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Abstract

A three-dimensional numerical model is developed that couples the quartz-water chemi-

cal system with variable-density, variable-viscosity flow in fractured porous media. The

new model also solves for heat transfer in fractured porous media, under the assumption

of negligible thermal expansion of the rock. The fluid properties density and viscosity

as well as chemistry constants (dissolution rate constant, equilibrium constant and ac-

tivity coefficient) are calculated as a function of the concentrations of major ions and

of temperature. Reaction and flow parameters, such as mineral surface area and per-

meability, are updated at the end of each time step with explicitly calculated reaction

rates. The impact of porosity and aperture changes on specific storage is neglected.

Adaptive time stepping is used to accelerate and slow down the simulation process in

order to prevent physically unrealistic results. New time increments depend on maxi-

mum changes in matrix porosity and/or fracture aperture. Reaction rates at time level

L+1 (implicit time weighting scheme) are used to renew all model parameters to en-

sure numerical stability. The model is verified against existing analytical, numerical

and physical benchmark problems of variable-density flow, reactive solute transport

and heat transfer in fractured porous media. The complexity of the model formulation

allows chemical reactions and variable-density flow to be studied in a more realistic way

than previously possible.

The present study first addresses the phenomenon of variable-density flow and

transport in fractured porous media, where a single fracture of an arbitrary incline

can occur. A general mathematical formulation of the body force vector is derived,

which accounts for variable-density flow and transport in fractures of any orientation.

Simulations of variable-density flow and solute transport are conducted for a single

fracture, embedded in a porous matrix. The simulations show that density-driven flow

in the fracture causes convective flow within the porous matrix and that the high-

permeability fracture acts as a barrier for convection.

The new model was applied to simulate illustrative examples, such as the horizontal

movement of a hot plume in a chemically reactive fractured medium. Thermohaline

(double-diffusive) transport impacts both buoyancy-driven flow and chemical reactions.

Free convective flow depends on the density contrast between the fluid (hot brine or
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cool saltwater) and the reference fluid. In the example, density contrasts are generally

small and fractures do not act like preferential pathways but contribute to transverse

dispersion of the plume. Hot zones correspond to areas of quartz dissolution while

in cooler zones, precipitation of imported silica prevails. The silica concentration is

inversely proportional to salinity in high-salinity regions and directly proportional to

temperature in low-salinity regions. The system is the most sensitive to temperature in-

accuracy. This is because temperature impacts both the dissolution kinetics (Arrhenius

equation) and the quartz solubility.
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Résumé Français

Un modèle numérique tridimensionnel a été développé pour la simulation du système

chimique quartz-eau couplé avec l’écoulement à densité et viscosité variable dans les

milieux poreux discrètement fracturés. Le nouveau modèle simule aussi le transfert

de chaleur dans les milieux poreux fracturés en supposant que l’expansion thermique

du milieu est négligeable. Les propriétés du fluide, densité et viscosité, ainsi que les

constantes chimiques (constant de taux de dissolution, constant d’équilibre, coefficient

d’activité) sont calculées en fonction de la concentration des ions majeurs et de la

température. Des paramètres de réaction et d’écoulement, comme la surface spécifique

du minéral et la perméabilité sont mis jour à la fin de chaque pas de temps avec des

taux de réaction explicitement calculés. Le modèle suppose que des changements de

la porosite et des ouvertures de fractures n’ont pas d’impact sur l’emmagasinement

spécifique. Des pas de temps adaptatifs sont utilisés pour accélérer et ralentir la simu-

lation afin d’empêcher des résultats non physiques. Les nouveaux incréments de temps

dépendent des changements maximum de la porosité et/ou de l’ouverture de fracture.

Des taux de réaction au niveau temporel L+1 (schéma de pondération temporelle im-

plicite) sont utilisés pour renouveler tous les paramètres du modèle afin de garantir la

stabilité numérique. Le modèle a été vérifié avec des problèmes analytiques, numériques

et physiques de l’écoulement à densité variable, transport réactif et transfert de chaleur

dans les milieux poreux fracturés. La complexité de la formulation du modèle permet

d’étudier des réactions chimiques et l’écoulement à densité variable d’une façon plus

réaliste qu’auparavant possible.

En premier lieu, cette étude adresse le phénomène de l’écoulement et du transport

à densité variable dans les milieux poreux fracturés avec une seule fracture à inclinaison

arbitraire. Une formulation mathématique générale du terme de flottabilité est dérivée

qui tient compte de l’écoulement et du transport à densité variable dans des fractures

de toute orientation. Des simulations de l’écoulement et du transport à densité variable

dans une seule fracture implanté dans une matrice poreuse ont été effectuées. Les

simulations montrent que l’écoulement à densité variable dans une fracture cause la

convection dans la matrice poreuse et que la fracture à perméabilité élevée agit comme

barrière pour la convection.
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Le nouveau modèle a été appliqué afin de simuler des exemples, comme le mouve-

ment horizontal d’un panache de fluide chaud dans un milieu fracturé chimiquement

réactif. Le transport thermohalin (double-diffusif) influence non seulement l’écoulement

à densité variable mais aussi les réactions chimiques. L’écoulement à convection libre

dépend du contraste de densité entre le fluide (panache chaud ou de l’eau salée froide)

et le fluide de référence. Dans l’exemple, des contrastes de densité sont généralement

faibles et des fractures n’agissent pas comme des chemins préférés mais contribuent à

la dispersion transverse du panache. Des zones chaudes correspondent aux régions de

dissolution de quartz tandis que dans les zones froides, la silice mobile précipite. La con-

centration de silice est inversement proportionnelle à la salinité dans les régions à salinité

élevée et directement proportionnelle à la température dans les régions à salinité faible.

Le système est le plus sensible aux inexactitudes de température. Ceci est parce que la

température influence non seulement la cinétique de dissolution (équation d’Arrhenius),

mais aussi la solubilité de quartz.
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is thanked for giving very detailed comments on the thesis, for inspiring and fruitful

discussions on variable-density flow and for inviting me over to Australia. I also thank

the examiners Rob A. Schincariol and Alfonso Rivera for carefully reviewing the thesis.

I want to thank Young-Jin Park for constantly sharing his expertise on finite ele-

ment modeling. I am also thankful to Ekkehard Holzbecher for immediately respond-

ing to my rare emails and for giving detailed explanations on a variety of topics. Rob

McLaren is thanked for double-checking my model modifications and for implementing

them in the official version of the numerical groundwater model. I also thank Patricia

Dove for giving valuable information on quartz kinetics. John Molson and Thomas

Wolery are thanked for providing diverse user’s guides and modeling software. I am

also grateful to Chris Neville for sending detailed analytical solutions on heat transfer.

Financial support for this project was provided by the Canadian Water Network

(CWN) as well as by the Natural Sciences and Engineering Research Council of Canada

(NSERC). I also wish to acknowledge both the International Council for Canadian

Studies (ICCS) and the German Academic Exchange Service (DAAD) for providing a

Postgraduate Scholarship stipend.

I thank my parents, Helga and Günter Graf, for their skillful channelization of my

energy and for giving me patience and endurance. Vielen Dank!

I finally thank my wife, Mardi, for her breathless support, her never-ending opti-

mism and her love, which were always my inspiration. Thank you for all that!

vii



Dedication

To Mardi

For helping me cope with our new situation on

another continent, for sharing ups and downs

and for the daily smile on your lips!

To my brother, Hannes

For showing that persistence always pays off in

the end.

To my high-school teachers, Gerhard Frohnmüller and Lothar Klimt

For opening my eyes to the scientific world and

for teaching Earth Sciences in a very understand-

able yet highly sophisticated way.

viii



Contents

1 Introduction 1

2 Physicochemical System 12

2.1 Fracture Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Chemical System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Physical System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Governing Equations 30

3.1 Constitutive Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Variable-Density Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Reactive Solute Transport . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4 Heat Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 Numerical Modeling 40

4.1 The FRAC3DVS Model . . . . . . . . . . . . . . . . . . . . . . . . . . 40

ix



4.2 Solution Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3 Discretizing Inclined Fractures . . . . . . . . . . . . . . . . . . . . . . . 47

4.4 Variable-Density Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.5 Reactive Solute Transport . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.6 Heat Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5 Verification Problems 63

5.1 Variable-Density Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.2 Reactive Solute Transport . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.3 Heat Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6 Illustrative Examples 107

6.1 Variable-Density Flow in a Single Inclined Fracture . . . . . . . . . . . 107

6.2 Variable-Density Flow in an Orthogonal Fracture Network . . . . . . . 113

6.3 Variable-Density Flow in a Complex Fracture Network . . . . . . . . . 120

6.4 Thermohaline Flow and Reactive Solute Transport in Porous Media . . 127

6.5 Thermohaline Flow and Reactive Solute Transport in Fractured Porous

Media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

7 Sensitivity Analysis 148

x



7.1 Variable-Density Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

7.2 Reactive Solute Transport . . . . . . . . . . . . . . . . . . . . . . . . . 154

8 Conclusions 157

A Transport Matrices and Vectors 177

B Fluid Pressure Formulation 179

C Tabular Simulation Results 180

D Parameter Dependency on Temperature and Salinity 182

E Mathematical Notation 184

xi



List of Tables

1.1 Previous studies of reactive solute transport in porous and fractured

porous media. If density is a function of salinity and/or temperature,

the model couples reactions with variable-density flow. . . . . . . . . . 8

5.1 Model parameters used in fractured media studies. All parameters are

identical to those used by Shikaze et al. (1998). . . . . . . . . . . . . . 67

5.2 Overview of the verification problems that verify reactive solute transport

in porous and fractured media. . . . . . . . . . . . . . . . . . . . . . . 82

5.3 Model parameters used in the verification example for 1D reactive silica

transport in an unfractured porous matrix (reac1 ). All parameters are

identical to those used by Johnson et al. (1998) unless otherwise stated. 84

5.4 Model parameters used in the verification example for 2D reactive silica

transport in fractured porous media (reac3 ). . . . . . . . . . . . . . . . 86

5.5 Overview of the verification problems that verify different heat transfer

mechanisms in porous and fractured media. . . . . . . . . . . . . . . . 94

5.6 Model parameters used in the verification example for 1D heat transfer

in an unfractured porous matrix (heat1 ). All parameters are identical to

those used by Ward et al. (1984). . . . . . . . . . . . . . . . . . . . . . 96

xii



5.7 Model parameters used in the verification example for 2D heat transfer

in a single fracture embedded in a porous matrix (heat3 ). All parameters

are identical to those used by Meyer (2004). . . . . . . . . . . . . . . . 98

5.8 Model parameters used in the verification example for 2D variable-density

thermal flow and heat transfer in anisotropic porous media (heat4 ). All

parameters are identical to those used by Yang and Edwards (2000). . . 100

6.1 Model parameters used in reactive transport studies. . . . . . . . . . . 129

6.2 Simulations and CPU times in porous media (pm). . . . . . . . . . . . 132

6.3 Additional model parameters used in reactive transport studies in frac-

tured media. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6.4 Simulations and CPU times in fractured porous media (fm). . . . . . . 142

7.1 Model parameter modifications used for visualization only in the sensi-

tivity analysis of variable-density flow. . . . . . . . . . . . . . . . . . . 149

7.2 Model parameter modifications used for visualization only in the sensi-

tivity analysis of reactive solute transport. . . . . . . . . . . . . . . . . 154

C.1 Simulation results of scenario 1: concentration breakthrough at z = 6 m

in the fracture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

D.1 Water chemistry at different depths in the Canadian Shield; all concen-

trations are in mg l−1 (Farvolden et al., 1988). . . . . . . . . . . . . . . 182

xiii



List of Figures

1.1 Different styles of geological media: (a) homogeneous porous medium,

(b) heterogeneous porous medium, (c) fractured medium consisting of

regular orthogonal fractures and (d) fractured geological medium with

nonuniform fracture aperture, trace and orientation. In (a) and (b), the

shades of grey represent hydraulic conductivity (Figure modified from

Simmons et al. (2001)). . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1 Conjugated system of two fracture families. Shown are the principal

directions of normal stress, σi [M L−1 T−2]. . . . . . . . . . . . . . . . . 14

2.2 Dissolution of silica in deionized water (below) and in an electrolyte

solution (above). The grey arrow indicates one of the two siloxane bonds,

which have to be broken. This bond is less accessible to water dipoles

in deionized water. Thus, dissolution rates are higher in saline solutions

(Dove and Crerar, 1990). . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Fracture roughness coefficient for rough-walled (left) and smooth fractures. 29

4.1 One-dimensional example of the trial solution, ξ̂, and the unknown con-

tinuous solution, ξ (Steefel and MacQuarrie, 1996). . . . . . . . . . . . 45

4.2 Flow chart of the Picard Iteration with chemistry loop to couple variable-

density, variable-viscosity flow and solute transport with external chem-

ical reactions and parameter updates. . . . . . . . . . . . . . . . . . . . 46

xiv



4.3 Inclined faces in three-dimensional block elements. . . . . . . . . . . . . 48

4.4 Superposition of 2D vertical and inclined fracture elements onto 3D ma-

trix elements, where both continua share common grid nodes (modified

from Rausch et al., 2005). . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.5 Selecting two-dimensional elements of an inclined fracture. The fracture

in nature (above) is discretized by snapping to the closest nodes (below).

Common fracture-matrix nodes are highlighted. . . . . . . . . . . . . . 50

4.6 Geometry of an inclined 2D fracture element in three dimensions. . . . 57

4.7 Projection of S on a coordinate plane (Thomas and Finney, 1988). . . . 58

5.1 Results of the Elder problem for a coarse grid (left; 60 × 30 elements)

and a fine grid (right; 120 × 40 elements) at 2, 4 and 10 years simulation

time by Elder (1967) [— coarse grid], Kolditz et al. (1998) [— fine grid],

Prasad and Simmons (2004) [- ·· -] and the present model [- -]. The

domain size is 600 m × 150 m. . . . . . . . . . . . . . . . . . . . . . . . 72

5.2 Results of the Elder problem for an extremely fine grid (256 × 128 ele-

ments in the half domain) at 1, 2, 4, 10, 15 and 20 years simulation time
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Chapter 1

Introduction

Problem Definition

With time, manmade industrial waste has become increasingly hazardous. The pro-

duction of radioactive waste during the last decades has created a new challenge for

responsible waste treatment. Recycling nuclear waste or transmuting long-lived ra-

dionuclides into short-lived or even stable forms are not an option from an economical

or technical standpoint (von Hippel, 2001). The logical consequence is to permanently

isolate radioactive contaminants from the biosphere. The safe disposal of radionuclides

is commonly regarded as feasible in low-permeability geological media at depths up to

1,000 m (Davison et al., 1994b).

At great depth, groundwater is a hot saline Na-Ca-Cl brine (Farvolden et al., 1988;

Stober and Bucher, 2005). The temperature of the ambient rock as well as that of

the water follow the geothermal gradient. In addition, radioactive waste is known to

release large amounts of thermal energy. As a consequence, deep-fluid properties such as

viscosity and density can not be assumed to be uniform. Variations of fluid density play

an important role in contaminant migration within various geological media. Seemingly

insignificant fluid density differences create flow gradients that are equivalent to typical

hydraulic head gradients (Simmons, 2005). If, for example, a fluid of high density

overlies a less dense fluid, the system is potentially unstable and density-driven flow

1
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may take place to level out the density stratification and to eventually stabilize the

system. Additionally, if the flow is transient, there are temporal changes of density.

Critical safety questions arise due to the presence of fractures in the rock formation.

Fractures have a great impact on mass transport because they represent preferential

pathways where accidentally released radionuclides migrate at velocities that are sev-

eral orders of magnitude faster than within the rock matrix itself. Simulating solute

transport in fractured media is typically difficult because the network geometry, espe-

cially the fracture network connectivity and fracture apertures, are almost impossible

to measure accurately.

Significant increases in temperature cause rock-fluid interactions such as mineral

dissolution and precipitation. Chemical reactions can have a major impact on fluid flow.

Physical flow properties, such as matrix permeability and fracture aperture are modified

if chemical rock-fluid interactions occur. This can be significant because the Cubic Law

states that the discharge through a fracture is proportional to the cube of its aperture.

As an example, an increase of the fracture aperture by 26% doubles the discharge

through this fracture. The high number of conceivable feedback scenarios between

variable-density flow and reactive solute transport demonstrates that the two processes

are strongly coupled. This is especially the case in discretely-fractured media where high

groundwater flow velocities enable rapid transport of reactive species to the location of

the chemical reaction and away from it. The temporal change of material properties is

slow and yet it is likely to play an important role because radioactive waste needs to

be reliably isolated during an extremely long time, up to 10,000 years (Davison et al.,

1994b). Clearly, the ability to predict the transport behavior of hazardous chemicals

leaked to the geosphere is essential. It is important to understand the chemically

reactive transport of radioactive contaminants in fractured media under the influence

of fluctuating fluid density.

Field experiments are one means to explore the spatial and temporal distribution

of contaminants in the subsurface. They are fundamental to the comprehension of flow

and transport processes but are also time-consuming and expensive. Also, pure field

data represents only a snapshot and is not useful to forecast solute transport. Another

problem with conducting experiments in fractured media is the sampling technique. As
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soon as a well is drilled into fractured rock to take a sample, the hydraulic properties

of the aquifer are modified and the flow field is disturbed. Thus, the act of measuring

has an impact on the variable that has to be determined and makes accurate measuring

impossible. This is an illustrative example of Heisenberg’s principle of uncertainty,

which was initially formulated for elementary particles whose position and momentum

can never be determined precisely at the same time (Heisenberg, 1927). In fact, it is not

easy to study complex processes, such as density-driven flow and reactive transport in

fractured rock formations in the real world. As an alternative, physical and numerical

models are very helpful tools for studying and predicting long-term effects in complex

systems.

Prior Studies on Variable-Density Flow

In the last century, the foundations for modeling density-driven flow and transport

were laid by Rayleigh (1916). He mathematically formulated the principles that gov-

ern the onset of instabilities caused by thermally induced fluid density variations in

porous media. Variable-density flow and solute transport in porous media has been

investigated experimentally and numerically for half a century, beginning with the ex-

perimental studies by Taylor (1954). Taylor (1954) investigated Rayleigh instability in

a vertical capillary tube. He filled the tube with freshwater and connected the top of

it with a dyed liquid of higher density in order to observe convective flow of the two

miscible fluids. While Taylor (1954) focused on the impact of salinity on fluid density,

Elder (1965) conducted experiments where the fluid temperature plays the key role.

Meanwhile, still lacking powerful computer facilities, Wooding (1957) first presented a

manual finite difference solution of steady state thermal convection in porous media.

Nevertheless, neither Taylor nor Elder nor Wooding were able to reproduce and verify

the experimentally or manually obtained results with those from a computer.

Numerically simulating variable-density flow became much more efficient in the

early 1960’s, when the first computers were available for research. Back then, com-

puters had to be installed arduously at a fixed location. Of importance were the IBM

650 in Wellington, New Zealand (Weir, 2003), and the CDC-3600 in San Diego, USA,

which was the first computer that had double-precision floating-point arithmetics (Cody,
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1964). With this new technology, Wooding (1962) could reproduce Taylor’s (1954) re-

sults with satisfactory agreement using the IBM, whereas Elder (1966) was able to

numerically simulate his own laboratory experiments (Elder, 1965) on the CDC. Im-

provements in computer performance have enabled increasingly precise and complex

simulations of variable-density flow, predominantly in porous media (Figures 1.1a and

1.1b).

In homogeneous porous media (Figure 1.1a), variable-density flow has recently been

studied in experimental and numerical simulations in the fields of (i) convection beneath

salt lakes (Simmons and Narayan, 1997; Wooding et al., 1997b; Simmons et al., 1999),

(ii) seawater intrusion in coastal aquifers (Huyakorn et al., 1987; Xue et al., 1995), (iii)

infiltration of leachates from waste disposal sites (Frind, 1982) and (iv) the analysis of

instability development (Leijnse and Oostrom, 1994; Schincariol et al., 1994; Wooding

et al., 1997a).

In heterogeneous porous media (Figure 1.1b), Schincariol and Schwartz (1990) were

the pioneers in experimentally investigating density dependent flow and transport in

layered and lenticular media. They found that (i) the transport pattern in the layers is

greatly sensitive to hydraulic conductivity and (ii) the heterogeneities in the lenticular

medium create relatively large dispersion that tends to dissipate instabilities. Thus,

Schincariol et al. (1997) and Schincariol (1998) inferred that heterogeneities play op-

posite roles in the generation and subsequent growth of instabilities. On one hand,

heterogeneities initially perturb a plume while on the other hand, once instabilities are

generated, heterogeneities dampen their growth on probably all spatial scales. Simmons

et al. (2001) showed that the style of heterogeneity in a porous medium will greatly

influence the propagation of dense plumes, with disorganized heterogeneity tending to

dissipate convection by mixing and thus reducing plume instabilities. Prasad and Sim-

mons (2003) confirmed this observation. They carried out numerical variable-density

transport simulations in a heterogeneous porous media. Prasad and Simmons (2003)

used a modified form of the Elder (1967) problem, where the permeability was randomly

distributed to study the effects of heterogeneity on solute transport. Holzbecher (1998)

and Diersch and Kolditz (2002) provide an excellent overview of prior modeling work

in porous media, clearly showing that there is currently a lack of models that take into

account the crucial influence of fractures.
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As opposed to the study of variable-density flow in porous media, laboratory ex-

periments in fractured media have not yet been carried out. Studies by Murphy (1979),

Malkovsky and Pek (1997; 2004) and Shi (2005) showed that two-dimensional con-

vective flow with rotation axis normal to the fracture plane can occur within vertical

fractures. These studies, however, did not represent fractures as discrete planes but

as vertical high-permeability fault zones. Shikaze et al. (1998) numerically simulated

variable-density flow and transport in discretely-fractured media. They found that ver-

tical fractures with an aperture as small as 50 µm significantly increase contaminant

migration relative to the case where fractures are absent. Interestingly, it was also shown

that dense solute plumes may develop in a highly irregular fashion and are extremely

difficult to predict. However, Shikaze et al. (1998) represented discrete fractures by

one-dimensional segments. This assumption reduces the spatial fracture dimension to

1D, inhibiting convection within the fracture. Also, Shikaze et al. (1998) limited their

studies to a regular fracture network consisting of only vertical and horizontal frac-

tures, embedded in a porous matrix (Figure 1.1c). Thus, it still remains unclear how

instabilities grow in a complex nonorthogonal fracture network, where fractures of any

incline can occur (Figure 1.1d). A network of fractures having irregular orientations will

exhibit a different style of heterogeneity, as opposed to a regular fracture distribution.

It is also unknown if this different mode of heterogeneity affects dense plume migration

as suggested by Simmons et al. (2001).

Processes, which affect the fluid properties on one hand and induce reactions on

the other hand, are elevated temperatures or high salt contents. Numerical models that

couple variable-density flow with reactive transport are rare and ”the development of

these codes has only just begun” (Post, 2005). Already available models vary greatly

in their coupling method and in model sophistication (Post, 2005).

Prior Studies on Reactive Solute Transport

Reactive transport models are typically specialized to the chemical system being inves-

tigated. There is a large body of studies where the chemistry is highly complex, with a

large number of mobile species involved in the reactions (Sanford and Konikow, 1989;

Yeh and Tripathi, 1989; Steefel and Lasaga, 1994; Walter et al., 1994; Zysset et al., 1994;
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Schäfer and Therrien, 1995; Bolton et al., 1996; Steefel and MacQuarrie, 1996; Steefel

and Lichtner, 1998b; Schäfer et al., 1998; Ghogomu and Therrien, 2000; Saaltink et al.,

2001; Geiger et al., 2002; Freedman and Ibaraki, 2002; Mayer et al., 2002; Freedman

and Ibaraki, 2003; Spycher et al., 2003). Other models consider reactions with aqueous

silica (H4SiO4) as the only mobile reactive component (Johnson et al., 1998; Steefel

and Lichtner, 1998a; White and Mroczek, 1998). In this case, the reactive transport

equation remains linear and complicated iterative solvers as described by Steefel and

MacQuarrie (1996) do not need to be applied.

In the past, many authors examined reactive solute transport in porous media as-

suming constant fluid density (e.g. Steefel and MacQuarrie, 1996; Steefel and Yabusaki,

1996). However, Bolton et al. (1996) and Freedman and Ibaraki (2002) investigated

the impact of density-driven flow on chemical reactions. Freedman and Ibaraki (2002)

numerically studied the horizontal migration of a dense plume in an unfractured porous

medium where density varies only with salinity and not with temperature. The results

were compared with simulations where chemical reactions are ignored. The most impor-

tant outcome of Freedman and Ibaraki’s (2002) studies was that chemical reactions do

not significantly impact density-driven flow in porous media. However, Freedman and

Ibaraki (2002) focused on the small spatiotemporal scale and did not study long-term

effects at the field scale. They also ignored the influence of temperature and salinity

on both the solubility of solutes and on the reaction kinetics. Nonetheless, Bolton

et al. (1996) studied coupled thermal convection and quartz dissolution/precipitation

at a large spatiotemporal scale. They found that long-term changes of porosity and

permeability can either increase the flow velocities and the degree of subsaturation (in

regions of dissolution) or they inhibit flow rates and the degree of supersaturation (in

regions of precipitation). However, Bolton et al. (1996) did not account for the salin-

ity dependency of the kinetic rate law nor for the salinity effect on fluid density and

viscosity.

Simulations of reactive transport in fractured systems have previously been carried

out by a number of authors (Steefel and Lasaga, 1994; Steefel and Lichtner, 1998b;

Ghogomu and Therrien, 2000; Geiger et al., 2002). Not all of the studies addressed

the question of how dissolution/precipitation reactions will alter fracture aperture and

matrix permeability and, thus, impact the flow field. Modifications of flow parame-
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ters were either not considered (Ghogomu and Therrien, 2000) or only applied to the

permeability of the porous matrix (Geiger et al., 2002). However, other investigations

have shown that chemical reactions within open fractures trigger complex reaction-flow

feedback scenarios (Steefel and Lasaga, 1994; Steefel and Lichtner, 1998b) and that

fracture aperture may no longer be assumed as constant.

Steefel and Lichtner (1998b) studied the infiltration of a hyper-alkaline fluid along

a discrete fracture. They observed that within tens of years, the permeability feedback

between reaction and transport is significant. It was also found that fluid flow through

the fracture is likely to collapse due to self-sealing if reaction rates in the fracture are

only one order of magnitude larger than in the adjacent matrix. On the other hand, if

the rates are of the same order of magnitude, the porous matrix will be cemented first.

While most studies ignored density variations when investigating reactive transport

in fractured media (Steefel and Lichtner, 1998b; Ghogomu and Therrien, 2000; Geiger

et al., 2002), Steefel and Lasaga (1994) fully accounted for thermal density-driven flow.

According to Steefel and Lasaga (1994), geothermal convection cells in reactive frac-

tured media are never stable. This is because upwelling fluids cool and the resulting

precipitation of minerals significantly reduces permeability leading to highly dispersive

plumes. On the other hand, if fluids move downwards to a zone of higher tempera-

ture, dissolution reactions locally increase permeability leading to channelling of flow.

However, Steefel and Lasaga (1994) did not account for the impact of salinity on both

the reaction kinetics and on fluid properties. Nevertheless, other studies suggested that

the rate-enhancing effect of salt is significant (Dove, 1999) and that fluid salinity also

impacts both the quartz solubility (Marshall and Chen, 1982; Langmuir, 1997) and the

fluid properties density and viscosity (Holzbecher, 1998).

