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Résumé

L’apprentissage (machine) de modèle et l’estimation d’état sont cruciaux pour interpréter les
phénomènes sous-jacents à de nombreuses applications du monde réel. Toutefois, il est souvent
difficile d’apprendre le modèle d’un système et de capturer les états latents, efficacement et
avec précision, en raison du fait que la connaissance du monde est généralement incertaine. Au
cours des dernières années, les approches d’estimation et de modélisation bayésiennes ont été
extensivement étudiées afin que l’incertain soit réduit élégamment et de manière flexible. Dans
la pratique cependant, différentes limitations au niveau de la modélisation et de l’estimation
bayésiennes peuvent détériorer le pouvoir d’interprétation bayésienne. Ainsi, la performance
de l’estimation est souvent limitée lorsque le modèle de système manque de souplesse ou/et
est partiellement inconnu. De même, la performance de la modélisation est souvent restreinte
lorsque l’estimateur Bayésien est inefficace. Inspiré par ces faits, nous proposons d’étudier dans
cette thèse, les connections possibles entre modélisation bayésienne (via le processus gaussien)
et l’estimation bayésienne (via le filtre de Kalman et les méthodes de Monte Carlo) et comment
on pourrait améliorer l’une en utilisant l’autre.

À cet effet, nous avons d’abord vu de plus près comment utiliser les processus gaussiens pour
l’estimation bayésienne. Dans ce contexte, nous avons utilisé le processus gaussien comme un
prior non-paramétrique des modèles et nous avons montré comment cela permettait d’amélio-
rer l’efficacité et la précision de l’estimation bayésienne. Ensuite, nous nous somme intéressé
au fait de savoir comment utiliser l’estimation bayésienne pour le processus gaussien. Dans ce
cadre, nous avons utilisé différentes estimations bayésiennes comme le filtre de Kalman et les
filtres particulaires en vue d’améliorer l’inférence au niveau du processus gaussien. Ceci nous a
aussi permis de capturer différentes propriétés au niveau des données d’entrée. Finalement, on
s’est intéressé aux interactions dynamiques entre estimation bayésienne et processus gaussien.
On s’est en particulier penché sur comment l’estimation bayésienne et le processus gaussien
peuvent ”travailler” de manière interactive et complémentaire de façon à améliorer à la fois le
modèle et l’estimation.

L’efficacité de nos approches, qui contribuent à la fois au processus gaussien et à l’estimation
bayésienne, est montrée au travers d’une analyse mathématique rigoureuse et validée au moyen
de différentes expérimentations reflétant des applications réelles.
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Abstract

Model learning and state estimation are crucial to interpret the underlying phenomena in many
real-world applications. However, it is often challenging to learn the system model and capture
the latent states accurately and efficiently due to the fact that the knowledge of the world is
highly uncertain. During the past years, Bayesian modeling and estimation approaches have
been significantly investigated so that the uncertainty can be elegantly reduced in a flexible
probabilistic manner.

In practice, however, several drawbacks in both Bayesian modeling and estimation approaches
deteriorate the power of Bayesian interpretation. On one hand, the estimation performance
is often limited when the system model lacks in flexibility and/or is partially unknown. On
the other hand, the modeling performance is often restricted when a Bayesian estimator is
not efficient and/or accurate. Inspired by these facts, we propose Interactions Between Gaus-
sian Processes and Bayesian Estimation where we investigate the novel connections between
Bayesian model (Gaussian processes) and Bayesian estimator (Kalman filter and Monte Carlo
methods) in different directions to address a number of potential difficulties in modeling and
estimation tasks.

Concretely, we first pay our attention to Gaussian Processes for Bayesian Estimation where
a Gaussian process (GP) is used as an expressive nonparametric prior for system models to
improve the accuracy and efficiency of Bayesian estimation. Then, we work on Bayesian Esti-
mation for Gaussian Processes where a number of Bayesian estimation approaches, especially
Kalman filter and particle filters, are used to speed up the inference efficiency of GP and
also capture the distinct input-dependent data properties. Finally, we investigate Dynami-
cal Interaction Between Gaussian Processes and Bayesian Estimation where GP modeling
and Bayesian estimation work in a dynamically interactive manner so that GP learner and
Bayesian estimator are positively complementary to improve the performance of both modeling
and estimation.

Through a number of mathematical analysis and experimental demonstrations, we show the
effectiveness of our approaches which contribute to both GP and Bayesian estimation.
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Chapitre 1

Introduction

Over the past years, system modeling and state estimation have been spotlighted due to
the fact that they play important roles in system analysis for a number of research domains
including robotics, signal processing, bioinformatics, computer vision, geophysics, economics,
etc. (Doucet et al., 2001; Thrun et al., 2005; Bishop, 2006; Rasmussen and Williams, 2006;
Plagemann, 2008; Ko, 2011). However, it is often challenging to learn the model and infer
the latent states as real-world data may be noisy. Bayesian approaches have been widely
investigated for modeling and estimation by interpreting the uncertainty in a probabilistic
manner (Doucet et al., 2001; Bishop, 2006; Barber, 2012). But still, several drawbacks of both
Bayesian modeling and estimation limit the power of Bayesian approaches in practice.

On one hand, Bayesian estimation approaches are often deteriorated due to the fact that
system models often lack in flexibility and/or are partially unknown. For instance, particle filter
(a well-known Bayesian estimation approach based on sequential Monte Carlo sampling) often
suffers from weight degeneracy because the proposal model, which is the state transition model
of the system, does not contain the current observation information (Doucet et al., 2000b;
Cappé et al., 2007). On the other hand, Bayesian modeling approaches are often deteriorated
due to the fact that estimation frameworks are inefficient and/or not capable to handle the
challenging properties in the real-world data sets. For instance, a Gaussian process (a popular
Bayesian nonparametric model) is often intractable when the number of training data is beyond
a few thousands because the matrix inversion of the training data has to be performed in the
gradient-based optimization or Markov Chain Monte Carlo (Rasmussen and Williams, 2006).

As we can see, the performance of Bayesian modeling and estimation is often strongly connec-
ted. Inspired by this fact, we propose to investigate our research on the Interactions Between
Gaussian Processes and Bayesian Estimation in this thesis. From the perspective of Gaussian
Processes for Bayesian Estimation, we mainly take advantage of Gaussian processes (GPs)
to learn a powerful Bayesian nonparametric model to increase the model flexibility to im-
prove the performance of Bayesian estimation approaches. From the perspective of Bayesian
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Estimation for Gaussian Processes, we mainly make use of a number of Bayesian estimation
approaches (including Kalman filter and Monte Carlo sampling methods) to design an accu-
rate and efficient Bayesian inference framework to interpret the distinct data properties in
the real world. Finally, we work on Dynamical Interaction Between Gaussian Processes and
Bayesian Estimation to address the potential difficulties in both GP and Bayesian estimation
approaches.

In the following, we introduce our contributions and describe the outline of this thesis.

1.1 Main Contributions

1.1.1 Gaussian Processes for Bayesian Estimation

An Adaptive Nonparametric Particle Filter for State Estimation
In Wang and Chaib-draa (2012b), we introduce an adaptive nonparametric particle filter
where we incorporate a Gaussian process (GP) based proposal into a KLD-sampling par-
ticle filter framework. GP based proposal contains the observation information, and thus
allows us to address weight degeneracy with a number of high-quality particles which
are located at the important regions of the posterior. Then this proposal is incorporated
into the KLD-sampling particle filter in which the number of the particles is adapti-
vely learned according to the complexity of the true posterior. The resulting adaptive
nonparametric particle filter improves both efficiency and accuracy of state estimation.

Gaussian Processes for Bayesian Estimation in Ordinary Differential Equations
In Wang and Barber (2014), we propose a novel generative model (based on GP) for
Bayesian parameter estimation in coupled ordinary differential equations (ODEs). By
using GP derivatives, we directly link state derivative information with system obser-
vations to simplify the previous GP based gradient matching approaches (Calderhead
et al., 2008; Dondelinger et al., 2013) and improve the estimation accuracy.

1.1.2 Bayesian Estimation for Gaussian Processes

A Marginalized Particle Gaussian Process Regression
In Wang and Chaib-draa (2012a), we present a novel marginalized particle Gaussian pro-
cess (MPGP) regression which is a fast and accurate online Bayesian filtering framework
to model the latent function. Based on a state space model that is constructed according
to sequential data collections, our MPGP filters out the hidden function values efficiently
and accurately with a Gaussian mixture. Additionally, it provides us with an effective
online method for training GP hyperparameters by a number of weighted particles.

A KNN Based Kalman Filter Gaussian Process Regression
In Wang and Chaib-draa (2013), we design a novel K nearest neighbor based Kalman
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filter Gaussian process (KNN-KFGP) regression approach to model nonstationarity. Ba-
sed on a state space model established by a KNN driven data grouping, our KNN-KFGP
recursively filters out the latent function values in a computationally efficient and accu-
rate Kalman filtering framework. Since KNN allows each test point to find its strongly
correlated local training subset, our KNN-KFGP is a suitable way to deal with nonsta-
tionarity.

Particle Based Gaussian Processes for Time-Varying Applications
In Wang and Chaib-draa (2015a), we propose two particle based GP approaches where
time-varying GP models are learned in a sequential Monte Carlo manner. By doing so, we
address the difficulties in time-varying applications where the data points are sequentially
ordered and often exhibit temporal-related non-stationarity and heteroscedasticity.

1.1.3 Dynamical Interaction Between Gaussian Process and Bayesian
Estimation

Bayesian Filtering with Online Gaussian Process Latent Variable Models
In Wang et al. (2014), we present a novel online GP particle filter where the prediction
and observation models are learned by performing dynamical interaction between GP
modeling and particle filtering in an online fashion. This resulting framework is able
to flexibly handle multi-modality due to the fact that we represent the prediction and
observation models as GP based mixture models in which two online GP variants, sparse
online GP (Csató and Opper, 2002) and local GP (Urtasun and Darrell, 2008), are
explored for each component of the mixture to manage computation efficiency.

Efficient Sequential Inference for Heteroscedastic Deep Gaussian Processes Re-
gression
In Wang and Chaib-draa (2015b), we propose a heteroscedastic deep GP (HDGP) to ex-
press input-dependent noise correlations by sharing a deep GP structure between signal
and noise in the observation layer. It can be seen as a generalized version of both heteros-
cedastic GP and deep GP. Inspired by dynamical interaction between GP and Bayesian
estimation, we then design an efficient sequential inference mechanism for our HDGP
to infer the latent variables and update the model in a recursive manner. Finally, the
weighting mechanism of our inference framework allows us to straightforwardly handle
missing data for multi-output regression.

1.2 Thesis Outline

This thesis is organized as follows. Firstly, we introduce a background on two fundamental
perspectives of this thesis, Gaussian process (GP) and Bayesian estimation in Chapter 2.
Secondly, we present our contributions to Gaussian Processes for Bayesian Estimation in

3



Chapter 3. Thirdly, we present our contributions to Bayesian Estimation for Gaussian Pro-
cesses in Chapter 4. Then, we present our contribution to Dynamical Interaction Between
Gaussian Processes and Bayesian Estimation in Chapter 5. Finally, we conclude this thesis in
Chapter 6.
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Chapitre 2

Background

In this chapter, we review two fundamental parts in this thesis, Gaussian processes (GPs) and
Bayesian estimation, in order to establish the interactions between them later on. For GP, we
start from its definition and then illustrate how to use it to address a nonlinear regression
task which is mainly investigated in the thesis. For Bayesian estimation, we begin with a brief
introduction of state space models and then review a number of popular techniques that are
used for Bayesian estimation including Kalman filter and Monte Carlo sampling methods.

2.1 Gaussian Processes

2.1.1 Definition

Formally, a Gaussian process (GP) is a collection of random variables, any finite number of
which have a joint Gaussian distribution (Rasmussen and Williams, 2006). According to this
definition, a GP can be flexibly interpreted as a distribution over functions where the random
variables in this case are the function values of a latent function f(x) (where x is the input
vector). That is why GPs have been widely used as a Bayesian nonparametric prior for f(x)

(MacKay, 1998; Rasmussen and Williams, 2006; Bishop, 2006; Barber, 2012).

Specifically, a GP is fully specified as

f(x) ∼ GP(m(x), k(x,x′)),

with a mean function m(x) and a covariance function k(x,x′),

m(x) = E[f(x)],

k(x,x′) = E[(f(x)−m(x))(f(x′)−m(x′))].

According to the definition of a GP, the prior p(f(X)) over n latent function values f(X) =

{f(x1), · · · , f(xn)} of the input vectors X = {x1, · · · , xn} is Gaussian distributed, i.e.,
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N (m,K) with the mean vector,

m =

m(x1)

· · ·
m(xn)

 ,
and the covariance matrix,

K =

k(x1,x1) · · · k(x1,xn)

· · · · · · · · ·
k(xn,x1) · · · k(xn,xn)

 .
In this section, we follow Rasmussen and Williams (2006) and use a zero-mean GP,

f(x) ∼ GP(m(x) = 0, k(x,x′)),

for simplicity 1. In this case, the prior p(f(X)) becomes N (0,K).

Covariance Functions

Covariance functions play a key role in GPs since they encode the similarity of the function
values at different input locations. Many functions of x and x′ can be used as the covariance
functions of GP as long as the corresponding covariance matrices K are symmetric and po-
sitive semidefinite (vTKv ≥ 0, ∀v) (Rasmussen and Williams, 2006). In the following, we
mainly introduce three popular covariance functions which are used to build up the covariance
functions in this thesis. A detailed review of covariance functions can be found in Rasmussen
and Williams (2006).

The squared exponential (SE) covariance function is one of the most popular covariance
functions in the machine learning community. It is a stationary covariance function (as it is
a function of x − x′) and more specifically it is an isotropic covariance function (as it is a
function of ‖ x−x′ ‖) (Rasmussen and Williams, 2006). In general, it is expressed as follows :

k(x,x′) = σ2f exp

(
−(x− x′)T (x− x′)

2`2

)
,

where the hyper-parameter σf controls the amplitude and ` controls the length-scale. An
illustration of the influence of σf and ` is shown in Figure 2.1 where the sampled functions
become more flat when ` becomes larger, and the amplitude of the sampled functions become
larger when σf becomes larger.

In this thesis we also use two nonstationary covariance functions, the dot product covariance
function,

k(x,x′) = `2xTx′,

1. Note that it is straightforward to choose other mean functions to do mathematical derivations without
difficulties.
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Figure 2.1: The influence of σf and ` for a GP prior with the SE covariance function. In
all the plots, the dashed lines are 5 functions drawn from the GP prior. The black line is the
mean of the GP prior which is zero. The yellow interval is the 95% confidence interval. The
sampled functions become more flat when ` becomes larger, and the amplitude of the sampled
functions become larger when σf becomes larger.
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and the neural network covariance function with an augmented input x̃ = [1; x],

k(x,x′) = σ2f sin−1

 x̃T x̃′

`2
√

(1 + 1
`2

x̃T x̃)(1 + 1
`2

x̃′T x̃′)

 .

In Figure 2.2, it is clearly shown that the nonstationary covariance functions are not only
related to x − x′, but they are also related to the input locations x and x′ themselves. That
is why these covariance functions are often used to capture the nonstationary correlations.

2.1.2 Gaussian Process Regression

Suppose that the data generation procedure is based on the following observation model,

y = f(x) + ε, (2.1)

where the input vector is x ∈ Rd, the scalar output is y ∈ R and the observation noise is
ε ∼ N(0, σ2y). In general, there are two tasks in a nonlinear regression problem

1. Learning the model parameters given a training set (X,y) = {(xi, yi)}Ni=1.

2. Predicting f(X?) for a given test input set X? = {xi?}Mi=1.

Since Bayesian parametric approaches restrict the richness of the assumed function family
when solving the regression problem, Bayesian nonparametric methods have been significantly
investigated by giving a prior probability to every possible function (Bishop, 2006; Rasmussen
and Williams, 2006).

Gaussian process (GP) is a popular nonparametric prior as it allows us to make an analyti-
cally tractable Bayesian inference to obtain a predictive distribution over f(X?). Concretely,
let the GP prior be f(x) ∼ GP(0, k(x,x′)) where for simplicity of notation we put all the
hyperparameters of k(x,x′) and the variance of the noise σ2y into a vector θ. In the following,
we first use the training set (X,y) to infer θ, which is the model parameter vector.

Hyper-parameter Learning

Several methods have been applied for hyperparameter learning, such as gradient based opti-
mization, Markov Chain Monte Carlo (MCMC), etc. A detailed review can be found in Ras-
mussen and Williams (2006). Here we briefly introduce a popular gradient based optimization
approach.

Due to the fact 2 that p(f(X)|X, θ) ∼ N (0,K(X,X)) and p(y|f(X), θ) ∼ N (f(X), σ2yI), the
log marginal likelihood is analytically tractable,

log p(y|X, θ) = log

∫
p(y|f(X), θ)p(f(X)|X, θ)df(X)

= −1

2
yT (K(X,X) + σ2yI)−1y − 1

2
log |K(X,X) + σ2yI| −

n

2
log 2π. (2.2)

2. f(x) ∼ GP(0, k(x,x′)) and the observation model (Equation 2.1) is Gaussian
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Then the partial derivatives of Equation 2.2 (with regard to the hyperparameters),

∂

∂θj
log p(y|X, θ) =

1

2
tr[((K(X,X)−1y)(K(X,X)−1y)T −K(X,X)−1)

∂K(X,X)

∂θj
], (2.3)

are used in the gradient-based optimization to learn the hyperparameters which maximize the
marginal likelihood in Equation 2.2 (Rasmussen and Williams, 2006). Additionally, it is worth
mentioning that there is no guarantee of achieving a global optimum since this optimization
problem is non-convex (Rasmussen and Williams, 2006). In practice, however, this gradient
based optimization approach tends to work well.

Prediction

After θ is learned, we now make the prediction of f(X?) for the test input set X?. Rather
than only the point prediction of f(X?), a GP allows us to obtain a full Bayesian predictive
distribution over f(X?) due to the fact that a GP is a nonparametric prior.

Concretely, we can first take advantage of f(x) ∼ GP(0, k(x,x′)) and the Gaussian observation
model in Equation 2.1 to obtain that the joint distribution p(y, f(X?)|X,X?, θ) is Gaussian,

p(y, f(X?)|X,X?, θ) = N (0,

[
K(X,X) + σ2yI K(X,X?)

K(X?, X) K(X?, X?)

]
).

Then, based on p(y, f(X?)|X,X?, θ) and the conditional property of Gaussian distribution,
we can obtain that the predictive distribution over f(X?), i.e., p(f(X?)|X,y, X?, θ), is also
Gaussian with the mean f̄(X?) and the covariance P (X?, X?) (Rasmussen and Williams,
2006) :

f̄(X?) = K(X?, X)[K(X,X) + σ2yI]−1y,

P (X?, X?) = K(X?, X?)−K(X?, X)[K(X,X) + σ2yI]−1K(X?, X)T ,

where K(X?, X) denotes anM ×N covariance matrix in which each entry is computed by the
covariance function k(x,x′) with the learned θ. The K(X,X) and K(X?, X?) are constructed
in a similar way.

An illustration of the predictive posterior is shown in Figure 2.3. The 20 training input-
output pairs are obtained from y = f(x) + ε where the latent function is f(x) = sin(x), the
observation noise ε is N (0, 1), and the training inputs are randomly selected from [-5, 5]. Then
we choose that the GP prior is GP(0, k(x,x′)) where k(x,x′) is the SE covariance function
with the initial hyperparameters σf = 2, ` = 1 (introduced in Subsection 2.1.1), and the initial
standard derivation of the noise σy = 2. Finally the test inputs are 201 equally-spaced-ordered
input points from -5 to 5.

From Figure 2.3, the performance of the posterior (without hyperparameter learning) is better
than the performance of the prior. The reason is that, compared to the prior, the information
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of the training data is incorporated into the posterior. Moreover, the posterior (with hyper-
parameter learning) performs better than the one without hyperparameter learning. This is
because hyperparameter learning is based on the maximization of the marginal likelihood,
which helps the GP fit the data more correctly.

Computation Complexity

The computation complexity of GP is mainly governed by the training phase where the inver-
sion of the covariance matrix of the N training points in Equation 2.3 has to be operated in
the optimization, and this results in the complexity O(N3) (Rasmussen and Williams, 2006;
Ko, 2011). Hence, a standard GP is often intractable for large data sets.

In the following, we will briefly introduce two computationally-efficient GP variants, Sparse
Online Gaussian Process (SOGP) (Csató and Opper, 2002; Vaerenbergh et al., 2012) and
Local Gaussian Processes (LGP) (Nguyen-Tuong et al., 2008; Urtasun and Darrell, 2008),
which are used in this thesis. A detailed review of sparse approximate GPs can be found in
Quinonero-Candela and Rasmussen (2005); Chalupka et al. (2013).

Sparse Online Gaussian Process (SOGP)

Sparse Online Gaussian Process (SOGP) of Csató and Opper (2002); Vaerenbergh et al. (2012)
is a well-known algorithm for online learning of GP models. To cope with the fact that data
arrives in an online manner, SOGP trains a GP model sequentially by updating the posterior
mean and covariance of the latent function values of the training set. This online procedure is
coupled with a sparsification strategy which iteratively selects a fixed-size subset of training
points to form the active set, preventing the otherwise unbounded growth of the computation
and memory load.

The key of SOGP is to maintain the joint posterior over the latent function values of the fixed-
size active set Dt−1, i.e., N (µt−1,Σt−1), by recursively updating µt−1 and Σt−1. We summarize
the whole procedure of SOGP update in Algorithm 1.

When a new data point (xt, yt) is available, we first perform the following update (Vaerenbergh
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et al., 2012) to take this new data point into account (Algorithm 1, Line 1) :

qt = Qt−1kt−1(xt), (2.4)

ρ2t = k(xt,xt)− kt−1(xt)
TQt−1kt−1(xt), (2.5)

σ̂2t = σ2y + ρ2t + qTt Σt−1qt, (2.6)

δt =

[
Σt−1qt

ρ2t + qTt Σt−1qt

]
, (2.7)

µt =

[
µt−1

qTt µt−1

]
+ σ̂−2t (yt − qTt µt−1)δt, (2.8)

Σt =

[
Σt−1 Σt−1qt

qTt Σt−1 ρ2t + qTt Σt−1qt

]
− σ̂−2t δtδ

T
t , (2.9)

where kt−1(xt) is the kernel vector which is constructed from xt and the active set Dt−1, and
Qt−1 is the inverse kernel matrix of the active set Dt−1.

Next, we decide whether this new point (xt, yt) is added to the active set. Following the
strategy suggested by (Csató and Opper, 2002; Vaerenbergh et al., 2012), we ignore this new
point when ρ2t in Equation 2.5 is smaller than ε (It is a small value that is close to zero. In
our experiment, ε = 10−6). In this case (Algorithm 1, Line 2-4), µt, Σt in Equation (2.8) and
(2.9) are reduced as µt ← [µt]−i, Σt ← [Σt]−i,−i where i = t is the index of the new point,
[·]−i removes the i-th entry of a vector, and [·]−i,−i removes the i-th row and column of a
matrix. Additionally, the inverse kernel matrix is simply Qt = Qt−1 because the new point is
not included in the active set.

When ρ2t ≥ ε, we add the new point to the active set Dt = Dt−1 ∪ {(xt, yt)} (Algorithm 1,
Line 6-7). The µt, Σt are then the same as Equation (2.8) and (2.9), and the inverse kernel
matrix is updated to be (Vaerenbergh et al., 2012)

Qt =

[
Qt−1 0

0 0

]
+ ρ−2t

[
qtq

T
t −qt

−qTt 1

]
. (2.10)

Because this new point (xt, yt) was added to the active set, we should compare the size of the
active set to the fixed size NA to maintain computation load. When the size of the active set
is larger than NA, we have to remove a data point (Algorithm 1, Line 8-12). This is done by
selecting the one which minimally affects the predictions according to the squared predicted
error. Following the strategy in Csató and Opper (2002); Vaerenbergh et al. (2012), we remove
the j-th data point with

j = arg min
j

(
[Qtµt]j
[Qt]j,j

)2

, (2.11)

where [·]j selects the j-th entry of a vector and [·]j,j select the jth diagonal entry of a matrix.
Once a point has been selected for removal, µt, Σt and Qt in Equation (2.8), (2.9) and (2.10)
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Algorithm 1 SOGP Update.
input Previous posterior quantities µt−1, Σt−1, Qt−1
input Previous active set Dt−1
input New input-output observation (xt, yt) pair
1: Compute ρt, µt and Σt as in Equations (2.5), (2.8) and (2.9).
2: if ρ2t < ε then
3: Perform update µt ← [µt]−i, Σt ← [Σt]−i,−i where i is the index of the newly added row

to µt.
4: Set Qt = Qt−1, Dt = Dt−1.
5: else
6: Compute Qt as in Equation (2.10).
7: Add to active set Dt = Dt−1 ∪ {(xt, yt)}.
8: if |Dt| > NA then
9: Select point j to remove using Equation (2.11).

10: Perform update µt ← [µt]−j , Σt ← [Σt]−j,−j and Qt ← [Qt]−j,−j −
[Qt]−j,j [Qt]T−j,j

[Qt]j,j
.

11: Remove j from active set Dt ← Dt \ {(xj , yj)}.
12: end if
13: end if
output µt, Σt, Qt and Dt

are reduced to

µt ← [µt]−j (2.12)

Σt ← [Σt]−j,−j (2.13)

Qt ← [Qt]−j,−j −
[Qt]−j,j [Qt]

T
−j,j

[Qt]j,j
, (2.14)

where [·]−j,j selects the j-th column of the matrix with the j-th row removed and the point is
removed from the active set Dt ← Dt \ {(xj , yj)}.

Finally, the joint posterior at time t can be used to construct the predictive distribution for a
new input x∗,

pSOGP (y|x∗,Dt,Θ) = N (y|ỹ, σ̃2), (2.15)

where ỹ = kt(x
∗)TQtµt and σ̃2 = σ2y + k(x∗,x∗) + kt(x

∗)T (QtΣtQt −Qt)kt(x∗).

Local Gaussian Processes (LGP)

Another GP variants we used is Local Gaussian Processes (LGP), which was developed spe-
cifically to deal with large, multi-modal regression problems (Nguyen-Tuong et al., 2008; Ur-
tasun and Darrell, 2008). In LGP, given a test input x∗ and a set of input-output pairs
D = {(xi, yi)}Ni=1}, the Mx-nearest neighbors Dx∗ = {(x`, y`)}Mx

`=1 are selected based on the
distance in the input space d` = ‖x` − x∗‖. Then, for each of the Mx neighbors, My-nearest
neighbors Dy` = {(xj , yj)}

My

j=1 are selected based on the distance in the output space to y`.
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These neighbors are then combined to form a local GP expert which makes a Gaussian pre-
diction with the following mean and covariance,

µ` = BDy`K
−1
Dy` ,Dy`

kDy` (x
∗),

σ2` = k(x∗,x∗)− kDy` (x
∗)TK−1Dy` ,Dy`

kDy` (x
∗) + σ2y ,

where BDy` is the matrix whose columns are the My nearest neighbors of y`, kDy` (x
∗) is

the vector of kernel function values for the input x∗ and the points in Dy` , and KDy` ,Dy` is
the kernel matrix for the points in Dy` . The final predictive distribution is then formed by
combining all local experts in a mixture model :

pLGP (y|x∗,D,Θ) =

Mx∑
`=1

w`N (y|µ`, σ2` ), (2.16)

with weights w` ∝ 1/d`.

2.2 Bayesian Estimation

After introducing GPs, we focus on the other fundamental part of this thesis, i.e., Bayesian
estimation. Since Bayesian estimation in this thesis is mainly based on state space model
(SSM), we start from a brief introduction of SSM. Then we review a number of popular
Bayesian estimation approaches that will be used in the following sections.

2.2.1 State Space Model

A general state space model (SSM) is a continuous-time dynamical model (Chen, 2003),

dxt
dt

= f(t,xt,ut,wt), (2.17)

yt = h(t,xt,ut,vt), (2.18)

where Equation 2.17 and 2.18 are respectively called transition and observation models 3. xt is
the state vector, yt is the observation vector, ut is the system input vector (driving force) in a
controlled environment, f and h are nonlinear functions, wt and vt are system and observation
noise. In practice however the discrete-time SSM, which is a first-order hidden Markov model,
is more widely used (Doucet et al., 2000b, 2001; Cappé et al., 2007; Barber, 2012) 4

xt = f(xt−1,wt−1), (2.19)

yt = h(xt,vt). (2.20)

To take a Bayesian treatment, the transition and observation models (Equations 2.19 and
2.20) are often rewritten in a probabilistic manner, i.e., p(xt|xt−1) and p(yt|xt) , by assuming

3. The transition model (Equation 2.17) is also called as the prediction model or motion model.
4. For simplicity of mathematical deviation, driving force ut is omitted here. However, the extension to a

control system is straightforward.
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Figure 2.4: State Space Model.

that the probability distributions of wt and vt are known. The graph model is shown in Figure
2.4.

Bayesian estimation in SSM refers to a Bayesian filtering task where the problem is to infer
the posterior of the latent states p(xt|y0:t) or p(x0:t|y0:t) given a history of the observations
y0:t = {y0,y1, · · · ,yt}.

