit), together with 

state variables available at old time and either computed or updated at current time step 

that we use to do the necessary calculations. Material parameters are described to help 

the user find his way inside the program; material parameters or user defined state 

variables (such as Green-Naghdi frame or fiber orientation vectors) that evolve with the 

material deformation must be updated.  

 Computations for initialization. It is a small part of the program used by 

Abaqus/Explicit mainly to check on the constitutive relation and then calculate the 
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equivalent material properties. This is done to ultimately compute the initial elastic wave 

speed in the material. 

 Reading the variables that are passed in by Abaqus/Explicit. At this point we need to 

read and store all the initial material properties from Abaqus/Explicit input file, 

information that will be fed into the mathematical model which computes the new state 

of the material. In addition to the material properties ABAQUS provides kinematics 

information at the beginning and at the end of the time step which include the 

deformation gradient from the previous step and current step [F], the right stretch tensor 

[U] from previous and current time step as well as the strain increment.  User defined 

state variables are also available at the beginning of the increment and must be updated 

as it is explained later. 

 Computing the new material state. This is the core of our routine because it is mainly 

constituted of the mathematical equations of the model. If non-linear equations are 

required to update the state variables, a local Newton-Raphson solution scheme can be 

used. 

The complete list of all variables is given in the VUMAT help file but here we selected the most 

important ones: 

 stressNew. This is the stress tensor at each material point at the end of the increment. 

This is a variable that has to be defined in order for the subroutine to return information 

to Abaqus/Explicit after the computations of the model are done. As we said earlier, the 

Cauchy stresses must be given in the Green-Naghdi frame for Abaqus/Explicit to 

interpret them correctly. 

 stateNew. It refers to all user defined state variables that are updated during the 

computations of the model and returned to Abaqus/Explicit. By default we decided to 

output all of them so Abaqus/Explicit can store them in the result file along with the 

updated stresses. This allowed us to thoroughly check all the detailed results. 
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 stateOld. As the variable before, it refers to the state variables computed and returned to 

Abaqus/Explicit during the previous time increment. They are passed into the subroutine 

for further updating. 

 stepTime. This is the value of time since the beginning of the step. We did not modify 

or use this variable in any way since it is controlled directly by Abaqus/Explicit. 

 totalTime. This is the value of the total time since the beginning of the analysis. The 

time at the beginning of the step is given by the totalTime value minus the stepTime 

value. We had to read and test this value; if it is equal to zero then the subroutine is 

using the initialization part of the program. If it is different from zero than the material 

model part of the program is used to update the stresses etc. 

 props. All the user-defined material properties input in Abaqus/Explicit guest user 

interface are read and stored in this array.  

 strainInc. This is the continuum strain increment tensor at each material point that has 

to be used by the model to update stress based on the geometrical state of the crossover. 

 stretchOld. It corresponds to the stretch tensor [U] at each material point at the 

beginning of the increment defined from the polar decomposition of the deformation 

gradient: 

       (6.1)  

 stretchNew. It corresponds to the stretch tensor [U] at each material point at the end of 

the increment. This variable does not have to be updated by the user. 

 defgradOld. This is the deformation gradient tensor at each material point at the 

beginning of the increment which is used to assemble tensor [F]. 

 defgradNew. This is the deformation gradient tensor at each material point at the end of 

the increment. This variable does not have to be updated by the user. 
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6.2.3 Initial rigidity matrix 

In order for Abaqus to initialize the computations we need to provide it with an initial stiffness 

matrix. From this matrix it will automatically calculate a stable time step for the dynamic 

analysis which is a crucial parameter for the explicit analysis to run properly. This computation 

of the stiffness matrix is performed when the condition of a total analysis time is zero 

(totalTime=0) meaning that this operation should be performed as the first calculation of the 

analysis. Otherwise the time increment will not be computed and the analysis will return an 

error.  

The form of this matrix is a well-known result from continuum mechanics if we assume an 

initial orthotropic material and is thus computed as: 

 [ ]  

[
 
 
 
 

  

     
 

      

     
 

 

      

     
 

  

     
 

 

   ]
 
 
 
 

 (6.2)  

Where parameters             are passed into the VUMAT as material parameters and 

therefore they can readily be used to define the matrix. 

6.2.4 VUMAT computation steps 

The knowledge of the unit-cell stretches in the two main in-plane directions along the yarns and 

the knowledge of the angle between these directions is essential for the determination of the 

forces developed in the crossover. In order to follow the extension and rotation of the yarns, two 

vectors are attached to virtual yarns at the initiation of the analysis. This initial configuration is 

constantly updated through the analysis using the deformation gradient provided by Abaqus at 

the beginning of each time step. Indeed the two yarn directions do not remain orthogonal after 

deformation. This has been presented in detail in Chapter 4. 

The updating process of the material direction vectors, which is performed by VUMAT prior to 

the computations of the yarns extensions and shear behavior, will be discussed in further details 
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in the following sections. The steps involved in this process are given below and they are 

performed at each time increment. 

Step-1: read and store the stretch tensor [ ] and the deformation gradient tensor [ ] provided 

by Abaqus: 

U(1,1) = stretchOld(k,1) 

U(2,2) = stretchOld(k,2) 

U(1,2) = stretchOld(k,4) 

U(2,1) = stretchOld(k,4) 

F(1,1) = defgradOld(k,1) 

F(2,2) = defgradOld(k,2) 

F(1,2) = defgradOld(k,4) 

F(2,1) = defgradOld(k,4) 

If this is the first increment performed then initializes the warp and fill yarn vectors initial 

coordinates as: 

fW_xInit = one 

fW_yInit = zero 

fF_xInit = zero 

fF_yInit = one 

e1_xInit = one 

e1_yInit = zero 

e2_xInit = zero 

e2_yInit = one 

If this is not the first increment performed then read the previous vector orientation for the warp 

and fill yarns as well as for the Green-Naghdi frame that have been stored at the end of the 

previous increment.  

fW_xOld = stateOld(k,1) 

fW_yOld = stateOld(k,2) 

fF_xOld = stateOld(k,3) 

fF_yOld = stateOld(k,4) 

e1_xOld = stateOld(k,5) 

e1_yOld = stateOld(k,6) 

e2_xOld = stateOld(k,7) 

e2_yOld = stateOld(k,8) 

 

Also one has to read in the damage status of each yarn and the yarn total extension. These 

informations have been stored at the end of the previous time step in state variables. 
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AllongTotWOld = stateOld(k,16) 

AllongTotFOld = stateOld(k,17) 

fail_flagW = stateOld(k,19) 

fail_flagF = stateOld(k,20) 

Step-2: compute the inverse of the right stretch tensor [ ]  . This is a simple operation that we 

will not develop here. 

Step-3: compute the rotation matrix [ ] from the knowledge of the deformation gradient tensor 

and the inverse of the right stretch tensor just calculated.  

 [ ]   [ ] [ ]    (6.3)  

Step-4: compute the new Green-Naghdi frame (     ) from the initial frame at the beginning of 

the analysis and the rotation tensor just calculated : 

 { }     [ ] { }     (6.4)  

Step-5: compute the new yarn frame. The deformation gradient enables us to update the 

material frame (     ) throughout the analysis at each time step; it is used to obtain updated 

material orientation vectors as: 

 

{  }     
        

 

‖        
‖

{  }     
        

‖        
‖

 (6.5)  

    Step-6: compute the angles       between the updated yarn orientation vectors and the 

updated Green-Naghdi frame unit vectors.    

 

       
‖     ‖

‖  ‖ ‖  ‖

       
‖     ‖
‖  ‖ ‖  ‖

       
‖     ‖

‖  ‖ ‖  ‖

       
‖     ‖
‖  ‖ ‖  ‖

 

(6.6)  
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Step-7: compute the shear angle between the updated warp and fill yarns orientation vectors. 

Also the initial shear angle from the initial vectors is computed by the routine to verify that it 

gave us a result of 90 degrees initially. 

           
‖      

       
‖

‖      
‖ ‖      

‖
 (6.7)  

         
‖     

      
‖

‖     
‖ ‖     

‖
 

Step-8: compute the transformation matrix used to transform the results from the Green-Naghdi 

frame to the material frame using transformation matrices [  ] and [  ]. 

 

[  ]   [
           

          
]

[  ]  [
           

          
]
  (6.8)  

Also, compute the associated transposed matrix of [  ] and [  ]  

 

[   ]   [
          

           
]

[   ]  [
          

           
]
  (6.9)  

Remark: if the fiber frame (denoted (x’,y’) in Figure 6-4) is used instead of Naghdi frame, one 

must compute the local cartesian fiber frame which is obtained by computing the fiber 

directions using gradient tensor F as such: 

 

{  }     
        

 

‖        
‖

{  }     
        

‖        
‖

 (6.10)  

Because the newly computed vectors are not orthogonal after deformation the shear stress does 

not respect the symmetry conditions. W thus have four in-plane stress and strain components 

related to local cartesian frame (x’, y’) as is shown in Figure 6-4. 
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Figure 6-4: Stress and strain components in fiber frame 

These stress and strain in-plane components can be expressed in the fiber frame using T2 and T3 

transformations as such: 

 

[

   

   

     

]  [  ] [

  

  

   

   

]

[

  

  

   

   

]  [  ] [

   

   

     

]

 (6.11)  

where T2 and T3 are defined in term of angle theta between the fiber material frame f1 and f2 

as: 

 

[  ]   [
    
            

           
]

[  ]  [

   
                   

   
   

]

  (6.12)  

The evolution of the reference frames are presented in the Figure 6-5. 
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Figure 6-5: Evolution of the Green-Naghdi and material frames during the deformation’s 

evolution 

          (     ) is the Green-Naghdi frame and (     ), also noted (     ) is the material 

frame that moves with the virtual yarns. As we can see in Figure 6-5, in the initial position the 

material frame is the same as the Green-Naghdi frame, but at the deformation progresses this is 

no longer true that’s why we need to track each vector during the analysis and use 

transformation matrix to transpose relevant variables from one frame to another as we will be 

doing in the following procedure. 