Table 1.1 summarizes previous modeling efforts of coupled variable-density flow

and reactive transport. It highlights subtle differences between the model assumptions

made by various authors. The studies are not listed chronologically but according to

increasing complexity of the model used. The model developed in the present study

continues the series of increasing model complexity and provides simulation capacities

previously lacking.



Table 1.1: Previous studies of reactive solute transport in porous and fractured porous media. If density is a function of salinity

and/or temperature, the model couples reactions with variable-density flow.

Simulated processes → Reactive transport Heat transfer Density from Viscosity from Reaction kinetics from Reactive species solubility from

↓ Authors in PMa in FMb in PM in FM salinity temperature salinity temperature salinity temperature salinity temperature

Steefel and MacQuarrie (1996)
√ c – – – – – – – – – – –

Johnson et al. (1998)
√ φ,A – – – – – – – –

√
–

√

Steefel and Yabusaki (1996)
√ φ,A – – – – – – – –

√ √ √

Freedman and Ibaraki (2001)
√ φ,κ,A – – –

√
–

√
– – – – –

White and Mroczek (1998)
√ φ,κ,A – – – – – – –

√ √ √ √

Bolton et al. (1996)
√ φ,κ,A –

√
–

√ √
–

√
–

√
–

√

Ghogomu and Therrien (2000)
√ c √ c – – – – – – – – – –

Geiger et al. (2002)
√ κ √ c – – – – – – – – – –

Steefel and Lichtner (1998b)
√ φ,A √ (2b),A – – – – – –

√
– – –

Steefel and Lasaga (1994)
√ φ,A √ (2b),A √ √

–
√

–
√

–
√

–
√

present study
√ φ,κ,A √ (2b),A √ √ √ √ √ √ √ √ √ √

a Porous media
b Fractured media
c No change of simulation parameters considered
φ Change of matrix porosity considered
κ Change of matrix permeability considered
(2b) Change of fracture aperture considered
A Change of specific mineral surface area considered

8
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Contribution of this Study

The principal goal of this study is to develop a numerical model to simulate dense

plume migration in a chemically reactive fractured environment. The new model is

based on the existing FRAC3DVS model, which solves variable-saturated and multi-

component transport in discretely-fractured porous media (Therrien and Sudicky, 1996).

The model developed in this study solves for variable-density, variable-viscosity flow

and kinetically controlled reactive solute transport in fractured porous media. Aqueous

silica is the single reactive species considered. Silicate minerals are the most abundant

minerals in nature, making up 90% of the earth’s crust (Krauskopf and Bird, 1995). The

focus will be put on α-quartz, the most common SiO2 polymorph in the upper crust.

The equilibrium thermodynamic behavior of quartz and its hydrolyzed form silica as

a function of temperature are known very accurately (Rimstidt, 1997). Additionally,

in numerous experiments, the quartz dissolution rate constant in pure water and in

electrolyte solutions has been correlated with temperature (Dove, 1999). Relationships

exist that describe the quartz dissolution rate constant over a wide range of conditions.

In the developed model, both the quartz solubility and the reaction kinetics as well as

physical fluid properties are calculated from temperature and from the dissolved species

concentration. The low-temperature range 0oC to 300oC and a wide range of salinity are

considered. Simulations are carried out in low-temperature hydrothermal fields where

instantaneous equilibrium can not be assumed. The temperature distribution in space

and time is obtained from the transient convective-conductive-dispersive heat transfer

equation.

The model includes first-order kinetic reaction between solid quartz and aqueous

silica. Therefore, the reactive transport equation is linear and solved in one step. The

transport and the variable-density, variable-viscosity flow equations are linked through

an iterative Picard approach. The absolute change of hydraulic head, temperature

and concentration of nonreactive species have to satisfy the convergence criteria for

the iteration. The solute transport equations of the reactive silica species is solved

outside the Picard Iteration to save CPU time. Material properties are also updated

at the end of a time step because their change is minor relative to the change of solute

concentration. Recalculating material properties outside the Picard Iteration is called

quasi-stationary state approximation and has first been introduced by Lichtner (1988).



CHAPTER 1. INTRODUCTION 10

Reaction rates at time level L+1 (implicit time weighting scheme) are used to renew all

model parameters. The choice of an implicit scheme ensures numerical stability of the

simulation procedure (Steefel and Lasaga, 1994). An adaptive time stepping scheme is

applied to accelerate or slow down the simulation process. New time step sizes depend

on the change of porosity and/or fracture aperture during the previous time interval.

Chapters 1, 3.1, 3.2, 4.1, 4.2, 4.3, 4.4, 5.1, 6.1, 8 and Appendices B, C, E of this

work are written as an article and published in a scientific journal. The reference of the

article is:

[1] Graf T and Therrien R, 2005. Variable-density groundwater flow and solute

transport in porous media containing nonuniform discrete fractures. Advances in

Water Resources 28 (12): 1351-1367.

Articles containing other selected subjects of this work are in preparation and will be

submitted shortly. Their reference and the included chapters/appendices are listed

below.

[2] Graf T and Therrien R. Variable-density groundwater flow and solute transport

in complex fracture networks. Chapters 1, 2.1, 3.1, 3.2, 4.1, 6.2, 6.3, 7.1, 8 and

Appendix E.

[3] Graf T and Therrien R. Coupled thermohaline groundwater flow and reactive so-

lute transport in fractured porous media: 1. Model development and verification.

Chapters 1, 2.2, 2.3, 3.3, 3.4, 4.2, 4.5, 4.6, 5.2, 5.3 and Appendices A, D, E.

[4] Graf T and Therrien R. Coupled thermohaline groundwater flow and reactive so-

lute transport in fractured porous media: 2. Illustrative examples and sensitivity

analysis. Chapters 1, 6.4, 6.5, 7.2, 8 and Appendix E.

[5] Graf T, Therrien R and Simmons CT. Numerical aspects of variable-density flow:

A systematic analysis of the Elder (1967) convection problem. Not included in

this thesis.



CHAPTER 1. INTRODUCTION 11

?
(a) (b)

(c) (d)

Figure 1.1: Different styles of geological media: (a) homogeneous porous medium, (b)

heterogeneous porous medium, (c) fractured medium consisting of regular orthogonal

fractures and (d) fractured geological medium with nonuniform fracture aperture, trace

and orientation. In (a) and (b), the shades of grey represent hydraulic conductivity

(Figure modified from Simmons et al. (2001)).



Chapter 2

Physicochemical System

The system to be modeled consists of transient convective flow and reactive silica

transport within an irregular fracture network. Section 2.1 briefly explains the geo-

statistical laws that dictate how irregular networks are randomly generated. Unstable

variable-density flow and transport in the networks generated will be examined in Sec-

tion 6.3. The following Section 2.2 illustrates the simulated quartz-water system and

how the reaction parameters are quantified from thermohaline conditions. In Section

2.3, variable-density flow phenomena (stable-unstable flow, free-forced-mixed convec-

tion) are described and the onset conditions for free convection are presented. The

formulae used to calculate fluid properties as well as the equations which are used to

update the physicochemical simulation parameters (matrix porosity, matrix permeabil-

ity, fracture aperture and specific mineral surface area) using reaction rates are also

shown.

2.1 Fracture Networks

The generation of realistic three-dimensional fracture networks for numerical simula-

tions is extremely challenging. Fractures can be scanned from photos of outcrops, which

gives a detailed 2D view but which is a very time-consuming method. Random frac-

ture generators are more common, faster and can reach a high degree of sophistication.

12
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However, 3D random fracture generators have the disadvantage that the space of the

porous matrix between the fractures is hard to discretize once the fractures have been

generated. This becomes even more challenging when fractures are considered as discs,

polygons or non-planar 2D objects.

In this study, a 2D random fracture generator was developed. Complex 2D frac-

ture networks can be randomly produced where fractures are two-dimensional rectan-

gular planes. Fracture orientation, trace and aperture follow geostatistical distribu-

tions. Thus, fracture networks that are different and yet statistically equivalent can

be produced. The discrete fractures are assumed to be of tectonic origin, leading to a

conjugated system of two fracture families (Figure 2.1). Thus, fracture orientations, ϕ,

follow a double-peak Gaussian distribution with the peaks at -30o and +30o.

It is assumed that fracture traces are distributed log-normally (Mathab et al., 1995)

while fracture apertures obey an exponential distribution. The aperture is constant

within each fracture. Furthermore, it is assumed that fracture traces and apertures

correlate. Thus, few fractures of large trace and aperture exist while numerous fractures

of small trace also have small apertures.
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s2

s1

s3

s1 < s2 < s3

Figure 2.1: Conjugated system of two fracture families. Shown are the principal direc-

tions of normal stress, σi [M L−1 T−2].
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2.2 Chemical System

Rimstidt and Barnes (1980) experimentally studied the quartz-water system, which can

be described by the following reaction

SiO2(s) + 2 H2O(aq)

r+⇀↽
r−

H4SiO4(aq) (2.1)

where r+ and r− [both MOL M−1 T−1] are the dissolution and precipitation rates of

quartz (SiO2), respectively. Note that H4SiO4 and Si(OH)4 are regarded as chemically

and physically identical (Tester et al., 1994). Upon applying the law of mass action

to reaction (2.1), the rate of the forward reaction (dissolution), r+, can be written as

(Rimstidt and Barnes, 1980; Dove and Crerar, 1990; Dove and Nix, 1997; Dove, 1999;

Ganor et al., 2005)

r+ =

(

∂mH4SiO4

∂t

)

dissolution

= k0
+

As

Mw

aSiO2 a2
H2O (2.2)

where mH4SiO4 [MOL M−1] is the molal concentration of silica, k0
+ [MOL L−2 T−1] is

the quartz dissolution rate constant in deionized water, As [L2] is the active surface

area of quartz, Mw [M] is the mass of water and aσ [here dimensionless] is the activity

of species σ. It is assumed that pure solids and pure liquids (i.e. SiO2 and H2O) have

activities equal to unity, such that aSiO2 = aH2O = 1 (Krauskopf and Bird, 1995). The

precipitation rate of reaction (2.1), r−, describes a kinetic reaction of first order and

can be evaluated with (Rimstidt and Barnes, 1980; Dove and Crerar, 1990; Dove and

Nix, 1997; Dove, 1999; Ganor et al., 2005)

r− =

(

∂mH4SiO4

∂t

)

precipitation

= −k−
As

Mw

aH4SiO4 (2.3)

where k− [M L−2 T−1] is the precipitation rate constant. The net production rate of

dissolved silica, rnet [MOL M−1 T−1], is the sum of the dissolution rate (2.2) and the

precipitation rate (2.3):

(

∂mH4SiO4

∂t

)

net

=

(

∂mH4SiO4

∂t

)

dissolution

+

(

∂mH4SiO4

∂t

)

precipitation

(2.4)

or

rnet = k0
+

As

Mw

− k−
As

Mw

aH4SiO4 (2.5)
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where the activity of silica, aH4SiO4 [MOL M−1], is the product of the activity coefficient

γH4SiO4 [–] and the molal concentration mH4SiO4 [MOL M−1] of silica:

aH4SiO4 = γH4SiO4 · mH4SiO4 (2.6)

At equilibrium, the amount of dissolved silica does not change with time and, thus,

the left hand side of Equation (2.5) vanishes. Under this equilibrium condition, silica

activity can be written as

aequilibrium
H4SiO4

=
k0

+

k−
= Keq (2.7)

where Keq [MOL M−1] is the quartz solubility or equilibrium constant of reaction (2.1).

With (2.6), (2.7) and k0
+ = kcorr

+ , the quartz dissolution rate constant, corrected for salt

water, the net rate of silica production in the porous matrix can finally be written as

rnet = φqz kcorr
+ Aqz

(

1 − γH4SiO4

Keq

mH4SiO4

)

(2.8)

and in a discrete fracture as

rfr
net = φfr

qz kcorr
+ Afr

qz

(

1 − γH4SiO4

Keq

mfr
H4SiO4

)

(2.9)

where Aqz = As/Mw and Afr
qz = Afr

s /M fr
w [both L2 M−1] are the specific quartz surface

areas in the porous matrix and in the fracture, respectively. The sign of the reaction

rate indicates in which direction reaction (2.1) proceeds:

rnet, rfr
net



















< 0 system is supersaturated → precipitation of quartz

= 0 system is equilibrated → no reaction

> 0 system is subsaturated → dissolution of quartz

This chemical model is based on the transition state theory and simulates reactive

transport with a chemical kinetic reaction of mixed zeroth/first order. It is essentially

the same as used by Rimstidt and Barnes (1980) and by White and Mroczek (1998),

except that the rate law is also a function of the quartz volume fraction, φqz, as pro-

posed by Johnson et al. (1998). The following paragraphs explain how the developed

model quantifies parameters kcorr
+ , γH4SiO4 and Keq. All three functions are illustrated

graphically in Figure D.1 in Appendix D.
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Corrected Dissolution Rate Constant, kcorr
+

The quartz dissolution rate constant in deionized water, k0
+, is commonly calculated

using the Arrhenius equation (e.g. Lasaga, 1984; Steefel and Yabusaki, 1996):

k0
+ = k0

25 exp

[−Ea

R∗

(

1

T
− 1

298.15

)]

(2.10)

where k0
25 [MOL L−2 T−1] is the known quartz dissolution rate constant in deionized

water at 25oC, Ea [MOL−1 M L2 T−2] is the activation energy, necessary to overcome the

potential energy maximum of the transition state and T [ϑ] is the absolute temperature.

The universal gas constant, R∗ [MOL−1 M L2 T−2 ϑ−1], and the constant k0
25 are given

in Rimstidt and Barnes (1980) as 8.3144 mol−1 kg m2 sec−2 K−1 and 4.3×10−14 mol

m−2 sec−1, respectively. The values of Ea for quartz dissolution found in other studies

range between 36 and 96 kJ mol−1. The value 75.0 kJ mol−1 is applied as proposed

by Rimstidt and Barnes (1980) and used in Steefel and Lasaga (1994) as well as in the

software packages OS3D and GIMRT (Steefel and Yabusaki, 1996).

Equation (2.10) is valid for deionized water. However, Dove and Crerar (1990) have

shown that the presence of electrolytes in the fluid can increase the reaction rate by 1.5

orders of magnitude. If solute concentrations are high, adsorbed cations give the quartz

surface structure a form similar to that shown in Figure 2.2 (Dove and Crerar, 1990).

Clearly, the bond angle, α, opens up if salt is present relative to silica dissolution in

deionized water (Figure 2.2 below). Thus, the siloxane bond, indicated by a grey arrow

in Figure 2.2, becomes more vulnerable to attacks by water dipoles. As a consequence,

dissolution progresses faster in electrolyte solutions.

The concentration of the bivalent (IIA) cations (Mg2+, Ca2+) dominates the dis-

solution rate while the effect of monovalent (IA) cations (Na+, K+) is minor due to

their less effective adsorption at low concentrations (Dove, 2004, personal communi-

cation). Dove (1999) demonstrated that the fraction of adsorption sites occupied by

species Na+, Mg2+ and Ca2+ can be expressed by a Langmuir model for equilibrium

adsorption (Rimstidt and Dove, 1986; Blum and Lasaga, 1988; Dove and Crerar, 1990)

as

θNa+ =
KNa+

ad mNa+

1 + KNa+

ad mNa+ + KMg2+

ad mMg2+ + KCa2+

ad mCa2+

(2.11)
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θMg2+ =
KMg2+

ad mMg2+

1 + KNa+

ad mNa+ + KMg2+

ad mMg2+ + KCa2+

ad mCa2+

(2.12)

θCa2+ =
KCa2+

ad mCa2+

1 + KNa+

ad mNa+ + KMg2+

ad mMg2+ + KCa2+

ad mCa2+

(2.13)

where θσ [–] is the fraction of adsorption sites occupied by cation σ and where mσ

[MOL M−1] and Kσ
ad [MOL−1 M] are the molal concentration and the equilibrium ad-

sorption coefficient of σ, respectively. The quantity Kσ
ad does not vary significantly with

temperature (Dove, 2004, personal communication) and can be taken for sodium, mag-

nesium and calcium as 101.78, 103.7 and 103.35 mol−1 kg, respectively (Dove, 1999). The

developed model computes the constant kσ
+ from a fit to experimental data published

by Dove (1999), who measured the dependence of quartz dissolution rates on different

electrolyte concentrations at 200oC of sodium chloride, magnesium chloride and calcium

chloride. Thus, the logarithm of the dissolution rate constant for Na+ can be written

as

log kNa+

200 = −2.8 × 10−4

mNa+

− 6.35 (2.14)

and for Mg2+ and Ca2+ as

log kMg2+

200 = −2.2 × 10−4

mMg2+

− 6.80 (2.15)

and

log kCa2+

200 = −1.3 × 10−6

(mCa2+)2
− 6.35 (2.16)

where log denotes the decadic logarithm log10. With the help of the Arrhenius equation

(2.10) and with Equations (2.14) to (2.16), the dissolution rate constant of species σ at

any concentration and temperature can be formulated as

kσ
+ = kσ

200 exp

[−Ea

R∗

(

1

T
− 1

473.15

)]

(2.17)

Using Equations (2.11) to (2.17), the corrected dissolution rate constant, kcorr
+ , is

defined here as

kcorr
+ = kNa+

+ θNa+ + kMg2+

+ θMg2+ + kCa2+

+ θCa2+

+ k0
+[1 − (θNa+ + θMg2+ + θCa2+)]

(2.18)
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where Dove’s (1999) idea of competitive adsorption is adapted in order to account for

protons ”adsorbed” on the remaining sites (Figure 2.2), expressed by the last term

in (2.18). This last term does not occur in Dove’s (1999) original formulation of the

dissolution rate constant in a mixed electrolyte solution. However, the term is necessary

to obtain a correct rate constant in water of very low salinity, where mσ → 0, thus

θσ → 0 and therefore kcorr
+ → k0

+.

Electrolyte concentration and fluid temperature are the main factors that affect

the quartz dissolution rate constant. However, it has been reported in the scientific

literature that quartz dissolution is also a function of pH. In the past, this functionality

has been investigated by various authors with very similar results. Brady and Walther

(1989) found that between the pH of zero surface charge of quartz (pHzpc = 2.4) and pH

7, the dissolution rate constant in deionized water remains nearly constant. However,

between pH 8 and pH 12, they observed that the rate increases by about 0.3 log rate

units per increasing pH unit. Bennett et al. (1988) and Bennett (1991) only investigated

the case of pH less than 7 and quantified the pH dependence as 0.1 and 0.1-0.2 log rate

units per pH unit, respectively. These quantities should be regarded with care, though,

because their determination is based on very few data points and, therefore, an accurate

relationship at pH < 7 is ”not definable” (Bennett, 1991). Since H4SiO4 is a weak acid,

the pH of the system investigated in this study is expected to be in the range slightly

below pH 7. In this range, the changes of the dissolution rate constant are ”small [...]

and difficult to interpret” (Bennett, 1991). Therefore, the pH dependency of quartz

dissolution rates is neglected in this study.

Activity Coefficient, γH4SiO4

The magnitude of γσ relative to 1.0 indicates in which way the solubility of species σ

changes relative to its solubility in deionized water:

γσ



















< 1 higher solubility of species σ

= 1 no change in solubility

> 1 lower solubility of species σ
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In an electrolyte solution, the solubility of a neutral species, such as H4SiO4, is a

function of the amount of dissolved salt and temperature. Marshall and Chen (1982)

have proposed a modified form of the Setchenow equation to calculate the activity

coefficient of H4SiO4 in a mixed electrolyte solution at any given temperature:

log γH4SiO4 =
∑

σ

Dσmσ (2.19)

where Dσ is the dimensionless, temperature dependent Marshall-Chen coefficient of

ion σ and mσ is the molal concentration [MOL M−1] of σ. Marshall and Chen (1982)

give values of Dσ for species Na+, Mg2+, Cl− and SO2−
4 in the temperature range

25oC to 300oC. Due to the physicochemical similarity of magnesium and calcium, their

Marshall-Chen coefficients are assumed to be identical, such that DCa2+ = DMg2+ . A

further assumption is made here that the Dσ can be extrapolated beyond the 25oC to

300oC temperature range down to 0oC.

Equilibrium Constant, Keq

In the developed model, the equilibrium constant, Keq, is expressed as a function of

absolute temperature, T , over the temperature range 0oC to 300oC (Rimstidt, 1997):

log Keq = −1107.12

T
− 0.0254 (2.20)

Other models use an apparent solubility, which also accounts for the impact of

salinity (Fournier, 1983; von Damm et al, 1991; Shibue, 1994; Mroczek and Christenson,

2000). However, the present model takes ion activity into consideration by calculating

nonzero Marshall-Chen coefficients in Equation (2.19) and by, thus, employing silica

activity coefficients that are greater than or equal to one. In the calculation of quartz

solubility, two more assumptions are made. Krauskopf and Bird (1995) showed that

below pH 9, there is no influence of pH on quartz solubility. In addition, White and

Mroczek (1998) demonstrated that the pressure effect on quartz solubility is insignificant

within the temperature range considered in this study.
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Figure 2.2: Dissolution of silica in deionized water (below) and in an electrolyte so-

lution (above). The grey arrow indicates one of the two siloxane bonds, which have

to be broken. This bond is less accessible to water dipoles in deionized water. Thus,

dissolution rates are higher in saline solutions (Dove and Crerar, 1990).
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2.3 Physical System

Convection Phenomena

In flow fields where a non-zero hydraulic gradient is created by externally applied

forces and where density effects are neglected, fluid flow is purely hydraulically driven.

This phenomenon is called forced convection. In contrast, if the hydraulic gradient is

uniquely created by spatial density differences, the occurring displacement of fluid mass

is buoyancy-driven. This second flow phenomenon is called free convection. However,

if spatiotemporal density differences are observed, the flow is not necessarily density-

driven. Density differences may be too small to induce movement of fluid and the system

remains stable. In this case, solutes are only transported by molecular diffusion. On

the other hand, larger density differences may provoke free convective flow, resulting

in regional downwards movement of dense fluid (fingering), which is counterbalanced

by upwards flow in upwelling regions. Such flow regimes are unstable and solutes are

transported by molecular diffusion and advection.

Flow regimes where the fluid flow is both hydraulically and buoyancy-driven are re-

ferred to as mixed convective flow systems. Shikaze et al. (1998) demonstrated that the

magnitude of the imposed hydraulic gradient controls whether forced or free convection

is the dominant flow mechanism in mixed convective fractured systems. Thermal con-

vection occurs when temperature differences cause a density gradient, whereas solute or

haline convection is due to salinity differences. If both temperature and salinity impact

fluid density, the convective flow is termed thermohaline. More details on convective

flow phenomena in porous media can be found in Holzbecher (1998) and in Nield and

Bejan (1999).

In numerical simulations, spatial dimensionality is a key factor that influences the

pattern of free convection within the finite element grid. In nature, free convection in

wells and fractures is physically possible. However, representing an open borehole or

a discrete fracture by one-dimensional segments completely inhibits numerically sim-

ulating convection within such 1D elements (Shikaze et al., 1998). In vertical two-

dimensional representations of the flow domain, convection cells with rotation axes
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normal to the 2D grid, can be numerically simulated. In this case, the 2D domain

can represent a vertical porous layer (Horton and Rogers, 1945; Lapwood, 1948; Cal-

tagirone, 1975; Elder, 1967; Weatherill et al., 2004), a tilted porous layer (Bories and

Combarnous, 1973; Weatherill et al., 2004), a highly permeable fault zone (Murphy,

1979; Shi, 2005) or a discrete fracture. A fully three-dimensional representation of the

model domain allows free convection to occur in multiple ways. This has been studied

in aqueous systems (Bénard, 1900), highly permeable fault zones (Malkovsky and Pek,

1997; 2004) and porous media (Davis, 1967; Beck, 1972; Diersch and Kolditz, 1998).

Onset Condition of Free Convection

In homogeneous isotropic media, the onset of free convection can be determined by the

value of the dimensionless Rayleigh number, Ra (Rayleigh, 1916). The Rayleigh number

is the ratio between buoyancy forces driving free convective flow and dispersive/viscous

forces tending to dissipate unstable flow by enhanced mixing. If density gradients are

caused by differences in salt content, the haline Rayleigh number is defined as (Wooding,

1997a; Simmons et al., 2001; Weatherill et al., 2004):

Ra =
ρ0gαsaltκ(∆c)ℓz

φµ0D0

(2.21)

where ∆c [–] is the concentration difference between top and bottom boundaries and

where ℓz [L] is the height of the domain. If concentration differences are small and/or if

dispersion caused by molecular diffusion is large, Ra is small indicating that the system

is stable. On the other hand, a large concentration difference and/or less diffusion

may cause unstable, density-driven flow. In this case, the Rayleigh number exceeds the

threshold value Rac, which is the critical Rayleigh number.

In an infinitely extended 3D horizontal layer, the value of Rac depends on the

boundary conditions for flow and transport. If all domain boundaries are impermeable

for flow, top and bottom boundaries are assigned constant concentrations and all other

boundaries are assigned zero-dispersive flux conditions, Rac has the value 4π2 (Nield

and Bejan, 1999). In a system where Ra > 4π2, square convection cells of width ℓz

form. If a second threshold, Rac2, is exceeded, the convection cells are unstable with

time. Values of Rac2 are in the range of 240-280 according to Nield and Bejan (1999)
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or in the range of 240-300 according to Diersch and Kolditz (2002).

In a 3D horizontal layer of finite length, the value of Rac also depends on how well

convection cells ”fit” in the domain. The ability of cells to fit in the domain depends

on the two aspect ratios A and B (Horton and Rogers, 1945; Lapwood, 1948):

A =
ℓx

ℓz

B =
ℓy

ℓz

(2.22)

Caltagirone (1982) accounted for the dependence of Rac on aspect ratios. He pre-

sented an analytically derived critical Rayleigh number for a three-dimensional bounded

layer:

Rac = min
i,j

π2
(

i2

A2 + j2

B2 + k2
) (

A2i2k2 + B2j2k2 +
(

i2 + j2
)2

)

(

i2 + j2
)2 (2.23)

where i, j and k are integers. The 2D solution to (2.23) is achieved by setting j = 0. In

this case, the critical Rayleigh number is only a function of aspect ratio A:

Rac = min
i

π2
(

i2

A
+ k2A

)2

i2
(2.24)

If and only if the aspect ratio A is an integer, the critical 2D Rayleigh number Rac

reaches the minimum value 4π2. In this case, all convection cells form undistorted

perfect circles. If A is not an integer, Rac exceeds the minimum value 4π2 because

convection cells can not form in their preferred circular shape. For A < 1, Rac can be

several orders of magnitude larger than its minimum.