2.2.2 Kalman Filter

We begin with a simple case in which a SSM is linear with Gaussian noises,

xt = Fxt−1 + wt−1, (2.21)

yt = Hxt + vt, (2.22)

where f(xt−1,wt−1) in Equation 2.19 and h(xt,vt) in Equation 2.20 become linear functions,
Fxt−1 and Hxt with a transition matrix F and an observation matrix H. Additionally, both
noises wt and vt are assumed to be Gaussian, i.e., wt ∼ N (0, Q) and vt ∼ N (0, R) with
covariance matrices Q and R.

To efficiently infer the posterior of the hidden states, p(xt|y0:t) is factorized as follows :

p(xt|y0:t) =
p(yt|xt)p(xt|y0:t−1)

p(yt|y0:t−1)
, (2.23)

where

p(xt|y0:t−1) =

∫
p(xt|xt−1)p(xt−1|y0:t−1)dxt−1, (2.24)

p(yt|y0:t−1) =

∫
p(yt|xt)p(xt|y0:t−1)dxt. (2.25)

Equation 2.24 is a one-step prediction and Equation 2.25 is a normalized constant.
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According to Equation 2.21 and 2.22, it is straightforward to obtain that

p(xt|xt−1) = N (Fxt−1, Q),

p(yt|xt) = N (Hxt, R).

Then all the distributions in Equation 2.23 are Gaussian, and this leads to a Kalman filter (Kal-
man, 1960). Suppose that the posterior at t− 1 is p(xt−1|y0:t−1) = N (xt−1|t−1, Pt−1|t−1) with
the mean xt−1|t−1 and the covariance Pt−1|t−1, then the one-step prediction in Equation 2.24
is Gaussian, p(xt|y0:t−1) = N (xt|t−1, Pt|t−1)

xt|t−1 = Fxt−1|t−1,

Pt|t−1 = FPt−1|t−1F
T +Q.

Once the observation at t is available, one-step prediction can be updated to the posterior at
t that is also Gaussian p(xt|y0:t) = N (xt|t, Pt|t) according to Equation 2.23,

Γt = Pt|t−1H
T (HPt|t−1H

T +R)−1,

xt|t = xt|t−1 + Γt(yt −Hxt|t−1),

Pt|t = Pt|t−1 − ΓtHPt|t−1.

Even though the Kalman filter is an optimal maximum-a-posterior (MAP) filter for linear
systems with Gaussian noises, its performance is often poor in many real-world applications
which are nonlinear and/or non-Gaussian systems (Jazwinski, 1970; Julier et al., 1995; Cappé
et al., 2007). Many variants of the Kalman filter were proposed to improve the estimation
performance, such as extended Kalman filter (Jazwinski, 1970) and unscented Kalman filter
(Julier et al., 1995). But their estimation accuracy is still distorted when the systems are
highly nonlinear and non-Gaussian.

To deal with Bayesian estimation for a general SSM (Equation 2.19 and 2.20), we introduce
Monte Carlo sampling methods in the following to efficiently approximate a target distribution
with a collection of random samples (Doucet et al., 2001; Andrieu et al., 2003; Cappé et al.,
2007).

2.2.3 Monte Carlo Methods

The core of Monte Carlo sampling methods is to draw a set of samples x
(i)
0:t (i = 1, · · · , Np)

from the target posterior p(x0:t|y0:t). Using these samples, Monte Carlo approximations are
as follows :

p̂(x0:t|y0:t) =
1

Np

Np∑
i=1

δ
x
(i)
0:t

(x0:t),

E[g(x0:t)] =

∫
g(x0:t)p(x0:t|y0:t)dx0:t ≈

1

Np

Np∑
i=1

g(x
(i)
0:t),
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Algorithm 2 SIR Particle Filter.
1: for t = 0 to T do
2: for i = 1 to Np do
3: x

(i)
t ∼ p(xt|x

(i)
t−1)

4: Compute the weight by Equation 2.30
5: end for
6: Normalize weights by Equation 2.29
7: Resample particles according to the normalized weights
8: end for

where δ
x
(i)
0:t

(x0:t) is the delta-dirac mass at x
(i)
0:t and g(x0:t) is a nonlinear function of x0:t.

However, it is often infeasible to directly draw samples from p(x0:t|y0:t) due to the fact that
for a general SSM (Equation 2.19 and 2.20) the target posterior p(x0:t|y0:t) is analytically
intractable (based on Equation 2.23). In the following, we will briefly review two popular
Monte Carlo sampling methods for Bayesian estimation, i.e., sequential Monte Carlo (SMC)
and Markov Chain Monte Carlo (MCMC). Detailed deviations and reviews can be found in
Doucet et al. (2001); Chen (2003); Andrieu et al. (2003); Cappé et al. (2007).

Sequential Monte Carlo : Particle Filter

Sequential Monte Carlo (SMC) is mainly based on a sequential importance sampling mecha-
nism in which importance sampling is performed recursively for approximation. According to
importance sampling, we can write the following expectation as

E[g(x0:t)] =

∫
g(x0:t)p(x0:t|y0:t)dx0:t

=

∫
g(x0:t)

p(x0:t|y0:t)

q(x0:t|y0:t)
q(x0:t|y0:t)dx0:t,

where the proposal distribution is q(x0:t|y0:t) and the weight is defined as

wt(x0:t) =
p(x0:t|y0:t)

q(x0:t|y0:t)
. (2.26)

Then, the expectation above can be transformed into

E[g(x0:t)] =

∫
g(x0:t)wt(x0:t)q(x0:t|y0:t)dx0:t∫

wt(x0:t)q(x0:t|y0:t)dx0:t
. (2.27)

Suppose the proposal distribution can be factorized as :

q(x0:t|y0:t) = q(xt|x0:t−1,y0:t)q(x0:t−1|y0:t−1),
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Algorithm 3 Metropolis-Hastings Sampling.
1: Initialize x(0)

2: for i = 0 to Np do
3: x∗ ∼ q(x∗|x(i))
4: u ∼ U(0, 1)

5: if u < α(x∗, x(i)) = min{1, p(x
∗)q(x(i)|x∗)

p(x(i))q(x∗|x(i))} then
6: x(i+1) = x∗

7: else
8: x(i+1) = x(i)

9: end if
10: end for

then the weight (Equation 2.26) can be computed recursively

wt(x0:t) =
p(x0:t|y0:t)

q(x0:t|y0:t)

=
p(yt|xt)p(xt|xt−1)p(x0:t−1|y0:t−1)

q(xt|x0:t−1,y0:t)q(x0:t−1|y0:t−1)

=
p(yt|xt)p(xt|xt−1)
q(xt|x0:t−1,y0:t)

wt−1(x0:t−1). (2.28)

By drawing Np samples x
(i)
t at time t from q(xt|x0:t−1,y0:t), Monte Carlo approximations of

the expectation (Equation 2.27) can be obtained as follows :

Ê[g(x0:t)] =

1

Np

∑Np
i=1 wt(x

(i)
0:t)g(x

(i)
0:t)

1

Np

∑Np
i=1 wt(x

(i)
0:t)

=

Np∑
i=1

w̃t(x
(i)
0:t)g(x

(i)
0:t),

where w̃t(x
(i)
0:t) is the normalized weight,

w̃t(x
(i)
0:t) =

wt(x
(i)
0:t)∑Np

i=1 wt(x
(i)
0:t)

. (2.29)

It is also straightforward to obtain a Monte Carlo approximation of the target posterior

p̂(x0:t|y0:t) =

Np∑
i=1

w̃t(x
(i)
0:t)δx(i)

0:t

(x0:t).

Generally, a suitable proposal q(x0:t|y0:t) is important for the performance of the approxima-
tion. The optimal proposal, which minimizes the variance on the importance weights, is given
by (Doucet et al., 2000b; Andrieu et al., 2003)

q(xt|x0:t−1,y0:t) = p(xt|xt−1,yt).
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However, it is infeasible to sample from this unknown proposal. To simplify the sampling
mechanism, the proposal is often chosen as the transition model,

q(xt|x0:t−1,y0:t) = p(xt|xt−1).

Then the weight (Equation 2.28) can be updated recursively according to the observation
model p(yt|xt),

wt(x0:t) =
p(yt|xt)p(xt|xt−1)
q(xt|x0:t−1,y0:t)

wt−1(x0:t−1)

= p(yt|xt)wt−1(x0:t−1). (2.30)

Additionally, sequential importance sampling often suffers from weight degeneracy where only
a few particles have non-zero weight after a number of sampling iteration. To alleviate this dif-
ficulty, a resampling step was proposed by sampling the drawn particles with the importance
weights (after importance sampling at each iteration). This is the well-known sampling impor-
tance resampling (SIR) particle filter (Doucet et al., 2001; Chen, 2003; Andrieu et al., 2003;
Cappé et al., 2007). The whole algorithm is summarized in Algorithm 2 where at each filtering
iteration a number of particles are firstly drawn from the transition model and then weighted
by the observation model (Algorithm 2, Line 2-6). Finally they are resampled according to
the normalized weights for the next step (Algorithm 2, Line 7).

It is worth mentioning that a particle filter allows us to efficiently perform online approximation
of the target distribution with O(Np) where Np is the number of the particles (Doucet et al.,
2001). This motivating factor of the particle filter plays an important role in processing data
streams in practice.

Markov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC) is another Monte Carlo sampling method where the
samples drawn from the proposal construct a Markov chain to approximate the target posterior
in a batch way. In the following we mainly introduce two popular MCMC methods, i.e., the
Metropolis-Hastings sampling method (Metropolis et al., 1953; Hastings, 1970; Andrieu et al.,
2003) and the Gibbs sampling method (Geman and Geman, 1984; Andrieu et al., 2003).

The Metropolis-Hastings (MH) sampling 5 is one of the most practical MCMC methods. The
whole MH sampling mechanism is summarized in Algorithm 3 where a candidate sample x∗

is first drawn from a proposal q(x∗|x) given the current x (Algorithm 3, Line 3). Then the
Markov chain moves toward x∗ with the following acceptance probability (Algorithm 3, Line
4-6),

α(x∗, x) = min{1, p(x
∗)q(x|x∗)

p(x)q(x∗|x)
}.

5. For the simplicity of the notations, we denote a general target distribution as p(x).
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Algorithm 4 Gibbs Sampling.

1: Initialization : x(0)1:m

2: for i = 0 to Np do
3: x

(i+1)
1 ∼ p(x1|x(i)2 , x

(i)
3 , · · · , x(i)m )

4: x
(i+1)
2 ∼ p(x1|x(i+1)

1 , x
(i)
3 , · · · , x(i)m )

5: · · ·
6: x

(i+1)
m ∼ p(xn|x(i+1)

1 , x
(i+1)
2 , · · · , x(i+1)

m−1 )
7: end for

Otherwise, it stays at x (Algorithm 3, Line 7-9).

The Gibbs sampler can be seen as a special case of Metropolis-Hastings sampling where the
acceptance rate is α = 1 (Andrieu et al., 2003). The whole sampling mechanism is summari-
zed in Algorithm 4 where m variables (x1:m) can be sampled from m univariate conditional
distributions (these univariate conditional distributions often belong to the family of standard
distributions, such as Gaussian, Gamma, etc.) to approximate the joint distribution.

Even though MCMC approaches are often computationally expensive (since a good approxi-
mation of the target distribution may be achieved with hundreds of thousands of samples),
their general and easily-implemented sampling mechanisms are still a good choice when the
target distribution is highly complicated (Andrieu et al., 2003).

2.3 Conclusion

In this chapter, we briefly reviewed the technical details of Gaussian processes (GPs) and
Bayesian estimation. Based on these techniques, we will introduce our contributions in the fol-
lowing sections to address a number of challenging difficulties in GPs and Bayesian estimation
by performing Interactions Between Gaussian Processes and Bayesian Estimation in different
directions.
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Chapitre 3

Gaussian Processes for Bayesian
Estimation

Bayesian estimation has been widely used in many domains such as robotics, bioinformatics
and so on (Thrun et al., 2005; Deisenroth, 2010; Plagemann, 2008; Calderhead et al., 2008;
Dondelinger et al., 2013). In general, the performance of Bayesian estimation is often dependent
on the associated probabilistic models in the system. In this chapter, we take advantage of
Gaussian Processes for Bayesian Estimation, where Gaussian processes (GPs) are used to
learn the related data models in an elegant Bayesian nonparametric way, to improve the
performance of Bayesian estimation in the following two contributions

1. The first contribution is an adaptive nonparametric particle filter (Wang and Chaib-draa,
2012b) in which we incorporated a GP trained optimal proposal into a KLD-Sampling
particle filter to improve the accuracy and efficiency of recursive state estimation.

2. The second contribution is to use a GP for Bayesian parameter estimation in ordi-
nary differential equations (ODEs) (Wang and Barber, 2014) where a novel GP-ODE
generative model was proposed by directly linking the derivatives of the states to the
observations in order to accelerate the efficiency and accuracy of parameter estimation
in ODE systems.

3.1 An Adaptive Nonparametric Particle Filter for State
Estimation

State estimation in dynamic systems refers to a filtering problem in which the latent states
are recursively filtered out by using the history of the observations. Particle filtering is one of
the most popular techniques for state estimation since it suitably interprets the multi-modal
posteriors via sequential Monte Carlo sampling mechanism (Doucet et al., 2000b, 2001; Chen,
2003; Cappé et al., 2007). However, several difficulties of the traditional particle filter block

23



the accuracy and efficiency of state estimation in practice (Doucet et al., 2000b; Fox, 2001;
Plagemann et al., 2007).

In Wang and Chaib-draa (2012b), we proposed a novel adaptive nonparametric particle filter
where, inspired by Gaussian Processes for Bayesian Estimation, we incorporated a Gaussian
process (GP) based proposal into a KLD-Sampling particle filter so that one can improve the
accuracy and efficiency of state estimation.

3.1.1 Literature Review

During the past decades, a number of filtering techniques have been investigated in order
to understand the underlying evolution of real-world dynamical systems. One of the best-
known filters is the Kalman Filter (KF), which is a minimum-mean-squared-error estimator for
linear systems with Gaussian noises (Kalman, 1960). However, the performance of KF is often
deteriorated since in practice many dynamic systems are nonlinear and/or non-Gaussian. Two
popular variants of KF, i.e. extended Kalman filter (EKF) (Jazwinski, 1970) and unscented
Kalman Filter (UKF) (Julier et al., 1995), have been investigated to approximately estimate
the hidden states by using a Taylor expansion and an unscented transformation (UT). But
still, the performance of EKF and UKF will be distorted when dynamical systems are highly
nonlinear and/or non-Gaussian (Julier et al., 1995; Cappé et al., 2007; Deisenroth et al., 2009;
Turner and Rasmussen, 2012).

Alternatively, particle filtering is an effective sequential Monte Carlo sampling approach for
nonlinear and/or non-Gaussian dynamic systems. A detailed literature review can be found in
Doucet et al. (2000b, 2001); Chen (2003); Cappé et al. (2007). A standard particle filter (also
called sampling importance resampling (SIR) particle filter) typically consists of two sampling
steps, i.e., important sampling and resampling at each iteration. In the importance sampling
step, Np particles are drawn from a proposal model which is chosen as the transition model
q(xt|xt−1,yt) = p(xt|xt−1). Then these particles are weighted using the observation model
p(yt|xt). In the resampling step, particles are sampled again according to their weights in
order to obtain Np equally-weighted new particles for the next step.

However, there are several drawbacks in the above-mentioned sampling mechanism of the
SIR particle filter. First of all, a SIR particle filter suffers from weight degeneracy where the
variance of the particle weights becomes large after a few sampling iterations. Consequentially,
the performance of state estimation may be poor since most of all the particles are wasteful
with very small particle weights (Doucet et al., 2000b, 2001; Chen, 2003; Cappé et al., 2007).
To some degree, the resampling mechanism alleviates this problem by replicating the particles
with large weights. However, it does not address weight degeneracy due to the fact that
resampling transforms weight degeneracy into another form - the impoverishment of particle
diversity, i.e., many particles are originally from a few particles with large weights.
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Figure 3.1: One-step importance sampling of SIR particle filter. The blue circles are the 5
particles (drawn from proposal). The red stars are the corresponding importance weights of
these 5 particles (evaluated by likelihood). Note that there is only 1 non-zero weight (rightmost
red star) in the weight mass.

In fact, the root cause of weight degeneracy is that the proposal q(xt|xt−1,yt) = p(xt|xt−1)
does not contain the observation information yt, and this leads to the result that the drawn
particles are located in low probabilistic regions of the true posterior (Doucet et al., 2000b,
2001; Chen, 2003; Cappé et al., 2007). This problem becomes even worse when the observation
is accurate (the shape of the likelihood density is peaky), since the observation information
in this case has a lot of impact on the estimation. As shown in Figure 3.1, we can clearly see
that the weight mass is not a good approximation of the target density since there is only
one non-zero-weight particle. The fundamental reason is that the current observation model
p(yt|xt) in this illustration contains the highly accurate information of the current state but
the proposal q(xt|xt−1,yt) = p(xt|xt−1) does not consider it.

Therefore, it is crucial to design a good proposal for a SIR particle filter to achieve accurate
state estimation. An extended Kalman particle filter and an unscented particle filter were pro-
posed in van der Merwe et al. (2000) to approximate the optimal proposal via EKF and UKF.
The estimation performance however lacks in robustness, especially when dynamic systems are
highly nonlinear and non-Gaussian. To further improve the estimation accuracy, Plagemann
et al. (2007) designed a nonparametric proposal trained by Gaussian process (GP) to address
the weight degeneracy problem of the SIR particle filter. Additionally several new sampling
frameworks such as particle learning (PL) (Carvalho et al., 2010) and particle Markov chain
Monte Carlo (PMCMC) (Andrieu et al., 2010) were proposed to deal with weight degeneracy
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to some degree. However, PL is only suitable to certain conditional dynamic models due to
the use of conjugate priors (Carvalho et al., 2010) and PMCMC is often computationally
expensive due to the MCMC sampling mechanism.

Another limitation of a SIR particle filter is the fixed number of particles. In practice, the
true posterior of the latent state can vary vastly over time. In this case, the fixed number of
particles will either lead to a poor efficiency (when the posterior is simple, many particles are
wasteful) or a poor accuracy (when the posterior is complicated, the number of particles is
not sufficient to capture the posterior). A KLD-Sampling particle filter was proposed in Fox
(2001) to address this problem by adaptively adjusting the number of particles according to a
Kullback-Leibler divergence (KLD) criterion. However, we note that KLD-Sampling particle
filter still suffers from weight degeneracy since it is a modified version of SIR particle filter
(Fox, 2001).

In Wang and Chaib-draa (2012b), we mainly address the above-mentioned two limitations in
the SIR particle filter by incorporating a GP-trained proposal into the KLD-sampling particle
filter. On one hand, we draw particles from a GP learned proposal in which the important
observation information significantly improves the quality of the drawn particles. On the other
hand, the number of particles is adaptively learned according to KLD. Consequentially, both
perspectives in our resulting method are complementary to improve the performance of state
estimation.

3.1.2 GP Based Proposal Density

In order to address the weight degeneracy problem of a SIR particle filter, the sampling
proposal has to be optimal (Doucet et al., 2000b)

q(xt|xt−1,yt) = p(xt|xt−1,yt).

However, this optimal proposal is actually unknown. Hence, we propose to learn it. Further-
more, compared to parametric methods, nonparametric methods are more flexible to capture
complicated dynamic phenomena. Following Plagemann et al. (2007), we hence use a Gaussian
process (GP) to learn this optimal proposal.

Concretely, the optimal proposal p(xt|xt−1,yt) can be modeled as a nonlinear relationship
between [xt−1,yt] and xt,

xt = g(xt−1,yt) + ε,

where g are unknown nonlinear functions that are learned by GPs 1, and the noise is ε ∼

1. For simplicity, in the experiment we use independent GPs for each dimension of g. One can also perform
multi-output GP approaches (Boyle and Frean, 2004; Bonilla et al., 2007; Alvarez and Lawrence, 2008) to
model g in a multi-task learning framework.
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Algorithm 5 KLD-Sampling Particle Filter.
1: Initialize ε and δ
2: for t = 1 to T do
3: Setting Np = 0, k = 0
4: while Np ≤ Nf = 1

2εχ
2
k−1,1−δ (Equation 3.1) do

5: Sampling a particle x
(i)
t−1 with the normalized weights at t− 1

6: Sampling a particle x
(Np)
t ∼ p(xt|x(i)

t−1)

7: Calculating its weight according to p(yt|x
(Np)
t )

8: if x
(Np)
t falls into an empty bin B then

9: k = k + 1
10: Setting the bin B non-empty
11: end if
12: Np = Np + 1
13: end while
14: return x

(i)
t (i = 1, 2, ...Np)

15: end for

N (0, σ2ε I). Given a training data set 2

Data = {[xtrainingt−1 ,ytrainingt ],xtrainingt }Tt=1,

we can directly use GP regression in Chapter 2 to obtain the optimal proposal that is used
for filtering,

q(xfilteringt |xfilteringt−1 ,yfilteringt , Data).

As mentioned in Plagemann et al. (2007), a SIR particle filter with a GP based proposal
improves the quality of the particles and thus improves the estimation accuracy.

3.1.3 KLD-Sampling Particle Filtering

Now we focus on the other limitation of a SIR particle filter, the fixed number of particles.
In fact the number of particles should be adaptively changed over time according to the
complexity of posterior density, i.e., if the posteriors at some steps are highly non-Gaussian,
we need more particles to capture the important probabilistic regions and vice versa. That
is the motivation of KLD-Sampling particle filtering in which the following Kullback-Leibler
divergence (KLD) is used to learn the number of the particles over time (Fox, 2001)

KL[p̂(x)‖p(x)] =
∑
x

p̂(x) log(
p̂(x)

p(x)
),

where p̂(x) is the discrete estimation of p(x).

2. This training data set is associated with the latent states, hence in practice we can perform a standard
SIR particle filter as a preprocessing procedure to collect the latent states to construct this data set.
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As mentioned in Fox (2001), for any discrete p(x) with k different bins, the number of samples
from its maximum likelihood estimation p̂(x) has to be

Nf =
1

2ε
χ2
k−1,1−δ (3.1)

in order to ensures that KLD between p(x) and p̂(x) is smaller than ε with 1− δ confidence.
In Equation (3.1), χ2

k−1 is the chi-square distribution with k − 1 degrees of freedom.

According to Equation 3.1, we can adaptively learn the number of particles which is stron-
gly associated with the complexity of the posterior. However, true posteriors in the filtering
problem are actually unknown, i.e., the number of bins k is unknown. Here we follow the stra-
tegy in Fox (2001); Thrun et al. (2005) to make k incremental. Concretely, for each filtering
iteration, a new particle is first drawn and weighted using SIR manner (Algorithm 5, Line
5-7). Then, the number of bins k is replaced with k + 1 if this particle falls into a new bin
B (Algorithm 5, Line 8-11). Finally, the number of the particles Np is replaced by Np + 1.
These steps repeat in this filtering iteration until Np exceeds Nf in Equation 3.1. The whole
KLD-Sampling particle filter is summarized in Algorithm 5.

3.1.4 GP based KLD-Sampling Particle Filter

On one hand, a GP based SIR particle filter (Plagemann et al., 2007) alleviates weight de-
generacy by learning the optimal proposal. But the fixed number of particles will reduce
the estimation performance. On the other hand, KLD-Sampling particle filter (Fox, 2001)
adaptively learns the number of particles to capture the time-varying posteriors. But weight
degeneracy deteriorates its estimation performance since the particles are drawn from the
transition model without observation information.

Therefore, we propose a hierarchical framework to combine these two methods together so that
we can take advantage of their merits to improve accuracy and efficiency of state estimation.
Specifically, we incorporate the GP based proposal into the KLD-Sampling particle filter.
One benefit is from the optimal proposal learned by a GP due to the fact that the sampled
particles are more likely located at the high probabilistic regions of the true posterior. The
other benefit is from the KLD-sampling mechanism in which the number of the particles can
be adaptively learned according to the complexity of true posteriors. Consequentially, in our
resulting framework both benefits positively help each other to improve the performance of
state estimation with the flexible number of high-quality particles.

3.1.5 Experiments

In order to show the effectiveness of our adaptive nonparametric particle filter, we compare
our method to the standard SIR particle filter, KLD-Sampling particle filter and SIR particle
filter with GP learned proposal by using the following two simulated models, i.e., an univariate
nonstationary growth model and a two-link robot arm model.
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Table 3.1: RMSE Comparison (Univariate Nonstationary Growth Model).

Particle Filter (PF) Particle Number RMSE

SIR PF 10 2.0183
SIR PF 100 1.7209
KLD-Sampling PF average 45 1.6373
Gaussian Process Based PF 10 1.5775
our Proposed PF average 42 1.4348

Univariate Nonstationary Growth Model

Our first simulation experiment is based on a benchmark univariate nonstationary growth
model that has been widely investigated in the Bayesian filtering domain (Cappé et al., 2007;
Andrieu et al., 2010),

xt =
xt−1

2
+ 25

xt−1
1 + x2t−1

+ 8 cos(1.2t) + wt,

yt = 0.05x2t + vt,

where the system and observation noise are assumed to be Gaussian wt ∼ N (0, 10), vt ∼
N (0, 1) respectively. The prior for initial state is x0 ∼ N (0, 10). Time interval is set to 0.01
and the terminal time is 0.5. Hence, the objective posterior is p(x0:50|y0:50). In our experiment,
both ε and δ are set to 0.05. The range of the bins is −50 : 10 : 50. Furthermore, the covariance
function of GP is chosen to be squared exponential and we collected a training data set, which
consists of 50 training data points at each step, to learn a GP based proposal.

We first show the qualitative performance of state estimation in Figure 3.2 where our adaptive
non-parametric particle filter works well since the estimated state closely overlaps the ground
truth with a compact confidence interval.

Next, we evaluate the quantitative performance of our approach based on root mean squared
error (RMSE). The comparison results with other related particle filters are shown in Table 3.1.
As expected, the performance of the 10-particle SIR particle filter is poor due to the fact that
the blindly drawn particles (from the transition model) introduce a heavy weight degeneracy.
In order to improve the accuracy, the number of particles in the SIR particle filter has to
increase (here we set it to 100). However, the performance of the 100-particle SIR particle
filter is sill inefficient, compared to the average-45-particle KLD-Sampling particle filter. The
reason is that the fixed number of the SIR particle filter reduces its estimation performance.
Additionally, the 10-particle SIR particle filter with the GP learned proposal outperforms the
10-particle standard SIR particle filter. This illustrates the fact that the GP learned proposal
uses observation information to guide the particles to locate at the important regions of the
true posterior.

29



0
5

10
15

20
25

30
35

40
45

50
−

5 0 5 10 15 20 25 30 35

T
im

e

State

 

 

95%
 C

onfidence Interval
T

rue S
tate

O
bservation

E
stim

ated S
tate

F
ig

u
r
e
3.2:State

estim
ation

by
our

adaptive
nonparam

etric
particle

filter.

30



0
0

y1
y2

r1

a2

a1

r2

(y1,y2)

Figure 3.3: Two-link Robot Arm.

To sum up, our adaptive nonparametric particle filter obtains the best estimation performance
with only average 42 particles. Compared to the KLD-Sampling particle filter, our approach
incorporates observation information into the proposal (using a GP). Compared to the GP
based SIR particle filter, our approach takes advantage of the KLD-sampling mechanism to
adaptively learn the number of the particles according to the complexity of the true posterior.
Both perspectives are complementary to make our resulting approach an efficient and accurate
state estimator.

Two-link Robot Arm

Our second simulation experiment is based on a two-link robot arm model (Chen, 2003). As
shown in Figure 3.3, the kinematic model of this robot is

y1 = r1 cos(a1)− r2 cos(a1 + a2),

y2 = r1 sin(a1)− r2 sin(a1 + a2),

where r1 = 0.8, r2 = 0.2, the limited regions of the angles a1 and a2 are a1 ∈ [0.3, 1.2] and
a2 ∈ [π/2, 3π/2], (y1, y2) is the cartesian position of the end-effector.

We mainly address an inverse kinematic problem where the angles a1 and a2 (latent states)
are estimated to achieve a desired cartesian position (y1, y2) (observations). This problem is
particularly important in motion planning where the robot is assigned to move in a desired
trajectory. Following (Chen, 2003), we choose a simple state space model,

xt = xt−1 + wt−1,

yt =

[
r1cos(a1,t)− r2cos(a1,t + a2,t)

r1sin(a1,t)− r2sin(a1,t + a2,t)

]
+ vt,

where xt = [a1,t a2,t]
T and yt = [y1,t y2,t]

T , wt−1 ∼ N (0, diag{0.022, 0.22}) and vt ∼
N (0, diag{0.0012, 0.0012}). Notice that the measurement of the observations is very accurate
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since the variance of the observation noise is quite small. Additionally, the prior of initial
state is set to be the same as the system noise. The robot arm moves 12 time steps, thus the
objective of state estimation is p(x0:12|y0:12). Both ε and δ are set to 0.1, the range of the bins
is 0.2 : 0.3 : 0.8 for a1 and 0.2π : 0.2π : 1.6π for a2. Moreover, the covariance function of GP
is chosen to be squared exponential and we collected a training set, which is composed of 300
training data points at each time step, to train a GP based proposal.

Similarly to our experiments in the univariate nonstationary growth model, we first evaluate
the qualitative performance of our approach for this robot arm. From Figure 3.4 and 3.5,
we can see that our approach successfully captures the latent states a1 and a2 over time.
Additionally, an illustration of state estimation at each time step is shown in Figure 3.6 where
our method outperforms the SIR particle filter in most of the filtering steps.