Step-9: Perform a transfer from macroscale strain to mesoscale level by computing the strain 

increment in the yarns directions. Knowing the transformation matrix from the local material 

frame to the local updated Green-Naghdi frame, we can transform the strain increments 

(strainInc) given by Abaqus in the Green-Naghdi frame to the material frame. This will generate 

a strain increment tensor for each yarn family (StrainIncW, StrainIncF) using the transformation 

matrix as follows: 

 
[         ]     [   ][         ]   [  ]

[         ]     [   ][         ]   [  ]
  (6.13)  

In the previous equation, the Green-Naghdi strain increment tensor denoted [         ]    is 

given by Abaqus at the beginning of the increment.  
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Step-10: calculate the incremental stretch ratio along each yarn. The displacements along the 

two yarn directions are calculated using the well-known results of continuum mechanics. The 

stretch increment in the direction of a vector from time step n-1 to n is determined as follow: 

                  
  √         

  (6.14)  

Step-11: calculate the total stretch ratio for each yarn. The total stretch in material direction   
  

is updated at each time step using the incremental values of stretch                  
  as 

shown below: 

           
            

                     
  (6.15)  

Step-12: calculate the unit cell displacement along each yarn. Using the total stretch and the 

length of the unit cell                    we may calculate the displacement 

               
  along each yarn family as follows: 

               
  (          

   )                  
 (6.16)  

From the knowledge of the displacements, we may now calculate the tensile forces developed 

inside the yarns. Also, from the knowledge of the shear angle, we may calculate the shear 

modulus and then the shear stress as will be discussed further later.  

Step-13: calculate the unit-cell half length from the displacement of the unit-cell and the initial 

half length of one yarn 

                             
                     

 (6.17)  

Step-14: calculate the initial half length of the yarns from the knowledge of the unit-cell half 

length and the height of the yarn centerline as: 

       
 √                 

        
  (6.18)  

Step-15: check if any of the two yarns has previously failed. If that is the case, set the tension in 

the yarn to zero. 
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Figure 6-6 illustrates the schematic model of a yarn in the fabric in contact with the crossing 

yarn and the corresponding free body diagram showing the forces acting on it as it is presented 

in Shahkarami’s works (4). 

 
Figure 6-6: A yarn in the fabric (left) in contact with the crossing yarn with  a free body 

diagram showing the forces acting on it (right) 

 

Step-16: Start the Newton-Raphson iterations to obtain the yarns’ centerline heights    and 

  . 

6.2.5 Newton-Raphson iterations 

The Newton-Raphson iterations are required to determine    and    and in order to do so we 

have to initialize the routine by doing some preliminary computations. The purpose here is not 

to give the detail of the routine’s functioning; the theory is covered in Appendix B thus we will 

only show the computations performed in the routine and it’s the basic parameterization.  

At this point it is important to note that the calculations presented in step 17 through step 25 are 

computed at each iteration of the Newton-Raphson routine. The first iteration uses the initial 

yarns centerline heights denoted       
. To accentuate that fact we will denote that 

parameter       
. 

Step-17: The first task is to calculate the current yarn length from the knowledge of the current 

unit-cell half-length and the current height of yarn centerline. This is done by computing the 

extension of the yarn represented by beams. 
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    √             
        

  (6.19)  

Step-18: calculate the contact forces. It is important to note at this point that tensile forces 

developed inside the yarns due to the in-plane deformation are a function of the yarn material 

and geometrical properties of the yarns. Bending and shear mechanical properties of the yarns 

are considered negligible compared to the axial tensile stiffness and thus they are not considered 

in this study. The tensile behavior of the yarns is assumed to follow the linear elastic model 

defined by the equation below: 

        

         

      

 (6.20)  

Where    is the cross-sectional area of the yarns and       
 and    are the initial and current 

length of the yarns. Ei is the Young modulus of the yarns. 

Step-19: compute the angles formed by the warp and fill yarns at the corner of the unit cell 

which are called the yarn end slope       and     . They are shown on figure 6.2. 

 
        

      

√             
        

 

 
(6.21)  

Step-20: compute the contact forces between the yarns which are calculated as such: 

                  (6.22)  

Step-21: calculate the transverse yarn compression. When the two yarn support loads and are 

not broken and in contact, the distance between the two summit points is smaller than the initial 

distance, and contact force is developed between the two yarns. The extent of this force depends 

on the yarn contact over-closure given by:  

            (6.23)  

This is actually the yarn overclosure at the contact point and it appears only when the contact 

force between the yarns is positive. In the case of an existing contact force between the yarns, 
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the yarn overclosure, the relationship between the transverse contact force and the yarn 

overclosure is given in the works of Grujicic et al. (32) : 

     
    

    
 (6.24)  

The two parameters a and b have been determined using the 3D crossover compression 

numerical experiment.  

Step-22: in order to calculate the yarn heights we have introduced, following the works of 

Shakharami et al (4), an equilibrium function    which has to be satisfied in conjunction with 

the geometric compatibility function    . These two functions are given by: 

 {  
          

         
       

       
       

        
 (6.25)  

The Newton-Raphson technique is used to estimate the unknowns by an iterating process over 

      
 and       

 from their initial values       
 and       

 using a system of two non-linear 

equations constituted by function     and    . The Newton-Raphson iterative scheme used in this 

VUMAT is presented in detail in appendix B. 

It is quite easy to define the iterative scheme of the Newton-Raphson algorithm. We have to 

calculate the Jacobian matrix from the partial derivatives of equations developed earlier and 

give an initial guess of the two values close to the values we are looking for, in our case we 

gave       
 and       

. 

   

[
 
 
 
 
   
   

   
   

   
   

   
   ]

 
 
 
 

 (6.26)  

The explicit form of function f1 and f2 are given in Appendix C. 

Step-23: compute the tolerances. We instructed the routine to do a maximum of 50 iterations 

until the tolerance values for the contact forces (    ) and height of centerline (    ) are 

reached. The tolerances where defined as follows:  
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            |       | 

             

(6.27)  

These tolerances are chosen arbitrarily and depend on the level of precision we want to obtain. 

We observed that a tolerance of        is enough to obtain very good results. 

Step-24: Check for convergence of the iteration scheme. Thus, if the values of functions    and 

   are below the tolerance, the iterations stops and return the last values of     and    which 

are considered valid and thus used in the next steps. 

Step-25: Return the two values    and    to the main program.  

6.2.6 Tensile response 

The tensile response of the yarn is concerned with the in-plane extension of the beam 

representing the yarns. Also we will describe here the failure criterion that has been used in the 

subroutine to assess if the yarns are broken or not. The element erosion is also an important 

aspect taking place when the two yarns have failed. The matrix defining the fabric stress from 

the knowledge of the tension taking place inside the yarn will also be presented here. 

Step-26: Recalculate the tensions    and   . From the modified heights     and    of the 

centerlines of the yarns we may recalculate the half-length of the fibers and obtain the true 

tensile force inside the yarns.  

 

   √             
    

  

       

         

      

 

(6.28)  

Step-27: Check for yarn failure. At each time increment and for each shell element, the 

program will compare the tension calculated in the yarns with the (ultimate) tension limit given 

by the yarn manufacturer. This is obviously done for both yarns as follows: 
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 {
                              
                             

 (6.29)  

We have defined within the subroutine a failure flag for each yarn that is activated if one yarn is 

reported broken. By default the yarn is considered intact and thus the failure flag has a value of 

0. If the yarn is reported broken, the value of the failure flag is set to 1. This flag is defined as a 

state variable, meaning that the state of the yarn is propagated between steps. Erosion of the 

element takes place only when both yarns are broken.  

Step-28: eroding of shell element. Quite simply, if at one point in the analysis the two failure 

flags both have values of one then the state variable controlling the erosion of the element is set 

to zero. This is a capability in user material that Abaqus provides in case we want to remove an 

element from the analysis. By default when the element is active in the analysis, the value to 

this state variable is one. In our case state variable 30 is dedicated to element removal. 

Step-29: obtain the fabric stress increments for each yarn. From the tensions in the yarns    we 

can calculate the components of the stress tensor increments in the material frame. In this case 

at increment n for warp and fill yarns the tensors are: 

   
 

   
  [

  

  
 

  

]           
 

   
  [

  

  
 

  

] (6.30)  

where    is the cross-sectional area of the concerned yarn. The tensors of equation (6.30) can 

accommodate further model developments if other yarn stress components are required.  

Step-30: Transfer data from mesoscale to macroscale level by computing the stress in the Green 

Naghdi frame. The tensors above are expressed in the material frame and must be transformed 

into the Green-Naghdi frame so it can be properly read by Abaqus. We use the transformation 

matrix   
  that we have previously defined (this transformation matrix    

  is not defined  yet) 

as such: 

   
 

  
    

  
   

 
   

    
     (6.31)  
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6.2.7 Shear response 

As we already mentioned before, plain weave fabrics display unconventional shear behavior 

due to the specific arrangement of the yarns in the weave structure. The fabric can shear easily 

up to a certain value of locking angle, from which the yarns then get compacted laterally to 

resist any further shearing. The shear response of a crossover is subdivided into three distinct 

regions depending on the transverse compaction of the fibers. From a micro-mechanical point 

of view, shear is permitted while the reduction of spacing between adjacent yarns is possible; 

it’s only the shear modulus that varies. To define the transverse compaction of the yarns that 

ultimately defines the shear modulus to be applied, we have to define the angles    and 

   separating each region as one can see in Figure 6-7 which presents one fourth of the unit-

cell. The principle of shear modelling has been extensively described in section 3.6.2 and the 

picture frame test is presented in Figure 3-11. 