If the normal of a homogeneous isotropic layer is inclined by the angle ϕ, the

Rayleigh number and its critical threshold can be calculated as (Caltagirone, 1982;

Weatherill, 2004):

Ra∗ =
Ra

cos ϕ
Ra∗

c =
Rac

cos ϕ
(2.25)

The dimensionless Sherwood number, Sh, describes unstable flow in time. The

Sherwood number defines the ratio between total solute mass flux and diffusive mass

flux through a surface:

Sh =
Jtotal

Jdiffusion

=
Jadvection + Jdispersion + Jdiffusion

Jdiffusion

(2.26)
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A system is stable if all velocities are zero. In that case, diffusion is the only

transport mechanism and Sh = 1, which is the minimum value of Sh. Unstable systems

are characterized by Sh > 1, indicating solute transport by advection and dispersion

in addition to that caused by diffusion alone. For unstable flow through the upper

boundary of a model domain, Sh is defined here as

Sh =
Jtotal

φτDd (∆C/ℓz) ℓxℓy

(2.27)

where ∆C [M L−3] is the maximum concentration difference across the model domain

that is of size ℓx × ℓy × ℓz. The Sherwood number is similar to the Nusselt number Nu,

which is the ratio between total heat transfer and conductive heat transfer (Nusselt,

1944; Holzbecher, 1998). While Nu is a stability criterion for thermal convection, Sh

is the mass-transfer equivalent for haline convection (Kreith, 1965).

Fluid Properties

In thermohaline convection problems, both fluid properties, density and viscosity, are a

function of temperature and salinity, while the effect of pressure can be ignored (Bolton

et al., 1996). In the developed model, both fluid quantities are first calculated as a

function of temperature alone (ρ0
T , µ0

T ) and then modified to account for salinity. The

following paragraphs explain how the model quantifies the fluid properties ρ and µ

and how solid phase properties are updated. The density and viscosity functions are

illustrated graphically in Figure D.1 in Appendix D.

Under isobaric conditions, the fluid density is calculated as a function of tempera-

ture (ρ0
T ) for different temperature ranges (Holzbecher (1998) and references therein):
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ρ0
T =



















































































1000 · (1 − ([TC − 3.98]2/503570) · ([TC + 283]/[TC + 67.26]))
for 0oC ≤ TC ≤ 20oC

996.9 · (1 − 3.17 × 10−4 [T − 298.15] − 2.56 × 10−6 [T − 298.15]2 )

for 20oC < TC ≤ 175oC

1758.4 + 1000 · T (− 4.8434 × 10−3 + T (1.0907 × 10−5

−T · 9.8467 × 10−9)) for 175oC < TC ≤ 300oC

(2.28)

where TC [ϑ] and T [ϑ] are the temperatures in Celsius and Kelvin, respectively. In

a second step, the fluid density at any given salinity and temperature is evaluated

using the freshwater density at temperature T , ρ0
T , and from the sum of all species

concentrations using the following empirical relation

ρ = ρ0
T + αsalt ·

∑

σ

Cσ (2.29)

where αsalt [M−1 L3] is the solutal expansion coefficient. The impact of dissolved silica

on fluid density is not significant below 350oC (Fournier, 1983; Mroczek and Christen-

son, 2000) and, therefore, ignored in Equation (2.29). The developed model calculates

density from the concentration of eight major ions found in natural waters: Na+, K+,

Ca2+, Mg2+, Cl−, SO2−
4 , CO2−

3 and HCO−
3 . The empirical law (2.29) is calibrated us-

ing Pitzer’s ion interaction model (Monnin, 1989; 1994), which calculates fluid density

from the partial electrolyte volumes. The Monnin model is more precise than Equa-

tion (2.29) but also very time-consuming because it iterates between fluid density and

species molality. The Monnin model was used here to derive an empirical expression

for αsalt as a function of the groundwater chemistry in the Canadian Shield given by

Farvolden et al. (1988) in the form

αsalt = −0.0829 · ln
(

∑

σ

Cσ

)

+ 1.1415 (2.30)

where Cσ [M L−3] must be given in mg l−1.

Although the fluid viscosity is assumed constant in some studies of thermohaline

transport (Turner, 1979; Tyvand, 1980; Evans and Nunn, 1989; Yoshida et al., 1995), it
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is recommended to relate viscosity to both temperature (Bolton et al., 1996) and salinity

(Freedman and Ibaraki, 2002) because it can increase by a factor of two between pure

water and a dense brine (Oldenburg and Pruess, 1998). Different relations to calculate

fluid viscosity from temperature are used that cover different temperature ranges:

µ0
T =



























































1.787 × 10−3 · exp((− 0.03288 + 1.962 × 10−4 · TC) · TC)
for 0oC ≤ TC ≤ 40oC

10−3 · (1 + 0.015512 · [TC − 20])
−1.572

for 40oC < TC ≤ 100oC

0.2414 · 10ˆ(247.8/[TC + 133.15]) for 100oC < TC ≤ 300oC

(2.31)

The relationship between 0oC ≤ TC ≤ 40oC is used by Molson et al. (1992), the

other two relations are given by Holzbecher (1998) and references therein. Finally,

viscosity is expressed as a function of salinity and temperature by substituting the

temperature-dependent freshwater viscosity, µ0
T , in the the Jones-Dole equation:

µ = µ0
T ·

(

1 +
∑

σ

BσMσ

)

(2.32)

where Mσ is the molar concentration of species σ. Marcus (1985) gives values of the

B−coefficients [L3 MOL−1] for each species.

Solid Phase Properties

Chemical reactions have a significant impact on a number of physical flow and transport

properties. In the developed model, the quartz volume fraction, φqz [–], is recalculated

using (Steefel and Yabusaki, 1996; Steefel and Lasaga, 1994):

∂φqz

∂t
= −Vqz rL+1

M (2.33)

where Vqz [MOL−1 L3] is the molar volume of quartz and rL+1
M [MOL L−3 T−1] is the

molar reaction rate at time level L+1. In finite difference form, this equation becomes

φL+1
qz = φL

qz − ∆t Vqz rL+1
M (2.34)
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where ∆t = tL+1 − tL [T] is the time step size. The molar volume of a mineral is

the ratio of its molecular weight to its density (Langmuir, 1997). The model updates

porosity from the sum of all mineral volume fractions:

φL+1 = 1 −
∑

σ

φL+1
σ (2.35)

where it is assumed that quartz is the only reactive solid species, thus φσ = constant

for σ 6= quartz. The specific surface area in the porous matrix is recalculated by means

of the two-thirds power relation given by Steefel and Yabusaki (1996) as

AL+1
qz = Ainit

qz



















[(

φL+1/φinit
)

·
(

φL+1
qz /φinit

qz

)]2/3
dissolution of quartz

(

φL+1/φinit
)2/3

precipitation of quartz

(2.36)

where Ainit
qz [L2 M−1] is the initial specific surface area in the matrix and where φinit [–]

and φinit
qz [–] are the initial matrix porosity and quartz fraction, respectively.

The matrix permeability, κij [L2], is calculated from porosity for the special case

of dissolution and precipitation of quartz as given by Weir and White (1996):

κL+1
ij = κinit

ij ·







1 −
[

1 −
(

φL+1 − φc

φinit − φc

)1.58
]0.46







(2.37)

where κinit
ij is the initial permeability and φc is the critical porosity at which κij = 0.

This relation is obtained from theoretical considerations of deposition and dissolution of

quartz grains, arranged in a rhombohedral array of uniform spheres (Weir and White,

1996). Similar to matrix porosity, fracture apertures are recalculated from (Steefel and

Lichtner, 1998ab):

(2b)L+1 = (2b)L ·
(

1 + ∆t Vqz rL+1
M

)

(2.38)

and, finally, the specific surface area in the fracture is updated using (Steefel and

Lichtner, 1998a):

Afr,L+1
qz = Afr,init

qz ·
(

(2b)L+1

(2b)init

)

(2.39)

where Afr,init
qz [L2 M−1] is the initial specific surface area in the fracture and where

(2b)init [L] is the initial fracture aperture. The initial surface area in a two-dimensional
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rectangular fracture element is the ratio between active surface area, given by As =

2ω LxLz, and the mass of water stored in the 2D element, Mw = ρ · (2b) LxLz, where

ω [–] is the fracture roughness coefficient (Figure 2.3). Thus, a fluid moving through

a large fracture will encounter less mineral surface area per unit fluid mass than will

a fluid moving through a narrow fracture, expressed by the following relation for the

initial specific surface area:

Afr,init
qz =

ω

ρ b
(2.40)

Lx

Lz

(2 )b(2 )b

w = 1w > 1

Figure 2.3: Fracture roughness coefficient for rough-walled (left) and smooth fractures.



Chapter 3

Governing Equations

The purpose of this chapter is to present the equations that govern the physicochemical

system described in the previous chapter. Usually the continuum approach mathemat-

ically describes the fundamental processes of flow and transport. As both flow and

transport vary in space, a sufficiently small volume is chosen for which both mass and

flow quantities can be quantified. The physically exact treatment of flow and transport

at the microscopic level is not possible due to the naturally high degree of complexity

of geological media. Therefore, physical properties are averaged over a greater spatial

scale, the macroscopic level. Flow and transport are balanced over the smallest volume

possible that is large enough to justify parameter averaging. This volume is called rep-

resentative elementary volume (REV [L3]) and its size is ∆x ·∆y ·∆z. Characteristic of

the continuum approach is the formulation of a balance for both fluid mass and solute

mass conservation over an REV. The results are two continuity equations, one for flow

(coming from the fluid mass balance) and one for transport (coming from the solute

mass balance).

Continuity is achieved if the net (fluid or solute) mass flux rate ∆ĵ = ĵin − ĵout [M

T−1] through the REV equals the temporal change of mass within the REV, ∂M/∂t.

In its most general form, the continuity equation is

∆ĵ ± Γm · REV =
∂M

∂t
(3.1)

where Γm [M L−3 T−1] represents sources and sinks and where t [T] is time. This

30
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general law can be used to derive the governing equations for both fluid flow and solute

transport.

3.1 Constitutive Equations

The model uses the equivalent freshwater head h0 [L], defined by Frind (1982) as

h0 =
P

ρ0g
+ z (3.2)

where P [M L−1 T−2] is the dynamic fluid pressure, ρ0 [M L−3] is the reference fluid

density, g [L T−2] is the gravitational acceleration and z [L] is the elevation above

datum. The transport variable is the dimensionless relative concentration, c, which

varies between 0 and 1. It is linked with density through the linear relationship

ρr = γc (3.3)

where ρr is the dimensionless relative density, defined in Frind (1982) as

ρr =
ρ

ρ0

− 1 (3.4)

where ρ [M L−3] is the fluid density. The dimensionless constant γ is the maximum

relative density given by

γ =
ρmax

ρ0

− 1 (3.5)

where the assumption is made that the solute concentration of a fluid with the density

ρ = ρmax is cmax = 1. It is also assumed that the impact of salinity on fluid viscosity is

negligible.

Another transport variable is the solute concentration, expressed as volumetric

mass, C [M L−3]. If this variable is used, relative density is not calculated from the

relative concentration as in (3.3) but directly from the fluid density as in (3.4), which

is a function of the individual species concentrations and temperature (2.29). The fluid

viscosity, µ [M L−1 T−1], may also be nonuniform and related to the concentrations of

all mobile components.
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Under variable-density flow conditions, the Darcy flux, qi = φvi [L T−1], is a func-

tion of both the physical flow variable, h0, and the chemical property, ρr. The Darcy

flux in porous media can be completely expressed in terms of freshwater properties

(after Frind (1982)):

qi = −K0
ij

µ0

µ

(

∂h0

∂xj

+ ρrηj

)

i, j = 1, 2, 3 (3.6)

where the assumption of a horizontal datum (i.e. ∂z/∂z = 1) is made and where ηj

[–] represents the direction of flow with ηj = 0 in the horizontal directions and ηj = 1

in the horizontal directions (Frind, 1982). Using the ratio between the reference fluid

viscosity, µ0, and the fluid viscosity, µ [both M L−1 T−1], the hydraulic conductivity of

the porous medium, K0
ij [L T−1], is the freshwater property (Bear, 1988):

K0
ij =

κijρ0g

µ0

(3.7)

A three-dimensional Cartesian coordinate system is assumed, where the axes are co-

linear with the principal directions of anisotropy. With this assumption, cross terms

(K0
ij where i 6= j) in the hydraulic conductivity tensor vanish.

The Darcy flux in differently oriented two-dimensional fracture faces is calculated

using the following form of the Darcy equation, presented by Bear (1988) for an inclined

one-dimensional tube

qs = −κ

µ

(

∂P

∂s
+ ρg

∂z

∂s

)

(3.8)

where s [L] is the axis along the tube and where κ [L2] is the permeability of the porous

material in the tube. The fluid pressure in (3.8) can be written in terms of equivalent

freshwater head using relation (3.2). With relation (3.7) and because ∂z/∂s is the

cosine of the slope, the Darcy flux in a fracture element can be written as

qfr
i = −Kfr

0

µ0

µfr

(

∂hfr
0

∂xj

+ ρfr
r ηj cos ϕ

)

i, j = 1, 2 (3.9)

where ηj is 0 in the horizontal direction and 1 along the fracture incline. The incline of

a fracture face is given by ϕ with ϕ = 0o for a vertical face and ϕ = 90o for a horizontal

face. In the case of flow within fractures, a local two-dimensional Cartesian coordinate

system is assumed. The freshwater hydraulic conductivity of the fracture, Kfr
0 [L T−1],

is derived from the parallel plate model as

Kfr
0 =

(2b)2ρ0g

12µ0

(3.10)
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where (2b) [L] is the fracture aperture. The application of Darcy’s law in fractures (3.9)

requires that the Reynolds number be smaller than 1 (Bear and Verruijt, 1987).

Both Darcy equations, (3.6) and (3.9), embody the effects of both forced and free

convection. The former is controlled by the magnitude and sign of the hydraulic head

gradient, ∂h0/∂xi, while the latter is represented by the buoyancy term, ρrηj. The

relative density is positive if salinity is high, reducing the Darcy flux in the vertical

direction. In fracture elements, using the cosine-weighted buoyancy term, ρfr
r ηj cos ϕ,

allows computing the Darcy flux in fracture elements of any incline ϕ. In a vertical

face (ϕ = 0o), the contribution of buoyancy to the Darcy flux has a maximum because

cos ϕ becomes 1 while in a horizontal face (ϕ = 90o), density effects do not contribute

to the Darcy flux because cosϕ vanishes.

3.2 Variable-Density Flow

The fluid mass balance equation can be derived from Equation (3.1) by assuming 1D

flow in x-direction for the moment. Then, ĵ [M T−1] is equal to Qx · ∆y ∆z, where

Qx = φρvx [M L−2 T−1] is the flow rate of fluid mass along the x-axis. Upon writing

the fluid mass that is stored in the REV as M = φρ · ∆x ∆y ∆z [M] and with the

assumption that both fluid and matrix are compressible, the three-dimensional flow

continuity equation is commonly written in vector form as

−∇ • (φρ v) ± Γm =
∂(φρ)

∂t
(3.11)

where φ is the dimensionless porosity, ∇ [L−1] is the divergence operator and v [L T−1]

is the average fluid velocity vector. A single Newtonian fluid is assumed, where the

dynamic viscosity is constant at all shear rates under isothermal and isobaric conditions.

Omitting sources and sinks and upon applying the product rule, the left hand side

of (3.11) can be written as −ρ ∇ • (φv) − (φv) • ∇ρ. A usual simplification of (3.11)

is the application of the Oberbeck-Boussinesq (OB) approximation (Oberbeck, 1879;

Boussinesq, 1903). The OB assumption reflects to what degree density variations are

accounted for. It is common to consider density effects only in the buoyancy term

of the momentum equations (3.6) and (3.9), and to neglect density in the fluid and
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solute mass conservation equations. This first level of the OB assumption is generally

correct because spatial density variations, ∇ρ, are commonly minor, relative to density,

ρ. Thus, the left hand side of (3.11) simplifies to −ρ ∇•(φv) and the fluid mass balance

equation becomes

−∇ • (φv) =
1

ρ

∂(φρ)

∂t
(3.12)

The term (φv) on the left of (3.12) can now be replaced by the Darcy flux, q, given in

scalar form by (3.6) and (3.9). The right hand side of (3.12) represents the compress-

ibility of both the medium and the fluid. For flow in porous media, the compressiblity is

commonly expressed as SS · ∂h0/∂t, where SS [L−1] is the specific storage of the porous

matrix, given as (Bear, 1988; Domenico and Schwartz, 1998)

SS = ρ0g(αm + φαfl) (3.13)

where αm [M−1 L T2] and αfl [M−1 L T2] are the matrix and fluid compressibility,

respectively. Because matrix compressibility is two orders of magnitude greater than

fluid compressibility, it is assumed here that changes in porosity do not impact specific

storage in the porous matrix. Thus, the equation that governs saturated variable-

density, variable-viscosity flow in porous media has the following parabolic scalar form

in three dimensions

∂

∂xi

[

K0
ij

µ0

µ

(

∂h0

∂xj

+ ρrηj

)]

= SS
∂h0

∂t
i, j = 1, 2, 3 (3.14)

The specific storage in an open fracture, Sfr
S [L−1], can be derived from (3.13) by

assuming that the fracture is essentially incompressible, such that αm = 0, and by

setting its porosity to 1. It is also assumed that changes in fracture aperture have no

impact on specific storage in fractures:

Sfr
S = ρ0gαfl (3.15)

Flow in an open discrete fracture takes place in two dimensions. Therefore, the

corresponding governing equation is defined in a local 2D coordinate system. The

governing variable-density flow equation in fractured media is similar to that presented

by several authors (Berkowitz et al., 1988; Sudicky and McLaren, 1992; Shikaze et al.,
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1998; Therrien et al., 2004):

(2b)

{

∂

∂xi

[

Kfr
0

µ0

µfr

(

∂hfr
0

∂xj

+ ρfr
r ηj cos ϕ

)]

− Sfr
S

∂hfr
0

∂t

}

+ qn|I+ − qn|I− = 0

i, j = 1, 2 (3.16)

where the last two terms represent normal components of fluid flux across the bound-

ary interfaces (I+ and I−) that separate the fracture and the porous matrix. In the

conceptual model, fractures are idealized as two-dimensional parallel plates. Therefore,

both the total head, hfr
0 , and the relative density, ρfr

r , are uniform across the fracture

width.

The boundary conditions for Equations (3.14) and (3.16) can be of first-, second-

or third-type as defined by Frind (1982) or by Istok (1989).

3.3 Reactive Solute Transport

The governing equation for reactive solute transport can also be derived from Equation

(3.1). In this case, the solute mass stored in the REV is M = φC ·∆x ∆y ∆z [M]. Let

the mass flux rate, ĵ [M T−1], be the solute flux rate in x-direction, ĵ = Jx · ∆y ∆z,

where Jx [M L−2 T−1] is the sum of advective flux, Jadvection
x = qxC, and dispersive-

diffusive Fickian flux, Jdispersion
x + Jdiffusion

x = −φDxx (∂C/∂x). Then, for a sorptive

species, the governing transport equation in porous media has the three-dimensional

scalar parabolic-hyperbolic form (Bear, 1988)

∂

∂xi

(

φDij
∂C

∂xj

− qiC

)

+ Γm =
∂(φRC)

∂t
i, j = 1, 2, 3 (3.17)

where φ [–] is matrix porosity and C [M L−3] is solute concentration. In this form of

the transport equation, the assumptions of fluid incompressibility and constant fluid

density are made. The coefficients of the hydrodynamic dispersion tensor, Dij [L2 T−1],

are given by Bear (1988) as

φDij = (αl − αt)
qiqj

|q| + αt|q|δij + φτDdδij i, j = 1, 2, 3 (3.18)
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where αl [L] and αt [L] are the longitudinal and transverse dispersivity, respectively, τ

[–] is matrix tortuosity, Dd [L2 T−1] is the free-solution diffusion coefficient and δij [–]

is the Kronecker delta function, defined by

δij =







1 if i = j

0 if i 6= j
(3.19)

The dimensionless retardation factor, R, is given by Freeze and Cherry (1979) as

R = 1 +
ρb

φ
Kd (3.20)

where ρb [M L−3] is the bulk density of the porous medium and Kd [M−1 L3] is the

equilibrium distribution coefficient describing a linear Freundlich isotherm.

The source/sink term, Γm, is −φλRC for radioactive components with decay con-

stant λ [T−1]. For chemically reactive species (e.g. silica), the governing transport

equation is obtained from (3.17) by replacing the concentration, C, by the silica mo-

lality, mH4SiO4 , and by setting the source/sink term, Γm [now MOL M−1 T−1], equal to

the net reaction rate, rnet, given by (2.8). Yeh and Tripathi (1989) argue that precip-

itation/dissolution reactions and sorption can not be simulated simultaneously if the

aqueous component is the primary dependent species. Thus, the distribution coefficient

of silica must be set to zero in Equation (3.20).

Therrien and Sudicky (1996) give the equation that governs solute transport in

fractured media as:

(2b)

{

∂

∂xi

(

Dfr
ij

∂Cfr

∂xj

− qfr
i Cfr

)

+ Γfr
m − Rfr ∂Cfr

∂t

}

+ Ωn|I+ − Ωn|I− = 0

i, j = 1, 2 (3.21)

where Dfr
ij [L2 T−1] is the hydrodynamic dispersion coefficient of the fracture, calculated

as

Dfr
ij = (αfr

l − αfr
t )

qfr
i qfr

j

|qfr| + αfr
t |qfr|δij + Ddδij i, j = 1, 2 (3.22)

where αfr
l and αfr

t [both L] are the longitudinal and transverse fracture dispersivity,

respectively. The dimensionless fracture retardation factor, Rfr, is given by (Freeze and
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Cherry, 1979):

Rfr = 1 +
2Kfr

d

(2b)
(3.23)

where Kfr
d [L] is the fracture-surface distribution coefficient. The last two terms in

Equation (3.21) represent advective-dispersive-diffusive loss or gain of solute mass across

the fracture-matrix interfaces I+ and I− (Sudicky and McLaren, 1992). Sources and

sinks are represented by the term Γfr
m , which equals −λRfrCfr for radioactive chemicals.

For the silica species, the transport equation in fractured media can be obtained from

(3.21) by replacing the concentration, Cfr, by the silica molality, mfr
H4SiO4

, by setting

the source/sink term, Γfr
m [now MOL M−1 T−1], equals to the net reaction rate, rfr

net,

given by (2.9), and by neglecting sorption reactions (Yeh and Tripathi, 1989).

The reactive source/sink term always consists of a first order reaction term repre-

senting the precipitation and a constant term of zeroth order describing the dissolution

reaction. Thus, both reactive transport equations in porous and fractured media are

linear, allowing a one-step solution. Therefore, neither an iterative operator splitting,

two-step scheme nor a computationally demanding fully-coupled, one-step approach

are required. Performing a Newton Iteration and formulating Jacobian matrix entries

would have highly complicated the model development.

The boundary conditions for Equations (3.17) and (3.21) can be of first-, second-

or third-type as defined by Frind (1982) or by Istok (1989).

3.4 Heat Transfer

Under transient flow conditions, heat is transported by convection, conduction, me-

chanical heat dispersion and radiation. In nature, the temperature of the solid phase

and their contained fluids is different because heat transfer is a transient process. But

physically speaking, both temperatures can be assumed identical because heat trans-

fer between the phases is a fast process relative to other heat transfer mechanisms

(Holzbecher, 1998).
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Convection describes heat transfer by moving fluid mass. Conductive transport

occurs without mass displacement but within the medium due to a temperature gra-

dient alone. Conduction depends, therefore, on the thermodynamic properties of the

medium. Mechanical heat dispersion results from heterogeneity of the medium at all

spatial scales. If groundwater velocity is low, conduction is the dominant heat transfer

mechanism while convection becomes more important in high-velocity environments.

Radiation of heat can be understood as electromagnetic waves and is, therefore, en-

tirely independent of both the temperature and the thermodynamic properties of the

medium. As a consequence, the amount of thermal energy transferred by way of radi-

ation can not be quantified at a given point in the medium (Planck, 1906) and, thus,

radiation is commonly neglected in numerical heat transfer models. The analogous pro-

cesses of convection, conduction and mechanical heat dispersion for the solute transport

case are advection, molecular diffusion and mechanical dispersion, respectively. Thus,

based on the similarity to Equation (3.17), the convective-conductive-dispersive heat

transfer equation in porous media can be written in a form similar to that given by

Molson et al. (1992) as

∂

∂xi

(

(kb + φDij ρlc̃l)
∂T

∂xj

− qi ρlc̃l T

)

= ρbc̃b
∂T

∂t
i, j = 1, 2, 3 (3.24)

where kb [M L T−3 ϑ−1] is the bulk thermal conductivity, ρ [M L−3] is density and c̃ [L2

T−2 ϑ−1] is specific heat. The absolute temperature, T [ϑ], is the average temperature

between the solid and the liquid phase (Domenico and Schwartz, 1997). The subscripts

”l” and ”b” refer to the liquid and bulk phases, respectively. A gaseous phase is absent.

In Equation (3.24), it is also assumed that external heat sinks and sources due to

chemical reactions (dissolution/precipitation) are negligible. The heat capacity, ρc̃ [M

L−1 T−2 ϑ−1], denotes the heat removed or gained from a unit volume for a unit change

in temperature (Domenico and Schwartz, 1997). The bulk properties ρbc̃b and kb can be

quantified considering the volume fractions of the solid and the liquid phase according

to Bolton et al. (1996)

ρbc̃b = (1 − φ)ρsc̃s + φρlc̃l (3.25)

kb = (1 − φ)ks + φkl (3.26)

where the subscript ”s” refers to the solid phase.
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Heat transport in an open discrete fracture can be written using a two-dimensional

equation similar to Equations (3.21) and (3.24) in the form

(2b)

{

∂

∂xi

(

(

kl + Dfr
ij ρlc̃l

) ∂T fr

∂xj

− qfr
i ρlc̃l T fr

)

− ρlc̃l
∂T fr

∂t

}

+Λn|I+ −Λn|I− = 0

i, j = 1, 2 (3.27)

The last two terms represent convective-dispersive-conductive loss or gain of thermal

energy across the fracture-matrix interfaces I+ and I−. The temperature is uniform

across the fracture width. Furthermore, it is assumed that, along the fracture-matrix

interface, the temperature in the fracture and the adjoining matrix are identical.

In the developed model, the boundary conditions for Equations (3.24) and (3.27)

can be of first (Dirichlet) type of the form

T = T0 (3.28)

and

T fr = T fr
0 (3.29)



Chapter 4

Numerical Modeling

The purpose of this chapter is to present how the previously described governing equa-

tions are implemented in the FRAC3DVS model. First, the unmodified FRAC3DVS

model is illustrated in Section 4.1, followed by a brief explanation of the finite element

technique to discretize the governing equations in Section 4.2. Section 4.3 focuses on

how inclined discrete fractures are implemented into the finite element grid. Section 4.4

describes the finite element formulation of the buoyancy part in the fracture flow equa-

tion while the last two sections (4.5 and 4.6) present the full finite element formulation

of the solute transport and heat transfer equations.

4.1 The FRAC3DVS Model

FRAC3DVS is a 3D saturated-unsaturated numerical groundwater flow and multi-

component solute transport model (Therrien and Sudicky, 1996; Therrien et al., 2004).

The governing equations for flow and transport are derived from the continuum ap-

proach. The flow equation is discretized in space by means of a control volume finite

element approach, ensuring mass conservation at the elemental and global level. The

transport equation is solved using a Galerkin finite element approach. The porous, low-

permeability matrix is represented by regular three-dimensional blocks and fractures of

high permeability are represented by two-dimensional rectangular planes. Using undis-

40
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torted finite elements allows an analytical discretization of the governing equations by

means of elemental influence coefficient matrices (Frind, 1982; Therrien and Sudicky,

1996). Thus, there is no need to numerically integrate. The solution takes into ac-

count advective flow and non-reactive transport, molecular diffusion, and mechanical

dispersion in both the fractures and the matrix.