Then we show the quantitative comparison of different particle filters in Table 3.2. As expec-
ted, 20-particle SIR particle filter performs worst among all the methods. There are two main
reasons. Firstly, the SIR particle filter heavily suffers from weight degeneracy in this expe-
riment. As we mentioned before, the observation measurement in this experiment is highly
accurate. However, the proposal in SIR particle filter is the state transition model which does
not contain the important observation information. Hence the blindly drawn particles are
most likely located at the low probabilistic regions of the true posterior, and this restricts
the performance of the SIR particle filter. That is also why the 20-particle GP learned SIR
particle filter performs better than the 20-particle standard SIR particle filter. Secondly, the
number of particles in the SIR particle filter is fixed. From Figure 3.7, it is clearly shown
that 20 particles in the SIR particle filter is not adequate since the KLD-Sampling particle
filter adaptively learns average 25 particles to get better estimation. The only way to get a
smaller error for the standard SIR particle filter is to increase the number of the particles
(here we set it to 150). However, the 150-particle SIR particle filter is still worse than the
KLD-Sampling particle filter. This illustrates that it is important to learn the number of the
particles according the complexity of the posterior.

To sum up, our adaptive nonparametric particle filter combines the merits of the KLD-
Sampling mechanism and the GP based proposal to get the best estimation with the smaller
number of particles.

3.1.6 Summary

Based onGaussian Processes for Bayesian Estimation, we proposed an adaptive nonparametric
particle filter in Wang and Chaib-draa (2012b). Firstly, the optimal proposal was learned by
a GP so that the drawn particles are located at the important probabilistic regions of the
true posterior. Then, we incorporated this GP based proposal into a KLD-Sampling particle
filter in which the number of particles is adaptively learned according to the complexity of
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Figure 3.4: a1 estimation by our adaptive nonparametric particle filter.
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Figure 3.5: a2 estimation by our adaptive nonparametric particle filter.
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Figure 3.6: Two-link robot arm position over time. The blue line with circle is the true state,
the red line is the estimated state by our proposed method, the green line is the estimated
state by SIR particle filter. It is shown that our proposed approach is better than SIR particle
filter.
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Figure 3.7: The number of the particles as a function of time steps.

Table 3.2: RMSE Comparison (Robot Arm).

Particle Filter (PF) Particle Number RMSE for a1 RMSE for a2

SIR PF 20 0.0378 0.1711
SIR PF 150 0.0207 0.1258
KLD-Sampling PF average 25 0.0182 0.1140
Gaussian Process Based PF 20 0.0177 0.1085
Our Proposed PF average 15 0.0154 0.0933

the time-varying posteriors. Our resulting framework takes advantage of the merits in both
approaches to improve the accuracy and efficiency of state estimation.

In the following, we will use Gaussian Processes for Bayesian Estimation to solve a Bayesian
parameter estimation problem in ordinary differential equations (Wang and Barber, 2014).

3.2 Gaussian Processes for Bayesian Estimation in Ordinary
Differential Equations

Bayesian parameter estimation in coupled ordinary differential equations (ODEs) is challenging
due to the high computational cost of numerical integration. In gradient matching approaches,
a separate data model is introduced with the property that its gradient may be calculated
easily. Parameter estimation is then achieved by requiring consistency between the gradients
computed from the data model and those specified by the ODE. InWang and Barber (2014), we
proposed a Gaussian process (GP) based model that directly links state derivative information
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with system observations, simplifying previous approaches and improving estimation accuracy.

3.2.1 Introduction

Ordinary differential equations (ODEs) are continuous time models with the interaction bet-
ween variables described by ẋ(t) = f(x(t), θ), for vector x and vector output function f . The
task is to estimate any unknown parameters θ of the ODEs by fitting them to observed data
collected at a set of discrete observation times, t1, . . . , tT . A principled approach to this pro-
blem is to first numerically integrate the ODEs for a given value of θ and initial value x0 to
obtain a vector of values X ≡ [x(t1),x(t2), . . . ,x(tT )]. Parameter estimation is achieved by
finding θ such that X closely matches the observed data. However, numerical integration is
computationally demanding, rendering this scheme impractical in all but the smallest systems,
see (Vyshemirsky and Girolami, 2008) for example.

In gradient matching, explicit numerical integration can be avoided by considering an alter-
native model of the data, x(t) = g(t, φ). Given this fit to the data, one can compute the
gradients of the fitted function at the observed timepoints, ẋ(t) = ġ(t, φ). Gradient matching
estimates parameters θ of the ODE and parameters φ of the fitted function g by requiring
that the gradients in both models are consistent at the observed timepoints. A review of this
class of approaches can be found in Ramsay et al. (2007).

However, as described in Calderhead et al. (2008), previous gradient matching approaches pro-
vided only limited point-parameter estimates or can prove numerically inconsistent. Recently,
Gaussian Processes (GPs) have been considered as data models within the gradient matching
framework (Calderhead et al., 2008; Dondelinger et al., 2013) , due to the fact that GPs
provide a distribution over fitted functions and associated gradients. Concretely, Calderhead
et al. (2008) proposed a hierarchical sampling mechanism where GP parameters φ are sampled
first to fit to the data, and then ODE parameters θ are inferred by using the sampled φ. The
estimation accuracy of this approach is however limited by the lack of feedback from ODE
parameter inference to GP parameter inference. To address this, Dondelinger et al. (2013)
introduced bidirectional interaction between ODE and GP parameters in a joint distribution,
demonstrating improved parameter estimation.

Even though all these GP approaches have similar computational complexity and can run up to
two orders of magnitude faster than numerical integration, they lack a natural interpretation
of the data generation process and thus restrict the estimation performance. In Wang and
Barber (2014), we introduced a novel generative model, which directly links state derivatives
to system observations using a GP, to simplify the previous GP approaches and improve the
estimation accuracy with a similar computational cost. Additionally, compared to previous
GP approaches, our resulting framework plays a more similar role to numerical integration.
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ODE System Description

We consider continuous time dynamical systems in which the motions of K states x(t) ≡
[x1(t), x2(t), . . . , xK(t)]T are represented by a set of K ODEs,

ẋ(t) ≡ d

dt
x(t) = f(x(t), θ),

where θ is a vector of parameters of the ODE. For notational convenience, we additio-
nally define the state matrix X ≡ [x(t1),x(t2), . . . ,x(tT )] and k-th state sequence xk ≡
[xk(t1), xk(t2), . . . , xk(tT )]T . Given potentially noisy observations of X (see below), the task
is to infer a posterior distribution over the parameters θ.

Observation Model

The T observations Y = [y(t1),y(t2), . . . ,y(tT )] are obtained from the states according to in-
dependent additive noise y(t) = x(t)+ε(t) where the noise for the k-th state, k ∈ {1, 2, . . . ,K},
is Gaussian, εk(t) ∼ N (0, σ2k). This gives then an observation model,

pOBS(Y|X) =
∏
t

pOBS(y(t)|x(t)),

with pOBS(y(t)|x(t)) = N (x(t), σ2I).

If unknown, the parameters of the observation model (σ in this case) form part of the para-
meters that need to be estimated. This is achieved by placing a prior over their values and
incorporating these parameters into the model in the standard way. This step is unproblema-
tic and, to avoid notational clutter, we drop these observation parameters as variables in the
model descriptions below (they will however be included in the experiments).

Bayesian Numerical Integration

Given the ODE and an initial value, we can (in principle) numerically integrate the system 3.
For example (K = 1), one can discretize time in small intervals of τ , and then iteratively use
x′n+1 = x′n + τf(x′n, θ) with x′0 = x0 until the desired end time to obtain a numerical value for
the integrated path.

Hence, for a given initial value x0 and ODE parameters θ, numerical integration can be
considered as a procedure that can produce a deterministic distribution (in the case of ODE
systems) p(x|x0, θ) = δ (x− x′(x0)) over the values of the state at the observation times. Here
δ (·) is the Dirac delta function. Then we put a prior on x0 and θ so that we can draw samples
from the following joint distribution,

p(y, x, x0, θ) = pOBS(y|x)p(x|x0, θ)p(x0)p(θ),

3. In practice we use the Runge-Kutta method.
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Figure 3.8: (a) Numerical integration with an initial term x0. (b) Our GP-ODE approach
corresponds to a generative belief network. (c) Calderhead et al. (2008) approach, which is
based on a form of compatibility function, expressed as a chain graph. (d) The chain graph
of the Dondelinger et al. (2013) approach uses a modified compatibility function. Note that
the difference between (c) and (d) is that in (d) the links x− ẋODE and φ−x are undirected,
reflecting the different normalisation requirement. We discuss the approaches of Calderhead
et al. (2008) and Dondelinger et al. (2013) in Subsection 3.2.4.

to estimate p(θ, x0|y).

Even though this procedure of Bayesian numerical integration can produce excellent results
(Vyshemirsky and Girolami, 2008), the computational cost is prohibitive in large models due
to the fact that numerical integration needs to be carried out for every value of θ and x0 of
interest (Calderhead et al., 2008).

3.2.2 The GP-ODE generative model

As an alternative to explicit Bayesian numerical integration, we propose the following genera-
tive model over states X, their derivatives Ẋ, observations Y and remaining parameters using
a simple belief network shown in Figure 3.8b,

p(Y,X, Ẋ, φ†, θ) = p(θ)p(φ†)pGP (Y|Ẋ, φ†)pODE(Ẋ|X, θ)pGP (X|φ†), (3.2)

where φ† ≡ (x0, φ). To generate data from this model we first sample parameters φ†, θ from
their priors and then a state X from the GP prior pGP (X|φ†). A state derivative is subse-
quently obtained by sampling from pODE(Ẋ|X, θ). Finally, given these state derivatives Ẋ,
observations Y are generated by sampling from the GP pGP (Y|Ẋ, φ†). In this way we combine
a smoothness prior assumption on the state X together with derivative information obtained
from the ODE in a single generative model 4.

4. It is natural to consider forming the joint p(y, x, ẋ) as pOBS(y|x)pODE(ẋ|x)pGP (x). However, the marginal
p(y, x) = pOBS(y|x)pGP (x) is then vacuous, containing no contribution from the ODE. All models, including
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Encoding the ODE : pODE(Ẋ|X, θ)

The temporal evolution of the ODE is encoded in the distribution pODE(Ẋ|X, θ). In the
deterministic ODE case 5, it will simply be a delta function distribution

pODE(Ẋ|X, θ) = δ(Ẋ− f(X, θ)) ≡
∏
t

δ (ẋ(t)− f(x(t), θ)) .

Prior on latent state : pGP (X|φ†)

The GP prior assumes that each state dimension is a priori independent pGP (X|φ†) =
∏
k pGP (xk|φ†k),

with pGP (xk|φ†k) formed from a GP with mean function 6 µφk(t) and covariance function
cφk(t, t′).

Implicit Integration : pGP (Y|Ẋ, φ†)

The term pGP (Y|Ẋ) =
∏
k pGP (yk|ẋk) (dropping parameter dependencies on the r.h.s for

compactness of notation) plays a key role in our GP-ODE model since it specifies how to
implicitly integrate a given state derivative curve to arrive at a distribution over observations
according to

pGP (yk|ẋk) =

∫
pOBS(yk|xk)pGP (xk|ẋk)dxk.

Since differentiation is a linear operation, the derivative of a GP is also a GP (Solak et al.,
2002). Consequentially, the joint distribution pGP (yk, ẋk) is a Gaussian distribution which is
constructed by using the mean functions,

ȳk(t) = x̄k(t) = µφ(t), ˙̄xk(t) = ∂µφ(t)/∂t,

and covariance functions,

cov(ẋk(t), ẋk(t
′)) =

∂2cφk(t, t′)

∂t∂t′
−
∂µφk(t)

∂t

∂µφk(t′)

∂t′
,

cov(ẋk(t), xk(t
′)) =

∂cφk(t, t′)

∂t
− µφk(t′)

∂µφk(t)

∂t
,

cov(yk(t), ẋk(t
′)) = cov(xk(t), ẋk(t

′)),

cov(yk(t), yk(t
′)) = cφk(t, t′) + σ2δ(t− t′).

Figure 3.8b,c,d, are ‘incorrect’ compared to the true model Figure 3.8a ; the challenge is to combine aspects
of numerical integration with GP and observation model that achieves coherent parameter estimation with
reduced computational cost over explicit numerical integration.

5. We make this assumption throughout this contribution, and Gaussian additive noise would be straight-
forward to incorporate for the case of Gaussian SDEs.

6. There are different ways to define p(x,x0). One approach is to express this as pGP (x|x0)p(x0), which
allows one to use the same prior as for Bayesian numerical integration model. In the experiments we more
simply defined a joint GP, for each k, with mean µφk (t) equal to the mean of the observed data, for all t. This
is equivalent to defining a Gaussian prior on x0 with mean that of the observed data.
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Then given the state derivatives, the observations are also Gaussian distributed 7

pGP (yk|ẋk) ∼ N (µ
y|ẋ
k ,Σ

y|ẋ
k ),

where

µ
y|ẋ
k = µφk + Cxẋ

φk
(Cẋẋ

φk
)−1

(
ẋk − ˙̄xk

)
,

Σ
y|ẋ
k = Cφk + σ2kI−Cxẋ

φk
(Cẋẋ

φk
)−1Cẋx

φk
,

Cẋẋ
φk
, Cẋx

φk
and Cxẋ

φk
are constructed using the above-mentioned covariance functions evaluated

at the observation times t1, t2, . . . , tT .

Parameter Estimation

From Equation 3.2, the marginal distribution over observations, latent states and parameters
is given by integrating out Ẋ,

p(Y,X, φ†, θ) =p(φ†)p(θ)pGP (X|φ†)
∫
pGP (Y|Ẋ, φ†)pODE(Ẋ|X, θ)dẊ

=p(φ†)p(θ)pGP (X|φ†)pGP (Y|Ẋ = f(X, θ), φ†), (3.3)

where in the deterministic ODE case, pODE(Ẋ|X, θ) = δ(Ẋ− f(X, θ)), the integral∫
pGP (Y|Ẋ, φ†)pODE(Ẋ|X, θ)dẊ

is simply reduced to pGP (Y|Ẋ = f(X, θ), φ†).

Estimation of the parameters and latent states X can be then carried out, for example, by
sampling from the posterior p(X, φ†, θ|Y) ∝ p(Y,X, φ†, θ), see Subsection 3.2.3.

3.2.3 Inference in the GP-ODE model

There are a number of approaches one could take to draw samples from the GP-ODE posterior
p(X, φ†, θ|Y) and our strategy was to choose the simplest that provides good results. Writing
Φ =

{
φ†, σ

}
= {x0, φ, σ} for all the parameters of the GP and observation model, we sample

from p(X,Φ, θ|Y) using a Gibbs procedure to produce a set of samples Φi, θi,Xi. We initialize
Φ0, θ0 at random and draw X0 ∼ pGP (X|Y,Φ0). We subsequently draw samples, indexed by
i = 1 : L by alternately drawing from

1. θi,Φi ∼ p(θ,Φ|Xi−1,Y)

2. Xi ∼ p(X|θi,Φi,Y)

We present a naive approach for drawing from these conditionals below 8.

7. For a Gaussian defined on joint variables z = (a,b) with p(z) = N (µz,Σz,z), the condi-
tional is Gaussian with mean and covariance given from the block mean and covariances, p(a|b) =

N
(
µa + Σa,bΣ

−1
b,b (b− µb) ,Σa,a −Σa,bΣ

−1
b,bΣb,a

)
, see e.g. (Barber, 2012; Rasmussen and Williams, 2006).

8. More sophisticated sampling strategies could be considered. However for the benchmark experiments,
these approaches have proved adequate.
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Parameter sampling

We draw from p(θi,Φi|Xi−1,Y) using Gibbs sampling :

1. Set θi,0 = θi−1,Φi,0 = Φi−1

2. For j = 1 : Lp

a) Φi,j ∼ p(Φ|Xi−1, θi,j−1,Y)

b) θi,j ∼ p(θ|Xi−1,Φi,j ,Y)

3. Set θi = θi,Lp , Φi = Φi,Lp

where these conditional distributions can be obtained from the joint distribution (Equation
3.3). Where there are multiple components of a parameter, we again use Gibbs sampling to
obtain a univariate sample of a component conditioned on the remaining components. In the
experiments we assume that the parameters take values from known discrete sets, in which
case sampling from these conditionals is particularly straightforward.

State sampling

It is natural to consider drawing samples from p(X|θ,Φ,Y) using Metropolis-Hastings (similar
to (Dondelinger et al., 2013)) with pGP (X|Φ,Y) as the proposal. However, in our experience,
this results in poor mixing due to the curse of dimensionality. We therefore use Gibbs sampling
in which we draw a state from p(x(t)|X\t, θ,Φ,Y), where X\t are the states except for x(t),
drawing samples in sequence from times t ∈ {t1, . . . , tT }. To draw from p(x(t)|X\t, θ,Φ,Y)

we use either Metropolis-Hastings with proposal pGP (x(t)|X\t,Φ,Y) or Gibbs sampling for
each component of the vector x(t) based on discrete values 9. After Lx sweeps through all
timepoints, we obtain the new sample Xi.

3.2.4 Relation to previous approaches

Gradient Matching

The approach in Calderhead et al. (2008) is based on matching gradients via what could be
termed a ‘compatability’ function that is a product of the data model pGP (ẋ|x, φ) (from GP)
and the ODE model pODE(ẋ|x, θ) (for the case K = 1 and fixed σ for notational simplicity),

ω(ẋ,x|θ, φ) ≡ pGP (ẋ|x, φ)pODE(ẋ|x, θ),

This is used to define
p(θ|x, φ) ∝ p(θ)ω′(x|θ, φ),

using the marginal compatibility

ω′(x|θ, φ) ≡
∫
ω(ẋ,x|θ, φ)dẋ,

9. For the experiments, the Gibbs approach proved adequate.
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with presumably the intention that this has high value when the gradient distributions over-
lap 10. The marginal compatibility ω′(x|θ, φ) is analytically computed since the terms under
the integral are Gaussian. The authors modify the deterministic ODE by the addition of
fictitious noise to give a Gaussian distribution for pODE(ẋ|x, θ) with mean f(x, θ). To ease
comparison with our approach (the extension to the stochastic ODE case is trivial), we take
the deterministic ODE case, for which the above reduces to

p(θ|x, φ) ∝ p(θ)pGP (ẋ = f(x, θ)|x, φ). (3.4)

The joint distribution over observations, latent states and parameters is then defined as

p(y,x, θ, φ) = pOBS(y|x)p(θ|x, φ)pGP (x|φ)p(φ). (3.5)

Inference is then achieved by sampling, conditioned on the observed sequence y. The unknown
normalisation term of (3.4) is a function of φ and thus makes direct Gibbs sampling from this
posterior problematic. The approach taken in Calderhead et al. (2008) is to re-factorize the
joint distribution in the form 11

p(y,x, θ, φ) = p(θ|x, φ)p(x|φ,y)p(φ|y)p(y).

Conditioned on y, ancestral sampling is then performed :

φ ∼ p(φ|y),

x ∼ p(x|φ,y) ∝ pOBS(y|x)pGP (x|φ),

θ ∼ p(θ|x, φ).

Here, p(φ|y) ∝ p(φ)
∫
pOBS(y|x)pGP (x|φ)dx for which the integral can be evaluated analyti-

cally. A disadvantage of this model is that the posterior p(φ|y) does not take the ODE system
dynamics into consideration. Effectively, a GP is fitted to the data first (without knowledge
of the system dynamics) and the parameters θ of the ODE are subsequently adjusted to best
match the fitted GP.

The gradient matching approach can be defined as a chain graph (see for example (Koller and
Friedman, 2009)) shown in Figure 3.8c with factors 12

pOBS(y|x)pODE(ẋODE |x, θ)pGP (ẋGP |x, φ)δ (ẋODE − ẋGP ) pGP (x)p(θ)p(φ).

The undirected link between θ and ẋODE is necessary to ensure that the variables ẋODE , ẋGP ,
θ form a component of the chain graph. Marginalising this chain distribution over ẋGP and

10. The mathematical motivation for this is less clear. Given distributions p and q, their ‘overlap’
∫
p(x)q(x)dx

is maximal when q(x) is a delta distribution placing all its mass on the most likely state of p(x) ; this is not
necessarily the same as matching q to p.
11. Whilst this can be interpreted as generative model, this is unnatural since the term p(θ|x, φ) means that

the parameters of the ODE depend on the generated state x.
12. This chain graph structure is the same for the trivial extension to the stochastic ODE case.
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ẋODE gives the marginal distribution,

pOBS(y|x)pGP (x|φ)p(φ)
p(θ)ω′(x|θ, φ)∫
p(θ)ω′(x|θ, φ)dθ

, (3.6)

which matches (3.5). We can also write this as

pOBS(y|x)pGP (x|φ)p(φ)p(θ)mGM (x|θ, φ), (3.7)

where the gradient matching function is defined as

mGM (x|θ, φ) ≡ ω′(x|θ, φ)∫
p(θ)ω′(x|θ, φ)dθ

. (3.8)

Adaptive Gradient Matching

Dondelinger et al. (2013) considered a modified gradient matching approach with joint distri-
bution,

p(y,x, ẋ, θ, φ)∝pOBS(y|x)pGP (x|φ)ω(ẋ,x|θ, φ)p(θ)p(φ),

and marginal,

p(y,x, θ, φ)∝pOBS(y|x)pGP (x|φ)ω′(x|θ, φ)p(θ)p(φ).

Sampling is carried out using Metropolis-Hastings under a factorised proposal distribution
q(x, θ, φ) = q(x)q(θ)q(φ). A benefit of this approach is that the marginal,

p(y|φ) ∝
∫
pOBS(y|x)pGP (x|φ)

∫
ω′(x|θ, φ)p(θ)dθdx,

does depend on the ODE. Hence, in contrast to the approach in Calderhead et al. (2008),
the parameters of the GP in this approach are influenced by the ODE (and vice versa). The
marginal p(y,x, θ, φ) is then given by the same expression as (3.7) but with the adaptive
gradient matching function,

mAGM (x|θ, φ) ≡ ω′(x|θ, φ)∫
p(θ)p(φ)pGP (x|θ)ω′(x|θ, φ)dθdxdφ

.

The factors in the corresponding chain graph, Figure 3.8d, are the same as for the gradient
matching method of Subsection 3.2.4. However, all variables except y form a component in
the chain graph, giving the correct form for the marginal distribution on p(y,x, θ, φ).

As for the gradient matching approaches (Calderhead et al., 2008; Dondelinger et al., 2013),
there is no natural interpretation as a generative model of the data. On the contrary, no such
issue arise in our GP-ODE generative model in which the coupling between GP and ODE
parameters occurs through the implicit numerical integration mechanism to ensure agreement
between the ODE and GP curves.
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3.2.5 Experiments

We illustrate our framework on two benchmark systems, Lotka-Volterra and Signal Trans-
duction Cascade in Dondelinger et al. (2013). To aid comparison, wherever possible, we have
chosen the same parameter settings and priors as the original authors. Our main interest is
to study the implications of the different joint distributions specified by the competing ap-
proaches. As such, we wish to make as similar as possible the sampling approaches for the
three competing models in order to minimize differences due to different sampling strategies.
To facilitate comparison we therefore used the same discretized sampling strategy for all me-
thods. For the AGM and our GP-ODE approach we used Gibbs sampling for a discretized set
of values, analogous to Subsection 3.2.3 and the hybrid Gibbs-MH scheme of Subsection 3.2.3
for state samples. The cost of drawing a single sample in all competing approaches is similar,
scaling O(KT 3) where K is the dimension of the state vector and T is the number of the
observations. We stopped each sampling scheme (all written in Matlab) after a similar CPU
time. Following (Dondelinger et al., 2013), we set p(θ) to a Gamma prior Ga(4, 0.5), p(φ) to
a uniform prior U(0, 100) and p(σ) to a Gamma prior Ga(1, 1). For the sampling process, the
standard deviations of the observation noise σ in both models are initialized as the ground
truth. For comparison we ran the Bayesian Numerical Integration approach using the same
discretized parameter values wherever possible.

Lotka-Volterra is an ecological system that is used to describe the periodical interaction
between a prey species [S] and a predator species [W ] :

d[S]

dt
= [S](α− β[W ]),

d[W ]

dt
= −[W ](γ − δ[S]),

where θ = [α, β, γ, δ]T and x(t) = [[S], [W ]]. The ground truth data are generated using
numerical integration over the interval [0, 2] with θ = [2, 1, 4, 1] and initial state values [S] = 5,
[W ] = 3. The clean data are then sampled with the sampling interval 0.2. Finally clean data
are corrupted with additive Gaussian noise N (0, 0.52I) to form the observations Y.

We chose the squared-exponential covariance function,

cφk(t, t′) = σxk exp(−lk(t− t′)2),

where φk = [σxk , lk]. Assuming a common parameter across observation dimensions, the pa-
rameter vector φ is simplified to [σx, l] ; we initialize it as [1, 10]. The ODE parameters are
initialized as θ = [1.5, 0.5, 3.5, 0.5]. We discretized the ODE parameters α, β, γ, δ over [1.5,
2.5], [0.5, 1.5], [3.5, 4.5], [0.5, 1.5] all with the interval 0.1 ; the parameter σx is discretized over
the range [0.1,1] with interval 0.1 ; the lengthscale l is discretized over [5, 50] with interval 5 ;
the standard deviation of the noise σ was discretized over [0.1, 1] with interval 0.1. The para-
meter x0 was, for each state dimension k, discretized in the range [0, 10] using 20 uniformly
spaced bins.
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After drawing ODE parameters θ from the posterior (see Table 3.2.5), we plot the numerically
integrated curves (setting x0 to the true value to aid visual comparison), see Figure 3.9. The
‘best’ method is that which most closely approximates the Bayesian Numerical Integration
method of Subsection 3.2.1. For small noise levels (not shown), all three competing methods
produce similar results ; however as the noise increases, the Adaptive Gradient Matching and
Gradient Matching approaches diverge markedly from the Bayesian Numerical Integration
approach, whilst the GP-ODE approach fairs well.

Signal Transduction Cascade is described by a 5-dimensional ODE system,

d[S]

dt
= −k1[S]− k2[S][R] + k3[RS],

d[Sd]

dt
= k1[S],

d[R]

dt
= −k2[S][R] + k3[RS] +

V [Rpp]

Km+ [Rpp]
,

d[RS]

dt
= k2[S][R]− k3[RS]− k4[RS],

d[Rpp]

dt
= k4[RS]− V [Rpp]

Km+ [Rpp]
,

where θ = [k1, k2, k3, k4, V,Km] and x(t) = [[S], [Sd], [R], [RS], [Rpp]]T . The ground truth
data are generated over the interval [0, 100] with θ = [0.07, 0.6, 0.05, 0.3, 0.017, 0.3] and initial
state [S] = 1, [Sd] = 0, [R] = 1, [RS] = 0, [Rpp] = 0. Then the data are sampled at t= [0, 1,
2, 4, 5, 7, 10, 15, 20, 30, 40, 50, 60, 80, 100]. Finally the drawn samples are corrupted with
additive Gaussian noise N (0, 0.12I) to construct the noisy observations. The non-stationarity
is captured by the covariance function 13,

cφk(t, t
′)=σxk arcsin

(
ak + bktt

′√
(ak + bkt2 + 1)(ak + bkt′2 + 1)

)
,

where φk = [σxk , ak, bk]. The ODE parameters are initialized as θ = [0.05, 0.4, 0.03, 0.1, 0.015, 0.1].
We discretized the ODE parameters k1, k2, k3, k4, V , Km over [0.05, 0.09], [0.4, 0.8], [0.03,
0.07], [0.1, 0.5], [0.015, 0.019], [0.1, 0.5] with the respective intervals 0.01, 0.1, 0.01, 0.1, 0.001,
0.1 ; the parameters σx, a, b over [0.1,0.9], [0.5, 2.5], [0.5, 2.5] with the respective intervals
0.2, 0.5, 0.5 ; the standard deviations of the noise σ over [0.06, 0.14] with the interval 0.02.
The 5 components of x0 were discretized in the intervals [0.5 1.5], [-0.1 0.1], [0.5 1.5], [-0.1
0.1], [-0.1 0.1] using 50 uniformly spaced bins. All three competing approaches were run for
approximately 30mins CPU time. The results for all methods produce reasonable solutions
and the corresponding reconstructions using numerical integration with parameters θ sampled
from the respective posteriors are similar. For this reason we show only the ideal Bayesian Nu-
merical Integration procedure and our GP-ODE method in Figure 3.10. In Table 3.2.5 we note

13. In contrast to the Lotka Volterra model, here we use a GP with separate hyperparameters for each state
dimension due to the different length scales in each dimension.
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the same pattern as for the Lotka-Volterra experiments, namely that the GP-ODE method
closely matches the Bayesian Numerical Integration approach.

3.2.6 Summary

Bayesian numerical integration is an accurate but computationally prohibitive method for
parameter estimation in ODEs due to the fact that explicit numerical integration is required
to evaluate every sample of the parameter vector in the posterior. Whilst previous GP based
approaches have demonstrated some success in circumventing the high computational cost,
they are not natural generative models of the data.

In contrast, our GP-ODE method has a natural interpretation for data generation by using GP
to directly link the state derivatives to the observations. It is conceptually the closest match
amongst competing GP approaches to Bayesian numerical integration. Finally, we would like
to thank Dirk Husmeier and Benn Macdonald for their helpful discussions.