 

Figure 6-7: Yarn centerline height position depending on angle   

The first region between       and    is where the fiber is able to rotate freely and does not get 

compacted, there is very little friction between the two perpendicular yarns and a very small 

shear modulus is applied. The second region between    and    is where the yarn is getting 

compacted, the yarns rotation is progressively impeded and as a consequence, the shear 

modulus increases linearly. The third region starting from    is when the yarn has been 

compacted up to 65% of its original width as Shahkarami underlines it in his work (4). At this 

point the applied shear modulus is high. The definition of the yarn’s crimp angles   was taken 

and interpreted from the works of Shahkarami (2), presented in Figure 6-7 and has been defined 

as follows:   
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Angle    

 

        
|              

|

                 

 

      
             

 
 

(6.32)  

Angle    

 

        
|                   
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(6.33)  

Step-31: calculate the shear strain of the trellis mechanism from the knowledge of the strain 

increment tensors for the warp and fill yarns computed before. 

                          (   ) +           (   )  (6.34)  

Step-32: calculate   to assess the compaction of the fiber 

 

       
|  |

             
 

     
           

 
 

(6.35)  

Step-33: define the shear modulus for the trellis. Using the locking angles    and   , the 

corresponding shear strains    and    can be determined. Shahkarami in his work transforms the 

angles   into their corresponding strains before calculating the shear modulus. In our VUMAT 

we applied directly the knowledge of the angles describing the compression of the fibers to the 

computation of the proper shear modulus to be used in following computation. The results 

presented in the following chapters show that this modification has no negative impact; it is yet 

a way to avoid doing unnecessary computations of the strains. The shear stress-strain 

relationship can be formulated as in Shakharami et al (2) and is given as follows: 
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 (    )

            

             (6.36)  

A relationship exists between the shear angle and shear modulus for values smaller than zero 

that means the shear model for positive and negative values of the angle is the same and shown 

in Figure 6-8. 

 

Figure 6-8: Shear modulus as a function of   

Step-34: compute the shear stress 

                                           (   ) (6.37)  

6.2.8 Final computations 

Step-35: calculate the stress tensor of the unit cell in the Green-Naghdi frame and return the 

computed stresses to Abaqus. The total stress tensor is an average of the two yarn stress tensors 

as calculated below: 

     
 

  
   

  
 

  
   

 
  

 

 
 (6.38)  

An extra term should be added to account for the stresses generated by the in-plane shear 

phenomenon as we already discussed. The additional shear term can easily be determined from 

the knowledge of the shear angle between two yarns since the two material vectors of the yarns 

are updated at each time increment. 
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6.2.9 Intermediate result extraction 

Abaqus gives the user the ability to extract some of the results of the calculations performed 

inside the subroutine. This is very useful if we want to observe the behavior of the VUMAT 

during the analysis and monitor the evolution of a specific variable to verify that the given 

results are in accordance with the mechanics of the problem. This is done by using the user 

variables in Abaqus, thus we simply define a set of these user variables and assign specific 

results to them. The variables are written by Abaqus at each time step. For example, we can 

extract the tensile force in warp and fill fibers as well as the shear angle between the fibers. The 

complete list of user variables is available in chapter 7. 

6.3 Shell element testing 

In order to use the shell element in an impact application, we first have to define all the 

parameters the VUMAT needs to work with. These parameters are mostly material properties as 

it will be seen in the next paragraphs. Also we have to make sure its behavior is coherent with 

the behavior of the 3D yarn crossover model under various loadings. 

The analyses presented here have been performed on a single smeared shell element with 

applied displacements on the shell edges with the shell element’s material law given by the 

VUMAT user material modeling one crossover of plain woven fabric. 

6.3.1 Input parameters for the VUMAT 

The determination of input parameters using the 3D crossover model has been performed in the 

previous chapter. The full listing of the input parameters and the value attributed to each one is 

shown in appendix 2. 

6.3.2 Uniaxial extensional response  

The first analysis performed is a uniaxial extension test with a displacement of 0.05mm applied 

on the warp yarn (direction 1) as shown in Figure 6-9. 
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Figure 6-9: Application of the loads on the shell element for a simple extension test 

The curve extracted for this analysis is presented in Figure 6-10 shows build up of tension in the 

yarn as a function of displacement.  

 

Figure 6-10: Tension in the warp yarn during a simple extension test 

The blue curve clearly shows a tension taking place inside the warp yarn. First there is a non-

linear phase until the displacement reaches a value of 0.01 mm. We observe a relatively small 

tension applied in both yarns even though displacement is applied in one direction. This is a 

symptom of fiber placement which takes place when the yarns are rearranging inside the woven. 

Then, the tension in the fiber is almost linear as the displacement increases. The tension reaches 

the tension limit set up in Abaqus and then rupture occurs.  No tension is supported by the yarn 

at this point on in the analysis. 

The same results have been obtained by Shahkarami (2) (see Figure 6-11) but we could not 

compare the curves directly since he provided the results only for Kevlar S-726 while we used 
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the material properties for Kevlar S-720 to conduct our tests. To give the reader an idea of the 

loading curve’s shape in unidirectional tension obtained by Shahkarami we presented it in 

Figure 6-9. One can observe that the S-720 Kevlar has a lower crimp percentage (3.21%) than 

the crimp percentage for Kevlar S-726 (3.44%). This results in a rupture of the S-720 yarn at a 

slightly lower displacement then the Kevlar S-726.  

 

Figure 6-11: Shahkarami et al. (4) unidirectional tensile loading curve for Kevlar S-726  

It is also important to observe the movement of the yarn centerlines at the crossing point. While 

tension develops only in the warp yarn it tends to straighten. Physically, the reduction of 

undulation in the warp yarn implies that the fill yarn will get more undulated, that is shown in 

Figure 6-12. 

 

Figure 6-12: Movement of the warp and fill yarn centerline at the crossing point during a simple 

extension test 

-0,05

0

0,05

0,1

0,15

0,2

0,25

0,3

0 0,005 0,01 0,015 0,02 0,025 0,03

P
o

si
ti

o
n

 o
f 

ya
rn

 
ce

n
te

rl
in

e 
(m

m
) 

Displacement (mm) 

Position…
Position Hf

W
ar

p
 y

ar
n
 t

en
si

o
n

 (
k
N

) 

Warp displacement (mm) 



Chapter 6 – Development of the user subroutine 

 

 

-118- 

 

6.3.3 Biaxial extensional response  

In this case, the objective is to test the biaxial tension on the smeared shell element. The 

displacement applied on each side of the shell element is set to 0.05 mm and the tensile forces 

appearing in each yarn are extracted. In this biaxial test there is no yarn placement since the 

yarns are initially in contact and the decrimping that occurs is the same for both yarns. 

Consequently, as soon as the displacement is applied, the tension in the yarn is increasing 

linearly as one can see in Figure 6-13. 

 

Figure 6-13: Tension in the warp yarn during a biaxial extension test 

 

Also, one can observe that in the case of a biaxial extension, the ultimate tensile resistance of 

the yarns is reached for a smaller displacement than what we have observed in the uniaxial 

tensile test. For a displacement of 0.01 mm, both yarns fail at the same instant and then the 

element is removed from the analysis. 

Concerning the position of the warp and fill yarn centerlines, their variations is very small. As 

the crossover gets extended, the warp and fill yarns pack against each other and their cross-

sectional area gets flattened in the z-axis. As it was determined during the transverse 

compaction test on the 3D crossover, the yarns have some resistance in transverse compression. 

This is why a progressive and very small variation of the centerlines’ position is observed as 

shown in Figure 6-14. 
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Figure 6-14: Movement of the warp and fill yarn centerline at the crossing point during a simple 

extension test 

One can observe that in the case of a biaxial extension the two directions exhibit the exact same 

variation of the centerline position in the normal direction of the shell element. 

6.3.4 Shear response  

The shear response of the unit cell which was obtained has the same form as the theoretical 

shear response taken from the works of Shahkarami (4). Figure 6-15 gives the shear response 

that was obtained.  

 

Figure 6-15: Shear modulus evolution as a function of the transverse displacement of the yarns 
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It can be observed that the shear modulus is greatly varying from a zero value up to the limit 

value of 8.24 Gpa. 

6.4 Conclusion 

In this chapter, we went over the definition of the trellis mechanism that was used to 

approximate the behavior of the crossover as well as the simplifying assumptions we made. All 

equations used at each step of the calculations in the developed VUMAT were detailed. 

Finally, we tested the VUMAT using only one shell element under various loadings. These 

loadings were uniaxial tension, biaxial tension and shear. 
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CHAPTER 7 - MODELING OF A BALLISTIC IMPACT ON A 

COMPOSITE PLATE 

In this chapter we discuss the modelling of a ballistic impact problem on plain weave 

reinforcement using Abaqus. In this work one ply is first used to assess the validity of the model 

and then extended to two and four plies. The extension to multiple plies was necessary in order 

to fully understand and set up the contact between plies using Abaqus’ capabilities. 

The goal in this study is first to monitor the velocity of the impactor during its interaction with 

the composite plies. Then the analysis results are compared with those obtained by Shahkarami 

(2) using his own VUMAT. A parametric study is also performed to study the influence of a 

number of selected parameters over the analysis results.  