In FRAC3DVS, vertical and horizontal 2D fractures are incorporated into the

3D grid by superimposing two-dimensional face elements onto the three-dimensional

grid, consisting of regular block elements. Two-dimensional faces represent the fracture

whereas three-dimensional blocks denote the porous matrix. In order to fully couple

the fracture with the porous matrix, faces and blocks share common nodes along the

fracture walls. Thus, nodes at fracture locations receive contributions from both the

block elements as well as from the fracture faces. Furthermore, for these mutual nodes,

both hydraulic head and concentration at the fracture/matrix interface are assumed

to be equal. Therefore, it is not necessary to explicitly calculate the exchange terms

qn, Ωn and Λn in Equations (3.16), (3.21) and (3.27), respectively. This contrasts to

the dual-continuum approach, where the governing equations of the fractures and the

matrix are solved independently, linked through explicitely computed exchange terms.

The discrete fracture approach has previously been applied by several authors (Sudicky

and McLaren, 1992; Shikaze et al., 1994; Therrien and Sudicky, 1996; Shikaze et al.,

1998) and its description is, therefore, not repeated here.

The model FRAC3DVS has been modified to incorporate inclined fractures to sim-

ulate variable-density flow and transport. The improved model also solves for heat

transfer in discretely-fractured porous media. Both fluid properties, density and vis-

cosity, are functions of salinity, temperature or both. In this study, FRAC3DVS has

also been expanded to account for reactive silica transport. Chemical reactions are

coupled with variable-density flow through a feedback between reactions and flow pa-

rameter updates. The reaction kinetics and the quartz solubility are functions of both

salt concentration and temperature.
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4.2 Solution Strategies

All governing equations for variable-density flow (3.14 and 3.16), reactive solute trans-

port (3.17 and 3.21) and heat transfer (3.24 and 3.27) are partial differential equations

of second order and are resolved numerically. Due to its flexibility, the method used is

the finite element method (FEM). The basic principle of the FEM is to first define a

differential operator L(ξ) of the differential equation with the unknown ξ as

L(ξ) = 0 (4.1)

Next, the unknown, ξ, is approximated by a linear combination of linear basis functions,

wJ , in the way

ξ ≃ ξ̂ =
Nn
∑

J=1

ξJ wJ(x, y, z) (4.2)

where Nn is the total number of nodes in the finite element grid. The elemental basis or

approximation functions, wJ , are chosen such that wJ(xI , yI , zI) = δIJ where (xI , yI , zI)

is the location of node I (Figure 4.1). This choice implies that

wJ =







1 at node J

0 everywhere else in the domain
(4.3)

Therefore, the sum of all basis functions on the grid node I is always one:

∑

J

wJ = 1 ∀ I (4.4)

In Equation (4.1), the unknown exact solution ξ is now replaced by the trial solution

ξ̂ such that the left hand side of (4.1) is the nonzero residual L(ξ̂):

0 = L(ξ) ≃ L(ξ̂) = L

(

∑

J

ξJ wJ

)

6= 0 ∀ I (4.5)

In a third step, the residual, L(ξ̂), is multiplied by a weighting function, νI , and the

global integral of the weighted residual is then forced to zero:

∫

Ω

L

(

∑

J

ξJ wJ

)

νI dΩ = 0 ∀ I (4.6)
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where Ω is the model domain. The choice of the weighting function, νI , depends on

the specific FEM. In the common Galerkin method, νI is set equal the approximation

function, wI . In the control volume finite element (CVFE) method, νI is chosen as

1, dividing the domain into subdomains or nodal control volumes. Thus, the CVFE

method ensures mass conservation at both the elemental and the global level.

Lastly, the integration and the summation in (4.6) are treated as interchangeable

operations. Breaking up the global integral of sums into a sum of elemental integrals

finally yields the finite element formulation as

∑

J

{

∑

e

∫

V e

(

L (ξJ wJ) νI

)

dV e

}

= 0 ∀ I (4.7)

where Σe refers to the summation over all elements that join node J and where V e is

the volume of element e. The integrals in (4.7) do not need to be solved numerically

but can directly be replaced by elemental influence coefficient matrices if undistorted

rectangular 2D fracture faces and regular hexahedral 3D matrix elements are used

(Frind, 1982; Therrien and Sudicky, 1996). With a finite difference approach applied

to the temporal derivative, Equation (4.7) can be brought in the standard matrix form

A • ξ = d (4.8)

where the global matrix, A, is of dimension Nn × Nn, while both the vector of un-

knowns, ξ, and the known vector, d, are of size Nn × 1. In the numerical model

FRAC3DVS, Equation (4.8) is solved using the WATSIT iterative solver package for

general sparse matrices (Clift et al., 1996) and a conjugate gradient stabilized (CGSTAB)

acceleration technique (Rausch et al., 2005). A more detailed description of the FEM

and its application in hydrogeology can be found in Istok (1989).

The processes of variable-density flow and reactive solute transport are naturally

coupled. Density variations cause weak nonlinearities in the flow equation. In the de-

veloped model, they are treated by means of a sequential iterative approach (SIA), also

called Picard Iteration, which links the two governing equations for flow and transport.

This method alternately solves the two governing equations during each time step until

convergence is attained (Figure 4.2).

Mineral dissolution/precipitation has a direct impact on a variety of physicochem-

ical and material properties during the simulation process. A change of porosity and
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fracture aperture affects the active surface areas, Aqz and Afr
qz , which, in turn, change

the net rate of reaction (2.1). The change of such parameters is naturally fully cou-

pled with flow, heat transfer and solute transport. However, mineral volume fractions

change much more slowly than do the solute concentrations in the fluid (Sanford and

Konikow, 1989; Steefel and Lasaga, 1994; Steefel and Yabusaki, 1996; Saaltink et al.,

2001). Therefore, in the present model, like in other common geochemical models, fluid

properties are updated after each iteration of the Picard loop whereas material proper-

ties are updated after each time step rather than after each iteration (Figure 4.2). This

procedure of recalculating material parameters at the end of each time step is called

quasi-stationary state approximation and has first been introduced by Lichtner (1988).

Using the reaction rate at time level L+1 (implicit time weighting scheme) to renew all

model parameters ensures numerical stability (Steefel and Lasaga, 1994).

This decoupled, two step approach works well for relatively small time step sizes.

However, if nonuniform time step sizes are used to accelerate the simulation, the time

increment may become too large and, thus, high dissolution rates may lead to negative

quartz volume fractions or to negative fracture apertures. An adaptive time stepping

scheme was implemented to avoid unphysical results and to stabilize the simulation

procedure. The time step sizes depend on the absolute change of porosity according to:

(∆t)L+1 =
φ∗

max|φL+1 − φL| (∆t)L (4.9)

where φ∗ is the maximum absolute change in porosity allowed during a single time step.

Therrien and Sudicky (1996) previously used adaptive time stepping in the simulation of

variably-saturated flow. If the maximum change in porosity is greater than the allowed

threshold, the fraction in relation (4.9) is less than 1 and the updated new time step size

is smaller than the previous one. In this case, the old time step is repeated using the new

reduced time increment, (∆t)L := (∆t)L+1, without updating the material properties.

This method is different from that presented by Therrien and Sudicky (1996) where time

steps are not repeated and where new time step sizes always apply for the following time

step. However, too large time increments do not satisfactorily couple variable-density

flow and reactive transport with parameter changes. In fractured systems, the adaptive

time stepping can also be based on absolute changes in fracture aperture by using an

expression identical to (4.9). If both time step size controllers (porosity control and

aperture control) are employed, the new time step size is calculated from the material

whose time step multiplier is smaller.
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Figure 4.1: One-dimensional example of the trial solution, ξ̂, and the unknown contin-

uous solution, ξ (Steefel and MacQuarrie, 1996).
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Figure 4.2: Flow chart of the Picard Iteration with chemistry loop to couple variable-

density, variable-viscosity flow and solute transport with external chemical reactions

and parameter updates.
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4.3 Discretizing Inclined Fractures

The original version of FRAC3DVS offers discretizing horizontal and vertical fractures.

The FRAC3DVS model was modified to also simulate variable-density flow and reactive

solute transport in irregular fracture networks, where inclined fractures are likely to

occur.

While the six faces on the outer surface of the block elements can be used for the

discretization of regular fractures, for inclined fractures an additional six inclined faces

inside the blocks are also available. Figure 4.3 exhibits the orientation of the six inclined

faces. Note that the two faces in the block on the right of Figure 4.3 are not inclined but

vertical. However, for convenience, they are considered as inclined as well because they

do not correspond to a boundary face of the block. Furthermore, it can be seen that all

available 6 element boundary faces and 6 inclined faces are rectangular and undistorted.

Using the control volume finite element method, and assuming continuity of hydraulic

head, concentration and temperature at the common fracture-matrix nodes, results in

an unchanged connectivity pattern for the 3D porous medium elements, irrespective of

the presence of fractures.

Similar to the integration of horizontal and vertical (i.e. regular) fractures, inclined

fractures are incorporated in the finite element grid by superimposing 2D fracture faces

onto the 3D block elements of the porous matrix. The 8 nodes of the 3D matrix element

are labelled from 1 to 8 while the 4 nodes of the 2D fracture element are labelled from

1 to 4 (Figure 4.4). With the superposition, nodes 1 to 4 of an inclined 2D fracture

element coincide with nodes 2, 3, 8 and 5 of the 3D matrix element.

In FRAC3DVS, the location of three-dimensional inclined fractures is defined by

two points and by a coordinate axis parallel to the fracture. The fracture shown in

Figure 4.5 is parallel to the y-axis and defined by the two points West (W ) and East (E)

that coincide with the beginning and the end of a fracture. The fracture nodes between

W and E are selected using a simple least distance criterion: for every node P that

defines the fracture, the distance of all three neighbor nodes of P to the undiscretized

fracture is calculated. The neighbor node whose distance to the fracture is the smallest

is selected as a fracture node and becomes point P for the next step. Initially, P is
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identical to W . This process is repeated until the point P meets the end point E. Figure

4.5 is an example of how an inclined fracture is discretized in an irregular, relatively

coarse grid. Note that the grid is 3D with a unit thickness. Thus, the fracture is 2D

and defined by W and E and by its orientation (parallel to the y-axis).

Inclined fractures are a combination of inclined, horizontal and vertical faces. The

mathematical formulation of density effects in each of these three types of fracture

elements is described in the following section.

Figure 4.3: Inclined faces in three-dimensional block elements.
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Figure 4.4: Superposition of 2D vertical and inclined fracture elements onto 3D matrix

elements, where both continua share common grid nodes (modified from Rausch et al.,

2005).
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Figure 4.5: Selecting two-dimensional elements of an inclined fracture. The fracture

in nature (above) is discretized by snapping to the closest nodes (below). Common

fracture-matrix nodes are highlighted.
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4.4 Variable-Density Flow

Therrien and Sudicky (1996) extensively discuss the finite element formulation as well as

the numerical implementation of the no-density flow equations in porous and fractured

media. Their derivation is not repeated here. This section focuses on the finite element

formulation of the buoyancy term in fractures of any orientation.

Frind (1982) provides the finite element formulation of the 2D variable-density flow

equation in porous media in the absence of fractures. The elements used in his study

are two-dimensional vertical undistorted rectangles. However, if fractures are present

and assuming the common node approach, the hydraulic head at the fracture/matrix

interface is identical in both media such that the exchange terms qn|I+ and qn|I− in

Equation (3.16) vanish. In this case, the 2D flow equation in a porous matrix as

given in Frind (1982) and the 2D flow equation in a discrete fracture given by (3.16)

are mathematically identical. As a consequence, Frind’s finite element formulation for

variable-density flow in 2D matrix elements can also be used for density-driven flow in

2D fracture faces.

For clarity, the terms h0 and ρr instead of hfr
0 and ρfr

r will be used below. Assuming

constant viscosity for the moment, the differential operator L(h0) can be written as

L(h0) =
∂

∂xi

[

Kfr
0

(

∂h0

∂xj

+ ρrηj cos ϕ

)]

− Sfr
S

∂h0

∂t
= 0 (4.10)

Next, the unknown exact solution, h0, is approximated by a trial solution in the usual

form

h0 ≃ ĥ0 =
Nn
∑

J=1

hJ
0 wJ(x, y, z) (4.11)

such that the left hand side of (4.10) will be a nonzero residual. Following Frind’s

derivation, the finite element formulation of the balance equation (3.16) can be written

as a semi-discrete global matrix system in the compact form

H • h0 + S • ∂h0

∂t
+ g = f (4.12)

where superscript ”fr” is dropped for clarity. In (4.12), H [L T−1] is the conductance

or stiffness matrix, S [L] is the fluid mass matrix, g [L2 T−1] is the body force vector
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and f [L2 T−1] is the boundary flux vector. Vector g represents density effects and is,

therefore, of special interest in this study. See Frind (1982) for details about how the

other matrices and vectors are defined.

If 2D fracture faces are assumed, each of the four arrays in (4.12) can be written

as the sum of all the Nfe elemental arrays, Nfe being the total number of fracture

elements in the grid. Following this, the fracture body force vector, g, can be expressed

as

g =
∑

fe

gfe (4.13)

where gfe [L2 T−1] is the body force vector, written at the fracture elemental level. In

a two-dimensional quadrilateral element, whose sides coincide with the local coordinate

axes x̄ and z̄, the entries gfe
i [L2 T−1] of vector gfe are calculated after Frind (1982) as

gfe
i =

∫∫

Afe

Kfr
0 ρfe

r cos ϕ
∂wfe

i

∂z̄
dx̄ dz̄ i = 1, 2, 3, 4 (4.14)

where ρfe
r is the average relative density in the fracture element (face) fe, wfe

i [–] is the

value of the 2D approximation function in face fe at node i and Afe [L2] is the surface

area of fe. The double integral in (4.14) represents the general mathematical expression

of buoyancy in a 2D fracture face of any three-dimensional orientation. However, the

discretized inclined fracture can be a combination of horizontal, vertical and inclined

two-dimensional elements. Integration of Equation (4.14) is required to obtain the finite

formulation of density effects for fracture elements with arbitrary orientations, in order

to fully account for density effects in the entire fracture.

The right side of (4.14) can be integrated in two different ways. First, the fracture

weighting function is defined in terms of local coordinates in the usual way (e.g. for

node 1) as wfe
1 = (Lx̄ − x̄)(Lz̄ − z̄)/(Lx̄ · Lz̄), where Lx̄ [L] and Lz̄ [L] are the element

dimensions in the x̄- and z̄-direction, respectively (Figure 4.6). With the derivative of

wfe
1 , the integration in (4.14) is identical to that presented by Frind (1982), resulting

in the following coefficient for node 1:

gfe
1 = −Kfr

0 ρfe
r cos ϕ

Lx̄

2
(4.15)

which can be obtained likewise for the other nodes 2, 3 and 4.
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The second, more general method first assumes a vertical face, which will be rotated

to match its real inclined position. In this case of a vertical face, the cosine in (4.14)

is unity and the local coordinate axes of the face, x̄ and z̄, coincide with the global

coordinates, x and z, (Figure 4.6) such that:

gfe
i =

∫∫

Afe

Kfr
0 ρfe

r

∂wfe
i

∂z
dx dz i = 1, 2, 3, 4 (4.16)

Unlike in the first method, the density term is now defined over a vertical fracture

element. If the quasi-vertical face is rotated back to its original inclined position, the

buoyancy term (4.14) has to be integrated over the entire 2D inclined element area

for an arbitrary face orientation in 3D. However, the weighting function as well as its

derivative are 2D functions that are defined over a surface defined in 3D space. Thus,

a surface integral calculus problem has to be solved where the function f(x, y, z) =

Kfr
0 ρfe

r (∂wfe
i /∂z) is defined over the surface S of the fracture face.

Following Thomas and Finney (1988), the integral of a function f(x, y, z) over a

surface S in space, described by the function F (x, y, z) = constant (Figure 4.7), can be

calculated by evaluating a closely related double integral over the vertical projection or

shadow of S on a coordinate plane in the form

∫∫

S

f(x, y, z) dS =

∫∫

R

f(x, y, z)
|∇F |

|∇F • p| dA (4.17)

where R is the shadow region on the ground plane beneath surface S and p is a vector

normal to R. This surface integral can be directly evaluated only if a 1:1 mapping

of S in the xy- or in the xz-plane exists. Then, R could be Sxy or Sxz because both

projections yield the same result. The projection of S in the xz-plane is considered

because a pseudo-vertical fracture element was assumed.

From Figure 4.6, equation F (x, y, z) = constant of the surface S, which defines the

plane of the two-dimensional fracture element, can easily be derived as Lzy − Lyz = 0.

Thus, a 1:1 mapping of S in both coordinate planes exists and, as a consequence, the

integral on the right hand side of (4.17) can be evaluated and we have

S : F (x, y, z) = Lz y − Ly z (4.18)
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∇F = 0 · i + Lz · j − Ly · k (4.19)

|∇F | =
√

L2
y + L2

z (4.20)

and with p = j, the unit vector in y-direction

|∇F • p| = |∇F • j| = Lz (4.21)

Therefore, Equation (4.17) becomes

∫∫

S

f(x, y, z) dS =

∫∫

Sxz

f(x, y, z)

√

L2
y + L2

z

Lz

dx dz (4.22)

where dA = dx · dz. With the function f(x, y, z) = Kfr
0 ρfe

r (∂wfe
i /∂z), which must be

integrated, the entries of the elemental body force vector gfe
i from Equation (4.14) are

given in the form

gfe
i =

Lz
∫

0

Lx
∫

0

Kfr
0 ρfe

r

∂wfe
i

∂z

√

1 +
L2

y

L2
z

dx dz i = 1, 2, 3, 4 (4.23)

The elemental approximation function wfe
i is always formulated as a function of

local coordinates rather than global ones. Therefore, the integral in Equation (4.23)

has to be evaluated in the local coordinates χ̄. The required coordinate transformation

is a rotation around the x-axis by angle ϕ (see Figure 4.6) and can be written in the

matrix form








1 0 0

0 cos ϕ − sin ϕ

0 sin ϕ cos ϕ









•















x

y

z















=















x̄

ȳ

z̄















(4.24)

Thus, we can write the derivatives

∂z̄

∂z
= cos ϕ (4.25)

∂z

∂z̄
= cos ϕ (4.26)

The integral of Equation (4.23) is rewritten in terms of local coordinates by first sub-

stituting the derivative by means of the chain rule, leading to

∂wfe
i

∂z
=

∂wfe
i

∂z̄
· ∂z̄

∂z
(4.27)
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and, second, by adjusting the elementary volume following

dx dz = detJ · dx̄ dz̄ (4.28)

Here, the Jacobian matrix J [–] collapses to the simple 1×1 matrix

J =

[

∂z

∂z̄

]

(4.29)

with determinant detJ given by Equation (4.26). According to Figure 4.6, the approx-

imation function for node 1 may be expressed in local coordinates as

wfe
1 (x̄, z̄) =

1

LxH
(Lx − x̄)(H − z̄) (4.30)

with the spatial derivative

∂wfe
1

∂z̄
=

x̄ − Lx

LxH
(4.31)

where H [L] is the hypotenuse of the occurring triangle in the yz-plane, given as H =
√

L2
y + L2

z. Now use can be made of Equations (4.25), (4.26), (4.27), (4.28), (4.29) and

(4.31) to rewrite Equation (4.23). The elemental body force vector entry gfe
1 can be

written in local coordinates as

gfe
1 =

H
∫

0

Lx
∫

0

(

Kfr
0 ρfe

r

[

x̄ − Lx

Lx H

]

cos2 ϕ

√

1 +
L2

y

L2
z

)

dx̄ dz̄ (4.32)

Finally, a two-dimensional integration in Equation (4.32) directly yields the solution

for node 1:

gfe
1 = −Kfr

0 ρfe
r

LTG

2
(4.33)

where the characteristic length LTG [L] is a function of the element geometry such that

LTG = Lx ·
Lz

√

L2
y + L2

z

(4.34)

Note that solution (4.33) is identical to (4.15) because Lx = Lx̄ and because the

second factor in (4.34) is the cosine of the fracture face incline, cos ϕ = Lz/
√

L2
y + L2

z.

The repetition of steps (4.30) to (4.33) for nodes 2, 3 and 4 yields the following final
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form of the elemental body force vector gfe for arbitrarily inclined two-dimensional

fracture elements.

gfe = Kfr
0 ρfe

r

LTG

2























−1

−1

1

1























(4.35)

where LTG is given by Equation (4.34). The characteristics of this length scale are:

[1] For a vertical fracture element, the calculated density effects reach a maximum.

Solution (4.35) becomes identical to that in Frind (1982) because LTG becomes

Lx:

lim
Ly→0

LTG = Lx

[2] For a horizontal fracture element, no density effects occur and solution (4.35)

becomes zero because LTG vanishes:

lim
Lz→0

LTG = 0

[3] For every arbitrarily inclined fracture element, the magnitude of the density effect

will exceed zero and will be smaller than the density effect in a vertical fracture

element:

0 < LTG < Lx

[4] For an inclined fracture element, which is not parallel to the x-axis as shown in

Figure 4.6, but to the y-axis as shown in Figure 4.5, the x- and y-dimensions in

Equation (4.34) are simply switched:

LTG = Ly ·
Lz

√

L2
x + L2

z
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Figure 4.6: Geometry of an inclined 2D fracture element in three dimensions.
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Figure 4.7: Projection of S on a coordinate plane (Thomas and Finney, 1988).
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4.5 Reactive Solute Transport

Similar to the discretization of the variable-density flow equation, a differential operator

L(m) is defined for reactive solute transport. With (2.8) and (3.17), L(m) has the

following form for reactive solute transport in porous media

L(m) =
∂

∂xi

(

φDij
∂m

∂xj

− qim

)

+ ε − ε γH4SiO4

Keq

m − ∂(φRm)

∂t
= 0

i, j = 1, 2, 3 (4.36)

where ε = φqz kcorr
+ Aqz and where m is the silica molality. The unknown, m, is

approximated by a linear combination of linear basis functions wJ in the common way

m ≃ m̂ =
Nn
∑

J=1

mJ wJ(x, y, z) (4.37)

Substitution of the exact solution, m, by its approximation, m̂, leads to the nonzero

residual L(m̂). As before, the global integral of the weighted residual is then forced to

zero, yielding:
∫

Ω

L(m̂) νI dΩ = 0 I = 1...Nn (4.38)

The right hand side of (4.36) is now placed in (4.38), followed by a Galerkin approach,

where wI = νI , and a final application of Green’s theorem to the second derivative.

The result is the following weak integral form of the differential equation

−
∫

Ω

(

φDij
∂m̂

∂xj

∂wI

∂xi

)

dΩ −
∫

Ω

(

qi
∂m̂

∂xi

wI

)

dΩ

+

∫

Ω

(ε wI) dΩ −
∫

Ω

(

ε γH4SiO4

Keq

m̂ wI

)

dΩ −
∫

Ω

(

φR
∂m̂

∂t
wI

)

dΩ

+

∮

Γ

(

φDij wI
∂m̂

∂xj

)

dΓ = 0

i, j = 1, 2, 3 I = 1...Nn (4.39)

The last term in (4.39) represents dispersive-diffusive mass flux at the domain bound-

ary Γ. The integrals in the weak form (4.39) are then broken up to obtain the Nn
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finite element equations for reactive transport. With the trial solution given by (4.37),

treating the mass accumulation term in (4.39) with a lumped mass approach, and using

the fact that summation and integration are interchangeable operations, one obtains

the following rearranged set of Nn equations

Nn
∑

J=1

mJ

{

∑

e

∫

V e

(

φDij
∂wI

∂xi

∂wJ

∂xj

+ qi wI
∂wJ

∂xi

+
ε γH4SiO4

Keq

wI wJ

)

dV e+

+
Nn
∑

J=1

∂mJ

∂t

{

∑

e

∫

V e

(φR wI) dV e

}

−
∑

e

∫

V e

(ε wI) dV e

=
∑

e

∮

Γe

(

φDij wI
∂m̂

∂n

)

dΓe

i, j = 1, 2, 3 I = 1...Nn (4.40)

The steps (4.36) to (4.40) can be repeated for the discrete fractures using the governing

transport equation (3.21) and relation (2.9) to obtain an integrated weak form of the

fracture element contributions similar to (4.40). The technique of superimposing 2D

fracture elements onto 3D porous matrix elements can then be applied such that each

grid point J obtains contributions from all 2D and 3D elements that join node J .

Computationally speaking, this corresponds to a loop over all Nn grid points, where

integrated terms from all matrix elements e and all fracture elements fe are added up

if the grid point J is a node of e and fe. Application of this procedure results in the

following superimposed fracture-matrix system:

Nn
∑

J=1

mJ

{

∑

e

∫

V e

(

φDij
∂wI

∂xi

∂wJ

∂xj

+ qi wI
∂wJ

∂xi

+
ε γH4SiO4

Keq

wI wJ

)

dV e+

∑

fe

(2b)

∫

Afe

(

Dfr
i′j′

∂wfr
I

∂xi′

∂wfr
J

∂xj′
+ qfr

i′ wfr
I

∂wfr
J

∂xi′
+

εfr γfr
H4SiO4

Keq

wfr
I wfr

J

)

dAfe

}

+
Nn
∑

J=1

∂mJ

∂t

{

∑

e

∫

V e

(φR wI) dV e +
∑

fe

(2b)

∫

Afe

(

Rfr wfr
I

)

dAfe

}

−
∑

e

∫

V e

(ε wI) dV e −
∑

fe

(2b)

∫

Afe

(

εfr wfr
I

)

dAfe

=
∑

e

∮

Γe

(

φDij wI
∂m̂

∂n

)

dΓe +
∑

fe

(2b)

∮

Γfe

(

Dfr
i′j′ wfr

I

∂m̂

∂n

)

dΓfe
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i, j = 1, 2, 3 i′, j′ = 1, 2 I = 1...Nn (4.41)

where Σe and Σfe symbolize the summation over all porous matrix and fracture ele-

ments, respectively, that join node J . Equation (4.41) can be written in a compact

semi-discrete matrix form similar to that given by Frind (1982):

R • m + T • ∂m

∂t
+ u = b (4.42)

where R [L3 T−1] is the advective-dispersive-reactive transport matrix, T [L3] is the

solute mass matrix, u [MOL M−1 L3 T−1] represents the constant quartz dissolution

reaction rate, and b [MOL M−1 L3 T−1] contains the dispersive mass flux at the domain

boundary Γ. The definitions of matrices R and T and vectors u and b are given in

Appendix A. A standard finite difference approach is applied to (4.42) in order to

discretize the temporal derivative of m such that

∂m

∂t
= (1 − α) ṁL + α ṁL+1 ≃ mL+1 − mL

∆t
(4.43)

which gives a time-weighted form of (4.42) as

(

αR +
1

∆t
T

)

•mL+1 =

(

−(1 − α)R +
1

∆t
T

)

•mL +

(

(1−α)bL + αbL+1 −u

)

0 < α ≤ 1 (4.44)

where α [–] is a time-weighting factor. An implicit time-weighting scheme (α = 1)

usually gives results of highest numerical stability (Istok, 1989). In this case, Equation

(4.44) becomes

(

R +
1

∆t
T

)

• mL+1 =

(

1

∆t
T

)

• mL +

(

bL+1 − u

)

(4.45)

which can be written in the compact form

A • m = d (4.46)

where the matrix A is the term in the brackets on the left hand side of (4.45), the vector

m represents the unknown molalities at time level L+1, and the vector d embodies all

known terms, summarized on the right hand side of relation (4.45).
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4.6 Heat Transfer

The finite element formulation of the heat transfer equations (3.24) and (3.27) is similar

to the solute transport problem. Repeating steps (4.36) to (4.40) in an analogous

fashion, the semi-discrete form of the heat transfer equations obtained by assembling

the porous matrix and the fracture zone is given by

Nn
∑

J=1

TJ

{

∑

e

∫

V e

(

(kb + φDij ρlc̃l)
∂wI

∂xi

∂wJ

∂xj

+ (qi ρlc̃l) wI
∂wJ

∂xi

)

dV e+

∑

fe

(2b)

∫

Afe

(

(

kl + Dfr
i′j′ ρlc̃l

) ∂wfr
I

∂xi′

∂wfr
J

∂xj′
+

(

qfr
i′ ρlc̃l

)

wfr
I

∂wfr
J

∂xi′

)

dAfe

}

+
Nn
∑

J=1

∂TJ

∂t

{

∑

e

∫

V e

(ρbc̃b wI) dV e +
∑

fe

(2b)

∫

Afe

(

ρlc̃l wfr
I

)

dAfe

}

=
∑

e

∮

Γe

(

(kb + φDij ρlc̃l) wI
∂T̂

∂n

)

dΓe

+
∑

fe

(2b)

∮

Γfe

(

(

kl + Dfr
i′j′ ρlc̃l

)

wfr
I

∂T̂

∂n

)

dΓfe

i, j = 1, 2, 3 i′, j′ = 1, 2 I = 1...Nn (4.47)

These Nn equations are further discretized with a finite difference scheme in time to

finally obtain a matrix system similar to (4.46).