3.3 Conclusion

In this chapter, we mainly worked on Gaussian Processes for Bayesian Estimation to address
two challenging tasks from the perspective of Bayesian estimation.

In Wang and Chaib-draa (2012b), we proposed an adaptive nonparametric particle filter by
incorporating a GP trained optimal proposal into a KLD-Sampling particle filter. On one hand,
the GP based proposal allows us to draw high-quality particles from the important regions
of the posterior. On the other hand, the KLD-Sampling mechanism allows us to adaptively
learn the number of particles according to the complexity of the posteriors. Both perspectives
positively help each other to make our resulting estimator accurate and efficient.

In Wang and Barber (2014), we proposed a novel GP-ODE generative model for Bayesian
parameter estimation in ODE systems. By directly connecting the derivative of the states to
the observations, our GP-ODE is a more natural generative model than the previous GP based
approaches and thus improves the estimation accuracy.

In the next chapter, we concentrate on the other direction, Bayesian Estimation for Gaussian
Processes, to address the challenging tasks from the perspective of GP.
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Chapitre 4

Bayesian Estimation for Gaussian
Processes

A Gaussian process (GP) is a powerful Bayesian nonparametric model (MacKay, 1998; Ras-
mussen and Williams, 2006). Due to the fact that it can be interpreted as a nonparametric
prior, it allows us to make inference in a probabilistic Bayesian manner. However, the traditio-
nal inference mechanism with GPs is often difficult to interpret the real-world data properties,
i.e., large size of data sets (Rasmussen and Williams, 2006; Snelson and Ghahramani, 2005) or
input-dependent properties (Paciorek and Schervish, 2003; Plagemann, 2008). In this chapter,
we took advantage of Bayesian Estimation for Gaussian Processes to design effective inference
mechanisms for GPs to handle these challenges :

1. Firstly, we proposed a marginalized particle GP (Wang and Chaib-draa, 2012a) to reduce
the high computational burden of GP regression in a recursive Bayesian framework.
Meanwhile, our approach provided us with a novel online method for GP hyperparameter
training.

2. Secondly, we proposed a KNN-based Kalman filter GP (Wang and Chaib-draa, 2013) to
capture the input-dependent nonstationarity.

3. Finally, we proposed two sequential Monte Carlo based GPs (Wang and Chaib-draa,
2015a) to deal with the temporal-related nonstationarity and heteroscedasticity in time-
varying applications.

4.1 Introduction

Over the past years, GPs have become popular in the machine learning community due to
its Bayesian nonparametric framework (Neal, 1997; MacKay, 1998; Rasmussen and Williams,
2006). However, it is often difficult for a standard GP to model the challenging data pro-
perties of real-world applications (Rasmussen and Williams, 2006; Quinonero-Candela and
Rasmussen, 2005; Kuss, 2006; Plagemann, 2008).
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4.1.1 Large Data Size

Due to the fact that the computational burden of a standard GP implementation is mainly
governed by O(n3) where n is the size of the data set, it is often intractable to use GPs for
large data sets. In order to reduce the unsatisfactory computation, several GP extensions have
been attempted with different sparse mechanisms (Tresp, 2000; Smola and Bartlett, 2000;
Csató and Opper, 2002; Seeger et al., 2003; Quinonero-Candela and Rasmussen, 2005; Snelson
and Ghahramani, 2005; Rasmussen and Ghahramani, 2001; Urtasun and Darrell, 2008; Reece
and Roberts, 2010). A detailed review of sparse approximate GPs can be found in Quinonero-
Candela and Rasmussen (2005); Chalupka et al. (2013). In the following, we will briefly discuss
several computationally efficient GPs which are used in this thesis.

One popular way for computation reduction is to learn a small inducing set offline from the
whole training set to achieve sparsification. A well-known approach is called sparse pseudo-
input Gaussian process (SPGP) (Snelson and Ghahramani, 2005) where the covariance of the
SPGP is parameterized by the locations of several pseudo-input points that are learned by
gradient-based optimization. However, its accuracy is often limited, especially when the size
of the pseudo set is getting larger and/or the dimensionality of the input space is getting hi-
gher (Snelson and Ghahramani, 2005). Recently, a sparse spectrum Gaussian process (SSGP)
(Lázaro-Gredilla et al., 2010) has been proposed with a stationary trigonometric Bayesian mo-
del which retains the computational efficiency of the SPGP while improving its accuracy. But
similar to the SPGP, the SSGP may present overfitting since the optimization is implemented
over a large number of model parameters. Additionally, it is worth mentioning that the SPGP
and SSGP, to some degree, have the capability to deal with input-dependent properties (such
as heteroscedasticity) because of pseudo-input or spectral-point learning.

Another popular way for computation reduction is to probabilistically divide the whole training
set into several small subsets using a mixture of GP experts. In this case, the computation load
is naturally reduced since the prediction is based on a number of small-sized GP experts. One
well-known method is the infinite mixture of Gaussian process experts (iMGPE) (Rasmussen
and Ghahramani, 2001) where an input-dependent Dirichlet process is designed as a gating
network for GP expert selection. However, the hierarchical model structure is not easy to
implement in practice (Paciorek and Schervish, 2003). Several practical variants were proposed
by constructing a local mixture of GP experts for large-scale computer vision and robotics
applications (Urtasun and Darrell, 2008; Nguyen-Tuong et al., 2008). Compared to iMGPE,
the local approaches are suitable choices when a tradeoff between accuracy and efficiency is
required. Additionally, iMGPE and the local variants can be used to deal with the input-
dependent data properties due to the GP mixture representation.

The last but not least popular approach for computation reduction is to sequentially process
the training data set in an online fashion to speed up the computation efficiency. A well-known
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method is sparse online GP (SOGP) (Csató and Opper, 2002) where recursive Bayesian in-
ference is coupled with an active set selection mechanism to balance the tradeoff between
accuracy and efficiency. The most attractive point of SOGP is its online estimation for the
latent function values of a data stream. But GP hyperparameters in SOGP have to be lear-
ned offline, and this may restrict the performance of SOGP for time-varying applications.
Recently, a kernel recursive least-square tracker (KRLS) (Vaerenbergh et al., 2012) was pro-
posed to capture the time-varying data properties by taking online hyperparameter learning
into account. But its performance may still be limited as KRLS only learns a scale parameter
which is assumed to be the same in the kernel function and noise variance. Finally, it is worth
mentioning a recent Kalman filter Gaussian process (KFGP) (Reece and Roberts, 2010) which
naturally reduces the computation by recursively correlating GP priors of different training
subsets in an efficient Kalman filter framework. Furthermore, it provides us with a novel view
to connect GP with Kalman filter (i.e., Using Kalman filter as Bayesian inference mechanism
for GP), which is our key inspiration of Bayesian Estimation for Gaussian Processes. We will
further discuss our motivation in Subsection 4.1.3.

4.1.2 Input-Dependent Properties

Many real-world applications in geophysics, biology and robotics often reflect strong input-
dependent characteristics (Rasmussen and Ghahramani, 2001; Paciorek and Schervish, 2003;
Kersting et al., 2007; Plagemann, 2008; Adams and Stegle, 2008; Lázaro-Gredilla and Titsias,
2011). It is often difficult to model these phenomena correctly with a standard GP.

One input-dependent property is input-dependent smoothness (nonstationarity) where the
correlation between the latent function values f(x) and f(x′) does not only depend on x− x′

but it is also related to the locations of inputs x and x′ (Rasmussen and Williams, 2006;
Plagemann, 2008; Adams and Stegle, 2008). A popular method is to predefine a nonstationary
covariance function for the GP. A review of several existing nonstationary covariance functions
can be found in Rasmussen and Williams (2006). However, the performance of this method is
often limited due to the fact that the predefined nonstationary covariance functions require
either prior knowledge on the specific nonstationarity (Rasmussen and Williams, 2006; Adams
and Stegle, 2008) or complicated inference mechanisms for model parameter learning (Paciorek
and Schervish, 2003).

Another input-dependent property is input-dependent noise (heteroscedasticity) where the va-
riance of the observation noise σ2y depends on the location of the input x. A popular treatment
is to add a GP prior on the input-dependent noise (Goldberg et al., 1998). However, it makes
Bayesian inference intractable. Gibbs sampling has been used with a heavy computation load
(Goldberg et al., 1998). To apply this heteroscedastic GP for real-life applications, a most
likely heteroscedastic Gaussian process (MLHGP) was proposed in a fast (hard) EM lear-
ning framework (Kersting et al., 2007). But MLHGP is not guaranteed to converge and may
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instead oscillate (Lázaro-Gredilla and Titsias, 2011). A more recent work is a variational hete-
roscedastic Gaussian process (VHGP) (Lázaro-Gredilla and Titsias, 2011), which is not prone
to overfitting. However, the computational cost is roughly twice as much as a standard GP
(Lázaro-Gredilla and Titsias, 2011). Additionally, there exists several warped GPs in which
input-dependent properties are achieved by warping GP with different nonlinear functions
(Snelson et al., 2003; Adams and Stegle, 2008; Lázaro-Gredilla, 2012).

4.1.3 Motivations

From the introduction above, we can see that the performance of a standard GP is often
deteriorated when the data sets reflect several challenging data properties. Therefore, we were
motivated to address these real-world difficulties within an efficient and accurate Bayesian es-
timation framework. The recent Kalman filter Gaussian process (KFGP) (Reece and Roberts,
2010), which was mainly introduced for computation reduction in GPs, opens a door for us.
In KFGP, the classical Kalman filter is used as an online Bayesian inference mechanism for
a GP so that the latent function values can be efficiently estimated. Inspired by this novel
connection between a GP and a Kalman filter, we proposed Bayesian Estimation for Gaussian
Processes in which we will design several sequential Bayesian estimation mechanisms for GPs
to interpret challenging data properties in a number of efficient and accurate Bayesian filtering
frameworks.

4.2 A Marginalized Particle Gaussian Process Regression

As mentioned in Chapter 2, a Gaussian process is an elegant nonparametric Bayesian model for
nonlinear regression. However, the computational complexity of O(n3) for training a standard
GP limits its applicability in practice, when the number of the training points n is larger than
a few thousands (Rasmussen and Williams, 2006).

In Wang and Chaib-draa (2012a), we proposed a novel marginalized particle Gaussian process
(MPGP) regression approach in which we took advantage of a fast and accurate marginalized
particle filtering framework to learn GP hyper-parameters and hidden function values in an
online fashion.

4.2.1 Data Collection

In practice, the whole training set is often constructed by gathering several small subsets, one
at a time. For the t-th collection, the training subset (Xt,yt) consists of nt input-output pairs,
i.e., {(x1

t , y
1
t ), · · · (x

nt
t , y

nt
t )} where each scalar output yit ∈ R is generated from a nonlinear

function f(xit) of an input vector xit ∈ RDx with an additive Gaussian noise N (0, a20). All
the pairs are separately organized as an input matrix Xt = [x1

t , · · ·x
nt
t ]T and an output

vector yt = [y1t , · · · y
nt
t ]T . For simplicity, the whole training data set with T collections is
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symbolized as (X1:T ,y1:T ). Our goal is to estimate the function values of f(x) at m test
inputs X? = [x1

?, · · ·xm? ]T given (X1:T ,y1:T ).

4.2.2 Reorganization of Gaussian Process Regression

In this contribution, we follow a popular zero-mean GP setting (Rasmussen and Williams,
2006), f(x) ∼ GP(0, k(x,x′)). Furthermore, we choose a compounded covariance function
kSENN (x,x′) to deal with non-stationary phenomena in the real world,

kSENN (x,x′) = kSE(x,x′) + kNN (x,x′),

where kSE(x,x′) is a stationary squared exponential covariance function,

kSE(x,x′) = a21 exp

(
−(x− x′)T (x− x′)

2a22

)
,

and kNN (x,x′) is a non-stationary neural network covariance function,

kNN (x,x′) = a23 sin−1

 x̃T x̃′

a24

√
(1 + 1

a24
x̃T x̃)(1 + 1

a24
x̃′T x̃′)

 .

The augmented input in kNN (x,x′) is

x̃ =

[
1

x

]
.

For simplicity, we collect the noise variance and all the hyper-parameters into a vector

θ = [a0 a1 a2 a3 a4]
T . (4.1)

According to the sequential procedure of data collection, we reorganize the target posterior,

p(f(X?), θ|X1:T ,y1:T , X?) = p(θ|X1:T ,y1:T , X?)p(f(X?)|X1:T ,y1:T , X?, θ). (4.2)

The standard GP regression can be used to estimate this posterior in a two-step off-line man-
ner. However, the standard batch implementation of a GP suffers from the high computation
complexity of O(n3) where n =

∑T
t=1 nt. This makes GP regression often infeasible for large

data sets.

Inspired by the fact that the training set is constructed sequentially, we propose to take advan-
tage of this sequential manner to derive an sequential inference framework for GP regression
so that the latent f(X?) and θ can be estimated efficiently and accurately.
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4.2.3 Gaussian Process Based State Space Model

In order to make sequential Bayesian estimation for GP, we first explore a GP based state
space model (SSM) in the following. Then according to the characteristics of our SSM, we
propose to design a marginalized particle filtering framework to speed up the efficiency while
preserving the accuracy.

A standard SSM consists of a prediction model (also called as transition model or motion
model) and an observation model. We first discuss about how to construct the prediction
model which reflects the Markovian evolution of the latent states. In our context of GPs, the
latent states are actually the unknown hyper-parameter vector θ (in Equation 4.1) and the
latent function values.

For the unknown hyper-parameter vector θ, a popular way in Bayesian filtering techniques is
to introduce an artificial dynamics of θ (Liu and West, 2001; Li et al., 2004; Kantas et al.,
2009),

θt = bθt−1 + (1− b)θ̄t−1 + st−1, (4.3)

where b = (3δ − 1)/(2δ), δ is a discount factor which is typically around 0.95-0.99, θ̄t−1 is the
Monte Carlo mean of θ at t − 1, and st−1 ∼ N (0, r2Σt−1), r2 = 1 − b2, Σt−1 is the Monte
Carlo variance matrix of θ at t− 1.

For the latent function values, we explore the correlation between the (t − 1)th and tth data
subsets by using a GP. For simplicity, we denote Xc

t = Xt ∪ X? and f ct = f(Xc
t ). If f(x) ∼

GP(0, k(x,x′)), the prior p(f ct , f ct−1|Xc
t−1, X

c
t , θt) is jointly Gaussian

p(f ct , f
c
t−1|Xc

t−1, X
c
t , θt) = N (0,

[
Kθt(X

c
t , X

c
t ) Kθt(X

c
t , X

c
t−1)

Kθt(X
c
t , X

c
t−1)

T Kθt(X
c
t−1, X

c
t−1)

]
).

Then according to the conditional property of the Gaussian distribution, we can obtain

p(f ct |f ct−1, Xc
t−1, X

c
t , θt) = N (G(θt)f

c
t−1, Q(θt)), (4.4)

where

G(θt) = Kθt(X
c
t , X

c
t−1)K

−1
θt

(Xc
t−1, X

c
t−1), (4.5)

Q(θt) = Kθt(X
c
t , X

c
t )−Kθt(X

c
t , X

c
t−1)K

−1
θt

(Xc
t−1, X

c
t−1)Kθt(X

c
t , X

c
t−1)

T . (4.6)

In fact, the conditional density (in Equation 4.4) represents the prediction model for the
latent function values, which is a linear state transition with an additive Gaussian noise vft ∼
N (0, Q(θt)),

f ct = G(θt)f
c
t−1 + vft . (4.7)

After constructing the prediction model for latent function values and hyper-parameters, we
now focus on the observation model which can be straightforwardly obtained from the t-th

56



data collection,

yt = Htf
c
t + vyt , (4.8)

where Ht = [Int 0] is an index matrix to make Htf
c
t = f(Xt) due to the fact that the t-th

training outputs yt are only corresponding to the t-th training inputs Xt. Additionally, the
noise vyt ∼ N (0, R(θt)) is from Subsection 4.2.1 where the covariance of the noise R(θt) is
a20,tI. Note that a0 is a static, unknown hyper-parameter. We use the symbol a0,t just because
of the consistency with the artificial evolution of θ.

Now our SSM is fully specified by the prediction model (Equation 4.3 and 4.7) and the obser-
vation model (Equation 4.8). Based on this SSM, we propose a sequential inference framework
in the following to learn the latent function values and unknown hyper-parameters in an online
fashion.

4.2.4 Bayesian Inference by Marginalized Particle Filter

In contrast to the standard GP regression with a two-step off-line inference, we propose an
online filtering framework to simultaneously estimate hidden function values and learn the
hyper-parameters. According to our SSM, the inference problem refers to computing the pos-
terior distribution,

p(f ct , θ1:t|X1:t, X?,y1:t),

which is analytically intractable. One of the most popular approximation techniques is Monte
Carlo sampling (Gilks et al., 1996; Doucet et al., 2001). Due to the fact that our SSM is based
on a sequential data collection procedure, we hence investigate particle filtering approaches
that are based on sequential Monte Carlo (SMC) sampling (Doucet et al., 2000b; Cappé et al.,
2007).

Furthermore, for our SSM the traditional sampling importance resampling (SIR) particle filter
introduces an unnecessary computational burden since Equation 4.7 in our SSM is a linear
structure given θt. This inspires us to apply a more efficient marginalized particle filter (also
called Rao-Blackwellised particle filter) (Li et al., 2004; Doucet et al., 2000a; de Freitas, 2002;
Schön et al., 2005) in which the latent states in the conditional linear structure can be efficiently
estimated by a Kalman filter.

Specifically, the posterior can be factorized by using Bayes rule,

p(f ct , θ1:t|X1:t, X?,y1:t) = p(θ1:t|X1:t, X?,y1:t)p(f
c
t |θ1:t, X1:t, X?,y1:t).

As the first term p(θ1:t|X1:t, X?,y1:t) is analytically intractable, we approximate it by a
number of particles. After the particle approximation of θ1:t is obtained, the second term
p(f ct |θ1:t, X1:t, X?,y1:t) can be efficiently computed by Kalman filter since f ct is the hidden
state in the linear substructure (Equation 4.7) of SSM.
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Firstly, we focus on p(θ1:t|X1:t, X?,y1:t). Since it is not analytically tractable, we factorize it
in the following recursive form so that it can be approximated using a sequential importance
sampling mechanism,

p(θ1:t|X1:t, X?,y1:t) ∝ p(yt|y1:t−1, θ1:t, X1:t, X?)p(θt|θt−1)p(θ1:t−1|X1:t−1, X?,y1:t−1).

At each iteration of sequential importance sampling, the particles for the hyper-parameter vec-
tor are drawn from the proposal distribution p(θt|θt−1) (easily obtained from (Equation 4.3)).
Then the importance weight for each particle at t can be computed by p(yt|y1:t−1, θ1:t, X1:t, X?).
This distribution could be solved analytically,

p(yt|y1:t−1, θ1:t, X1:t, X?) =

∫
p(yt, f

c
t |y1:t−1, θ1:t, X1:t, X?)df

c
t

=

∫
p(yt|f ct , θt, Xt, X?)p(f

c
t |y1:t−1, θ1:t, X1:t, X?)df

c
t

=

∫
N (Htf

c
t , R(θt))N (f ct|t−1, P

c
t|t−1)df

c
t

= N (Htf
c
t|t−1, HtP

c
t|t−1H

T
t +R(θt)), (4.9)

where p(yt|f ct , θt, Xt, X?) is Gaussian distributed N (Htf
c
t , R(θt)) due to our Gaussian obser-

vation model (Equation 4.8). Moreover, p(f ct |y1:t−1, θ1:t, X1:t, X?) is also Gaussian distributed
N (f ct|t−1, P

c
t|t−1) with the predictive mean f ct|t−1 and covariance P ct|t−1 as it is the prediction

step of Kalman filter for f ct .

Secondly, we explain how to compute p(f ct |θ1:t, X1:t, X?,y1:t). As mentioned before, this pos-
terior can be recursively obtained using a Kalman filter since Equations 4.7 and 4.8 are linear
and Gaussian given θ1:t. Specifically, we use Bayes rule to factorize this posterior as follows :

p(f ct |θ1:t, X1:t, X?,y1:t) =
p(yt|f ct , θt, Xt, X?)p(f

c
t |y1:t−1, θ1:t, X1:t, X?)

p(yt|y1:t−1, θ1:t, X1:t, X?)
. (4.10)

In the prediction step, the goal is to compute p(f ct |y1:t−1, θ1:t, X1:t, X?),

p(f ct |y1:t−1, θ1:t, X1:t, X?) =

∫
p(f ct , f

c
t−1|y1:t−1, θ1:t, X1:t, X?)df

c
t−1

=

∫
p(f ct |f ct−1, θt, Xt−1:t, X?)p(f

c
t−1|y1:t−1, θ1:t−1, X1:t−1, X?)df

c
t−1

=

∫
N (G(θt)f

c
t−1, Q(θt))N (f ct−1|t−1, P

c
t−1|t−1)df

c
t−1

= N (G(θt)f
c
t−1|t−1, G(θt)P

c
t−1|t−1G(θt)

T +Q(θt)), (4.11)

where p(f ct |f ct−1, θt, Xt−1:t, X?) is directly from Equation 4.4, and p(f ct−1|y1:t−1, θ1:t−1, X1:t−1, X?)

is the posterior estimation for f ct−1, i.e., N (f ct−1|t−1, P
c
t−1|t−1). Since p(f

c
t |y1:t−1, θ1:t, X1:t, X?)

is also expressed as N (f ct|t−1, P
c
t|t−1), then the prediction step of Kalman filter is summarized

as :

f ct|t−1 = G(θt)f
c
t−1|t−1, (4.12)

P ct|t−1 = G(θt)P
c
t−1|t−1G(θt)

T +Q(θt). (4.13)
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In the update step, the current observation density p(yt|f ct , θt, Xt, X?) = N (Htf
c
t , R(θt)) is

used to correct the prediction. Putting Equations 4.9 and 4.11 into Equation 4.10, the posterior
p(f ct |θ1:t, X1:t, X?,y1:t) is actually Gaussian distributed N (f ct|t, P

c
t|t) with Kalman Gain Γt :

Γt = P ct|t−1H
T
t (HtP

c
t|t−1H

T
t +R(θt))

−1, (4.14)

f ct|t = f ct|t−1 + Γt(yt −Htf
c
t|t−1), (4.15)

P ct|t = P ct|t−1 − ΓtHtP
c
t|t−1. (4.16)

The whole algorithm is summarized in Algorithm 6. At each iteration, we first draw Np

particles for the hyper-parameter vector (Algorithm 6, Line 3). Then we use these particles
to calculate the computation quantities of our SSM (Algorithm 6, Line 4) so that we can
subsequently perform Kalman filter for latent function values (Algorithm 6, Line 5-6). Next
we compute the weights of the particles and estimate the latent states of our SSM (Algorithm
6, Line 7-10). Finally, according to the normalized weights we resample the particles for the
next step (Algorithm 6, Line 11). The computational cost of our MPGP is mainly governed
by O(NpTS

3) (Kantas et al., 2009) where Np is the number of the particles, T is the number
of data collections, S = max(nt), (t = 1, 2, ...T ) is the max size among all the data subsets.
Compared to a standard GP regression, our MPGP naturally cut down the computational
load by sequentially processing a number of small data subsets. Moreover, note that f(X?)

is estimated as a Gaussian mixture at each iteration (since each hyper-parameter particle
accompanies with a Kalman filter for f(X?)), and the recursive filtering framework allows us
to propagate the previous estimation to improve the current accuracy. Therefore, our MPGP
could accelerate the computational speed while preserving the accuracy.

Finally, it is worth mentioning that Kalman filter GP (KFGP) (Reece and Roberts, 2010)
can be treated as a special case of our MPGP since KFGP firstly trains the hyper-parameter
vector off-line, and then estimates p(f ct |θ1:t, X1:t, X?,y1:t) by Kalman filter. However, the off-
line learning procedure in KFGP will either take a long time using a large extra training
data or fall into an unsatisfactory local optimum using a small extra training data. On the
contrary, in our MPGP the local optimum solution can be used as the initial setting of hyper-
parameters, and then the underlying θ is further learned online by the marginalized particle
filter to improve the performance.

4.2.5 Experiments

In the following, we compare our MPGP to several state-of-the-art fast GP approaches by
evaluating the accuracy and the efficiency of all the approaches on a number of synthetic and
real-world data sets.
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Algorithm 6 Marginalized Particle Gaussian Process (MPGP) Regression.
1: for t = 1 to T do
2: for i = 1 to Np do
3: Drawing θit ∼ p(θt|θ̃it−1) by using the resampled particle θ̃it−1 with (4.3)
4: Using θit to specify k(x,x′) in GP to construct G(θit), Q(θit), R(θit) in (4.5-4.6, 4.8)
5: Kalman Predict : Using f̃ c,it−1|t−1, P̃

c,i
t−1|t−1 into (4.12-4.13) to compute f c,it|t−1, P

c,i
t|t−1

6: Kalman Update : Using f c,it|t−1 and P c,it|t−1 into (4.14-4.16) to compute f c,it|t and P c,it|t
7: Putting f c,it|t−1, P

c,i
t|t−1, R(θit) into (4.9) to compute the importance weight w̄it

8: end for
9: Normalizing the weight : wit = w̄it/(

∑Np
i=1 w̄

i
t) (i = 1, ...Np)

10: Hyper-parameter and hidden function value estimation by summarizing the Gaussian
mixture

∑Np
i=1w

i
tN (f c,it|t , P

c,i
t|t ) with N (f̂ ct|t, P̂

c
t|t)

θ̂t =

Np∑
i=1

witθ
i
t

f̂ ct|t =

Np∑
i=1

witf
c,i
t|t ⇒ f̂?t|t = H?

t f̂
c
t|t

P̂ ct|t =

Np∑
i=1

wit(P
c,i
t|t + (f c,it|t − f̂

c
t|t)(f

c,i
t|t − f̂

c
t|t)

T )⇒ P̂ ?t|t = H?
t P̂

c
t|t(H

?
t )T

where H?
t = [0 Im] is an index matrix to get the function value estimation at X?

11: Resampling : For i = 1, ...Np, resample θit, f
c,i
t|t , P

c,i
t|t with respect to the importance

weight wit to obtain θ̃it, f̃
c,i
t|t , P̃

c,i
t|t for the next step

12: end for

Two Synthetic Data Sets

We first evaluate our proposed MPGP on two synthetic one-dimensional data sets. One is a
function with a sharp peak which is spatially inhomogeneous smooth (DiMatteo et al., 2001)

f1(x) = sin(x) + 2 exp(−30x2).

For f1(x), we gather the entire training data set with 100 collections. For each collection, we
randomly select 30 inputs from [-2, 2], then calculate their outputs by adding a Gaussian noise
N (0, 0.32) to their function values. The test input is from -2 to 2 with 0.05 interval.

The other function is with a discontinuity (Wood, 2002) :

f2(x) = N (x; 0.6, 0.22) +N (x; 0.15, 0.052) (0 ≤ x ≤ 0.3),

f2(x) = N (x; 0.6, 0.22) +N (x; 0.15, 0.052) + 4 (0.3 < x ≤ 1).

For f2(x), we gather the entire training data set with 50 collections. For each collection, we
randomly select 60 inputs from [0, 1], then calculate their outputs by adding a Gaussian noise
N (0, 0.82) to their function values. The test input is from 0 to 1 with a 0.02 interval.
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In the first experiment, we evaluate the inference performance of our MPGP in comparison
with the closely-related KFGP in Reece and Roberts (2010). For simplicity, we denote SE-
KFGP and SENN-KFGP as KFGP with the squared exponential covariance function kSE and
KFGP with the compounded covariance function kSE+kNN respectively. Similarly, SE-MPGP
and SENN-MPGP are MPGP with kSE and MPGP with kSE +kNN . The number of particles
in MPGP is set to 10.

First, we plot the estimation surface of our MPGP. It is shown in Figures 4.1 and 4.2 that the
estimation performance for both KFGP and MPGP is getting better and tends to converge
over time since the previous estimation would be incorporated into the current estimation in
the recursive Bayesian filtering. However, our MPGP reduces the uncertainty, which provides
us with a more compact confidence interval than KFGP, due to the online hyper-parameter
learning (Figure 4.3 and 4.4) 1.

Second, we evaluate the accuracy of our MPGP over time. The evaluation criterion is the
test Normalized Mean Square Error (NMSE) and the test Mean Negative Log Probability
(MNLP) as suggested in Lázaro-Gredilla et al. (2010). From Figures 4.5 and 4.6, we can see
that the accuracy of MPGP for both f1 and f2 are better than KFGP, especially in the MNLP
criterion which penalizes both the uncertainty and the inconsistency. The main reason is that
KFGP uses the off-line learned hyper-parameters all the time. On the contrary, our MPGP
initializes the hyper-parameters using the ones of KFGP, then learns the hyper-parameters
online. Hence the MNLP of MPGP is much lower than KFGP. Additionally, if we only focus
on our MPGP, then we can find that our SENN-MPGP is better than our SE-MPGP since
SENN-MPGP takes the spatial non-stationary phenomenon into account.