7.1 Analysis set-up for 1-ply model 

The analysis setup presented here follows the necessary steps to create a model in Abaqus using 

the explicit package to handle the transient dynamic nature of the impact and the large 

deformations that are taking place. 
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Quite simply, the model is constituted of the metallic projectile and of a plate whose material is 

the fabric described by the VUMAT. The elements used for the plate are S4R shell elements 

available in Abaqus and the initial sidelength of the shell elements we used is 0.94 mm because 

it is the typical size of the crossover geometry. We will see later in the chapter that an increased 

size can be used for shell elements without loss of accuracy in the results. 

7.1.1 Geometrical setup of the analysis 

First of all, only one quarter of the total model has been used to reduce the number of elements 

and thus to reduce the computation time needed to complete the analysis. In order to capture an 

accurate behavior of the plain weave structure, a detailed analysis is very important; hence the 

mesh has to be quite refined. For geometric modelling, we defined two parts in our analysis: 

one for the plain weave ply, which is a two dimensional square of approximately 97 millimeters 

and the other for the impactor which has a specific parametric solid geometry adapted  from the 

works of Shahkarami (4). The particular geometry of the impactor is given in Figure 7-1. All 

dimensions are given in millimeters. 

a)  b)  

Figure 7-1: a) Impactor section definition in the sketch module, b) final three dimensional 

geometry of the impactor to be used in the assembly  
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The impactor initial position is set pretty close to the ply to reduce the distance it has to travel 

before impacting the ply. This also helps to reduce the computational time of the analysis. The 

final geometric model and set up of the analysis is represented in Figure 7-2. 

 

Figure 7-2: Model assembly with impactor and fabric plate 

7.1.2 Definition of the materials 

The impactor material was selected to be steel; which has the great advantage over aluminium 

of staying perfectly rigid throughout the analysis. Because aluminium projectile reaches its limit 

plastic deformation and stress, it is less reliable and interesting to use it as it adds an unwanted 

complexity to the numerical experimentation. The elastic mechanical properties of steel that we 

used are presented in Table 7-1: 

Table 7-1: Mechanical parameters of the steel impactor 

Property Value used in Abaqus 

Density  7.922 

Young’s modulus (Gpa) 210 

Poisson’s ratio 0.3 

 

For the ply fabric material, a user material subroutine was developed through the Abaqus 

VUMAT subroutine facilities and used to specify the fabric model and to define the behavior of 

the plain weave ply under impact loading. The user material model requires to input 19 material 

properties to define weave architecture parameters into Abaqus in order to satisfy the user 
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subroutine input requirements. These input values are taken from the works of Shahkarami (42) 

and are summarized up in Table 7-2: 

Table 7-2: Summary of parameters used by the VUMAT to define the fabric 

Symbol Property 
Value entered in 

Abaqus 

d density 1.44 

Ew Young’s modulus in warp direction (Gpa) 96 

Ef Young’s modulus in fill direction (Gpa) 96 

υ Poisson’s ratio 0.3 

Hw Height of the warp yarn centreline (mm) 0.12495 

Hf Height of the fill yarn centerline (mm) 0.12495 

hw Unit cell initial half-length in warp direction (mm) 0.47035 

hf Unit cell initial half-length in fill direction (mm) 0.47035 

Aw Warp yarn cross sectional area (mm2) 0.149664 

Af Fill yarn cross sectional area (mm2) 0.149664 

Tw Ultimate tensile force in warp direction (N) 0.315 

Tf Ultimate tensile force in fill direction (N) 0.315 

Ginit Initial shear modulus (Gpa) 0.0824 

Gmax Maximum shear modulus (Gpa) 8.24 

Cmax Maximum fiber compression coefficient 0.65 

a Fiber compression coefficient a 0.12389 

b Fiber compression coefficient b 984.32 

tw Initial thickness of the warp yarn 0.2499 

tf Initial thickness of the fill yarn 0.2499 

7.1.3 Definition of the step  

A dynamic explicit analysis was set up in Abaqus and in our analysis the time is given in 

milliseconds. The total analysis time is set to 200 milliseconds which corresponds to the time 

needed for the projectile to go through the ply at a velocity of 100 m/s. The incrementation 

parameters are handled automatically by Abaqus. We instructed Abaqus to output all the 

energies, stresses, displacements and velocities variables every 10ms during the analysis 

simulation. Also, non-linear geometric analysis options are activated to account for the non-

linear nature of the impact analysis (large deformation). 
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7.1.4 Definition of the boundary conditions 

Three types of boundary conditions were introduced during the analysis definition. First to 

rigidly set the plate in space, the Abaqus “encastre” option was used on two edges of the plate 

to set all its degrees of freedom to zero. Since only a quarter of the problem was modelled, it is 

necessary to specify geometric symmetry boundary conditions. This is done by using the 

options X-symmetry and Y-symmetry depending on the edge of the model we want to 

constrain. Lastly, the initial velocity of the impactor was set up by using a predefined field to be 

applied to the whole impactor geometry. Because in the analysis the time is set to be in 

milliseconds we applied a 0.1m/ms velocity along the Z-axis which is equivalent to a velocity 

of 100 m/s. All other velocities in other space directions are set to zero. Boundary conditions 

are summed up in Figure 7-3. 

 

Figure 7-3: Boundary conditions applied on the model 

7.1.5 Transverse shear stiffness  

Using the shell elements we have to provide Abaqus with values for the transverse shear 

stiffness when defining the thickness of the shell in the section module. Only a linear-elastic 

transverse shear response of the fabric can be defined in Abaqus and this requires specification 

of these two moduli directly in the guest user interface. The values used in the simulations have 

been taken from Grujicic’s work (1) in which it is stated: “Low values for the transverse normal 

Fully fixed 

X symmetry 
Y symmetry 
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and shear moduli and for the Poisson’s ratios arise from the fact that the fibers bundled within 

yarns are only weakly coupled to each other”. The values used are G13=3.28 Gpa and G23= 3.28 

Gpa for a Kevlar 129. 

7.1.6 Interactions and contact properties 

For this analysis, the “Surface-to-surface contact” option available in Abaqus was used and 

specified by picking the two surfaces involved in the contact. The master surface is the 

composite ply and the slave surface is the impactor. The mechanical constraint formulation is 

the penalty contact method. Also, a contact control was defined, essentially to define the angle 

criteria for the elements’ highly warped facet. This value was set to 40 degrees, meaning that if 

at one point during the analysis the face of an element exceeds the criterion, the analysis will 

issue a warning message. Doing this allows one to monitor if any element is getting abnormally 

deformed thus providing inaccurate results. This was not the case in the present situation. 

7.2 Analysis results discussion for 1-ply analysis 

The graphical results of the analysis are given below; they were extracted from the .odb file to 

show the evolution of the stresses in the fabric ply near the contact zone between the ply and the 

impactor. The evolution throughout the time of the analysis is shown in Figure 7-4. 

Various shell element sizes to mesh the plate were tested to analyse the impact behaviour of the 

VUMAT. First a mesh size a quarter of the size of the representative volume element was used 

and yielded similar results when compared to a plate modelled with shell elements the size of 

the crossover as is presented in Figure 7-13. 
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Elapsed time: 0ms  

Elapsed time: 10ms 

 

 
Elapsed time: 40ms 

 
Elapsed time: 60ms 

 
Elapsed time: 80ms 

 

 
Elapsed time: 120ms 

 
Elapsed time: 150ms 

 

 
Elapsed time: 180ms 

Figure 7-4: Evolution of the impact analysis on a one-ply plain weave fabric over time (in 

milliseconds) 
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We can observe in Figure 7-4 that the stress waves in the fabric are propagating outward from 

the impact point. At the beginning of the analysis, the fabric behaves like a net trying to stop the 

projectile. We may observe that the fabric is getting deformed, dragged by the tip of the 

projectile advances until the yarns in both direction are straightened. This is the kind of 

behavior that was also obtained in Shahkarami’s works (31). After 60 milliseconds into the 

analysis, the tensile stress in the fabric yarns reach the limit, irreversible damage occurs and 

thus element erosion starts. This indicates that the tensile stresses developed in both warp and 

weft yarns are greater than the ultimate tensile load given by the manufacturer for the material. 

At this point the fabric is damaged and is letting the projectile passes through.  

Overall, only a fraction of the projectile kinetic energy is absorbed by the fabric until it fails. As 

we observe that the projectile perforates the composite ply we deduce that one ply is not enough 

to stop the impactor from its initial velocity of 100 meters per second. 

7.2.1 Projectile velocity analysis 

From the impact experiment over one ply of fabric we can plot the projectile velocity over the 

total time of the analysis as it is shown in Figure 7-5. The initial velocity of 100 m/s decreases 

during impact to approximately 85 m/s and then remains constant. This indicates that the 

projectile is transmitting some energy to the composite but still has enough left to perforate the 

fabric. 
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Figure 7-5: Projectile velocity result 

7.2.2 Parametric study 

To fully understand the effect of certain parameters on the results of the model, a simple 

parametric study was carried out in order to assess their effects on the speed of the projectile 

throughout the analysis. The studied parameters are:  

 The crimp of the fabric 

 The initial velocity of the projectile 

 The impacted fabric plate size 

 The compression parameters a and b 

7.2.2.1 Velocity variation analysis 

Three different initial velocities of the projectile were tested thus changing the kinetic energy. 

Plotting the velocity of the projectile (Figure 7-6) through the analysis enables us to observe 

that the end velocity of the projectile is not decreasing in the same way.  
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When initial velocity is set to 125 m/s, the residual velocity is 115 m/s thus the decrease is only 

10 m/s. An initial velocity of 100 m/s will lead to a decrease of 15 m/s and an initial velocity of 

75 m/s leads to a decrease of 20 m/s. Thus, we can conclude that the model is adequately 

predicting the velocities by following the kinetic energy law.  