Chapter 5

Verification Problems

In this chapter, simulation results are presented to verify variable-density flow (Section

5.1), reactive solute transport (Section 5.2) and heat transfer (Section 5.3). The ver-

ification problems of reactive transport and heat transfer that imply a single fracture

are identical to the fracture-matrix system used by Tang et al. (1981) shown in Figure

5.11. Tang et al. (1981) presented the analytical solution of solute transport along a

single fracture embedded in a porous matrix.

The variable-density flow solution in porous media was compared with available

numerical as well as laboratory results. These are the Elder (1967) 2D problem of

free convection and the experimental 3D saltpool problem (Oswald and Kinzelbach,

2004). In the developed model, variable-density flow in a fracture takes place in verti-

cal, horizontal and inclined faces. Density-driven flow in vertical fracture elements was

tested using results from numerical simulations carried out by Shikaze et al. (1998). In

horizontal faces, density effects naturally do not occur and the buoyancy term (4.14)

vanishes. To date, density-driven flow in inclined fractures has not yet been investi-

gated. Thus, numerical or experimental simulation results of this problem do not exist.

Therefore, two simulations with a single 45o-inclined fracture were run with the present

model. The first scenario represents the target case because the fracture was discretized

by inclined 2D elements. In the second reference case, the fracture consisted of hori-

zontal and vertical elements. The fracture velocities in this second staircase-fracture

were multiplied by a correction factor to account for the longer path. Finally, variable-

63
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density flow in a vertical and an inclined fracture was also verified by comparing the

onset of unstable flow with the analytical solution for the critical Rayleigh number

presented by Caltagirone (1982).

Reactive solute transport was verified using analytical solutions, where the solute

source term was set equal the first order precipitation rate and where a constant term

represents the forward dissolution reaction. Thus, the transport equation remains linear

and is mathematically identical to a transport problem that implies first order radioac-

tive decay and a constant term of zeroth order. The problem was completely linearized

by assuming constant material properties and by neglecting the presence of electrolytes.

Verification examples are presented for reactive solute transport in porous media, frac-

tured media with an impermeable matrix and fractured porous media. The first two

cases are 1D problems, where the fixed silica molality on the recharge boundary is zero.

This causes a permanent dissolution reaction within the model domain with a maxi-

mum rate on the recharge boundary. The inflowing deionized water constantly dilutes

the silicic water, leading to a steadily increasing silica molality along the flow axis. The

third test case verifies 2D reactive transport in a fractured porous environment. The

unknown silica molality of this problem was increased by the equilibrium constant, thus

introducing a new transport variable. With the new variable, the constant dissolution

reaction term vanishes, such that the transport problem is mathematically identical

to the problem studied by Tang et al. (1981). Consequently, the solution becomes

analogous to the Tang et al. (1981) analytical solution.

The heat transfer equation is a standard parabolic-hyperbolic partial differential

equation of second order. It is mathematically identical to the pure advective-dispersive-

diffusive transport equation. Four verification problems are presented to test the heat

transfer equations. Conduction and convection are tested in both an unfractured porous

medium (example heat1 ) and in a single fracture within an impermeable matrix (ex-

ample heat2 ). The Ogata-Banks (1961) equation is used as the reference analytical

solution. The third verification example tests heat flux in both the porous matrix and

in the fracture. If heat conduction and mechanical dispersion in the fracture are ne-

glected, an analytical solution in fractured porous media exists in a form analogous to

that presented by Tang et al. (1981).
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Yang and Edwards (2000) studied long-term variable-density, variable-viscosity

thermal flow in a 2D anisotropic porous medium on the field scale. Their numeri-

cal simulation of heat transfer is used as a fourth test case. This last problem includes

all heat transfer mechanisms in both continua with variable fluid properties. Therefore,

the available solution is numerical.

5.1 Variable-Density Flow

Variable-Density Flow in Porous Media

Variable-density flow and transport in porous media was verified in two and three

dimensions. All simulations used implicit transport time weighting, as is common in

other variable-density simulations, and full upstream weighting as proposed by Frolkovič

and De Schepper (2000).

First, the Elder (1967) salt convection problem was simulated to qualitatively test

the model in two dimensions. Kolditz et al. (1998) point out that, for a coarse grid, the

central transport direction is downwards, whereas a fine grid exhibits central upwelling.

These observations were confirmed by Prasad and Simmons (2004) as well as in the

present study using FRAC3DVS (Figure 5.1).

Another model verification consisted of comparing the Elder (1967) results pre-

sented by Frolkovič and De Schepper (2000) to those of FRAC3DVS. This verification

is more trustworthy than that described in the previous paragraph because both nu-

merical models (the Frolkovič and De Schepper (2000) model and FRAC3dVS) use the

same numerical approach (control volume finite element method, CVFE) as well as the

same flow variable (fluid pressure, P ). The governing flow equation for this variable is

given in Appendix B. Frolkovič and De Schepper (2000) carried out their numerical sim-

ulations in the half domain of the symmetric Elder problem. Interestingly, they found

that an extremely fine grid (32,768 nodes in the half domain) again exhibits central

downwelling, which was also discovered by Diersch and Kolditz (2002). Their results

are in very good visual agreement with those from the FRAC3DVS model (Figure 5.2).
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A new benchmark problem for variable-density transport in 3D has been presented

by Oswald and Kinzelbach (2004). This problem is based on the three-dimensional

variable-density flow and solute transport experiments in porous media conducted by

Oswald (1999). In these experiments, a 0.2 m × 0.2 m × 0.2 m closed box initially

contained saltwater from the bottom up to 8 cm, with the rest of the box filled with

freshwater. A constant freshwater recharge through one upper corner of the box dis-

turbed this stable layering of two miscible fluids. The concentration of the mixed fluid

versus time was measured at the discharging open hole on the opposite side of the in-

put location. Oswald (1999) used two different initial concentrations c01 = 0.01 (case

1) and c02 = 0.1 (case 2). The experimental results were numerically reproduced by

Johannsen et al. (2002), who also present tabular data of the measured concentrations

versus time.

The FRAC3DVS model output was compared in three dimensions with Oswald’s

(1999) experimental results, given in Johannsen et al. (2002). The physical parameters

given by Oswald and Kinzelbach (2004) were used. The first problem of the lower

initial concentration 0.01 (case 1) was used because Johannsen et al. (2002) showed

that, in this case, grid convergence is achieved with a relatively coarse grid, whereas for

case 2, the solution converged only for a very fine grid, consisting of at least 274,625

grid points (Johannsen et al., 2002). Good agreement between the experimental results

from Oswald (1999), the numerical results from Diersch and Kolditz (2002) and the

FRAC3DVS model was obtained (Figure 5.3). The long-term results of this low density

case more closely resemble the experimental data than in Diersch and Kolditz (2002);

however, differences remain.

Variable-Density Flow in Fractured Porous Media

Variable-density flow in vertical fractures was verified by reproducing the results pre-

sented by Shikaze et al. (1998). The trial which includes only vertical fractures was used

as a test case. The external hydraulic heads on both aquifer top and bottom were set

to zero because Shikaze et al. (1998) showed that density effects are best accounted for

if the imposed head gradient vanishes. Otherwise, the effect of forced convection may

suppress free convection. In the numerical simulations, the left and right boundaries
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were assumed to be impermeable for flow. The top of the domain is assumed to be a

salt lake with a constant concentration equal to 1.0. All other boundaries for transport

are zero dispersive-flux boundaries. The physical parameters used are identical to those

presented in Shikaze et al. (1998) and summarized in Table 5.1. The 3D domain is of

size ℓx = 10 m, ℓy = 1 m and ℓz = 10 m. The spatial discretization used was 0.025 m

in both the x- and the z-direction and unity in the y-direction. Fracture spacings are

nonuniform as shown in Figure 5.4. The figure shows excellent agreement between the

concentration distributions calculated by the two numerical models.

Table 5.1: Model parameters used in fractured media studies. All parameters are

identical to those used by Shikaze et al. (1998).

Parameter Value

Free-solution diffusion coefficient (Dd) 5×10−9 m2 sec−1

Brine density (ρmax) 1200 kg m−3

Reference density (ρ0) 1000 kg m−3

Fluid compressibility (αfl) 4.4×10−10 kg−1 m sec2

Matrix compressibility (αm) 1.0×10−8 kg−1 m sec2

Fluid dynamic viscosity (µ) 1.1×10−3 kg m−1 sec−1

Matrix permeability (κij) 10−15 m2

Matrix longitudinal dispersivity (αl) 0.1 m

Matrix transverse dispersivity (αt) 0.005 m

Matrix porosity (φ) 0.35

Tortuosity (τ) 0.1

Fracture dispersivity (αfr) 0.1 m

Fracture aperture (2b) 50 µm

In horizontal fracture elements, the buoyancy term, ge
i , becomes zero. This was

tested by running two variable-density simulation trials using a square vertical slice.

The first case is an unfractured porous medium whereas in the second case, a single

horizontal fracture is running across the middle of the domain. External driving forces

for fluid flow were not imposed. The fracture-matrix node in the center of the slice was

assigned a constant concentration while the concentration on all other nodes was ini-

tially zero. In both cases, a plume develops, which migrates downwards. The observed

results are identical, showing that there is no buoyancy effect in the horizontal fracture
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additional to that in the porous matrix.

Variable-density flow in a fracture with incline ϕ = 45o was verified by comparing

results from two different scenarios. In the scenario 1, an inclined fracture is discretized

by only inclined faces (Figure 5.5a). In a second scenario, the inclined fracture consists

of only vertical and horizontal faces (Figure 5.5b). Representing a discrete fracture by

one layer of two-dimensional faces with only one 2D finite element in the horizontal

y-direction, is essentially a 1D description of the discrete fracture. This representation

inhibits numerically simulating convection within the fracture, both normal and per-

pendicular to the fracture plane. However, the entire fracture-matrix system is a 2D

vertical slice, allowing convection with rotation axis normal to the slice.

Both trials were run with the developed model. The first scenario is the target

simulation because inclined faces are used, for which model verification is required.

Case 2 is the reference simulation because variable-density flow in vertical and horizontal

fracture faces has already been verified. All simulations use a three-dimensional vertical

slice with dimensions ℓx = 12 m, ℓz = 10 m as model domain. The left and right

boundaries are assumed to be impermeable, whereas the top and bottom boundaries

are specified as constant equivalent head boundaries with zero heads. The contaminant

source of constant concentration, c = cL, overlies groundwater of initial concentration,

c = c0, where c0 = 0.0 < cL = 1.0.

All simulations cover a time of 20 years. Time step sizes are kept constant at

0.2 years. The input parameters for the numerical simulations are shown in Table

6.3. These parameters were held constant throughout all simulations unless otherwise

stated. It is assumed that the porous matrix is isotropic and homogeneous throughout

and that the entire aquifer is completely saturated.

Grids of different discretization levels were generated to investigate the adequate

grid line density. The method is called grid convergence study and it involves performing

a simulation on successively finer grids. As the grid is refined, the spatial discretization

errors should asymptotically approach zero, excluding computer round-off errors.

Here, the grid at the lth level (l = 1,2...) consists of 480l2 identical square elements,
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which have the size ∆x = ∆z = 1/2l m. Increasing grid levels correspond to finer grids.

Several simulations of scenario 1 were performed at increasing grid levels and the tracer

breakthrough was monitored at the observation point (x = 6 m, z = 6 m) in the fracture

as shown in Figure 5.5. Grid convergence was achieved for the grid of level 5 (Figure

5.6), consisting of 12,000 square elements of size ∆x = ∆z = 0.1 m. With this grid, the

grid Péclet number Peg = ∆x/αl becomes 1.0, satisfying the widely accepted criteria

for neglecting numerical dispersion, Peg ≤ 2, as well as oscillations, Peg ≤ 4.

It is remarkable that grid convergence was accomplished that easily, which is not

obvious for two-dimensional free convective flow regimes. Common 2D convection stud-

ies are the Elder (1967) problem and the orthogonal fracture network simulations by

Shikaze et al. (1998). Although both problems are physically very different, both cases

demonstrate that 2D free convective flow depends on grid line density. For the former

problem, grid convergence is practically never achieved because different qualitative

results (i.e. central downwelling - upwelling - downwelling) are obtained with different

spatial discretizations (i.e. coarse - fine - extremely fine). Strong dependency on spatial

discretization was also observed for the latter problem. Shikaze et al. (1998) reached

grid convergence by refining the grid until the resulting concentration plots appeared

unchanged (Shikaze, 2004, personal communication). In the present case, the described

grid convergence study was carried out up to the 10th grid level to make sure that, at

higher levels, the convective system does not completely change its behavior as is the

case in the Elder problem.

With the appropriate grid level 5, simulations of scenario 1 and 2 were run. In order

to account for the longer path in the fracture of scenario 2, the fracture velocities in this

scenario were multiplied at each time step with a correction factor. The ratio of the

lengths of the two fractures has to coincide with the ratio of their average flow velocities,

represented by the maximum fracture velocity (see Figure 5.8e). In the present case of

a 45o-inclined fracture, this ratio is
√

2. The output of the two simulations is shown in

Figure 5.7.

The model output from scenario 1 and 2 was objectively compared by means of

quantitative indicators described by Prasad and Simmons (2004). The calculated indi-

cators are shown in Figure 5.8. Quantitatively evaluating model results also accounts
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for mass fluxes through the upper boundary (indicators shown in Figures 5.8a and b),

penetration depth of the 60% concentration contour (c), maximum matrix and fracture

velocities (d and e) and mass balance (f). This quantitative evaluation completes con-

ventional comparison of isochlors and breakthrough curves (Figure 5.7 left and right,

respectively). Figures 5.7 and 5.8 clearly show very good agreement between the two

results, indicating that variable-density flow in inclined fractures is verified.

Figure 5.8e can also be used to verify the Reynolds number requirement, Re =

qfrd/ν < 1, for Darcy’s law in fractures (Equation 3.9). The figure shows that the

Darcy flux in the fracture, qfr, does not exceed 10,000 m yr−1. If the fracture aperture

is chosen as the representative microscopic length, d = (2b), and with the kinematic

viscosity given by ν = µ/ρ0, the Reynolds number is 0.01495. Thus, laminar flow as

well as a linear relationship between qfr
i and ∂hfr

0 /∂xj is ensured for all simulations

presented in Figure 5.7 and Chapter 6.

The primary purpose of Figure 5.8 is to demonstrate that the model is verified. A

more rigorous interpretation of the figure follows in Section 6.1 where results of scenario

1 and its variations are discussed in more detail.

Onset of Convection in Fractured Media

The analytical solution (2.24) for the onset condition of free convection in homogeneous

isotropic media was used here to verify variable-density flow in a fracture. The onset

of unstable flow was verified in both a vertical and an inclined fracture. Two series

of simulations, one for a vertical and another for an inclined fracture, were carried

out. Different Rayleigh numbers were obtained by changing the fracture aperture. In

both series, the porous matrix was considered impermeable. Boundary conditions were

imposed as outlined in Section 2.3.

The first series involves a single vertical fracture within an impermeable matrix.

The fracture is of height ℓz̄ = 40 m and of varying length ℓx̄ = 0.5 ℓz̄, 1.0 ℓz̄, 1.5 ℓz̄, 2.0

ℓz̄ and 3.0 ℓz̄. The spatial discretization of the discrete fracture is 1.0 m in both the

local x̄- and the z̄-direction (Shi, 2005). As in Weatherill et al. (2004), the system was
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perturbed by increasing the initial nodal concentration at (x̄ = 0.5 ℓx̄, z̄ = 0.5 ℓz̄) by

10%. According to theory, simulations with Ra < Rac remain stable while systems with

Ra > Rac exhibit unstable variable-density flow with varying numbers of rolls. Figure

5.9 plots the stable/unstable flow behavior and shows that the analytical solution (2.24)

correctly separates stable from unstable model results.

The second series involves a single inclined fracture, with incline ϕ = 45o, within

an impermeable matrix. The fracture plane is the diagonal of a cuboidal matrix block

and is of height ℓz̄ = 56.5685 m and its length varies akin to the vertical fracture case.

The spatial discretization of the discrete fracture is 1.41421 m in both the x̄- and the

z̄-direction. The system was initially perturbed as described in the previous paragraph.

The Rayleigh number, Ra∗, as well as its critical threshold value, Ra∗
c , are now by the

factor 1/ cos ϕ larger than in the vertical fracture case (Equation (2.25); Caltagirone,

1982; Weatherill, 2004). Figure 5.10 demonstrates that the analytical solution (2.25)

correctly plots the simulation results in two half-areas.
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2 years 2 years

4 years 4 years

10 years 10 years

Figure 5.1: Results of the Elder problem for a coarse grid (left; 60 × 30 elements) and

a fine grid (right; 120 × 40 elements) at 2, 4 and 10 years simulation time by Elder

(1967) [— coarse grid], Kolditz et al. (1998) [— fine grid], Prasad and Simmons (2004)

[- ·· -] and the present model [- -]. The domain size is 600 m × 150 m.
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1 year 10 years

2 years 15 years

4 years 20 years

Figure 5.2: Results of the Elder problem for an extremely fine grid (256 × 128 elements

in the half domain) at 1, 2, 4, 10, 15 and 20 years simulation time by Frolkovič and De

Schepper (2000) [—] and the present model [- -]. Shown are the 20%, 40%, 60% and

80% contours. The half domain size is 300 m × 150 m.
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Figure 5.3: Results of three-dimensional variable-density transport simulations in

porous media.



CHAPTER 5. VERIFICATION PROBLEMS 75

10 m

10 m

Figure 5.4: Variable-density flow in a set vertical fractures embedded in a porous matrix.

Shown are the concentration contours from 0.1 to 0.9 with a contour interval of 0.2 at

2 years simulation time from Shikaze et al. (1998) [—] and from the present model [-

-].
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Figure 5.5: Different discretizations of an inclined fracture for verifying density-driven

flow in inclined fractures. The second scenario uses corrected fracture velocities.
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Figure 5.6: Grid convergence for the single inclined fracture case (scenario 1).
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Figure 5.7: Results of the model verification for scenario 1 and 2: Concentration con-

tours (20% and 60%) at 8 years simulation time and breakthrough curve at the obser-

vation point.
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Figure 5.8: Results of the model verification with quantitative parameters (a) to (f),

applied to scenario 1 [—] and 2 [- -].



CHAPTER 5. VERIFICATION PROBLEMS 80

20

40

60

80

100

120

140

0 1 2 3 4

Aspect Ratio A

R
a

y
le

ig
h

n
u

m
b

e
r

analytical

unstable

stable

RacR
a

A = 0.5 = 79.1Ra

A = 1.0 = 49.5Ra A = 1.5 = 47.2Ra A = 2.0 = 45.0Ra

A = 3.0 = 45.0Ra

Figure 5.9: Stability plot showing two half-areas divided by the theoretically derived Rac

as a function of aspect ratio A using a vertical fracture. Stable numerical FRAC3DVS

simulations plot in the southern half-area while unstable cases as shown above plot in

the northern half-area.
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Figure 5.10: Stability plot showing two half-areas divided by the theoretically derived

Ra∗
c as a function of aspect ratio A using an inclined fracture. Stable simulations plot

in the southern half-area while unstable cases as shown above plot in the northern

half-area.
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5.2 Reactive Solute Transport

The three verification problems presented here test reactive transport in porous media,

fractured media and fractured porous media, respectively. Table 5.2 summarizes which

examples verifies reactive transport in what continuum.

Table 5.2: Overview of the verification problems that verify reactive solute transport

in porous and fractured media.

Continuum being tested → Reactive solute transport

↓ Verification example in PMa in FMb

reac1
√

–

reac2 –
√

reac3
√ √

a Porous media
b Fractured media

In all verification examples for reactive transport, groundwater is assumed to be

free of dissolved electrolytes, such that kcorr
+ = k0

+ and γH4SiO4 = 1. For simplicity, the

molal concentration of silica will be written as m.

Reactive Transport in Porous Media (reac1 )

The first example verifies 1D advective-reactive transport in a porous medium where

fractures are absent. In this case, governing equation (3.17) has the following form

∂m

∂t
+ v

∂m

∂x
+

φqzk
0
+Aqz

φ

(

m

Keq

− 1

)

= 0 0 ≤ x ≤ ∞ (5.1)

A steady state flow solution yields the constant flow velocity, v. Assuming constant

material and fluid properties, and further assuming a constant background temperature

fully linearizes the transport problem. Fixing the boundary molality to zero and with

the initial condition, m(t = 0) = 0, the analytical solution to (5.1) is given by Johnson
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et al. (1998) in the transient form:

m

Keq

=



















1 − exp[−A · (x/v)] for x ≤ v · t

1 − exp[−A · t] for x > v · t

(5.2)

where

A =
φqzk

0
+Aqz

φKeq

(5.3)

The finite element domain used in the numerical simulations consists of 31 uniform

blocks in the flow direction. Model parameters are given in Table 5.3 and the analytical

as well as the numerical results at three different output times are shown in Figure 5.12.

Verifying the net reaction rates (Figure 5.13) is important to ensure correct recalcula-

tions of material parameters. However, if material properties are assumed constant in

time, explicitly calculating and comparing the reaction rates is pure postprocessing and

does not verify the processor.

Reactive Transport in Fractured Media (reac2 )

In the second verification problem, 1D advective-reactive transport in a single fracture

within an impermeable matrix is tested. In this case, the governing transport equation

in the fracture is

∂mfr

∂t
+ vfr ∂mfr

∂z
+ φfr

qzk
0
+Afr

qz

(

mfr

Keq

− 1

)

= 0 0 ≤ z ≤ ∞ (5.4)

With the same assumptions and initial/boundary conditions used in the previous ex-

ample, the analytical solution of Equation (5.4) is analogous to (5.2) and given by

mfr

Keq

=



















1 − exp[−Afr · (z/vfr)] for z ≤ vfr · t

1 − exp[−Afr · t] for z > vfr · t

(5.5)

where

Afr =
φfr

qzk
0
+Afr

qz

Keq

(5.6)
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Table 5.3: Model parameters used in the verification example for 1D reactive silica

transport in an unfractured porous matrix (reac1 ). All parameters are identical to

those used by Johnson et al. (1998) unless otherwise stated.

Parameter Value

Constant background temperature (TC) 239oC

Matrix porosity (φ) 0.425

Quartz volume fractiona (φqz) 0.575

Specific surface area in the matrix (Aqz) 54.2 m2 kg−1

Groundwater velocity in the porous matrixb (v) 1.9727×10−5 m sec−1

Dissolution rate constantc (k0
+) 1.3298×10−8 mol m−2 sec−1

Equilibrium constantc (Keq) 6.4996×10−3 mol kg−1

Domain size (ℓx) 3.1 cm

Output times (t1, t2, t3) 518.76 sec, 1021.8 sec

and 1572.0 sec

a 1 − φ
b q/φ
c Computed by this model for deionized water at TC = 239oC

The spatial discretization and all model parameters are identical to those used in

the previous example and given in Table 5.3. The specific surface area in the fracture is

estimated as 10% of that previously used in the porous matrix. The results are shown

in the Figures 5.14 and 5.15, which are qualitatively identical to Figures 5.12 and 5.13.

Reactive Transport in Fractured Porous Media (reac3 )

The third verification problem examines 2D advective-reactive transport in a single

fracture, embedded in a porous matrix where the solutes migrate due to molecular

diffusion alone. Chemical reactions take place in both continua. Molecular diffusion and

mechanical dispersion in the fracture are neglected, allowing an easier formulation of the

analytical solution with no need to numerically integrate. Groundwater in the fracture

migrates at a constant velocity. Heat transfer is not considered here, but a constant

background temperature is imposed. The chemical interaction between the fluid and the
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solid phase is represented by a kinetic reaction term of first order and a constant source

term. Thus, the problem investigated is mathematically nearly identical to that given by

Tang et al. (1981) where the solute sink is due to first order radioactive decay but where

solute sources are not considered. It is further assumed that the material properties

(i.e. matrix porosity, hydraulic conductivity, fracture aperture, mineral surface area)

are constant in time. Different mineral surface areas in the porous matrix and in the

fracture are used, resulting in two different net reaction rates. Mathematically speaking,

this is in contrast to the assumption made by Tang et al. (1981) where the radioactive

decay rates in fracture and matrix are identical.

Initially, the entire domain is in thermodynamic equilibrium. Silica-free deionized

water enters the fracture at a constant rate during the entire simulation, diluting the

silica-saturated fluid in the fracture. All boundaries, except the fracture inlet and outlet,

are impermeable for flow and are assigned zero-dispersive transport rates. The drop

of silica molality due to dilution creates a thermodynamic disequilibrium and triggers

an immediate dissolution reaction. Eventually, the system reaches equilibrium between

dilution and dissolution.

With m = m′ +Keq and mfr = mfr′ +Keq, the governing equations of this problem

using the new variables, m′ and mfr′ , are given by Steefel and Lichtner (1998a) in the

form:

∂m′

∂t
− Dd

∂2m′

∂x2
+

φqzk
0
+Aqz

φKeq

m′ = 0 b ≤ x ≤ ∞ (5.7)

and

∂mfr′

∂t
+ vfr ∂mfr′

∂z
+

φfr
qzk

0
+Afr

qz

Keq

mfr′ − φDd

b

∂mfr′

∂x

∣

∣

∣

∣

∣

x=b

= 0

0 ≤ z ≤ ∞ (5.8)

for reactive transport in the porous matrix and in the discrete fracture, respectively.