In the second experiment, we illustrate the average accuracy and efficiency of our SE-MPGP
and SENN-MPGP when the number of particles increases. For each number of particles, we
run the SE-MPGP and SENN-MPGP 5 times and compute the average NMSE and MNLP.
From Figures 4.7 and 4.8, we find that, when we increase the number of particles, the NMSE
and MNLP of SE-MPGP and SENN-MPGP decrease while the running time increases over
time. The reason is that the estimation accuracy and computational load of particle filters tend
to increase when the number of particles increases. Furthermore, the average performance of
SENN-MPGP is better than SE-MPGP since it captures the spatial non-stationarity, but
SENN-MPGP needs more running time than SE-MPGP since the dimension of the hyper-
parameter vector in SENN-MPGP is larger than SE-MPGP.

In the third experiment, we compare our MPGP with other fast GP approaches. The state-of-
art sparse GP methods we chose are sparse pseudo-input Gaussian process (SPGP) (Snelson
and Ghahramani, 2005) and sparse spectrum Gaussian process (SSGP) (Lázaro-Gredilla et al.,

1. Since θ = [a0 a1 a2 a3 a4]
T > 0, in the experiment we construction the artificial transition of log(θ)

based on(4.3).
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Table 4.1: Benchmarks Comparison for Synthetic Datasets. The NMSEi, MNLPi, RTimei
represent the NMSE, MNLP and running time for the function fi (i = 1, 2)

Method NMSE1 MNLP1 RTime1 NMSE2 MNLP2 RTime2

5-SPGP 0.2243 0.5409 28.6418s 0.5445 1.5950 30.3578s
10-SSGP 0.0887 0.1606 18.8605s 0.1144 1.1208 10.2025s
5-SE-MPGP 0.0880 1.6318 12.5737s 0.1687 1.3524 12.4801s
5-SENN-MPGP 0.0881 0.1820 18.7513s 0.1289 1.1782 11.5909s

2010). To take the tradeoff between accuracy and computation efficiency into account, we
implemented SPGP with 5 pseudo inputs (5-SPGP), SSGP with 10 basis functions (10-SSGP),
SE-MPGP with 5 particles (5-SE-MPGP), SENN-MPGP with 5 particles (5-SENN-MPGP).
Moreover, due to the fact that the chosen training data subsets are sequentially ordered, we
would like to examine the robustness of our MPGP with regards to the order of the training
data subsets, i.e., we should clarify whether the good estimation of our MPGP heavily depends
on the order of training data collection. Hence we randomly permute the order of training
subsets (we used before) in this experiment. In Table 4.1, our 5-SE-MPGP mainly outperforms
SPGP except that its MNLP1 is worse than the one of SPGP. The reason is the synthetic
functions are non-stationary but SE-MPGP uses a stationary SE kernel. Hence we perform
5-SENN-MPGP with a non-stationary kernel to show that our MPGP is competitive with
SSGP, and much more accurate and computationally efficient than SPGP.

Global Surface Temperature Data Set

We here analyze the Global Surface Temperature Dataset (January 2011) 2. We first gather the
training data with 100 collections. For each collection, we randomly select 90 data points where
the input vector is the longitude and latitude location, the output is the temperature (oC).
There are two test data sets : the first one is a grid test input set (Longitude : -180 :40 :180,
Latitude : -90 :20 :90) that is used to show the estimated surface of the temperature. The
second test set (100 points) is randomly selected from the data website after we obtain all the
training data collections.

In the first experiment, we show the predicted surface temperature at the grid test inputs.
For this data set, we set the number of particles in our SE-MPGP and SENN-MPGP as 20.
From Figure 4.9, we can see that KFGP methods stuck in the local optimum. SE-KFGP seems
to underfit since it does not model the cold region around the location (100, 50) and SENN-
KFGP seems to overfit since it unexpectedly models the cold region around (-100, -50). On
the contrary, SE-MPGP and SENN-MPGP suitably fit the data set by online hyper-parameter
learning (Figure 4.10).

2. The data set is available at http ://data.giss.nasa.gov/gistemp/.
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Figure 4.3: Online hyper-parameter learning for f1.
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Figure 4.4: Online hyper-parameter learning for f2.
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Figure 4.5: Accuracy evaluation for f1 over time.
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Figure 4.6: Accuracy evaluation for f2 over time.
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Figure 4.7: Accuracy and efficiency evaluation for f1 as a function of the number of the
particles.
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Figure 4.8: Accuracy and efficiency evaluation for f2 as a function of the number of the
particles.
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Table 4.2: Benchmarks Comparison for temperature and pendulum datasets.

Temperature NMSE MNLP RTime Pendulum NMSE MNLP RTime

5-SPGP 0.48 1.62 181.3s 10-SPGP 0.61 1.98 16.54s
10-SSGP 0.27 1.33 97.16s 10-SSGP 1.04 10.85 23.59s
5-SE-MPGP 0.11 1.05 50.99s 20-SE-MPGP 0.63 2.20 7.04s
5-SENN-MPGP 0.10 1.16 59.25s 20-SENN-MPGP 0.58 2.12 8.60s

In the second experiment, we evaluate the estimation error of our MPGP using the second
test data. Firstly, we run all the methods to compute the NMSE and MNLP as a function
of the number of the training data collections. From Figure 4.11 we can see that, when the
number of the training data collections increases, the NMSE and MNLP error for all the me-
thods decrease. However the NMSE and MNLP for our MPGP are much lower than KFGP
since online hyper-parameter learning further improves the estimation performance. Further-
more, our SENN-MPGP is more accurate than SE-MPGP, and this shows that SENN-MPGP
successfully models the spatial non-stationarity of the temperature data by using the non-
stationary kernel function. Secondly, we evaluate the accuracy and efficiency of our MPGP as
a function of the number of the particles. For each value of the number of the particles, we run
SE-MPGP, SENN-MPGP 3 times to evaluate the average NMSE, MNLP and running time.
It is shown in Figure 4.12 that our SENN-MPGP fits the data better than SE-MPGP but the
trade-off is the longer running time.

In the third experiment, we compare our MPGP with the benchmark fast GP approaches. All
the denotations are same as the third experiment of the synthetic data sets. We also randomly
interrupt the order of training subsets for the robustness consideration. From Table 4.2, the
comparison results show that our MPGP uses a shorter running time with a better estimation
performance than SPGP and SSGP.

Pendulum Data Set

This is a small data set which contains 315 training points. In Lázaro-Gredilla et al. (2010), it is
mentioned that SSGP model tends to overfit this data due to the gradient ascent optimization.
We are interested in whether our method can successfully capture the nonlinear property of
this pendulum data. We firstly collect the training data 9 times, and 35 training data for each
collection. Then, 100 test points are randomly selected for evaluating the performance. From
Table 4.2, our SENN-MPGP obtains the estimation with the fastest speed and the smallest
NMSE among all the methods, and the MNLP is competitive to SPGP.
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Figure 4.9: The temperature estimation at t = 100. The black crosses are the 100th collection
of the training data ponits.
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Figure 4.10: Online hyper-parameter learning for the temperature data set.
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Figure 4.11: Accuracy evaluation for the temperature data over time.
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Figure 4.12: Accuracy and efficiency evaluation for the temperature data as a function of the
number of the particles.
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4.2.6 Summary

In Wang and Chaib-draa (2012a), we mainly focus on one of the most important data pro-
perties, i.e., the large size of the data set which leads to a challenging computation burden in
GPs. We have proposed a novel Bayesian filtering framework for GP regression. Our MPGP
framework does not only estimate the function value successfully, but it is also a new on-
line technique to learn the unknown static hyper-parameters. The small training set at each
iteration naturally reduces the computation load, while the estimation performance is impro-
ved over iteration due to the fact that the recursive filtering would propagate the previous
estimation to enhance the current estimation. In comparison with other benchmark fast GP
approaches, we have shown that our MPGP provides a robust estimation with a competitively
computational speed.

In the following, we mainly focus on another important data property, non-stationarity where
the correlation between two function values does not only depend on the distance between two
inputs but also associates with the locations of these two inputs. Since using the non-stationary
covariance function directly may still restrict the flexibility of the GP model (Rasmussen
and Williams, 2006), we propose to design a flexible Bayesian inference mechanism for GP
regression to capture the non-stationarity of a data distribution.

4.3 A KNN Based Kalman Filter Gaussian Process Regression

The standard Gaussian process (GP) regression is often deteriorated when the data set
is non-stationarity (Paciorek and Schervish, 2003). A popular approach is to predefine a
non-stationary covariance function for a GP (Paciorek and Schervish, 2003; Rasmussen and
Williams, 2006). However, this approach is highly dependent on the prior knowledge of the
nonstationarity that is often unknown (Plagemann, 2008; Adams and Stegle, 2008). Hence its
performance is limited for real-world data sets.

In the following contribution (Wang and Chaib-draa, 2013), we proposed a K nearest neighbor
based Kalman filter Gaussian process (KNN-KFGP) to explore a flexible inference mechanism
for GPs in order to capture non-stationarity. Inspired by Bayesian Estimation for Gaussian
Processes, we firstly construct a state space model based on a KNN-driven data grouping.
Then we design an efficient Kalman filtering framework to infer the latent function values in a
recursive Bayesian estimation framework. Due to the fact that KNN allows each test point to
find its strongly-correlated local training subset, our KNN-KFGP is a suitable way to address
the non-stationary problems while preserving computational efficiency.

4.3.1 KNN Constructed State Space Model

Non-stationarity is related to input-dependent smoothness, so a suitable way to interpret non-
stationarity at a number of test input locations {xt?}mt=1 is to capture the local data structure
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of these points. To achieve this, we propose to use KNN to search the strongly correlated
local structure of each test point. Concretely, for xt? we find its Kt nearest training inputs
Xt = {xti}

Kt
i=1 according to the Euclidian distance. Then we use Xt and the corresponding

outputs yt = {yti}
Kt
i=1 as a small training set (Xt,yt) for xt?, where yti is generated by a

nonlinear function f(xti) of xti with an additive Gaussian noise N (0, σ2). For simplicity, we
denote Xc

t = Xt ∪ xt? and f ct = f(Xc
t ).

Based on the KNN driven data grouping, we now use a GP to design a state space model (SSM)
which consists of a prediction model and an observation model. Suppose the latent function
f(x) ∼ GP(0, k(x,x′)), where we choose an automatic relevance determination (ARD) squared
exponential covariance function in this contribution,

k(x,x′) = σ2fexp[−0.5(x− x′)TL−2(x− x′)].

The length-scale matrix is L = diag([l1 · · · ld]). For convenience, all the hyper-parameters and
the standard deviation of the observation noise σ are denoted into a vector θ = [σ σf l1 · · · ld]T .

Similar to (Wang and Chaib-draa, 2012a), the prediction model of our SSM refers to a tran-
sition between the (t− 1)-th and t-th latent states which are the latent function values of the
(t − 1)-th and t-th data subset. As f(x) ∼ GP(0, k(x,x′)), it is straightforward to find that
the conditional distribution p(f ct |f ct−1, Xc

t−1, X
c
t , θ) is Gaussian,

p(f ct |f ct−1, Xc
t−1, X

c
t , θ) = N (G(θ)f ct−1, Q(θ)), (4.17)

where

G(θ) = Kθ(X
c
t , X

c
t−1)K

−1
θ (Xc

t−1, X
c
t−1), (4.18)

Q(θ) = Kθ(X
c
t , X

c
t )−Kθ(X

c
t , X

c
t−1)K

−1
θ (Xc

t−1, X
c
t−1)Kθ(X

c
t , X

c
t−1)

T . (4.19)

In fact, this p(f ct |f ct−1, Xc
t−1, X

c
t , θ) is the prediction model of our SSM,

f ct = G(θ)f ct−1 + vft , (4.20)

which is a linear evolution between f ct and f ct−1 with an additive Gaussian noise vft ∼
N (0, Q(θ)).

Additionally, the observation model can also be obtained straightforwardly,

yt = Htf
c
t + vyt , (4.21)

where Ht = [IKt 0] is an index matrix so that Htf
c
t = f(Xt), and the observation noise

is Gaussian distributed vyt ∼ N(0, R(θ) = σ2I). Therefore, our SSM is fully specified by
Equation 4.20 and 4.21. The graph model is shown in Figure 4.13.
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Input Level xt−1? Xt−1 xt? Xt

Latent Level · · · f(Xc
t−1) f(Xc

t ) · · ·

Output Level yt−1 yt

Figure 4.13: State space model that is established by a test-input-driven KNN data collection
procedure. The arrows between xt−1? and Xt−1, xt? and Xt represent the KNN mechanism.

4.3.2 Bayesian Inference Using Kalman Filter

After constructing our SSM, we can now consider a regression task as a state estimation
problem. Given an initialized θ, Equation 4.20 and 4.21 in our SSM are linear with additive
Gaussian noises. The well-known Kalman Filter (KF) provides an optimal solution with respect
to maximum-a-posteriori (MAP) (Kalman, 1960).

Suppose that the (t− 1)-th posterior distribution p(f ct−1|y1:t−1, X1:t−1,x
1:t−1
? , θ) is Gaussian,

p(f ct−1|y1:t−1, X1:t−1,x
1:t−1
? , θ) = N (f ct−1|t−1, P

c
t−1|t−1).

The first step is to predict the t-th hidden function values by combining the information of the
transition model p(f ct |f ct−1, Xt−1:t,x

t−1:t
? , θ) (directly from Equation 4.17) with the (t− 1)-th

posterior p(f ct−1|y1:t−1, X1:t−1,x
1:t−1
? , θ),

p(f ct |y1:t−1, X1:t,x
1:t
? , θ)

=

∫
p(f ct |f ct−1, Xt−1:t,x

t−1:t
? , θ)p(f ct−1|y1:t−1, X1:t−1,x

1:t−1
? , θ)df ct−1

=

∫
N (G(θ)f ct−1, Q(θ))N (f ct−1|t−1, P

c
t−1|t−1)df

c
t−1

= N (G(θ)f ct−1|t−1, G(θ)P ct−1|t−1G(θ)T +Q(θ)). (4.22)

We denote p(f ct |y1:t−1, X1:t,x
1:t
? , θ) as N (f ct|t−1, P

c
t|t−1), then the prediction step is fully ex-

pressed by the mean f ct|t−1 and the covariance P ct|t−1,

f ct|t−1 = G(θ)f ct−1|t−1, (4.23)

P ct|t−1 = G(θ)P ct−1|t−1G(θ)T +Q(θ). (4.24)
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Algorithm 7 KNN-KFGP Regression.
1: Training the hyper-parameter vector θ using gradient optimization with an extra data set
{(xi, yi)}Si=1

2: for t = 1 to m do
3: Applying KNN based data construction to find the training data (Xt,yt) = {(xi, yi)}Kti=1

for xt?
4: Using θ to specify G(θ), Q(θ), R(θ) in (4.18-4.19) and (4.21) for state space model

construction
5: Kalman Predict Step : Equation (4.23-4.24)
6: Kalman Update Step : Equation (4.27-4.29)
7: end for

The second step is to update the predictive estimation with the tth observed output yt,

p(f ct |y1:t, X1:t,x
1:t
? , θ) =

p(yt|f ct , θ,Xt,x
t
?)p(f

c
t |y1:t−1, X1:t,x

1:t
? , θ)

p(yt|y1:t−1, θ,X1:t,x1:t
? )

, (4.25)

where the likelihood distribution p(yt|f ct , θ,Xt,x
t
?) is directly from Equation 4.21, the predic-

tive distribution p(f ct |y1:t−1, X1:t,x
1:t
? , θ) is from Equation 4.22, and the marginal distribution

is an analytical integral,

p(yt|y1:t−1, θ,X1:t,x
1:t
? )

=

∫
p(yt|f ct , θ,Xt,x

t
?)p(f

c
t |y1:t−1, X1:t,x

1:t
? , θ)df

c
t

=

∫
N (Htf

c
t , R(θ))N (f ct|t−1, P

c
t|t−1)df

c
t

= N (Htf
c
t|t−1, HtP

c
t|t−1H

T
t +R(θ)). (4.26)

Finally we denote p(f ct |y1:t, X1:t,x
1:t
? , θ) = N (f ct|t, P

c
t|t), then put Equation 4.21, 4.22 and 4.26

into Equation 4.25, we obtain the update with the Kalman Gain Γt,

Γt = P ct|t−1H
T
t (HtP

c
t|t−1H

T
t +R(θ))−1, (4.27)

f ct|t = f ct|t−1 + Γt(yt −Htf
c
t|t−1), (4.28)

P ct|t = P ct|t−1 − ΓtHtP
c
t|t−1. (4.29)

The whole Bayesian inference procedure is summarized in Algorithm 7. Similar to other GP
approaches, we first initialize the hyperparameters with a small extra data set (Algorithm 7,
Line 1). Then we perform KNN search to group data subsets and construct our SSM (Algo-
rithm 7, Line 3-4). Finally we use Kalman filter to infer the latent function values (Algorithm
7, Line 5-6).

Since our KNN-KFGP allows each test point to find its strongly-correlated training subset,
it is a suitable way to capture the local data property in order to deal with non-stationarity.
Additionally, due to the fact our KNN-KFGP inherits the computational merits of Kalman
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filter Gaussian process (KFGP) (Reece and Roberts, 2010), it is also a computationally efficient
GP approach where the computation load is mainly governed by Kalman filter O(mK3) and
KNN search O(mn) after various pre-computations (Urtasun and Darrell, 2008). The K is
the maximum value of {Kt}mt=1, m is the number of test inputs and n is the number of the
training points.

4.3.3 Experiments

To show the effectiveness of our KNN-KFGP to handle nonstationarity, we perform a number
of experiments on several simulation and real-world data sets in the following. For all the data
sets, the accuracy is evaluated by the test Standardized Mean Square Error (SMSE) 3 and the
test Mean Negative Log Probability (MNLP).

Mobile Robot Perception

The perception of the environment is a fundamental task for a mobile robot as it is essential to
correctly interpret the sensor information in non-stationary environments to find the precise
location. Here we consider a perception task to evaluate how well our KNN-KFGP deal with
non-stationarity. Concretely, a mobile robot is located at (0, 0). To find an exit, it uses its
range sensors for obstacle detection. We simulate 200 training points where the input is a
bearing angle in [0, π] and the output is the corresponding distance measurement. The test
inputs are from 0 to π with an interval π/180. The observations at different sides of the exit
show the discontinuity of the measured data, which is a case of nonstationarity.

In this experiment, we compare our KNN-KFGP to the stationary GP, KFGP and local GP
(LGP in Chapter 2) which uses local GP experts to capture nonstationarity (Urtasun and
Darrell, 2008). In KFGP and KNN-KFGP, K is the size of the training subset for each test
point. In LGP, K is the number of the local GP experts. We first learn the hyper-parameters
using the gradient optimization with the full training set, and then run all the methods from
K = 1 to 5. We found that the best performance of our KNN-KFGP is achieved at K = 2,
while the best performance of KFGP and LGP is achieved at K = 5. This illustrates that the
accuracy of our KNN-KFGP does not monotonically increase in the non-stationary case when
K is increasing. The underlying reason is that, as K is getting larger, some irrelevant training
points may be selected for each test point. That is also one reason why the fully-correlated
stationary GP cannot correctly model non-stationarity.

We show the best results of all the methods in Figure 4.14 and Table 4.3. In Figure 4.14(a),
the standard GP mistakenly predicts the exit as the obstacle even though the robot has
detected the data on both sides of the exit. In Figure 4.14(b), the prediction of KFGP fails
since the randomly selected training points in this case are disturbed and thus deteriorate the

3. It is also called as test Normalized Mean Square Error (NMSE).
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Table 4.3: Accuracy evaluation for the robot perception data set and the land-surface preci-
pitation data set.

Robot Perception SMSE MNLP Land Precipitation SMSE MNLP

GP 0.0130 -2.1775 GP 0.0128 7.6863
LGP 0.0093 -2.3216 LGP 0.0036 7.5979
KFGP 0.2218 0.0791 KFGP 1.2582 12.1196
KNN-KFGP 0.0057 -2.5060 KNN-KFGP 0.0027 7.1255

performance of KFGP. In Figure 4.14(c), LGP correctly finds the exit but the uncertainty
at the exit is high. Finally, in Figure 4.14(d) our KNN-KFGP successfully models the exit
since the training subset for each test is strongly correlated to that test. From Table 4.3, it
is also shown that LGP and our KNN-KFGP are suitable for non-stationarity modeling, but
our KNN-KFGP performs better with higher accuracy than LGP.

Global Land-Surface Precipitation

In practice, many environmental data sets usually exhibit non-stationarity (Paciorek and
Schervish, 2003). Therefore, we choose a global land-surface precipitation (January 2010)
data set to evaluate whether our KNN-KFGP can handle real-life non-stationarity 4. There
are 3,306 points in the training set. For each point, the input is the location and the output
is the precipitation value. The test set is based on a regular grid with a spatial resolution of
2.5o× 2.5o latitude by longitude. In this experiment, we also compare our KNN-KFGP to the
stationary GP, KFGP and LGP where the meaning of K in these approaches is the same as
the one in the robot perception experiment. Moreover, we train the hyper-parameters using
the gradient optimization with a randomly selected training subset including 1,000 points, and
then run all the methods from K = 1 to 10. We found that our KNN-KFGP shows the best
performance when K = 5, KFGP and LGP represent the best performance when K = 10. The
best results for all the approaches are illustrated in Figure 4.15 and Table 4.3. In Figure 4.15,
the prediction of KFGP almost fails due to the random training set selection. In contrast,
our KNN-KFGP flexibly learns the land-surface precipitation model. The underlying reason
is that each test point is learned by using its strongly correlated training set and the predict-
update KF mechanism preserves the accuracy. From Table 4.3, it is also shown that LGP and
our KNN-KFGP may be considered as suitable approaches for this non-stationary case, but
our KNN-KFGP performs better than LGP. Finally, it is worth mentioning that the running
time of our KNN-KFGP is 475s which is much more efficient than GP (15374s).

4. The data set is available at http ://www.cgd.ucar.edu/cas/catalog/surface/precip/gpcc.html
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(c) Our KNN-KFGP

Figure 4.15: Global Land-Surface Precipitation. The contour in all three subplots represents
the level of precipitation value. When the contours are concentrated, the precipitation value
is high. Otherwise, the the precipitation value is low. The subplots of KFGP and KNN-KFGP
show the predicted mean of the global land-surface precipitation.
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4.3.4 Summary

In Wang and Chaib-draa (2013), we have proposed a novel K nearest neighbor based Kalman
filter Gaussian process (KNN-KFGP) regression. Firstly, small training subsets, which are
constructed by a test-driven KNN search procedure, are used to establish a GP based state
space model. Then Kalman filter is applied to infer the latent function values in an efficient
predict-update manner. Due to the fact that KNN search provides each test with its strongly
correlated training set, our KNN-KFGP can more suitably capture non-stationarity than the
stationary GP.

Since our contributions MPGP (Wang and Chaib-draa, 2012a) and KNN-KFGP (Wang and
Chaib-draa, 2013) have opened a door to take advantage of Bayesian estimation to address
the difficulties of GP in a dynamical filtering framework, in the following we further make use
of the merits of Bayesian Estimation for Gaussian Process to deal with the temporal-related
challenges in time-varying applications.

4.4 Particle Based Gaussian Processes for Time-Varying
Applications

Even though the GP is a popular non-parametric model, the performance of GP is often dete-
riorated in time-varying applications where the data points are sequentially ordered and often
exhibit temporal-related non-stationarity and heteroscedasticity. In order to interpret these
challenging data properties correctly, we proposed two particle based GP approaches in Wang
and Chaib-draa (2015a) where time-varying Bayesian inference is performed in a sequential
Monte Carlo manner. By evaluating our approaches on four distinct time series (including both
one-dimensional and multi-dimensional input cases), we showed that our particle based GPs
outperform several benchmark GP approaches by capturing the time-varying data properties
efficiently and accurately.

4.4.1 Fit Time-Varying Data with Gaussian Processes

Since we mainly focus on time-varying applications, we consider that the data points are
sequentially-ordered D1:T = {(xt, yt)}Tt=1 where the output yt ∈ R is generated by a latent
function of the input vector xt ∈ Rdx with an additive Gaussian noise vyt ∼ N (0, σ2y,t),

yt = f(xt) + vyt . (4.30)

The t-th data point Dt = (xt, yt) is made available at time t. For simplicity, we denote
f(xt) = ft and f(x1:T ) = f1:T .

As we already stated in Chapter 2, a popular nonparametric approach to infer f1:T is to put
a Gaussian process (GP) prior over the latent function since the elegant Gaussian properties
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of GPs make Bayesian inference analytically tractable (Rasmussen and Williams, 2006; Cal-
derhead et al., 2008; Vaerenbergh et al., 2012). Specifically, we denote f(x) ∼ GP(0, kζ(x,x

′))

where kζ(x,x′) = σ2k`(x,x
′) with ζ = [σ2, `]T that consists of an amplitude parameter σ2 and

a hyper-parameter vector ` of the unscaled covariance function k`(x,x′). In this contribution,
we choose a popular k`(x,x′) that is the Automatic Relevance Determination (ARD) squared
exponential kernel (Rasmussen and Williams, 2006), i.e.,

k`(x,x
′) = exp[−0.5(x− x′)TL−1(x− x′)],

L is diagonal with the ARD parameter vector ` = [l1, ..., ldx ]T .

To fit the temporal data, Bayesian inference with GPs addresses the joint posterior of latent
function values and model parameters

p(f1:T , ζ, σ
2
y |D1:T ) = p(f1:T |ζ, σ2y , D1:T )p(ζ, σ2y |D1:T ), (4.31)

in the following two steps where the variance of the noise σ2y,t is assumed to be time-invariant
σ2y . Firstly, ζ and σ2y are inferred to fit the data. A popular method is to maximize p(ζ, σ2y |D1:T )

using a gradient based optimizer (Rasmussen and Williams, 2006). Secondly, f1:T is esti-
mated with the learned ζ and σ2y . Due to f(x) ∼ GP(0, kζ(x,x

′)), the marginal posterior
p(f1:T |ζ, σ2y , D1:T ) can be expressed as a Gaussian distribution N (f̂ , P̂ ) (Rasmussen and
Williams, 2006; Calderhead et al., 2008) with the mean,

f̂ = Kζ(x1:T ,x1:T )[Kζ(x1:T ,x1:T ) + σ2yI]−1y,

where y = [y1 · · · yT ]T , and the covariance,

P̂ = σ2yKζ(x1:T ,x1:T )[Kζ(x1:T ,x1:T ) + σ2yI]−1,

where each entry of Kζ(x1:T ,x1:T ) is computed by using kζ(x,x′).

However, this standard GP is often limited for time-varying applications (Vaerenbergh et al.,
2012; Csató and Opper, 2002; Plagemann, 2008; Reece and Roberts, 2010; Hartikainen and
Särkkä, 2010).

One important reason is that it is difficult for a standard GP to interpret time-varying data
properties, such as temporal-related non-stationarity (the correlation between two temporal-
linked function values often changes over time) and temporal-related heteroscedasticity (the
observation noise often changes over time), by learning the static hyper-parameter vector of
the stationary kernel ζ and the static variance of the observation noise σ2y (Vaerenbergh et al.,
2012; Paciorek and Schervish, 2003; Kersting et al., 2007). To capture the non-stationarity,
one can directly use several non-stationary covariance functions with GPs (Rasmussen and
Williams, 2006; Paciorek and Schervish, 2003). However, using the predefined non-stationary
covariance functions requires prior knowledge of the non-stationarity that is often hard to
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obtain (Adams and Stegle, 2008). To capture heteroscedasticity, one can use several heteros-
cedastic GP approaches by putting another GP prior over the noise variance (Kersting et al.,
2007; Lázaro-Gredilla and Titsias, 2011). However, the computation burden of these methods
is often heavy when the number of data points is a few thousands. Additionally, a sparse
pseudo-input GP, which was originally proposed for computation reduction, can also model
heteroscedasticity (Snelson and Ghahramani, 2005). However, this approach may be deterio-
rated when the size of the pseudo set is large and/or the input space is high dimensional
(Snelson and Ghahramani, 2005).

Another important reason is that a standard GP deals with the temporal-ordered data points
in a batch way. As a result, it is not suitable to use GPs to make inference and prediction
for data streams. Several online variants of GPs have been investigated for temporal-related
applications (Csató and Opper, 2002; Reece and Roberts, 2010; Hartikainen and Särkkä, 2010;
Nguyen-Tuong et al., 2008; Ko and Fox, 2008; Turner et al., 2010). However, these approaches
are not suitable to capture the temporal-related non-stationarity and heteroscedasticity due
to the time-invariant, offline-learned GP hyper-parameters. Recently, a kernel recursive least
squared tracker was introduced to interpret the time-varying properties in an online fashion
(Vaerenbergh et al., 2012). Its performance is however limited when the temporal data points
are highly non-stationary and heteroscedastic, since in this method the time-varying properties
are achieved by learning a temporal-related scale parameter instead of GP hyper-parameters.
Likewise, a marginalized particle GP was developed in Wang and Chaib-draa (2012a) to learn
GP hyper-parameters directly in a recursive Bayesian manner. In this approach, however,
the hyper-parameters are assumed to be time-invariant (the transition of hyper-parameters is
’artificial’), and thus its performance is also reduced when the data sets exhibit time-varying
properties.

In the following contribution (Wang and Chaib-draa, 2015a), we propose two novel particle
based Gaussian process approaches to interpret sequentially-ordered, time-varying data in a
unifying, online Bayesian framework.

4.4.2 Gaussian Process Based State Space Model

To interpret the time-varying properties in the sequentially-ordered data, we propose to in-
corporate GP into state space model (SSM) which consist of the observation model and the
transition model.