 

Figure 7-6: Initial velocity influence over projectile velocity during the analysis 

7.2.2.2 Crimp variation analysis 

To study the effects of the crimp angle (which is the angle at which one yarn crosses over the 

other) on the fabric ability to absorb the projectile’s energy, we run three models with three 

different crimp values for the fabric. The influence on the velocity of the projectile through the 

analysis is plotted in Figure 7-7. We can observe that the crimp value has a significant influence 

on the results of the analysis. It has an influence on the energy absorption capability of the 

fabric, and this corresponds to typical result one was expecting.  

Indeed, changing the crimp of the fabric is directly affecting its ability to deform by modifying 

the amount of possible yarn straightening. As a result, a large crimp angle means that the fabric 

will be able to absorb more energy because the straightening phenomenon of the yarns will be 

increased. The fabric can deform greatly until the yarns are straightened completely. This is 

exactly what can be observed in Figure 7-7.  
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For an initial velocity of 100 m/s, a large value of crimp can modify the straightening 

phenomenon so much that one ply of fabric would be able to stop the projectile.  

 

Figure 7-7: Crimp influence over projectile velocity during the analysis 

7.2.2.3 Plate size influence 

The effect of the composite plate size was also studied (Figure 7-8) to observe if the fixed 

boundary condition applied to the edges of the plate had influence over the results of the 

analysis. We wanted to observe if the chosen dimension of the plate for all analysis was 

affecting the results we got in other analysis.  

All plates are squares and the given dimension is the sidelength. We may observe that plate 

dimension has a great influence over the results. For a plate sidelength of less than 47 

millimeters the velocity of the projectile after impact is a third of the velocity we obtain using a 

plate sidelength of 97 millimeters. 

This can be easily explained by the fact that there is a reduction in the number of elements. If 

the same mesh size is used, in the case of a 97 x 97 square millimeters plate we have 100 

elements on the edge, while we have 50 elements in the case of a 47 x 47 square millimeters 

plate. This leads to the fact that there is less possible deformation of the elements in the latter 
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case (i.e. fewer elements to be bent) and as the fabric stretches less, it absorbs less energy and 

the projectile velocity after the impact is greater. 

 

Figure 7-8: Plate sidelength influence over projectile velocity during the analysis 

7.2.2.4 Compression parameters influence 

The last parameter study (results shown in Figure 7-9) was concerned with the influence of 

compression parameters a and b linking the contact force Fc between the yarns with the contact 

over closure dc.  The relation was defined as: 

     
    

    
 

(7.1) 

We conducted five analyses to assess the influence of these parameters by modifying each 

parameter separately as it is presented in Table 7-3. 

Table 7-3: Parameter a and b variation 

Study case a b 

Case 1 0.154862 984.32 

Case 2 0.092917 984.32 

Case 3 0.12389 1229.225 

Case 4 0.12389 984.32 

Case 5 0.12389 737.535 
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The original values determined by using the full blown 3D crossover model correspond to case 

4. Figure 7-9 presents the influence of parameter a and b variation on the projectile end 

velocity. We may observe that a ±25% variation of each value has little influence over the 

overall result of the analysis. This is what one would expect since the rigidity of the crossover 

in compression is not affecting directly the calculation of the tensile loads inside the yarns. The 

knowledge of the overclosure and contact force between yarns is used to define the equilibrium 

and thus the position of the crossover. 

 

Figure 7-9: Compression parameters influence 

7.3 Analysis results and discussion for 4-ply analysis 

Since for one ply fabric model, perforation is taking place, the next step is to study the influence 

of the number of plies on the fabric response.  

Going forward in our analysis we set up a model for the impact on a 4-ply composite plate. This 

was selected because ELVS experimental data were available for validation of the obtained 

numerical results. The General Contact option with no friction between each plies was used 

during the analysis to handle the contact between the plies and between each ply and the 

projectile. The initial velocity of the projectile was selected to be 120 meters per second in order 
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to be  able to compare the generated velocity versus analysis time curve with the one obtained 

during the experimental tests of Shahkarami (2). 

7.3.1 Graphical evolution of the analysis 

The evolution of the projectile as it impacts the composite is show in  

Figure 7-10.  Looking closely to the figures, one can observe that the fabric is getting deformed 

and that some elements around the impact zone on the top layer are fully damaged and then 

deleted automatically from the model. 

 

 
Elapsed time: 80ms 

 

 
Elapsed time: 90ms 

 
Elapsed time: 120ms 

 

 
Elapsed time: 140ms 

 

Figure 7-10: Evolution of the ply stresses on a four-ply plain weave fabric over time (in 

milliseconds) 

In this analysis the projectile does not go through the composite and is stopped at 200 

milliseconds into the analysis. 
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7.3.2 Energies plots to validate the analysis 

To validate the analysis we extracted the energies of the global model as shown in Figure 7-11. 

The total energy of the model is conserved throughout the analysis with no major disturbance. 

The kinetic energy is converted entirely into internal energy as the projectile’s energy is 

absorbed by the fabric because the projectile is stopped by the four layers of fabric. We also 

observe on the energy curves that the kinetic energy is near zero at 205 milliseconds which 

indicates that the projectile has been stopped. This result correlates with the FEM analysis 

showing that the velocity of the impactor is near zero at around 200 milliseconds. We may thus 

conclude that the analysis is valid. 

 

Figure 7-11: Evolution of the kinetic, internal and total energy of the system over time (in 

milliseconds) 

7.3.3 Comparison between FEM analysis and experiment 

The experimental results obtained in G. Toussaint (5) thesis to validate an LS-Dyna Fabric 

UMAT model obtained from Shahkarami (2) and the our FEM results obtained from the 

VUMAT model implemented in Abaqus show a very good correlation as shown in Figure 7-12. 
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The physics are captured by our VUMAT and therefore the principal mechanical phenomenon 

which were selected and implemented within the subroutine is adequately modeled.  

 

Figure 7-12: Comparison between FEM and experimental analyses from Shahkarami (4) of the 

impact velocity 
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7-13 a refined mesh gives similar results compared to the nominal mesh size. It is thus not 

necessary to refine the plate mesh. 

 

Figure 7-13: Mesh size influence over the results compared with the results obtained with the 

nominal mesh size 

7.3.4.2 Increase in mesh size  

In the industry it is very computationally inefficient to apply a very refined mesh on large 

structures and so it is interesting to see how accurate the results are if the mesh size is increased. 

Thus we carried out several analyses to investigate the variation in the projectile’s velocity 

results.  Doubling the size of the mesh appears to have little influence on the results. Overall an 

element size of 2 mm leads to an average error of 7.1% over the total time of the analysis as 

compared to the 0.9407 mm element sidelength. The 4mm element leads to an average error of 

51% and the 6mm element leads to an average error of 70% overall.  
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Figure 7-14: Mesh size influence over the projectile velocity throughout the analysis 

In conclusion, as observed in Figure 7-14 we may use the 2 mm shell element to improve the 

computational efficiency of the analysis and still obtain relatively accurate results. Use of 

element sizes greater than 4mm is not recommended because the results are not accurate. 

7.4 Final velocity comparison between different layup 

configuration 

In Figure 7-16 we show a simple study on the impact of the projectile on a plate made of 

increasing number of fabric layer. This study was carried out to find out if we were able to 

predict the number of layers needed to prevent penetration of the projectile based on some 

partial information. Indeed the computation time needed to obtain result increases drastically 

with the number of layers. 

We first collected the final velocities after impact on a one-ply plate, a two-ply plate and a four-

ply plate. All other parameters such as initial velocity, crimp angle of the fabric, element size 

remain the same for all analysis. In the case of the one-ply impact, the final exit velocity of the 
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impactor is 82 m/s. In the case of the two-plies plate, it is 58 m/s and in the case of the four-

plies impact the final post impact exit velocity is 18 m/s. 

Also we run an analysis for a six ply plate which we found out to be the configuration needed to 

prevent perforation by the projectile, the curve is showed in Figure 7-15. We also show the 

graphical stress result extracted during the analysis in Figure 7-17. Of course this result was not 

taken into account for the predictions. 

 

Figure 7-15: Influence of the number of layers over the final velocity of the projectile 

Plotting each final velocity for one-ply, two-plies and four-plies impacts we were able to create 

a quadratic function in Excel interpolating each of three results. This is presented in Figure 

7-16. The quadratic function has the following equation where X is the number of layers: 

  ( )                          (7.1) 

Using this equation, it was possible to predict the number of layers needed to stop the projectile. 

The projections for five and six layers of fabric are shown in Figure 7-15 in red. We can 

observe that five layers are not enough to stop the projectile as the projected residual velocity is 
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3 m/s. The right number of layers is six and it is interesting to note at this point that this is the 

result we get from Abaqus.  

 

Figure 7-16: Prediction analysis to define the number of layers needed to stop the projectile 

Consequently we can conclude that for this simple impact test our predictive model based on 

equation 7.1 that links the final velocity of the impactor with the number of fabric layers is 

correct. This technique will also be used to predict the number of layers needed in the hybrid 

casing to stop the fan blade which is the object of the next chapter. 
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Figure 7-17: Stresses caused by the projectile stopped by 6 layers of plain weave fabric 

7.5 Conclusion 

In this chapter, numerical tests of a projectile impacting on a fabric plate were conducted. The 

influence of the number of plies on the post impact residual velocity has been studied. Also we 

studied the influence of various other material parameters that were input in the VUMAT to 

assess their influence over the results.  