Using the new governing equations (5.7) and (5.8), both initial and boundary conditions

are identical to those used in Tang et al. (1981). They are formulated mathematically

by Steefel and Lichtner (1998a) who presented the steady state as well as the transient

analytical solutions.
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In the numerical simulation, the finite element domain is similar to that shown in

Figure 5.11. It is spatially discretized in the x-direction using a gradually increasing ∆x

with factor 1.1 from ∆x = 0.005 cm near the fracture to ∆x = 0.1 cm at the domain

boundary. In the flow direction, the ∆z increases with factor 1.25 from ∆z = 0.001 cm

near the source to ∆z = 0.1 cm at the domain boundary. All model parameters are

summarized in Table 5.4.

Table 5.4: Model parameters used in the verification example for 2D reactive silica

transport in fractured porous media (reac3 ).

Parameter Value

Constant background temperaturea (TC) 239oC

Matrix porosity (φ) 0.35

Quartz volume fractionsb (φqz, φfr
qz ) 0.65

Specific surface area in the matrixa (Aqz) 54.2 m2 kg−1

Specific surface area in the fracturec (Afr
qz ) 6.15 m2 kg−1

Free-solution diffusion coefficientd (Dd) 1.0×10−10 m2 sec−1

Fracture apertured (2b) 200 µm

Groundwater velocity in the fractured (vfr) 1.9727×10−5 m sec−1

Dissolution rate constante (k0
+) 1.3298×10−8 mol m−2 sec−1

Equilibrium constante (Keq) 6.4996×10−3 mol kg−1

Domain sizea (ℓx, ℓz) 2.0 cm, 3.1 cm

Location of cross-sections (z1, z2) 0.1 ℓz, 0.5 ℓz

Output times (t1, t2, t3, t4) 500 sec, 1000 sec, 2000 sec

and steady state

a Johnson et al. (1998)
b 1 − φ
c From Equation (2.40) with ω = 1.0
d Steefel and Lichtner (1998a)
e Computed by this model for deionized water at TC = 239oC

Figure 5.16 shows the concentration profile versus distance along the fracture for

both the analytical and the numerical solution. Steefel and Lichtner (1998a) previously

described the discrepancy at early times and interpreted this as numerical dispersion

in upwind formulations of the advection term. However, as the simulation proceeds

in time, this inconsistency diminishes and eventually vanishes after an infinitely long

period of time. Note that the two steady state solutions in the Figures 5.14 and 5.16
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coincide qualitatively but have been reached from different initial conditions. Perfect

match between the analytical solution and the results from this model are obtained

with the molal concentrations in the matrix. Figure 5.17 shows two cross-sections of

the steady state simulation.
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Figure 5.11: Fracture-matrix system used for model verification (Tang et al., 1981).
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Figure 5.12: Concentration profiles of 1D reactive transport of silica in an unfractured

porous matrix (reac1 ). Shown are the molal concentrations in the matrix at 518.76

(below), 1021.8 and 1572.0 seconds.
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Figure 5.13: Net reaction rate profiles of 1D reactive transport of silica in an unfractured

porous matrix (reac1 ). Shown are the rates in the matrix at 518.76 (above), 1021.8

and 1572.0 seconds.
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embedded in an impermeable matrix (reac2 ). Shown are the molal concentrations in

the fracture at 518.76 (below), 1021.8 and 1572.0 seconds.
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Figure 5.15: Net reaction rate profiles of 1D reactive transport of silica in a single

fracture embedded in an impermeable matrix (reac2 ). Shown are the rates in the

fracture at 518.76 (above), 1021.8 and 1572.0 seconds.
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fractured porous media (reac3 ). Shown are the silica molalities in the fracture at (a)

500, (b) 1000 and (c) 2000 seconds and at (d) steady state.
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Figure 5.17: Concentration profiles of 2D reactive transport of silica in discretely-

fractured porous media (reac3 ). Shown are the silica molalities in the matrix at steady

state at the distances (a) 0.31 cm and (b) 1.55 cm from the fracture.



CHAPTER 5. VERIFICATION PROBLEMS 94

5.3 Heat Transfer

The first three verification problems test heat transfer in porous media, fractured media

and fractured porous media, respectively. The fourth problem is a comparison with

numerical simulation results (Yand and Edwards, 2000), including all heat transfer

mechanisms in porous media. Table 5.5 summarizes which examples verifies what part

of the governing heat transfer equations.

Table 5.5: Overview of the verification problems that verify different heat transfer

mechanisms in porous and fractured media.

Heat transfer Mechanical Fracture -

mechanism tested → Conduction Convection heat dispersion matrix

↓ Verification example in PMa in FMb in PM in FM in PM in FM conduction

heat1
√

–
√

–
√

– –

heat2 –
√

–
√

–
√

–

heat3
√

– –
√

– –
√

heat4
√

–
√

–
√

– –

a Porous media
b Fractured media

Heat Transfer in Porous Media (heat1 )

The first test case verifies 1D heat transfer in an unfractured porous matrix. A constant

velocity along the flow axis is imposed. The impact of temperature on fluid properties

is ignored, which linearizes the problem. Thermal energy is transported by way of

conduction, advection and mechanical dispersion. In this case, the governing equation

(3.24) can be rewritten in the form:

Dth
∂2T

∂x2
− vth

∂T

∂x
=

∂T

∂t
(5.9)

where Dth [L2 T−1] is the thermal dispersion coefficient:

Dth =
kb + φDxxρlc̃l

ρbc̃b

(5.10)

and vth [L T−1] is the retarded velocity:

vth = q · ρlc̃l

ρbc̃b

= q · 1

φRth

(5.11)
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with the thermal retardation coefficient Rth [–] (Molson et al., 1992):

Rth = 1 +
(1 − φ)ρsc̃s

φρlc̃l

(5.12)

Equation (5.9) has the standard parabolic-hyperbolic form of a 1D partial differential

equation. Therefore, if (5.9) is subject to the Dirichlet boundary condition, T = T1,

the solution is the Ogata-Banks (1961) analytical solution:

T − T0

T1 − T0

=
1

2

[

erfc

(

x − vtht

2
√

Dtht

)

+ exp

(

vthx

Dth

)

erfc

(

x + vtht

2
√

Dtht

)]

(5.13)

where T0 is the initial temperature in the domain.

In the numerical simulation, the finite element domain was spatially discretized by

using 20 uniform blocks in the flow direction. All simulation parameters are given by

Table 5.6. The developed numerical model is compared with the analytical solution

(5.13) as well as with numerical results presented by Ward et al. (1984) who used the

model SWIFT. The results are depicted in Figure 5.18.

Heat Transfer in Fractured Media (heat2 )

The second test case verifies advective-conductive-dispersive 1D heat transfer in a single

fracture embedded in an impermeable matrix. As in the previous case, a constant flow

velocity along the axis is imposed and fluid properties are kept constant in order to

linearize the problem. Hence, the governing equation (3.27) simplifies to:

Dfr
th

∂2T fr

∂z2
− vfr ∂T fr

∂z
=

∂T fr

∂t
(5.14)

where Dfr
th [L2 T−1] is the fracture thermal dispersion coefficient, given by:

Dfr
th =

kl

ρlc̃l

+ Dfr
zz (5.15)

and where vfr is the constant groundwater flow velocity along the fracture. Equation

(5.14) is a standard 1D parabolic-hyperbolic partial differential equation. If the Dirich-

let boundary condition T fr = T fr
1 is imposed on the fracture inlet, the Ogata-Banks

(1961) analytical solution is now:

T fr − T fr
0

T fr
1 − T fr

0

=
1

2



erfc





z − vfrt

2
√

Dfr
th t



 + exp

(

vfrz

Dfr
th

)

erfc





z + vfrt

2
√

Dfr
th t







 (5.16)
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Table 5.6: Model parameters used in the verification example for 1D heat transfer in

an unfractured porous matrix (heat1 ). All parameters are identical to those used by

Ward et al. (1984).

Parameter Value

Bulk thermal conductivity (kb) 2.16 kg m sec−3 K−1

Heat capacity of solid (c̃s) 1254.682 m2 sec−2 K−1

Solid density (ρs) 1602 kg m−3

Heat capacity of water (c̃l) 4185 m2 sec−2 K−1

Fluid density (ρl) 1000 kg m−3

Matrix porosity (φ) 0.1

Longitudinal dispersivity (αl) 14.4 m

Heat dispersion coefficienta (Dth) 1.15×10−5 m2 sec−1

Thermal retardation coefficientb (Rth) 5.323

Darcy flux (q) 3.53×10−7 m sec−1

Retarded velocityc (vth) 6.63×10−7 m sec−1

Initial temperature (T0) 37.78oC

Boundary temperature (T1) 93.33oC

Domain size (ℓx) 600 m

Output times (t1, t2) 2,148 d and 4,262 d

a from relation (5.10)
b from relation (5.12)
c q/(φRth)
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where T fr
0 is the initial temperature in the fracture.

In the numerical simulation, the finite element domain was spatially discretized

along the fracture by using element sizes that gradually increase by the factor 1.1 from

∆z = 0.1 m near the elevated temperature to ∆z = 15 m at the domain boundary.

The groundwater velocity in the fracture was set to 7.0×10−7 m sec−1 and the frac-

ture dispersivity used was 5.0 m, giving the fracture thermal dispersion coefficient as

3.62×10−6 m2 sec−1. All other parameters are identical to those used in the previous

example and given in Table 5.6. The simulation results are depicted in Figure 5.19.

Heat Transfer in Fractured Porous Media (heat3 )

The third test case verifies 2D heat transfer in a single fracture embedded in a porous

matrix. This verification example is based on analytical results presented by Meyer

(2004), who investigated advective transient heat transfer in a fracture while in the

porous matrix, heat is transported due to conduction alone. Mechanical heat disper-

sion as well as conduction within the fracture are not considered, making numerical

integration unnecessary. The groundwater flow velocity in the fracture is constant.

Under these assumptions, the governing equations of this problem simplify from (3.24)

and (3.27) to:

ρbc̃b
∂T

∂t
− kb

∂2T

∂x2
= 0 b ≤ x ≤ ∞ (5.17)

and

ρlc̃l
∂T fr

∂t
+ ρlc̃l vfr ∂T fr

∂z
− kb

b

∂T fr

∂x

∣

∣

∣

∣

∣

x=b

= 0 0 ≤ z ≤ ∞ (5.18)

for heat transport in the matrix and in the discrete fracture, respectively. The last

term in (5.18) expresses conductive loss of heat from the fracture into the matrix on

the fracture-matrix interface. Initially, the entire system has the uniform temperature,

T0. The fluid entering the fracture has the constant temperature, T1. All boundaries,

except the fracture inlet and outlet, are impermeable for groundwater flow and for heat

exchange. According to Meyer (2004), the transient solution along the fracture is:

T fr − T0

T1 − T0

= erfc

(

z
√

kb ρbc̃b

2vfrρlc̃lb
√

(t − z/vfr)

)

(5.19)
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Using the analytical results presented by Tang et al. (1981), it can be shown that

the transient solution along a cross-section from the fracture into the porous matrix is

given by

T − T0

T1 − T0

= erfc

(

z
√

kb ρbc̃b

2vfrρlc̃lb
√

(t − z/vfr)
+

√
ρbc̃b (x − b)

2
√

kb

√

(t − z/vfr)

)

(5.20)

The fracture-matrix system used is identical to that shown in Figure 5.11. The finite

element domain was spatially discretized in the x-direction by gradually increasing ∆x

with constant factor 1.1 from ∆x = 0.01 m near the fracture to ∆x = 0.1 m at the

domain boundary. In the flow direction, ∆z also increases gradually from ∆z = 0.1

m near the elevated temperature to ∆z = 0.5 m at the domain boundary. All other

parameters are presented in Table 5.7 and the simulation results are exhibited in the

Figures 5.20 and 5.21.

Table 5.7: Model parameters used in the verification example for 2D heat transfer in

a single fracture embedded in a porous matrix (heat3 ). All parameters are identical to

those used by Meyer (2004).

Parameter Value

Bulk thermal conductivity (kb) 3.4 kg m sec−3 K−1

Heat capacity of solid (c̃s) 908 m2 sec−2 K−1

Solid density (ρs) 2550 kg m−3

Heat capacity of water (c̃l) 4192 m2 sec−2 K−1

Fluid density (ρl) 997 kg m−3

Matrix porosity (φ) 0.2

Groundwater flow velocity in the fracture (vfr) 0.05 m sec−1

Initial temperature (T0) 10oC

Boundary temperature (T1) 15oC

Domain size (ℓx, ℓz) 2 m, 10 m

Location of cross-sections (z1, z2) 0.1 m, 0.61 m

Output times (t1, t2) 5,000 sec and 10,000 sec
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Heat Transfer in Anisotropic Porous Media (heat4 )

The last verification problem for heat transfer is the 2D field scale example presented by

Yang and Edwards (2000). This test case represents a realistic scenario of radioactive

waste disposal in the low-permeability anisotropic granitic rock of the Canadian Shield

(Davison et al., 1994a). Figure 5.22 shows the conceptual model, a vertical slice of

dimensions 2,000 m × 1,000 m with a unit thickness. Radionuclides are disposed of

in a 1,300 m long horizontal vault at a depth of 500 m below surface. The simulation

domain consists of three anisotropic porous layers. The radioactive waste represents

an exponentially decreasing heat source due to remaining radioactivity (Davison et al.,

1994a). Thus, the term Γ = 11.59 kg m−1 sec−3 · exp(-5.5×10−10 sec−1 · t), as given

by Yang and Edwards (2000), was added as heat source term to the left hand side of

Equation (3.24). All boundaries are impermeable for flow. Top and bottom boundaries

have constant temperatures to mimic a geothermal gradient of 11.5 K km−1, which

is natural in the study area. All other boundaries are impermeable for heat transfer.

Initially, the geothermal field is undisturbed with horizontal isotherms.

In the numerical simulations carried out with the developed model, the temperature

is assumed to have an impact on both fluid properties density and viscosity. This

conforms with the assumption made by Yang and Edwards (2000). Chemical reactions

are not considered. All model parameters are summarized in Table 5.8. The variable-

density, variable-viscosity flow and heat transfer results are exhibited in Figure 5.23,

which shows excellent agreement between the two numerical models compared.
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Table 5.8: Model parameters used in the verification example for 2D variable-density

thermal flow and heat transfer in anisotropic porous media (heat4 ). All parameters are

identical to those used by Yang and Edwards (2000).

Parameter Value

Bulk thermal conductivity (kb) 2.0 kg m sec−3 K−1

Heat capacity of solid (c̃s) 800 m2 sec−2 K−1

Heat capacity of water (c̃l) 4174 m2 sec−2 K−1

Solid density (ρs) 2630 kg m−3

Matrix permeability (κxx, κzz) Layer 1: 1.0×10−15 m2, 5.0×10−15 m2

Layer 2: 1.0×10−17 m2, 5.0×10−17 m2

Layer 3: 1.0×10−19 m2, 1.0×10−19 m2

Matrix porosity (φ) 0.004

Domain size (ℓx, ℓz) 2000 m, 1000 m

Spatial discretization (∆x, ∆z) 25 m, 25 m
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Figure 5.18: Temperature profiles of 1D heat transfer in an unfractured porous matrix

(heat1 ). Shown are the temperatures in the matrix at 2,148 (left) and 4,262 (right)

days.
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Figure 5.19: Temperature profiles of 1D heat transfer in a single fracture within an

impermeable matrix (heat2 ). Shown are the temperatures in the fracture at 2,148

(left) and 4,262 (right) days.
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Figure 5.20: Temperature profiles of 2D heat transfer in discretely-fractured porous

media (heat3 ). Shown are the temperatures in the fracture at 5,000 (left) and 10,000

(right) seconds.
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Figure 5.21: Temperature profiles of 2D heat transfer in discretely-fractured porous

media (heat3 ). Shown are the temperatures in the matrix at 10,000 seconds simulation

time at the distances (a) 0.1 m and (b) 0.61 m from the fracture.
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Figure 5.22: The conceptual model for variable-density heat transfer in anisotropic

porous media (heat4 ; Yang and Edwards, 2000). The heat source in the vault is due

to the remaining radioactivity of the stored waste. Top and bottom boundaries are as-

signed the constant temperatures 6oC and 17.5oC, respectively, with the corresponding

geothermal gradient 11.5 K km−1.
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Figure 5.23: Evolution of temperature in anisotropic porous media with an exponen-

tially decreasing heat source (heat4 ). Simulation times are (a) 104 days, (b) 105 days,

(c) 3×105 days, (d) 5×105 days, (e) 3×106 days, (f) 7×106 days. Shown are isotherms

in Celsius, obtained from Yang and Edwards (2000) [—] and from the developed model

[- -].



Chapter 6

Illustrative Examples

This chapter presents examples to demonstrate the capacities of the new model. The

first three examples account for density differences due to salinity variations. These

examples simulate variable-density flow and nonreactive transport in a fractured system

of increasing complexity. Starting with a single variably inclined fracture (Section 6.1),

moving to an orthogonal fracture network, interspersed by small fractures (Section

6.2), and finally, modeling using irregular random fracture networks, where fracture

trace, orientation and aperture are nonuniform (Section 6.3). The final two problems

simulate thermohaline flow, coupled with heat transfer and reactive transport. These

two examples illustrate reactive transport of a hot plume in porous (Section 6.4) and

fractured porous media (Section 6.5). The last two examples also underline the efficiency

of the adaptive time stepping scheme.

6.1 Variable-Density Flow in a Single Inclined Frac-

ture

Variable-density flow simulations in a single fracture were conducted. The domain ge-

ometry, as well as initial and boundary conditions are identical to those used in the

model verification example given in Section 5.1 and Figure 5.5. All model parame-

107
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ters correspond to those used by Shikaze et al. (1998), shown in Table 6.3. Similar

to the model verification examples, constant time step sizes of 0.2 years were used.

Simulations were first run for a 45o-inclined fracture, embedded in a porous matrix.

Then, simulations were carried out demonstrating different buoyancy effects in a single

fracture of variable inclines. Remember (from Section 2.3) that spatial dimensionality

affects convective flow patterns in finite element grids. The 1D representation of the

discrete fracture in the following examples does not allow convection within the fracture

but within the entire 2D domain.

Variable-Density Flow in a 45o - Inclined Fracture

For the 45o-inclined fracture case, concentration distributions as well as velocity fields at

2, 4 and 10 years simulation time are shown in Figure 6.1. The simulated concentrations

versus time for this problem are given as tabular data in Appendix C. After 2 years,

a convection cell (”eddy”) has formed on the left of the fracture near the source. Flow

along the fracture-matrix interface is mostly away from the fracture. Thus, solutes are

transported from the fracture into the adjoining matrix not only by molecular diffusion

but also by advection. At 4 years, a second eddy has formed to the right of the fracture

near the solute source. Both eddies migrate downwards into the aquifer. However, the

left eddy has already moved further downwards because it has been formed earlier.

Consider again Figure 5.8 shown in Section 5.1. Figure 6.1 demonstrates that the

more effective left eddy forces the flow direction very close to the fracture at the top

of the domain to change directions. As a consequence, the advective transport through

the upper boundary of the domain increases after about 4 years, resulting in a rise of

the Sherwood number as shown in Figure 5.8a. Both convection cells are separated

by the high-permeability fracture, which, therefore, acts as a barrier to convection.

After 10 years, several flow vectors near the solute source have changed direction, thus,

advectively transporting tracer from the matrix into the fracture, and enhancing the

buoyancy-induced flow within the fracture. Therefore, convection in the porous matrix

appears to control the transport rate in an inclined fracture.

Figure 6.2 shows a closeup of Figure 5.8. The closeup, along with Figure 6.1,



CHAPTER 6. ILLUSTRATIVE EXAMPLES 109

explains the seemingly strange behavior of the maximum matrix velocity at early times.

Before 2.4 years, the matrix velocity has its maximum near the downwards advancing

front of the 20% concentration contour. Until this time, no eddy has formed and the

maximum in velocity is due to purely density-driven, non-convective flow. At 2.4 years,

however, the left convection cell is fully generated and its rotation velocity larger than

in the previous non-convection case. Thus, the maximum velocity is now due to the

strong convection of the left eddy.

Variable-Density Flow in a Variably Inclined Fracture

Several simulations were run where the incline, ϕ, varies between 0o (vertical) and 70o

(nearly horizontal) to investigate the transport behavior at the limits of the fracture

slope (0o and 90o). For all simulations, the grid had to be locally refined to ensure that

the fracture consists of only inclined faces. A value of 70o was the maximum incline

used. The breakthrough curves within the fracture at z = 6 m were monitored and are

shown in Figure 6.3. The figure illustrates that, for decreasing inclines, the observed

buoyancy effect approaches the solution for a vertical fracture. Analogously, the effect

becomes less and less pronounced for increasing inclines, finally being the solution for a

horizontal fracture. Clearly, the two breakthrough curves for the vertical and (almost)

horizontal fracture cases are the envelope functions for the family of curves, which can

be described by c = cϕ(t).

Interestingly, the difference in concentration between two scenarios at a given time

is large for inclines which exceed 45o (close to horizontal). Conversely, the concentration

difference is much smaller for almost vertical fractures. In Figure 6.3, this phenomenon

is indicated at 9 years by two double-arrows. In both cases, two scenarios are compared

where the difference of the fracture incline is 10o. This phenomenon can be understood

by remembering that the buoyancy term in the Darcy equation (3.9) is weighted with

the cosine of the slope. The cosine function changes weakly for small arguments because

its derivative, the negative sine, almost vanishes. On the contrary, the change of the

cosine function is relatively large for arguments close to 90o. Thus, the weight of the

buoyancy term in the Darcy equation changes weakly for almost vertical fractures and

changes greatly for almost horizontal ones.
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2 years

4 years
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j

Figure 6.1: Results of variable-density flow simulations after 2, 4 and 10 years simulation

time. Shown are the concentration contours 20% and 60% (left) and the velocity field

(right). The domain size is 12 m × 10 m.
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fracture: breakthrough curves at z = 6 m in the fracture.
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6.2 Variable-Density Flow in an Orthogonal Frac-

ture Network

This section focuses on the role of small fractures within an orthogonal network of large

fractures. At present, it is unknown if small fractures enhance mixing and, thus, di-

minish plume instabilities that grow in large fractures. A similar phenomenon occurs

in heterogeneous porous media, where low-permeability lenses can effectively dampen

instability growth (Schincariol et al., 1997; Schincariol, 1998; Simmons et al., 2001).

These authors have shown that the more anisotropic or heterogeneous a permeability

field, the greater the dampening of instability growth. Thus, it remains unclear if espe-

cially horizontally oriented small fractures reduce vertical plume migration in fractured

media.

A vertical slice of dimension 15 m × 10 m with a unit thickness was assumed

(Figure 6.4). The domain consists of 30,000 square elements of size ∆x = ∆z = 0.05

m. The constant time step sizes were 1 month and the output was observed at 3 years.

Initial and boundary conditions are the same as used in the model verification example

given in Section 5.1. All model parameters are identical to those assumed by Shikaze et

al. (1998), summarized in Table 5.1. The major fractures have a uniform aperture (2b)

= 50 µm and the constant fracture spacing (2B) = 1.25 m. A set of four model setups

was assumed where the aperture of the small fractures, (2b)∗, is 1 µm, 5 µm, 10 µm

and 25 µm, respectively. For each of these four setups, four simulation trials were run

(thus a total of 16 trials), where the spacing of the small fractures, (2B)∗, was chosen

such that the ratio, (2B)/(2B)∗ was 2, 3, 4 and 5, respectively.

Figure 6.5 shows the result if small fractures are not considered. Four fingers form in

different vertical fractures, counterbalanced by upwards flow in other vertical fractures.

This base case will be the reference for comparison with further simulations.

First, the described set of 16 simulations was run assuming only horizontal small

fractures. In a second step, the 16 experiments were done again assuming horizontal

and vertical small fractures. In both cases, the results with small fractures of size

10 µm and smaller were identical to the base case (Figure 6.5). This outcome shows



CHAPTER 6. ILLUSTRATIVE EXAMPLES 114

that, in the present example, small fractures of aperture smaller than 10 µm do not

impact vertical plume migration. Apparently, dispersion in small fractures does not

disturb the established convective pattern with downwelling in some large fractures

and upwelling in others. Even the scenario where (2b)∗ = 10 µm and (2B)/(2B)∗ = 5

and where the equivalent hydraulic conductivity of the system is 1.438×10−7 m sec−1,

hence more than 3% higher than that of the base case (1.391×10−7 m sec−1) does not

show any influence of small fractures. This result is important because it illustrates

that mapping tiny fissures is insignificant for reliably simulating density-driven flow in

fractured materials.

If the aperture of the small fractures reaches 25 µm, the results are different from

the base case and depend on the (2B)/(2B)∗ ratio. The influence of only horizontal

fractures on vertical plume migration is discussed first. Figure 6.6 exhibits the results

using small horizontal fractures of aperture (2b)∗ = 25 µm and different spacing ratios.

Spacing ratios of 4 and smaller do not impact total vertical transport rates, number of

instabilities and the shape of each finger. For ratios 3 and 4, only the locations of the two

central fingers are different. It is remarkable that an increase of equivalent conductivity

by about 20% (ratio 4), relative to the base case, does not increase vertical plume

migration. This was evaluated with the penetration depth of the 0.3 concentration

contour at 3 years, quantified as 9.15 m for the base case as well as for ratios 2, 3 and

4.

In all results shown in Figure 6.6, the presence of horizontal small fractures was not

found to stabilize vertical plume transport by enhanced dispersive mixing. The contrary

was discovered for ratio 5 (Figure 6.6d) where additional fractures enable rapid fluid

exchange between adjacent vertical fractures. This leads to alternating flow directions

in those fractures and allows more fingers to grow.

In a second step, horizontal and vertical fractures were included in the simulations

with results shown in Figure 6.7. All simulations with ratios 3, 4 and 5 (Figures 6.7b,

c and d) have a major impact on the number of fingers. This is because the rate of

downwards transport in fingers always depends on the balancing upwards flow in other

vertical fractures or the porous matrix. Thus, adding small vertical fractures to the

system increases the upwards flow and, therefore, enables more instabilities to develop.
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In the extreme case of ratio 5 (Figure 6.7d), where 4 small fractures are situated between

two large ones, the upwards flow in the small fractures is large enough to counterbalance

fingering in all 11 large vertical fractures.

All simulations presented here demonstrated that small fractures do not stabilize

vertical plume migration. Dispersive mixing in small fractures was not found to play a

key role. Variable-density flow in a network consisting of fractures of different aperture

is merely dominated by the convective pattern that establishes in the large fractures.

The examples also showed that fractures smaller than 10 µm have no impact on density-

driven flow in large fractures of aperture equal to 50 µm.
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Figure 6.4: Geometry of the orthogonal fracture network consisting of large fractures

(—) and small fractures (- -).
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Figure 6.5: Concentration distribution at 3 years in a network of only large fractures of

aperture (2b) = 50 µm. Concentration contours are 0.1 to 0.9 with a contour interval

of 0.2.
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(a) (b)

(c) (d)

Figure 6.6: Concentration distribution at 3 years in a network of large fractures (—)

disturbed by horizontal small fractures (- -) of aperture (2b)∗ = 25 µm. The (2B)/(2B)∗

ratio is (a) 2, (b) 3, (c) 4 and (d) 5. Concentration contours are 0.1 to 0.9 with a contour

interval of 0.2.
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(a) (b)

(c) (d)

Figure 6.7: Concentration distribution at 3 years in a network of large fractures (—)

disturbed by horizontal and vertical small fractures (- -) of aperture (2b)∗ = 25 µm.