Observation Model

The observation model is the same as (4.30). Note that the time-varying noise variance σ2y,t is
the key to capture the temporal-related heteroscedasticity.
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Transition Model

GP Based State Transition To reflect the temporal-ordered data characteristics, we pro-
pose to establish the transition between ft−1 and ft. Due to f(x) ∼ GP(0, kζ(x,x

′)), the joint
distribution p(ft, ft−1|xt,xt−1, ζ) is Gaussian

N (0,

[
kζ(xt,xt) kζ(xt,xt−1)

kζ(xt−1,xt) kζ(xt−1,xt−1)

]
)

Then p(ft|ft−1,xt,xt−1, ζ) is also Gaussian with the mean

kζ(xt,xt−1)

kζ(xt−1,xt−1)
ft−1 ≡ g(`)ft−1 (4.32)

where g(`) = k`(xt,xt−1)/k`(xt−1,xt−1), and covariance

kζ(xt,xt)−
k2ζ (xt,xt−1)

kζ(xt−1,xt−1)
≡ σ2q(`) (4.33)

where q(`) = k`(xt,xt)− k2` (xt,xt−1)/k`(xt−1,xt−1).

In fact, p(ft|ft−1,xt,xt−1, ζ) = N (g(`)ft−1, σ
2q(`)) represents the dynamical transition model

between ft and ft−1 with an additive Gaussian noise vf ∼ N (0, σ2q(`))

ft = g(`)ft−1 + vf (4.34)

However, as we mentioned before, GP hyper-parameter vector ζ = [σ2, `]T is often initialized
using gradient-based optimization where the learned ζ is locally optimal and does not adjust
over time (Rasmussen and Williams, 2006). To capture the time-varying non-stationarity, we
propose to learn GP hyper-parameters over time (based on the transition (4.34)).

Transition Model (I) We first propose to learn σ2 (the amplitude parameter of GP cova-
riance function) over time.

One important reason is that σ2 is encoded in the transition noise vf of (4.34). By learning
σ2 over time, we can adaptively adjust the transition noise to achieve the non-stationary
transition between ft−1 and ft.

Another important reason is that σ2 is linearly-separable with q(`) in the transition noise vf

of (4.34). This fact can achieve an efficient sequential Bayesian inference framework (we will
discuss later on) by using a powerful particle learning approach (Carvalho et al., 2010).

Hence, based on (4.34) with the above-mentioned reasons, we propose our transition model
(I) with a time-varying σ2t of the transition noise vfI,t ∼ N (0, σ2t q(`))

ft = g(`)ft−1 + vfI,t (4.35)
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SSM (I) SSM (II)
OM (4.30) with σ2y,t (4.30) with σ2y,t
TM (4.35) with σ2t and ` (4.36-4.38) with σ2t , `t, σ2y,t and τt

Table 4.4: Our State Space Models. OM : Observation Model. TM : Transition Model.

Transition Model (II) Even though (4.35) allows us to represent non-stationarity by lear-
ning a time-varying σ2t , its model flexibility may be reduced due to the fact that ` of GP,
which is associated with g(`) and q(`), is fixed after initialization. Furthermore, ` in this paper
is the ARD parameter vector which is used to weight the importance of different input dimen-
sions. In the multi-dimensional-input temporal applications, the fixed ` may not capture the
time-varying importance of different input dimensions and thus decrease the performance of
transition model (I).

To this end, we propose to learn all the time-varying GP hyper-parameters ζt = [σ2t , `t]
T by

augmenting a small dynamic of φt = log([ζt, σ
2
y,t]

T ) on (4.34)

φt = φt−1 + vφt (4.36)

ft = g(`t)ft−1 + vfII,t (4.37)

where vfII,t ∼ N (0, σ2t q(`t)), vφt ∼ N (0, diag[exp(τt)]) with a parameter vector τt = τ , and
diag[·] denotes a diagonal matrix operation. Additionally, since τ is unknown, we propose to
design an artificial dynamic (Liu and West, 2001)

τt = bτt−1 + (1− b)τ̄t−1 + vτt−1 (4.38)

where b = (3δ − 1)/(2δ), δ is a discount factor (typically around 0.95-0.99), τ̄t−1 is the mean
at t− 1, vτt−1 ∼ N (0, (1− b2)Σt−1), and Σt−1 is the variance matrix at t− 1.

Summary Based on (4.34), our SSMs are outlined in Table 4.4 with different transition
models. Due to the different model assumptions in our two SSMs, we reorganize the target
posterior of GP, i.e.,

p(f1:T , ζ, σ
2
y |D1:T ), ζ = [σ2, `]T

to take the time-varying characteristics into account. For SSM (I), our goal of Bayesian infe-
rence is

p(f1:T , θ1:T , `|D1:T ), θt = [σ2t , σ
2
y,t]

T

For SSM (II), our goal of Bayesian inference is

p(f1:T , φ1:T , τ1:T |D1:T ), φt = log([ζt, σ
2
y,t]

T )
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4.4.3 Particle Based Bayesian Inference

Since the parameters and latent function values are coupled in our SSMs, Bayesian inference
for p(f1:T , θ1:T , `|D1:T ) and p(f1:T , φ1:T , τ1:T |D1:T ) is analytically intractable.

Hence we propose to design sequential Monte Carlo approaches to infer the latent function
values and model parameters over time. Specifically, we take advantage of the conditionally
linear structures in our two SSMs to preserve the efficiency and accuracy by using particle
learning (Carvalho et al., 2010) and Rao-Blackwellized particle filtering (Doucet et al., 2000a).

Particle Learning (PL)

For SSM (I), we factorize the target posterior as follows

p(f1:T , θ1:T , `|D1:T ) = p(f1:T , θ1:T |`,D1:T )p(`|D1:T )

Same as the standard GP, we learn the static ` by using the gradient optimization for p(`|D1:T ).
Hence we focus on p(f1:T , θ1:T |`,D1:T ). Since the data points are sequentially ordered, we
mainly work on the posterior of forward filtering p(ft, θ1:t|`,D1:t).

Given the learned `, our SSM (I) becomes a linear structure with the unknown but linearly-
separable θt. Hence we propose an inference framework based on particle learning (PL) (Car-
valho et al., 2010) which allows us to update sufficient statistics of ft and θt to preserve the
efficiency of Bayesian inference. To this end, p(ft, θ1:t|`,D1:t) is factorized as follows

p(ft, θ1:t|`,D1:t) = p(θ1:t|`,D1:t, ft)p(ft|`,D1:t)

in order to achieve the resampling-propagate mechanism of PL.

We first work on how to update p(ft|`,D1:t). For convenience, we denote state sufficient
statistics as Sft = (ft|t, Pt|t) where ft|t and Pt|t are the posterior mean and variance of ft.
According to the fact that p(ft|`,D1:t) =

∫
p(ft|Sft )p(Sft |`,D1:t)dS

f
t = E[p(ft|Sft )|`,D1:t],

thus we are more interested in how to update p(Sft |`,D1:t) since we can directly obtain state
estimation after getting the particle approximation of p(Sft |`,D1:t).

Based on Bayesian recursion, p(Sft |`,D1:t) is proportional to the integral∫ ∫
p(Sft |S

f
t−1, `,D1:t, θt−1)p(yt|Sft−1, `,x1:t, θt−1)p(S

f
t−1, θt−1|`,D1:t−1)dS

f
t−1dθt−1

Given the particles of p(Sft−1, θt−1|`,D1:t−1), we can compute the weights of the particles by
p(yt|Sft−1, `,x1:t, θt−1) that is Gaussian

N (g(`)ft−1|t−1, g
2(`)Pt−1|t−1 + σ2t−1q(`) + σ2y,t−1) (4.39)
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According to the normalized weight we resample new particles at t− 1. After resampling, the
new particles at t− 1 are propagated to p(Sft |S

f
t−1, `,D1:t, θt−1) that is Kalman filter

ft|t−1 = g(`)ft−1|t−1

Pt|t−1 = g2(`)Pt−1|t−1 + σ2t−1q(`)

ft|t = ft|t−1 + (yt − ft|t−1)Pt|t−1/(Pt|t−1 + σ2y,t−1)

Pt|t = Pt|t−1 − P 2
t|t−1/(Pt|t−1 + σ2y,t−1)

We now work on how to update p(θ1:t|`, ft, D1:t). After obtaining the particle approximation
of ft, we take advantage of conjugacy to recursively update the parameter sufficient statistics
Sθt due to the conditionally-linear structure in our SSM (I). Suppose that the parameter
distributions at t are p(σ2y,t|`, ft, D1:t) = IG(0.5αyt , 0.5β

y
t ), p(σ2t |`, ft, D1:t) = IG(0.5αft , 0.5β

f
t ),

where IG represents the inverse Gamma distribution Storvik (2002), then Sθt = (αyt , β
y
t , α

f
t , β

f
t )

can be recursively updated as follows 5

αyt = αyt−1 + 1, βyt = βyt−1 + (yt − ft)2

αft = αft−1 + 1, βft = βft−1 + (ft − g(`)ft−1)
2/q(`)

The computation load of the forward filtering in PL based GP is mainly O(NpT +dxT ) where
Np is the number of the particles, dx is the dimension of the input and T is the total number
of time steps. NpT is the main computation of the above-mentioned particle based sampling
mechanism, dxT is the main computation of vector multiplication in (4.32) and (4.33) for all
the time steps.

Rao-Blackwellized Particle Filtering

Different from our SSM (I), Equations (4.36-4.38) in our SSM (II) are highly coupled. However,
we can see that, given model parameters, the transition between ft and ft−1 in (4.37) is still
a linear structure which still allows us to update the sufficient statistics of ft to keep the
efficiency of Bayesian inference. This refers to the idea of Rao-Blackwellized particle filtering
(RBPF) (Doucet et al., 2000a; Schön et al., 2005; Wang and Chaib-draa, 2012a). As before,
we mainly work on the posterior of forward filtering p(ft, φ1:t, τ1:t|D1:t) that can be factorized
as :

p(ft, φ1:t, τ1:t|D1:t) = p(ft|φ1:t, τ1:t, D1:t)p(φ1:t, τ1:t|D1:t).

Bayesian inference is then performed in an importance sampling-resampling framework.

We first work on how to update p(ft|φ1:t, τ1:t, D1:t). Given the particles of φ1:t and τ1:t, the
transition for latent function values is linear. Hence, p(ft|φ1:t, τ1:t, D1:t) can be inferred using

5. The updates are based on p(σ2
y|`, f1:t, D1:t) ∝ p(yt|ft, σ2

y)p(σ
2
y|`, f1:t−1, D1:t−1) and p(σ2|`, f1:t, D1:t) ∝

p(ft|ft−1, σ
2, `)p(σ2|`, f1:t−1, D1:t−1)
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Kalman filter

ft|t−1 = g(`t)ft−1|t−1

Pt|t−1 = g2(`t)Pt−1|t−1 + σ2t q(`t)

ft|t = ft|t−1 + (yt − ft|t−1)Pt|t−1/(Pt|t−1 + σ2y,t)

Pt|t = Pt|t−1 − P 2
t|t−1/(Pt|t−1 + σ2y,t)

Then we work on how to update p(φ1:t, τ1:t|D1:t). This posterior p(φ1:t, τ1:t|D1:t) is propor-
tional to

p(yt|y1:t−1, φ1:t, τ1:t,x1:t)p(φt|φt−1, τt)p(τt|τt−1)p(φ1:t−1, τ1:t−1|D1:t−1).

Given the particles of φ1:t−1 and τ1:t−1, we can first sample particles for τt using p(τt|τt−1) of
Equation (4.38) and then sample particles for φt using p(φt|φt−1, τt) of Equation (4.36). Then
the particles of sufficient statistics of the latent function values, the particles of φ1:t and the
particles of τ1:t are weighted by

p(yt|y1:t−1, φ1:t, τ1:t,x1:t) = N (ft|t−1, Pt|t−1 + σ2y,t). (4.40)

Finally, according to the normalized weights, all the particles are resampled for the next step.

The computation load of the forward filtering in RBPF based GP is mainly O(NpT +NpdxT )

where Np is the number of the particles, dx is the dimension of the input and T is the total
number of time steps. Note that the computational difference between RBPF based GP and
PL based GP is the vector multiplication (NpdxT vs. dxT ) in (4.32) and (4.33). In the PL
based GP, ` is fixed after initialization. Hence, this multiplication is only implemented once at
each time step. On the contrary, Np particles of `t is sampled at each step in the RBPF based
GP. Hence, for each time step, the multiplication should be operated for all the particles.

Backward Smoothing

So far we have established our PL based GP (PL-GP) and RBPF based GP (RBPF-GP) to
obtain p(ft, θ1:t|`,D1:t) for SSM (I) and p(ft, φ1:t, τ1:t|D1:t) for SSM (II). Our target poste-
riors p(f1:T , θ1:T |`,D1:T ) and p(f1:T , φ1:T , τ1:T |D1:T ) refer to backward smoothing in which the
posterior is evaluated given the entire data set. Fortunately, backward smoothing in (Godsill
et al., 2004) can be straightforwardly implemented to our PL, RBPF based GP approaches
with a backward sequential pass. Note that the computation complexity of the particle-based
sampling mechanism in backward smoothing for both PL based GP and RBPF based GP will
be N2

pT instead of NpT in forward filtering (Godsill et al., 2004).

91



4.4.4 Experiments

Data Sets

To show that our two particle based GP approaches perform well in time-varying applications,
we evaluated them on four time series : synthetic data, motor 6, heart rate 7, S&P financial
data 8 where the synthetic data, motor and heart rate data sets are one-dimensional input
cases ; S&P data set is a multi-dimensional input case. Specifically, the synthetic set consists
of 1000 time/observation (input/output) pairs which are generated from yt = −30 +N (0, 1)

(t = 0.01 : 0.01 : 2), yt = 50 sin(0.5πt) +N (0, 9) (t = 2.01 : 0.01 : 5), yt = 20 cos(πt+ 0.5π) +

N (0, 100) (t = 5.01 : 0.01 : 10). The motor consists of 94 time/acceleration (input/output)
pairs. Heart rate consists of 300 time/heart rate (input/output) pairs. S&P consists of 500
points which are weekly recorded from 2000-01-03 to 2009-08-03. The 4-D inputs are respec-
tively time, S&P 100 index, S&P 400 Midcap index, S&P 500 index ; the output is volatility
S&P 500.

Posterior Evaluation

Our first experiment is to visualize the posterior surface of our methods to evaluate whether
the time-varying data properties can be correctly modeled. Hence, we compare the posterior
surface of our PL-GP (with backward smoothing), RBPF-GP (with backward smoothing) to
the batch GP for all the data sets. For each data set, we subtract the mean of the data points,
and for all the methods we use the same initial ζ that is learned by using gradient based
optimization with all the data points. The number of particles in both PL-GP and RBPF-GP
is 200.

The synthetic data exhibits both time-varying non-stationarity and heteroscedasticity. In Fi-
gure 4.16, it is shown that the three-noise-level heteroscedasticity in this synthetic data is
mistakenly interpreted by GP due to the homoscedastic noise assumption in GP. Moreover,
the discontinuity around t = 2 and t = 5, which is an important form of time-varying non-
stationarity, is mistakenly interpreted by the GP due to its stationary assumption. On the
contrary, both non-stationarity and heteroscedasticity are suitably interpreted by our PL-GP
and RBPF-GP.

Since the ground truth of the latent function values are known in the synthetic data, we
evaluated whether the latent function values can be successfully inferred by our method.
We compared our method to several benchmark GP variants that are often used to capture
the time-varying non-stationarity and heteroscedasticity. NNGP is a GP with non-stationary
neural network covariance function (Rasmussen and Williams, 2006). SPGP is sparse pseudo-
input GP (Snelson and Ghahramani, 2005), which is originally used to reduce computation

6. Motor data is available at http ://www.stat.cmu.edu/∼ larry/all-of-statistics/=data/motor.dat
7. Heart rate data is available at http ://www-psych.stanford.edu/∼andreas/Time-Series/SantaFe.html
8. S&P data is available at http ://finance.yahoo.com/stock-center/
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Figure 4.16: Posterior Evaluation (Synthetic Data). In the 1st column, we show the posterior
surface with 95% confidence interval (red line with yellow interval) given observations (black
circles) and ground truth function (blue line). In the 2nd column, we show the posterior
estimation of log(σ2y) over time by GP (black doted line), our PL-GP (pink line with green
lines), our RBPF-GP (red line with yellow interval) given ground truth log(σ2y) (blue line).
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Figure 4.17: Backward smoothing posterior comparison of ft at t =0.54 (top), 1.93 (middle),
5.07 (bottom).
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Table 4.5: Accuracy & Efficiency of Posterior Evaluation for Synthetic Data.

GP NNGP SPGP MLHGP our PL-GP our RBPF-GP

MSE 9.43 7.12 9.40 7.48 6.10 5.80
RunningTime(s) 149.3 79.9 49.4 353.9 27.6 56.7

burden, but can achieve the heteroscedasticity. MLHGP is the most likely heteroscedastic GP
(Kersting et al., 2007).

In Figure 4.17, we showed the posteriors of ft at t = 0.54, 1.93, 5.07. Since the time period
around t = 0.54 mainly reflects the heteroscedasticity, we can see that GP, NNGP and SPGP
have flat-shaped posteriors (reflect high uncertainty) in order to keep the consistency of the
observation noise. MLHGP, our PL-GP and RBPF-GP can deal with heteroscedasticity, hence
the posterior for these approaches have peak-shaped posteriors (reflect low uncertainty). Fur-
thermore, the time period around t = 1.93 and t = 5.07 mainly reflect the non-stationarity,
we can see that the latent function values are mistakenly inferred by GP, SPGP. MLHGP and
NNGP attempt to correct the non-stationarity, however the performance is still limited. On
the contrary, our PL-GP and RBPF-GP successfully capture the time-varying properties with
low uncertainty.

Moreover, we used mean squared error (MSE) and running time to compare our methods
to other GP approaches with regard to accuracy and efficiency of posterior evaluation. It is
shown in Table 4.5 that our PL-GP and RBPF-GP outperform other GP methods with higher
accuracy and efficiency. Furthermore, as expected, the accuracy of our RBPF-GP is higher
than our PL-GP but the computation efficiency is lower than our PL-GP. The reason is that
RBPF-GP learns all the model parameters ζt = [σ2t , `t] and σ2y,t over time, but PL-GP learns
σ2t and σ2y,t over time with the initialized `.

The resulting posterior evaluation for the other three real-world data sets are respectively
shown in Figure 4.18 - 4.20. The motor data (Figure 4.18) mainly exhibits the time-varying
heteroscedasticity that consists of a flat low noise region, a curve region and flat high noise
region (Rasmussen and Ghahramani, 2001). To keep the consistency, GP fails to capture the
low-noise region. On the contrary, our PL-GP and RBPF-GP successfully explain all three
noise regions. More interestingly, our RBPF-GP correctly represents the decreasing noise in
the flat high noise region (Kersting et al., 2007).

The heart rate data mainly exhibits time-varying non-stationarity that is reflected by the
sudden signal shifts. We showed the posterior of the sudden shift region (from 150-th to 230-
th step) in Figure 4.19. To capture this sudden change (around 180-th), GP has to increase
noise level and thus introduces unnecessary uncertainty in other regions. On the contrary, our
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PL-GP and RBPF-GP correctly capture the sudden shift with compact confidence intervals.

S&P data is time-varying heteroscedastic and non-stationary. Moreover, the input here is a
multi-dimensional vector which is not only related to the time. All these facts make Bayesian
inference quite challenging. We showed the output posterior along with the time axis (from
200-th to 350-th step) in Figure 4.20. GP mistakenly interprets this region with a large noise
level. On the contrary, our PL-GP reduces the effect of non-stationarity and heteroscedasticity
by learning σ2t and σ2y,t over time. Furthermore, as expected, our RBPF-GP obtains the best
posterior in this multi-dimensional input case due to the fact that our RBPF-GP learns all
the time-varying model parameters including `t which is associated with the importance of
different input dimensions in ARD covariance function.

Prediction Comparison

Since our PL-GP and RBPF-GP are online GP approaches, in our second experiment we
quantitatively evaluated the accuracy of our PL-GP and RBPF-GP for online prediction (based
on Eq.4.39 and 4.40). The evaluation criterion is mean negative log probability (MNLP) that
penalizes both uncertainty and inconsistency (Deisenroth et al., 2009).

We compared our approaches with several online GP approaches : autoregressive GP (ARGP)
trained on pairs of (yt, yt+1) ; high-order ARGP with neural network kernel (NHARGP) where
the order is 10 for synthetic and motor, 20 for heart and SP data ; Kalman filtering-Temporal
GP (KFTGP) (Hartikainen and Särkkä, 2010) ; Local GP (Nguyen-Tuong et al., 2008) ; Sparse
online GP (SOGP) (Csató and Opper, 2002) ; Kernel recursive least-squares tracker (KRLST)
(Vaerenbergh et al., 2012) ; GP particle filter (GP-PF) (Ko and Fox, 2008) ; Marginalized
particle GP (MPGP) (Wang and Chaib-draa, 2012a). For LGP the prediction at the current
step was based on all the local experts generated until this step (due to online construction
of GP experts in (Nguyen-Tuong et al., 2008)) ; for SOGP and KRLST, the prediction for the
current step was based on all the data until this step without sparsification. The reason is we
tended to use the best results of these online GPs. Additionally, for GP-PF and MPGP, the
latent state was ft. For all the methods, GP hyper-parameters was the same and initialized
using the first 300/50/200/200 data points for synthetic/motor/heart/SP. The evaluation of
online prediction was based on the rest data points for all the data sets. Finally, for all the
data sets and all the methods, we ran 20 times to obtain the average MNLP.

As our methods are particle based approaches, we firstly compared our PL-GP and RBPF-GP
to other particle based methods, GP-PF and MPGP, by evaluating MNLP as a function of the
number of the particles. It is shown in Figure 4.4.4 and Table 4.6 that our methods outperform
GP-PF and MPGP by learning the time-varying model parameters.

Moreover, the comparison with all the online GP methods was shown in Table 4.6. We can see
that, for all the data sets, our PL-GP and RBPF-GP outperform all the other state-of-the-

96



0 20 40 60
−200

0

200

(a) Posterior over time by GP

0 20 40 60
−200

0

200

(b) Posterior over time by our PL-GP

0 20 40 60
−200

0

200

(c) Posterior over time by our RBPF-GP

5 55
−2

8

(d) log(σ2
y) over time

Figure 4.18: Posterior Evaluation (Motor Data). The first three rows are the posterior surfaces
over time of GP, our PL-GP, our RBPF-GP where we show the posterior surface with 95%
confidence interval (black line with grey interval) given observations (circles). The last row is
the posterior estimation of log(σ2y) over time where the results of GP is the black dashed line.
The posterior with 95% confidence interval for our PL-GP / our RBPF-GP are respectively
blue lines / red lines with yellow intervals.
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Figure 4.19: Posterior Evaluation (Heart Data). The first three rows are the posterior surfaces
over time of GP, our PL-GP, our RBPF-GP where we show the posterior surface with 95%
confidence interval (black line with grey interval) given observations (circles). The last row is
the posterior estimation of log(σ2y) over time where the results of GP is the black dashed line.
The posterior with 95% confidence interval for our PL-GP / our RBPF-GP are respectively
blue lines / red lines with yellow intervals.
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Figure 4.20: Posterior Evaluation (SP Data). The first three rows are the posterior surfaces
over time of GP, our PL-GP, our RBPF-GP where we show the posterior surface with 95%
confidence interval (black line with grey interval) given observations (circles). The last row is
the posterior estimation of log(σ2y) over time where the results of GP is the black dashed line.
The posterior with 95% confidence interval for our PL-GP / our RBPF-GP are respectively
blue lines / red lines with yellow intervals.
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Figure 4.21: MNLP as a function of the number of particles. The plots are respectively the
results for synthetic (1st row, left), motor(1st row, right), heart (2nd row, left) and SP data
(2nd row, right).

art online GPs since the strong heteroscedasticity and non-stationarity in these time-varying
applications reduce the prediction accuracy of most of the online GPs. It is worth mentioning
that, to some degree, NHARGP, LGP, KRLST and MPGP can deal with time-varying data
properties. However, compared to our PL-GP and RBPF-GP, their accuracy is still limited.

4.4.5 Summary

In Wang and Chaib-draa (2015a), we have proposed two particle based GPs for time-varying
applications. By designing two novel SSMs based on GP, we used PL and RBPF to capture
the time-varying non-stationarity and heteroscedasticity in a recursive Bayesian framework.
The experiments showed that our approaches outperform several benchmark GP variants.
Furthermore, our PL-GP is more computationally efficient than RBPF-GP, but our RBPF-
GP is more accurate than PL-GP, especially in multi-dimensional input cases.
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Table 4.6: Accuracy (MNLP) Evaluation for Online Prediction.

Method Syn Motor Heart SP Method Syn Motor Heart SP

ARGP 14.33 11.61 3.757 6.61 GP-PF200 11.56 11.33 3.795 4.85
NHARGP 9.14 10.43 3.64 5.38 MPGP50 14.22 11.52 3.776 4.45
KFTGP 13.53 10.95 3.748 5.54 MPGP200 12.64 11.07 3.742 4.36
LGP 10.27 10.63 3.720 4.54 PL-GP50 8.18 10.37 3.624 4.27
SOGP 13.27 10.94 3.751 4.80 PL-GP200 8.08 10.35 3.623 4.26
KRLST 8.12 10.38 3.730 4.71 RBPF-GP50 7.69 10.10 3.702 4.23
GP-PF50 12.35 11.66 3.803 4.97 RBPF-GP200 7.58 9.96 3.646 4.13

4.5 Conclusion

In this chapter, we mainly worked on the direction - Bayesian Estimation for Gaussian Pro-
cesses where we proposed three contributions for GPs to address real-world challenges by using
several benchmark techniques in sequential Bayesian estimation. Specifically, the marginalized
particle GP (Wang and Chaib-draa, 2012a) provided us with a computationally efficient GP
method where hyperparameter learning and latent function estimation are accurately perfor-
med in a marginalized particle filter. Then, the KNN based Kalman filter GP (Wang and
Chaib-draa, 2013) was designed for nonstationary phenomena. Finally, two sequential Monte
Carlo based GP approaches (Wang and Chaib-draa, 2015a) were proposed for time-varying ap-
plications so that time-varying nonstationarity and heteroscedasticity of the temporal-ordered
data points can be recursively interpreted in an online fashion.

Due to the fact that the influence between Bayesian Estimation and Gaussian Processes is
bidirectional, in the next chapter we will take advantage of Dynamical Interaction Between
Gaussian Processes and Bayesian Estimation to address several difficulties which potentially
exist in both Bayesian Estimation and Gaussian Processes.
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Chapitre 5

Dynamical Interaction Between
Gaussian Processes and Bayesian
Estimation

In many real-world applications, model learning and state estimation are strongly connected
(Doucet et al., 2000b; Liu and West, 2001; Wang et al., 2008; Deisenroth et al., 2009; Ko and
Fox, 2009). On one hand, model learning requires training data points which are often the
estimated latent states. On the other hand, state estimation are based on the learned model.
This fact tells us that, if we plan to achieve desirable performance from either the learning
or estimation perspective, we have to address the challenges from both perspectives. This is
our motivation to perform Dynamical Interaction Between Gaussian Processes and Bayesian
Estimation. In the following we propose two contributions which aim to interactively address
the difficulties in both GP learning and sequential Bayesian estimation

1. The first contribution is an online GP particle filter framework (Wang et al., 2014)
where a Gaussian process dynamical model is refined online during tracking. It is a
novel approach for both modeling and tracking because of the interaction between the
GP and particle filter. Moreover, the resulting online GP particle filters can capture the
multi-modality in dynamical systems by using a GP mixture representation for the state
space model, and successfully track different types of human motions.

2. The second contribution is a heteroscedastic deep GP (HDGP) framework (Wang and
Chaib-draa, 2015b) in which we address a heteroscedastic multi-output GP regression
task by sharing a deep GP structure between signal and noise in the observation layer. By
using Dynamical Interaction Between Gaussian Processes and Bayesian Estimation, we
then propose a sequential Monte Carlo inspired inference mechanism to infer the latent
states and update our HDGP in an efficient and accurate recursive Bayesian fashion.
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5.1 Bayesian Filtering with Online Gaussian Process Latent
Variable Models

In Wang et al. (2014), we present a novel online Gaussian process (GP) particle filter frame-
work where the prediction and observation models in the state space model are learned in an
online fashion. It is a non-parametric approach to Bayesian filtering, which is able to handle
multi-modal distributions over both models by employing a mixture representation with GP
based components. Moreover, to cope with the increasing complexity of the estimation process,
we explore two computationally efficient GP variants, sparse online GP (Csató and Opper,
2002) and local GP (Urtasun and Darrell, 2008), which help to manage computation require-
ments for each mixture component. Our experiments demonstrate that our approach can track
human motion much more accurately than existing approaches that learn the prediction and
observation models offline and do not update these models with the incoming data stream.

5.1.1 Background and Previous Work

In this contribution, we are interested in modeling and tracking human motion which are two
challenging problems involving high dimensional data.