Predicting how many plies are needed to prevent complete perforation of the fabric target by the 

projectile based on partial simulation was a key objective of the chapter. We found out that it is 

indeed possible to predict the number of needed plies and this prediction has been verified with 

numerical testing. This methodology will be used in the predictions of fan blade containment 

within a lightweight hybrid engine casing. 
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CHAPTER 8 - MODELING THE IMPACT OF AN ENGINE FAN 

BLADE ON A COMPOSITE CASING 

8.1 Overview of the analysis 

In this chapter, a simplified engine fan blade containment problem is considered as an 

application of the work done in previous chapters. All the parameters and model geometry of 

this chapter are taken from the works of Toussaint (5) in order to compare the results between 

her FEA model and ours. The analysis comprises two separate modeling steps: (i) a pre-stress 

model for initialization of field variables induced by setting up the motion of the fan blade from 

rest to cruise rotating speed; (ii) the model for blade debris release and its impact with the 

engine casing. The modeling technique is thus interesting in the sense that we use a first model 

to pre-constrain the fan blade following the rotating motion built-up and then use the results to 

start the subsequent impact analysis. The setup of these two models is dealt with using specific 

tools and functionalities of Abaqus. 

The first analysis is solely concerned with the fan blade and is used to obtain the initial stresses 

and strains appearing in each element as well as the velocities of each node of the fan blade 

model when it is put in rotational motion. In Abaqus, this motion is defined by specifying an 
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axis of rotation and a rotational velocity as well as multipoint constraints (MPCs). This analysis 

phase is performed using Abaqus implicit solver, i.e. Abaqus standard.  The results of this first 

analysis are then imported in the second analysis which deals with the impact of the fan blade 

debris on the engine casing. In this second analysis phase, a new part, called engine casing, is 

created and assembled with the previous fan blade model. A hybrid engine casing is modeled 

using an aluminum ring as the base structure defining the casing shape around which a dry 

fabric composite material is wrapped. For high velocity impact modeling involved in this 

containment simulation the Abaqus explicit solver is used together with the developed VUMAT 

user subroutine.  

Details regarding the modeling methodology of the first and second sub-models for the fan 

blade impact analysis are first presented in the chapter. Then the results regarding the velocity 

of the blade during the impact will be presented. And finally discussion about the validity of the 

simulation results are presented by taking a look at the energy curves from the model. 

8.2 First analysis setup: fan blade rotation 

8.2.1 Analysis basics 

We will use an implicit integration scheme in the first analysis since it is suited for large 

analysis durations. This algorithm is unconditionally stable and it is based on solving the 

following equation to compute the acceleration, velocity and displacements:  

   ̈    ̇       (8.1) 

Solving this equation requires, for realistic models, to compute, assemble and invert large 

matrix arrays which makes the implicit scheme very demanding in computational time. In our 

case this is not a concern since the model of the blade that is analysed has been greatly 

simplified following the work of G. Toussaint (5). 

8.2.2 Defining the geometry 

As it was mentioned previously, the objective of the first analysis is to obtain the pre-stresses in 

the blade elements and the velocities at the nodes of the damaged fan blade induced by setting 
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up the blade rotating motion from rest to cruise speed. In order to obtain these results, we first 

have to define the overall simplified geometry of the fan blade based on the one used by G. 

Toussaint while working with LS-Dyna. The geometry was slightly modified as it is shown in 

figure 8.1 b). For example we do not use four fan blades but only one since we found out that 

for our purpose, it is not necessary to model the other three: they do not interact with the casing. 

Also, after trying the configuration proposed by G. Toussaint (5), the outer edge of the blade 

has been modeled using a curve instead of a straight line.  

These modifications helped greatly to obtain good convergence of the contact algorithm and 

reduced the computational time during these preliminary impact computations. The 

modification of the outer edge was partly motivated by the fact we noticed that during the first 

instants of the impact there was a high concentration of stresses and strains at one of the sharp 

outer edges of the blade (circled in red in the figure 8-1 a)) and the contacting shell elements of 

the casing. In other words, while the blade was piercing through the casing very few elements 

were involved in the contact and that caused the analysis to be unstable and eventually crash. 

We identified that this problem arises from the contact algorithm which was dependent on the 

size of the shell elements of the casing and blade. Since we did not want to use shell elements of 

a size smaller than 0,94 mm, we decided to modify the geometry instead. Ultimately the revised 

geometry improved the convergence of the contact algorithm and enabled us to perform the 

complete analysis. 

 
a) 

 
b) 

Figure 8-1: a) Fan blade geometry as defined by G. Toussaint (5). b) fan blade geometry 

defined in Abaqus for the present work 
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We can also observe in figure 8-2 that the fan blade is modeled into two distinct features or 

parts. This is because in the experiments, the fan blade is supposed to break in two pieces: one 

that remains attached to the rotating shaft and the other that is ejected outward to impact the 

casing.  This subtlety in the modeling of the blade enabled us to model the crack that is of great 

importance in the impact analysis. 

8.2.3 Defining the material of the fan blade 

The thickness of the blade shell elements is 4.98 mm and the properties of Table 8-1 were input 

in Abaqus. These properties have been used in LS-Dyna by Toussaint (5) to model the material 

of the blade and are given in Table 8-1. 

Table 8-1: Titanium properties for the definition of the fan blade 

Young’s Modulus 115.1424 Gpa 

Poisson’s Ratio 0.35 

Plastic: yield stress 0.8273709 Gpa 

Plastic strain 0 

Mass density 4.424 

Fracture Strain 0.25 

Stress Triaxiality 0.3 

Strain Rate 10 

8.2.4 Constraining the model 

There are two kinds of coupling that we need to set up in the model. First, we need to attach the 

base of the blade to the control point at which we apply the boundary conditions to define the 

rotational motion as we can observe in Figure 8.2 a). The other coupling is used to attach the 

two parts of the fan blade as is shown in Figure 8.2 b). 

A coupling constraint has been defined between the reference point and the nodes at the base of 

the blade where the junction between the blade and the rotating shaft is located. This coupling 

constraint will transmit the radial velocity applied to the reference point to the fan blade. Since 

it is a velocity we want to transmit, one has to select the kinematic coupling type. The control 

point of the constraint is set to be the reference point that would be located on the axis of 

rotation of the engine’s shaft and the slave nodes are the nodes at the base of the blade. 
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For the impact analysis, we had to pre-define the crack in the fan blade since the blade has to be 

broken into two different sub-components that will be used in the subsequent explicit analysis. 

Thus, to join the two parts of the fan blade we need to set another constraint. We used the tie 

constraint available in Abaqus as it is able to rigidly connect two sets of nodes very close to 

each other. The master set of nodes is constituted of the nodes at the base of the fan blade and 

the slave set is constituted of the nodes of the tip of the fan blade. We positioned the pairs of 

interacting nodes in a manner so that each of the two nodes sets has the same spatial location.  

 

 

a) 

 

b) 

Figure 8-2: a) Coupling constraint between the control point and the base of the fan blade. b) 

Tie constraint between the two sub-components of the fan blade. 

In this case, the two parts of the blade are rigidly connected and thus behave the same way as a 

blade modelled with only one Abaqus part. The junction between the two parts is shown in 

Figure 8-2. 

8.2.5 Applying the boundary conditions 

To set the rotating motion, we applied a velocity boundary condition to the reference point. We 

deny (impeded) any displacement of the point in each of three directions of space thus setting 

their values to zero. Then as the axis of rotation is the Z-axis, we set the value of the angular 

radial velocity to 1047 radians per second. Other angular velocities are set to zero. 
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To apply the velocity boundary condition, an amplitude was defined. This amplitude helps to 

apply the boundary condition in a very progressive manner so that we would not distort any 

element or cause any unnecessary strain or stress on the fan blade structure during the first 

seconds of the motion.  This amplitude is called a step time of the smooth step type and has the 

shape presented in Figure 8-3.  

In the first tests, it was noted that not defining this amplitude resulted in the immediate 

application of the full angular speed to an initially motionless system. This translated into the 

application of an infinite acceleration to the blade base nodes that distorted the mesh and caused 

the analysis to crash.  

Hence in the retained analysis methodology, this smooth step time has been applied over nine 

seconds as presented in Figure 8-3. This means the engine rotating speed goes from 0 to 1047 

radians per second in that period of time.  

 

Figure 8-3: Progressive application of the rotating motion to the fan blade 

The extraction of the velocities that are fed to the next analysis model is performed at time 

equal to 9 seconds as it is marked by a red dot in Figure 8-3. This is a critical point in time at 

which the stresses in the blade reach a maximum just before the establishment of a permanent 

regime. 
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8.2.6 Implicit analysis results 

Figure 8-4 shows the obtained stress distribution inside the fan blade at the end of the implicit 

analysis phase. It is noted that this distribution is the same as the one obtained by G. Toussaint 

(5) using in LS-DYNA. Our goal running this preload analysis is to obtain the velocity vector at 

each node of the fan blade so this information can be imported in the second analysis. Importing 

that information will enable us to apply a velocity boundary condition in the impact analysis 

that will set the blade in motion in the explicit analysis. 

 
a) 

 
b) 

Figure 8-4: a) Stress distribution inside the fan blade obtained by G. Toussaint (5) using LS-

Dyna. b) Stress distribution obtained in Abaqus 

8.3 Second analysis setup: fan blade containment  

The second analysis has been set up using the Abaqus explicit solver environment. The fan 

blade geometry needs to be imported from the first analysis.odb result file. Also, on that 

geometry a velocity predefined field calling the previous .odb result file needs to be defined to 

set the fan blade in motion. The standard metallic engine casing is replaced by a hybrid model, 

meaning that it is made of an assembly of a metallic base layer and of several dry fabric 

composite layers wrapped around it. In the considered model there are four layers of Kevlar 

fabric wrapped around the cylindrical inner aluminum shell.  
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8.3.1 Definition of the geometry 

The first operation to set up the analysis is to create the geometric model of the engine casing. 