The (2B)/(2B)∗ ratio is (a) 2, (b) 3, (c) 4 and (d) 5. Concentration contours are 0.1

to 0.9 with a contour interval of 0.2.
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6.3 Variable-Density Flow in a Complex Fracture

Network

The developed model was used to study plume migration in irregular fracture networks.

The model design was the same as in the previous example where the parameters are

given in Table 5.1. A set of 25 random fracture networks was generated, each consisting

of 50 fully connected fractures. Each of these networks are based on geostatistical

distributions of fracture trace, aperture and orientation. Fracture traces are assumed

to be distributed log-normally (Mathab et al., 1995) between 2 and 10 m with mean

= 1.4 m and sigma = 0.4 m. Fracture apertures obey an exponential distribution

between 150 and 250 µm with lambda = 9000 µm−1. The aperture is assumed to be

constant for a single fracture. Furthermore, the fractures are assumed to be of tectonic

origin, leading to a conjugated system of two fracture families (Figure 2.1). Therefore,

fracture orientations (ϕ) follow a two-peak Gaussian distribution with the peaks at

-30o and +30o and with the assumed standard deviation, sigma = 15o. All networks

are statistically equivalent; three of them are exhibited in Figure 6.8.

Several transient simulations were run using the systems shown in Figure 6.8. Con-

stant time step sizes of 1 month were used and the output was observed at 3 years where

the differences between the scenarios was greatest. For the three statistically equivalent

fracture networks, completely different behavior was observed depending on the spatial

location of the high-permeability fracture zones. Results range from virtually stable in

Figure 6.9a to entirely erratic and unstable in Figure 6.9c. The different level of insta-

bility can be judged both subjectively by visual inspection (Figure 6.9) and objectively

using measurable characteristics. These can be the penetration depth of some isohaline

or the total stored mass as proposed by Prasad and Simmons (2004). The temporal

evolution of the penetration depth and total mass (Figure 6.10) objectively confirms

the subjective assessment of the degree of instability of the three examples. The 60%

contour migrates faster into the aquifer in the unstable case (c) than in the relatively

stable case (a). Correspondingly, system (a) stores much less solutes at any time than

system (c). Thus, the two quantities shown in Figure 6.10 reflect the different stability

behavior of the three network systems compared.
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The formation of instabilities is restricted to the highly permeable fracture zones.

The fracture network dictates the number of fingers, which is 6, 3 and 1 in the cases

(a), (b) and (c), respectively. The number of fingers coincides with the number of

equidistantly distributed fractures, that are connected with the source. Clearly, systems

with numerous equidistantly distributed fractures are more stable, whereas systems

with few fractures at the salt lake are unstable. In contrast to density-driven transport

in porous media, the number of instabilities in fractured media does not change with

time. Simmons et al. (1999) demonstrated that in a sandy aquifer, the number of

fingers decreases with time because large fingers increase, decreasing the number of

small fingers. In fractured media, however, this is not the case because the location of

the fingers is strongly controlled by the geometry of the fracture network.

Furthermore, plume development in irregular fractured media is influenced by the

formation of convection cells. Figures 6.11 and 6.12 display the highly nonuniform ve-

locity field after 0.5 years. The flow system is characterized by complicated convection,

where many convection cells form. Two selected streamlines of the velocity field are

shown in Figure 6.12. As a result of the convective nature of the system, the flow

direction in the dominant fracture at the top right corner is downward and upward in

other fractures. Thus, only one instability develops, because the two fractures close to

the surface that seem to be contaminated by the source, located on top of the system,

are actually contaminated from below.
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(a)

(b)

(c)

Figure 6.8: Three stochastic fracture networks, defined by an exponential aperture

distribution, a log-normal trace distribution and a double-peak Gaussian orientation

distribution.
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(a)

(b)

(c)

Figure 6.9: Simulated concentration at 3 years for 3 different fracture networks. Shown

are the concentration contours 20% and 60%. The number of equidistantly distributed

fractures connected to the source is 6, 3 and 1 for figures (a), (b) and (c), respectively.



CHAPTER 6. ILLUSTRATIVE EXAMPLES 124

0

10

20

30

0 2 4 6 8 10

time [yr]

to
ta

l
s

to
re

d
m

a
s

s
[k

g
]

0

2

4

6

8

10

0 2 4 6 8 10

time [yr]

p
e

n
e

tr
a

ti
o

n
d

e
p

th
[m

]

a

b
c

b

c
a

Figure 6.10: Penetration depth of the 60% isochlor and total stored mass for the three

simulation results presented in Figure 6.9.
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Figure 6.11: Matrix velocity vectors for the network shown in Figure 6.8c after 0.5

years. The velocity field is highly irregular and complex convection cells form.
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Figure 6.12: Fracture velocity vectors for the network shown in Figure 6.8c after 0.5

years. Two convection cells are highlighted. Some fractures that are close to the salt

lake are contaminated from below.
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6.4 Thermohaline Flow and Reactive Solute Trans-

port in Porous Media

In order to consider heat transfer and chemical reactions in a fracture network, existing

studies on reactive transport in porous media must first be expanded to include heat

transfer. In successive steps, this section first focuses on reactive transport, then ther-

mohaline variable-density, variable-viscosity flow and finally couples the two. These

processes will in turn be considered for a fracture network in the next section.

This section involves a series of three numerical simulations within a vertical sand

tank as shown in Figure 6.13. Such simulations have been carried out in a similar way

by Schincariol et al. (1994), Ibaraki (1998) and Freedman and Ibaraki (2002). The

vertical tank was chosen to highlight the coupling between variable-density flow and

reactive solute transport as done previously by Freedman and Ibaraki (2002).

The 2D simulation domain is of dimension 1.0 m × 0.25 m with a unit thickness.

Because the simulations are for a porous medium, the domain does not contain the

discrete fractures shown in Figure 6.13. The domain has been spatially discretized by

63,000 rectangular finite elements, which are smaller at the left boundary (∆x = 0.5

mm, ∆z = 2.0 mm), and which increase towards the right (∆x = 2.0 mm, ∆z = 2.0

mm).

A horizontal flow field is imposed by assigning constant fluxes (q = 1.045×10−6

m sec−1) along the left and right boundaries. Both top and bottom are impermeable

to fluid flow. The Figure 6.13 also shows the location of a source of constant con-

centration and temperature. The four common ions Na+, Ca2+, Mg2+ and Cl− are

used and assigned the uniform concentration 1000 mg l−1 at the source. The source

also corresponds to the prescribed temperature boundary condition, TC = 247oC. Zero

concentrations and a constant temperature equal to 239oC have been assigned along

the remaining left boundary to make sure that the only solute input is the source.

Both top and bottom as well as the right side are zero-conductive heat transfer and

zero-dispersive solute flux boundaries. Thus, thermal energy and contaminants can not

penetrate the top and bottom walls of the slice. However, heat and solutes are able
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to penetrate the right side by convection and advection, respectively. Aqueous silica is

the fifth mobile species. Unlike salt concentrations and temperature, the silica molality

at the source is not constant but recalculated at each time step. All boundaries are

zero-dispersive flux boundaries for silica.

Initially, the entire system is solute-free and the uniform initial temperature is

239oC (Johnson et al., 1998), lower than that at the source. The system is initially in

thermodynamic equilibrium (rnet = 0), where mH4SiO4 = Keq/γH4SiO4 = 6.4996 mmol

kg−1 is the initial silica molality at Cσ = 0.0 mg l−1 and TC = 239oC. At the source,

the corresponding equilibrium silica molality is mH4SiO4 = Keq/γH4SiO4 = 6.9361 mmol

kg−1 at Cσ = 1000.0 mg l−1 and TC = 247oC. The choice of initial thermodynamic

equilibrium makes it easy to identify every deviation from the silica equilibrium as the

result of a chemical reaction (dissolution or precipitation).

The three simulations cover a time of 3 days with increasing time step sizes. Ther-

mal deformations of the rock are not considered. The spatiotemporal discretization as

well as all simulation parameters are summarized in Table 6.1.

The first trial, entitled pm reac, simulates reactive transport but does not consider

density and viscosity variations. Both fluid properties are assumed to be identical to

those of the ambient groundwater. In pm reac, the time step sizes change dynamically,

based on porosity changes. The maximum permitted change in porosity per time step,

φ∗, was set to 10−3 (0.1%). The initial and maximum time step sizes chosen were 1

minute and 2 hours, respectively. Figure 6.14 shows the results of pm reac after 3 days.

Thermal energy is predominantly transferred by conduction in both the longitudinal

and the transverse direction (Figure 6.14a). Because buoyancy forces are not consid-

ered in pm reac, the plume is mainly transported by advection and migrates laterally

across the domain. Molecular diffusion and transverse dispersion slightly increase the

plume extension in the vertical direction. The chloride concentration (Figure 6.14b;

no retardation) and the magnesium concentration (Figure 6.14c; highest retardation)

illustrate this transport behavior. The non-reactive and non-sorptive chloride indicates

the position of the advective front.

Figure 6.14d shows the molal concentration of silica and reveals an interesting
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Table 6.1: Model parameters used in reactive transport studies.

Parameter Value

Domain sizea (ℓx, ℓz) 1.0 m, 0.25 m

Spatial discretizationd (∆x, ∆z) 0.5 mm . . . 2.0 mm, 2.0 mm

Temporal discretizatione (∆t) 1 min . . . 2 h

Longitudinal dispersivitya,b,c (αl) 3.0×10−4 m

Transverse dispersivitya,b,c (αt) 0.0 m

Tortuosityb,c (τ) 0.35

Average Darcy fluxa,b,c (q) 1.045×10−6 m sec−1

Free-solution diffusion coefficientb,c (Dd) 1.6×10−9 m2 sec−1

Distribution coefficient (Kd) [Na+] 3.0×10−6 kg−1 m3

[Ca2+] 5.0×10−5 kg−1 m3

[Mg2+] 1.0×10−4 kg−1 m3

[Cl−] 0.0 kg−1 m3

[H4SiO4]
f 0.0 kg−1 m3

Reference fluid densityg (ρ0) 815.969 kg m−3

Reference fluid dynamic viscosityg (µ0) 1.1184×10−4 kg m−1 sec−1

Fluid compressibilityh (αfl) 4.4×10−10 kg−1 m sec2

Matrix compressibilityh (αm) 1.0×10−8 kg−1 m sec2

Initial porosityb,c (φinit) 0.38

Initial hydraulic freshwater conductivityb (K0,init
ij ) 5.6×10−4 m sec−1

Initial specific surface area in the matrixi (Ainit
qz ) 54.2 m2 kg−1

Solid phase densityj (ρs) 2650 kg m−3

Specific heat of solidj (c̃s) 738 J kg−1 K−1

Specific heat of liquidj (c̃l) 4186 J kg−1 K−1

Thermal conductivity of solidj (ks) 5.0 W m−1 K−1

Thermal conductivity of liquidj (kl) 0.6 W m−1 K−1

a Freedman and Ibaraki (2002)

b Schincariol et al. (1994)

c Ibaraki (1998)

d To fulfill the Péclet criterion, Pe < 2.3, used by b and c

e To fulfill the Courant criterion, Cr ≤ 1.0, used by b

f Yeh and Tripathi (1989)

g Computed by this model for deionized water at TC = 239oC

h Shikaze et al. (1998)

i Johnson et al. (1998)

j Bolton et al. (1996)
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result of the pm reac simulation. In the near field of the source, temperatures are

relatively high, such that quartz dissolves. However, further away from the source, the

temperatures are close to the background temperature, 239oC. In this far field of the

source, solute concentrations are high, decreasing the solubility of silica. Therefore,

the salinity controls the silica concentration in the far field. Conversely, the silica

concentration follows the isotherms in both the near field as well as in regions of low

salinity above and below the plume. Figure 6.15 is a vertical cross-section at x = 0.12

m from the source. The figure shows that the silica concentration is proportional

to temperature in low-salinity zones and inversely proportional to salinity in high-

salinity zones. Clearly, these observations demonstrate the solubility-lowering effect of

salt and the solubility-increasing effect of temperature as discussed in Section 2.2 and

shown in Figure D.1 (Appendix D). Figure 6.14e finally shows the distribution of the

hydraulic freshwater conductivity. As expected, the area around the source became

more conductive because of quartz dissolution. However, the elongated blueish fields,

situated on the right of the source, indicate a conductivity value smaller than the initial

one. Apparently, dissolved silica was transported by advection to the right. Silica is

assumed to be non-sorptive and its transport rate is, therefore, comparable to the

chloride transport rate. If silica molecules are transported laterally to regions of lower

temperature and high salinity, the system becomes locally supersaturated and some of

the previously dissolved silica precipitates, resulting in lower hydraulic conductivity.

The second simulation trial, called pm dens, models variable-density flow in the

porous medium but ignores chemical reactions. Fluid density and viscosity are cal-

culated with Equations (2.29) and (2.32) and as shown in Figure D.1 (Appendix D).

Unlike the previous simulation, time step sizes are prescribed and gradually increase

from 1 minute to 2 hours.

Figure 6.16 demonstrates that density effects cause vertical flow movement. The

figure shows concentration profiles of Cl− at different times, highlighting the mixed con-

vective flow character: Forced convection (advection) remains the main lateral transport

mechanism whereas buoyancy-induced free convection controls the shape of the plume

in the vertical direction. The magnitude of buoyancy is controlled by the fluid density,

being a function of both temperature (Figure 6.17a) and salinity (Figures 6.17b and

6.17c). Different diffusivities are the reason for completely different transport behavior
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of thermal energy and solutes, which is known as double diffusive transport (Stern,

1960; Turner, 1979; Tyvand, 1980; Evans and Nunn, 1989; Brandt and Fernando, 1995;

Oldenburg and Pruess, 1998). In the pm dens simulation, heat transfer is practically

independent of groundwater flow, while water flow dominates solute transport. This

difference results in an interesting density distribution (Figure 6.17d). In the near field

of the source, temperature appears to control the fluid density, while in the far field, the

salt concentration is crucial. The inflowing hot saline fluid has a density of 808.443 kg

m−3, lower than the reference density (815.969 kg m−3). In this case, the inflowing fluid

is less dense than the ambient fluid. As a consequence, the relative density, ρr, is neg-

ative (-9.223×10−3), resulting in a positive buoyancy effect near the source. However,

further away from the source, the influence of the solutes on density dominates because

advective solute transport is more efficient than conductive heat transfer. Therefore,

the fluid density exceeds its reference value and the density contrast is positive (in the

range of 10−3), which results in a noticeable sinking of the plume.

The last simulation, pm reac dens, couples the effect of density with chemical re-

actions. As in pm reac, time step sizes adapt to porosity changes with the maximum

permitted porosity change, φ∗, set to 10−3 (0.1%). Figure 6.18 shows that dissolved

silica travels with the solute plume laterally across the domain. As before, the temper-

ature is the important factor in the near field of the source, where it controls quartz

solubility and fluid density. In the far field, however, the salt content dictates variable-

density flow and chemical reactions.

In pm reac dens, the hydraulic conductivity and the matrix porosity change with

time as a result of the reactions. This contrasts with pm dens, where conductivity and

porosity remain constant over time. However, the results of the two simulations are

not significantly different. This observation is in agreement with findings by Freedman

and Ibaraki (2002), who simulated the chemistry of calcite, coupled with density-driven

flow. The regarded time scale of some days is too short to perceive a major impact of

the reactions. Nevertheless, the three simulations presented here illustrate the coupling

between variable-density flow, heat transfer and reactive transport in porous media.

They also show that adaptive time stepping is a useful tool and certainly competitive

compared with the conventional use of predefined time step sizes (Table 6.2).
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Table 6.2: Simulations and CPU times in porous media (pm).

Simulation Chemical reactions Density variations Time stepping CPU time∗

pm reac
√

– adaptive 31 min

pm dens –
√

prescribed 1 h 24 min

pm reac dens
√ √

adaptive 1 h 34 min

∗ Computed on a Pentium 4, 2.6 GHz, 500 MB RAM.
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Figure 6.13: Model domain and location of the solute source for numerical simulations of

reactive silica transport and variable-density thermohaline flow in porous and fractured

media. The parameters are the same for studies in porous media, except no discrete

fractures are used.
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Figure 6.14: Results of non-density dependent reactive transport simulations in porous

media (pm reac) at 3 days. Shown are (a) temperature, (b) chloride and (c) magnesium

ion concentration, (d) molal concentration of aqueous silica and (e) freshwater hydraulic

conductivity.



CHAPTER 6. ILLUSTRATIVE EXAMPLES 135

0

0.05

0.1

0.15

0.2

0.25

z
e

le
v

a
ti

o
n

[m
]

silica

chloride

temperature

chloride   [mg l ]
-1

0 200 400 600 800 1000

temperature   [°C]

239.8 239.9 240.0

silica   [mmol kg ]
-1

6.48 6.5 6.52 6.566.54

239.7

Figure 6.15: Vertical cross-section at x = 0.12 m from the source for the simulation

pm reac.



CHAPTER 6. ILLUSTRATIVE EXAMPLES 136

(a)

(b)

(c)

mg l
-1

mg l
-1

mg l
-1

1000

0

750

500

250

1000

0

750

500

250

1000

0

750

500

250

Figure 6.16: Results of density dependent non-reactive transport simulations in porous

media (pm dens). Shown is the chloride ion concentration at different simulation times:

(a) 1 day, (b) 2 days and (c) 3 days.
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Figure 6.17: Results of density dependent non-reactive transport simulations in porous

media (pm dens) at 3 days. Shown are (a) temperature, (b) chloride and (c) magnesium

ion concentration and (d) fluid density.
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Figure 6.18: Results of density dependent reactive transport simulations in porous

media (pm reac dens). Shown is the molal concentration of aqueous silica at different

simulation times: (a) 1 day, (b) 2 days and (c) 3 days.
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Figure 6.19: Results of density dependent reactive transport simulations in porous

media (pm reac dens) at 3 days. Shown are (a) temperature, (b) chloride and (c) mag-

nesium ion concentration, (d) molal concentration of aqueous silica and (e) freshwater

hydraulic conductivity.
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6.5 Thermohaline Flow and Reactive Solute Trans-

port in Fractured Porous Media

A second series of three simulations assumes the presence of fractures (fm) oriented

transversely to the ambient flow direction as shown in Figure 6.13. The developed

random fracture generator produced 60 random fractures, which follow the two main

orientations 60o and 120o with the standard deviation of the Gaussian distribution,

sigma = 1o. All fractures are 0.1 m in length and have the uniform aperture of 100 µm.

Initial and boundary conditions of the fm simulations are identical to those used in the

previous example in porous media. Table 6.1 presents the simulation parameters while

Table 6.3 shows additional parameters for the studies including fractures.

Table 6.3: Additional model parameters used in reactive transport studies in fractured

media.

Parameter Value

Fracture dispersivitya,b (αfr) 0.1 m

Initial fracture apertureb,c (2b)init 100 µm

Initial specific surface area in the fractured (Afr,init
qz ) 49.021 m2 kg−1

Fracture roughness coefficiente (ω) 1.0

a Therrien and Sudicky (1996)
b Tang et al. (1981)
c Sudicky and Frind (1982)
d From relation (2.40)
e Steefel and Lasaga (1994)

The first experiment, fm reac, ignores density effects but simulates chemical trans-

port. The time step sizes adapt to changes in matrix porosity and/or fracture aperture.

Maximum permitted changes of porosity and aperture are chosen as φ∗ = 10−3 (0.1%)

and (2b)∗ = 0.1 µm, respectively. Figure 6.20 shows the results after 3 days. The

fractures have a substantial impact on the result because their hydraulic conductivity

is more than 100 times greater than that of the porous matrix. The high-permeability

fractures increase the transverse dispersion of the plume. This results in a larger vertical

extension of the plume and reduced lateral migration (Figures 6.20b and 6.20c), com-

pared with results in porous media (Figures 6.14b and 6.14c). Figure 6.20d exemplifies
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the thermohaline influence on silica solubility. The plume is now more dispersed and

solute concentrations in the far field are low, causing less silica precipitation. Therefore,

silica precipitation only insignificantly lowers hydraulic conductivity (Figure 6.20e).

The second trial, fm dens, simulates variable-density flow but ignores chemical

reactions. Time step sizes are prescribed and gradually increase from 1 minute to 2

hours. Figure 6.21 shows the concentration profile of the non-reactive, non-sorptive

chloride ion at 1, 2 and 3 days. Figure 6.22d suggests that the fluid density in the far

field of the source is smaller than in the previous example in porous media (Section

6.4) due to the more dispersed plume. As a consequence, density contrasts in the far

field are generally small and in the range of 10−4. Therefore, the buoyancy effect in the

fractures (Equation 3.9) is minor and does not significantly change fracture velocities.

Figure 6.21 demonstrates that, in this case, the fractures do not act like preferential

pathways as was shown in the examples presented in Sections 6.1, 6.2 and 6.3. In those

examples and in the studies done by Shikaze et al. (1998), the relative density has

values up to 0.2, more than three orders of magnitude greater than those encountered

here.

The last fm reac dens experiment simulates variable-density flow in combination

with chemical reactions using adaptive time stepping as in fm reac. Figure 6.23 shows

that silica concentrations in the far field are smaller than in the pm reac dens example in

porous media. This corresponds to the silica solubility-lowering effect of dissolved salt.

The dissolved ions are now distributed over a larger cross-sectional area with smaller

salt concentrations (Figures 6.24a and 6.24b) than before (Figures 6.19a and 6.19b).

Aperture changes are insignificant on the temporal scale regarded in this example, and

are not shown.

The CPU times are typically greater than in the pm simulations because fractures

are present (Table 6.4). It is again shown that adaptive time stepping is a helpful means

to accelerate and control the simulation process.

The simulations run in porous and fracture media show that the developed model

is a reliable and stable model to numerically simulate variable-density flow and reactive

transport in fractured porous media.
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Table 6.4: Simulations and CPU times in fractured porous media (fm).

Simulation Chemical reactions Density variations Time stepping CPU time∗

fm reac
√

– adaptive 36 min

fm dens –
√

prescribed 1 h 32 min

fm reac dens
√ √

adaptive 1 h 48 min

∗ Computed on a Pentium 4, 2.6 GHz, 500 MB RAM.
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Figure 6.20: Results of non-density dependent reactive transport simulations in frac-

tured media (fm reac) at 3 days. Shown are (a) temperature, (b) chloride and (c)

magnesium ion concentration, (d) molal concentration of aqueous silica and (e) fresh-

water hydraulic conductivity.
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Figure 6.21: Results of density dependent non-reactive transport simulations in frac-

tured media (fm dens). Shown is the chloride ion concentration at different simulation

times: (a) 1 day, (b) 2 days and (c) 3 days.
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Figure 6.22: Results of density dependent non-reactive transport simulations in frac-

tured media (fm dens) at 3 days. Shown are (a) temperature, (b) chloride and (c)

magnesium ion concentration and (d) fluid density.
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Figure 6.23: Results of density dependent reactive transport simulations in fractured

media (fm reac dens). Shown is the molal concentration of aqueous silica at different

simulation times: (a) 1 day, (b) 2 days and (c) 3 days.
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Figure 6.24: Results of density dependent reactive transport simulations in fractured

media (fm reac dens) at 3 days. Shown are (a) temperature, (b) chloride and (c) mag-

nesium ion concentration, (d) molal concentration of aqueous silica and (e) freshwater

hydraulic conductivity.
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Sensitivity Analysis

The developed model was applied to assess the impact of parameter uncertainties on

variable-density flow (Section 7.1) and reactive solute transport (Section 7.2). In both

cases, a base case simulation was defined, where unmodified parameter values were

used. Starting with the base case, two simulations were run for every parameter tested,

using a lower and a higher parameter value.

All simulations were characterized with a dependent variable that appropriately

represents the simulation. If this quantity is named ξ, the terms ξlow, ξorg and ξhigh

denote the results obtained when simulating with a low, unmodified and high value

of parameter π: πlow, πorg and πhigh, respectively. A dimensionless sensitivity of the

model parameter π, Xπ, is evaluated using an equation presented by Zheng and Bennett

(2002):

Xπ =
∂ξ/ξorg

∂π/πorg
(7.1)

According to Zheng and Bennett (2002), the partial derivative of the dependent variable,

ξ, with respect to the input parameter, π, can be normalized by the original value of

the variable, ξorg, and the parameter, πorg.

The choice of the range over which the input parameter is varied, is subjective.

However, if parameter changes (i.e. perturbations) are too small, computer round-off

errors may conceal differences of the dependent variable. On the other hand, pertur-

148
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bations which are too large may yield inaccurate sensitivities, especially if the relation

between dependent variable and parameter is nonlinear. In the present mathematical

sensitivity analysis, a uniform perturbation size of 5% is applied as suggested by Zheng

and Bennett (2002). In order to visualize parameter sensitivity, further simulations

were carried out with much wider ranges of the input parameters. These second per-

turbations are not identical for all parameters and are not used in a mathematical sense

but only for visualization purpose.

7.1 Variable-Density Flow

A first series of eight simulations of variable-density flow in a complex fracture network

was carried out. The fracture network shown in Figure 6.8a was chosen because it

allows the behavior of the network as a whole to be examined, rather than the behavior

of few individual fractures that dominate the system as shown in Figure 6.8c. Figure

6.9a shows the base case scenario. It is assumed that the penetration depth of the

30% contour at 4 years adequately characterizes this simulation and is used as the

dependent variable, ξ. The sensitivity of the matrix permeability, matrix porosity,

fracture aperture and free-solution diffusion coefficient was analyzed by lowering and

increasing original values given in Table 7.1 by uniform 5%. Figure 7.1 shows the

calculated sensitivities for each input parameter

Table 7.1: Model parameter modifications used for visualization only in the sensitivity

analysis of variable-density flow.

Parameter Low value Original value High value

Free-solution diffusion coefficient (Dd) 5×10−10 m2 sec−1 5×10−9 m2 sec−1 5×10−8 m2 sec−1

Fracture aperturea (2b) 50 ... 150 µm 150 ... 250 µm 250 ... 350 µm

Matrix permeability (κij) 5×10−16 m2 1×10−15 m2 2×10−15 m2

Matrix porosity (φ) 0.25 0.35 0.45

a Exponentially distributed

A second series of eight simulations was run for visualization purpose, where much

larger parameter perturbations were used as shown in Table 7.1. The fracture apertures

are distributed exponentially as described in Section 2.1. The result of this visual
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sensitivity test of variable-density flow in a complex fracture network is shown in Figure

7.2. Note that the output time is now 3 years.

The free-solution diffusion coefficient explicitly impacts diffusion rate. Diffusion

only implicitly affects flow velocities and convection rates by mixing. If diffusion is

high, enhanced diffusive mixing reduces plume instability. However, diffusion has no

explicit influence on velocities and convection. Therefore, its sensitivity was found to

be relatively minor. The simulations further indicate that a high diffusion coefficient

leads to high diffusion from the fractures into the adjacent porous matrix, often termed

”loss of tracer”. Therefore, the fractures are depleted in solutes resulting in less efficient

buoyancy within the fractures. Conversely, a low diffusion coefficient leads to less matrix

diffusion and, thus, the concentration gradients as well as the concentrations in the

fractures remain high, resulting in high diffusive as well as buoyancy-driven transport

within the fractures. Thus, solutes migrate further into the porous matrix in the high

diffusion case but deeper into the aquifer in the low diffusion case (Figure 7.2a).