In the context of modeling, dimensionality reduction techniques are widely employed to avoid
the curse of dimensionality. Linear approaches such as principle component analysis (PCA) are
popular as they are simple to use. However, they often fail to capture complex dependencies due
to their assumption of linearity. Non-linear dimensionality reduction techniques that attempt
to preserve the local structure of the manifold (e.g., Isomap (Tenenbaum et al., 2000; Jenkins
and Matarić, 2004), LLE (Roweis and Saul, 2000; Lee and Elgammal, 2010)) can capture more
complex dependencies, but often suffer when the manifold assumptions are violated, e.g., in
the presence of noise.

Probabilistic latent variable models have the advantage of being able to take the uncertainties
into account when learning the latent representations. Perhaps the most successful model for
human motion is the Gaussian process latent variable model (GPLVM) (Lawrence, 2005),
where the non-linear mapping between the latent space and the high dimensional space is
modeled with a GP. This provides powerful prior models, which have been employed for
character animation (Wang et al., 2008; Urtasun et al., 2008; Levine et al., 2012) and human
body tracking (Urtasun et al., 2005; Moon and Pavlovic, 2006; Urtasun et al., 2006).

In the context of tracking, one is interested in Bayesian state estimation of a dynamic system.
The most commonly used technique is Bayesian filtering, which recursively estimates the
posterior probability of the states of the system. The two key components in the filter are
the prediction model, which describes the temporal evolution of the process, as well as the
observation model which links the state and the observation. A parametric form is typically
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employed for both models.

Ko and Fox (2008) introduced the GP-BayesFilter, which defines the prediction and observa-
tion models by non-parametric GPs in order to deal with the case that accurate parametric
models are difficult to obtain. Its main limitation, however, resides in the fact that it requires
the ground truth of the latent states (as GPs are supervised), which are typically not available.
Two extensions were introduced to learn the hidden states of the training set via a non-linear
latent variable model (Ko and Fox, 2009) or a sparse pseudo-input GP regression (Turner
et al., 2010). But these approaches cannot exploit the incoming stream of data available in
the online setting as the latent space is learned offline. Furthermore, only unimodal prediction
and observation models can be captured due to the fact that the models learned by GPs are
nonlinear but Gaussian.

In this contribution (Wang et al., 2014), we extend the previous non-parametric GP-BayesFilter
by performing Dynamical Interaction Between Gaussian Process and Bayesian Estimation to
learn the latent space in an online fashion as well as to handle multi-modal distributions
for both the prediction and observation models. We demonstrate the effectiveness of our ap-
proach on a wide variety of motions, and show that our approach performs better than existing
algorithms.

5.1.2 Gaussian Process Dynamical Model

The Gaussian Process Latent Variable Model (GPLVM) is a probabilistic dimensionality re-
duction technique, which places a GP prior on the observation model (Lawrence, 2005). Wang
et al. (2008) proposed the Gaussian Process Dynamical Model (GPDM), which enriches the
GPLVM to capture temporal structure by incorporating a GP prior over the dynamics in the
latent space. In this case, the state space model is

xt = fx(xt−1) + ηx,

yt = fy(xt) + ηy,

where y ∈ RDy represents the observation and x ∈ RDx the latent state, with the dimen-
sionality Dy � Dx. The noise processes are assumed to be Gaussian ηx ∼ N (0, σ2xI) and
ηy ∼ N (0, σ2yI). The nonlinear functions f ix and f iy have GP priors, i.e., f ix ∼ GP(0, kx(x,x′))

and f iy ∼ GP(0, ky(x,x
′)) where kx(·, ·) and ky(·, ·) are the kernel functions. For simplicity, we

denote the hyperparameters of the kernel functions by θ.

Let x1:T0 = (x1, · · · ,xT0) be the latent space coordinates from time t = 1 to time t = T0.
GPDM is typically learned by minimizing the negative log posterior − log(p(x1:T0 , θ|y1:T0))

with respect to x1:T0 , and θ (Wang et al., 2008). After x1:T0 and θ are obtained, a standard
GP prediction is used to construct the model p(xt|xt−1, θ,XT0) and p(yt|xt, θ,YT0) with data
sets XT0 = {(xk−1,xk)}T0k=2 and YT0 = {(xk,yk)}T0k=1. Tracking (t > T0) is then performed
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assuming the model is fixed and can be done using particle filtering (Ko and Fox, 2009). The
major drawback of this approach is that GPDM is learned offline and thus it is not able to
adapt to new incoming observations during tracking. As shown in our experimental evaluation,
this results in poor performance when the training set is small.

5.1.3 Online Gaussian Process Particle Filter

To take the incoming data stream into account in order to improve the performance of both
learning and filtering, we propose an Online GP Particle Filter framework to refine the state
space model during tracking, i.e., the prediction p(xt|xt−1) and observation p(yt|xt) models are
updated online in the particle filtering framework. Furthermore, to deal with multi-modality
and the significant amount of uncertainty that can be present, we propose to represent the
prediction and observation models by a mixture model. For each mixture component, we will
investigate two different GP variants.

The whole framework is summarized in Algorithm 8. Concretely, let the prediction and obser-
vation models at t− 1 be

p(xt|xt−1,Θt−1,M ) =
1

RM

RM∑
i=1

p(xt|xt−1,Θi
t−1,M ),

p(yt|xt,Θt−1,O) =
1

RO

RO∑
i=1

p(yt|xt,Θi
t−1,O),

where Θi
t−1,M and Θi

t−1,O denote the parameters of the i-th component, Θt−1,M = {Θi
t−1,M}

RM
i=1

and Θt−1,O = {Θi
t−1,O}

RO
i=1 are the parameters of all components. At the t-th time step, we

run a standard particle filter to obtain a number of weighted particles (Algorithm 8, Line 4-8).
The latent space representation at time t can be obtained by resampling the weighted particles
(Algorithm 8, Line 9). Then, for simplicity, we assign each particle to the most likely mixture
component of p(xt|xt−1,Θt−1,M ) and p(yt|xt,Θt−1,O) to capture the multi-modality of the
prediction and observation models (Algorithm 8, Line 10-13). Finally, we infer the latent state
(the mean of the assigned particles (Doucet et al., 2000b; Cappé et al., 2007)) and use this
estimated state to update the corresponding components parameters, Θi

t,M for the prediction
(or motion) model and Θi

t,O for the observation model. (Algorithm 8, Line 14-24).

What remains is to specify how the parameters of individual components are represented and
updated (lines 18 and 23 in Algorithm 8). As noted above, we aim to use a GP model for each
mixture component. However, a standard GP implementation would require O(t3) operations
and O(t2) memory. As t grows linearly over time, the particle filter will quickly become too
computationally and memory intensive. Thus a primary challenge is how to efficiently update
the GP mixture components in the prediction and observation models.

In order to efficiently update Θi
t,M and Θi

t,O in an online manner, we consider two fast GP-
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Algorithm 8 Online GP-Particle Filter.
1: Initialize model parameters Θ based on y1:T0

2: Initialize particle set x
(1:NP )
T0

based on y1:T0

3: for t = T0 + 1 to T do
4: for i = 1 to Np do
5: x

(i)
t ∼ p(xt|x

(i)
t−1,Θt−1,M )

6: ŵ
(i)
t = p(yt|x(i)

t ,Θt−1,O)
7: end for
8: Normalize weights w(i)

t = ŵ
(i)
t /(

∑Np
i=1 ŵ

(i)
t )

9: Resample particle set with probabilities w(1:Np)
t

10: for i = 1 to Np do
11: ηiM = arg maxj p(x

(i)
t |x

(i)
t−1,Θ

j
t−1,M )

12: ηiO = arg maxj p(yt|x(i)
t ,Θ

j
t−1,O)

13: end for
14: for j = 1 to RM do
15: njt−1 =

∑Np
i=1 δ(η

i
M = j)

16: x̄jt−1 = 1

njt−1

∑Np
i=1 δ(η

i
M = j)x

(i)
t−1

17: x̄jt = 1

njt−1

∑Np
i=1 δ(η

i
M = j)x

(i)
t

18: Update Θj
t,M with (x̄jt−1, x̄

j
t )

19: end for
20: for j = 1 to RO do
21: njt−1 =

∑Np
i=1 δ(η

i
O = j)

22: x̄jt = 1

njt−1

∑Np
i=1 δ(η

i
O = j)x

(i)
t

23: Update Θj
t,O with (x̄jt ,yt)

24: end for
25: end for

based strategies : Sparse Online GP (SOGP) (Csató and Opper, 2002) and Local GPs (LGP)
(Urtasun and Darrell, 2008) where the reduction in memory and/or computation is achieved
by an online sparsification and a local experts mechanism respectively. The specific contents
of Θi

t,M or Θi
t,O vary depending on the strategy used. In the case of SOGP it will contain a

number of computed quantities which are associated with the active set while for LGP it will
simply be the set of all training points. The detailed review of these two GP variants can be
found in Chapter 2.

5.1.4 Experiments

To evaluate the effectiveness of our approach, we choose 4 different motions, i.e., walking, golf
swing, swimming as well as exercises (composed of side twist and squat). The data consists of
motion capture from the CMU dataset 1, where each observation is a 62 dimensional vector

1. CMU Mocap Database is available at http ://mocap.cs.cmu.edu/.
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containing the 3D rotations (degree) of all joints. We normalize the data to be zero-mean
and subsample the observations to reduce the correlation between consecutive frames. We
use a frequency of 12 frames/s for walking and swimming, 24 frames/s for golf swing and 30
frames/s for the exercise motion. We compute all results averaged over 3 trials and report the
average root mean squared error (RMSE) between ground truth and our predicted output, as
our measure of performance.

In all our experiments, the dimensionality of the latent space is set to be 3 as is common
for human motion models (Wang et al., 2008). We use PCA to initialize the latent space,
and use K-means to obtain the data points used for the mixture components. We choose the
compound kernel function k(x,x′) = σ2f exp(−0.5 ‖ x−x′ ‖2 /γ2)+ l2xTx′ for both prediction
and observation mappings. Unless otherwise stated, we use 50 particles, a training set of
size of 20/30/50/450 and 2/2/5/5 mixture components for walking/golf/swimming/exercise
motions respectively. For LGP, the number of local GP experts is 2/2/2/5, and the size of
each local expert is 5/8/5/20. For SOGP, the size of the active set is 20/5/50/20. Note that
the parameter values were chosen to balance computational cost with the prediction accuracy
and in our experiments we demonstrate the robustness of our approach to these parameters.

Comparison to State-of-the-art

We compare our approaches to two baselines : The first is the approach of Ko and Fox (2009)
where a GPDM is learned offline with gradient descent (Wang et al., 2008) before performing
particle filtering for state estimation. The second baseline is similar, but learns the GPDM
offline using stochastic gradient descent (Yao et al., 2011). We tested the baselines in two
different settings. First, only the initial training set is available to learn the prediction and
observation models. Second, all the data (including future streamed examples) are used to
learn the prediction and observation models. We call the latter setting as the oracle for Ko
and Fox (2009).

Number of Particles : We evaluate how the accuracy changes as a function of the number
of particles, Np. As expected, the RMSE of the prediction is reduced in all the methods when
the number of particles increases. As shown in Figure 5.1, our approaches are superior to
the baselines. Importantly, we outperformed the oracle baseline as we are able to represent
multi-modal distributions effectively. This is particularly important in the exercise sequence
as the dynamics are clearly multimodal due to the different motions which are performed in
this sequence. Furthermore, our LGP variant outperforms SOGP. This may be due to the
fact that SOGP has a fixed capacity while LGP is able to leverage more training data when
making predictions.

Influence of Noise : In this experiment we evaluate the robustness of all approaches to
additive Gaussian noise in the observations. Figure 5.2 shows that our SOGP and LGP particle
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Figure 5.1: Root mean squared error (RMSE) as a function of the number of particles in the
particle filter.
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Figure 5.2: Root mean squared error (RMSE) as a function of the standard deviation of noise
added to the observations.
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points.

111



filter outperform the baselines, particularly in the exercise sequence which contains multi-
modality.

Size of Training Set : We next evaluate how the accuracy depends on the size of the initial
training set, T0. Figure 5.3 clearly indicates that our methods perform well even when the
training set is very small. In contrast, the two baselines require bigger training sets to achieve
comparable performance. This is expected as the baselines do not update the latent space to
take the incoming observations into account.

Qualitative Experiments

Figure 5.4 to 5.7 show the latent space of both SOGP and LGP filters when employing 50 par-
ticles for each time step (depicted in blue). From the 3D latent space and predicted skeletons,
we find that the manifolds of both LGP and SOGP particle filters have a good representation
of the high-dimensional human motion data.

Properties of Our Approaches

We discuss various aspects of our approaches and evaluate the influence of the parameters
of SOGP and LGP particle filters. For LGP, due to the fact that the data sizes of walking,
golf and swimming motions are small, we reduce the number of local experts to be able to
increase the size of the local experts, or reduce the size of local experts to be able to increase
the number of the local experts.

Computational Complexity : Overall the computational complexity of our method (Algo-
ritm 8) is mainly determined by the complexity of constructing a prediction distribution for
each components (lines 5-6 and 11-12) and model updates (line 18 and line 23). Specifically, for
an individual component which is either SOGP or LGP, computing the prediction distribution
is O(N2

A) or O(MaM
3
b + TMaMb) respectively where NA is the size of active set, Ma is the

number of local experts, Mb are the number of neighbors in the output space and TMaMb

comes from the KNN search. The model updates for the mixture components (lines 18 and
23) have a computational complexity of O(N2

A) and O(1) for SOGP and LGP respectively.

Number of Mixture Components : Figure 5.8 shows performance as a function of the
number of mixture components, RM and RO, for both SOGP and LGP. For LGP+PF in
walk/golf/swim/exercise, the number of local GPs are 1/1/2/5 and the size of each local
GP are 3/3/5/20. In all cases, we set RM = RO for convenience. Note that performance
typically increases with the number of mixture components, for SOGP, but less so for LGP.
Furthermore, while LGP generally outperforms SOGP, the difference quickly declines as the
number of mixture components increases. Finally, our approaches outperform the baselines
in which the model is not updated during filtering indicating that online model updating is
important in practice.
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(a) 3D Walk (Our SOGP+PF)
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(b) 3D Walk (Our LGP+PF)

 

 

 

 

 

      

(c) Walk (t=23, 26, 29)

Figure 5.4: 3D latent spaces (Walking) while tracking. The first two rows depict the latent
space learned by our SOGP variant and our LGP variant. In these two plots the red curve
represents the predicted mean of the latent state sequence and the blue crosses are the particles
at each step. The last row depicts the predicted skeletons, where ground truth is shown in
green, our SOGP variant in blue and our LGP variant in red.
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(a) 3D Golf (Our SOGP+PF)
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(b) 3D Golf (Our LGP+PF)

 

 

 

 

 

 

 

      

(c) Golf (t=33, 41, 54)

Figure 5.5: 3D latent spaces (Golf) while tracking. The first two rows depict the latent space
learned by our SOGP variant and our LGP variant. In these two plots the red curve represents
the predicted mean of the latent state sequence and the blue crosses are the particles at each
step. The last row depicts the predicted skeletons, where ground truth is shown in green, our
SOGP variant in blue and our LGP variant in red.

114



−200

0

200 −100
0

100

−100

−50

0

50

100

(a) 3D Swim (Our SOGP+PF)
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(c) Swim (t=71,79)

Figure 5.6: 3D latent spaces (Swimming) while tracking. The first two rows depict the latent
space learned by our SOGP variant and our LGP variant. In these two plots the red curve
represents the predicted mean of the latent state sequence and the blue crosses are the particles
at each step. The last row depicts the predicted skeletons, where ground truth is shown in
green, our SOGP variant in blue and our LGP variant in red.
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(a) 3D Exercise (Our SOGP+PF)
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(b) 3D Exercise (Our LGP+PF)

 

 

 

 

 

 

 

 

(c) Exercise (t=508,555,721)

Figure 5.7: 3D latent spaces (Exercise) while tracking. The first two rows depict the latent
space learned by our SOGP variant and our LGP variant. In these two plots, the red, blue
and green curves are the predicted mean of the latent state for three motions in the exercise
sequence, and the black crosses are the particles at each step. The last row depicts the predicted
skeletons, where ground truth is shown in green, our SOGP variant in blue and our LGP variant
in red.
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Active Set size in SOGP : To explore the effect of the size of the active set, NA, we set the
number of mixture components, RM and RO, to be 2/1/5/5 for walk/golf/swim/exercise, and
use the same settings as before for the other parameters. Results are shown in Figure 5.9(a).
As expected the performance improves when the size of the active set increases.

Number and Size of Local Experts in LGP : Figure 5.9(b) and 5.9(c) show the perfor-
mance of our approach as a function of the number of local GP experts, Ma, as well as their
size, Mb. For this experiment we set the number of mixture components, RM and RO, to be
1/2/1/5 and used the same settings as before for the other parameters except when evaluating
the size of each local GP expert where we set the number of local GP experts to 5/2/5/5. As
shown in Figure 5.9(b) and 5.9(c), even with the small number (size) of local GP experts, we
still achieve good performance.

Handling Missing Data

We now evaluate the capabilities of our approaches to handle missing data. To do that, we
assume that the initial set has no missing values, but a fixed set of joint angles are missing for
all incoming frames. Our approach is able to cope with the missing data problem with only
two small modifications. First, particles are weighted only based on the observed dimensions.
Furthermore, when updating the prediction and observation models, we employ mean imputa-
tion for the missing observation dimensions. Figure 5.10 shows reconstructions of the missing
dimensions for all our motions, which consist of the two legs for walking, the left arm for golf
swing, swimming and exercise motions. We can see that our approach is able to reconstruct
the missing parts well.

Finally, to evaluate the tracking performance as a function of the number of missing dimen-
sions, we randomly generate the indices for the missing dimensions and use the same missing
dimensions for all incoming frames. Figure 5.11 shows that, compared to the baselines, our
approaches perform well even when the number of missing dimensions is 20 (1/3 of the skele-
ton) for all the motions. In addition, our LGP particle filter outperforms our SOGP variant
since LGP could leverage more training data when making predictions.

5.1.5 Summary

In Wang et al. (2014), we have presented a novel non-parametric method to Bayesian filtering,
where the observation and prediction models are learned in an online fashion by using a
mixture model with GP components. We have demonstrated that our approaches can capture
the multimodality accurately and efficiently due to the fact that two fast GP variants are used
to update individual mixture components. By tracking different human motions and exploring
the impact of various parameters on performance, we can see that our approaches are effective.
Furthermore, our local GP particle filter proved superior to our SOGP variant, however the
differences can be mitigated by using more mixture components in our SOGP particle filter.
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Figure 5.8: Root Mean Squared Error (RMSE) as a function of the number of mixture
components.
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Figure 5.9: Root mean squared error (RMSE) as a function of the size of the active set in
SOGP, the number of the local GP experts and the size of each local GP expert in LGP. In
the subplot 5.9(c), the top x-axis is for exercise and the bottom one for the other motions.
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Figure 5.11: Root Mean Squared Error (RMSE) as a function of the number of the missing
dimensions.
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Finally, it is worth mentioning that our two resulting online GP particle filters can be treated
as an online method for both GP modeling and sequential Bayesian estimation. This is credited
to our novel Dynamical Interaction Between Gaussian Processes and Bayesian Estimation.

In the following, we will design a heteroscedastic deep GP network for which we present
an efficient and accurate sequential inference framework by taking advantage of this novel
dynamical interaction between GPs and Bayesian estimation.

5.2 Efficient Sequential Inference for Heteroscedastic Deep
Gaussian Processes Regression

Many real-world applications often reflect input-dependent correlations between multiple out-
put variables. Deep Gaussian process (Damianou and Lawrence, 2013) is a flexible deep neural
network to capture such input-dependencies by modeling GP mappings in each layer. However,
a deep GP is often limited when the observations are heteroscedastic, and also its network
structure often makes the inference intractable when the size of the data sets increases.

In Wang and Chaib-draa (2015b), we propose a heteroscedastic deep GP (HDGP) which can
be seen as a generalized version of both heteroscedastic GP and deep GP. By taking advantage
of Dynamical Interaction Between Gaussian Processes and Bayesian Estimation, we design an
efficient sequential inference mechanism for our HDGP to estimate the latent variables and
update the model in a recursive Bayesian manner. We show that our HDGP outperforms
several state-of-the-art GP variants on three real-world data sets.

5.2.1 Motivations

As we discussed in Section 4, a standard GP is often limited when the data sets reflect
input-dependent properties such as non-stationarity and heteroscedasticity (Rasmussen and
Williams, 2006; Schmidt and O’Hagan, 2003; Goldberg et al., 1998). To address such chal-
lenging data properties, several GP variants have been proposed by designing non-stationary
covariance functions (Rasmussen and Williams, 2006; Schmidt and O’Hagan, 2003; Paciorek
and Schervish, 2003), putting another GP prior on the log-noise term (Goldberg et al., 1998;
Kersting et al., 2007; Lázaro-Gredilla and Titsias, 2011) or warping GPs with different nonli-
near functions (Snelson et al., 2003; Adams and Stegle, 2008; Lázaro-Gredilla, 2012). However,
all these methods are designed for a standard regression task with one-dimensional output.
Hence their performance is often deteriorated for multi-output tasks as the correlations bet-
ween outputs are ignored by using these GP variants independently for each output variable.

Over the past years, multi-output GPs have been significantly investigated (Boyle and Frean,
2004; Bonilla et al., 2007; Alvarez and Lawrence, 2008) as the dependencies between outputs
can improve the prediction accuracy. However, in these multi-output GP approaches the corre-
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Figure 5.12: Heteroscedastic Deep Gaussian Processes Model.

lations between outputs are independent of the input space (Wilson et al., 2012). Consequen-
tially their performance is often limited when the data sets reflect strong input-dependencies
(Wilson et al., 2012; Damianou and Lawrence, 2013). Recently, a deep GP model has been
proposed by Damianou and Lawrence (2013), based on the fact that a GP is a multi-layer per-
ception with infinite units in the hidden layer (Neal, 1996). The resulting deep belief network,
which is based on GP mappings in each layer, can capture the input-dependent correlations
between outputs. However, its performance may be limited for heteroscedastic cases since he-
teroscedasticity is not explicitly modeled in deep GP. Moreover, its network structure often
makes the inference intractable when the size of data sets increases.

In the following contribution (Wang and Chaib-draa, 2015b), we propose a novel heterosce-
dastic deep GP (HDGP) to interpret the input-dependent noise correlations between output
variables. To achieve this goal, first we explicitly model heteroscedasticity by sharing a deep
GP structure between signal and noise in the observation layer. We then design a sequential
sampling inference framework, which is inspired by the interaction between GP modeling and
Bayesian estimation, to filter out the latent states and update our HDGP in a recursive fashion.
Finally, it is worth mentioning that the weighting mechanism in our inference framework can
be straightforwardly used to handle missing data tasks in multi-output regression.

5.2.2 Heteroscedastic Deep Gaussian Processes

Given a number of input-output pairs {(xn,yn)}Nn=1 where xn ∈ RDx and yn ∈ RDy , we
propose the following heteroscedastic deep GP (HDGP) model that consists of a deep GP
structure where
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• Layer 1

s1 = f1(x) + v1, s1 ∈ RD1

f1,d1 ∼ GP(0, kθ1,d1 )

v1,d1 ∼ N (0, σ21,d1)

d1 = 1 · · ·D1

· · ·

• Layer L− 1

sL−1 = fL−1(sL−2) + vL−1, sL−1 ∈ RDL−1

fL−1,dL−1
∼ GP(0, kθL−1,dL−1

)

vL−1,dL−1
∼ N (0, σ2L−1,dL−1

)

dL−1 = 1 · · ·DL−1

with a heteroscedastic observation layer

y = sh + vy, vy ∼ N (0, esgI)

where the output of the deep GP, sL−1, is the input of both signal functions sh

sh = h(sL−1) + vh, sh ∈ RDy

hd ∼ GP(0, kθh,d)

vh,d ∼ N (0, σ2h,d)

d = 1 · · ·Dy

and noise functions sg in this layer

sg = g(sL−1) + vg, sg ∈ RDy

gd ∼ GP(0, kθg,d)

vg,d ∼ N (0, σ2g,d)

d = 1 · · ·Dy

For convenience, we put all the hyper-parameter vectors θi,di (i = 1, · · · , L − 1), θh,d, θg,d of
the covariance functions and all the variances of the noises σ2i,di (i = 1, · · · , L− 1), σ2h,d, σ

2
g,d

into a model parameter vector that is denoted as Θ.

The graph model of our HDGP is shown in Figure 5.12. It is worth mentioning that our HDGP
is a generalized version of both heteroscedastic GP and deep GP.
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• When x = sL−1 and Dy = 1, our HDGP is reduced to an one-layer structure which is the
typical heteroscedastic GP in (Goldberg et al., 1998).

•When sh = y, our HDGP is reduced to L-layer deep GP model in (Damianou and Lawrence,
2013). Furthermore, due to the fact that L-layer deep GP can be treated as a generalized
version of warped GP (L = 2, D1 = 1, Dy = 1) in (Lázaro-Gredilla, 2012) and GP product
model (L = 2, D1 = 2, Dy = 1, h(s1) = s1,1e

s1,2) in (Adams and Stegle, 2008), hence our
HDGP can be also seen as a generalized version of these variants of deep GP.

In the next section, we propose an efficient sequential inference mechanism for our HDGP,
which is inspired by sequential Monte Carlo sampling (Doucet et al., 2000b; Chopin, 2002),
to estimate the latent states and update the model in a recursive manner.

5.2.3 Sequential Inference for HDGP

As mentioned by Damianou and Lawrence (2013), it is often challenging to perform deep GP
for large data sets. We propose an efficient sequential inference mechanism (Algorithm 9) by
taking advantage of the interaction between Bayesian state estimation and model update.

Suppose that the training pairs {(xn,yn)}Nn=1 are made available one at a time. For sequential
Bayesian inference, we rewrite our HDGP model at the (n − 1)-th step in a probabilistic
manner,

• Deep GP Structure

p(s1|x,Mn−1
1 ,Θ) (5.1)

· · ·

p(sL−1|sL−2,Mn−1
L−1 ,Θ) (5.2)

• Heteroscedastic Observation Layer

p(sh|sL−1,Mn−1
h ,Θ) (5.3)

p(sg|sL−1,Mn−1
g ,Θ) (5.4)

p(y|sh, sg) = N (sh, e
sgI) (5.5)

where Mn−1
1:L−1, M

n−1
h and Mn−1

g are model quantities that we will discuss later on.

Sampling for State Estimation : An Approach Inspired from Sequential Monte
Carlo

Firstly we infer the latent states at the n-th step by using our HDGP at the (n − 1)-th step
(5.1-5.5) and (xn,yn). Even though the posterior,

p(sn1:L−1, s
n
h, s

n
g |xn,yn,Mn−1

1:L−1,M
n−1
h ,Mn−1

g ,Θ),
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Algorithm 9 Sequential inference for HDGP.
1: Input :
2: The n-th data pair : (xn,yn)
3: The model quantities of HDGP at the (n− 1)-th step : Mn−1

1:L−1, M
n−1
h , Mn−1

g

4: Output :
5: The latent states at the n-th step : ŝn1:L−1, ŝnh and ŝng
6: The model quantities of HDGP at the n-th step : Mn

1:L−1, M
n
h , M

n
g

7: · · · · · ·Sequential Monte Carlo Inspired Sampling for State Estimation· · · · · ·
8: Sampling Np Particles from (5.1-5.4) that are constructed by (2.15)

sn1 (1 : Np) ∼ p(sn1 |xn,M
n−1
1 ,Θ)

sni (1 : Np) ∼ p(sni |sni−1(1 : Np),M
n−1
i ,Θ), (i = 2, ...L− 1)

snh(1 : Np) ∼ p(snh|snL−1(1 : Np),M
n−1
h ,Θ), sng (1 : Np) ∼ p(sng |snL−1(1 : Np),M

n−1
g ,Θ)

9: Weighting Np Particles by (5.5) & Normalizing Weights

wn(1 : Np) = p(yn|snh(1 : Np), s
n
g (1 : Np)), ŵn(j) = wn(j)/(

Np∑
j=1

wn(j)), (j = 1, ...Np)

10: State Estimation

ŝni =

Np∑
j=1

ŵn(j)sni (j), (i = 1, ...L− 1), ŝnh =

Np∑
j=1

ŵn(j)snh(j), ŝng =

Np∑
j=1

ŵn(j)sng (j)

11: · · · · · ·Sparse Online Gaussian Process (SOGP) for Model Update· · · · · ·
12: Updating Mn−1

1:L−1, M
n−1
h , Mn−1

g to Mn
1:L−1, M

n
h , M

n
g by using SOGP in Subsection 2.1.2

with (xn, ŝ
n
1 ), · · · , (ŝnL−2, ŝ

n
L−1), (ŝnL−1, ŝ

n
h), (ŝnL−1, ŝ

n
g )

is analytically intractable, we can use Bayes rule to obtain that it is proportional to

p(yn|snh, sng )p(snh|snL−1,M
n−1
h ,Θ)p(sng |snL−1,Mn−1

g ,Θ)

×p(sn1 |xn,M
n−1
1 ,Θ)

∏L−1
i=2 p(s

n
i |sni−1,M

n−1
i ,Θ). (5.6)

Inspired by sequential Monte Carlo (Doucet et al., 2001; Cappé et al., 2007), we propose
a particle-based-sampling mechanism (Algorithm 9, Line 8-10) to estimate the latent states
at the n-th step. Given xn, the particles are propagated layer by layer (Algorithm 9, Line
8). Once the particles arrive at the observation layer, yn is used to evaluate the weights of
the particles (Algorithm 9, Line 9). Finally, the latent states can be estimated by using the
weighted particles (Algorithm 9, Line 10).