Then, from the implicit analysis result file, the geometry of the tip of the blade is imported and 

assembled to form the fan case model.  

The engine casing is thus made of four concentric cylinders as presented in Figure 8-5 a). The 

innermost cylinder is metallic and the four other cylinders are made of fabric composite 

materials. Of course we will be using the developed VUMAT user subroutine to model the 

composite behavior during impact. Each cylinder radius is increased by 0,2499 mm to account 

for the exact thickness of the material. The inner radius of the innermost metallic skin is 

250mm; the length of the cylinder is 150 mm. These are approximately the values used in LS-

Dyna by G. Toussaint(5) which are respectively 249 mm and 105 mm. 

 
a) 

 
b) 

Figure 8-5: a) Assembly of the casing and the fan blade for the explicit analysis, b) definition of 

the boundary condition on the edges of the casing to fix it rigidly in space. 

8.3.1 Definition of the materials 

The material properties of aluminium used for the inner layer of the casing are presented in 

Table 8-2. 
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Table 8-2: Aluminum properties for the definition of the fan blade 

Young’s Modulus 72 Gpa 

Poisson’s Ratio 0.32 

Plastic: yield stress 0.077951 Gpa 

Plastic strain 0 

Plastic: yield stress 0.21378 Gpa 

Plastic strain 0.18 

Mass density 2.78 

Fracture Strain 0.18 

Stress Triaxiality 0.3 

Strain Rate 0 

 

Hardening for this material has been defined as isotropic in Abaqus. The blade’s shell elements 

thickness is 4.98 mm 

8.3.2 Interactions 

To define the contact between the blade and each layer of material that compose the casing as 

well as the contact between layers themselves, we used a “general contact” option available in 

Abaqus (already presented in Chapter 6). 

8.3.3 Contact property 

A contact property was used to define the mechanical surface interaction models that govern the 

behavior of surfaces when they are in contact. The default contact property model in 

Abaqus/Explicit assumes “hard” contact in the normal direction. Contact property assignments 

propagate through all analysis steps in which the general contact interaction is active. The 

normal behavior is set to allow separation after contact with a “Hard” contact pressure 

overclosure behavior using the standard constraint enforcement method. Tangential behavior is 

defined to be frictionless.  
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8.3.4 Boundary conditions 

There is only one boundary condition applied to fix the casing in all directions of space as is 

shown in Figure 8-5 b). It has been applied at the two edges of the cylinders to approximate the 

manner in which the composite strap is integrated in the engine.  

8.3.5 Predefined field 

The predefined field has been used to import the velocities at each node of the blade as well as 

the strains and stresses which are obtained at the end of the first analysis phase and to apply 

them to the imported geometry of the blade. 

To do this, we need to place the output database file from the first analysis in the second, 

explicit analysis folder. Then using the Abaqus guest user interface, we chose to create 

predefined field, selecting the mechanical category and velocity type. Then we select the 

geometry of the blade as the region on which to apply the predefined field. Finally we selected 

the step at which the predefined field has to be applied. This is used to define the initial state of 

the blade in the analysis during the initial step before the explicit analysis step definition in the 

software. Abaqus also gives the users the opportunity to select which frame of the previous 

analysis they want to extract from. In our case we extracted the results at the last frame. 

8.4 Impact on the hybrid casing 

The graphical results that show the evolution of the blade impact analysis are given in Figure 

8-6. As it can be seen the blade is progressively going through the casing. The element deletion 

parameter is removing all the damaged elements from the analysis. The analysis takes 

approximately 20 minutes to run but this time could be reduced by modeling only half of the 

casing. 
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Elapsed time: 956ms 

 

 
Elapsed time: 962ms 
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Elapsed time: 972ms-view2 

Figure 8-6: Graphical evolution of the impact analysis of the fan blade on the hybrid casing 
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To complete this graphical extraction, we plotted in Figure 8-7, the curve which shows the drop 

in velocity of the fan blade during the impact. We can observe that the fan blade has an initial 

velocity of 149 m/s and over the course of the analysis this velocity decreases to approximately 

125 m/s. Hence, the blade perforates the containment casing and exits at 125 m/s. It is possible 

to note that the second dynamic analysis starts at the point in time where the previous analysis 

stopped and this is why the curve is plotted from 9.2 s (Figure 8-7). 

 

 
Figure 8-7: Blade’s velocity over the duration of the analysis 

 

To validate the results, we plot the energy curves for this impact analysis and extracted the 

internal energy (ALLIE), the kinetic energy (ALLKE) and the total energy of the model 

(ETOTAL). We plot the curves representing these three quantities as it is shown in Figure 8-8. 
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 Figure 8-8: Energy curve of the blade’s velocity over the duration of the analysis  

We may observe that the total energy of the model remains constant over the duration of the 

analysis which indicates that our model is valid. Furthermore the loss of velocity that we 

observed before is translated in a loss of kinetic energy which is transferred to the casing as 

internal strain energy that deforms and damages it. This is the main reason for the observed 

increase of internal energy of the model. Those few observations demonstrate that the model is 

behaving correctly. 

8.5 Impact on full metal casing 

In this paragraph, we will focus on finding the number of aluminum layers required to contain 

the fan blade debris. This has been done through a trial and error approach. We set up six 

analyses to test different configurations of the engine containment involving different number 

of 0.5 mm thick aluminum layers which is exactly the value used by G. Toussaint (5) to set up 

her analysis in LS-Dyna. The configuration of the analysis is presented in Figure 8-9 and 

depicts the twenty-four layer thick aluminum casing. The total computation time to run a twenty 

four layers fully metallic model is approximately 35 minutes.  
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Figure 8-9: Fan containment made of twenty four layers of aluminum 

We tested the following configurations: four layers, eight layers, twelve layers, eighteen layers, 

twenty layers and twenty-four layers, extracted the final velocity of the projectile and summed 

up the results in Table 8-3. The table shows that twenty-four layers is very close to stopping the 

projectile thus we can conclude without doubt that twenty-five layers of aluminum would  stop 

the projectile from escaping the containment. Figure 8-9 is interesting since it is very close to 

the result obtained by G. Toussaint through the FEA model.  It is stated that a thickness of 12.7 

mm of aluminum is enough to stop the debris. In our case, stopping the blade takes twenty-five 

layers of 0.5 mm thickness which leads to a total thickness of 12.5 mm. Surely a unique 12.5 

mm thick layer could have been used to accomplish this task but doing it this way, our goal was 

to validate the adequacy of the contact algorithm used to model the interaction between 

numerous layers.  

 

 

 



 

Chapter 8 - Modeling the impact of an engine fan blade on a composite casing 

 

 

-156- 

 

Table 8-3: Results obtained from FEA 

Number of layers 
Total thickness of 

the casing (mm) 

Final velocity of the fan blade 

debris (m/s) 

4 2 123,254 

8 4 110,956 

12 6 95,4771 

18 9 81,8509 

20 10 35,9109 

24 12 0,6278 

 

Finally to fully verify our statement, we ran the analysis using twenty-five layers of aluminum 

and it indeed stops the blade as is shown in Figure 8-10. The stresses are very low at the end of 

the analysis because there is no longer any displacement of the blade and this is proven in 

Figure 8-10 (b). 

 
a) 

 
b) 

Figure 8-10: Analysis results for the 25-layer fan containment: (a) the blade has been stopped 

inside the containment, (b) graphical representation of the stresses at the end of the analysis.  

Finally, we plotted the FEA results in a graph to fully understand how a variation in the number 

of layers was affecting the final debris velocity. This is shown in Figure 8-11 along with a 

quadratic regression of the results we obtained through FEA modeling.  
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Figure 8-11: Blade’s velocity over the duration of the analysis 

The equation linking the number of layers in the containment with the final velocity of the blade 

is given below: 

 
 ( )                                (8.1) 

8.6 Hybrid fan case containment study 

In this section we will go over the simple optimization process to obtain the number of layers 

needed to stop the fan blade and contain it. As we did before with the optimization of the impact 

on the fabric plate in chapter 7 we will correlate the number of layers of fabric with the final 

velocity of the blade. We remind the reader that the fabric plies are wrapped around an inner 

metallic casing. While running the simulations for four, six, eight and ten layers of fabric and it 

was possible to obtain the following results which are presented in Figure 8-11. The final 

velocity of the blade for the four-ply casing is approximately 133 m/s, for the six-ply casing it is 

131 m/s, for the eight-ply casing it is 129 m/s and finally for the ten-ply casing it is 124 m/s.  
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The reason why we stopped our analysis to ten layers is that it takes too much time to compute. 

Indeed we are modeling the full casing with 54830 elements (not including the number of 

elements of the blade) each calling the subroutine to compute the updated stresses at each time 

increment. This causes the computations to exceed one hour for ten layers of fabric. 

 

Figure 8-12: The fan blade’s velocity evolution or different configurations of the hybrid casing 

These four results were used to construct a quadratic function (Figure 8-13). We raise the 

reader’s attention towards the regression coefficient’s value R
2
 which is very close to one. Also, 

we can observe that the form of the equation and its coefficient are very close to the one 

obtained for the fully metallic casing. It is not surprising that adding layers to the containment 

affects the final velocity of the debris in the same way.  
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Figure 8-13: Velocity evolution predictions of the fan blade for different configuration of the 

casing 

The interpolation done in Excel of the FEA results yields the following function to predict the 

number of Kevlar layers needed to stop the blade: 

  ( )                           (8.2) 

Using this function, a few predictions have been done which are shown them in red in Figure 

8-13. This analysis leads us to determine that approximately thirty layers of fabric are needed to 

stop the projectile from completely perforating the engine casing.  