Convection is an important mechanism controlling variable-density flow in fractured

porous media. Therefore, the system is sensitive to fracture aperture and matrix perme-

ability, both affecting the flow velocity in convection cells. The dependency of fracture

flow velocity on aperture is quadratic and, thus, stronger than the linear relationship

between matrix flow velocity and matrix permeability. In the example, however, the

volume fraction of the fractures is much smaller than that of the porous matrix. Con-

sequently, inaccuracies of the fracture aperture (sensitivity of 0.98) are less severe than

erroneous matrix permeability (sensitivity of 2.13).

According to the Cubic Law, the discharge in fractures changes with the cube of

the fracture aperture. Therefore, uncertainties in aperture size have a major impact

on the result, with large apertures promoting instability because of higher convection

rates (Figure 7.2b).

Increased matrix permeability destabilizes the system because of higher computed

Darcy fluxes in the matrix (Equations (3.6) and (3.7)). Section 6.1 illustrates that

variable-density flow rates in fractures are controlled by convection in the porous matrix.

It was also shown in Figure 6.1 that such a convection cell includes both the fracture
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and the porous matrix with fluid moving upwards in the matrix and downwards in the

fracture. As a consequence, rapid upwards flow in the matrix enables rapid downwards

flow in the fracture. Thus, the magnitude of the groundwater velocities in the porous

matrix controls the transport rate in fractures with greater matrix permeability leading

to higher transport rates in fractures (Figure 7.2c).

The impact of matrix porosity changes on variable-density transport was found

to be similar to the case where the fluid density is constant. The latter has been

investigated by Sudicky and McLaren (1992), who showed that in discretely-fractured

porous formations, the bulk travel distance is inversely proportional to porosity. This

trend could be confirmed with the presented variable-density flow simulations. In the

base case scenario, the 30% penetration depth after 4 years is 6.1 m. If porosity is

increased by 5%, this depth is 5.5 m, giving a ratio of 1.11. This value is close to

the inverse porosity ratio, 0.3675/0.35 = 1.05. Thus, decreasing the porosity results

in more rapid solute migration within fractures. This last statement holds for both

the constant-density case (Sudicky and McLaren, 1992) as well as for variable-density

flow (Figure 7.2d). Matrix porosity affects both transport mechanisms, hydrodynamic

dispersion and advective transport. The average flow velocity is calculated as vi = qi/φ,

thus, a smaller porosity results not only in less attenuation of the plume (Sudicky

and McLaren, 1992), but also in greater advective transport. The high sensitivity of

the matrix porosity, evaluated as -3.28, expresses its twofold control on dense plume

transport.
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Figure 7.1: Dimensionless sensitivity of model parameters in variable-density flow sim-

ulations in order from least (top) to most (bottom) sensitive.
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Figure 7.2: Visual sensitivity of input parameters at 3 years. Shown are the concentra-

tion contours 20% and 60% for lower (left) and higher (right) values of the following

parameters: (a) free-solution diffusion coefficient, (b) fracture aperture, (c) matrix per-

meability and (d) matrix porosity.



CHAPTER 7. SENSITIVITY ANALYSIS 154

7.2 Reactive Solute Transport

The base case scenario simulates reactive transport in a single fracture embedded in a

porous matrix as presented by Steefel and Lichtner (1998a). This simulation has been

described before in Section 5.2 and was used as a verification example (Figure 5.16).

The steady state silica concentration at the fracture outlet (z = 3.1 cm) was chosen

as the dependent variable, ξ. The simulation of the base case scenario with unmodi-

fied parameter values yields the characteristic number ξorg = 3.5887×10−3 mol kg−1.

The reactive transport simulation was run with modified values of the specific quartz

surface area in the fracture and matrix, quartz volume fraction and temperature. The

original value of each input parameter, shown in Table 7.2, was lowered and increased

by uniform 5%. Figure 7.3 presents the calculated dimensionless sensitivity for each

input parameter.

Table 7.2: Model parameter modifications used for visualization only in the sensitivity

analysis of reactive solute transport.

Parameter Low value Original value High value

Specific quartz surface area in the fracture (Afr
qz ) 1.15 m2 kg−1 6.15 m2 kg−1 11.15 m2 kg−1

Specific quartz surface area in the matrix (Aqz) 34.2 m2 kg−1 54.2 m2 kg−1 74.2 m2 kg−1

Quartz volume fraction (φqz) 0.6 1.0 1.0

Temperature (TC) 209oC 239oC 269oC

A second set of simulations was run for visualization purpose, where much larger

parameter perturbations were used as indicated in Table 7.2. The result of this visual

sensitivity analysis is shown in Figure 7.4.

The simulations show that the uncertainties of the fracture surface area have a

negligible impact on the results (Figure 7.4a), expressed by the low sensitivity of 0.01.

However, the fracture surface area is about one order of magnitude smaller than in the

matrix. Consequently, the fracture reaction rate is also one order of magnitude slower.

Therefore, the fast reaction in the matrix is dominant and suppresses unprecise fracture

reaction rates.
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Both the surface area in the matrix and the quartz volume fraction are directly

proportional to the reaction rate (Equations (2.8) and (2.9)). Thus, the sensitivity of

the two parameters is similar (Figure 7.4b and c). However, uncertainties of the quartz

volume fraction also impact the fracture reaction rate, which may cause the slightly

higher sensitivity (0.34) than that of the matrix surface area (0.32).

Temperature variations have the most significant influence on the results (Figure

7.4d). If, for example, the ambient temperature increases, the dissolution reactions

proceed faster (relation (2.10)) and, in addition, more quartz dissolves (relation (2.20)).

Both geochemical processes considerably increase the net reaction rate (Figure D.1),

resulting in the high sensitivity of temperature with a value of 4.28.

4.28
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0.32

0.01

0 1 2 3 4 5

Temperature

Quartz volume fraction

Specific quartz surface area in

the matrix

Specific quartz surface area in

the fracture
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Figure 7.3: Dimensionless sensitivity of model parameters in reactive solute transport

simulations in order from least (top) to most (bottom) sensitive.
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Figure 7.4: Visual sensitivity input parameters at steady state. Shown is the steady

state quartz concentration in the fracture if the following parameters are uncertain: (a)

specific quartz surface area in the fracture and (b) in the matrix, (c) quartz volume

fraction and (d) temperature.
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Conclusions

The primary goal of this work was to develop a numerical model, capable of simulat-

ing coupled variable-density, variable-viscosity flow and kinetically controlled reactive

transport in fractured porous media.

The newly developed model is unique in its formulation. Unlike previous models,

this model allows variable-density flow to be simulated in realistic fracture networks. In

addition, it is the first model that couples thermohaline groundwater flow with reactive

transport and with changes of flow/transport parameters in fractured porous media with

the exception of specific storage. The model focuses on the chemistry of the common

quartz-water system with aqueous silica as the only mobile reactive species. Flow is

linked with heat transfer and solute transport through an iterative Picard approach.

After each iteration, the fluid properties density and viscosity are updated using the

primary variables ion concentration and temperature. Chemical reactions are calculated

outside the Picard Iteration because the reactive species silica does not significantly

impact the fluid properties. According to the quasi-stationary state approximation

(Lichtner, 1988), flow and reactive transport parameters are also updated at the end

of a time step. An adaptive time stepping is used to further enhance the efficiency

of the model. New time increments depend on maximum changes in matrix porosity

and/or fracture aperture. This robust, dynamic time marching scheme is very useful

to accelerate and slow down the simulation to prevent physically unrealistic changes of

porosity and/or aperture.
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New Insights from Model Applications

Although the main objective of the research was to increase modeling capabilities, the

model was also used to simulate a number of illustrative examples, demonstrating the

capacities of the new model. All examples were run in a vertical two-dimensional domain

consisting of one layer of 3D porous matrix blocks. In this vertical slice, fractures

are described by 2D faces, which is essentially a 1D representation of fractures. This

constraint in spatial dimensionality implies that all following statements (except item

[2]) neglect convection within fractures. In summary, the simulations indicate that

[1] In addition to previous variable-density flow studies including vertical fractures

(Murphy, 1979; Malkovsky and Pek, 1997; 2004; Shikaze et al., 1998), inclined

fractures were shown to trigger unstable variable-density flow.

[2] The analytically derived critical Rayleigh number for different aspect rations (Cal-

tagirone, 1982) was shown to be a useful test case for the onset of convection in

vertical and inclined discrete fractures.

[3] Variable-density flow in an inclined fracture causes free convective flow in the

surrounding porous matrix.

[4] In an orthogonal network of large and small fractures, fractures smaller than

10 µm have no impact on the established convective pattern in large fractures of

aperture equal to 50 µm. Small fractures do not stabilize vertical plume migration

by enhanced dispersive mixing.

[5] Convective flow in irregular, yet statistically equivalent networks proved to be

highly sensitive to the geometry of the network. Thus, unknown fracture inter-

connectivity can be a limiting factor of reliable numerical simulations.

[6] If fractures of a random network are connected equidistantly to the contaminant

source, few equidistantly distributed fractures enable rapid downward transport

of contaminants. On the other hand, numerous fractures have a stabilizing effect.

[7] Convection cells in complex fracture networks include both the porous matrix

and fractures. Their transport rates, thus, depend on matrix and fracture flow

properties.
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[8] Variable-density flow tends to be unstable for high matrix permeability, low matrix

porosity and large fracture apertures. In all three cases, flow velocities become

large, leading to strong convection. This finding supports the previous statement.

[9] Large diffusion rates even out plume migration in complex fracture networks by

matrix diffusion.

[10] Double-diffusive reactive transport in fractured media impacts both buoyancy-

driven flow and chemical reactions.

[11] The silica concentration is inversely proportional to salinity in high-salinity regions

and directly proportional to temperature in low-salinity regions.

[12] The reactive system studied is the most sensitive to temperature inaccuracy. This

is because temperature impacts both the dissolution kinetics (Arrhenius equation)

and the quartz solubility.

New Research Capacities

This new model lays the foundation for further numerical studies of a variety of topics

that could not be simulated before.

Prior studies of convection in discretely fractured media have represented the frac-

tures by one-dimensional segments (Shikaze et al., 1998), inhibiting convection within

the fracture. The developed model can be used to extend studies into the second and

third dimension. With little effort, 2D convection with a rotation axis normal to the

fracture can be examined. Such simulations can help understand the fracture-matrix

interaction and how matrix diffusion will dissipate or enhance convection in the frac-

ture. To date, these processes are not at all clear. However, numerically speaking, a

2D representation of fractures does not allow convection cells to form parallel to the

fracture plane. Studying convection where the rotation axis is parallel to the fracture

could prove challenging. It must first be clarified how several node layers represent a

single discrete fracture, followed by a thorough 3D analysis. Other questions that the

new model can answer are: What is the role of spatial discretization on plume mi-

gration in a single fracture? How does spatial discretization influence matrix diffusion
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and, thus, convection in a fracture? Can analytically derived onset criteria for convec-

tion be applied to fractured porous media, where matrix permeability and porosity are

nonzero?

The model can also be used to study the onset as well as the subsequent devel-

opment of instabilities in a fracture network, without being limited to only vertical

and horizontal fractures. To date, the role of network characteristics, such as fracture

density and interconnectivity, as trigger mechanisms is still unclear. Past studies of

density-driven flow in fractured materials (Shikaze et al., 1998) were mostly descrip-

tive; a quantitative interpretation of convection must follow. One future challenge is

definitely to quantify the onset of convection in regular and complex fracture networks

and to eventually derive a modified Rayleigh number that includes network features.

Double diffusive convection (DDC) in fractured media is yet another process that

is barely understood. In the past, this was mostly due to the lack of a model that

simulates thermohaline effects in fractures. Especially in deep waste repositories where

groundwater is a hot brine, the typical layering of fluid convection may form in a

complicated fashion. To date, it is completely unknown if these layers are stable in

space and time as is the case in porous media and how the fracture network controls

the shape and thickness of convection layers. Similar to fractures, DDC in open wells is

commonly ignored. However, this assumption has not yet been justified with the help

of numerical simulation techniques.

This study shows that free convection in fractured porous media is a fast process,

relative to kinetic chemical reactions. In the examples presented in Sections 6.4 and 6.5,

unstable flow develops first, creating local thermodynamic disequilibriums that trigger

reactions. However, at Rayleigh numbers that are only slightly larger than the required

critical Rayleigh number, unstable flow may be slow enough to proceed at the same time

scale as the chemical reaction. Such a scenario of simultaneously occurring convection

and reaction has the potential for fascinating and worthwhile studies.

Similar to prior reactive transport models, this model applies to a specific chemical

system. Additional model modifications will certainly enable studying other chemistries

and, thus, broaden the spectrum of possible applications. With some further model
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development, any reversible reaction of the form

X(s) + H2O(aq)
⇀↽ H2XO(aq) (8.1)

could be simulated where X(s) is any solid mineral with its aqueous form H2XO(aq).

Furthermore, it would easily be possible to model any irreversible reaction (e.g. only

dissolution) of the form

X(s) + H2O(aq) → H2XO(aq) (8.2)

or only precipitation described by

X(s) + H2O(aq) ← H2XO(aq) (8.3)

From Conceptual 2D Results to Reliable 3D Predictions

The presented results of thermohaline flow and reactive transport simulations are nu-

merically stable and obtained from the developed and fully verified model. However,

the model has not been validated because appropriate field data are currently lacking.

The used model input is mostly fictive and contains some uncertainties. For exam-

ple, exact fracture locations and fracture interconnectivity are hard to measure in the

field but were shown to have a crucial impact on plume migration. Another classical

uncertainty is the mineral surface area in the matrix and especially in the fracture.

The fracture roughness is difficult to determine, such that prior studies have commonly

assumed perfectly smooth fracture surfaces for simplicity. As a consequence of highly

uncertain model input, the presented 2D results thus far only allow an analysis and

interpretation in a conceptual way.

The necessary step from obtaining conceptual 2D results to making reliable 3D

long-term predictions will involve an iterative cycle of further model development -

sensitivity analysis - data gathering - numerical modeling - model development as pro-

posed by Glynn and Plummer (2005). Realizing this cycle, however, is highly challeng-

ing because ”there are relatively few studies that have used 3-D geochemical transport

codes” (Glynn and Plummer, 2005). Prior research that would help complete the cy-

cle described above is rare and it remains greatly demanding to simulate a complex 3D

thermohaline flow - reactive transport feedback scenario in a numerically stable fashion.



CHAPTER 8. CONCLUSIONS 162

The complexity of nature and the need to find secure deep repositories for haz-

ardous waste are the reasons why exploring the coupled system of thermohaline flow

and reactive transport ”will be an area of ongoing research” (Post, 2005). The model

developed here was shown to be a very useful tool that can advance this future research.
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[88] Schäfer W and Therrien R, 1995. Simulating transport and removal of xylene

during remediation of a sandy aquifer. Journal of Contaminant Hydrology 19

(9): 205-236.
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Appendix A

Transport Matrices and Vectors

In this appendix, the matrices and vectors used in the semi-discrete form (4.42) of the

reactive transport equation are defined. All terms contain two parts, where the first

and the second part are contributions of the discretized reactive transport equation in

the matrix and the fracture zone, respectively. The second fracture part of the terms

presented below is, therefore, comparable to the coefficients given by Frind (1982).

The fracture part of the advective-dispersive-reactive transport matrix, R, is iden-

tical to the definition in Frind (1982) except the last term representing the quartz

precipitation rate. The fracture terms of the matrix T and the vector b are essentially

identical to those presented by Frind (1982). Similar to the storage term in the flow

equation, all off-diagonal entries of T are nought. The additional vector u represents

the quartz dissolution reaction rate, which is independent of the quartz molality.

In the developed model, only regularly shaped finite elements, such as blocks in 3D

and rectangles in 2D, are used. This allows the integral in (A.1) to be solved analyt-

ically using influence coefficient matrices. Details on the influence coefficient matrices

required are given by Therrien and Sudicky (1996) and Frind (1982).
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RIJ =
∑

e

∫

V e
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φDij
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Appendix B

Fluid Pressure Formulation

In order to reproduce the Elder (1967) results given by Frolkovič and De Schepper

(2000), the FRAC3DVS model had to be modified such that the same flow variable,

the fluid pressure P , can be used to simulate variable-density flow and solute transport

in porous media.

The governing equation for variable-saturated variable-density flow in porous me-

dia is given by Voss (1984) and has under fully saturated flow conditions the three-

dimensional form

∂

∂xi

[

βK0
ij

(

1

g

∂P

∂xj

+ ρηj

)]

= ρSop
∂P

∂t
+ φ

∂ρ

∂c

∂c

∂t
i, j = 1, 2, 3 (B.1)

where β = ρ/ρmax [–] and Sop [M−1 L T2] is the specific pressure storativity, given in

Voss (1984) as

Sop = (1 − φ)αm + φ αfl (B.2)

All other parameters have been defined in the text. Moreover, the pressure gradient

form of Darcy’s law is

qi = −κij

µ

(

∂P

∂xj

+ ρgηj

)

i, j = 1, 2, 3 (B.3)

Lacking externally applied solute mass sources, which is the case in the Elder (1967)

problem, the governing equation for solute transport in porous media does not need to

be adapted to the new flow variable, P , and is given by Equation (3.17).
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Appendix C

Tabular Simulation Results

Table C.1 presents tabulated concentration versus time data of the variable-density

flow simulation in a single inclined fracture from Section 6.1. The availability of tabular

results enables an objective model verification of further groundwater models and, thus,

goes beyond pure isochlor comparison.

Table C.1: Simulation results of scenario 1: concentration breakthrough at z = 6 m in

the fracture.

t [yr] c [–] t [yr] c [–] t [yr] c [–] t [yr] c [–] t [yr] c [–]

0.0 0.00000

0.2 0.00000 4.2 0.30192 8.2 0.66246 12.2 0.76073 16.2 0.803484

0.4 0.00000 4.4 0.33476 8.4 0.67039 12.4 0.76362 16.4 0.805039

0.6 0.00000 4.6 0.36559 8.6 0.67783 12.6 0.76640 16.6 0.806557

0.8 0.00000 4.8 0.39437 8.8 0.68482 12.8 0.76908 16.8 0.808038

1 0.00000 5 0.42114 9 0.69141 13 0.77166 17 0.809485

1.2 0.00000 5.2 0.44599 9.2 0.69762 13.2 0.77415 17.2 0.810899

1.4 0.00002 5.4 0.46903 9.4 0.70349 13.4 0.77656 17.4 0.812281

1.6 0.00014 5.6 0.49037 9.6 0.70903 13.6 0.77888 17.6 0.813633

1.8 0.00071 5.8 0.51015 9.8 0.71428 13.8 0.78113 17.8 0.814955

2 0.00264 6 0.52847 10 0.71925 14 0.78331 18 0.816250
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2.2 0.00749 6.2 0.54547 10.2 0.72398 14.2 0.78542 18.2 0.817518

2.4 0.01724 6.4 0.56124 10.4 0.72847 14.4 0.78747 18.4 0.818759

2.6 0.03342 6.6 0.57590 10.6 0.73274 14.6 0.78946 18.6 0.819976

2.8 0.05652 6.8 0.58953 10.8 0.73681 14.8 0.79139 18.8 0.821169

3 0.08578 7 0.60222 11 0.74069 15 0.79326 19 0.822339

3.2 0.11961 7.2 0.61404 11.2 0.74440 15.2 0.79508 19.2 0.823487

3.4 0.15615 7.4 0.62507 11.4 0.74795 15.4 0.79685 19.4 0.824614

3.6 0.19362 7.6 0.63537 11.6 0.75135 15.6 0.79858 19.6 0.825719

3.8 0.23092 7.8 0.64500 11.8 0.75461 15.8 0.80025 19.8 0.826805

4 0.26720 8 0.65402 12 0.75773 16 0.80189 20 0.827872



Appendix D

Parameter Dependency on

Temperature and Salinity

The developed model computes every physicochemical system parameter over the low-

temperature range 0oC to 300oC and a wide range of salinity, shown in Table D.1.

Figure D.1 graphically illustrates the corresponding model parameters.

Table D.1: Water chemistry at different depths in the Canadian Shield; all concentra-

tions are in mg l−1 (Farvolden et al., 1988).

solute freshwater brackish water saltwater dense brine

0 m -500 m -1,000 m -1,500 m

Na+ 9 360 3,550 34,000

Mg2+ 2 90 95 25

Ca2+ 15 630 7,600 60,000

Cl− 30 730 24,000 150,000
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Figure D.1: All physicochemical parameters calculated by FRAC3DVS are functions of

temperature and salinity.



Appendix E

Mathematical Notation

The use of symbols for main variables is consistent throughout the entire text. The

print mode for symbols is applied as follows:

• scalar variables are denoted in normal italic letters

• vector variables are denoted in bold small letters

• matrix variables are denoted in bold capital letters

Latin letters

(2b) [L] Fracture aperture

(2B) [L] Fracture spacing

a [MOL M−1] Activity

A [–] Aspect ratio between domain length and height

Aqz [M−1 L2] Specific surface area in the matrix

Afr
qz [M−1 L2] Specific surface area in the fracture

As [L2] Active surface area

B [–] Aspect ratio between domain length and width

B [MOL−1 L3] Coefficient in the Jones-Dole equation

c [–] Solute concentration, expressed as relative concentration
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cmax [–] Maximum relative solute concentration

c̃ [L2 T−2 ϑ−1] Specific heat

C [M L−3] Solute concentration, expressed as volumetric mass

D [–] Marshall-Chen coefficient

Dd [L2 T−1] Free-solution diffusion coefficient

Dij [L2 T−1] Hydrodynamic matrix dispersion tensor

Dfr
ij [L2 T−1] Hydrodynamic fracture dispersion coefficient

Dth [L2 T−1] Thermal dispersion coefficient

e [–] Euler’s constant; e = 2.718281828

Ea [MOL−1 M L2 T−2] Activation energy

g [L T−2] Acceleration due to gravity

g [L2 T−1] Buoyancy vector

h0 [L] Equivalent freshwater head

i [–] Unit vector in x-direction

I+, I− [–] Fracture-matrix interface

ĵ [M T−1] Mass flux rate

j [–] Unit vector in y-direction

J [M L−2 T−1] Flow rate of solute mass

J [–] Jacobian matrix

k [M L T−3 ϑ−1] Thermal conductivity

k [–] Unit vector in z-direction

k+ [MOL L−2 T−1] Dissolution (forward) reaction constant

k0
+ [MOL L−2 T−1] Dissolution reaction constant in deionized water

kcorr
+ [MOL L−2 T−1] Dissolution reaction constant in saltwater

k− [M L−2 T−1] Precipitation (backward) reaction constant

Kad [MOL−1 M] Equilibrium adsorption coefficient

Kd [M−1 L3] Equilibrium distribution coefficient

Kfr
d [L] Fracture-surface distribution coefficient

Keq [MOL M−1] Equilibrium constant

K0
ij [L T−1] Coefficients of hydraulic conductivity tensor of freshwater

Kfr
0 [L T−1] Hydraulic freshwater conductivity of the fracture

ℓχ [L] Geometry of the model domain; χ = x, y, z

Lχ [L] Geometry of a block element; χ = x, y, z

LTG [L] Characteristic length scale
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m [MOL M−1] Molal concentration

M [MOL L−3] Molar concentration

Mw [M] Mass of water

Nn [–] Total number of nodes in a finite element grid

Nfe [–] Total number of fracture elements in a finite element grid

Nu [–] Nusselt number

P [M L−1 T−2] Dynamic pressure of the fluid

Peg [–] Grid Peclet number

PPM [–] Mass parts per million

qi [L T−1] Darcy flux

Q [M L−2 T−1] Flow rate of fluid mass

r+ [MOL M−1 T−1] Dissolution (forward) reaction rate

r− [MOL M−1 T−1] Precipitation (backward) reaction rate

rM [MOL L−3 T−1] Net molar production rate

rnet [MOL M−1 T−1] Net molal production rate

R [–] Retardation factor

R∗ [MOL−1 M L2 Universal gas constant

T−2 ϑ−1] R = 8.3144 mol−1 kg m2 sec−2 K−1

Rfr [–] Fracture retardation factor

Rth [–] Thermal retardation coefficient

Ra [–] Rayleigh number of a vertical layer

Ra∗ [–] Rayleigh number of an inclined layer

Rac [–] Critical Rayleigh number of a horizontal layer

Ra∗
c [–] Critical Rayleigh number of an inclined layer

Re [–] Reynolds number

REV [L3] Representative elementary volume

Sh [–] Sherwood number

Sop [M−1 L T2] Specific pressure storativity

SS [L−1] Specific storage of the porous matrix

Sfr
S [L−1] Specific storage of an open fracture

t [T] Time

T [ϑ] Absolute temperature in Kelvin

TC [ϑ] Relative temperature in Celsius

vi [L T−1] Linear flow velocity
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vth [L T−1] Retarded flow velocity

Vqz [MOL−1 L3] Molar volume of quartz

wi [–] Approximation function

Xπ [–] Dimensionless sensitivity of parameter π

Greek letters

α [1o] Bond angle

αfl [M−1 L T2] Coefficient of the compressibility of the fluid due to

fluid pressure or hydraulic head variations

αl [L] Matrix longitudinal dispersivity

αfr
l [L] Longitudinal fracture dispersivity

αm [M−1 L T2] Coefficient of the compressibility of the porous medium

due to fluid pressure or hydraulic head variations

αt [L] Matrix transverse dispersivity

αfr
t [L] Transverse fracture dispersivity

αsalt [M−1 L3] Solutal expansion coefficient

β [–] Ratio of saltwater density to freshwater density

γ [–] Maximum relative density

γσ [–] Activity coefficient of species σ

Γm [M L−3 T−1] Mass sources and sinks

δij [–] Kronecker delta function

∆t [T] Temporal discretization

∆χ [L] Spatial discretization; χ = x, y, z

ηj [–] Indicator for flow direction

θσ [–] Fraction of sites occupied by cation σ

κij [L2] Coefficients of the intrinsic permeability tensor

λ [T−1] Decay constant

Λ [M T−3] Convective-conductive-dispersive loss or gain of heat

µ [M L−1 T−1] Dynamic viscosity of the fluid

ν [L2 T−1] Kinematic viscosity of the fluid

νi [–] Weighting function

ξ [problem dependent] Unknown variable or function

ρ [M L−3] Density
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ρr [–] Relative fluid density

ρc̃ [M L−1 T−2 ϑ−1] Heat capacity

σi [M L−1 T−2] Normal stress component in direction i

τ [–] Factor of tortuosity

φ [–] Porosity of the rock matrix

φqz [–] Quartz volume fraction

ϕ [1o] Fracture incline

χ [L] Global coordinates; χ = x, y, z

χ [L] Local coordinates; χ = x, y, z

ω [–] Fracture roughness coefficient

Ω [M M−1 T−1] Advective-dispersive loss or gain of solute mass

Sub- and superscripts

0 [–] Reference fluid

b [–] Bulk

e [–] Matrix element

fe [–] Fracture element

fr [–] Fracture

i, j [–] Spatial indices

I, J [–] Nodal indices

init [–] Initial time level

l [–] Liquid phase

L [–] Time level

n [–] Normal direction

s [–] Solid phase

σ [–] Species

Special symbols

∂ [–] Partial differential operator

∆ [–] Difference

∇ [L−1] Nabla or divergence operator; ∇() = ∂()
∂x

+ ∂()
∂y

+ ∂()
∂z

ξ [problem dependent] Average value of the variable ξ
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