After obtaining the estimated states, we can construct the data pairs at n-th step, i.e., (xn, ŝ
n
1 ),

· · · , (ŝnL−2, ŝ
n
L−1), (ŝnL−1, ŝ

n
h) and (ŝnL−1, ŝ

n
g ). These data pairs are then used to update our

HDGP at the (n-1)-th step (5.1-5.4) to obtain our HDGP at n-th step (Algorithm 9, Line
12). However, a standard GP implementation requires O(n3) computation load, and it will
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make sequential inference computationally unbounded since n grows over time. To efficiently
update our HDGP in a sequential manner, we propose to use a well-known sparse online GP
(SOGP) (Csató and Opper, 2002; Vaerenbergh et al., 2012) to reduce the computation burden
by iteratively selecting an active set from the training set.

Sparse Online Gaussian Process

The model quantities of SOGP is associated with an active set (Csató and Opper, 2002;
Vaerenbergh et al., 2012). Since the training pairs are available one at a time, we denote the
model quantities of SOGP at the (n-1)-th step areMn−1

SOGP = {Dn−1, µn−1,Σn−1, Qn−1} where
Dn−1 is the active set, N (µn−1,Σn−1) is the posterior over the latent function values of the
active set, Qn−1 is the inverse kernel matrix of the active set. Due to the fact that all the
GP models in our HDGP are SOGP, Mn−1

SOGP can be Mn−1
1:L−1, M

n−1
h or Mn−1

g as specified in
(5.1-5.4).

Basically SOGP is associated with two crucial steps in our HDGP. Firstly, we draw particles
from the (n-1)-th HDGP model (Algorithm 9, Line 8). This process is based on the predictive
distribution of SOGP (Equation 2.15). Secondly, once we obtain the estimated latent states,
we will use the new data points (xn, ŝ

n
1 ), · · · , (ŝnL−2, ŝ

n
L−1), (ŝnL−1, ŝ

n
h), (ŝnL−1, ŝ

n
g ) to update the

(n-1)-th model quantities Mn−1
1:L−1, M

n−1
h , Mn−1

g to the n-th model quantities Mn
1:L−1, M

n
h ,

Mn
g (Algorithm 9 Line 12). The detailed updating procedure can be found in Subsection 2.1.2.

Discussion

As all the GPs in our HDGP are SOGPs, the computation complexity of each GP mapping in
our HDGP is governed by O(N2

AC) for each update step where NAC is the size of the active set.
Additionally, after obtaining our HDGP by passing all the training pairs through Algorithm
9, one may be interested in learning hyper-parameters Θ. It can be done straightforwardly
because the active sets, which we infer from our sequential inference mechanism, can be directly
used as the data sets to efficiently refine Θ with a standard gradient optimization of GP. In
the experiment we follow the strategy in Csató and Opper (2002); Turner et al. (2010) to
iteratively perform sequential inference and hyper-parameter learning in an EM fashion.

Finally, it is worth mentioning that our sequential inference mechanism allows us to easily
deal with missing data tasks in multi-output regression. Suppose that several dimensions of
yn are missing, the only modification in Algorithm 9 is particle weighting (Line 9) in which
the particles are weighted by using the observed dimensions of yn.

Prediction

After using all the training pairs to obtain our final HDGP with model quantities MFinal
1:L−1,

MFinal
h , MFinal

g , we can make a prediction for a given test input x? straightforwardly by
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passing x? into particle sampling mechanism (Algorithm 9, Line 8) where xn is changed to
x?, and Mn−1

1:L−1, M
n−1
h , Mn−1

g are changed to MFinal
1:L−1, M

Final
h , MFinal

g . Once we obtain the
particles s?h(1 : Np) and s?g(1 : Np), the predictive distribution of the output is a Gaussian
mixture (refer to Equation 5.5),

1

Np

Np∑
j=1

N (s?h(j), es
?
g(j)I).

5.2.4 Experiments

To show that our HDGP can interpret the input-dependent properties efficiently and accura-
tely, we evaluate our HDGP and its variants on three distinct data sets : motor (Rasmussen
and Ghahramani, 2001), parkinsons 2 and flu data 3.

In all the experiments, we follow Damianou and Lawrence (2013) to use Automatic Relevance
Determination (ARD) squared exponential kernel as the covariance functions in our HDGP,
k(x,x′) = σ2ker exp[−0.5

∑d
i=1 ci(xi − x′i)

2] where the hyper-parameters are σ2ker, c1, · · · , cd.
Moreover, as suggested in (Rasmussen and Williams, 2006) we use normalized mean squared
error (NMSE) & mean negative log probability (MNLP) as the criterion for prediction error,
and use training time (second) as the criterion for training efficiency. Finally, we run all the
methods 5 times and report the average results for comparison.

Motor Data : Heteroscedastic GP (HGP) View

One main contribution of our HDGP is heteroscedasticity (i.e., our HDGP is a generalized
version of HGP), so we start our experiments by evaluating our HDGP in a HGP view. Motor
data, which consists of 94 time/acceleration (1-D input/1-D output) pairs, is a benchmark
data set to evaluate heteroscedasticity (Rasmussen and Ghahramani, 2001). In this data set
there are three noise level, i.e., a flat low noise region, a curved region and a flat high noise
region.

Firstly, we evaluate the posterior of our HDGP using all the data points. Due to heterosce-
dasticity, we perform our sequential inference with HGP structure (it is one-layer HDGP, i.e.,
L = 1, x = sL−1 ∈ R), and two-layer HDGP (L = 2, x = sL−2 ∈ R, s1 = sL−1 ∈ R). We de-
note these two approaches as our HGP and HDGP. The resulting posteriors, which associates
with latent state estimation, are shown in Figure 5.13. The number of particles Np is 1000,
the size of active set NAC is the size of training set without sparsification. It is clearly shown
that both of our HGP and HDGP outperform the standard GP, and successfully capture the
challenging heteroscedastic noise.

2. http ://archive.ics.uci.edu/ml/datasets.html
3. Google Flu, http ://www.google.org/flutrends
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Figure 5.13: Posterior Evaluation (Motor Data) by our HGP. In Subplot 5.13(a), the ob-
servations are black crosses, the posterior mean of GP / our HGP are blue / red lines, 95%
confidence interval of GP / our HGP are blue / red dashed lines.
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Figure 5.14: Posterior Evaluation (Motor Data) by our HDGP. In Subplot 5.14(a), the ob-
servations are black crosses, the posterior mean of GP / our HDGP are blue / red lines, 95%
confidence interval of GP / our HDGP are blue / red dashed lines.
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Secondly, we evaluate the predictive performance. In this experiment, we randomly select 60
data pairs to train the model and the rest 34 data points are used for test. Due to the fact that
our HGP and HDGP are based on the particles, we firstly assess average prediction error &
training efficiency as a function of Np. It is shown in Figure 5.15 that average prediction error
of both our HGP and HDGP is improved when Np increases, and trends to converge when
Np is around 1000. Furthermore, our HDGP outperforms our HGP since in our HDGP here
the nonlinear mapping s1 = f1(x) + v1 is the input of observation layer (rather than directly
using x as the input of observation layer in our HGP). The tradeoff in our HDGP is the longer
training time because of modeling an extra nonlinear mapping f1.

Finally, we compare our HDGP to several benchmark GP approaches. The selection of GP
methods is associated with the dimension of the output. Since this motor data is single-output,
we choose single-output GPs for heteroscedasticity comparison.

• We select the standard GP with the ARD kernel (GP) as a base line. Furthermore, since
this single-output motor data is heteroscedastic, we choose single-output GPs which can cap-
ture heteroscedasticity. Specifically, we select the standard GP with the non-stationary kernel
compounded by ARD kernel, neural network kernel and linear kernel (NGP) (Rasmussen
and Williams, 2006) ; warped GP (WGP) (Snelson et al., 2003) ; heteroscedastic GP (HGP)
(Kersting et al., 2007).

• Since GP product model (GPPM) (Adams and Stegle, 2008) and HGP (Goldberg et al.,
1998) are single-output variants of our HDGP. We thus perform our particle based inference
on GPPM (our GPPM) and HGP (our HGP) for this single-output motor data.

• Due to the fact that our HDGP in this motor data is two-layer, we choose deep GP (DGP)
(Damianou and Lawrence, 2013) with two layers for comparison. Additionally, we also imple-
ment our sequential inference mechanism for DGP with two layers (our DGP).

For our HDGP and its variants, Np is 500 and we show the average results in Table 5.1.
The predictive error of GP and NGP is high due to heteroscedasticity. HGP (Kersting et al.,
2007) reduces the error by modeling the input-dependent noise. However, compared to our
HGP it is still limited. This fact indicates that our sequential inference mechanism is more
effective than the one of HGP in (Kersting et al., 2007). Similarly, our DGP outperforms
DGP (Damianou and Lawrence, 2013). Moreover, our HDGP further improves the predictive
accuracy of our DGP by modeling another GP for noise. Even though the extra GP mapping
increases the training time of our HDGP, it is still more efficient (a shorter training time) than
DGP in (Damianou and Lawrence, 2013). Hence, we can see that our HDGP with sequential
inference mechanism is effective to capture the heteroscedasticity in terms of both accuracy
and efficiency.

131



0 500 1000 1500

0.1

0.2

0.3

0.4

N
p

N
M

S
E

 

 
our HGP
our HDGP

0 500 1000 1500

8

8.5

9

N
p

M
N

LP

 

 
our HGP
our HDGP

0 500 1000 1500
0

2

4

6

N
p

lo
g(

T
ra

in
T

im
e)

 

 

our HGP
our HDGP

Figure 5.15: Predictive performance as a function of Np (motor data).
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Table 5.1: Average prediction error & training efficiency comparison for single-output motor
data.

Method NMSE MNLP TrainTime(s) Method NMSE MNLP TrainTime(s)

HGP 0.198 8.918 1.83 our HGP 0.169 8.275 1.49
DGP 0.193 9.028 100.1 our DGP 0.186 8.636 38.4
GP 0.202 9.078 1.03 our GPPM 0.180 8.566 1.50
NGP 0.202 9.077 2.26 our HDGP 0.171 8.109 72.1
WGP 0.196 8.619 4.05

Parkinsons Data : Deep GP (DGP) View

One main contribution of our HDGP is deep network structure (i.e., our HDGP is a generalized
version of DGP), so we now evaluate our HDGP in a DGP view by using a parkinsons data set.
This data set is a six-month biomedical voice recording from several people with early-stage
Parkinson’s disease where the input x is a 16-dimensional biomedical voice feature vector,
the output y is a 2-dimensional score vector (motor UPDRS score and total UPDRS score).
Since this data set mainly reflects input-dependent non-stationarity, it is a quite suitable set
to evaluate if our sequential inference works well with deep GP structure (y = sh).

Firstly, we evaluate the posterior using a six-month recording of one patient in which the
number of input-output pairs is 107. The posterior surface of two-dimensional output is shown
in Figure 5.16(a) and 5.16(b) where our DGP is a two-layer structure with a two-dimensional
latent layer (s1 = [s1,1, s1,2]

T ), the number of particles Np is 1000, the size of active set NAC is
the size of training set without sparsification. It is shown that our DGP successfully captures
the discontinuity (a type of non-stationarity). Additionally, we show the posterior density of
the estimated s1 in Figure 5.16(c). We find that in the latent space there are two patterns,
which is verified by the fact that for each output dimension there are two patterns.

Secondly, we verify the effectiveness of our sequential inference framework for missing data.
In this experiment, the fifth-month record of the first output and the second-month record of
the second output in the above-mentioned data set are treated as missing data. For compa-
rison, we choose the base line as independent GP (IGP) where each dimension of outputs is
independently modeled by a standard GP. Furthermore, we select a multi-output GP (MulGP)
variant (Bonilla et al., 2007), which is a well-known approach for missing data. The average
predictive NMSE / MNLP for recovering the missing data are respectively 0.944 / 4.573 for
IGP, 0.039 / 1.415 for MulGP and 0.015 / 0.522 for our DGP. In this case IGP is poor since
the correlations between outputs have been ignored. MulGP improves the accuracy. Howe-
ver, compared to our DGP, its performance is still limited. The reason is that our DGP with
sequential inference framework successfully captures the strong input-dependent correlations
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Figure 5.16: Posterior Evaluation (Parkinsons Data). In Subplot 5.16(a) and 5.16(b), the
observations are blue line with squares, the posterior mean of our DGP is red line with circles
and 95% confidence interval is the yellow region. Subplot 5.16(c) shows the posterior density
of our DGP for 2-D latent state s1 = [s1,1, s1,2]

T where the estimated s1 are black circles.
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Table 5.2: Average prediction error & training efficiency comparison for multi-output parkin-
sons data.

Park NMSE MNLP TrainTime(s)
MulGP 0.180 8.19 385
DGP 0.492 6.49 1337
our DGP 0.176 5.67 100

between outputs.

Finally, we assess whether our DGP is accurate and computationally efficient for large data
sets. We hence choose a six-month recording of another four people where the number of
input-output pairs are 575. We randomly select 500 pairs for training and the rest 75 pairs for
test. Note that the size of training pairs (500) is moderate, but it is large enough to show the
computation efficiency between different approaches (as we show later on). In this experiment,
we first evaluate the influence of NP and NAC . As shown in Figure 5.17, the average prediction
accuracy of our DGP increases when NP and/or NAC increase. Furthermore, due to the fact
that the parkinsons data is multi-output, we thus compare our DGP with multi-output GP
variants including MulGP (Bonilla et al., 2007) and DGP (Damianou and Lawrence, 2013)
where NP of our DGP is 500, NAC of both our DGP and DGP in (Damianou and Lawrence,
2013) is 100. In Table 5.2, our DGP outperforms both MulGP (Bonilla et al., 2007) and DGP
(Damianou and Lawrence, 2013) in terms of both accuracy and efficiency.

Flu Data : HDGP View

After considering our HDGP from both HGP and DGP views, we now incorporate both
contributions together to evaluate if our HDGP can correctly interpret both input-dependent
signal and noise correlations between different outputs. To achieve this goal, we choose a flu
data set which is composed of a record of the flu activity rate in Canada from 2003-11-09
to 2014-03-30. This data set is quite challenging as both non-stationary and heteroscedastic
correlations exist. Furthermore, in this flu data there are 543 input-output pairs where the
input is the time step, the output is a 9 dimensional vector that consists of the flu activity
rate of 9 provinces in Canada (Alberta / British Columbia / Manitoba / New Brunswick /
Newfoundland and Labrador / Nova Scotia / Ontario / Saskatchewan / Quebec).

Firstly, we evaluate the posterior of our HDGP where we choose a three-layer structure in
which the latent states of the first two layers, s1 and s2, are three-dimensional ; NP is 500 and
NAC is 100. Figure 5.18 shows the posterior mean of our HDGP layer by layer. Additionally,
in Figure 5.18(d) we show the correlations between nine dimensions of sg (each dimension
represents the noise level of the flu activity rate for one province) and the correlations between
nine dimensions of sh (each dimension represents the signal level of the flu activity rate for
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data).
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Table 5.3: Average prediction error & training efficiency comparison for multi-output flu data.

Flu NMSE MNLP TrainTime(s)
MulGP 0.688 6.15 121
DGP 0.692 3.73 164
our DGP 0.278 3.57 116
our HDGP 0.288 3.42 210

one province) at two flu outbreak periods 2004-04 to 2004-05 (H7N3, bird flu) and 2009-10 to
2009-11 (H1N1, swine flu). Our HDGP successfully captures both types of correlations which
are temporal-dependent (as the input is the time step).

Secondly, we assess our HDGP for missing data. In this experiment, we use the time period
from 2007-09 to 2010-07 which contains the outbreak period of swine flu. There are total 150
data points where we consider the outputs of the first five provinces are missing from the
80th to the 100th data point, the outputs of the rest four provinces are missing from the 30th
to the 50th data point. Similarly to parkinsons data, we compare our HDGP to independent
GP (IGP) and MulGP in (Bonilla et al., 2007). The average predictive NMSE / MNLP for
recovering the missing data are respectively 1.074 / 3.86 for IGP, 0.593 / 2.95 for MulGP and
0.556 / 2.73 for our HDGP. We can see that our HDGP outperforms both methods.

Thirdly, we use the same 150 data points from 2007-09 to 2010-07 to show the average
accuracy and efficiency of our HDGP. We randomly select 50 points for training, the rest
100 points for test. Similar to the parkinsons data, the flu data is also multi-output. Hence
we compare our DGP and HDGP to multi-output GP variants including MulGP (Bonilla
et al., 2007) and DGP (Damianou and Lawrence, 2013) where Np of our DGP and HDGP is
500 ; NAC of DGP (Damianou and Lawrence, 2013), our DGP and our HDGP is 50 ; DGP
Damianou and Lawrence (2013) is the same three-layer structure as our DGP. The results
in Table 5.3 show both our DGP and HDGP outperform DGP in (Damianou and Lawrence,
2013).

Finally, we explore the robustness of our sequential inference framework for large data sets
when varying the size of deep network structure. To this end, we perform our DGP and DGP
in (Damianou and Lawrence, 2013) on the whole flu data (500 data pairs for training, 43 for
test) where Np of our DGP is 500 ; NAC of DGP in (Damianou and Lawrence, 2013) and our
DGP is 100. Table 5.4 shows that our sequential inference framework for DGP structure is
more accurate and efficient than the inference framework in (Damianou and Lawrence, 2013).
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Table 5.4: Average predictive performance of different DGP structures for multi-output flu
data. (i/j) : DGP structure is i layers/j-dimension in each layer.

Flu NMSE MNLP TrainTime(s)
DGP (3/3) 1.1267 9.5236 1924
DGP (3/5) 1.0933 8.3952 2183
DGP (5/3) 1.1353 8.7463 2725
DGP (5/5) 1.0748 7.9243 3769
our DGP (3/3) 1.1269 5.5304 444
our DGP (3/5) 1.0156 5.3836 549
our DGP (5/3) 1.1317 5.4668 704
our DGP (5/5) 0.9670 5.4140 864

5.2.5 Summary

In Wang and Chaib-draa (2015b), we have proposed a heteroscedastic deep GP (HDGP) which
is a generalized version of heteroscedastic GP and deep GP. By performing Dynamical Interac-
tion Between Gaussian Processes and Bayesian Estimation, we designed a sequential sampling
inference framework for our HDGP to capture input-dependent correlations between outputs.
Additionally, our HDGP can straightforwardly deal with missing data for multi-output re-
gression. Our experiments have shown that our HDGP outperforms several benchmark GP
variants.

5.3 Conclusion

In this chapter, we mainly work on Dynamical Interaction Between Gaussian Processes and
Bayesian Estimation to address two challenging tasks that potentially exist in both GPs and
Bayesian estimation.

Concretely, online GP particle filters (Wang et al., 2014) provide us with a novel approach for
both modeling (GP) and tracking (Bayesian Estimation) where a GP dynamical model can be
refined online during state tracking. The multi-modality is successfully captured by the GP
mixture model representation in which we propose two fast online GP models for each mix-
ture component to maintain the computation load. Our human motion tracking experiments
have shown that our resulting framework can interpret the different types of human motion
efficiently and accurately.

The second contribution in this chapter is a heteroscedastic deep GP (HDGP) model (Wang
and Chaib-draa, 2015b) in which a deep GP structure is shared between signal and noise at the
observation level. The resulting network structure does not only capture the input-dependent
signal correlations between multi-output variables (inheriting from the deep GP (Damianou
and Lawrence, 2013)) , but it also models the input-dependent noise correlations between
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multi-output variables (explicitly establishing a deep GP structure for noise). Furthermore,
inspired by Dynamical Interaction Between Gaussian Processes and Bayesian Estimation, we
propose a sequential inference mechanism for our HDGP so that our HDGP can be implemen-
ted with high accuracy and efficiency.

In the next chapter, we conclude the thesis and propose some potential future works.
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Chapitre 6

Conclusion

In this thesis, we worked on the problems of model learning and state estimation from a
Bayesian perspective. By investigating Interactions Between Gaussian Processes and Bayesian
Estimation which are based on the connections between Bayesian model (Gaussian processes)
and Bayesian estimators (Kalman filter and Monte Carlo methods) in different directions, we
demonstrated our resulting contributions can address a number of difficulties in modeling and
estimation tasks with high efficiency and accuracy. In this chapter, we conclude this thesis
with a summary of our contributions and an overview of future work.

6.1 Summary of the Contributions

In the following, we briefly summarize our contributions from three main aspects :

– Gaussian Processes for Bayesian Estimation

– Bayesian Estimation for Gaussian Processes

– Dynamical Interaction Between Gaussian Processes and Bayesian Estimation

6.1.1 Gaussian Processes for Bayesian Estimation

In Gaussian Processes for Bayesian Estimation, we mainly addressed the limitations in Baye-
sian estimation where the system model lacks in flexibility and/or is partially unknown. Due
to the fact that parametric models are often insufficient in capturing the underlying flexibility
of system models, we investigated on Gaussian processes (GPs) which are an elegant Bayesian
nonparametric models. By incorporating GP models into Bayesian estimation approaches, we
demonstrated that the estimation performance can be significantly improved.

In Wang and Chaib-draa (2012b), we proposed a novel adaptive nonparametric particle filter.
Firstly, the particles, which are drawn from a learned proposal based on GP, are more likely
located at the high probabilistic regions of the true posterior. Then, we combined this GP
based proposal with a KLD-Sampling particle filter where the number of the particles is
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adaptively learned. Our resulting framework improved the estimation performance with the
adaptively-learned number of high-qualify particles. In the future, it would be interesting to
further explore the sensitivity of model parameters (such as ε and δ that are used to learn
the number of particles), and also show the effectiveness of our framework for mobile robot
localization that is a fundamental task in autonomous robotics (Fox, 2001; Thrun et al., 2005).

In Wang and Barber (2014), we proposed a GP based Bayesian parameter estimation approach
for ordinary differential equations (ODEs). In general, Bayesian numerical integration is a
suitable way for parameter estimation in ODEs. However, explicit numerical integration is
computationally prohibitive, even for small systems (Calderhead et al., 2008; Dondelinger
et al., 2013). Several GP based approaches (Calderhead et al., 2008; Dondelinger et al., 2013)
have been investigated to alleviate the computational burden, while these approaches are not
based on natural generative models of the data and thus the estimation accuracy is limited.
On the contrary, our GP-ODE model has a natural link to numerical integration by directly
connecting GP derivatives to the observations, and is conceptually the closest match amongst
competing GP approaches to Bayesian numerical integration. Since our GP-ODE model is a
simple generative model, in the future it would be interesting to investigate alternative efficient
approximation techniques other than Markov Chain Monte Carlo. For example, variational
approximations are in principle possible to apply directly to the posterior (Bishop, 2006;
Barber, 2012).

6.1.2 Bayesian Estimation for Gaussian Processes

In Bayesian Estimation for Gaussian Processes, we addressed a number of limitations in GPs.
We investigated how to design an efficient and accurate estimation framework for GPs so
that many challenging data properties can be correctly and flexibly modeled. Inspired by
the strong connections between GPs and Kalman filter (Csató and Opper, 2002; Reece and
Roberts, 2010; Vaerenbergh et al., 2012), we developed several computationally efficient and
accurate Bayesian filtering frameworks for GPs.

In Wang and Chaib-draa (2012a), we proposed a novel marginalized particle filtering frame-
work for GP regression. The small training set at each filtering iteration reduces the com-
putational burden, while estimation performance is improved over iterations due to the fact
that recursive filtering propagates the previous estimation to enhance the current estimation.
Additionally, it provides us with a new online approach to learn GP hyperparameters. In the
future, it would be interesting to show the effectiveness of our framework for non-Gaussian
observations (such as student-t distribution for outlier robustness) due to the fact that the
particle filter is an efficient and accurate technique for nonlinear and non-Gaussian systems
(Doucet et al., 2000b; Cappé et al., 2007).

In Wang and Chaib-draa (2013), we proposed a novel KNN-KFGP for regression. First, small
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training subsets, which are constructed by a test-driven KNN search, are used to establish a GP
prior based state space model. Then a Kalman filter is applied to infer the latent function values
in a computationally efficient predict-update manner. Our resulting framework is suitable to
capture nonstationarities due to the fact that the KNN search assigns each test with its
strongly correlated training subset. In the future, we will investigate online hyperparameter
learning for our KNN-KFGP (instead of offline learning) to improve the flexibility of our model
to process data streams.

In Wang and Chaib-draa (2015a), we proposed two particle based GP approaches for time-
varying applications. By designing two novel state space models (SSMs), we used particle
learning (PL) and Rao-Blackwellized particle filter (RBPF) to capture the time-varying non-
stationarity and heteroscedasticity in a recursive Bayesian framework. Additionally, as in our
RBPF-GP the hyperparameters are learned online, our RBPF-GP is more accurate than
PL-GP (especially in multi-dimensional input cases) but the tradeoff is our PL-GP is more
computationally efficient than our RBPF-GP. In the future, it would be interesting to incorpo-
rate other particle smoothing methods (for example, in Fearnhead et al. (2010) the smoothing
computation is reduced to O(Np) where Np is the number of the particles) to further improve
the computational efficiency of our approaches.

6.1.3 Dynamical Interaction Between Gaussian Processes and Bayesian
Estimation

In Dynamical Interaction Between Gaussian Processes and Bayesian Estimation, we mainly
work on how to overcome the potential difficulties in both GP modeling and Bayesian esti-
mation since model learning and state estimation are strongly correlated in many real-world
applications. This tells us that, if we plan to achieve acceptable performances from either the
learning or estimation perspective in these applications, we have to handle the challenges from
both perspectives.

In Wang et al. (2014), we proposed a novel online GP particle filter to address modeling and
tracking tasks for human motions. By using the interaction between GP modeling and par-
ticle filtering, a GP dynamical model is updated in an online fashion after filtering in order
to improve the tracking performance. Moreover, our online GP particle filter can successfully
capture multi-modality since the GP dynamical model is represented by GP mixture in which
we explored two fast GP variants, sparse online GP and local GP, to maintain an acceptable
computation efficiency. Finally, we demonstrated the effectiveness of our approach when tra-
cking different human motions and explored the impact of various parameters on performance.
In the future, we plan to implement our approaches for 3-D human motion tracking.

In Wang and Chaib-draa (2015b), we proposed a heteroscedastic deep GP (HDGP) which is
a generalized version of heteroscedastic GP and deep GP. By designing a sequential sampling
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inference framework, our HDGP successfully captures input-dependent signal and noise corre-
lations between outputs. Furthermore, it is worth mentioning that our HDGP can straightfor-
wardly deal with missing data for multi-output regression. Finally, note that the representa-
tional capacity of the deep network tends to capture fewer degrees of freedom as the number
of layer increases (Duvenaud et al., 2014), it would be interesting to design an input-connected
structure (inspired by Duvenaud et al. (2014)) for our HDGP to further improve the power of
model interpretation in the future.

6.2 Future Research

Interactions Between Gaussian Processes and Bayesian Estimation in this thesis open a door to
take advantage of the connections of Gaussian Processes and Bayesian Estimation in different
directions to address the potential difficulties in Bayesian modeling and state estimation. In
the following we briefly outline three main future directions for research.

Gaussian Processes with Student-t Noise
In a standard Gaussian process (GP) setting, the distribution of the observation noise is
assumed to be Gaussian in order to make inference analytically tractable . However, in
many real-life applications the observations often contain a number of outliers, and this
fact will heavily deteriorate the performance of GPs (Rasmussen and Williams, 2006;
Vanhatalo et al., 2009). The student-t distribution is a popular choice to achieve outlier-
robustness (Rasmussen and Williams, 2006; Vanhatalo et al., 2009). Hence one can work
on Gaussian Processes with Student-t noise (or more generally, the observation noise
could be any other non-Gaussian distributions) based on our particle filtering based
GP approaches (Wang and Chaib-draa, 2012a, 2015a). Technically, this can be done
without difficulties since the particle filter is an efficient and accurate Bayesian estimation
approach for nonlinear and non-Gaussian systems (Doucet et al., 2000b; Cappé et al.,
2007).

Input-connected Deep Gaussian Processes
The recent developments in deep learning (Hinton et al., 2006; Larochelle et al., 2009;
Bengio et al., 2013) brings neural network models again in popularity. Similar to a stan-
dard deep Gaussian processes model (Damianou and Lawrence, 2013), our heterosce-
dastic deep Gaussian process is a type of infinitely-wide, deep neural network. However,
as mentioned in Duvenaud et al. (2014), the representational capacity of the network
tends to capture fewer degrees of freedom as the number of layer increases. Duvenaud
et al. (2014) proposed an input-connected architecture to increase the model flexibility
where the outputs of each layer does not only depend on the outputs of the previous
layer, but they also depend on the original input. Inspired by this idea, one can directly
incorporate this input-connected structure into our heteroscedastic deep GP to further
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improve the model representation. Additionally, our sequential inference framework will
still work without difficulties due to its particle-based approximate mechanism.

Applications in Robotics and Computer Vision
Most parts of this thesis can be applied for machine learning and/or artificial intelligent
applications. That is why it would be interesting to work on real applications in Robotics
and Computer Vision. For example, our adaptive nonparametric particle filter (Wang
and Chaib-draa, 2012b) could be implemented for mobile robot localization, and our
online GP particle filter (Wang et al., 2014) could be used in real-world 3-D human
motion tracking.
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