One might consider that we have insufficient data to make such a prevision. In order to further 

support our conclusion we have run a very large analysis for a thirty layers of fabric 

configuration of the containment vessel. Thirty layers were chosen specifically because it is 

roughly the number of layers needed to stop the projectile. This analysis crashed before 

completion but the goal was to observe the evolution of the impactor velocity for the first 

increments of the analysis and to compare it with the evolution obtained for the blade working 

with a twenty-five layer full metallic casing which is able to stop the projective. The results are 

presented in Figure 8-14. 
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Figure 8-14: Comparison of the blade velocity evolution for the twenty-five layer metallic 

casing and the thirty layer hybrid casing 

We can observe the evolution of the two velocities is roughly the same at the beginning of the 

analysis time. Since the thirty layers hybrid casing analysis behaves the same way as the 

projectile stopping twenty-five layer metallic casing we can reasonably assess that a thirty layer 

hybrid casing might be able to stop the projectile.  

At least the evidence we presented in this paragraph lead us to make that conclusion but we 

could not fully demonstrate it. Obviously further testing will be needed to fully verify this 

statement. 

8.6.1 Computation interruption 

Performing our various numerical tests on multiple configurations of the hybrid casing we had 

to stop at ten layers of fabric on top of the metallic internal casing. The main reason is that the 

analysis becomes progressively too unstable to compute and crashes. This phenomenon 

appeared starting at eleven layers of fabric. Two hypotheses have been made to try to explain 

this problem. First, the instantaneous damage law defined in the VUMAT has been identified as 

a potential problem which would lead to numerical instabilities. In our case, using the element 
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deletion option in Abaqus implies that the element is removed as soon as the damage criterion is 

met. Simply put, element deletion leads to a loss of material implying a loss of internal energy 

while affecting the stability and accuracy of the contact algorithm.  

In theory, a progressive damage law would have delayed the occurrence of such instabilities 

since the law would not have translated into instantaneous damage of a large number of 

elements leading to their immediate removal in the early stages of the analysis. This is 

obviously causing a brutal instability of the contact algorithm in Abaqus. Instead, it would have 

progressively damaged the elements and thus smoothed the removal of elements throughout the 

duration of the analysis. This would have enabled us to add layers to the hybrid casing and run 

the full analysis without it crashing. Unfortunately no testing of this assumption has been 

carried out in this work. 

Exploring other possible ways to solve this instability would include the use of the corotational 

frame based on fiber frame (FF approach) as described by Badel in his works (8) to replace the 

GN approach as a possible solution. According to this paper, a calculation run using the FF 

approach completed whereas the GN approach failed suggesting that this might be a way of 

solving the crash issue encountered. More developments need however to be done to implement 

the FF approach in the VUMAT user subroutine. 

8.7 Conclusion 

Overall we obtained results similar to those obtained by G. Toussaint (5) using an in-house 

fabric VUMAT user subroutine. If we assume that our prediction for the composite casing is 

right, we are able to calculate roughly the mass for each configuration. The results are summed 

up in Table 8-4. 

Table 8-4: Weight reduction approximate study 

 
Number of layers 

needed 

Approximated mass 

of one layer (kg) 

Total mass of the 

configuration (kg) 

Metallic configuration 25 0.3240 8.0994 

Hybrid configuration 30 0.1663 4.989 
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In this situation we observe that the hybrid configuration represent an approximate 35% mass 

savings which is the same order of magnitude when compared to the weight reduction observed 

in the industry. 
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GENERAL CONCLUSION 

In this work we have been able to successfully create a material user subroutine for the finite 

element software Abaqus. This user subroutine is used to capture the physics of a fabric’ yarn 

crossover under dynamic loadings. This user subroutine has been validated using a S4R shell 

element available in Abaqus. After the validation it has been used to model the dynamic 

behavior of a composite plate of varying layup in a simple impact problem. A quick study has 

been carried out to assess the influence of the most important parameters (element size, crimp 

angle, plate size, impactor velocity etc…) over the impactor final velocity and the ability of the 

composite to stop the projectile. The routine has finally proven successful in demonstrating its 

capabilities in an industrial problem dealing with the containment of engine fan blade debris. 

We were also able to re-produce the results obtained by Geneviève Toussaint (5) concerning the 

simplified metallic engine casing using LS-Dyna software. 

The main problem of the subroutine lies in the fact that it is still pretty expensive to run in terms 

of computational time. Indeed it takes approximately one hour to run the analysis with a 10-ply 

fabric containment system. A simple solution would be to increase the size of the elements used 
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in the model. In that case, great caution should be taken in assessing the quality and accuracy of 

the results that could be obtained using this solution. Also it would be very interesting to 

consider creating a user subroutine that would be able to capture the behavior of four crossovers 

instead of just one. This would double the size of the shell elements thus leading to tremendous 

reductions in computational time.  

Another problem to address is the stability of the analysis. We need to be able to complete an 

analysis run for a casing model allowing us to studying more than 10 plies of fabric. In that 

direction it would be a very interesting subject to explore the application of a progressive 

damage law to this problem. Also the FF approach proposed by Badel (8) would be very 

interesting to look at. These two potential solutions would surely benefit computational stability 

as well as the overall accuracy of the results. 

Finally, it should be kept in mind that the model used for the fan blade containment is very 

simplified and is merely used to demonstrate the possible application of the tools we developed 

to this specific field. These tools could be used to, at least, validate some basic results and 

explore the gains of using fabric and composites in general to replace metal in aeronautical 

primary structures. We have very briefly demonstrated at the end of this work that for this 

application and for the same design requirements, a composite part can enable us to achieve a  

double digit percentage of weight reduction for aeronautical structures.  

In future work, in order to reduce the computational time, it would be interesting to use 

multiscale finite element modeling approach in which the developed VUMAT model and 

associated shell element is used in the region prone to impact, damage and perforation  and 

using simplified membrane shell element in region not involved at all in this high strain loading. 
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APPENDIX A – MAPLE CODE FOR PARAMETER 

DETERMINATION 

> restart: with(linalg): with(plots): with(Optimization): with(LinearAlgebra): 

#============================================ 

#     Donnees experimentales 

#============================================    

   fich:="./test1.txt": 

   Data:=readdata(fich,2): 

   Data1:=convert(Data,Matrix): 

   N:=RowDimension(Data1): 

   x:=Vector(N): 

   y:=Vector(N): 

   for i from 1 by 1 to N do 

     x[i]:=Data1[i,1]: 

     y[i]:=Data1[i,2]: 

   end do: 

   Fig1:=pointplot({seq([x[i],y[i]],i=1..N)},color=black, symbol=point): 

   Fig1; 
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> ya:=Vector(N): 

for i from 1 by 1 to N do  

    ya[i]:=b*x[i]/(a-x[i]): 

    #print(ya[i]); 

end do: 

>  

#======================== 

#     Fonction cout  

#======================== 

   FC:=0.: 

   for i from 1 by 1 to N do 

       FC:=FC+(y[i]-ya[i])^2:          

   end do: 

  #print(FC); 

  fonc_cout:=unapply(FC,a,b): 

 

#=========================== 

# Procédure d'Optimisation 

#=========================== 

    Alpha0:=NLPSolve(fonc_cout(a,b),assume=nonnegative) : 

>  

> assign(Alpha0[2]); 

a; 

b; 
 

 

 

> Fig2:=pointplot({seq([x[i],ya[i]],i=1..N)},color=red, symbol=cross): 
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Fig2; 

display(Fig1,Fig2); 
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APPENDIX B – NEWTON RAPHSON ALGORITHM 

The Newton-Raphson algorithm has been used in our work because we need to find the 

optimized solution to the following system of equations (we will describe this later in this 

chapter): 

 
{  

  (      
       

)     (      
)     (      

)   

  (      
       

)        
       

       
       

          
 (6.1)  

In this section we will briefly present the mathematical principles of the Newton-Raphson 

algorithm that has been used in our material to calculate the height of the point of contact 

between the yarns. The full development and integration of the equations is given in the 

subroutine program in appendix B. 

Basically the Newton-Raphson algorithm is a simple multidimensional root finding method. 

This method has been chosen because while simple it is very efficient to converge to a root 

given if we are able to make a sufficiently good initial guess. Our problem gives     

functional relations to be zeroed involving     variables. 

   (     )             (6.2)  

We let   denote the entire vector of values    and   denote the vector of functions   . In the 

neighborhood of  , each of the functions    can be developed in Taylor series as such: 

 

  (    )    ( )  ∑
   

   

 

   

       (   ) (6.3)  
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The matrix of partial derivatives appearing in the previous equation is the Jacobian matrix J. 

 
    

   

   
 (6.4)  

We can also express equation 4.93 in matrix notation. 

  (    )   ( )        (   ) (6.5)  

By neglecting terms of order     and higher and by setting  (    )   , we obtain a set of 

linear equations for the corrections    that move each function closer to zero simultaneously. 

Technically we have to solve the following matrix equation: 

          (6.6)  

If we consider a matrix called   which is the result of the product of two matrices   which is 

lower triangular and   which is upper triangular then this matrix equation can be solved by 

using the    decomposition dealing with the following typical form of matrix equation: 

        (6.7)  

We can further decompose this equation using   which is the initial guess of the solution 

needed to start the iterations as such: 

     (   )      (   )    (6.8)  

  is a matrix in this equation. Using 4.18, first we solve: 

        (6.9)  

Then, using y we solve: 

        (6.10)  

We finally get   which is none other than (       ). The corrections are then added to the 

solution vector: 

                (6.11)  

The process is then iterated to convergence. 
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